三段式电流保护整定计算举例
2三段式电流保护的整定及计算
2三段式电流保护的整定计算1、瞬时电流速断保护整定计算原则:躲开本条线路末端最大短路电流整定计算公式:式中:Iact——继电器动作电流Kc——保护的接线系数IkBmax——最大运行方式下,保护区末端B母线处三相相间短路时,流经保护的短路电流。
K1rel——可靠系数,一般取1.2~1.3。
I1op1——保护动作电流的一次侧数值。
nTA——保护安装处电流互感器的变比。
灵敏系数校验:式中:X1——线路的单位阻抗,一般0.4Ω/KM;Xsmax——系统最大短路阻抗。
要求最小保护范围不得低于15%~20%线路全长,才允许使用。
2、限时电流速断保护整定计算原则:不超出相邻下一元件的瞬时速断保护范围。
所以保护1的限时电流速断保护的动作电流大于保护2的瞬时速断保护动作电流,且为保证在下一元件首端短路时保护动作的选择性,保护1的动作时限应该比保护2大。
故:式中:KⅡrel——限时速断保护可靠系数,一般取1.1~1.2;△t——时限级差,一般取0.5S;灵敏度校验:规程要求:3、定时限过电流保护定时限过电流保护一般是作为后备保护使用。
要求作为本线路主保护的后备以及相邻线路或元件的远后备。
动作电流按躲过最大负荷电流整定。
式中:KⅢrel——可靠系数,一般取1.15~1.25;Krel——电流继电器返回系数,一般取0.85~0.95;Kss——电动机自起动系数,一般取1.5~3.0;动作时间按阶梯原则递推。
灵敏度分别按近后备和远后备进行计算。
式中:Ikmin——保护区末端短路时,流经保护的最小短路电流。
即:最小运行方式下,两相相间短路电流。
要求:作近后备使用时,Ksen≥1.3~1.5作远后备使用时,Ksen≥1.2注意:作近后备使用时,灵敏系数校验点取本条线路最末端;作远后备使用时,灵敏系数校验点取相邻元件或线路的最末端;4、三段式电流保护整定计算实例如图所示单侧电源放射状网络,AB和BC均设有三段式电流保护。
已知:1)线路AB长20km,线路BC长30km,线路电抗每公里0.4欧姆;2)变电所B、C中变压器连接组别为Y,d11,且在变压器上装设差动保护;3)线路AB的最大传输功率为9.5MW,功率因数0.9,自起动系数取1.3;4)T1变压器归算至被保护线路电压等级的阻抗为28欧;5)系统最大电抗7.9欧,系统最小电抗4.5欧。
三段式电流保护例题
试对保护Ⅰ进行三段式电流保护整定计算
解
1 电流Ⅰ段整定计算
⑴ IⅠ =1.8KA set.1= krel · Ik.B.max =1.25* 10.5/√3 0.2+10*0.4 ⑵ 动作时间 t1 =0(s)
Ⅰ
Ⅰ
2 电流Ⅱ段整定计算
⑴
Ⅰ Ⅰ I set.2=krel
10.5/√3 * 0.2+(10+15)*0.4
Ⅰ Iset.1 = KΦ
满足要求
√3
Zs.max+z1.Lmax
EΦ
(KΦ= 2 )
10.5/√3KV √3 1.8KA= 2 · 0.2+0.4*Lmax
Lmax =6.54KM
Lmax %=6.54/10 *100%=65.4%>15%
满足要求
10.5/√3 Ⅱ Ⅱ Ⅰ Iset.1=krel*Iset.2=1.1*1.25* 0.2+(10+15)*0.4 =0.8(KA) t1 = t2 +
Ⅱ
⑶ 灵敏系数 Ksen.1 =
3 电流Ⅲ段整定计算 · kss IL.A.max = 1.2*1.5 150 ⑴ Iset.1 = Krel Kre · 0.85 * 1000 =0.32(KA)
Ⅲ Ⅲ
t = t3.max+2
▽
⑵ 动作时间 t1=t2.max
▽+
▽
⑵ 动作时间
Ⅱ
Ⅰ
t =0.5(s)
= EΦ √3 2 Zs.max.1
Ⅱ
√3 10.5/√3 = 2 0.3+10*0.4
Iset.1
Ⅱ
=1.49>1.3 满足要求
三段式电流保护整定计算实例
三段式电流保护整定计算实例假设有一台变压器,其额定容量为10MVA,额定电压为10kV/400V,接线形式为YNyn0,额定电流为1000A。
现在需要对该变压器进行三段式电流保护的整定计算。
第一步是计算额定电压下的一次电流。
根据变压器的额定容量和额定电压,可以得到一次电流的公式为:I1=S/(3×U1)其中,I1为一次电流,S为变压器的额定容量,U1为变压器的高压侧额定电压。
将数据代入计算,得到一次电流I1的数值:I1=10M/(3×10k)=333.33A第二步是计算三段式电流保护的整定值。
一般情况下,三段式电流保护根据阻抗保护和方向保护进行整定。
阻抗保护整定时,通常设置不同的电流整定值和时间延迟,将整定值和时间延迟作为参数进行计算。
