北师大版数学选修2-2全套教案
数学教案 北师大版选修2-2 同步备课-第1章 推理与证明学案第1节归纳与类比
§1归纳与类比1.1 归纳推理学习目标核心素养1.了解归纳推理的含义,能利用归纳推理进行简单的推理.(重点)2.了解归纳推理在数学发展中的作用.(难点) 1.通过归纳推理概念的学习,体现了数学抽象的核心素养.2.通过归纳推理的应用的学习,体现了逻辑推理的核心素养.1.归纳推理的定义根据一类事物中部分事物具有某种属性,推断该类事物中每一个事物都有这种属性,这种推理方式称为归纳推理.2.归纳推理的特征归纳推理是由部分到整体,由个别到一般的推理.思考:由归纳推理得到的结论一定是正确的吗?[提示]不一定正确.因为归纳推理是由部分到整体、由个别到一般的推理,其结论还需要证明其正确性.1.下列关于归纳推理的说法错误的是( )①归纳推理是由一般到一般的推理过程;②归纳推理是一种由特殊到特殊的推理;③归纳推理得出的结论具有或然性,不一定正确;④归纳推理具有由具体到抽象的认识功能.A.①②B.②③C.①③ D.③④A[归纳推理是由特殊到一般的推理,故①②不正确,易知③④均正确,故选A.]2.若空间中n个不同的点两两距离都相等,则正整数n的取值( )A.至多等于3 B.至多等于4C.等于5 D.大于5B [n =2时,可以;n =3时,为正三角形,可以;n =4时,为正四面体,可以;n =5时,为四棱锥,侧面为正三角形,底面为菱形且对角线长与边长相等,不可能.]3.由集合{a 1},{a 1,a 2},{a 1,a 2,a 3},……的子集个数归纳出集合{a 1,a 2,a 3,…,a n }的子集个数为________.2n[集合{a 1}有两个子集和{a 1},集合{a 1,a 2}的子集有,{a 1},{a 2},{a 1,a 2}共4个子集,集合{a 1,a 2,a 3}有8个子集,由此可归纳出集合{a 1,a 2,a 3,…,a n }的子集个数为2n个.]数式中的归纳推理+b 10=( )A .28B .76C .123D .199(2)已知f(x)=x1-x ,设f 1(x)=f(x),f n (x)=f n -1(f n -1(x))(n>1,且n∈N +),则f 3(x)的表达式为________,猜想f n (x)(n∈N +)的表达式为________.思路探究:(1)记a n+b n=f(n),观察f(1),f(2),f(3),f(4),f(5)之间的关系,再归纳得出结论. (2)写出前几项发现规律,归纳猜想结果.(1)C (2)f 3(x)=x 1-4x f n (x)=x 1-2n -1x [(1)记a n +b n =f(n),则f(3)=f(1)+f(2)=1+3=4;f(4)=f(2)+f(3)=3+4=7;f(5)=f(3)+f(4)=11.通过观察不难发现f(n)=f(n -1)+f(n -2)(n∈N+,n≥3),则f(6)=f(4)+f(5)=18;f(7)=f(5)+f(6)=29;f(8)=f(6)+f(7)=47;f(9)=f(7)+f(8)=76;f(10)=f(8)+f(9)=123.所以a 10+b 10=123. (2)f 1(x)=f(x)=x1-x,f 2(x)=f 1(f 1(x))=x 1-x 1-x 1-x =x1-2x ,f 3(x)=f 2(f 2(x))=x 1-2x 1-2·x 1-2x=x1-4x,由f 1(x),f 2(x),f 3(x)的表达式,归纳f n (x)=x1-2n -1x.]已知等式或不等式进行归纳推理的方法1.要特别注意所给几个等式(或不等式)中项数和次数等方面的变化规律; 2.要特别注意所给几个等式(或不等式)中结构形式的特征; 3.提炼出等式(或不等式)的综合特点; 4.运用归纳推理得出一般结论.1.经计算发现下列不等式:2+18<210, 4.5+15.5<210,3+2+17-2<210,……根据以上不等式的规律,试写出一个对正实数a ,b 都成立的条件不等式:________.当a +b =20时,有a +b<210,a ,b∈R + [从上面几个不等式可知,左边被开方数的和均为20,故可以归纳为a +b =20时,a +b<210.]数列中的归纳推理【例2】 (1)在数列{a n }中,a 1=1,a n +1=-1a n +1,则a 2 019等于( )A .2B .-12C .-2D .1(2)古希腊人常用小石子在沙滩上摆成各种形状来研究数,如图:由于图中1,3,6,10这些数能够表示成三角形,故被称为三角形数,试结合组成三角形数的特点,归纳第n 个三角形数的石子个数.思路探究:(1)写出数列的前几项,再利用数列的周期性解答.(2)可根据图中点的分布规律归纳出三角形数的形成规律,如1=1,3=1+2,6=1+2+3;也可以直接分析三角形数与n 的对应关系,进而归纳出第n 个三角形数.C [(1)a 1=1,a 2=-12,a 3=-2,a 4=1,…,数列{a n }是周期为3的数列,2 019=673×3,∴a 2 019=a 3=-2.](2)[解] 法一:由1=1, 3=1+2, 6=1+2+3, 10=1+2+3+4,可归纳出第n 个三角形数为1+2+3+…+n =n (n +1)2.法二:观察项数与对应项的关系特点如下:项数 1 2 3 4 对应项1×222×323×424×52分析:各项的分母均为2,分子分别为相应项数与相应项数加1的积. 归纳:第n 个三角形数的石子数应为n (n +1)2.数列中的归纳推理在数列问题中,常常用到归纳推理猜测数列的通项公式或前n 项和. (1)通过已知条件求出数列的前几项或前几项和;(2)根据数列中的前几项或前几项和与对应序号之间的关系求解; (3)运用归纳推理写出数列的通项公式或前n 项和公式.2.已知数列{a n }满足a 1=1,a n +1=2a n +1(n =1,2,3,…). (1)求a 2,a 3,a 4,a 5; (2)归纳猜想通项公式a n . [解] (1)当n =1时,知a 1=1, 由a n +1=2a n +1, 得a 2=3,a 3=7,a 4=15,a 5=31.(2)由a 1=1=21-1,a 2=3=22-1,a 3=7=23-1,a 4=15=24-1,a 5=31=25-1, 可归纳猜想出a n =2n-1(n∈N +).几何图形中的归纳推理1.某商场橱窗里用同样的乒乓球堆成若干堆“正三棱锥”形的展品,其中第1堆只有一层,就一个球;第2,3,4,…堆最底层(第一层)分别按如图所示方式固定摆放,从第二层开始,每层的小球自然垒放在下一层之上,第n 堆第n 层就放一个乒乓球,以f(n)表示第n 堆的乒乓球总数,试求f(1),f(2),f(3),f(4)的值.[提示] 观察图形可知,f(1)=1,f(2)=4,f(3)=10,f(4)=20. 2.上述问题中,试用n 表示出f(n)的表达式.[提示] 由题意可得:下一堆的个数是上一堆个数加下一堆第一层的个数,即f(2)=f(1)+3;f(3)=f(2)+6;f(4)=f(3)+10;…;f(n)=f(n -1)+n (n +1)2.将以上(n -1)个式子相加可得 f(n)=f(1)+3+6+10+…+n (n +1)2=12[(12+22+…+n 2)+(1+2+3+…+n)] =12⎣⎢⎡⎦⎥⎤16n (n +1)(2n +1)+n (n +1)2=n (n +1)(n +2)6.【例3】 有两种花色的正六边形地面砖,按如图的规律拼成若干个图案,则第6个图案中有菱形纹的正六边形的个数是( )A .26B .31C .32D .36思路探究:解答本题可先通过观察、分析找到规律,再利用归纳得到结论. B [法一:有菱形纹的正六边形个数如下表:图案 123 … 个数6 1116…由表可以看出有菱形纹的正六边形的个数依次组成一个以6为首项,以5为公差的等差数列,所以第6个图案中有菱形纹的正六边形的个数是6+5×(6-1)=31.法二:由图案的排列规律可知,除第一块无纹正六边形需6个有纹正六边形围绕(图案1)外,每增加一块无纹正六边形,只需增加5块菱形纹正六边形(每两块相邻的无纹正六边形之间有一块“公共”的菱形纹正六边形),故第6个图案中有菱形纹的正六边形的个数为:6+5×(6-1)=31.]在题干不变的条件下,第6个图案中周围的边有多少条? [解] 各个图形周围的边的条数如下表:图案123…边条数18 26 34 …由表可知,周围边的条数依次组成一个以18为首项,8为公差的等差数列,解得第6个图形周围的边的条数为18+8×(6-1)=58条.归纳推理在图形中的应用策略通过一组平面或空间图形的变化规律,研究其一般性结论,通常需形状问题数字化,展现数字之间的规律、特征,然后进行归纳推理.解答该类问题的一般策略是:3.根据图中线段的排列规则,试猜想第8个图形中线段的条数为________.509 [分别求出前4个图形中线段的数目,发现规律,得出猜想.图形①到④中线段的条数分别为1,5,13,29,因为1=22-3,5=23-3,13=24-3,29=25-3,因此可猜想第8个图形中线段的条数应为28+1-3=509.]1.归纳推理是由部分到整体、由个别到一般的推理.(1)由归纳推理得到的结论带有猜测的性质,所以“前提真而结论假”的情况是有可能发生的,结论是否正确,需要经过理论证明或实践检验,因此,归纳推理不能作为数学证明的工具.(2)一般地,如果归纳的个别情况越多,越具有代表性,那么推广的一般性命题就越可能为真.(3)归纳推理能够发现新事实,获得新结论,是科学发现的重要手段.通过归纳推理得到的猜想,可以作为进一步研究的起点,帮助人们发现问题和提出问题.2.归纳推理的思维过程大致是:实验、观察→概括、推广→猜测一般性结论.该过程包括两个步骤: (1)通过观察个别情况发现某些相同性质;(2)从已知的相同性质中推出一个明确表述的一般性命题(猜想).1.判断(正确的打“√”,错误的打“×”)(1)统计学中,从总体中抽取样本,然后用样本估计总体,这种估计属于归纳推理. (2)由个别到一般的推理称为归纳推理. ( ) (3)由归纳推理所得到的结论一定是正确的. ( )[答案] (1)√ (2)√ (3)× 2.用火柴棒摆“金鱼”,如图所示:按照上面的规律,第n 个“金鱼”图需要火柴棒的根数为( ) A .6n -2 B .8n -2 C .6n +2D .8n +2C [a 1=8,a 2=14,a 3=20,猜想a n =6n +2.]3.已知12=16×1×2×3,12+22=16×2×3×5,12+22+32=16×3×4×7,12+22+34+42=16×4×5×9,则12+22+…+n 2=________.(其中n∈N *).16n(n +1)(2n +1) [根据题意归纳出12+22+…+n 2=16n(n +1)(2n +1),下面给出证明:(k +1)3-k 3=3k 2+3k +1,则23-13=3×12+3×1+1,33-23=3×22+3×2+1,……,(n +1)3-n 3=3n 2+3n +1,累加得(n +1)3-13=3(12+22+…+n 2)+3(1+2+…+n)+n ,整理得12+22+…+n 2=16n(n +1)(2n +1).]4.有以下三个不等式:(12+42)(92+52)≥(1×9+4×5)2, (62+82)(22+122)≥(6×2+8×12)2, (202+102)(1022+72)≥(20×102+10×7)2.请你观察这三个不等式,猜想出一个一般性的结论,并证明你的结论. [解] 结论为:(a 2+b 2)(c 2+d 2)≥(ac+bd)2.证明:(a 2+b 2)(c 2+d 2)-(ac +bd)2=a 2c 2+a 2d 2+b 2c 2+b 2d 2-(a 2c 2+b 2d 2+2abcd) =a 2d 2+b 2c 2-2abcd =(ad -bc)2≥0.所以(a2+b2)(c2+d2)≥(ac+bd)2.1.2 类比推理学 习 目 标核 心 素 养1.通过具体实例理解类比推理的意义.(重点) 2.会用类比推理对具体问题作出判断.(难点)1.通过类比推理的意义的学习,体现了数学抽象的核心素养.2.通过应用类比推理对具体问题判断的学习,体现了逻辑推理的核心素养.1.类比推理由于两类不同对象具有某些类似的特征,在此基础上,根据一类对象的其他特征,推断另一类对象也具有类似的其他特征,我们把这种推理过程称为类比推理.类比推理是两类事物特征之间的推理. 2.合情推理合情推理是根据实验和实践的结果、个人的经验和直觉、已有的事实和正确的结论(定义、公理、定理等),推测出某些结果的推理方式.合情推理的结果不一定正确.思考:合情推理的结果为什么不一定正确?[提示] 合情推理是由特殊到一般的推理,简单地说就是直接看出来的,没有通过证明,只归纳了一部分,属于不完全归纳,所以不一定正确.1.下面使用类比推理恰当的是( )A .“若a·3=b·3,则a =b ”类比推出“若a·0=b·0,则a =b”B .“(a+b)c =ac +bc”类比推出“(a·b)c=ac·bc”C .“(a+b)c =ac +bc”类比推出“a +b c =a c +bc (c≠0)”D .“(ab)n=a n b n”类比推出“(a+b)n=a n+b n” C [由实数运算的知识易得C 项正确.] 2.下列推理是合情推理的是( ) (1)由圆的性质类比出球的有关性质;(2)由直角三角形、等腰三角形、等边三角形的内角和是180°,归纳出所有三角形的内角和都是180°; (3)a≥b,b≥c,则a≥c;(4)三角形内角和是180°,四边形内角和是360°,五边形内角和是540°,由此得凸n 边形内角和是(n -2)×180°.A .(1)(2)B .(1)(3)(4)C .(1)(2)(4)D .(2)(4)C [(1)为类比推理,(2)(4)为归纳推理,(3)不是合情推理,故选C.]3.类比平面内正三角形的“三边相等,三内角相等”的性质,可推知正四面体的下列性质,你认为比较恰当的是________.(填序号)①各棱长相等,同一顶点上的任两条棱的夹角都相等;②各个面都是全等的正三角形,相邻两个面所成的二面角都相等; ③各个面都是全等的正三角形,同一顶点上的任两条棱的夹角都相等.①②③ [正四面体的面(或棱)可与正三角形的边类比,正四面体的相邻两面成的二面角(或共顶点的两棱的夹角)可与正三角形相邻两边的夹角类比,故①②③都对.]类比推理在数列中的应用【例1】 在公比为4的等比数列{b n }中,若T n 是数列{b n }的前n 项积,则有T 20T 10,T 30T 20,T 40T 30也成等比数列,且公比为4100.类比上述结论,相应地在公差为3的等差数列{a n }中,若S n 是{a n }的前n 项和.试写出相应的结论,判断该结论是否正确,并加以证明.思路探究:结合已知等比数列的特征可类比等差数列每隔10项和的有关性质.[解] 数列S 20-S 10,S 30-S 20,S 40-S 30也是等差数列,且公差为300.该结论是正确的.证明如下: ∵等差数列{a n }的公差d =3, ∴(S 30-S 20)-(S 20-S 10)=(a 21+a 22+…+a 30)-(a 11+a 12+…+a 20)同理可得:(S 40-S 30)-(S 30-S 20)=300,所以数列S 20-S 10,S 30-S 20,S 40-S 30是等差数列,且公差为300.1.