静止型动态无功补偿装置(svc)
静止无功补偿装置(SVC)介绍资料
南京南瑞继保电气有限公司
主要内容
概述
工作原理 SVC技术发展现状 南瑞继保SVC主要构成 南瑞继保SVC主要性能及技术优势 重点应用 SVC工程应用实例及补偿效果 SVC的型号和主要参数
概述
电网存在的问题
部分输电网可能过载而另一部分却未被充分利用; 最大静态稳定传输功率不足,有待进一步提高; 长距离电力传输过程中的过电压应该被有效抑制; 可能出现的次同步振荡(SSR)必须快速阻尼。 来自一些大功率负荷的谐波电流,应该滤除; 某些弱系统,需要大量动态无功来维持其电压稳定; HVDC换流站,为保证可靠稳定工作,也需要补偿一定的无功。
南瑞继保
中国电科院
鞍山荣信
西电科技
阀组触发系 统 散热器
冷却水管 支路水管 水管接头焊 接 触发单元
SVC发展现状
国内主要SVC制造公司的产品性能比较
厂家 主要指标
触发光缆 晶闸管元件 更换 阀组冷却系 统 阀组结构 全部单进单出 更换方便,单 人可完成 水冷或水风冷 却 立式阀,占地 小 观察维护方便 开环抑制闪变 和闭环提高功 率因数双调节 器 专业控制保护 制造厂家,利 用了高压直流 输电控制保护 平台,可靠性 高。占地更小, 操作通信非常 方便。 有两进八出等 至少要两人完 成更换 水水或水风冷 却 卧式阀 占地面 积大 加权合并的单 调节器 无 至少要两人完 成更换 热管风冷却, 须外配大功率 空调 卧式阀 占地 面积更大 约2 倍水冷阀面积 有两进八出等 至少要两人完 成更换 水水或水风冷 却 卧式阀 占地面 积大 功能单一的单 调节器
热备用和冗 余
可以另外加
无
静止型动态无功补偿装置SVC
静止型动态无功补偿装置SVCSVC-解决的问题SVC-原理SVC-结构组成SVC-优势SVC-技术特点SVC-技术参数SVC-典型业绩产品简介荣信电力电子股份有限公司是世界最大的高压动态无功补偿装置SVC制造商,也是中国最多的 SVC 专利技术拥有者。
专业研制开发并向国内外用户提供SVC 产品,在国内率先实现光触发的触发方式,从ETT到LTT各项技术完备。
拥有高效热管冷却和全密闭纯水冷却两种冷却方式,拥有国内一流、国际先进的 SVC 专用高压全载试验检测中心,并拥有先进的DSP全数字控制技术。
集中了国内外经验丰富的专业工程技术人员,性能价格比明显优于同类进口产品。
荣信SVC产品不仅全面替代进口,还广泛应用于宝钢、鞍钢、武钢、首钢等200余家钢铁企业,兰州铁路局、西安铁路局等电气化铁道牵引站,以及兖州矿业集团、淮南矿务局、海口电业局、包头铝业等煤炭、电力、有色金属行业,还出口到越南、泰国、土耳其、尼日利亚、巴西等国家,为意大利达涅利等国际型的工程总包公司提供SVC分包业务,用户遍及世界各地,2005、2006、2007,2008年连续四年SVC装机数量全球第一,正在运行的SVC超过800套,遥遥领先于国内同行业企业。
荣信 SVC 通过德国TUV、欧盟CE、以及瑞士SGS ISO9001 等国际认证,采用国际标准生产。
SVC-解决的问题◆电弧炉电弧炉做为非线性及无规律负荷接入电网,将会对电网产生一系列不良影响,其中主要是:■导致电网严重三相不平衡,产生负序电流■产生高次谐波,其中普遍存在如2、4次偶次谐波与3、5、7次等奇次谐波共存的状况,使电压畸变更趋复杂化■存在严重的电压闪变■功率因数低彻底解决上述问题的唯一方法是用户必须安装具有快速响应速度的动态无功补偿器(SVC)。
荣信SVC系统响应时间小于l0ms,完全可以满足严格的技术要求,向电弧炉快速提供无功电流并且稳定电网电压,增加冶金有功功率的输出,提高生产效率,并且最大限度地降低闪变的影响。
科技成果——静止型动态无功补偿(SVC)技术
科技成果——静止型动态无功补偿(SVC)技术所属行业制造业技术开发单位荣信电力电子股份有限公司适用范围该产品广泛用于黑色冶金中的电冶炼、轧制;有色冶金的电冶炼、轧制、电解、电镀;发电产业的电厂、风电厂;电力系统;港口、电气化铁道等交通领域,用以消除无功冲击,滤除高次谐波,平衡三相电网,实现节能、消除电网“污染”,提高电能质量。
成果简介SVC主要由全数字控制系统、高压晶闸管变流装置、补偿电抗器、高次谐波滤波装置组成。
高次谐波滤波装置由电抗器、电力电容器、电阻器组成。
通过SVC的补偿电抗器给系统补偿无功,能抑制电网电压波动、闪变、畸变,减少三相不平衡,滤除谐波干扰,改善电能质量,保障电网安全。
应用SVC后,可使功率因数从0.7提高到0.95以上,节能35%以上,节能效果显著。
电容器提供固定的容性无功QC,补偿电抗器通过的电流决定了补偿电抗器输出感性无功QTCR的大小,感性无功和容性无功相抵消,只要能做到系统无功QN=QV(系统所需)-QC+QTCR=常数(或0),则能实现电网功率因数=常数,电压几乎不波动,关键是准确控制晶闸管的触发角,得到所需的流过补偿电抗器的电流,晶闸管变流装置和控制系统能够实现这个功能,采集母线的无功电流值和电压值,合成无功值,和所设定的恒无功值(可能是0)进行比较,计算得触发角大小,通过晶闸管触发装置,使晶闸管流过所需电流。