根据实际情况,假设保护整定参数如下:-第一段电流整定值:300A,时间延迟:0.1s-第二段电流整定值:600A,时间延迟:0.2s-第三段电流整定值:900A,时间延迟:0.3s根据整定参数,将整定值乘以一次电流,即可得到实际整定值。
计算结果如下:-第一段整定值:0.1×333.33=33.33A-第二段整定值:0.2×333.33=66.67A-第三段整定值:0.3×333.33=100A第三步是计算方向保护的整定值。
方向保护用于判断故障方向,需要根据实际情况进行整定。
一般情况下,方向保护整定值设置为一次电流的一定百分比。
假设方向保护整定值为20%。
根据方向保护的整定值,将整定值乘以一次电流,即可得到实际整定值。
-方向保护整定值:0.2×333.33=66.67A综上所述,该变压器的三段式电流保护整定值为:-第一段整定值:33.33A,时间延迟:0.1s-第二段整定值:66.67A,时间延迟:0.2s-第三段整定值:100A,时间延迟:0.3s-方向保护整定值:66.67A需要注意的是,这只是一个示例,实际的整定计算可能涉及更多的参数和考虑因素。
三段式电流保护整定和接线
时
电
流
速
断
保
护
1 A
IK 保护范围
L1,I L2,I
0
2 B
3 C
×
l
返回
QF
QF1
LT
—
+
+
KA I
KM
—
信号
+
KS
TA
动作分析:结果与返回
QF
QF1
LT
—
+
+
KA I
KM
—
I段电流保护动作
+
KS
TA
动作过程
第I段保护的接线
线路上发生短路
电流互感器一次侧电流增大
电流互感器二次侧电流增大
当电流大于或等于I段动作 值
KA起动, KA触点闭合
KM线圈加电,KM触点闭合
KS线圈加电
在线路中某处发生短路故障时, 从故障点至电源之间所有线路上 的电流保护第Ⅲ段的测量元件均 可能动作。例如:上图所示中d短 路时,保护1~4都可能起动。为 了保证选择性,须加延时元件且 其动作时间必须相互配合。
t1Ⅲ
t
Ⅲ 2
t3Ⅲ
t4Ⅲ
t
3Ⅲ=t
Ⅲ 4
t
线的I路II段的tt12ⅢⅢ动I== II作段tt3Ⅲ2时动Ⅲ 限作时+△tt限t =下一线路
4、 接线:
与第Ⅰ段相同:仅中间继电器变为时间继电 器。
5、 小结:
• ① 限时电流速断保护的保护范围大于本线 路全长
• ② 依靠动作电流值和动作时间共同保证其 选择性
• ③ 与第Ⅰ段共同构成被保护线路的主保护, 兼作第Ⅰ段的后备保护。
段式电流保护的整定及计算
段式电流保护的整定及计算TYYGROUP system office room 【TYYUA16H-TYY-TYYYUA8Q8-2三段式电流保护的整定计算1、瞬时电流速断保护整定计算原则:躲开本条线路末端最大短路电流整定计算公式:式中:Iact——继电器动作电流Kc——保护的接线系数IkBmax——最大运行方式下,保护区末端B母线处三相相间短路时,流经保护的短路电流。
K1rel——可靠系数,一般取~。
I1op1——保护动作电流的一次侧数值。
nTA——保护安装处电流互感器的变比。
灵敏系数校验:式中:X1——线路的单位阻抗,一般Ω/KM;Xsmax——系统最大短路阻抗。
要求最小保护范围不得低于15%~20%线路全长,才允许使用。
2、限时电流速断保护整定计算原则:不超出相邻下一元件的瞬时速断保护范围。
所以保护1的限时电流速断保护的动作电流大于保护2的瞬时速断保护动作电流,且为保证在下一元件首端短路时保护动作的选择性,保护1的动作时限应该比保护2大。
故:式中:KⅡrel——限时速断保护可靠系数,一般取~;△t——时限级差,一般取;灵敏度校验:规程要求:3、定时限过电流保护定时限过电流保护一般是作为后备保护使用。
要求作为本线路主保护的后备以及相邻线路或元件的远后备。
动作电流按躲过最大负荷电流整定。
式中:KⅢrel——可靠系数,一般取~;Krel——电流继电器返回系数,一般取~;Kss——电动机自起动系数,一般取~;动作时间按阶梯原则递推。
灵敏度分别按近后备和远后备进行计算。
式中:Ikmin——保护区末端短路时,流经保护的最小短路电流。
即:最小运行方式下,两相相间短路电流。
要求:作近后备使用时,Ksen≥~作远后备使用时,Ksen≥注意:作近后备使用时,灵敏系数校验点取本条线路最末端;作远后备使用时,灵敏系数校验点取相邻元件或线路的最末端;4、三段式电流保护整定计算实例如图所示单侧电源放射状网络,AB和BC均设有三段式电流保护。
三段式电流保护整定计算实例
三段式电流保护整定计算实例:如图所示单侧电源放射状网络,AB 和BC 均设有三段式电流保护。
