物理学教程 下册 马文蔚
物理学(第五版)下册_马文蔚等改编(东南大学)__答案
第九章振动1、设一物体沿x 轴作谐振动的方程为0.10cos(2)4x t ππ=+,式中x ,t 的单位分别为m ,s .试求:(1)振幅,周期,频率和初相)cos(ϕω+=t A x ;(2)0.5t s =时,物体的位移、速度和加速度.解:(1)谐振动的标准方程为,比较题中所给方程和标准方程,知振幅m A 10.0=,角频率2/rad sωπ=,初相4πϕ=.由此,周期为12==ωπTs 频12Hz ωνπ==率为(2)1=t s 时,物体位移m m x21007.7)45.02cos(10.0)42cos(10.0-⨯-=+⨯=+=ππππ速度s m s m t dt dx v /44.0/)45.02sin(2.0)42sin(2.0=+⨯-=+-==ππππππ加速度2222/28/)45.02cos(4)42sin(4s m s m t dt dv a =+⨯-=+-==ππππππ2、有一弹簧,当其下端挂一质量为m 的物体时,伸长量为9.8×10-2m 。
若使物体上、下振动,并规定向上为正方向。
(1)当t=0时,物体在平衡位置下方4.0×10-2m 处,由静止开始向上运动,求运动方程。
(2)当t=0时,物体在平衡位置并处以0.2m ·s -1的速度向下运动,求运动方程。
解:(1)根据题给的条件,20100.4-⨯-=x m, 00=v (题取向上为正方向,且平衡位置处为原点)且2100.4-⨯=A m ,其旋转矢量应为如图9-4-1图位置,所以π0=ϕ。
又mk=ω ,而 0kx mg=,所以x g m k = ,108.98.92⨯=-ω所以谐振动方程:)π10cos(100.42+⨯=-t x m(2)据题意,0=t 时,00=x ,6.00-=v m.s 1-,其旋转矢量应为如图9-4-2图位置则得222222102102.00)(-⨯=+=+=ωv x A m2π0=ϕ 9-4-1图ϕ∆xMM 'O9-5-1图(0=x 的投影有上、下两个矢量,但0v 为负值,故只能选上面的OM 矢量),所以谐振动方程为)2π10cos(100.42+⨯=-t xm 。
马文蔚大学物理下册课后习题答案
马文蔚大学物理下册课后习题答案【篇一:大学物理马文蔚第五版下册第九章到第十一章课后答案】一个质点作简谐运动,振幅为a,在起始时刻质点的位移为?动,代表此简谐运动的旋转矢量为()a,且向x 轴正方向运2题9-1图分析与解(b)图中旋转矢量的矢端在x 轴上投影点的位移为-a/2,且投影点的运动方向指向ox 轴正向,即其速度的x分量大于零,故满足题意.因而正确答案为(b). 9-2 已知某简谐运动的振动曲线如图(a)所示,则此简谐运动的运动方程为()22?2??2?a?x题9-2图9-3 两个同周期简谐运动曲线如图(a)所示, x1 的相位比x2 的相位()分析与解由振动曲线图作出相应的旋转矢量图(b)即可得到答案为(b).题9-3图(a) v (b)v (c)2v (d)4v 21222分析与解质点作简谐运动的动能表式为ek?m?asin??t???,可见其周期为简谐2分析与解由振动曲线可以知道,这是两个同振动方向、同频率简谐运动,它们的相位差a于这样两个简谐运动,可用旋转矢量法,如图(b)很方便求得合运动方程为x1?cos?t.因2是?(即反相位).运动方程分别为x1?acos?t和x2?而正确答案为(d).题9-5图题9-6 图振子的速度和加速度分别为x?t、v?t及a?t图如图所示.分析可采用比较法求解.将已知的简谐运动方程与简谐运动方程的一般形式??t???作比较,即可求得各特征量.运用与上题相同的处理方法,写出位移、速度、x?acos加速度的表达式,代入t值后,即可求得结果.(2)t?2s时的位移、速度、加速度分别为 ?1证货轮处于平衡状态时[图(a)],浮力大小为f =mg.