关键技术(1)高压大功率晶闸管变流技术;(2)全数字控制技术;(3)热管自冷散热技术、水冷技术;(4)高压全载检测试验技术;(5)远程数据监控技术。
主要技术指标1、应用于6kV,10kV,27.5kV,35kV,66kV系统;2、直挂于6kV、10kV、27.5kV、35kV、66kV母线;3、TCR额定功率:≤300Mvar;4、晶闸管型式:电触发晶闸管(ETT)或光控晶闸管(LTT);5、触发方式:光电触发或光触发;6、控制系统:DSP全数字控制系统;7、控制方式:无功功率或电压;8、无功调节范围:-100%到100%;9、调节方式:分相调节;10、调节系统响应时间:<10ms;11、噪音水平:自冷无噪声;12、辅助电网供电电压:380V+15%等。
TCR型SVC高压静止式动态无功补偿装置
TCR型SVC高压静止式动态无功补偿装置(下称SVC),它较好的解决了冶金设备(电弧炉、轧机)、电气化铁路、大型风力发电设备和大型电力电子装置等设备接入电网所带来的问题,能稳定母线电压,提高功率因素,消除闪变,滤除谐波,平衡三相负载,提高电网输送能力。
SVC高压静止式动态无功补偿装置的详细介绍TCR型SVC高压静止式动态无功补偿装置(下称SVC),它较好的解决了冶金设备(电弧炉、轧机)、电气化铁路、大型风力发电设备和大型电力电子装置等设备接入电网所带来的问题,能稳定母线电压,提高功率因素,消除闪变,滤除谐波,平衡三相负载,提高电网输送能力。
二、产品原理及实物图图1 SVC的原理图图2 SVC实物图通常,一个完整的SVC系统由一个TCR(相控电抗器)和几组L-C型滤波器(FC)组成。
TCR是一个连续可调的感性无功电源,而滤波器在滤除谐波的同时还是一个固定的容性无功电源。
SVC控制系统快速精确的达到下式所表示的效果:,其中等式当中,为负载无功功率,通常为感性的,为TCR感性无功功率,为容性无功功率。
三、产品优势及功能特点3.1 产品技术优势目前应用的动态无功补偿主要有以下几种方式:磁控电抗器MCR型SVC,TCR型SVC、静止式无功发生器SVG。
MCR的调节速度较慢,一般为100~300ms,损耗一般为1.2~2%之间,由于铁芯式饱和电抗器的固有特点,运行过程中噪音很大,振动很厉害。
饱和电抗器属于非线性元件,使得工作绕组的电流不能有效跟随控制绕组电流的变化而变化,为了抑制过补现象,MCR的无功控制范围在0~85%之间,而不是0~100%。
TCR型SVC的响应速度较快,为10mS,TCR型SVC装置直接安装在高压侧,工作电流小而损耗较小,一般为0.3%~0.4%,目前TCR型SVC是应该最多最广泛的动态无功补偿装置。
SVG是目前最为先进的无功补偿技术,但由于目前电力电子技术器件发展水平的限制,SVG技术成熟度较TCR型SVC要低,目前全世界范围内只有数十套的运行业绩,因此SVG全面推广还会有较长过程结合来看,TCR型SVC是目前技术最成熟,适用范围最广的动态无功补偿方式。
静止无功补偿器((TCR+FC)SVC)
SVC-技术参数
项目 电网电压(kV) TCR 额定功率(Mvar) 晶闸管阀组结构 晶闸管冷却方式
晶闸管型式
触发方式 控制系统 控制方式 无功调节范围 调节方式 调节系统响应时间 噪声水平 辅助电网供电电压 使用期限
规格
6
10 27.5
35 66
6-300
组架开放式
热管自冷、水冷却
电触发晶闸管(ETT)或 光控晶闸管(LTT)
--------------------------------------------------------------------------◆ 轧机
轧机及其他工业对称负载在工作中所产生的无功冲击会对电网造成如下影响: ■引起电网电压降及电压波动,严重时使电气设备不能正常工作,降低了生产效率 ■使功率因数降低 ■负载的传动装置中会产生有害高次谐波,主要是以 5、7、11、13 次为代表的奇次谐波及旁频,会使电网 电压产生严重畸变
◆ 先进的全数字控制系统
系统响应时间小于 10 ms 分相调节 自诊断 远程监控 ---------------------------------------------------------------------------
◆ 国内唯一的高压全载检测试验成套技术
72 小时高压全载动态连续运行成套试验检测技术 SCR 阀组成套试验技术 满足 IEC61954 要求
◆ 高可靠的 SVC 可控硅阀技术
直挂于 6 KV,10KV,35KV 系统 标准组架式结构 SCR 合理冗余设计 高效热管冷却和全密闭纯水冷却 光电触发和光触发 ---------------------------------------------------------------------------
静止型动态无功补偿装置(SVC)
静止型动态无功补偿装置(SVC)作者:姜峰来源:《科技创新导报》2011年第20期摘要:精练炉在冶炼过程中会产生剧烈而频繁的冲击无功功率,引起母线电压波动和闪变,同时还会产生大量的谐波电流注入电力系统,引起电压畸变,并对其它负荷产生不利影响,为了解决上述问题,需在母线上安装静态型动态无功补偿装置(SVC)。