已知:1)线路AB 长20km ,线路BC 长30km ,线路电抗每公里欧姆;2)变电所B 、C 中变压器连接组别为Y ,d11,且在变压器上装设差动保护;3)线路AB 的最大传输功率为,功率因数,自起动系数取;4)T1变压器归算至被保护线路电压等级的阻抗为28欧;5)系统最大电抗欧,系统最小电抗欧。
试对AB 线路的保护进行整定计算并校验其灵敏度。
其中25.1=I relK ,15.1=II rel K ,15.1=III rel K ,85.0=re K整定计算:① 保护1的Ⅰ段定值计算)(1590)4.0*204.5(337)(31min .)3(max .A l X X E I s skB =+=+=)(1990159025.1)3(max ,1A I K I kB I rel I op =⨯==工程实践中,还应根据保护安装处TA 变比,折算出电流继电器的动作值,以便于设定。
按躲过变压器低压侧母线短路电流整定:选上述计算较大值为动作电流计算值.最小保护范围的校验:=满足要求②保护1的Ⅱ段限时电流速断保护与相邻线路瞬时电流速断保护配合)(105084025.12A I I op =⨯==×=1210A选上述计算较大值为动作电流计算值,动作时间。
灵敏系数校验:可见,如与相邻线路配合,将不满足要求,改为与变压器配合。
③保护1的Ⅲ段定限时过电流保护按躲过AB 线路最大负荷电流整定:)(6.3069.010353105.985.03.115.136max 1.A I K K K I L re ss III rel IIIop =⨯⨯⨯⨯⨯⨯== =动作时限按阶梯原则推。
此处假定BC 段保护最大时限为,T1上保护动作最大时限为,则该保护的动作时限为+=。
灵敏度校验:近后备时:B 母线最小短路电流:)(1160)4.0*209.7(237)(3231max .)2(min .A l X X E I s s kB =+⨯=+⨯= )5.1~3.1(78.36.30611601.)2(min ..>===III op B K sen I I K 远后备时:C 母线最小短路电流为:2.197.16.3066601.)2(min ..>===III op c k sen I I K。
三段式电流保护的整定及计算
三段式电流保护的整定及计算————————————————————————————————作者:————————————————————————————————日期:2三段式电流保护的整定计算1、瞬时电流速断保护整定计算原则:躲开本条线路末端最大短路电流整定计算公式:式中:Iact——继电器动作电流Kc——保护的接线系数IkBmax——最大运行方式下,保护区末端B母线处三相相间短路时,流经保护的短路电流。
K1rel——可靠系数,一般取1.2~1.3。
I1op1——保护动作电流的一次侧数值。
nTA——保护安装处电流互感器的变比。
灵敏系数校验:式中:X1——线路的单位阻抗,一般0.4Ω/KM;Xsmax——系统最大短路阻抗。
要求最小保护范围不得低于15%~20%线路全长,才允许使用。
2、限时电流速断保护整定计算原则:不超出相邻下一元件的瞬时速断保护范围。
所以保护1的限时电流速断保护的动作电流大于保护2的瞬时速断保护动作电流,且为保证在下一元件首端短路时保护动作的选择性,保护1的动作时限应该比保护2大。
故:式中:KⅡrel——限时速断保护可靠系数,一般取1.1~1.2;△t——时限级差,一般取0.5S;灵敏度校验:规程要求:3、定时限过电流保护定时限过电流保护一般是作为后备保护使用。
要求作为本线路主保护的后备以及相邻线路或元件的远后备。
动作电流按躲过最大负荷电流整定。
式中:KⅢrel——可靠系数,一般取1.15~1.25;Krel——电流继电器返回系数,一般取0.85~0.95;Kss——电动机自起动系数,一般取1.5~3.0;动作时间按阶梯原则递推。
灵敏度分别按近后备和远后备进行计算。
式中:Ikmin——保护区末端短路时,流经保护的最小短路电流。
即:最小运行方式下,两相相间短路电流。
要求:作近后备使用时,Ksen≥1.3~1.5作远后备使用时,Ksen≥1.2注意:作近后备使用时,灵敏系数校验点取本条线路最末端;作远后备使用时,灵敏系数校验点取相邻元件或线路的最末端;4、三段式电流保护整定计算实例如图所示单侧电源放射状网络,AB和BC均设有三段式电流保护。
三段式电流保护的整定及计算
2三段式电流保护的整定计算1、瞬时电流速断保护整定计算原则:躲开本条线路末端最大短路电流整定计算公式:式中:Iact——继电器动作电流Kc——保护的接线系数IkBmax——最大运行方式下,保护区末端B母线处三相相间短路时,流经保护的短路电流。