当船上下作微小振动时,取货轮处于力平衡时的质心位置为坐标原点o,竖直向下为x 轴正向,如图(b)所示.则当货轮向下偏移x 位移时,受合外力为?f?p?f?其中f?为此时货轮所受浮力,其方向向上,大小为f??f??gsx?mg??gsx题9-8图则货轮所受合外力为?f?p?f????gsx??kx式中k??gs是一常数.这表明货轮在其平衡位置上下所作的微小振动是简谐运动.由2?f?mdx/dt可得货轮运动的微分方程为 22d2x/d2t??gsx/m?0 令???gs/m,可得其振动周期为9-9 设地球是一个半径为r 的均匀球体,密度??5.5?10kg?m.现假定沿直径凿通一条隧道,若有一质量为m 的质点在此隧道内作无摩擦运动.(1)证明此质点的运动是简谐运动;(2)计算其周期.3?3题9-9图分析证明方法与上题相似.分析质点在隧道内运动时的受力特征即可.证(1)取图所示坐标.当质量为m 的质点位于x处时,它受地球的引力为【篇二:大学物理_物理学下册_马文蔚_第五版_答案】物体沿x轴作谐振动的方程为x?0.10cos(2?t??),式中x,t的单位分别为m,s.试求:4(2)t?0.5s时,物体的位移、速度和加速度. acos(?t??);(1)振幅,周期,频率和初相x?解:(1)谐振动的标准方程为,比较题中所给方程和标准方程,知振幅a?0.10m,角频率周期为t,初???4.由此,?2???1s 频????1hz率为2?(2)t?1s时,?)?0.10cos(2??0.5?)m??7.07?10?2m 44物体位移x?0.10cos(2?速度v???dx????0.2?sin(2?t?)??0.2?sin(2??0.5?)m/s?0.44m/s dt44dv??加速度a???4?2sin(2?t?)??4?2cos(2??0.5?)m/s2?28m/s2dt44-2-1-2??4.0?10?2 m, v0?0(题取向上为正方向,且平衡位置处为原km,而 mg又???kx0,kg?所以mx0,???29.8?109-4-1图所以谐振动方程:(2)据题意,得t?0时,x0?0,v0??0.6 m.s?1,其旋转矢量应为如图9-4-2图位置则v00.22a?x?()?0?2?2?10?2m?10222?0?(x?0的投影有上、下两个om矢量,但v0为负值,故只能选上面的om矢量),所以谐振动方程为x?4.0?10?2cos(10t?)m。
物理学教程(二)下册马文蔚_答案(第二版)9—13
第十一章 恒定磁场11-1 两根长度相同的细导线分别多层密绕在半径为R 和r 的两个长直圆筒上形成两个螺线管,两个螺线管的长度相同,R =2r ,螺线管通过的电流相同为I ,螺线管中的磁感强度大小r R B B 、满足( )(A ) r R B B 2= (B ) r R B B = (C ) r R B B =2 (D )r R B B 4= 分析与解 在两根通过电流相同的螺线管中,磁感强度大小与螺线管线圈单位长度的匝数成正比.根据题意,用两根长度相同的细导线绕成的线圈单位长度的匝数之比21==R r n n r R 因而正确答案为(C ).11-2 一个半径为r 的半球面如图放在均匀磁场中,通过半球面的磁通量 为( )(A )B r 2π2 (B ) B r 2π(C )αB r cos π22 (D ) αB r cos π2题 11-2 图分析与解 作半径为r 的圆S ′与半球面构成一闭合曲面,根据磁场的高斯定理,磁感线是闭合曲线,闭合曲面的磁通量为零,即穿进半球面S 的磁通量等于穿出圆面S ′的磁通量;S B ⋅=m Φ.因而正确答案为(D ). 11-3 下列说法正确的是( )(A ) 闭合回路上各点磁感强度都为零时,回路内一定没有电流穿过(B ) 闭合回路上各点磁感强度都为零时,回路内穿过电流的代数和必定为零(C ) 磁感强度沿闭合回路的积分为零时,回路上各点的磁感强度必定为零(D ) 磁感强度沿闭合回路的积分不为零时,回路上任意一点的磁感强度都不可能为零分析与解 由磁场中的安培环路定律,磁感强度沿闭合回路的积分为零时,回路上各点的磁感强度不一定为零;闭合回路上各点磁感强度为零时,穿过回路的电流代数和必定为零.