关键词:SVC装置通用硬件组成工作原理作用中图分类号:TM7 文献标识码:A 文章编号:1674-098X(2011)06(c)-0124-011 引言在电力系统中,供电的质量指标,电网运行的安全可靠性和经济性是最根本的问题。
快速合理地调节电网无功功率,对交流电网的稳压和系统电压的调节,合理分配潮流及限制电网过电压有着十分重要的意义。
近年来,随着冶金行业、电气化铁道等的飞速发展,具有冲击特性的负荷诸如电弧炼钢炉,轧钢机等不断投入电网,导致电网功率因数下降,波形畸变,电压波动,产生谐波干扰。
为了确保电力系统的安全、稳定运行,可装备静止型无功功率补偿装置(SVC)。
目前,在电力系统中,SVC主要用于稳定电网电压,通常是按三相对称方式工作。
而工业用户中,SVC主要用于缓冲冲击性负荷及恢复电力网络有功平衡和无功补偿。
2 系统组成SVC装置主要由两个部分组成:TCR部分和FC部分。
1)TCR部分主要有TCR阀组、水冷却系统、相电抗器。
TCR阀组由并联晶闸管多个串联组成,其过电压保护采用先进的BOD器件,它与其他电子器件一起构成晶闸管二次触发回路,使晶闸管免受过电压冲击而损坏。
光电转换,自动完成各高电位电子单元循检,高压光缆传递信号。
密封循环水冷却系统提供高纯水作为TCR阀的冷却介质(水一水型)。
相控电抗器是空心、干式、铝线环氧固化户外型电抗器,线性度高,噪音小,动热稳定性好,损耗小,绝缘强度高,散热好。
相当于一个可控的感性负载,通过电子调节器和反并联连接的可控硅阀的相位控制,改变补偿电抗器的电流大小,从而达到动态无功补偿的目的。
静止无功补偿器(SVC)简介10
主要性能及特点
友好的人机界面
运行人员监视控制主回路界面
主要性能及特点
友好的人机界面
TCR回路监视界面
主要性能及特点
友好的人机界面
控制方式选择及参数设置界面
主要性能及特点
友好的人机界面
水冷系统监监视界面
主要性能及特点
友好的人机界面
手动触发录波及主机监控界面
主要性能及特点
友好的人机界面
工程应用之一
安装SVC稳定供电电压的好处
提高系统的静稳定、动稳定和暂态稳定储备 过低的电压通常是重负荷或供电容量短缺造成的,低电压供电会使 负荷运行性能变坏,对于感应电机负荷,这种情况尤其明显。 过高的供电电压可能导致变压器激磁饱和,增加损耗。同时,对设 备绝缘也极为不利。 对于雷击等异常原因引起的暂态过电压,SVC具有瞬时吸收无功、抑 制该类暂态过电压的功能。 经系统仿真验证,在该站10kV I母上安装17Mvar的SVC。
不同触发角度下的TCR电流波形
工作原理
TCR 关断
TCR 开通 TCR 阀组电压以及电流随触发角变化的波形
主要构成
主要构成
降压变压器(根据需要) 开关柜 线性(空心)电抗器 电容器组/滤波器组
主要构成
晶闸管阀组 纯水冷却系统
晶闸管阀组 水风冷却系统
水水冷却系统
纯水冷却系统
目前被最广泛使用的SVC,主要是TCR+BSC(FC)形式。
概述
应用领域
电网
输电系统 配电网 风力发电
工业用户
冶金:电弧炉、精炼炉 钢铁:轧钢机 电气化铁路:牵引站 化工:工业研磨机、电解电源 采矿:矿石提升机械 港口:海港起重机 重型加工业:大型木材加工机械、大型焊接机械
静止型动态无功补偿装置(SVC)在厂矿企业的应用
静止型动态无功补偿装置(SVC)在厂矿企业的应用摘要:svc装置目前已广泛应用于冶金、电力、铁路等行业,如果发现运行中高压开关柜有发热现象,应检查柜内铜排连接处是否接触好,可采取涂导电脂等措施减少接触电阻。
关键词:svc装置原理应用中图分类号:u46 文献标识码:a 文章编号:1672-3791(2012)10(b)-0083-011 静止型动态无功补偿装置(svc)原理概述svc装置主要由可控支路和固定电容器支路并联而成,其主要应用型式是tcr+fc型:tcr支路功能是通过相控电抗器的电流控制相控电抗器输出的感性无功值ql,fc回路一个功能是提供固定的容性无功功率qc,另一个功能是通过电容器与电抗器的串联支路滤除电弧炉产生的主要高次谐波;电弧炉工作时产生负载感性无功用qfz表示,当svc装置系统参数设计合理时,可以使系统的无功功率qs=qc-qfz(随机变化)-ql(响应受控)=定值或0。
图1为我厂110 kv变电站svc装置原理图。
从图1可以看出,整套svc装置由3台高压开关柜、1组tcr支路、4组fc支路、1台tcr控制柜及配套电力电缆、支架组成。
2 svc装置的作用目前国内在用的svc成套装置达1000套以上,广泛应用于冶金、电力、煤炭、电气化铁路、有色冶金、石油化工等行业,应用于工矿企业时其主要作用有以下几点。
(1)滤除电弧炉、中频炉等产生的高次谐波,消除谐波对数控加工设备的干扰。
(2)平抑电弧炉炼钢时引起的电压波动、闪变和电压不平衡,提高供电质量。
(3)快速响应自动跟踪无功,提高功率因数,减少线路功率损耗。