K1rel——可靠系数,一般取1.2~1.3。
I1op1——保护动作电流的一次侧数值。
nTA——保护安装处电流互感器的变比。
灵敏系数校验:式中:X1——线路的单位阻抗,一般0.4Ω/KM;Xsmax——系统最大短路阻抗。
要求最小保护范围不得低于15%~20%线路全长,才允许使用。
2、限时电流速断保护整定计算原则:不超出相邻下一元件的瞬时速断保护范围。
所以保护1的限时电流速断保护的动作电流大于保护2的瞬时速断保护动作电流,且为保证在下一元件首端短路时保护动作的选择性,保护1的动作时限应该比保护2大。
故:式中:KⅡrel——限时速断保护可靠系数,一般取1.1~1.2;△t——时限级差,一般取0.5S;灵敏度校验:规程要求:3、定时限过电流保护定时限过电流保护一般是作为后备保护使用。
要求作为本线路主保护的后备以及相邻线路或元件的远后备。
动作电流按躲过最大负荷电流整定。
式中:KⅢrel——可靠系数,一般取1.15~1.25;Krel——电流继电器返回系数,一般取0.85~0.95;Kss——电动机自起动系数,一般取1.5~3.0;动作时间按阶梯原则递推。
灵敏度分别按近后备和远后备进行计算。
式中:Ikmin——保护区末端短路时,流经保护的最小短路电流。
即:最小运行方式下,两相相间短路电流。
要求:作近后备使用时,Ksen≥1.3~1.5作远后备使用时,Ksen≥1.2注意:作近后备使用时,灵敏系数校验点取本条线路最末端;作远后备使用时,灵敏系数校验点取相邻元件或线路的最末端;4、三段式电流保护整定计算实例如图所示单侧电源放射状网络,AB和BC均设有三段式电流保护。
已知:1)线路AB长20km,线路BC长30km,线路电抗每公里0.4欧姆;2)变电所B、C中变压器连接组别为Y,d11,且在变压器上装设差动保护;3)线路AB的最大传输功率为9.5MW,功率因数0.9,自起动系数取1.3;4)T1变压器归算至被保护线路电压等级的阻抗为28欧;5)系统最大电抗7.9欧,系统最小电抗4.5欧。
三段式电流保护整定计算实例
三段式电流保护整定计算实例假设有一条长度为100公里的输电线路,额定电压为110千伏,额定电流为500安培。
我们需要对该线路进行三段式电流保护的整定计算,以便在出现过电流时及时切断故障电路。
首先,我们需要计算出三段式电流保护的三个整定值:最低电流保护的整定电流(I1)、中电流保护的整定电流(I2)和最高电流保护的整定电流(I3)。
1.最低电流保护(I1)的整定电流:根据输电线路的额定电流和距离,我们可以使用下式来计算I1:I1=0.25*Ie*(1+K)其中,Ie为额定电流,K为标尺因数,K通常取值为0.22.中电流保护(I2)的整定电流:根据输电线路的额定电流和距离,我们可以使用下式来计算I2:I2=I1+(Ie-I1)*(1+K)其中,Ie为额定电流,K为标尺因数,K通常取值为0.23.最高电流保护(I3)的整定电流:根据输电线路的额定电流和距离,我们可以使用下式来计算I3:I3=I1+(Ie-I1)*(1+2*K)其中,Ie为额定电流,K为标尺因数,K通常取值为0.2根据上述计算公式,我们可以进行具体的计算:1.计算最低电流保护的整定电流(I1):I1=0.25*500*(1+0.2)=125安培2.计算中电流保护的整定电流(I2):I2=125+(500-125)*(1+0.2)=325安培3.计算最高电流保护的整定电流(I3):I3=125+(500-125)*(1+2*0.2)=525安培根据上述计算结果,我们可以将最低电流保护的整定电流(I1)设置为125安培,中电流保护的整定电流(I2)设置为325安培,最高电流保护的整定电流(I3)设置为525安培。
这样,在发生过电流故障时,三段式电流保护装置将根据整定电流来判断故障是否超过阈值,并做出相应的切除动作。
总结起来,三段式电流保护的整定计算包括计算最低电流保护的整定电流(I1)、中电流保护的整定电流(I2)和最高电流保护的整定电流(I3)。
三段式电流保护整定计算实例
三段式电流保护整定计算实例:如图所示单侧电源放射状网络,AB 和BC 均设有三段式电流保护。
已知:1)线路AB 长20km ,线路BC 长30km ,线路电抗每公里0.4欧姆;2)变电所B 、C 中变压器连接组别为Y ,d11,且在变压器上装设差动保护;3)线路AB 的最大传输功率为9.5MW ,功率因数0.9,自起动系数取1.3;4)T1变压器归算至被保护线路电压等级的阻抗为28欧;5)系统最大电抗7.9欧,系统最小电抗5.4欧。
试对AB 线路的保护进行整定计算并校验其灵敏度。