因而正确答案为(B ).11-4 在图(a)和(b)中各有一半径相同的圆形回路L1 、L2 ,圆周内有电流I1 、I2 ,其分布相同,且均在真空中,但在(b)图中L2 回路外有电流I3 ,P 1 、P 2 为两圆形回路上的对应点,则( )(A ) ⎰⎰⋅=⋅21L L d d l B l B ,21P P B B = (B ) ⎰⎰⋅≠⋅21L L d d l B l B ,21P P B B = (C ) ⎰⎰⋅=⋅21L L d d l B l B ,21P P B B ≠ (D ) ⎰⎰⋅≠⋅21L L d d l B l B ,21P P B B ≠题 11-4 图分析与解 由磁场中的安培环路定律,积分回路外的电流不会影响磁感强度沿回路的积分;但同样会改变回路上各点的磁场分布.因而正确答案为(C ). 11-5 半径为R 的圆柱形无限长载流直导体置于均匀无限大磁介质之中,若导体中流过的恒定电流为I ,磁介质的相对磁导率为μr (μr<1),则磁介质内的磁化强度为( )(A )()r I μr π2/1-- (B ) ()r I μr π2/1-(C ) r I μr π2/- (D ) r μI r π2/分析与解 利用安培环路定理可先求出磁介质中的磁场强度,再由M =(μr-1)H 求得磁介质内的磁化强度,因而正确答案为(B ).11-6 北京正负电子对撞机的储存环是周长为240 m 的近似圆形轨道,当环中电子流强度为8 mA 时,在整个环中有多少电子在运行? 已知电子的速率接近光速.分析 一个电子绕存储环近似以光速运动时,对电流的贡献为c I e I /Δ=,因而由lNec I =,可解出环中的电子数. 解 通过分析结果可得环中的电子数 10104⨯==ecIl N 11-7 已知铜的摩尔质量M =63.75 g·mol -1 ,密度ρ =8.9 g · cm -3 ,在铜导线里,假设每一个铜原子贡献出一个自由电子,(1)为了技术上的安全,铜线内最大电流密度26.0A mm m j -=⋅ ,求此时铜线内电子的漂移速率v d ;(2) 在室温下电子热运动的平均速率是电子漂移速率v d 的多少倍? 分析 一个铜原子的质量A N M m /=,其中N A 为阿伏伽德罗常数,由铜的密度ρ 可以推算出铜的原子数密度m ρn /=根据假设,每个铜原子贡献出一个自由电子,其电荷为e ,电流密度d m ne j v = .从而可解得电子的漂移速率v d .将电子气视为理想气体,根据气体动理论,电子热运动的平均速率em kT π8=v 其中k 为玻耳兹曼常量,m e 为电子质量.从而可解得电子的平均速率与漂移速率的关系.解 (1) 铜导线单位体积的原子数为M ρN n A /=电流密度为j m 时铜线内电子的漂移速率14A s m 1046.4--⋅⨯===eN M j ne j m m d ρv (2) 室温下(T =300 K)电子热运动的平均速率与电子漂移速率之比为81042.2π81⨯≈=ed d m kT v v v 室温下电子热运动的平均速率远大于电子在恒定电场中的定向漂移速率.电子实际的运动是无规热运动和沿电场相反方向的漂移运动的叠加.考虑到电子的漂移速率很小,电信号的信息载体显然不会是定向漂移的电子.实验证明电信号是通过电磁波以光速传递的.11-8 有两个同轴导体圆柱面,它们的长度均为20 m ,内圆柱面的半径为3.0 mm ,外圆柱面的半径为9.0 mm.若两圆柱面之间有10 μA 电流沿径向流过,求通过半径为6.0 mm 的圆柱面上的电流密度.题 11-8 图分析 如图所示是同轴柱面的横截面,电流密度j 对中心轴对称分布.