本例是由等比类比等差,你能由等差类比出等比结论吗?完成下题:设等差数列{a n }的前n 项和为S n ,则S 4,S 8-S 4,S 12-S 8,S 16-S 12成等差数列.类比以上结论有:设等比数列{b n }的前n 项积为T n (T n ≠0),则T 4,_______,_______,T 16T 12成等比数列.T 8T 4 T 12T 8[等差数列类比于等比数列时,和类比于积,减法类比于除法,可得类比结论为:设等比数列{b n }的前n 项积为T n ,则T 4,T 8T 4,T 12T 8,T 16T 12成等比数列.]2.在本例条件不变的情况下,你能写出一个更为一般的结论吗?(不用论证)[解] 对于任意k∈N +,都有数列S 2k -S k ,S 3k -S 2k ,S 4k -S 3k 是等差数列,且公差为k 2d.1.在等比数列与等差数列的类比推理中,要注意等差与等比、加与乘、减与除、乘法与乘方的类比特点.2.类比推理的思维过程观察、比较→联想、类推→猜测新的结论.即在两类不同事物之间进行对比,找出若干相同或相似之处后,推测这两类事物在其他方面的相同或相似之处.1.在等差数列{a n }中,如果m ,n ,p ,r∈N +,且m +n +p =3r ,那么必有a m +a n +a p =3a r ,类比该结论,写出在等比数列{b n }中类似的结论,并用数列知识加以证明.[解] 类似结论如下:在等比数列{b n }中,如果m ,n ,p ,r∈N +,且m +n +p =3r ,那么必有b m b n b p=b 3r .证明如下:设等比数列{b n }的公比为q ,则b m =b 1q m -1,b n =b 1q n -1,b p =b 1qp -1,b r =b 1qr -1,于是b m b n b p =b 1qm -1·b 1qn -1·b 1q p -1=b 31qm +n +p -3=b 31q3r -3=(b 1qr -1)3=b 3r ,故结论成立.类比推理在几何中的应用【例2】 如图所示,在平面上,设h a ,h b ,h c 分别是△ABC 三条边上的高,P 为△ABC 内任意一点,P 到相应三边的距离分别为p a ,p b ,p c ,可以得到结论p a h a +p b h b +p ch c=1.证明此结论,通过类比写出在空间中的类似结论,并加以证明.思路探究:三角形类比四面体,三角形的边类比四面体的面,三角形边上的高类比四面体以某一面为底面的高.[解] p a h a =12BC·p a12BC·h a =S △PBCS △ABC,同理,p b h b =S △P AC S △ABC ,p c h c =S △PABS △ABC .∵S △PBC +S △PAC +S △PAB =S △ABC ,∴p a h a +p b h b +p c h c =S △PBC +S △PAC +S △PAB S △ABC=1. 类比上述结论得出以下结论:如图所示,在四面体ABCD 中,设h a ,h b ,h c ,h d 分别是该四面体的四个顶点到对面的距离,P 为该四面体内任意一点,P 到相应四个面的距离分别为p a ,p b ,p c ,p d ,可以得到结论p a h a +p b h b +p c h c +p dh d=1.证明:p a h a =13S △BCD ·p a13S △BCD ·h a =V PBCDV ABCD,同理,p b h b =V PACD V ABCD ,p c h c =V PABD V ABCD ,p d h d =V PABCV ABCD .∵V PBCD +V PACD +V PABD +V PABC =V ABCD , ∴p a h a +p b h b +p c h c +p d h d =V PBCD +V PACD +V PABD +V PABCV ABCD=1.1.在本例中,若△ABC 的边长分别为a ,b ,c ,其对角分别为A ,B ,C ,那么由a =b·cos C+c·cos B 可类比四面体的什么性质?[解] 在如图所示的四面体中,S 1,S 2,S 3,S 分别表示△PAB,△PBC,△PCA,△ABC 的面积,α,β,γ依次表示平面PAB ,平面PBC ,平面PCA 与底面ABC 所成二面角的大小.猜想S =S 1·cos α+S 2·cos β+S 3·cos γ.2.在本例中,若r 为三角形的内切圆半径,则S △=12(a +b +c)r ,请类比出四面体的有关相似性质.[解] 四面体的体积为V =13(S 1+S 2+S 3+S 4)r(r 为四面体内切球的半径,S 1,S 2,S 3,S 4为四面体的四个面的面积.1.平面图形与空间图形类比平面图形 点 线 边长 面积 线线角 三角形 空间图形线面面积体积二面角四面体2.类比推理的一般步骤(1)找出两类事物之间的相似性或一致性;(2)用一类事物的性质推测另一类事物的性质,得出一个明确的结论.类比推理在其他问题中的应用1.鲁班发明锯子的思维过程为:带齿的草叶能割破行人的腿,“锯子”能“锯”开木材,它们在功能上是类似的.因此,它们在形状上也应该类似,“锯子”应该是齿形的.你认为该过程为归纳推理还是类比推理?[提示] 类比推理.2.已知以下过程可以求1+2+3+…+n 的和.因为(n +1)2-n 2=2n +1, n 2-(n -1)2=2(n -1)+1, ……22-12=2×1+1,有(n +1)2-1=2(1+2+…+n)+n , 所以1+2+3+…+n =n 2+2n -n 2=n (n +1)2.类比以上过程试求12+22+32+…+n 2的和. [提示] 因为(n +1)3-n 3=3n 2+3n +1, n 3-(n -1)3=3(n -1)2+3(n -1)+1, ……23-13=3×12+3×1+1,有(n +1)3-1=3(12+22+…+n 2)+3(1+2+3+…+n)+n , 所以12+22+…+n 2=13⎝ ⎛⎭⎪⎫n 3+3n 2+3n -3n 2+5n 2=2n 3+3n 2+n 6=n (n +1)(2n +1)6.【例3】 已知椭圆具有性质:若M ,N 是椭圆C 上关于原点对称的两个点,点P 是椭圆上任意一点,当直线PM ,PN 的斜率k PM ,k PN 都存在时,那么k PM 与k PN 之积是与点P 的位置无关的定值,试写出双曲线x2a 2-y2b2=1(a>0,b>0)具有类似特征的性质,并加以证明. 思路探究:双曲线与椭圆类比→椭圆中的结论 →双曲线中的相应结论→理论证明[解] 类似性质:若M ,N 为双曲线x 2a 2-y2b 2=1(a>0,b>0)上关于原点对称的两个点,点P 是双曲线上任意一点,当直线PM ,PN 的斜率k PM ,k PN 都存在时,那么k PM 与k PN 之积是与点P 的位置无关的定值.证明如下:设点M ,P 的坐标分别为(m ,n),(x ,y),则 N(-m ,-n).因为点M(m ,n)是双曲线上的点, 所以n 2=b 2a 2m 2-b 2.同理y 2=b 2a2x 2-b 2,则k PM ·k PN =y -n x -m ·y +n x +m =y 2-n 2x 2-m 2=b 2a 2·x 2-m 2x 2-m 2=b2a2(定值).1.两类事物能进行类比推理的关键是两类对象在某些方面具备相似特征.2.进行类比推理时,首先,找出两类对象之间可以确切表达的相似特征.然后,用一类对象的已知特征去推测另一类对象的特征,从而得到一个猜想.2.我们知道: 12=1,22=(1+1)2=12+2×1+1, 32=(2+1)2=22+2×2+1, 42=(3+1)2=32+2×3+1, ……n 2=(n -1)2+2(n -1)+1,将以上各式的左右两边分别相加,整理得n 2=2×[1+2+3+…+(n -1)]+n , 所以1+2+3+…+(n -1)=n (n -1)2.类比上述推理方法写出求12+22+32+…+n 2的表达式的过程. [解] 已知: 13=1,23=(1+1)3=13+3×12+3×1+1, 33=(2+1)3=23+3×22+3×2+1, 43=(3+1)3=33+3×32+3×3+1, ……n 3=(n -1)3+3(n -1)2+3(n -1)+1, 将以上各式的左右两边分别相加,得(13+23+…+n 3)=[13+23+…+(n -1)3]+3[12+22+…+(n -1)2]+3[1+2+…+(n -1)]+n , 整理得n 3=3(12+22+…+n 2)-3n 2+3[1+2+…+(n -1)]+n , 将1+2+3+…+(n -1)=n (n -1)2代入整理可得12+22+…+n 2=2n 3+3n 2+n 6,即12+22+…+n 2=n (2n +1)(n +1)6.1.类比推理的特点(1)类比推理是从人们已经掌握的事物的特征,推测被研究的事物的特征,所以类比推理的结果具有猜测性,不一定可靠.(2)类比推理以旧的知识作基础,推测新的结果,具有发现的功能,因此类比在数学发现中具有重要作用,但必须明确,类比并不等于论证.2.类比推理与归纳推理的比较 归纳推理类比类推相同点 根据已有的事实,经过观察、分析、比较、联想,提出猜想,都属于归纳推理不 同 点特点 由部分到整体,由个别到一般 由特殊到特殊推理过程 从一类事物中的部分事物具有的属性,猜测该类事物都具有这种属性两类对象具有类似的特征,根据其中一类对象的特征猜测另一类对象具有相应的类似特征1.下列说法正确的是( )A .由合情推理得出的结论一定是正确的B .合情推理必须有前提有结论C .合情推理不能猜想D .合情推理得出的结论不能判断正误B [根据合情推理可知,合情推理必须有前提有结论.]2.已知扇形的弧长为l ,半径为r ,类比三角形的面积公式S =底×高2,可知扇形面积公式为( )A.r22 B.l 22 C.lr 2D .无法确定C [扇形的弧长对应三角形的底,扇形的半径对应三角形的高,因此可得扇形面积公式S =lr2.]3.在平面上,若两个正三角形的边长的比为1∶2,则它们的面积比为1∶4,类似地,在空间中,若两个正四面体的棱长的比为1∶2,则它们的体积比为________.1∶8 [由平面和空间的知识,可知面积之比与边长之比成平方关系,在空间中体积之比与棱长之比成立方关系,故若两个正四面体的棱长的比为1∶2,则它们的体积之比为1∶8.]4.在计算“1×2+2×3+…+n(n +1)”时,有如下方法:先改写第k 项:k(k +1)=13[k(k +1)(k +2)-(k -1)k·(k+1)],由此得1×2=13(1×2×3-0×1×2),2×3=13(2×3×4-1×2×3),……n(n +1)=13[n(n +1)(n +2)-(n -1)n(n +1)],相加得1×2+2×3+…+n(n +1)=13n(n +1)(n +2).类比上述方法,请你计算“1×3+2×4+…+n(n +2)”,将其结果写成关于n 的一次因式的积的形式.[解] 1×3=16×(1×2×9-0×1×7),2×4=16×(2×3×11-1×2×9),3×5=16×(3×4×13-2×3×11),……n(n +2)=16[n(n +1)(2n +7)-(n -1)n(2n +5)],各式相加,得1×3+2×4+3×5+…+n(n +2)=16n(n +1)(2n +7).。
数学归纳法-北师大版选修2-2教案
数学归纳法-北师大版选修2-2教案一、教学目标1.了解数学归纳法的概念与特点;2.能够使用数学归纳法证明简单的命题;3.能够理解和应用数学归纳法解决实际问题。
二、教学内容1.数学归纳法的概念与特点;2.数学归纳法的推广和严密化;3.数学归纳法的应用。
三、教学重点1.数学归纳法的概念与特点;2.能够使用数学归纳法证明简单的命题。
四、教学难点1.数学归纳法的推广和严密化;2.数学归纳法的应用。
五、教学方法1.观察与讨论法:通过生动的例子,引导学生认识和理解数学归纳法的基本概念和特点;2.讲授与演示法:通过讲授和演示归纳法的具体步骤,使学生掌握如何运用归纳法证明命题;3.练习与探究法:通过练习和探究,让学生掌握数学归纳法的应用技巧。
第一步:引入1.引入数学归纳法的基本概念;2.通过实际例子,引导学生理解数学归纳法的重要性。
第二步:讲解1.讲解数学归纳法基本的步骤;2.分析数学归纳法的特点,包括归纳假设、基本步骤、归纳证明、结论;第三步:演示1.带领学生完成归纳法的几个简单例子,让学生深入掌握归纳法的基本操作;2.带领学生完成一道较为复杂的归纳证明练习,让学生掌握归纳法的应用技巧。
第四步:练习1.让学生分组自主练习归纳法的应用;2.教师辅助解答学生的问题。
第五步:总结1.对本节课所学的内容进行总结;2.强调数学归纳法在理解和应用中的重要性。
七、教学评价1.课堂参与度(20%):检测学生是否认真听讲、积极互动,师生互动是否频繁;2.练习与应用(40%):检测学生掌握归纳法的技巧和应用能力;3.课堂表现(40%):检测学生是否能够在课上正确展现自己的学习成果。
通过本节课的教学,我发现学生对于数学归纳法的概念和特点有了更加深入的理解和认识。
同时,在练习中也发现了一些问题,比如有些学生在归纳证明中容易犯错,需要加强指导和训练。
因此,在教学中需要更加强化实践,多引入真实案例来加强学生对归纳法的认识和理解,同时通过练习和探究来让学生得到更好的应用和提高。
高中数学(北师大版)选修2-2教案:第1章 归纳推理 参考教案1
归纳推理一、教学目标1.知识与技能:(1)结合已学过的数学实例,了解归纳推理的含义;(2)能利用归纳进行简单的推理;(3)体会并认识归纳推理在数学发现中的作用.2.方法与过程:归纳推理是从特殊到一般的一种推理方法,通常归纳的个体数目越多,越具有代表性,那么推广的一般性命题也会越可靠,它是一种发现一般性规律的重要方法。
3.情感态度与价值观:通过本节学习正确认识合情推理在数学中的重要作用,养成从小开始认真观察事物、分析事物、发现事物之间的质的联系的良好品质,善于发现问题,探求新知识。
二、教学重点:了解归纳推理的含义,能利用归纳进行简单的推理。
教学难点:培养学生“发现—猜想—证明”的归纳推理能力。
三、教学方法:探析归纳,讲练结合四、教学过程(一)、引入新课归纳推理的前提是一些关于个别事物或现象的命题,而结论则是关于该类事物或现象的普遍性命题。
归纳推理的结论所断定的知识范围超出了前提所断定的知识范围,因此,归纳推理的前提与结论之间的联系不是必然性的,而是或然性的。
也就是说,其前提真而结论假是可能的,所以,归纳推理乃是一种或然性推理。
拿任何一种草药来说吧,人们为什么会发现它能治好某种疾病呢?原来,这是经过我们先人无数次经验(成功的或失败的)的积累的。
由于某一种草无意中治好了某一种病,第二次,第三次,……都治好了这一种病,于是人们就把这几次经验积累起来,做出结论说,“这种草能治好某一种病。
”这样,一次次个别经验的认识就上升到对这种草能治某一种病的一般性认识了。
这里就有着归纳推理的运用。
从一个或几个已知命题得出另一个新命题的思维过程称为推理。
见书上的三个推理案例,回答几个推理各有什么特点?都是由“前提”和“结论”两部分组成,但是推理的结构形式上表现出不同的特点,据此可分为合情推理与演绎推理 (二)、例题探析例1、在一个凸多面体中,试通过归纳猜想其顶点数、棱数、面数满足的关系。