其中25.1=I rel K ,15.1=II rel K ,15.1=IIIrel K ,85.0=re K整定计算:① 保护1的Ⅰ段定值计算)(1590)4.0*204.5(337)(31min .)3(max .A l X X E I s skB =+=+=)(1990159025.1)3(max ,1A I K I kB I rel I op =⨯==工程实践中,还应根据保护安装处TA 变比,折算出电流继电器的动作值,以便于设定。
按躲过变压器低压侧母线短路电流整定:选上述计算较大值为动作电流计算值.最小保护范围的校验:=3.49KM满足要求②保护1的Ⅱ段限时电流速断保护与相邻线路瞬时电流速断保护配合)(105084025.12A I I op =⨯= =1.15×=1210A选上述计算较大值为动作电流计算值,动作时间0.5S 。
灵敏系数校验:可见,如与相邻线路配合,将不满足要求,改为与变压器配合。
③保护1的Ⅲ段定限时过电流保护按躲过AB 线路最大负荷电流整定:)(6.3069.010353105.985.03.115.136max 1.A I K K K I L re ss III rel IIIop =⨯⨯⨯⨯⨯⨯== =501.8A动作时限按阶梯原则推。
此处假定BC 段保护最大时限为1.5S ,T1上保护动作最大时限为0.5S ,则该保护的动作时限为1.5+0.5=2.0S 。
三段式继电保护整定公式
1、电流Ⅰ段保护(无时限电流速断保护)整定原则:保护装置的起动电流按躲开下一条线路出口处通过保护装置的最大短路电流(最大运行方式下的三相短路电流)来整定。
1)动作电流值:id jx k dz K I K K I max 1)3(1⨯⨯= 式中 k K — 可靠系数,取1.2~1.3max 1)3(d I — 最大运行方式下的三相短路电流jx K — 接线系数,均为1i K — 电流互感器变比动作时限t =0s2)电流速断保护范围的校验l ′=2min k 1min k idzj 1min 3333/2I I K I I k -⨯⨯-×i dzj 2min k 233K I I ⨯式中l ′— 被保护线路动作范围对应长度2min k 3I —被保护线路末端最小三相短路电流1min 3k I —被保护线路始端最小三相短路电流2、电流Ⅱ段保护(带时限电流速断保护)整定原则:保护装置的起动电流应按躲过下一线路电流速断保护范围末端发生短路时最大短路电流(或躲过下一线路电流Ⅰ段的整定值)来整定。
1)动作电流值:id jx k dz K I K K I max 2)3(2⨯⨯= 式中 k K — 可靠系数,取1.1~1.2max 2)3(d I — 相邻元件末端最大三相短路电流jx K — 接线系数,均为1i K — 电流互感器变比动作时限t =0.5s2)灵敏系数校验K lm = idz k K I I ⨯22min 3≥1.3~1.5 3、电流Ⅲ段保护(定时限过电流保护)整定原则:按躲过本线路最大负荷电流来整定。
同时保证在外部故障切除后,保护装置能够返回。
1)动作电流值:if l jx k dz K K I K K I ⨯⨯⨯=max '3 式中 k K — 可靠系数,取2~5 max 1)3(d I — 最大运行方式下的三相短路电流jx K — 接线系数,均为1 i K — 电流互感器变比 max 'l I — 被保护线路最大计算负荷电流 f K — 返回系数,电子式保护器取0.952)灵敏系数校验 K lm = i dz k K I I ⨯32min 3≥1.15~1.25 式中 2min k 3I —被保护线路末端最小三相短路电流。
三段式电流保护的整定与接线
13+0.4×80
=1.475(KA)
Iact.1= 1.2 ×1.475=1.77(KA)
•灵敏度校验:(略)
二、即时电流速断保护
电流保护的第Ⅱ段
• 1、 要求 •① 任何情况下能保护线路全长,并具 有足够的灵敏性 •② 在满足要求①的前提下,力求动作 时限最小。 因动作带有延时,故称限时电流速断保护。
1
L1
2
L2 C
3
L3 D
2、 A 整定值的计算和灵敏性校验 B
80km 80km 80km 为保证选择性及最小动作时限,首先考虑其保护范围不 超出下一条线路第Ⅰ段的保护范围。即整定值与相邻 分析 线路第Ⅰ段配合。 • 整定原则:躲过下一线路第Ⅰ段整定电流 段电流动作值 =可靠系数 乘 下 • 动作电流:第II II I I K I 一线路的第 I 段动作值 act . 1 rel act . 2