3 svc装置使用效果我厂110 kv变电站6 kv母线为放射式单母线供电,其主要用电设备为数控机床、电焊机、电动机,中频炉,三台10t电弧炉(单台电炉变压器容量为5500 kva),系统未上svc装置前由于电弧炉、中频炉运行时产生2次、3次、4次及4次以上高次谐波,同时引起系统电压波动大,电压闪变严重。
静止型动态无功补偿装置SVC的应用
功率因数补偿到0.9以上,设备简单。 以上,设备简单。
缺点: 损耗大-铁芯工作在磁饱和区域,在这种结构下,磁饱和时的边
缘效应显著,由于磁阀交替饱和,在磁阀附近铁芯区域存在较大的 幅向磁场分量,因此增加了电抗器铁芯和绕组的附加损耗。
存在调节死区-铁芯电抗器易饱和产生死区,补偿调节 存在调节死区范围不大
静止型动态无功补偿装置(SVC) ( static var compensator)
SVC补偿原理:QL-无功负荷; QR-SVC电抗器吸收的无功功率; Qc-SVC固定电容器组提供的无功功率;
QL t QR- QC t QR
t t t Qc QR +QR- QC
SVC的分类
根据国际大电网会议将SVC分为:
MCR的结构及原理
MCR的原理
设晶闸管VT1 、VT2 和二极管VD 都为理想开关元件, 则电抗器有以下4 种工作状 态: 状态1 状态2 状态3 状态4 VT1 、VT2 、VD 都关断; VT2 、VD 关断, VT1 导通; VT1 、VT2 关断, VD 导通; VT1 、VD 关断, VT2 导通。
噪音大-铁芯电抗器易产生噪音。 噪音大-
SR-FC
感性、容性 连续无源 有限 有限 无 有限 快 , 取 决 于 系 统及 旁路 滤波
SVC静止型动态无功补偿器
3.维护使用以及故障处理
• 1、设备投运 • 确认设备正常及补偿装置断路器处于分闸位; • 依次合上隔离刀闸; • 关好滤波补偿装置门锁; • 确认各种指示和监控正常; • 断路器合闸送电。
2、设备退出 (1)切除电容器组支路; (2)按TCR控制柜停止按钮; (3)如需检修设备,断开上级隔离刀闸,然后挂接地线, 分别在电容器组进出线端挂地线。
• (4) 退出电容器时,必须注意是否会造成主变过负荷;
(5) 当电容器支路发生短路跳闸等现象后,应立即进行 特殊巡视检查。检查项目除上述各项外,必要时应对电容 器进行试验,在未查出故障电容器或断路器跳闸原因之前, 不能再次合闸送电; (6)用户应根据本说明书制定严格的操作规程,规范值 班人员操作。
• (3)放电线圈的检修主要包括:放电线圈外观检查是否良好、 清洁,瓷质无裂纹和破损;基础是否牢固稳定。
4、日常巡视检修项目 对运行中的电容器组应进行日常巡视检查,以及特殊的巡视检 查: (1) 电容器运行响声是否正常; (2) 电容器是否有过热现象; (3) 各支路电流是否正常,有无稳定或激增现象; (4) 套管的瓷质部分有无松动和发热破损及闪络的痕迹; (5) 有无异常声音和火花。
(2)、紧固件检查 检查支撑绝缘子安装螺栓的紧固情况。 检查主电路电缆的连接情况,护线软管有无破裂。 检查控制插头的连接情况,插头、插座有无损坏,光纤有无损 坏。 检查阀组框架有无明显裂纹和变形,检视表面的油漆剥落和腐 蚀情况。
(3)、一般故障的处理 一般故障包括电阻故障、电容故障等。 处理步骤如下: 1)确认断路器断开。 2)确认TCR阀组停止运行。 3)确认阀组主回路挂接地线。 4)找到故障的零件进行维修或更换即可。
静止型动态无功补偿装置
对于不同的公共连接点 在不同的时刻,电能质 量数据往往是不同的, 也就是说,电能质量在 时间和空间上均处于动 态变化之中。
◆电能质量存在的问题
•GB-12325-1990 电能质量 供电电压允许偏差 •GB-15945-1995 电能质量 电力系统频率允许偏差 •GB-12326-1990 电能质量 电压允许波动和闪变 •GB-14549-1993 电能质量 公用电网谐波 •GB-15543-1995 电能质量 三相电压允许不平衡度
▼供电电压允许偏差
35KV及以上供电电压正、负偏差的绝对值之和不超过额定电 压的10%;
10KV及以下三相供电电压允许偏差为额定电压的+7%; 220V单相供电电压允许偏差为额定电压的+70%,-10%。 对电压有特殊要求的用户,供电电压允许偏差按照优质优价 原则由供电协议确定。
▼谐波的危害
在供配电系统中,通常总是希望交流电压和交流电流呈正弦波型。 正弦电压施加在线性无源元件上,其电流和电压仍为同频率的正弦波,但 当正弦电压施加在非线性电路上时,电流就变成非正弦波。对于非正弦周 期电压电流,一般满足狄里赫利条件,可分解为傅立叶级数,其中频率与 工频相同的分量称为基波,频率为整数倍基波频率的分量称为谐波,谐波 次数为谐波频率与基波频率的整数比。国际电工标准给出的谐波定义为: 谐波是频率为基波频率整数倍的正弦波。
不对称运行对电动机的影响 定子的铜损增加 负序磁场产生制动转矩 转子的铜损增加,由于转子与负序反转磁场的转差率 较大,使集肤效应增强 正、反转磁场相互作用,建立脉冲转矩,可能引起电 动机的振动 美国电机制造商协会(MENA):3.5%的电压不平衡度将使电 机温升增加25%