解:考察一些多面体,如下图所示:将这些多面体的面数(F )、棱数(E )、顶点数(V )列出,得到下表: 多面体面数(F )棱数(E )顶点数(V )三棱锥 4 6 4 四棱锥 5 8 5 五棱锥 6 10 6 三棱柱 5 9 6 五棱柱 7 15 10 立方体 6 12 8 八面体 8 12 6 十二面体 123020从这些事实中,可以归纳出:V-E+F=2例2、如果面积是一定的,什么样的平面图形周长最小,试猜测结论。
数学选修2-2教案
数学选修2-2教案【篇一:北师大版数学选修2-2全套教案】第一章推理与证明课题:合情推理(一)——归纳推理课时安排:一课时课型:新授课教学目标:1、通过对已学知识的回顾,进一步体会合情推理这种基本的分析问题法,认识归纳推理的基本方法与步骤,并把它们用于对问题的发现与解决中去。
2.归纳推理是从特殊到一般的推理方法,通常归纳的个体数目越多,越具有代表性,那么推广的一般性命题也会越可靠,它是一种发现一般性规律的重要方法。
教学重点:了解合情推理的含义,能利用归纳进行简单的推理。
教学难点:用归纳进行推理,做出猜想。
教学过程:一、课堂引入:从一个或几个已知命题得出另一个新命题的思维过程称为推理。
见书上的三个推理案例,回答几个推理各有什么特点?都是由“前提”和“结论”两部分组成,但是推理的结构形式上表现出不同的特点,据此可分为合情推理与演绎推理二、新课讲解:1、蛇是用肺呼吸的,鳄鱼是用肺呼吸的,海龟是用肺呼吸的,蜥蜴是用肺呼吸的。
蛇,鳄鱼,海龟,蜥蜴都是爬行动物,所有的爬行动物都是用肺呼吸的。
2、三角形的内角和是180?,凸四边形的内角和是360?,凸五边形的内角和是540?由此我们猜想:凸边形的内角和是(n?2)?180?3、22?122?222?1?,?,?,33?133?233?3,由此我们猜想:aa?m?(a,b,m均为正实数) bb?m这种由某类事物的部分对象具有某些特征,推出该类事物的全部对象都具有这些特征的推理,或者由个别事实概栝出一般结论的推理,称为归纳推理.(简称:归纳)归纳推理的一般步骤:⑴对有限的资料进行观察、分析、归纳整理;⑵提出带有规律性的结论,即猜想;⑶检验猜想。
三、例题讲解:例1已知数列?an?的通项公式an?1(n?n?),f(n)?(1?a1)(1?a2)???(1?an),试通过计算2(n?1)f(1),f(2),f(3)的值,推测出f(n)的值。
【学生讨论:】(学生讨论结果预测如下)(1)f(1)?1?a1?1?13? 4413824f(2)?(1?a1)(1?a2)?f(1)?(1?)????)9493612155f(3)?(1?a1)(1?a2)(1?a3)?f(2)?(1?)???1631681由此猜想,f(n)?n?2 2(n?1)学生讨论:1)哥德巴赫猜想:任何大于2的偶数可以表示为两个素数的之和。
高中数学(北师大版)选修2-2教案:第1章 归纳推理 参考教案3
1.1 归纳推理教学过程:一:创设情景,引入概念师:今天我们要学习第一章:推理与证明。
那么什么是推理呢?下面请大家仔细看这段flash,体验一下flash动画中,人物推理的过程。
(学生观看flash动画)。
师:有哪位同学能描述一下这段flash动画中的人物的推理过程吗?生:flash中人物通过观察,发现7只乌鸦是黑色的于是得到推理:天下乌鸦一般黑。
师:很好!那么能不能把这个推理的过程用一般化的语言表示出来呢?生:这是从一个或几个已有的判断得到一个新的判断的过程。
师:非常好!(引出推理的概念)。
师:推理包括合情推理和演绎推理,而我们今天要学的知识就是合情推理的一种——归纳推理。
那么,什么是归纳推理呢?下面我们通过介绍数学中的一个非常有名的猜想让大家体会一下归纳推理的思想。
(引入哥德巴赫猜想)师:据说哥德巴赫无意中观察到:3+7=10,3+17=20,13+17=30,这3个等式。
大家看这3个等式都是什么运算?生:加法运算。
师:对。
我们看来这些式子都是简单的加法运算。
但是哥德巴赫却把它做了一个简单的变换,他把等号两边的式子交换了一下位置,即变为:10=3+7,20=3+17,30=13+17。
大家观察这两组式子,他们有什么不同之处?生:变换之前是把两个数加起来,变换之后却是把一个数分解成两个数。
师:大家看等式右边的这些数有什么特点?生:都是奇数。
师:那么等式右边的数又有什么特点呢?生:都是偶数。
师:那我们就可以得到什么结论?生:偶数=奇数+奇数。
师:这个结论我们在小学就知道了。
大家在挖掘一下,等式右边的数除了都是奇数外,还有什么其它的特点?(学生观察,有人看出这些数还都是质数。
)师:那么我们是否可以得到一个结论:偶数=奇质数+奇质数?(学生思考,发现错误!)。
生:不对!2不能分解成两个奇质数之和。
师:非常好!那么我们看偶数4又行不行呢?生:不行!师:那么继续往下验证。
(学生发现6=3+3,8=5+3,10=5+5,12=5+7,14=7+7……)师:那我们可以发现一个什么样的规律?生:大于等于6的偶数可以分解为两个奇质数之和。
高中数学选修2-2 北师大版 数学归纳法 教学设计
在本阶段,我设想强化数学归纳法产生过程的教学,把数学归纳法的产生寓于对归纳法的分析、认识当中,把数学归纳法的产生与不完全归纳法的完善结合起来.这样不仅使学生可以看到数学归纳法产生的背景,从一开始就注意到它的功能,为使用它打下良好的基础,而且可以强化归纳思想的教学,这不仅是对中学数学中以演绎思想为主的教学的重要补充,也是引导学生发展创新能力的良机.为此,本节课我设想以思维过程为主线,发现为目标,把教学过程设计分为五个阶段.
2.1引入实例
事例(一)烽火,是古代军情报警的一种措施,烽火台一般相距10里左右,守台士兵发现敌人来犯时,立即于台上燃起烽火(或烟),邻台见到后依样随之,这样敌情便可迅速传递到军事中枢部门。简单的说,就是传报军情。
思考:敌情传递到军事中枢部门,需要满足哪两个条件?
(1);(2);
事例(二)多米诺骨牌是一种码放骨牌的游戏,码放时保证任意相邻的两块骨牌,若前一块骨牌倒下,则一定导致后一块骨牌倒下。只要推倒第一块骨牌,就可以导致第二块骨牌倒下,进而导致第三块骨牌倒下,……,最终所有骨牌都倒下。
2.3提升实例在上述实例的基础上,引导学生思考:现在我们把上例换成前面的数学问题,请问,要是这无穷多个等式都成立。
【自主探究】
多米诺骨牌游戏与我们前面所提到的要解决的问题有相似性吗?
多米诺骨牌游戏
通项公式为 的证明方法
(1)第一块骨牌倒下。
(2)若第k块倒下时,则相邻的第k+1块也倒下生活实例引入,描述数学归纳法(设计趣例,激发学生学习兴趣)
数学归纳法的引入是学习数学归纳法的过程中重要的一环.根据以往的经验,不论老师如何解释,学生对数学归纳法的原理往往迷惑不解,将信将疑,为了突破这一难点,我在教学中设计了一实例,使学生在比较熟悉的实际问题中领悟数学归纳法,同时也激发了学生的学习兴趣.具体教学安排如下:
高中数学(北师大版)选修2-2教案:第1章 复习点拨:利用数学归纳法解题举例
利用数学归纳法解题举例归纳是一种有特殊事例导出一般原理的思维方法。
归纳推理分完全归纳推理与不完全归纳推理两种。
不完全归纳推理只根据一类事物中的部分对象具有的共同性质,推断该类事物全体都具有的性质,这种推理方法,在数学推理论证中是不允许的。
完全归纳推理是在考察了一类事物的全部对象后归纳得出结论来。
数学归纳法是用来证明某些与自然数有关的数学命题的一种推理方法,在解数学题中有着广泛的应用。
它是一个递推的数学论证方法,论证的第一步是证明命题在n=1(或n)时成立,这是递推的基础;第二步是假设在n=k时命题成立,再证明n=k+1时命题也成立,这是无限递推下去的理论依据,它判断命题的正确性能否由特殊推广到一般,实际上它使命题的正确性突破了有限,达到无限。
这两个步骤密切相关,缺一不可,完成了这两步,就可以断定“对任何自然数(或且n∈N)结论都正确”。
由这两步可以看出,数学归纳法是由递推实现归纳n≥n的,属于完全归纳。
运用数学归纳法证明问题时,关键是n=k+1时命题成立的推证,此步证明要具有目标意识,注意与最终要达到的解题目标进行分析比较,以此确定和调控解题的方向,使差异逐步减小,最终实现目标完成解题。
运用数学归纳法,可以证明下列问题:与自然数n有关的恒等式、代数不等式、三角不等式、数列问题、几何问题、整除性问题等等。
一、运用数学归纳法证明整除性问题例1.当n∈N,求证:11n+1+122n-1能被133整除。
证明:(1)当n=1时,111+1+1212×1-1=133能被133整除。
命题成立。
(2)假设n=k时,命题成立,即11k+1+122k-1能被133整除,当n=k+1时,根据归纳假设,11k+1+122k-1能被133整除。
又能被133整除。
所以,11(k+1)+122(k+1)-1能被133整除,即n=k+1时,命题成立。
由(1),(2)命题时n∈N都成立。
点评:同数学归纳法证明有关数或式的整除问题时,要充分利用整除的性质,若干个数(或整式)都能被某一个数(或整式)整除,则其和、差、积也能被这个数(或整式)整除。
高中数学北师大版选修2-2同步配套教学案第一章 §2 综合法与分析法
§综合法与分析法阅读下面的例题.例:若实数,满足+=,证明:+≥.证明:因为+=,所以+≥===,故+≥成立.问题:本题利用什么公式?提示:基本不等式.问题:本题证明顺序是什么?提示:从已知到结论.综合法()含义:从命题的条件出发,利用定义、公理、定理及运算法则,通过演绎推理,一步一步地接近要证明的结论,直到完成命题的证明的思维方法,称为综合法.()思路:综合法的基本思路是“由因导果”.()模式:综合法可以用以下的框图表示:→→→…→其中为条件,为结论.你们看过侦探小说《福尔摩斯探案集》吗?尤其是福尔摩斯在探案中的推理,给人印象太深刻了.有时,他先假定一个结论成立,然后逐步寻找这个结论成立的一个充分条件,直到找到一个明显的证据.问题:他的推理如何入手?提示:从结论成立入手.问题:他又是如何分析的?提示:逐步探寻每一结论成立的充分条件.问题:这种分析问题方法在数学问题证明中可以借鉴吗?提示:可以.分析法()含义:从求证的结论出发,一步一步地探索保证前一个结论成立的充分条件,直到归结为这个命题的条件,或者归结为定义、公理、定理等.这种证明问题的思维方法称为分析法.()思路:分析法的基本思路是“执果索因”.()模式:若用表示要证明的结论,则分析法可以用如下的框图来表示:.综合法是从“已知”看“可知”逐步推向未知,由因导果通过逐步推理寻找问题成立的必要条件.它的证明格式为:因为×××,所以×××,所以×××……所以×××成立..分析法证明问题时,是从“未知”看“需知”,执果索因逐步靠拢“已知”,通过逐步探索,寻找问题成立的充分条件.它的证明格式:要证×××,只需证×××,只需证×××……因为×××成立,所以×××成立.[例]已知,是正数,且+=,求证:+≥.[思路点拨]由已知条件出发,结合基本不等式,即可得出结论.[精解详析]法一:∵,为正数,且+=,∴+≥,∴≤,∴+==≥.法二:∵,为正数,∴+≥>,+≥>,。
高中数学(北师大版)选修2-2教案:第1章 分析法 第二课时参考教案
分析法一、教学目标:结合已经学过的数学实例,了解直接证明的两种基本方法:分析法和综合法;了解分析法和综合法的思考过程、特点。
二、教学重点:了解分析法和综合法的思考过程、特点。
难点:分析法的思考过程、特点三、教学方法:探析归纳,讲练结合四、教学过程(一)、复习:直接证明的方法:综合法、分析法。
(二)、引入新课分析法和综合法是思维方向相反的两种思考方法。
在数学解题中,分析法是从数学题的待证结论或需求问题出发,一步一步地探索下去,最后达到题设的已知条件。
综合法则是从数学题的已知条件出发,经过逐步的逻辑推理,最后达到待证结论或需求问题。
对于解答证明来说,分析法表现为执果索因,综合法表现为由果导因,它们是寻求解题思路的两种基本思考方法,应用十分广泛。
在很多数学命题的证明中,往往需要综合地运用这两种思维方法。
(三)、例题讲解:例1:如图、已知BE ,CF 分别为△ABC 的边AC ,AB 上的高,G 为EF 的中点,H 为BC 的中点.求证:HG ⊥EF .证明:考虑待证的结论“HG ⊥EF ” .根据命题的条件:G 为EF 的中点,连接EH ,HF ,只要证明△EHF 为等腰三角形,即EH =HF .根据条件CF ⊥AB ,且H 为BC 的中点,可知FH 是Rt△BCF 斜边上的中线.所以 BC FH 21=. 同理 BC HE 21=. 这样就证明了△EHF 为等腰三角形.所以 HG ⊥EF .例2:已知:a ,b ,c 都是正实数,且ab +bc +ca =1.求证:a +b +c 3≥.证明:考虑待证的结论“a +b +c 3≥” ,因为a +b +c >0,只需证明3)(2≥++c b a ,即 3)(2222≥+++++ac bc ab c b a .又 ab +bc +ca =1,所以,只需证明1222≥++c b a ,即 01222≥-++c b a .因为 ab +bc +ca =1,所以,只需证明 0)(222≥++-++ac bc ab c b a ,只需证明 0)(2222222≥++-++ac bc ab c b a ,即0)()()(222≥-+-+-a c c b b a .由于任意实数的平方都非负,故上式成立.所以 a +b +c 3≥.例3.如图,SA ⊥平面ABC,AB ⊥BC,过A 作SB 的垂线,垂足为E,过E 作SC 的垂线,垂足为F,求证 AF ⊥SC证明:要证AF ⊥SC ,只需证:SC ⊥平面AEF ,只需证:AE ⊥SC ,只需证:AE ⊥平面SBC ,只需证:AE ⊥BC ,只需证:BC ⊥平面SAB ,只需证:BC ⊥SA ,只需证:SA ⊥平面ABC ,因为:SA ⊥平面ABC 成立。
高中数学(北师大版)选修2-2教案:第1章 数学归纳法在证明恒等式中的应用