Krel:范围1.1~1.2,常取1.1 , 段动作电流 II I 第 II段动作时间 =下一线路的第I段 t t t 1 2 • 动作时间: 动作时间 加 0.5s (实际就是0.5s) Δ t:范围(0.3—0.6),常取0.5s,称时间阶梯. • 灵敏性: Ksen≥1.3~1.5,一般≥1.3即可 Ksen=线路末的最小短路电流/第II段动作电流
66.395
= 1.2 ×
13+0.4×240
66.395 109
= = =
1.2 ×
45
= 1.2 ×
77
= 1.2 ×
1.2 × 1.475
= 1.2 × 0.862 = 1.034(KA)
= 1.2 × 0.609 = 0.731(KA)
2三段式电流保护的整定及计算
2三段式电流保护的整定计算1、瞬时电流速断保护整定计算原则:躲开本条线路末端最大短路电流整定计算公式:式中:Iact——继电器动作电流Kc——保护的接线系数IkBmax——最大运行方式下,保护区末端B母线处三相相间短路时,流经保护的短路电流。
K1rel——可靠系数,一般取1.2~1.3。
页脚内容1I1op1——保护动作电流的一次侧数值。
nTA——保护安装处电流互感器的变比。
灵敏系数校验:式中:X1——线路的单位阻抗,一般0.4Ω/KM;Xsmax——系统最大短路阻抗。
要求最小保护范围不得低于15%~20%线路全长,才允许使用。
2、限时电流速断保护整定计算原则:不超出相邻下一元件的瞬时速断保护范围。
所以保护1的限时电流速断保护的动作页脚内容2电流大于保护2的瞬时速断保护动作电流,且为保证在下一元件首端短路时保护动作的选择性,保护1的动作时限应该比保护2大。
故:式中:KⅡrel——限时速断保护可靠系数,一般取1.1~1.2;△t——时限级差,一般取0.5S;灵敏度校验:规程要求:3、定时限过电流保护定时限过电流保护一般是作为后备保护使用。
要求作为本线路主保护的后备以及相邻线路或元件的远后备。
动作电流按躲过最大负荷电流整定。
式中:KⅢrel——可靠系数,一般取1.15~1.25;页脚内容3Krel——电流继电器返回系数,一般取0.85~0.95;Kss——电动机自起动系数,一般取1.5~3.0;动作时间按阶梯原则递推。
灵敏度分别按近后备和远后备进行计算。
式中:Ikmin——保护区末端短路时,流经保护的最小短路电流。
即:最小运行方式下,两相相间短路电流。
要求:作近后备使用时,Ksen≥1.3~1.5作远后备使用时,Ksen≥1.2注意:作近后备使用时,灵敏系数校验点取本条线路最末端;作远后备使用时,灵敏系数校验点取相邻元件或线路的最末端;4、三段式电流保护整定计算实例如图所示单侧电源放射状网络,AB和BC均设有三段式电流保护。
最新三段电流保护整定实例教学讲义PPT
六腑-大肠
大肠 为“传导之官”。与“肺”相表里(肺的肃降),肾主二便(肾
的气化功能),大肠接受经过小肠泌别清浊后所剩下的食物残 渣,再吸收其中多余的水液,形成粪便,传送至大肠末端, 经肛门而排出体外。
功能:主传化糟粕
病理表现:大肠传导糟粕功能失常,出现大便秘结、 梗阻或泄泻;当热蕴结大肠时出现腹痛
中医基础知识-
六腑、奇恒之府、脏与腑 之间的功能
驻马店市中医院
六腑 六腑:胆、小肠、胃、大肠、膀胱、三焦的总称
“腑”,古称府,有库府的意思。五脏为阴,六腑为阳。
六腑共同生理功能:受盛和传化水谷
即受纳、腐熟水谷,泌别清浊,传化精华,将糟粕排出体外,而不使 之存留。所以六腑以和降通畅为顺。
六腑的生理特性: “泻而不藏”、 “实而不能满”
三段电流保护整定实例
如下图所示网络,试对保护1进行电流速断,限时电 流速断和定时限过电流保护整定计算(起动电流,动作时 限和灵敏系数),并画出时限特性曲线。(计算电压取 115KV)。
解: 1、对保护1进行电流速断保护的整定计算
(1)起动电流
I' op 1
Kr' elId (3 B )ma=x1.33780=4914
2.主决断 决断属于思维的范畴。 胆主决断,是指胆具有判断事物,并作出决定的作用。
胆的这一功能对防御和消除某些精神刺激的不良影响,以维持和控制气血的正常运行 , 确保各脏腑之间的协调关系具有重要的作用。肝胆相互依附,互为表里,肝主谋虑, 胆主决断,所以肝胆的相互协调,共同调节着精神思维活动的正常进行。
尿液贮存于膀胱,当膀胱内的尿液达到一定量的时候,通过肾 的气化作用,使膀胱开合有度,则尿液可以及时地从溺窍排出
六腑-三焦
三段式电流保护计算例题
l 求:L1三段式电流保护的动作 电流、动作时限、校验 灵敏度
解:1.短路电流计算
K1点短路:
( 3) ( 1 )最大运行方式: IK 1 . max