▼三相电压不平衡的危害
不对称运行对变压器的影响
静止型动态无功补偿装置培训
有功功率--即作功的功率,它将电能转换为其 它形式的能。无功功率--不作实际的功,而是 储存在电路的电容器(维持电场)或电感线圈 (维持磁场)之中,用于电和磁的互相转换,在 电容中是容性无功,线圈中是感性无功。
容性电流和感性电流的方向正好相反,因此如果 电路呈感性无功,那么可以并入或串入电容进行 无功就地补偿。 虽然无功并不作实际的功,但它仍消耗实际的功。
电网基本元件: 电阻性质的电器:电阻丝、加热、发光装置。 电感性质的电器:电动机、变压器等 电容性质的电器: 电容器、电缆等
2、提高功率因数的意义:
在一定的有功功率下,当用户的cosφ比较小,视 在功率比较大,为了满足用电的需要,供电线路和 变压器的容量需要大,这样,增加了供电投资、降 低设备利用率,也增加线路网损。负载的功率因数 过低,供电设备的容量不能充分利用,在一定的电 压下向负载输送一定的有功功率时,通过输电线路 的电流增大,导线电阻的能量损耗和导线阻抗会造 成电压降。所以,功率因数是电力系统中的一个重 要指标
实际工程中晶闸管的控制角仅一般工作在1OO 度~165度,在电网电压基本不变的前提下。增大 控制角,将减小TCR电流,减小装置的感性无功功 率。反之减小控制角,将增大TCR电流。
从而使得相控电抗器提供(吸收)的无功能 够满足SVC的整体补偿目标要求。
可见: TCR是向电网提供在一定范围内可调的感性无功
四、SVC系统的工作原理 1.FC的工作原理
SVC是用以晶闸管为基本元件的固态开关替代了电 气开关,实现快速、频繁地以控制电抗器和电容器 的方式改变输电系统的导纳。SVC 的显著特点是能 快速, 连续地对波动性负荷进行补偿, 有效地抑制 系统电压波动和闪变, 同时滤除系统中的高次谐 波, 并通过分相调整并改善系统的三相平衡度。
SVC静止型动态无功补偿装置的应用
SVC静止型动态无功补偿装置的应用张海燕摘要:本文通过对轧钢厂生产线正常生产时,其设备的无功损耗以及对电网的高次谐波影响进行分析,并叙述了10KV-34MVar-SVC静止型动态无功补偿装置的应用及实现过程。
关键词:无功功率补偿;谐波抑制;SVC静止型动态无功补偿装置;TCR相控电抗器;FC滤波器一、前言无功补偿,就其概念而言早为人所知,它就是借助于无功补偿设备提供必要的无功功率,以提高系统的功率因数,降低能耗,改善电网电压质量。
而无功功率指的是交流电路中,电压U与电流I存在相位差时,所形成的功率分量,根据负载特性的不同,又有感性无功与容性无功之分。
而大型轧钢厂矿是以感性负载为主,生产时感性无功冲击较大。
现在以某生产线为例,其用电设备总装机容量约为54.4MW;其中大型传动为交—交变频系统,装机容量约为17.5MW;部分辅传动为交—直—交变频系统,装机容量约为19.7MW;其余的设备为恒速传动设备,装机容量约为17.2MW。
现代电力电子设备等非线性负荷大量的使用,产生的无功冲击将引起电网电压闪变、波动以及产生大量高次谐波电流,严重污染电网环境。
该生产线平均有功功率为30.39MW、平均无功功率为33.84MVAR,平均功率因数仅为0.67;而且这套设备所供电力电子元器件,其无功冲击较大;同时,注入电网的谐波电流超标。
高次谐波电流将对各种电气设备,继电保护、自动控制装置、计算机、测量和计量仪器以及通讯系统均有不利的影响;它将恶化电能质量,降低电网可靠性,增加电网损失,缩短电气设备的使用寿命。
因此,对这条生产线进行无功补偿和谐波治理具有深远意义。
二、无功损耗及谐波分析1、无功损耗分析该轧钢厂生产线建设的10KV开关站,系统采用单母线分段接线,分段开关正常时断开运行,以10KV电压等级向轧线的主、辅传动及功辅设施的用电设备供电;其中变频传动设备全部由10KVⅠ段母线供电;其余的负荷由10KVⅠ、Ⅱ段母线分别供电。
静止无功补偿(SVC)技术
Capacitive
Inductive Isvc
图 7-2 TCR 型 SVC 输出特性
从 TCR 型 SVC 接线结构可知,其无功调节是通过电力电子器件(晶闸管)控制常 规电感/电容元件来实现的。图 7-3 为单相 TCR 接线原理图及电流电压波形。TCR 控 制系统通过改变晶闸管的触发时刻控制主回路电流大小,从波形图可见只有当触发角 为 90º时电流方为正弦,其他触发时刻 TCR 回路电流将含有高次谐波,其谐波含量见 图 7-4。
平台的 SVC 静、动态模型,该模型可用于电力系统分析计算,特别是对电压稳定性分
析计算,与实际装置比较具有较好的拟合特性。从对调节策略的仿真和试验结果可见,
我国在 SVC 输电系统调节控制研究已取得了重要的阶段性成果,为 SVC 技术在输电网
的应用奠定了基础。
国家电网公司先进适用技术评估报告
1.5 SVC 装置制造核心技术
国家电网公司先进适用技术评估报告
静止无功补偿(SVC)技术
1 技术原理
1.1 概述