数学归纳法在证明恒等式中的应用数学归纳法是直接证明的一种重要方法,是证明与正整数n 有关的数学命题的一种重要方法,也是高考的热点问题之一.不但要求能用数学归纳法证明现成的结论,而且加强了对于不完全归纳法应用的考查.既要求善于发现、归纳结论,又要求能证明结论的正确性.数学归纳法的应用十分广泛.下面就数学归纳法在证明恒等式中的应用问题加以规律总结与实例剖析.1.证明恒等式中的规律数学归纳法可以证明与正整数有关的恒等式问题,其一般规律及方法: 关键在于第二步,它有一个基本格式,不妨设命题为:P (n ):f (n )=g (n ), 其第二步相当于做一道条件等式的证明题:已知:f (k )=g (k ),求证:f (k+1)=g (k+1).通常可采用的格式分为三步:(1)找出f (k+1)与f (k )的递推关系;(2)把归纳假设f (k )=g (k )代入;(3)作恒等变形化为g (k+1).示意图为:当然递推关系不一定总是象f (k+1)=f (k )+a k 这样的表达式,因此更为一般性的示意图为:f (k+1)=F[f (k ),k ,f (1)]=F[g (k ),k ,g (1)]=g (k+1). 2.证明恒等式中的应用 (1)代数恒等式的证明例1.用数学归纳法证明:1+4+7+…+(3n -2)=21n (3n -1)(n ∈N*). 分析:在第二步的证明过程中通过利用归纳假设,结合等式的变换与因式分解、变形,从而得以证明.证明:(1)当n=1时,左边=1,右边=1,所以当n=1时,命题成立;(2)假设当n=k (k ∈N*)时命题成立,即1+4+7+…+(3k -2)=21k (3k -1), 则当n=k+1时,1+4+7+…+(3k -2)+[3(k+1)-2]=21k (3k -1)+(3k+1)=21(3k 2+5k+2)=21(k+1)(3k+2)=21(k+1)[3(k+1)-1], 即当n=k+1时,命题成立;根据(1)、(2)可知,对一切n ∈N*,命题成立.点评:数学归纳法的证明过程非常讲究“形式”,归纳假设是必须要用到的,假设是起到桥梁作用的,桥梁不用或是断了,数学归纳就通不过去了,递推性无法实现.在由n=k 时结论正确证明n=k+1时结论也正确的过程中,一定要用到归纳假设的结论,即n=k 时结论.变形练习1:已知n ∈N*,证明:1-21+31-41+…+121-n -n 21=11+n +21+n +…+n21. 答案:(1)当n=1时,左边=1-21=21,右边=21,等式成立; (2)假设当n=k 时等式成立,即有1-21+31-41+…+121-k -k 21=11+k +21+k +…+k21, 那么当n=k+1时,左边=1-21+31-41+…+121-k -k 21+1)1(21-+k -)1(21+k =11+k +21+k +…+k 21+121+k -)1(21+k =21+k +31+k +…+121+k +[11+k -)1(21+k ]=1)1(1++k +2)1(1++k +…+k k ++)1(1+)1()1(1+++k k =右边, 所以当n=k+1时等式也成立;综合(1)、(2)知对一切n ∈N*,等式都成立. (2)三角恒等式的证明例2.用数学归纳法证明:tanxtan2x+tan2xtan3x+…+tan (n -1)xtannx=xnxtan tan -n (n ≥2,n ∈N*).分析:本题在由假设当n=k 时等式成立,推导当n=k+1时等式也成立时,要灵活应用三角公式及其变形公式.本题中涉及到两个角的正切的乘积,联想到两角差的正切公式的变形公式:tan αtan β=)tan(tan tan βαβα---1,问题就会迎刃而解.证明:(1)当n=2时,左边=tanxtan2x=tan x·x x 2tan 1tan 2-=x x 22tan 1tan 2-,右边=x xtan 2tan -2=x x x tan )tan 1(tan 22--2=x2tan 12--2=x x 22tan 1tan 2-,等式成立; (2)假设当n=k (k ≥2,k ∈N*)时,等式成立,即tanxtan2x+tan2xtan3x+…+tan (k -1)xtankx=xkxtan tan -k , 则当n=k+1时,tanxtan2x+tan2xtan3x+…+tan (k -1)xtankx+tankxtan (k+1)x=xkxtan tan -k+tankxtan (k+1)x , (*) 由tanx=tan[(k+1)x -kx]=kxx k kxx k tan )1tan(1tan )1tan(++-+,可得tankxtan (k+1)x=xkxx k tan tan )1tan(-+-1,代入(*)式,可得右边=x kx tan tan -k+x kx x k tan tan )1tan(-+-1=xxk tan )1tan(+-(k+1),即tanxtan2x+tan2xtan3x+…+tan (k -1)xtankx+tankxtan (k+1)x=x xk tan )1tan(+-(k+1),即当n=k+1时,等式也成立;由(1)、(2)知等式对任何n ∈N*都成立.点评:数学归纳法在第二步的证明中,“当n=k 时结论正确”这一归纳假设起着已知的作用,“当n=k+1时结论正确”则是求证的目标.在这一步中,一般首先要先凑出归纳假设里给出的形式,以便利用归纳假设,然后再进一步凑出n=k+1时的结论.要正确选择与命题有关的知识及变换技巧.变形练习2:用数学归纳法证明:cos2x ·cos 22x ·cos 32x ·…·cos n x 2=nn xx2sin 2sin ⋅(n ∈N*).答案:(1)当n=1时,左边=cos 2x ,右边=112sin 2sin x x ⋅=2sin 22cos 2sin 2x x x =cos 2x ,等式成立;(2)假设当n=k 时等式成立,即有cos2x ·cos 22x ·cos 32x ·…·cos k x 2=kk xx2sin 2sin ⋅ 则当n=k+1时,cos 2x ·cos 22x ·cos 32x ·…·cos k x 2·cos 12+k x =k k x x2sin 2sin ⋅·cos 12+k x=112cos 2sin 22sin ++⋅k k k x x x ·cos 12+k x =112sin 2sin ++⋅k k x x,即当n=k+1时,等式也成立;由(1)、(2)知等式对任何n ∈N*都成立.。
高中数学北师大版选修2-2教案-§2 微积分基本定理_教学设计_教案
教学准备
1. 教学目标
了解牛顿-莱布尼兹公式
2. 教学重点/难点
了解牛顿-莱布尼兹公式
3. 教学用具
4. 标签
教学过程
(一)、复习:定积分的概念及计算
(二)、探究新课
我们讲过用定积分定义计算定积分,但其计算过程比较复杂,所以不是求定积分的一般方法。
我们必须寻求计算定积分的新方法,也是比较一般的方法。
变速直线运动中位置函数与速度函数之间的联系
该式称之为微积分基本公式或牛顿—莱布尼兹公式。
它指出了求连续函数定积分的一般方法,把求定积分的问题,转化成求原函数的问题,是微分学与积分学之间联系的桥梁。
后,汽车需走过21.90米才能停住.
(三)、小结:本节课学习了牛顿-莱布尼兹公式. (四)、课堂练习:
(五)、课后作业:五、教后反思:。
高中数学选修2-2北师大版教案:1.2+综合法和分析法2.2分析法(一)
课时教案科目:数学教师:授课时间:第1周星期5 年2月17日精美句子1、善思则能“从无字句处读书”。
读沙漠,读出了它坦荡豪放的胸怀;读太阳,读出了它普照万物的无私;读春雨,读出了它润物无声的柔情。
读大海,读出了它气势磅礴的豪情。
读石灰,读出了它粉身碎骨不变色的清白。
2、幸福幸福是“临行密密缝,意恐迟迟归”的牵挂;幸福是“春种一粒粟,秋收千颗子”的收获. 幸福是“采菊东篱下,悠然见南山”的闲适;幸福是“奇闻共欣赏,疑义相与析”的愉悦。
幸福是“随风潜入夜,润物细无声”的奉献;幸福是“夜来风雨声,花落知多少”的恬淡。
幸福是“零落成泥碾作尘,只有香如故”的圣洁。
幸福是“壮志饥餐胡虏肉,笑谈渴饮匈奴血”的豪壮。
幸福是“先天下之忧而忧,后天下之乐而乐”的胸怀。
幸福是“人生自古谁无死,留取丹心照汗青”的气节。
3、大自然的语言丰富多彩:从秋叶的飘零中,我们读出了季节的变换;从归雁的行列中,我读出了集体的力量;从冰雪的消融中,我们读出了春天的脚步;从穿石的滴水中,我们读出了坚持的可贵;从蜂蜜的浓香中,我们读出了勤劳的甜美。
4、成功与失败种子,如果害怕埋没,那它永远不能发芽。
鲜花,如果害怕凋谢,那它永远不能开放。
矿石,如果害怕焚烧(熔炉),那它永远不能成钢(炼成金子)。
蜡烛,如果害怕熄灭(燃烧),那它永远不能发光。
航船,如果害怕风浪,那它永远不能到达彼岸。
5、墙角的花,当你孤芳自赏时,天地便小了。
井底的蛙,当你自我欢唱时,视野便窄了。
笼中的鸟,当你安于供养时,自由便没了。
山中的石!当你背靠群峰时,意志就坚了。
水中的萍!当你随波逐流后,根基就没了。
空中的鸟!当你展翅蓝天中,宇宙就大了。
空中的雁!当你离开队伍时,危险就大了。
地下的煤!你燃烧自己后,贡献就大了6、朋友是什么?朋友是快乐日子里的一把吉它,尽情地为你弹奏生活的愉悦;朋友是忧伤日子里的一股春风,轻轻地为你拂去心中的愁云。
朋友是成功道路上的一位良师,热情的将你引向阳光的地带;朋友是失败苦闷中的一盏明灯,默默地为你驱赶心灵的阴霾。
高中数学(北师大版)选修2-2教案:第1章 综合法和分析法 参考学案
1.2综合法和分析法教学过程:学习目标1. 结合已经学过的数学实例,了解直接证明的两种基本方法:分析法和综合法;2. 会用综合法证明问题;了解综合法的思考过程.3. 根据问题的特点,结合综合法的思考过程、特点,选择适当的证明方法.学习过程一、课前准备(预习教材P45~ P47,找出疑惑之处)复习1:两类基本的证明方法: 和 .复习2:直接证明的两中方法: 和 .二、新课导学※学习探究探究任务一:综合法的应用问题:已知,0a b>,求证:2222()()4a b c b c a abc+++≥.新知:一般地,利用 ,经过一系列的推理论证,最后导出所要证明的结论成立,这种证明方法叫综合法.反思:框图表示:要点:顺推证法;由因导果.※典型例题例1已知,,a b c R+∈,1a b c++=,求证:1119 a b c++≥变式:已知,,a b c R+∈,1a b c++=,求证:111(1)(1)(1)8a b c---≥.小结:用综合法证明不等式时要注意应用重要不等式和不等式性质,要注意公式应用的条件和等号成立的条件,这是一种由因索果的证明.例2 在△ABC 中,三个内角A 、B 、C 的对边分别为a 、b 、c ,且A 、B 、C 成等差数列,a 、b 、c 成等比数列. 求证:为△ABC 等边三角形.变式:设在四面体P ABC -中,90,,ABC PA PB PC ∠=︒==D 是AC 的中点.求证:PD 垂直于ABC ∆所在的平面.小结:解决数学问题时,往往要先作语言的转换,如把文字语言转换成符号语言,或把符号语言转换成图形语言等,还要通过细致的分析,把其中的隐含条件明确表示出来.※ 动手试试练1. 求证:对于任意角θ,44cos sin cos2θθθ-=练2. ,A B 为锐角,且tan tan tan A B A B +,求证:60A B +=o . (提示:算tan()A B +)三、总结提升※ 学习小结综合法是从已知的P 出发,得到一系列的结论12,,Q Q ⋅⋅⋅,直到最后的结论是Q . 运用综合法可以解决不等式、数列、三角、几何、数论等相关证明问题.※ 知识拓展综合法是中学数学证明中最常用的方法,它是从已知到未知,从题设到结论的逻辑推理方法,即从题设中的已知条件或已证的真实判断出发,经过一系列的中间推理,最后导出所要求证的命题,综合法是一种由因索果的证明方法.※ 自我评价 你完成本节导学案的情况为( ).A. 很好B. 较好C. 一般D. 较差※ 当堂检测(时量:5分钟 满分:10分)计分:1. 已知22,,"1""1"x y R xy x y ∈≤+≤则是的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件2. 如果821,,a a a ⋅⋅⋅为各项都大于零的等差数列,公差0≠d ,则( )A .5481a a a a >B .5481a a a a <C .5481a a a a +>+D .5481a a a a = 3. 设23451111log 11log 11log 11log 11P =+++,则( ) A .01P << B .12P <<C .23P <<D .34P <<4.若关于x 的不等式22133(2)(2)22x x k k k k --+<-+的解集为1(,)2+∞,则k 的范围是____ . 5. 已知b a ,是不相等的正数,x y ==,x y 的大小关系是_________.课后作业1. 已知a ,b ,c 是全不相等的正实数, 求证:3b c a a c b a b c a b c +-+-+-++>2. 在△ABC 中,证明:2222112cos 2cos b a b B a A -=-。
北师大版数学选修2-2全套教案
北师大版数学选修2-2全套教案第一章推理与证明课题:合情推理(一)——归纳推理课时安排:一课时课型:新授课教学目标:1、通过对已学知识的回顾,进一步体会合情推理这种基本的分析问题法,认识归纳推理的基本方法与步骤,并把它们用于对问题的发现与解决中去。
2.归纳推理是从特殊到一般的推理方法,通常归纳的个体数目越多,越具有代表性,那么推广的一般性命题也会越可靠,它是一种发现一般性规律的重要方法。
教学重点:了解合情推理的含义,能利用归纳进行简单的推理。
教学难点:用归纳进行推理,做出猜想。
教学过程:一、课堂引入:从一个或几个已知命题得出另一个新命题的思维过程称为推理。
见书上的三个推理案例,回答几个推理各有什么特点?都是由“前提”和“结论”两部分组成,但是推理的结构形式上表现出不同的特点,据此可分为合情推理与演绎推理二、新课讲解:1、蛇是用肺呼吸的,鳄鱼是用肺呼吸的,海龟是用肺呼吸的,蜥蜴是用肺呼吸的。
蛇,鳄鱼,海龟,蜥蜴都是爬行动物,所有的爬行动物都是用肺呼吸的。
2、 三角形的内角和是180︒,凸四边形的内角和是360︒,凸五边形的内角和是540︒由此我们猜想:凸边形的内角和是(2)180n -⨯︒3、221222221,,,331332333+++<<<+++,由此我们猜想:a a m b b m+<+(,,a b m 均为正实数)这种由某类事物的部分对象具有某些特征,推出该类事物的全部对象都具有这些特征的推理,或者由个别事实概栝出一般结论的推理,称为归纳推理.(简称:归纳) 归纳推理的一般步骤:⑴ 对有限的资料进行观察、分析、归纳 整理;⑵ 提出带有规律性的结论,即猜想;⑶ 检验猜想。
三、例题讲解:例1已知数列{}n a 的通项公式21()(1)n a n N n +=∈+,12()(1)(1)(1)n f n a a a =--⋅⋅⋅-,试通过计算(1),(2),(3)f f f 的值,推测出()f n 的值。
数学教案 北师大版选修2-2 同步备课-第3章导数应用第1节导数的单调性与极性