根据 恒定电流的连续性,在两个同轴导体之间的任意一个半径为r 的同轴圆柱面上流过的电流I 都相等,因此可得rlI j π2= 解 由分析可知,在半径r =6.0 mm 的圆柱面上的电流密度2m A μ3.13π2-⋅==rlI j 11-9 如图所示,已知地球北极地磁场磁感强度B 的大小为6.0×10-5T .如设想此地磁场是由地球赤道上一圆电流所激发的,此电流有多大? 流向如何?解 设赤道电流为I ,则由教材第11-4节例2 知,圆电流轴线上北极点的磁感强度()R IR R IR B 24202/32220μμ=+=因此赤道上的等效圆电流为A 1073.12490⨯==μRB I 由于在地球地磁场的N 极在地理南极,根据右手螺旋法则可判断赤道圆电流应该是由东向西流,与地球自转方向相反.题 11-9 图11-10 如图所示,有两根导线沿半径方向接触铁环的a 、b 两点,并与很远处的电源相接.求环心O 的磁感强度.题 11-10 图分析 根据叠加原理,点O 的磁感强度可视作由ef 、b e 、fa 三段直线以及ac b 、a d b 两段圆弧电流共同激发.由于电源距环较远,0=ef B .而b e 、fa 两段直线的延长线通过点O ,由于0Idl r ⨯=,由毕奥-萨伐尔定律知0be fa ==B B .流过圆弧的电流I 1 、I 2的方向如图所示,两圆弧在点O 激发的磁场分别为21101π4r l I μB =,22202π4r l I μB = 其中l 1 、l 2 分别是圆弧ac b 、a d b 的弧长,由于导线电阻R 与弧长l 成正比,而圆弧ac b 、a d b 又构成并联电路,故有2211l I l I =将21B B 、叠加可得点O 的磁感强度B .解 由上述分析可知,点O 的合磁感强度0π4π42220211021=-=-=r l I μr l I μB B B 11-11 如图所示,几种载流导线在平面内分布,电流均为I ,它们在点O 的磁感强度各为多少?题 11-11 图分析 应用磁场叠加原理求解.将不同形状的载流导线分解成长直部分和圆弧部分,它们各自在点O 处所激发的磁感强度较容易求得,则总的磁感强度∑=iB B 0. 解 (a) 长直电流对点O 而言,有0d =⨯r l I ,因此它在点O 产生的磁场为零,则点O 处总的磁感强度为1/4 圆弧电流所激发,故有RI μB 800=B 0 的方向垂直纸面向外. (b) 将载流导线看作圆电流和长直电流,由叠加原理可得RI μR I μB π22000-=B 0 的方向垂直纸面向里. (c ) 将载流导线看作1/2 圆电流和两段半无限长直电流,由叠加原理可得RI μR I μR I μR I μR I μB 4π24π4π4000000+=++= B 0 的方向垂直纸面向外.11-12 载流导线形状如图所示(图中直线部分导线延伸到无穷远),求 点O 的磁感强度B .题 11-12 图分析 由教材11-4 节例题2的结果不难导出,圆弧载流导线在圆心激发的磁感强度RαI μB π40=,其中α为圆弧载流导线所张的圆心角,磁感强度的方向依照右手定则确定;半无限长载流导线在圆心点O 激发的磁感强度RI μB π40=,磁感强度的方向依照右手定则确定. 点O 的磁感强度O B 可以视为由圆弧载流导线、半无限长载流导线等激发的磁场在空间点O 的叠加.解 根据磁场的叠加在图(a)中,k i k k i B RI μR I μR I μR I μR I μπ24π4π44000000--=---= 在图(b)中, k i k i i B RI μR I μR I μR I μR I μπ41π14π44π4000000-⎪⎭⎫ ⎝⎛+-=---= 在图(c )中, k j i B RI μR I μR I μπ4π4830000---= 11-13 如图(a)所示,载流长直导线的电流为I ,试求通过矩形面积的磁通量.题 11-13 图分析 由于矩形平面上各点的磁感强度不同,故磁通量Φ≠BS .