SVC(Static Var Compensator)——静止无功补偿器,其静止是相对于发电机、 调相机等旋转设备而言的。它可快速改变其发出的无功,具有较强的无功调节能力, 可为电力系统提供动态无功电源、调节系统电压,当系统电压较低、重负荷时能输出 容性无功;当系统电压较高、轻负荷时能输出感性无功,将供电电压补偿到一个合理 水平。SVC 通过动态调节无功出力,抑制波动冲击负荷运行时引起的母线电压变化, 有利于暂态电压恢复,提高系统电压稳定水平。
至直流侧使用。因此,链式 STATCOM 非真正意义上的无功“发生器”,优点是不产生
谐波及低电压时的运行特性较好。
投入电网运行的 STATCOM 容量较大,一般均采用 GTO 器件,因 GTO 是电流驱动型,
TK-SVC--高压静止型动态无功补偿装置
TK-SVC--高压静止型动态无功补偿装置产品介绍高压静止型动态无功补偿装置(简称SVC)广泛应用于高压、超高压交流输电系统和冶金、电气化铁道等工业、交流配电网中,起主要作用就是改善供电网运行条件,治理电力公害,提高输、配电系统的可靠性,抑制电压波动和闪变,减少谐波对电网造成的污染,提高功率因数补偿三相电压不平衡等。
目前世界各国普遍采用SVC来改善电网电能质量,效果好,性能指标达到国内先进水平。
图一图二TK-SVC装置主要有TCR及FC两部分组成(如上图所示).FC回路兼顾滤波及提供固定的容性无功功率Q FC,TCR回路则通过控制晶闸管的触发角α的大小来改变流过相控电抗器的电源,从而改变相控电抗器输出的感性无功Q TCR。
图二所示即为触发角α与电抗器基波电流的对应关系。
感性无功与容性相抵消,只要能做到系统无功Q=Q lod(负载所需)-Q FC+Q TCR≈0或常数,则能实现电网功率因数=常数,电压几乎不波动。
由于调节器的动态响应速度非常快,响应时间<10毫秒,即实现了无功功率的实时动态补偿。
特别对于三相交流电弧炉负载,可使其产生的电压波动与闪变被抑制到最小。
同时具有分相调节功能,使三相交流电弧炉等负荷的不平衡负载得以平衡,电网的负序分量被一直到最小。
TK-SVC阀组TK-SVC控制系统随着现代电力电子设备大功率非线性负荷大量的应用,使用电网供电质量受到严重影响,主要表现如下:◆ 功率因数低,增加电网损耗,加大生产成本,降低生产效率;◆ 产生的无功冲击引起电网电压降低,电压波动及闪变,严重时导致传动装置及保护装置无法正常工作甚至停产;◆ 导致电网三相不平衡,产生负序电流使电机转子发生振动。
◆ 产生高次谐波电流,导致电网电压畸变,是电网“隐形杀手”,能导致:◇ 电容器组谐振及谐波电流放大,使电容器过负荷或过电压,甚至烧毁;◇ 增加变压器损耗,引起变压器发热;◇ 导致电力设备发热,电机力矩不稳甚至损坏;◇ 加速电力设备绝缘老化,易击穿;◇ 降低电弧炉生产效率,增加损耗;◇ 干扰通信讯号针对以上电网污染,目前世界各国普遍采用高压静止型动态无功补偿装置(SVC),来改善电能质量。
静止型动态无功补偿(SVC)装置在轧钢上的应用
静止型动态无功补偿(SVC)装置在轧钢上的应用【摘要】通过静止型动态无功补偿(SVC)装置,可减少注入系统的谐波电流和母线电压谐波电压畸变率,改善电能质量;提高用户功率因数,减少无功损耗,增加变压器带负载能力,减少用户低功率因数罚款;抑制电压波动和闪变,改善电能质量;平衡三相负载,抑制负序,使其不误动;棒材、线材等非线负荷产生大量高次谐波电流、负序及无功冲击导致的电压波动和闪变严重影响用户及电网用电设备的安全运行,恶化了供电电网的质量,同时由于此类设备运行过程中功率因数较低,使用户遭受罚款,因此,必须按照国家电能质量有关标准的限定和供电管理部门对用户功率因数要求,采取综合治理措施。
1.引言某110KV变电所一台50MV A 110kV/10kV主变,10KV母线电压因所带棒材、高速线材精炼炉等负荷,在生产时出现电压忽高忽现象,虽说各分厂都有无功补偿FC装置,但功率因数为0.87,且存在谐波超标,为了提高功率因数,防止电压波动大经常使电机过压或低压跳闸,严重影响生产及对用户自身和其他用户造成了严重的危害,必须按照电能质量有关标准进行限定,采取综合治理措施。
2.静止型动态无功补偿Static Var Compen-sator(简称SVC)装置针对存在问题,利用现有的FC装置,决定上一套SVC,经过综合分析,决定采用技术成熟,性价比高的静止型动态无功补偿TCR+FC(SVC)装置对谐波等进行治理及兼顾无功补偿。
2.1 SVC一次主接线的配置高线10kV一套FC滤波器,含3、5、7单调谐和11次二阶高通滤波支路;棒材FC滤波器含5、7单调谐和11次二阶高通滤波支路;精炼炉有一套滤波器,含3次二阶高通滤波支路;由于功率因数不够,根据计算需新增一套滤波器,含5、7单调谐滤波支路。
根据以上配置SVC,其一次原理主接线如图1所示。
图1 SVC一次主接线2.2 SVC容量的选择2.2.1 TCR主电抗器的容量TCR容量的计算主要以满足110kV和10kV母线电压波动为主,欲将110kV 母线电压波动改善至1.5%以下,并考虑一定裕度后TCR容量取22Mvar。
svc