§1函数的单调性与极值1. 1 导数与函数的单调性学习目标核心素养1.掌握函数的单调性与导数的关系.2.能利用导数研究函数的单调性.(重难点)3.会求不超过三次的多项式函数的单调区间和其它函数的单调区间.(重点) 1.借助图象认识函数的单调性与导数的关系,提升学生的直观想象的核心素养.2.通过利用导数研究函数的单调性的学习,培养学生的数学抽象和数学运算的核心素养.1.函数的单调性与其导数正负的关系一般地,在区间(a,b)内函数的单调性与导数有如下关系:导数函数的单调性f′(x)>0单调递增f′(x)<0单调递减f′(x)=0 常数函数2.函数图像的变化趋势与导数值大小的关系一般地,设函数y=f(x),在区间(a,b)上:导数的绝对值函数值变化函数的图像越大大比较“陡峭”(向上或向下)越小小比较“平缓”(向上或向下) 思考:如果在区间(a,b)内恒有f′(x)=0,则f(x)有什么特性?[提示]函数f(x)为常函数.1.若在区间(a,b)内,f′(x)>0,且f(a)≥0,则在(a,b)内有( )A.f(x)>0 B.f(x)<0C.f(x)=0 D.不能确定A[由条件可知,f(x)在(a,b)内单调递增,∵f(a)≥0,∴在(a,b)内有f(x)>0.]2.已知函数y=f(x)的图像是下列四个图象之一,且其导函数y=f′(x)的图像如图所示,则该函数的图像是( )B [由f′(x)图像可知,f′(x)>0,函数单调递增,且开始和结尾增长速度慢,故应选B.] 3.已知函数f(x)=12x 2-x ,则函数f(x)的单调增区间是( )A .(-∞,-1)和(0,+∞)B .(0,+∞)C .(-1,0)和(1,+∞)D .(1,+∞)D [法一:f(x)=12x 2-x =12(x -1)2-12,对应的抛物线开口向上,对称轴为直线x =1,可知函数f(x)的单调增区间是(1,+∞).法二:f′(x)=x -1,令f′(x)>0,解得x>1.故函数f(x)的单调增区间是(1,+∞).]单调性与导数的关系【例1】 (1)函数y =f(x)的图像如图所示,给出以下说法: ①函数y =f(x)的定义域是[-1,5]; ②函数y =f(x)的值域是(-∞,0]∪[2,4]; ③函数y =f(x)在定义域内是增函数; ④函数y =f(x)在定义域内的导数f′(x)>0. 其中正确的序号是( ) A .①② B .①③ C .②③D .②④(2)设函数f(x)在定义域内可导,y =f(x)的图像如图所示,则导函数y =f′(x)的图像可能为( )A BC D思路探究:研究一个函数的图像与其导函数图像之间的关系时,注意抓住各自的关键要素,对于原函数,要注意其图像在哪个区间内单调递增,在哪个区间内单调递减;而对于导函数,则应注意其函数值在哪个区间内大于零,在哪个区间内小于零,并分析这些区间与原函数的单调区间是否一致.(1)A (2)D[(1)由图像可知,函数的定义域为[-1,5],值域为(-∞,0]∪[2,4],故①②正确,选A.(2)由函数的图像可知:当x<0时,函数单调递增,导数始终为正;当x>0时,函数先增后减再增,即导数先正后负再正,对照选项,应选D.]1.利用导数判断函数的单调性比利用函数单调性的定义简单得多,只需判断导数在该区间内的正负即可.2.通过图像研究函数单调性的方法(1)观察原函数的图像重在找出“上升”“下降”产生变化的点,分析函数值的变化趋势;(2)观察导函数的图像重在找出导函数图像与x轴的交点,分析导数的正负.1.(1)设f′(x)是函数f(x)的导函数,将y=f(x)和y=f′(x)的图像画在同一个直角坐标系中,不正确的是( )A B C D(2)函数y=f(x)的导函数y=f′(x)的图象如图所示,则函数y=f(x)的图像可能是( )(1)D (2)D [(1)A ,B ,C 均有可能;对于D ,若C 1为导函数,则y =f(x)应为增函数,不符合;若C 2为导函数,则y =f(x)应为减函数,也不符合.(2)根据函数的导数的正负与单调性的关系,对照图像可知,答案应选D.]利用导数求函数的单调区间【例2】 求函数f(x)=x +ax(a≠0)的单调区间.思路探究:求出导数f′(x),分a>0和a<0两种情况.由f′(x)>0求得单调增区间,由f′(x)<0求得单调减区间.[解] f(x)=x +ax的定义域是(-∞,0)∪(0,+∞),f′(x)=1-ax 2.当a>0时,令f′(x)=1-ax2>0,解得x>a 或x<-a ;令f′(x)=1-a x 2<0,解得-a<x<0或0<x<a ;当a<0时,f′(x)=1-ax2>0恒成立,所以当a>0时,f(x)的单调递增区间为(-∞,-a)和(a ,+∞);单调递减区间为(-a ,0)和(0,a).当a<0时,f(x)的单调递增区间为(-∞,0)和(0,+∞).利用导数求函数单调区间的步骤1.确定函数f(x)的定义域. 2.求导数f′(x).3.由f′(x)>0(或f′(x)<0),解出相应的x 的范围.当f′(x)>0时,f(x)在相应区间上是增函数;当f′(x)<0时,f(x)在相应区间上是减函数.4.结合定义域写出单调区间.2.(1)函数f(x)=e x-ex ,x∈R 的单调递增区间为( ) A .(0,+∞) B .(-∞,0) C .(-∞,1)D .(1,+∞)(2)函数f(x)=ln x -x 的单调递增区间是( ) A .(-∞,1) B .(0,1) C .(0,+∞)D .(1,+∞)(1)D (2)B [(1)∵f′(x)=(e x-ex)′=e x-e , 由f′(x)=e x-e>0,可得x>1.即函数f(x)=e x -ex ,x∈R 的单调增区间为(1,+∞),选D. (2)函数的定义域为(0,+∞),又f′(x)=1x -1,由f′(x)=1x-1>0,得0<x<1,所以函数f(x)=ln x -x 的单调递增区间是(0,1),选B.]已知函数的单调性求参数的取值范围1.函数f(x)=x 3+ax 2+bx +c ,其中a ,b ,c 为实数,当a 2-3b<0时,f(x)的单调性如何? [提示] 求函数的导函数f′(x)=3x 2+2ax +b ,导函数对应方程f′(x)=0的Δ=4(a 2-3b)<0,所以f′(x)>0恒成立,故f(x)是增函数.2.函数单调性的充要条件如何?[提示] (1)在某个区间内,f′(x)>0(f′(x)<0)是函数f(x)在此区间内单调递增(减)的充分条件,而不是必要条件.例如,函数f(x)=x 3在定义域(-∞,+∞)上是增函数,但f′(x)=3x 2≥0.(2)函数f(x)在(a ,b)内单调递增(减)的充要条件是f′(x)≥0(f′(x)≤0)在(a ,b)内恒成立,且f′(x)在(a ,b)的任意子区间内都不恒等于0.这就是说,在区间内的个别点处有f′(x)=0并不影响函数f(x)在该区间内的单调性.【例3】 已知关于x 的函数y =x 3-ax +b.(1)若函数y 在(1,+∞)内是增函数,求a 的取值范围; (2)若函数y 的一个单调递增区间为(1,+∞),求a 的值.思路探究:(1)函数在区间(1,+∞)内是增函数,则必有y′≥0在(1,+∞)上恒成立,由此即可求出a 的取值范围.(2)函数y 的一个单调递增区间为(1,+∞),即函数单调区间的端点值为1,由此可解得a 的值. [解] y′=3x 2-a.(1)若函数y =x 3-ax +b 在(1,+∞)内是增函数.则y′=3x 2-a≥0在x∈(1,+∞)时恒成立, 即a≤3x 2在x∈(1,+∞)时恒成立, 则a≤(3x 2)min . 因为x>1,所以3x 2>3.所以a≤3,即a 的取值范围是(-∞,3].(2)令y′>0,得x 2>a3.若a≤0,则x 2>a3恒成立,即y′>0恒成立,此时,函数y =x 3-ax +b 在R 上是增函数,与题意不符. 若a>0,令y′>0,得x>a3或x<-a 3. 因为(1,+∞)是函数的一个单调递增区间,所以a3=1,即a =3.1.将本例(1)改为“若函数y 在(1,+∞)上不单调”,则a 的取值范围又如何? [解] y′=3x 2-a ,当a<0时,y′=3x 2-a>0,函数在(1,+∞)上单调递增,不符合题意.当a>0时,函数y 在(1,+∞)上不单调,即y′=3x 2-a =0在区间(1,+∞)上有根.由3x 2-a =0可得x =a3或x =-a3(舍去). 依题意,有a3>1,∴a>3, ∴a 的取值范围是(3,+∞).2.本例(1)中函数改为f(x)=x 3-ax 2-3x.区间“(1,+∞)”改为“[1,+∞),a 的取值范围如何? [解] 由f(x)=x 3-ax 2-3x 得 f′(x)=3x 2-2ax -3,∵f(x)在x∈[1,+∞)上是增函数, ∴3x 2-2ax -3≥0, ∴a 3≤x 2-12x. 令g(x)=x 2-12x,x∈[1,+∞),g′(x)=x 2+12x2>0,即g(x)在[1,+∞)上单调递增,∴g(x)≥g(1)=0, ∴a 的取值范围为a≤0.1.解答本题注意可导函数f(x)在(a ,b)上单调递增(或单调递减)的充要条件是f′(x)≥0(或f′(x)≤0)在(a ,b)上恒成立,且f′(x)在(a ,b)的任何子区间内都不恒等于0.2.已知f(x)在区间(a ,b)上的单调性,求参数取值范围的方法(1)利用集合的包含关系处理f(x)在(a ,b)上单调递增(减)的问题,则区间(a ,b)是相应单调区间的子集;(2)利用不等式的恒成立处理f(x)在(a ,b)上单调递增(减)的问题,则f′(x)≥0(f′(x)≤0)在(a ,b)内恒成立,注意验证等号是否成立.3.已知函数f(x)=2ax 3+4x 2+3x -1在R 上是增函数,求实数a 的取值范围. [解] f′(x)=6ax 2+8x +3.∵f(x)在R 上是增函数,∴f′(x)≥0在R 上恒成立, 即6ax 2+8x +3≥0在R 上恒成立,∴⎩⎪⎨⎪⎧64-72a≤0,a>0,解得a≥89.经检验,当a =89时,只有个别点使f′(x)=0,符合题意.故实数a 的取值范围为⎣⎢⎡⎭⎪⎫89,+∞.1.函数的单调性与导数符号的关系 设函数y =f(x)在区间(a ,b)内可导,(1)如果在(a ,b)内,f′(x)>0,则f(x)在此区间是增函数,(a ,b)为f(x)的单调增区间; (2)如果在(a ,b)内,f′(x)<0,则f(x)在此区间是减函数,(a ,b)为f(x)的单调减区间. 2.利用导数求函数的单调区间的步骤求函数的单调区间,就是解不等式f′(x)>0或f′(x)<0,不等式的解集就是所求的单调区间,其步骤如下:(1)求函数f(x)的定义域; (2)求出f′(x);(3)解不等式f′(x)>0可得函数f(x)的单调增区间,解不等式f′(x)<0可得函数f(x)的单调减区间. 3.函数f(x)在(a ,b)内单调递增(减)的充要条件是f ′(x)≥0(f′(x)≤0)在(a ,b)内恒成立,且f′(x)在(a,b)的任意区间内都不恒等于0.这就是说,在区间内的个别点处有f′(x)=0并不影响函数f(x)在该区间内的单调性.1.判断(正确的打“√”,错误的打“×”)(1)函数f(x)在定义域上都有f′(x)>0,则函数f(x)在定义域上单调递增.(2)函数在某一点的导数越大,函数在该点处的切线越“陡峭”.(3)函数在某个区间上变化越快,函数在这个区间上导数的绝对值越大.[答案](1)×(2)×(3)√2.已知函数f(x)=x+ln x,则有( )A.f(2)<f(e)<f(3)B.f(e)<f(2)<f(3)C.f(3)<f(e)<f(2)D.f(e)<f(3)<f(2)A[因为在定义域(0,+∞)上f′(x)=12x +1x>0,所以f(x)在(0,+∞)上是增函数,所以有f(2)<f(e)<f(3).故选A.]3.函数f(x)=2x3-9x2+12x+1的单调减区间是________.(1,2)[f′(x)=6x2-18x+12,令f′(x)<0,即6x2-18x+12<0,解得1<x<2.] 4.已知函数f(x)=x3-ax-1.(1)是否存在a,使f(x)的单调减区间是(-1,1);(2)若f(x)在R上是增函数,求a的取值范围.[解]f′(x)=3x2-a.(1)∵f(x)的单调减区间是(-1,1),∴-1<x<1是f′(x)<0的解,∴x=±1是方程3x2-a=0的两根,所以a=3.(2)∵f(x)在R上是增函数,∴f′(x)=3x2-a≥0对x∈R恒成立,即a≤3x2对x∈R恒成立.∵y=3x2在R上的最小值为0.∴a≤0,∴a的取值范围是(-∞,0].1.2 函数的极值学习目标核心素养1.理解函数的极大值和极小值的概念.(难点) 2.掌握求极值的步骤,会利用导数求函数的极值.(重点、难点) 1.借助图象理解函数的极大值和极小值,提升了学生的直观想象的核心素养.2.通过利用导数求函数的极值的学习,培养了学生的逻辑推理和数学运算的核心素养.1.极大值点与极大值如图,在包含x0的一个区间(a,b)内,函数y=f(x)在任何一点的函数值都小于或等于x0点的函数值,称点x0为函数y=f(x)的极大值点,其函数值f(x0)为函数的极大值.2.极小值点与极小值如图,在包含x0的一个区间(a,b)内,函数y=f(x)在任何一点的函数值都大于或等于x0点的函数值,称点x0为函数y=f(x)的极小值点,其函数值f(x0)为函数的极小值.[提醒]在一个给定的区间上,函数可能有若干个极值点,也可能不存在极值点;函数可以只有极大值,没有极小值,或者只有极小值没有极大值,也可能既有极大值,又有极小值.极大值不一定比极小值大,极小值不一定比极大值小.3.极值的判断方法如果函数y=f(x)在区间(a,x0)上是增加的,在区间(x0,b)上是减少的,则x0是极大值点,f(x0)是极大值;如果函数y=f(x)在区间(a,x0)上是减少的,在区间(x0,b)上是增加的,则x0是极小值点,f(x0)是极小值.4.求函数y=f(x)极值点的步骤(1)求出导数f′(x).(2)解方程f′(x)=0.(3)对于方程f′(x)=0的每一个解x0,分析f′(x)在x0左、右两侧的符号(即f(x)的单调性),确定极值点:①若f′(x)在x0两侧的符号“左正右负”,则x0为极大值点;②若f′(x)在x0两侧的符号“左负右正”,则x0为极小值点;③若f′(x)在x0两侧的符号相同,则x0不是极值点.思考:导数为0的点都是极值点吗?[提示]不一定,如f(x)=x3,f′(0)=0,但x=0不是f(x)=x3的极值点.所以,当f′(x0)=0时,要判断x =x 0是否为f(x)的极值点,还要看f′(x)在x 0两侧的符号是否相反.1.下列四个函数中,在x =0处取得极值的函数是( ) ①y=x 3;②y=x 2+1;③y=|x|;④y=2x. A .①② B .②③ C .③④D .①③B [y′=3x 2≥0恒成立,所以函数y =x 3在R 上单调递增,无极值点,①不符合;y′=2x ,当x>0时,函数y =x 2+1单调递增,当x<0时,函数y =x 2+1单调递减,②符合;结合该函数图像可知,函数y =|x|在(0,+∞)上单调递增,在(-∞,0]上单调递减,③符合;函数y =2x在R 上单调递增,无极值点,④不符合.]2.函数y =x 3-3x 2-9x(-2<x <2)有( ) A .极大值5,极小值-27 B .极大值5,极小值-11 C .极大值5,无极小值 D .极小值-27,无极大值C [由y′=3x 2-6x -9=0,得x =-1或x =3.当x <-1或x >3时,y′>0;由-1<x <3时,y′<0, ∴当x =-1时,函数有极大值5;3∉(-2,2),故无极小值.] 3.函数f(x)=x 3-3x 2+1在x =__________处取得极小值. 2 [由f(x)=x 3-3x 2+1, 得f′(x)=3x 2-6x =3x(x -2).当x∈(0,2)时,f′(x)<0,f(x)为减函数;当x∈(-∞,0)和(2,+∞)时,f′(x)>0,f(x)为增函数. 故当x =2时,函数f(x)取得极小值.]求函数的极值(1)f(x)=x 2-2x -1; (2)f(x)=x 44-23x 3+x22-6;(3)f(x)=|x|.[解] (1)f′(x)=2x -2,令f′(x)=0,解得x =1. 因为当x<1时,f′(x)<0,当x>1时,f′(x)>0, 所以函数在x =1处有极小值, 且f(x)极小值=-2.(2)f′(x)=x 3-2x 2+x =x(x 2-2x +1)=x(x -1)2.令f′(x)=0,解得x 1=0,x 2=1.所以当x 变化时,f′(x),f(x)的变化情况如下表:x (-∞,0)0 (0,1) 1 (1,+∞)f′(x) - 0 + 0 + f(x)单调 递减↘极小 值单调 递增↗无极值单调 递增↗所以当x =0时,函数取得极小值,且f(x)极小值=-6.(3)f(x)=|x|=⎩⎪⎨⎪⎧x ,x≥0,-x ,x<0.显然函数f(x)=|x|在x =0处不可导, 当x>0时,f′(x)=x′=1>0,函数f(x)=|x|在(0,+∞)内单调递增; 当x<0时,f′(x)=(-x)′=-1<0, 函数f(x)=|x|在(-∞,0)内单调递减. 