Es 115/ 3 0.707KA X s. min X 1 LAB 62 0.4 80 Es 3 3 115/ 3 0.504KA 2 X s.max X 1 LAB 2 82 0.4 80
保护的动作时间整定:
瞬时保护动作时间: t 0
限时速段保护的动作时 间:
tA tB t tB tC t 0 0.5 0.5s
A
t 0.5 0.5 1s
定时限速段保护的动作 时间:
tA tB t 1.5 0.5 2 s
( 2) (2)最小运行方式: IK 1 . min
K 2点短路:
( 3) ( 1 )最大运行方式: IK 2 . max
Es 115/ 3 0.562KA X s. min X 1 LAC 62 0.4 140 Es 3 3 115/ 3 0.319KA 2 X s.max X 1 LAC 2 82 0.4 140
L1的第I段保护灵敏性: K sen I K 1. min 0.504 1.3(灵敏性不满足要求) I act.A 0.803
措施:改变配合(让L1的II段保护与L2的II段保护配合)
L2的第I段保护:
I act K I KA .B re1 act .C 1.1 0.226 0.248
A
( 2) (2)最小运行方式: IK 2 . min
三段式电流保护整定计算举例
II
3)校验灵敏度 K s
I k 1 . m in I o p .1
II
2
3
1100 2 1 .3 9 1 .3 6 8 6 .4
灵敏度满足要求。
(4)对电流保护III段,即定时限过电流保护进行整定计算 1)动作电流
I l . m ax Pm ax 3U w . m in co s 9 10
6
3 0 .9 5 3 5 0 .9
174 A
I op .1
III
K rel K ss K re
III
I l .m ax
1.2 1.3 0.85
174 320 A
I opr .1
III
I op .1 K TA
III
K con
III
320 300 5
1 5.3 A
I o p .1 K rel I k 1 . m ax 1 .2 1 3 1 0 1 5 7 2 A
I I
3
I o p r .1 K c o n
I
I o p .1 K TA
I
1
1572 300 5
2 6 .2 A
2)计算保护范围、校验灵敏度
I op
I
E X s . m ax X 1 L m ax
三段式电流保护整定计算举例
如图所示,线路L1、L2上均配置有三段式电流保护。 已知:系统在最大、最小运行方式下的系统电抗分别为 X s . m ax 6.3 , X s .m in 9.4 ;线路L1、L2的长度分别为L1=25KM , L2=62KM ; 线路每公里正序电抗为X1=0.4Ω; III t op.2= 2.5 s ;线路L-1的最 保护2中定时限过电流保护的动作时限为 cos 大负荷功率为9MW, 0.9 , T A 300 ,电动机自起动系 K 5 数 K ss 1 .3 。 试对线路L-1上配置的三段式电流保护进行整定计算。
三段电流保护整定计算
三段电流保护整定计算电流保护整定是电力系统保护中的一个重要环节,它能够对电流异常情况进行检测和保护。
本文将分三段来介绍三段电流保护整定计算的基础知识、原理和方法。
第一段:电流保护整定的基础知识电流保护的主要目的是在电力系统中发生故障或异常情况时及时切断故障电流,以保护设备和系统的安全运行。
电流保护可以分为过流保护、欠流保护和差动保护等。
其中,过流保护是最常用的一种电流保护方式。
过流保护主要根据电流的大小和时间进行判断和动作。
当电流超过一定值且持续时间超过一定时间,则保护动作。
电流保护整定就是确定电流保护动作的触发值。
电流保护整定通常分为三段,即长延时段、短延时段和瞬时动作段。
三段的整定计算旨在保证过电流保护对各种类型电流异常情况的响应速度和动作准确性,以实现系统的可靠保护。
第二段:电流保护整定的原理和方法电流保护整定的基本原理是根据电流的变化规律来确定动作阈值。
一般而言,电流保护对不同类型的电流异常情况有不同的保护动作要求,如对极短暂的短路电流故障要求快速触发和切除,对过电流保护要求延时触发并且有较大的容限。
因此,电流保护整定需要根据系统的特点和保护要求来确定不同段的动作阈值和延时时间。
电流保护整定的方法主要基于经验和试验,常见的方法有二次开入量法、准动特性法和时限特性法等。
二次开入量法是最常用的一种方法,它根据系统的额定电流和故障电流的比值来确定动作式样和延时时间。
准动特性法是根据电流的变化速率和持续时间来确定动作阈值和延时时间,它能够更好地区分短时故障和长时故障。
时限特性法是根据故障的距离和保护物理量来确定动作时间,它适用于差动保护的整定。