SVC静止型动态无功补偿装置SVC就是静止型无功补偿装置的简称, SVC属于动态无功补偿产品。
SVC静止型动态无功补偿装置一般由 FC,TCR,控制保护系统组成,其中FC由滤波电抗器和电容器组成,称为:FC 滤波器。
TCR为晶闸管控制相控电抗器。
FC 滤波器用于提供容性无功功率补偿及谐波滤波,主要为3次谐波和5次谐波。
TCR 晶闸管控制电抗器用于平衡系统中由于负载的波动所产生的感性无功功率。
Q C=Q L+Q F cos@=1Q C:无功功率值为固定Q L:感性无功功率值随负载无功的变化而反向变化Q F:负载无功功率电抗器部分SVC静止型无功补偿装置中的电抗器有两种: 干式空心滤波电抗器和干式空心并联电抗器。
干式空心滤波电抗器根据额定电感又可以分为额定电感36.1m H、额定电流103A和额定电感10.1mH、额定电流90A两种。
干式空心滤波电抗器有六组,干式空心并联电抗器有三组。
干式空心滤波电抗器中的额定电感36.1m H、额定电流103A电抗器有三组,主要为滤除5次谐波;额定电感10.1mH、额定电流90A 的电抗器有三组,主要为滤除3次谐波。
干式空心并联电抗器干式空心并联电抗器是SVC静止型无功补偿装置TCR部分中晶闸管控制相控电抗器中的电抗器,可提供可调的感性无功,平衡系统中由于负载的波动所产生的感性无功功率。
上图为一组干式空心并联电抗器的上下两部分要作用为防雨,理论上形成环流,加速电抗器的冷却。
(图为干式空心并联电抗器的接线方式)干式空心并联电抗器与母线接线依次为:AB,BC,CA.形成三角形接法,即SVC静止型无功补偿装置中的TCR接线:TCR接线干式空心滤波电抗器干式空心滤波电抗器是SVC静止型无功补偿装置FC 滤波器中的电抗器。
用于提供容性无功功率补偿及谐波滤波,主要为3次谐波和5次谐波。
干式空心滤波电抗器有六组,其中额定电感36.1m H、额定电流103A电抗器有三组,主要为滤除5次谐波;额定电感10.1mH、额定电流90A电抗器有三组,主要为滤除3次谐波。
SVC静止型无功补偿装置原理及应用
1.引言随着国民经济的发展和现代化技术的进步,电力网负荷急剧增大,对电网感性无功要求也与日惧增。
特别是如可逆式大型轧钢机、炼钢电弧炉等冲击负荷、非线性负荷容量的不断增加,加上普遍应用的电力电子和微电技术,使得电力网发生电压波形畸变,电压波动闪变和三相不平衡等,产生电能质量降低,电网功率因数降低,网络损耗增加等不良影响。
近年发展起来的静止型无功补偿装置(STATICVARCOMPENSATOR,下简称SVC)是一种快速调节无功功率的装置,已成功的应于冶金、采矿和电气化铁路等冲击性负荷的补偿上。
而晶闸管控制电抗器型(称TCR型)SVC用晶闸管控制线性电抗器实现较快、连续的无功功率调节,由于它具有反应时间快(5~20MS),运行可靠,无级补偿、分相调节,能平衡有功,适用范围广和价格便宜等优点。
TCR装置还能实现分相控制,有较好的抑制不对称负荷的能力,因而其应用最广。
尤其是在冶金行业中,使用例子也最多。
2.TCR+FC型SVC系统的组成及控制原理2.1系统组成TCR+FC型SVC系统的组成如图1所示,一般由TCR、滤波器(FC)及控制系统组成。
通过控制与电抗器串联的两个反并联晶闸管的导通角,既可以向系统输送感性无功电流,又可以向系统输送容性无功电流。
该补偿器响应时间快(小于半周波),灵活性大,而且可以连续调节无功输出,缺点是产生谐波,但加上滤波装置则可以克服。
图1TCR+FC型SVC系统的组成2.2可调控电抗器相(TCR)产生连续变化感性无功的基本原理如图2(A)所示,U为交流电压。
TH1、TH2为两个反并联晶闸管,控制这两个晶闸管在一定范围内导通,则可控制电抗器流过的电流I,I和U的基本波形如图2(B)所示。
图2可调控电抗器相(TCR)产生连续变化感性无功的基本原理α为TH1和TH2的触发角,则有I=(COSα-COSωT)I的基波电流有效值为:I=(2π-2α+SIN2α)式中:V为相电压有效值;ωL为电抗器的基波电抗(ω)。
svc简介
1.2.1静止无功补偿器的分类SVC通常包括晶闸管控制电抗器(TCR),晶闸管投切电容器(TSC),以及这两者的混合装置(TCR+TSC),或者晶闸管控制电抗器与固定电容器的混合装(TCR+FC),晶闸管控制电抗器与机械投切电容器的混合装置(TCR+MSC)等。
其中,TCR(Thyri stor Contro11ed Reactor)是晶闸管投切电抗器型静止无功补偿装置,由于单独的TC R只能吸收感性的无功功率,因此往往与并联电容器配合使用,并联电容器后,使得总的无功功率为T C R与并联电容器无功功率抵消后的净无功功率,其特点是可以连续调节补偿装置的无功功率,有谐波产生,般与T SC或FC滤波器配套使用。
TSC(Thyri stor Switched Capacitor)则是晶闸管投切电容器型静止无功补偿装置,电容器的投切开关为晶闸管,其特点是可断续调节补偿装置的无功功率,无谐波产生,可单独使用或与FC滤波器配套使用。
静止无功补偿器(SVC)是使用晶闸管来快速控制串联电抗器等效感抗的大小或者分组投切电容器组。