故当x =0时,函数取得极小值, 且f(x)极小值=0.极值点与导数的关系1.可导函数的极值点一定是导数值为0的点,导数值为0的点不一定是极值点. 点x 0是可导函数f(x)在区间(a ,b)内的极值点的充要条件: (1)f′(x 0)=0;(2)点x 0两侧f′(x)的符号不同.2.不可导的点可能是极值点(如本例(3)中x =0点),也可能不是极值点(如y =x ,在x =0处不可导,在x =0处也取不到极值),所以函数的极值点可能是f′(x)=0的根,也可能是不可导点.1.已知函数f(x)=x 2-2ln x ,则f(x)的极小值是________. 1 [∵f′(x)=2x -2x ,且函数定义域为(0,+∞),令f′(x)=0,得x =1或x =-1(舍去), 当x∈(0,1)时,f′(x)<0, 当x∈(1,+∞)时,f′(x)>0,∴当x =1时,函数有极小值,极小值为f(1)=1.]利用函数的极值求参数【例2】 已知f(x)=x 3+ax 2+bx +c 在x =1与x =-3时都取得极值.(1)求a ,b 的值;(2)若f(-1)=32,求f(x)的单调区间和极值.思路探究:(1)求导函数f′(x),则由x =1和x =-23是f′(x)=0的两根及根与系数的关系求出a ,b.(2)由f(-1)=32求出c ,再列表求解.[解] (1)f′(x)=3x 2+2ax +b ,令f ′(x)=0,由题设知x =1与x =-23为f′(x)=0的解.∴⎩⎪⎨⎪⎧1-23=-23a ,1×⎝ ⎛⎭⎪⎫-23=b 3,∴a=-12,b =-2.(2)由(1)知f(x)=x 3-12x 2-2x +c ,由f(-1)=-1-12+2+c =32,得c =1,∴f(x )=x 3-12x 2-2x +1,∴f′(x)=3x 2-x -2.当x 变化时,f′(x),f(x)的变化情况如下表:x (-∞,⎭⎪⎫-23 -23 ⎝ ⎛⎭⎪⎫-23,1 1 (1,+∞)f′(x) + 0 - 0 + f(x)单调递增 ↗4927单调递减 ↘-12单调递增 ↗∴f(x)的递增区间为⎝ ⎛⎭⎪⎫-∞,-3和(1,+∞),递减区间为⎝ ⎛⎭⎪⎫-3,1.当x =-23时,f(x)有极大值为f ⎝ ⎛⎭⎪⎫-23=4927;当x =1时,f(x)有极小值为f(1)=-12.已知函数极值求解析式的两点注意(1)根据极值点处导数值为0和极值两个条件列方程组,利用待定系数法求解;(2)因为导数值等于零不是此点为极值点的充要条件,所以利用待定系数法求解后必须验证根的合理性.2.已知函数f(x)=13x 3-12(m +3)x 2+(m +6)x(x∈R,m 为常数)在区间(1,+∞)内有两个极值点,求实数m 的取值范围.[解] f′(x)=x 2-(m +3)x +m +6. 因为函数f(x)在(1,+∞)内有两个极值点,所以导数f′(x)=x 2-(m +3)x +m +6在(1,+∞)内与x 轴有两个不同的交点,如图所示.所以⎩⎪⎨⎪⎧Δ=(m +3)2-4(m +6)>0,f′(1)=1-(m +3)+m +6>0,m +32>1,解得m>3,故实数m 的取值范围是(3,+∞).函数极值的综合应用[探究问题]1.函数f(x)的定义域为开区间(a ,b),导函数f′(x)在(a ,b)内的图像如图所示,则函数f(x)在开区间(a ,b)内有几个极小值点?[提示] 一个.x 1,x 2,x 3是极值点,其中x 2是极小值点,x 1,x 3是极大值点. 2.函数y =f(x)在给定区间(a ,b)内一定有极值点吗?[提示] 不一定,若函数y =f(x)在区间(a ,b)内是单调函数,就没有极值点.【例3】 已知函数f(x)=x 3-3x +a(a 为实数),若方程f(x)=0有三个不同实根,求实数a 的取值范围.思路探究:求出函数的极值,要使f(x)=0有三个不同实根,则应有极大值大于0,极小值小于0,由此可得a 的取值范围.[解] 令f′(x)=3x 2-3=3(x +1)(x -1)=0, 解得x 1=-1,x 2=1. 当x<-1时,f′(x)>0; 当-1<x<1时,f′(x)<0; 当x>1时,f′(x)>0.所以当x =-1时,f(x)有极大值f(-1)=2+a ; 当x =1时,f(x)有极小值f(1)=-2+a. 因为方程f(x)=0有三个不同实根,所以y =f(x)的图像与x 轴有三个交点,如图.由已知应有⎩⎪⎨⎪⎧2+a>0,-2+a<0,解得-2<a<2,故实数a 的取值范围是(-2,2).1.本例中,若把“三个不同实根”改为“唯一一个实根”,结果如何? [解] 由已知应有 2+a<0或-2+a>0. 即a>2或a<-2.2.本例中,若把“三个不同实根”改为“恰有两个实根”,结果如何? [解] 由条件可知,只要 2+a =0或-2+a =0即可, 即a =±2.转化的思想求导数范围的应用方程f(x)=0的根就是函数y =f(x)的零点,是函数图像与x 轴交点的横坐标,研究方程的根的问题可以转化为函数图像与x 轴交点的问题.我们可以根据函数图像在坐标轴中的位置不同,结合极值的大小确定参数的范围.3.设a 为实数,函数f(x)=x 3-x 2-x +a. (1)求f(x)的极值;(2)当a 在什么范围内取值时,曲线y =f(x)与x 轴仅有一个交点?[解] (1)f′(x)=3x 2-2x -1. 令f′(x)=0,则x =-13或x =1.当x 变化时,f′(x),f(x)的变化情况如下表:x ⎝ ⎛⎭⎪⎫-∞,-13 -13 ⎝ ⎛⎭⎪⎫-13,1 1 (1,+∞)f′(x) + 0 - 0 + f(x)单调递 增↗极大值单调递 减↘极小值单调递 增↗所以f(x)的极大值是f ⎝ ⎛⎭⎪⎫-13=527+a ,极小值是f(1)=a -1.(2)函数f(x)=x 3-x 2-x +a =(x -1)2(x +1)+a -1,由此可知,x 取足够大的正数时,有f(x)>0, x 取足够小的负数时,有f(x)<0, 所以曲线y =f(x)与x 轴至少有一个交点.由(1)知f(x)极大值=f ⎝ ⎛⎭⎪⎫-13=527+a ,f(x)极小值=f(1)=a -1.∵曲线y =f(x)与x 轴仅有一个交点, ∴f(x)极大值<0或f(x)极小值>0, 即527+a<0或a -1>0,∴a<-527或a>1, ∴当a∈⎝⎛⎭⎪⎫-∞,-527∪(1,+∞)时,曲线y =f(x)与x 轴仅有一个交点.1.函数的极值是一个局部性的概念,是仅对某一点的左右两侧附近的点而言的.由图可以看出,极大值的对应点是局部的“高峰”,极小值的对应点是局部的“低谷”.2.极值点是函数定义域内的自变量的值,而函数定义域的端点绝不是函数的极值点.3.函数在定义域内可能有许多极大值或极小值,但极大值不一定比极小值大,极小值也不一定比极大值小.4.若函数f(x)在[a ,b]上有极值且函数图像连续,则它的极值点的分布是有规律的,相邻两个极大值点之间必有一个极小值点,同样,相邻两个极小值点之间必有一个极大值点.1.判断(正确的打“√”,错误的打“×”)(1)函数f(x)=x 3+ax 2-x +1必有两个极值. ( ) (2)在可导函数的极值点处,切线与x 轴平行或重合. ( ) (3)函数f(x)=1x 有极值.( )[答案] (1)√ (2)√ (3)×2.已知a 为函数f(x)=x 3-12x 的极小值点,则a =( ) A .-4 B .-2 C .4D .2D [由题意得f′(x)=3x 2-12,令f′(x)=0得x =±2,∴当x<-2或x>2时,f′(x)>0;当-2<x<2时,f′(x)<0,∴f(x)在(-∞,-2)上为增函数,在(-2,2)上为减函数,在(2,+∞)上为增函数.∴f(x)在x =2处取得极小值,∴a=2.]3.设a ∈R,若函数y =e x+ax(x∈R)有大于零的极值点,则a 的取值范围为________. (-∞,-1) [∵y=e x+ax ,∴y′=e x+a ,令y′=e x+a =0,则e x=-a , 即x =ln(-a),又∵x>0,∴-a >1,即a <-1.] 4.求函数y =x 4-4x 3+5的极值. [解] y′=4x 3-12x 2=4x 2(x -3). 令y′=4x 2(x -3)=0,得x 1=0,x 2=3. 当x 变化时,y′,y 的变化情况如下表:故当x 极小值。
数学教案 北师大版选修2-2 同步备课-第1章 推理与证明学案第2节综合法与分析法
§2 综合法与分析法2.1 综合法学习目标核心素养1.了解综合法的思考过程、特点.(重点) 2.会用综合法证明数学命题.(难点) 1.通过对综合法概念和思维过程的理解的学习,培养逻辑推理的核心素养.2.通过对综合法应用的学习,提升逻辑推理和数学建模的核心素养.1.综合法的定义从命题的条件出发,利用定义、公理、定理及运算法则,通过演绎推理,一步一步地接近要证明的结论,直到完成命题的证明,这种思维方法称为综合法.2.综合法证明的思维过程用P表示已知条件、已知的定义、公理、定理等,Q表示所要证明的结论,则综合法的思维过程可用框图表示为:P⇒Q1→Q1⇒Q2→Q2⇒Q3→…→Q n⇒Q思考:综合法的证明过程属于什么思维方式?[提示]综合法是由因导果的顺推思维.1.综合法是从已知条件、定义、定理、公理出发,寻求命题成立的( )A.充分条件B.必要条件C.充要条件D.既不充分又不必要条件[答案] B2.在△ABC中,若sin Asin B<cos Acos B,则△ABC一定是( )A.直角三角形B.锐角三角形C.钝角三角形D.等边三角形C[由条件可知cos Acos B-sin Asin B=cos(A+B)=-cos C>0,即cos C<0,∴C为钝角,故△ABC 一定是钝角三角形.]3.命题“函数f(x)=x-xln x在区间(0,1)上是增函数”的证明过程“对函数f(x)=x-xln x求导,得f′(x)=-ln x,当x∈(0,1)时,f′(x)=-ln x>0,故函数f(x)在区间(0,1)上是增函数”,应用了________的证明方法.综合法[证明过程符合综合法的证题特点,故为综合法.]用综合法证明三角问题【例1】 在△ABC 中,a ,b ,c 分别为内角A ,B ,C 的对边,且2asin A =(2b -c)sin B +(2c -b)sin C.(1)求证:A 的大小为60°;(2)若sin B +sin C = 3.证明:△ABC 为等边三角形.思路探究:(1)利用正弦定理将角与边互化,然后利用余弦定理求A. (2)结合(1)中A 的大小利用三角恒等变形证明A =B =C =60°. [证明] (1)由2asin A =(2b -c)sin B +(2c -b)sin C , 得2a 2=(2b -c)b +(2c -b)c , 即bc =b 2+c 2-a 2, 所以cos A =b 2+c 2-a 22bc =12,所以A =60°.(2)由A +B +C =180°,得B +C =120°,由sin B +sin C =3,得sin B +sin(120°-B)=3, sin B +(sin 120°cos B-cos 120°sin B)=3, 32sin B +32cos B =3, 即sin(B +30°)=1. 因为0°<B<120°, 所以30°<B+30°<150°, 所以B +30°=90°,即B =60°, 所以A =B =C =60°, 即△ABC 为等边三角形.证明三角等式的主要依据1.三角函数的定义、诱导公式及同角基本关系式. 2.和、差、倍角的三角函数公式.3.三角形中的三角函数及三角形内角和定理. 4.正弦定理、余弦定理和三角形的面积公式.1.若sin θ,sin α,cos θ成等差数列,sin θ,sin β,cos θ成等比数列,求证:2cos 2α=cos 2β.[证明] ∵sin θ,sin α,cos θ成等差数列, ∴sin θ+cos θ=2sin α①又∵sin θ,sin β,cos θ成等比数列, ∴sin 2β=sin θcos θ②将②代入①2,得1+2sin 2β=4sin 2α, 又sin 2 β=1-cos 2β2,sin 2α=1-cos 2α2,∴1+1-cos 2β=2-2cos 2α, 即2cos 2α=cos 2β.用综合法证明几何问题【例2】 如图,在四面体BACD 中,CB =CD ,AD⊥BD,E ,F 分别是AB ,BD 的中点.求证: (1)直线EF∥平面ACD ; (2)平面EFC⊥平面BCD.思路探究:(1)依据线面平行的判定定理,欲证明直线EF∥平面ACD ,只需在平面ACD 内找出一条直线和直线EF 平行即可;(2)根据面面垂直的判定定理,欲证明平面EFC⊥平面BCD ,只需在其中一个平面内找出一条另一个面的垂线即可.[证明] (1)因为E ,F 分别是AB ,BD 的中点,所以EF 是△ABD 的中位线,所以EF∥AD,又EF 平面ACD ,AD平面ACD ,所以直线EF∥平面ACD.(2)因为AD⊥BD,EF∥AD,所以EF⊥BD.因为CB =CD ,F 是BD 的中点,所以CF⊥BD.又EF∩CF=F ,所以BD⊥平面EFC. 因为BD平面BCD ,所以平面EFC⊥平面BCD.证明空间位置关系的一般模式本题是综合运用已知条件和相关的空间位置关系的判定定理来证明的,故证明空间位置关系问题,也是综合法的一个典型应用.在证明过程中,语言转化是主旋律,转化途径为把符号语言转化为图形语言或文字语言转化为符号语言.这也是证明空间位置关系问题的一般模式.2.如图,在长方体ABCDA 1B 1C 1D 1中,AA 1=AD =a ,AB =2a ,E ,F 分别为C 1D 1,A 1D 1的中点.(1)求证:DE⊥平面BCE ; (2)求证:AF∥平面BDE. [证明](1)∵BC⊥侧面CDD 1C 1,DE侧面CDD 1C 1,∴DE⊥BC.在△CDE 中,CD =2a ,CE =DE =2a ,则有CD 2=DE 2+CE 2,∴∠D EC =90°,∴DE⊥EC. 又∵BC∩EC=C ,∴DE⊥平面BCE.(2)连接EF ,A 1C 1,设AC 交BD 于点O ,连接EO , ∵EF 12A 1C 1,AO 12A 1C 1, ∴EFAO ,∴四边形AOEF 是平行四边形, ∴AF∥OE. 又∵OE平面BDE ,AF平面BDE ,∴AF∥平面BDE.用综合法证明不等式[探究问题]1.综合法证明不等式的主要依据有哪些? [提示] (1)a 2≥0(a∈R).(2)a 2+b 2≥2ab,⎝ ⎛⎭⎪⎫a +b 22≥ab,a 2+b 2≥(a +b )22.(3)a ,b∈(0,+∞),则a +b 2≥ab ,特别地,b a +ab ≥2.(4)a -b≥0⇔a≥b;a -b≤0⇔a≤b. (5)a 2+b 2+c 2≥ab+bc +ca. (6)b a +ab≥2(a,b 同号,即ab>0).(7)||a|-|b||≤|a+b|≤|a|+|b|(a ,b∈R).左边等号成立的条件是ab≤0,右边等号成立的条件是ab≥0. 2.使用基本不等式证明不等式时,应该注意什么?请举例说明.[提示] 使用基本不等式时,要注意①“一正、二定、三相等”;②不等式的方向性;③不等式的适度,如下例.[题] 已知,a ,b∈(0,+∞),求证:a b +b a≥a + b.