第三段:电流保护整定计算实例为了更好地理解电流保护整定的计算过程,我们以一台变压器的过电流保护为例进行说明。
假设变压器的额定电流为100A,瞬时动作电流为2倍额定电流,长延时动作电流为1.5倍额定电流,短延时动作电流为1.2倍额定电流。
根据经验,长延时时间通常为10s,短延时时间为0.5s。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
I o p .1 K rel I o p .2 1 .1 6 2 4 6 8 6 .4 A
II II I
I o p r .1 K co n
II
I o p .1 K TA
II
1
6 8 6 .4 300 5
1 1 .4 A
2)动作时限
t o p .1 0 .5 s
解:(1) 选择短路点并计算最大、最小短路电流 K1点短路时的三相短路电流:
最大运行方式下: 最小运行方式下:
I k1
I k1
3
3
37000
6 .3 0 .4 2 5
37000
1310 A 3
1100 A 3
9 .4 0 .4 2 5
解:(1) 选择短路点并计算最大、最小短路电流
L m in
L1 1 0 0 %
3 .8 9 25
1 0 0 % 1 5 .6 % 1 5 % 灵敏度
满足要求。
(3)对电流保护II段,即限时电流速断保护进行整定计算 1)动作电流
I o p .2 K rel I k 2 . m ax 1 .2 5 2 0 6 2 4 A
I o p .1 K rel I k 1 . m ax 1 .2 1 3 1 0 1 5 7 2 A
I I
3
I o p r .1 K c o n
I
I o p .1 K TA
I
1
1572 300 5
2 6 .2 A
2)计算保护范围、校验灵敏度
I op
I
E X s . m ax X 1 L m ax
6
3 0 .9 5 3 5 0 .9
174 A
I op .1
III
K rel K ss K re
III
I l .m ax
1.2 1.3 0.85
74 320 A
I opr .1
III
I op .1 K TA
III
K con
III
320 300 5
1 5.3 A
Ks I k 2 . m in I o p .1
III
2
3
483 2 1 .3 1 .2 5 320
灵敏度满足要求。
,
1 0 0 % 6 3 .6 % 5 0 %
2 X s . m in X 1 L m in
L m in
1 3 E X s . m in 2 II X1 op
3 1 3 37 10 0.4 2 1572
3
9.4 3.89 K M
2)动作时限 t op .1 t op .2 t 2 .5 0 .5 3 s
3)校验灵敏度
作为本线路的近后备保护时:
Ks I k 1 . m in I o p .1
III
2
3
1100 2 2 .9 8 1 .5 320
灵敏度满足要求。 作为相邻线路远后备保护时:
, 1 0 .4 37 103 1572 3 6 .3 1 5 .9 K M
L m ax
1 E I X s . m ax X 1 I op
L m ax
I op
I
L1 1 0 0 %
3 E
1 5 .9 25
II
II
3)校验灵敏度 K s
I k 1 . m in I o p .1
II
2
3
1100 2 1 .3 9 1 .3 6 8 6 .4
灵敏度满足要求。
(4)对电流保护III段,即定时限过电流保护进行整定计算 1)动作电流
I l . m ax Pm ax 3U w . m in co s 9 10
K2点短路时的三相短路电流:
最大运行方式下:
Ik2
3
37000 6.3 0.4 25 62 3
520 A
最小运行方式下:
Ik2
3
37000 9 .4 0 .4 2 5 6 2 3
483 A
(2)对电流保护I段,即瞬时电流速断保护进行整定 计算 1)动作电流
三段式电流保护整定计算举例
如图所示,线路L1、L2上均配置有三段式电流保护。 已知:系统在最大、最小运行方式下的系统电抗分别为 X s . m ax 6.3 , X s .m in 9.4 ;线路L1、L2的长度分别为L1=25KM , L2=62KM ; 线路每公里正序电抗为X1=0.4Ω; III t op.2= 2.5 s ;线路L-1的最 保护2中定时限过电流保护的动作时限为 cos 大负荷功率为9MW, 0.9 , T A 300 ,电动机自起动系 K 5 数 K ss 1 .3 。 试对线路L-1上配置的三段式电流保护进行整定计算。