为此,可在矩形平面上取一矩形面元d S =l d x ,如图(b)所示,载流长直导线的磁场穿过该面元的磁通量为x l x I d π2d d 0μ=⋅=ΦS B矩形平面的总磁通量ΦΦ⎰=d解 由上述分析可得矩形平面的总磁通量⎰==Φ211200ln π2d π2d dd d Il x l x I μμ 11-14 已知10 mm 2 裸铜线允许通过50 A 电流而不会使导线过热.电流在导线横截面上均匀分布.求导线内、外磁感强度的分布.题 11-14 图分析 可将导线视作长直圆柱体,电流沿轴向均匀流过导体,故其磁场必然呈轴对称分布,即在与导线同轴的圆柱面上的各点,B 大小相等、方向与电流成右手螺旋关系.为此,可利用安培环路定理,求出导线表面的磁感强度.解 围绕轴线取同心圆为环路L ,取其绕向与电流成右手螺旋关系,根据安培环路定理,有∑⎰=⋅=⋅I μB 0πr 2d l B 在导线内r <R , 2222ππRIr r R I I ==∑,因而 202πR Ir μB =在导线外r >R ,I I =∑,因而rI μB 2π0=磁感强度分布曲线如图所示. 11-15 有一同轴电缆,其尺寸如图(a)所示.两导体中的电流均为I ,但电流的流向相反,导体的磁性可不考虑.试计算以下各处的磁感强度:(1) r <R 1 ;(2) R 1 <r <R 2 ;(3) R 2 <r <R 3 ;(4) r >R 3 .画出B -r 图线.题 11-15 图分析 同轴电缆导体内的电流均匀分布,其磁场呈轴对称,取半径为r 的同心圆为积分路径, πr 2d ⋅=⋅⎰B l B ,利用安培环路定理∑⎰=⋅I μ0d l B ,可解得各区域的磁感强度.解 由上述分析得r <R 1 22101ππ12πr R μr B =⋅ 21012πR Ir μB =R 1 <r <R 2 I μr B 022π=⋅rI μB 2π02=R 2 <r <R 3 ()()⎥⎦⎤⎢⎣⎡---=⋅I R R R r I μr B 22232203ππ2π 2223223032πR R r R r I μB --= r >R 3 ()02π04=-=⋅I I μr B04=B磁感强度B (r )的分布曲线如图(b).11-16 如图所示,N 匝线圈均匀密绕在截面为长方形的中空骨架上.求通入电流I 后,环内外磁场的分布.题 11-16 图分析 根据右手螺旋法则,螺线管内磁感强度的方向与螺线管中心轴线构成同心圆,若取半径为r 的圆周为积分环路,由于磁感强度在每一环路上为常量,因而πr 2d ⋅=⋅⎰B l B 依照安培环路定理∑⎰=⋅I μ0d l B ,可以解得螺线管内磁感强度的分布.解 依照上述分析,有∑=⋅I μr B 02πr <R 102π1=⋅r B01=BR 2 >r >R 1NI μr B 022π=⋅rNI μB 2π02=r >R 2 02π3=⋅r B03=B在螺线管内磁感强度B 沿圆周,与电流成右手螺旋.若112R R R <<- 和R 2 ,则环内的磁场可以近似视作均匀分布,设螺线环的平均半径()1221R R R +=,则环内的磁感强度近似为 RNI μB 2π0≈ 11-17 电流I 均匀地流过半径为R 的圆形长直导线,试计算单位长度导线内的磁场通过图中所示剖面的磁通量.题 11-17 图分析 由题11-14 可得导线内部距轴线为r 处的磁感强度()202πRIr μr B = 在剖面上磁感强度分布不均匀,因此,需从磁通量的定义()S B d ⎰=r Φ来求解.沿轴线方向在剖面上取面元dS =l dr ,考虑到面元上各点B 相同,故穿过面元的磁通量dΦ=B dS ,通过积分,可得单位长度导线内的磁通量⎰=Sr B Φd 解 由分析可得单位长度导线内的磁通量4πd 2π0020I μr R Ir μΦR==⎰ 11-18 已知地面上空某处地磁场的磁感强度40.410T B -=⨯,方向向北.