若直接使用基本不等式,a b +b a≥2ab ·b a=24ab ,而a +b ≥24ab.从而达不到证明的目的,没掌握好“度”,正确的证法应该是这样的:[证明] ∵a>0,b>0, ∴ab +b ≥2a ,ba +a ≥2b , ∴a b +b +ba +a ≥2a +2b , 即ab +ba≥a + b. 【例3】 已知x>0,y>0,x +y =1,求证:⎝ ⎛⎭⎪⎫1+1x ⎝ ⎛⎭⎪⎫1+1y ≥9.思路探究:解答本题可由已知条件出发,结合基本不等式利用综合法证明. [证明] 法一:因为x>0,y>0,1=x +y≥2xy , 所以xy≤14.所以⎝ ⎛⎭⎪⎫1+1x ⎝ ⎛⎭⎪⎫1+1y =1+1x +1y +1xy =1+x +y xy +1xy =1+2xy ≥1+8=9.法二:因为1=x +y ,所以⎝ ⎛⎭⎪⎫1+1x ⎝ ⎛⎭⎪⎫1+1y =⎝ ⎛⎭⎪⎫1+x +y x ⎝ ⎛⎭⎪⎫1+x +y y =⎝ ⎛⎭⎪⎫2+y x ⎝ ⎛⎭⎪⎫2+x y =5+2⎝ ⎛⎭⎪⎫x y +y x . 又因为x>0,y>0,所以x y +yx ≥2,当且仅当x =y 时,取“=”. 所以⎝ ⎛⎭⎪⎫1+1x ⎝ ⎛⎭⎪⎫1+1y ≥5+2×2=9.1.本例条件不变,求证:1x +1y≥4.[证明] 法一:因为x ,y∈(0,+∞),且x +y =1, 所以x +y≥2xy ,当且仅当x =y 时,取“=”, 所以xy ≤12,即xy≤14,所以1x +1y =x +y xy =1xy ≥4.法二:因为x ,y∈(0,+∞),所以x +y≥2xy>0,当且仅当x =y 时,取“=”, 1x +1y≥21xy>0, 当且仅当1x =1y时,取“=”,所以(x +y)⎝ ⎛⎭⎪⎫1x +1y ≥4. 又x +y =1,所以1x +1y≥4.法三:因为x ,y∈(0,+∞),所以1x +1y =x +y x +x +yy=1+y x +xy+1≥2+2x y ·yx=4, 当且仅当x =y 时,取“=”.2.把本例条件改为“a>0,b>0,c>0”且a +b +c =1,求证:ab +bc +ac≤13.[证明] ∵a>0,b>0,c>0, ∴a 2+b 2≥2ab, b 2+c 2≥2bc, a 2+c 2≥2ac.∴a 2+b 2+c 2≥ab+bc +ca.∴(a+b +c)2=a 2+b 2+c 2+2ab +2bc +2ca ≥3(ab+bc +ac). 又∵a+b +c =1, ∴ab+bc +ac≤13.综合法的证明步骤1.分析条件,选择方向:确定已知条件和结论间的联系,合理选择相关定义、定理等.2.转化条件,组织过程:将条件合理转化,书写出严密的证明过程.特别地,根据题目特点选取合适的证法可以简化解题过程.1.综合法的基本思路综合法的基本思路是“由因导果”,由已知走向求证,即从数学命题的已知条件出发,经过逐步的逻辑推理,最后得到待证结论.其逻辑依据是三段论式的演绎推理方法.2.综合法的特点(1)从“已知”看“可知”,逐步推向“未知”,由因导果,逐步推理,寻找它的必要条件.(2)证明步骤严谨,逐层递进,步步为营,条理清晰,形式简洁,易于表达推理的思维轨迹.(3)由综合法证明命题“若A,则D”的思考过程如图所示:1.判断(正确的打“√”,错误的打“×”)(1)综合法是由因导果的顺推证法.( )(2)综合法证明的依据是三段论.( )(3)综合法的推理过程实际上是寻找它的必要条件.( )(1)√(2)√(3)√[(1)正确.由综合法的定义可知该说法正确.(2)正确.综合法的逻辑依据是三段论.(3)正确.综合法从“已知”看“可知”,逐步推出“未知”,其逐步推理实际上是寻找它的必要条件.]2.已知直线l,m,平面α,β,且l⊥α,mβ,给出下列四个命题:①若α∥β,则l⊥m;②若l⊥m,则α∥β;③若α⊥β,则l⊥m;④若l∥m,则α⊥β.其中正确的命题的个数是( )A.1 B.2C.3 D.4B[若l⊥α,α∥β,则l⊥β,又mβ,所以l⊥m,①正确;若l⊥α,m β,l⊥m,α与β可能相交,②不正确; 若l⊥α,mβ,α⊥β,l 与m 可能平行,③不正确;若l⊥α,l∥m,则m⊥α,又m β,所以α⊥β,④正确.]3.已知p =a +1a -2(a>2),q =2-a 2+4a -2(a>2),则p 与q 的大小关系是________. p>q [p =a -2+1a -2+2≥2(a -2)·1a -2+2=4,-a 2+4a -2=2-(a -2)2<2,∴q<22=4≤p.]4.数列{a n }的前n 项和记为S n ,已知a 1=1,a n +1=n +2nS n (n =1,2,3,…).求证:(1)数列⎩⎨⎧⎭⎬⎫S n n 为等比数列;(2)S n +1=4a n .[证明] (1)∵a n +1=n +2n S n ,而a n +1=S n +1-S n ,∴n +2nS n =S n +1-S n , ∴S n +1=2(n +1)n S n ,∴S n +1n +1S n n =2,又∵a 1=1, ∴S 1=1,∴S 11=1,∴数列⎩⎨⎧⎭⎬⎫S n n 是首项为1,公比为2的等比数列.(2)由(1)知⎩⎨⎧⎭⎬⎫S n n 的公比为2,而a n =n +1n -1S n -1(n≥2),∴S n +1n +1=4S n -1n -1=4n -1·a n (n -1)n +1, ∴S n +1=4a n .2.2 分析法学 习 目 标核 心 素 养1.了解分析法的思考过程、特点.(重点) 2.会用分析法证明数学命题.(难点)1.通过对分析法概念和思维过程的理解的学习,培养逻辑推理的核心素养. 2.通过对分析法应用的学习,提升逻辑推理和数学建模的核心素养.1.分析法的定义从求证的结论出发,一步一步地探索保证前一个结论成立的充分条件,直到归结为这个命题的条件,或者归结为定义、公理、定理等,这种思维方法称为分析法.2.分析法证明的思维过程用Q 表示要证明的结论,则分析法的思维过程可用框图表示为: Q ⇐P 1→P 1⇐P 2→P 2⇐P 3→…→得到一个明显成立的条件1.用分析法证明:要使①A>B,只需使②C<D.这里①是②的( ) A .充分条件 B .必要条件C .充要条件D .既不充分也不必要条件B [根据分析法的特点,寻找的是充分条件,∴②是①的充分条件,①是②的必要条件.] 2.欲证2-3<6-7,只需证( ) A .(2+7)2<(3+6)2B .(2-6)2<(3-7)2C .(2-3)2<(6-7)2D .(2-3-6)2<(-7)2A [欲证2-3<6-7,只需证2+7<3+6,只需证(2+7)2<(3+6)2.]3.将下面用分析法证明a 2+b 22≥ab 的步骤补充完整:要证a 2+b 22≥ab,只需证a 2+b 2≥2ab,也就是证________,即证________,由于________显然成立,因此原不等式成立.[答案] a 2+b 2-2ab≥0 (a -b)2≥0 (a -b)2≥0应用分析法证明不等式【例1】 已知a>b>0,求证:(a -b )28a <a +b 2-ab<(a -b )28b.思路探究:本题用综合法不易解决,由于变形后均为平方式,因此要先将式子两边同时开方,再找出使式子成立的充分条件.[证明] 要证(a -b )28a <a +b 2-ab<(a -b )28b ,只需证(a -b )28a <(a -b )22<(a -b )28b .∵a>b >0,∴同时除以(a -b )22,得(a +b )24a <1<(a +b )24b ,同时开方,得a +b 2a<1<a +b 2b,只需证a +b<2a ,且a +b>2b , 即证b<a ,即证b<a. ∵a>b>0,∴原不等式成立, 即(a -b )28a <a +b 2-ab<(a -b )28b.分析法证题思维过程1.分析法证明不等式的思维是从要证的不等式出发,逐步寻求使它成立的充分条件,最后得到的充分条件为已知(或已证)的不等式.2.分析法证明数学命题的过程是逆向思维,即结论⇐…⇐…⇐…已知,因此,在叙述过程中,“要证”“只需证”“即证”等词语必不可少,否则会出现错误.1.已知a>0,求证:a 2+1a 2-2≥a+1a-2.[证明] 要证a 2+1a 2-2≥a+1a-2,只需证a 2+1a 2+2≥a+1a +2,即证⎝⎛⎭⎪⎫a 2+1a 2+22≥⎝ ⎛⎭⎪⎫a +1a+22,即a 2+1a 2+4a 2+1a 2+4≥a 2+1a 2+2 2⎝ ⎛⎭⎪⎫a +1a +4,只需证2a 2+1a 2≥ 2⎝ ⎛⎭⎪⎫a +1a ,只需证4⎝ ⎛⎭⎪⎫a 2+1a 2≥2⎝ ⎛⎭⎪⎫a 2+2+1a 2,即a 2+1a2≥2.上述不等式显然成立,故原不等式成立.用分析法证明其他问题【例2】 设函数f(x)=ax 2+bx +c(a≠0),若函数y =f(x +1)的图象与f(x)的图象关于y 轴对称,求证:f ⎝ ⎛⎭⎪⎫x +12为偶函数. 思路探究:由于已知条件较为复杂,且不易与要证明的结论联系,故可从要证明的结论出发,利用分析法,从函数图象的对称轴找到证明的突破口.[证明] 要证函数f ⎝ ⎛⎭⎪⎫x +12为偶函数,只需证明其对称轴为直线x =0, 而f ⎝ ⎛⎭⎪⎫x +12=ax 2+(a +b)x +14a +12b +c ,其对称轴为x =-a +b 2a ,因此只需证-a +b2a =0,即只需证a =-b ,又f(x +1)=ax 2+(2a +b)x +a +b +c ,其对称轴为x =-2a +b 2a ,f(x)的对称轴为x =-b 2a ,由已知得x =-2a +b 2a 与x =-b2a 关于y 轴对称,所以-2a +b 2a =-⎝ ⎛⎭⎪⎫-b 2a ,得a =-b 成立,故f ⎝ ⎛⎭⎪⎫x +12为偶函数.分析法证题思路1.分析法是逆向思维,当已知条件与结论之间的联系不够明显、直接或证明过程中所需要用的知识不太明确、具体时,往往采用分析法.2.分析法的思路与综合法正好相反,它是从要求证的结论出发,倒着分析,由未知想需知,由需知逐渐地靠近已知,即已知条件、已经学过的定义、定理、公理、公式、法则等.2.已知1-tan α2+tan α=1,求证:cos α-sin α=3(cos α+sin α).[证明] 要证cos α-sin α=3(cos α+sin α), 只需证cos α-sin αcos α+sin α=3,只需证1-tan α1+tan α=3,只需证1-tan α=3(1+tan α),只需证tan α=-12.∵1-tan α2+tan α=1,∴1-tan α=2+tan α,即2tan α=-1.∴tan α=-12显然成立,∴结论得证.综合法与分析法的综合应用1.综合法与分析法的推理过程是合情推理还是演绎推理?[提示] 综合法与分析法的推理过程是演绎推理,它们的每一步推理都是严密的逻辑推理,从而得到的每一个结论都是正确的,不同于合情推理中的“猜想”.2.综合法与分析法有什么区别?[提示] 综合法是从已知条件出发,逐步寻找的是必要条件,即由因导果;分析法是从待求结论出发,逐步寻找的是充分条件,即执果索因.【例3】 在某两个正数x ,y 之间,若插入一个数a ,则能使x ,a ,y 成等差数列;若插入两个数b ,c ,则能使x ,b ,c ,y 成等比数列,求证:(a +1)2≥(b +1)(c +1).思路探究:可用分析法找途径,用综合法由条件顺次推理,易于使条件与结论联系起来. [证明] 由已知条件得⎩⎪⎨⎪⎧2a =x +y ,b 2=cx ,c 2=by ,消去x ,y 得2a =b 2c +c2b ,且a>0,b>0,c>0.要证(a +1)2≥(b+1)(c +1), 只需证a +1≥(b +1)(c +1), 因(b +1)(c +1)≤(b +1)+(c +1)2,只需证a +1≥b +1+c +12,即证2a≥b+c.由于2a =b 2c +c2b ,故只需证b 2c +c2b≥b+c ,只需证b 3+c 3=(b +c)(b 2+c 2-bc)≥(b+c)bc , 即证b 2+c 2-bc≥bc,即证(b -c)2≥0.因为上式显然成立,所以(a +1)2≥(b+1)(c +1).分析综合法特点综合法推理清晰,易于书写,分析法从结论入手,易于寻找解题思路,在实际证明命题时,常把分析法与综合法结合起来使用,称为分析综合法,其结构特点是根据条件的结构特点去转化结论,得到中间结论Q ;根据结论的结构特点去转化条件,得到中间结论P ;若由P 可推出Q ,即可得证.3.已知△ABC 的三个内角A ,B ,C 所对的边分别为a ,b ,c ,且三个内角A ,B ,C 构成等差数列.求证:1a +b +1b +c =3a +b +c.[证明] 要证1a +b +1b +c =3a +b +c ,即证a +b +c a +b +a +b +c b +c =3,即证c a +b +a b +c=1,只需证c(b +c)+a(a +b)=(a +b)(b +c), 只需证c 2+a 2=ac +b 2. ∵A,B ,C 成等差数列, ∴2B=A +C ,又A +B +C =180°,∴B=60°. ∵c 2+a 2-b 2=2accos B , ∴c 2+a 2-b 2=ac , ∴c 2+a 2=ac +b 2, ∴1a +b +1b +c =3a +b +c成立.1.综合法与分析法的区别与联系区别:综合法 分析法 推理方向 顺推,由因导果 逆推,执果索因 解题思路 探路较难,易生枝节 容易探路, 利于思考(优点) 表述形式 形式简洁,条理清晰(优点)叙述烦琐,易出错 思考的 侧重点侧重于已知条 件提供的信息侧重于结论 提供的信息联系:分析法便于我们去寻找证明思路,而综合法便于证明过程的叙述,两种方法各有所长,因而在解决问题时,常先用分析法寻找解题思路,再用综合法有条理地表达证明过程,将两种方法结合起来运用2.分析综合法常采用同时从已知和结论出发,用综合法拓展条件,用分析法转化结论,找出已知与结论的连结点,从而构建出证明的有效路径.上面的思维模式可概括为下图:1.判断(正确的打“√”,错误的打“×”) (1)分析法就是从结论推向已知.( )(2)分析法的推理过程要比综合法优越. ( ) (3)并不是所有证明的题目都可使用分析法证明.( )(1)× (2)× (3)√ [(1)错误.分析法又叫逆推证法,但不是从结论推向已知,而是寻找使结论成立的充分条件的过程.(2)错误.分析法和综合法各有优缺点.(3)正确.一般用综合法证明的题目均可用分析法证明,但并不是所有的证明题都可使用分析法证明.] 2.若P =a +a +7,Q =a +3+a +4(a≥0),则P ,Q 的大小关系是( ) A .P>Q B .P =QC .P<QD .由a 的取值决定C [当a =1时,P =1+22,Q =2+5,P<Q ,故猜想当a≥0时,P<Q.证明如下:要证P<Q ,只需证P 2<Q 2,只需证2a +7+2a (a +7)<2a +7+2(a +3)(a +4),即证a 2+7a<a 2+7a +12,只需证0<12.∵0<12成立,∴P<Q 成立.]3.设a>0,b>0,c>0,若a +b +c =1,则1a +1b +1c 的最小值为________.9 [因为a +b +c =1,且a>0,b>0,c>0,所以1a +1b +1c =a +b +c a +a +b +c b +a +b +c c=3+b a +a b +c b +b c +a c +ca ≥3+2b a ·a b+2c a ·a c+2c b ·b c=3+6=9.当且仅当a =b =c 时等号成立.]4.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c.已知2(tan A +tan B)=tan A cos B +tan Bcos A .证明:a +b =2c. [证明] 由题意知2⎝ ⎛⎭⎪⎫sin A cos A +sin B cos B =sin A cos Acos B +sin B cos Acos B,化简得2(sin Acos B +sin Bcos A)=sin A +sin B ,即2sin(A +B)=sin A +sin B , 因为A +B +C =π,所以sin(A +B)=sin(π-C)=sin C. 从而sin A +sin B =2sin C. 由正弦定理得a +b =2c. 命题得证.。