可以调节系统电压、降低线路损耗、增强电力系统的稳定性及提高输电线路的输电能力。
Svc装置主要用来进行无功补偿的同时实现负荷的平衡,一般情况下svc补偿装置的安装地点会选择在符合附近。
TSC型SVC采用直接补偿的方式.损耗小,但综合性价比较高.TCR型SVC 采用间接补偿的方式,能快速连续地调节无功,适应范围广,价格便宜.但主电抗的损耗比较大还有一种自饱和型电抗器目前也有应用,但它采用的是老技术.嗓声和运行损耗均较大。
磁控电抗器(Magnetically Cont~lled Reactor,简称MCR,应用在系统中代替TCR 组成SVC。
它的优点是占地少,而且在无谐波源的地方使用无需滤波器价格略低。
但它具有响应时间长、噪声太、不能分相调节抑制负序等缺点.目前还没有规模化使用。
另外,TSC型SVC在低电压系统中性价比较高,在分组较多的情况下能有效动态地补偿系统无功。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
静止型动态无功补偿装置(svc)
摘要:精练炉在冶炼过程中会产生剧烈而频繁的冲击无功功率,引起母线电压波动和闪变,同时还会产生大量的谐波电流注入电力系统,引起电压畸变,并对其它负荷产生不利影响,为了解决上述问题,需在母线上安装静态型动态无功补偿装置(SVC)。
关键词:SVC装置通用硬件组成工作原理作用
1 引言
在电力系统中,供电的质量指标,电网运行的安全可靠性和经济性是最根本的问题。
快速合理地调节电网无功功率,对交流电网的稳压和系统电压的调节,合理分配潮流及限制电网过电压有着十分重要的意义。
近年来,随着冶金行业、电气化铁道等的飞速发展,具有冲击特性的负荷诸如电弧炼钢炉,轧钢机等不断投入电网,导致电网功率因数下降,波形畸变,电压波动,产生谐波干扰。
为了确保电力系统的安全、稳定运行,可装备静止型无功功率补偿装置(SVC)。
目前,在电力系统中,SVC主要用于稳定电网电压,通常是按三相对称方式工作。
而工业用户中,SVC主要用于缓冲冲击性负荷及恢复电力网络有功平衡和无功补偿。
2 系统组成
SVC装置主要由两个部分组成:TCR部分和FC部分。
1)TCR部分主要有TCR阀组、水冷却系统、相电抗器。
TCR阀组由并联晶闸管多个串联组成,其过电压保护采用先进的BOD器件,它与其他电子器件一起构成晶闸管二次触发回路,使晶闸管免受过电压冲击而损坏。
光电转换,自动完成各高电位电子单元循检,高压光缆传递信号。
密封循环水冷却系统提供高纯水作为TCR阀的冷却介质(水一水型)。
相控电抗器是空心、干式、铝线环氧固化户外型电抗器,线性度高,噪音小,动热稳定性好,损耗小,绝缘强度高,散热好。
相当于一个可控的感性负载,通过电子调节器和反并联连接的可控硅阀的相位控制,改变补偿电抗器的电流大小,从而达到动态无功补偿的目的。
2)FC部分主要由滤波电抗器、电容器组成。
3 工作原理和作用
3.1 工作原理
TCR与FC分别并接在一条母线上,TCR为感性负载,FC为容性负载,调节器采集进线电源电压信号和电流信号,将系统的电能参数送至调节器,进行实时跟踪,当生产线开始生产时,调节器自动跟踪具有严
重冲击无功功率的负荷的工作状态,发出与冲击负荷所对应的TCR晶闸管阀六相触发脉冲,通过晶闸管阀电子单元(高电位电子板)去触发六相晶闸管阀。
不同的触发角,改变了流过TCR回路中主电抗器的电流量,从而改变了TCR回路的感性无功功率量。
通过TCR回路感性无功功率的跟随作用,使电网上的无功功率趋近于零,或趋于一定值。
下式是无功功率补偿的计算式:
ΣQ=QFC+Q负载+QTCR≈0(或某一常数)
其中:QFC为固定电容器兼滤波器的容性无功功率值(固定量)
Q负载为冲击负荷的感性无功率值(可变量)
QTCR为TCR回路的感性无功功率值(可变量)
由于晶闸管阀及电子设备的动态响应很快,即实现了动态补偿的功能。
TCR还能使三相不平衡的有功负荷得以平衡,抑制电网的负序分量。
冷却水装置分为两大部分,一部分是内水,一部分是外水,内水是把纯水经过过滤后进入阀组,每一个晶闸管有一个水套,这个水把晶闸管在高电压大电流工作下产生的热量传到冷却水装置的散热器,再由散热器的外水即冷却水把热量带走,从而达到使晶闸管散热的目的,处于稳定的工作状态。
外水通过板式换热器冷却内水,将内水温度控制
在设定范围内。
3.2 SVC装置的作用
(1)为供电系统提供连续的无功功率,恒定的功率因数,无“过补”,“欠补”现象,提高生产电力的电能质量,实现电网运行的安全可靠性和经济性。
(2)消除谐波,减少谐波电流对电网及设备的损害。
(3)响应速度快,可抑制电压波动及闪变,稳定电压。
(4)消除电压三相不平衡度。
(5)治理负序电流。
4 结语
目前,国内许多企业和研究单位加快对静止型SVC数字调节器的研制和开发,以取代调节特性和响应特性及控制精度较差的模拟调节器。
数字调节器与模拟调节器相比,具有以下优点:由于采用了数字化结构,控制精度和可靠性大大提高;控制功能更加丰富;参数调整便捷;增强了调节器的抗干扰能力。