2022学年高中数学(北师大版)选修2-2教案第1章拓展资料演
2022学年高中数学(北师大版)选修2-2教案第1章拓展资料演演绎推理的三种类型“特殊性存在于一般性之中”这个哲学原理道出了演绎推理的实质;其实,我们学习的演绎推理实际上就是从一般性的原理出发,推出某个特殊情况下的结论.显然,只要一般性原理正确,推理形式不出错误,那么由此产生的结论一定正确;这也正是我们证明数学结论、建立数学体系的重要的思维过程;具体到一个数学问题,我们使用演绎推理时,常常表现为下述三种类型,这里向你介绍,也许对你深入理解演绎推理会有所帮助.一、显性三段论在证明过程中,可以较清楚的看出“大前提”、“小前提”、“结论”;结合演绎推理我们可以知道结果是正确的.也是演绎推理最为简单的应用.例1当a,b为正数时,求证:ab≥ab.2证明:因为一个实数的平方是非负数,aababb而是一个实数的平方,所以ab是非负数,即ab2222abab≥0.22所以,ab≥ab.2评析:在这个问题的证明中,三段论是很显然的;大前提:“一个实数的平方是非负数”,小前提:“abab,结论:“ab是一个实数的平方”ab是非负22数”,从而产生最后结果;由于大前提是人所共知的真理,推理形式正确,因而,结论正确.二、隐性三段论三段论在证明或推理过程中,不一定都是清晰的;特别是大前提,有一些是我们早已熟悉的定理、性质、定义,对这些内容很多时候在证明或推理的过程中可以直接利用,不需要再重新指出;因此,就会出现隐性三段论.例2判断函数f(某)1某2某11某某12的奇偶性.f(某)1某2某11某2某12某解:由于某R,且·1f(某)f(某),22f(某)2某1某某11某某1故函数为奇函数.评析:在这个推理过程中,好似未用到演绎推理的三段论,其实不然,只是大前提“若f(某)f(某),则函数f(某)奇函数;若f(某)f(某),则函数f(某)是偶函数”是大家熟悉的定义,推理过程中省略了.这是三段论推理的又一表现形式.三、复式三段论一个复杂问题的证明或推理,往往不是一次三段论就可以解决的,在证或推的过程中要多次使用三段论,从一个熟悉的大前提出发,产生一个结论;而这个结论又是下一步的大前提,依次递推下去,最终产生结论,这就是所谓的复式三段论.可以看出我们现在遇到的证明或推理的过程,基本上都是复式三段论.例3若数列an的前n项和为nn(a1an),求证:数列an为等差数列.2分析:本题的论证共有三层,即三次使用三段论推理,请看:第一层,大前提“若n是数列an的前n项和,则annn1”;小前提“数列an的前n项和为n“ana1n1”;an1a1n2n(a1an)n(aa)(n1)(a1an1),则an1n”;结论222第二层,大前提“对于非零数列an,则有ana1足a2a1an;小前提“满”an1ana1aaaa1aa1n1)31·4··n的数列an有ana1(a2a1·”;结论an1a1n2a2a1a3a1an1a1“ana1(n1)(a2a1)”;第三层,大前提“对于数列an,若anan1常数,则an是等差数列”;小a为常数”前提“由ana1(n1)(a2a1),得anan1a;结论“数列为等差数列”,21在这三层中,层层深入,步步逼近,慢慢的向我们要论证的结论靠拢,这是一种很重要且很实用的分析思维过程.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章 推理与证明课题:合情推理(一)——归纳推理课时安排:一课时课型:新授课 教学目标:1、通过对已学知识的回顾,进一步体会合情推理这种基本的分析问题法,认识归纳推理的基本方法与步骤,并把它们用于对问题的发现与解决中去。
2.归纳推理是从特殊到一般的推理方法,通常归纳的个体数目越多,越具有代表性,那么推广的一般性命题也会越可靠,它是一种发现一般性规律的重要方法。
教学重点:了解合情推理的含义,能利用归纳进行简单的推理。
教学难点:用归纳进行推理,做出猜想。
教学过程: 一、课堂引入:从一个或几个已知命题得出另一个新命题的思维过程称为推理。
见书上的三个推理案例,回答几个推理各有什么特点?都是由“前提”和“结论”两部分组成,但是推理的结构形式上表现出不同的特点,据此可分为合情推理与演绎推理 二、新课讲解:1、 蛇是用肺呼吸的,鳄鱼是用肺呼吸的,海龟是用肺呼吸的,蜥蜴是用肺呼吸的。
蛇,鳄鱼,海龟,蜥蜴都是爬行动物,所有的爬行动物都是用肺呼吸的。
2、 三角形的内角和是180︒,凸四边形的内角和是360︒,凸五边形的内角和是540︒ 由此我们猜想:凸边形的内角和是(2)180n -⨯︒3、221222221,,,331332333+++<<<+++,由此我们猜想:a a mb b m+<+(,,a b m 均为正实数) 这种由某类事物的部分对象具有某些特征,推出该类事物的全部对象都具有这些特征的推理,或者由个别事实概栝出一般结论的推理,称为归纳推理.(简称:归纳) 归纳推理的一般步骤:⑴ 对有限的资料进行观察、分析、归纳 整理; ⑵ 提出带有规律性的结论,即猜想; ⑶ 检验猜想。
例1已知数列{}n a 的通项公式21()(1)n a n N n +=∈+,12()(1)(1)(1)n f n a a a =--⋅⋅⋅-,试通过计算(1),(2),(3)f f f 的值,推测出()f n 的值。
【学生讨论:】(学生讨论结果预测如下) (1)113(1)1144f a =-=-= 1213824(2)(1)(1)(1)(1))94936f a a f =--=⋅-=⋅==12312155(3)(1)(1)(1)(2)(1)163168f a a a f =---=⋅-=⋅=由此猜想,2()2(1)n f n n +=+学生讨论:1)哥德巴赫猜想:任何大于2的偶数可以表示为两个素数的之和。
2)三根针上有若干个金属片的问题。
四、巩固练习: 1、已知111()1()23f n n N n+=+++⋅⋅⋅+∈,经计算:35(2),(4)2,(8),22f f f =>>(16)3,f >7(32)2f >,推测当2n ≥时,有__________________________.2、已知:2223sin 30sin 90sin 1502++=,2223sin 5sin 65sin 1252++=。
观察上述两等式的规律,请你写出一般性的命题,并证明之。
3、观察(1)tan10tan 20tan 20tan 60tan 60tan101++=(2)tan5tan10tan10tan 75tan 75tan51++=。
由以上两式成立,推广到一般结论,写出你的推论。
注:归纳推理的几个特点:1.归纳是依据特殊现象推断一般现象,因而,由归纳所得的结论超越了前提所包容的范围.2.归纳是依据若干已知的、没有穷尽的现象推断尚属未知的现象,因而结论具有猜测性.3.归纳的前提是特殊的情况,因而归纳是立足于观察、经验和实验的基础之上.归纳是立足于观察、经验、实验和对有限资料分析的基础上.提出带有规律性的结论. 五、教学小结:1.归纳推理是由部分到整体,从特殊到一般的推理。
通常归纳的个体数目越多,越具有代表性,那么推广的一般性命题也会越可靠,它是一种发现一般性规律的重要方法。
2.归纳推理的一般步骤:1)通过观察个别情况发现某些相同的性质。
2)从已知的相同性质中推出一个明确表述的一般命题(猜想)。
课题:类比推理 ●教学目标:(一)知识与能力:通过对已学知识的回顾,认识类比推理这一种合情推理的基本方法,并把它用于对问 题的发现中去。
(二)过程与方法:类比推理是从特殊到特殊的推理,是寻找事物之间的共同或相似性质,类比的性质相似性越多,相似的性质与推测的性质之间的关系就越相关,从而类比得出的结论就越可靠。
(三)情感态度与价值观:1.正确认识合情推理在数学中的重要作用,养成从小开始认真观察事物、分析问题、发现事物之间的质的联系的良好个性品质,善于发现问题,探求新知识。
2.认识数学在日常生产生活中的重要作用,培养学生学数学,用数学,完善数学的正确数学意识。
●教学重点:了解合情推理的含义,能利用类比进行简单的推理。
●教学难点:用类比进行推理,做出猜想。
●教具准备:与教材内容相关的资料。
●课时安排:1课时 ●教学过程: 一.问题情境从一个传说说起:春秋时代鲁国的公输班(后人称鲁班,被认为是木匠业的祖师)一次去林中砍树时被一株齿形的茅草割破了手,这桩倒霉事却使他发明了锯子. 他的思路是这样的:茅草是齿形的;茅草能割破手.我需要一种能割断木头的工具;它也可以是齿形的. 这个推理过程是归纳推理吗? 二.数学活动我们再看几个类似的推理实例。
例1、试根据等式的性质猜想不等式的性质。
等式的性质: 猜想不等式的性质: (1) a=b ⇒a+c=b+c;(1) a >b ⇒a+c >b+c; (2) a=b ⇒ ac=bc;(2) a >b ⇒ ac >bc;(3) a=b ⇒a 2=b 2;等等。
(3) a >b ⇒a 2>b 2;等等。
问:这样猜想出的结论是否一定正确?例2、试将平面上的圆与空间的球进行类比.圆的定义:平面内到一个定点的距离等于定长的点的集合. 球的定义:到一个定点的距离等于定长的点的集合.圆 球 弦←→截面圆 直径←→大圆 周长←→表面积 面积←→体积☆上述两个例子均是这种由两个(两类)对象之间在某些方面的相似或相同,推演出他们在其他方面也相似或相同;或其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理称为类比推理(简称类比).简言之,类比推理是由特殊到特殊的推理. 类比推理的一般步骤:⑴找出两类对象之间可以确切表述的相似特征;⑵ 用一类对象的已知特征去推测另一类对象的特征,从而得出一个猜想; ⑶ 检验猜想。
即例 3.在平面上,设h a ,h b ,h c 是三角形ABC 三条边上的高.P 为三角形内任一点,P 到相应三边的距离分别为p a ,p b ,p c ,我们可以得到结论:试通过类比,写出在空间中的类似结论. 1=++cc b b a a h p h p h p巩固提高1.(2001年上海)已知两个圆①x2+y2=1:与②x2+(y-3)2=1,则由①式减去②式可得上述两圆的对称轴方程.将上述命题在曲线仍然为圆的情况下加以推广,即要求得到一个更一般的命题,而已知命题应成为所推广命题的一个特例,推广的命题为------------------------------------------------------------------------------------------------------------------------------------------------2.类比平面内直角三角形的勾股定理,试给出空间中四面体性质的猜想.直角三角形3个面两两垂直的四面体∠C=90°3个边的长度a,b,c2条直角边a,b和1条斜边c∠PDF=∠PDE=∠EDF=90°4个面的面积S1,S2,S3和S3个“直角面” S1,S2,S3和1个“斜面” S么这个数列叫做等和数列,这个常数叫做该数列的公和。
已知数列{}an是等和数列,且a12=,公和为5,那么a18的值为______________,这个数列的前n项和Sn 的计算公式为________________1.类比推理是从特殊到特殊的推理,是寻找事物之间的共同或相似性质。
类比的性质相似性越多,相似的性质与推测的性质之间的关系就越相关,从而类比得出的结论就越可靠。
2.类比推理的一般步骤:①找出两类事物之间的相似性或者一致性。
②用一类事物的性质去推测另一类事物的性质,得出一个明确的命题(猜想)不等式证明一(比较法)比较法是证明不等式的一种最重要最基本的方法。
比较法分为:作差法和作商法一、作差法:若a,b∈R,则: a-b>0⇔a>b;a-b=0⇔a=b;a-b<0⇔a<b它的三个步骤:作差——变形——判断符号(与零的大小)——结论.作差法是当要证的不等式两边为代数和形式时,通过作差把定量比较左右的大小转化为定性判定左—右的符号,从而降低了问题的难度。
作差是化归,变形是手段,变形的过程是因式分解(和差化积)或配方,把差式变形为若干因子的乘积或若干个完全平方的和,进而判定其符号,得出结论.例1、求证:x2 + 3 > 3x证:∵(x2 + 3) - 3x = 043)23(3)23()23(32222>+-=+-+-xxx,∴x2 + 3 > 3x例2:已知a, b, m 都是正数,并且a < b ,求证:bam b m a >++证:)()()()()(m b b a b m m b b m b a m a b b a m b m a +-=++-+=-++ ,∵a,b,m 都是正数,并且a<b , ∴b + m > 0 , b - a > 0∴0)()(>+-m b b a b m 即:bam b m a >++变式:若a > b ,结果会怎样?若没有“a < b ”这个条件,应如何判断? 例3:已知a, b 都是正数,并且a ≠ b ,求证:a 5 + b 5 > a 2b 3 + a 3b 2 证:(a 5 + b 5 ) -(a 2b 3 + a 3b 2) = ( a 5- a 3b 2) + (b 5- a 2b 3 )= a 3 (a 2- b 2 ) - b 3 (a 2- b 2) = (a 2- b 2 ) (a 3- b 3)= (a + b)(a - b)2(a 2 + ab + b 2) ∵a, b 都是正数,∴a + b, a 2 + ab + b 2 > 0,又∵a ≠ b ,∴(a - b)2> 0 ∴(a + b)(a - b)2(a 2 + ab + b 2) > 0,即:a 5 + b 5 > a 2b 3 + a 3b 2例4:甲乙两人同时同地沿同一路线走到同一地点,甲有一半时间以速度m 行走,另一半时间以速度n 行走;有一半路程乙以速度m 行走,另一半路程以速度n 行走,如果m ≠ n ,问:甲乙谁先到达指定地点? 解:设从出发地到指定地点的路程为S ,甲乙两人走完全程所需时间分别是t 1, t 2, 则:21122,22t n S m S S n tm t =+=+可得:mnn m S t n m S t 2)(,221+=+= ∴)(2)()(2])(4[2)(22221n m mn n m S mn n m n m mn S mn n m S n m S t t +--=++-=+-+=- ∵S, m, n 都是正数,且m ≠ n ,∴t 1- t 2 < 0 即:t 1 < t 2从而:甲先到到达指定地点。