若宇宙射线中有一速率715.010m s -=⨯v 的质子,垂直地通过该处.求:(1)洛伦兹力的方向;(2) 洛伦兹力的大小,并与该质子受到的万有引力相比较.题 11-18 图解 (1) 依照B F ⋅=v q L 可知洛伦兹力L F 的方向为B ⊥v 的方向,如图所示.(2) 因B ⊥v ,质子所受的洛伦兹力N 102.316-⨯==B F v q L在地球表面质子所受的万有引力N 1064.126p -⨯==g m G因而,有101095.1/⨯=G F L ,即质子所受的洛伦兹力远大于重力.11-19 霍尔效应可用来测量血流的速度,其原理如图所示.在动脉血管两 侧分别安装电极并加以磁场.设血管直径为d =2.0 mm ,磁场为B =0.080 T ,毫伏表测出血管上下两端的电压为U H =0.10 mV ,血流的流速为多大?题 11-19 图分析 血流稳定时,有H qE B q =v由上式可以解得血流的速度.解 依照分析m/s 63.0===dBU B E H H v 11-20 带电粒子在过饱和液体中运动,会留下一串气泡显示出粒子运动的径迹.设在气泡室有一质子垂直于磁场飞过,留下一个半径为3.5 cm 的圆弧径迹,测得磁感强度为0.20 T,求此质子的动量和动能.解 根据带电粒子回转半径与粒子运动速率的关系有m/s kg 1012.121⋅⨯===-ReB m p vkeV 35.222==mp E k 11-21 从太阳射来的速度为0.80×108m /s 的电子进入地球赤道上空高层范艾伦辐射带中,该处磁场为4.0 ×10-7T,此电子回转轨道半径为多大? 若电子沿地球磁场的磁感线旋进到地磁北极附近,地磁北极附近磁场为2.0 ×10-5T,其轨道半径又为多少?解 由带电粒子在磁场中运动的回转半径高层范艾伦辐射带中的回转半径 m 101.1311⨯==eB m R v 地磁北极附近的回转半径 m 2322==eB m R v 11-22 如图(a)所示,一根长直导线载有电流I 1 =30 A ,矩形回路载有电流I 2 =20 A .试计算作用在回路上的合力.已知d =1.0 cm , b =8.0 cm ,l =0.12 m .题 11-22图分析 矩形上、下两段导线受安培力F 1 和F 2 的大小相等,方向相反,对不变形的矩形回路来说,两力的矢量和为零.而矩形的左右两段导线,由于载流导线所在处磁感强度不等,所受安培力F 3 和F 4 大小不同,且方向相反,因此线框所受的力为这两个力的合力.解 由分析可知,线框所受总的安培力F 为左、右两边安培力F 3 和F 4 之矢量和,如图(b)所示,它们的大小分别为dl I I μF π22103= ()b d l I I μF +=π22104 故合力的大小为 ()N 1028.1π2π2321021043-⨯=+-=-=b d l I I μd l I I μF F F 合力的方向朝左,指向直导线.11-23 一直流变电站将电压为500k V 的直流电,通过两条截面不计的平行输电线输向远方.已知两输电导线间单位长度的电容为3.0×10-11F·m -1,若导线间的静电力与安培力正好抵消.求:(1) 通过输电线的电流;(2) 输送的功率.分析 当平行输电线中的电流相反时,它们之间存在相互排斥的安培力,其大小可由安培定律确定.若两导线间距离为d ,一导线在另一导线位置激发的磁感强度dI μB π20=,导线单位长度所受安培力的大小BI F B =.将这两条导线看作带等量异号电荷的导体,因两导线间单位长度电容C 和电压U 已知,则单位长度导线所带电荷λ=CU ,一导线在另一导线位置所激发的电场强度dελE 0π2=,两导线间单位长度所受的静电吸引力λE F E =.依照题意,导线间的静电力和安培力正好抵消,即0=+E B F F从中可解得输电线中的电流.解 (1) 由分析知单位长度导线所受的安培力和静电力分别为dI μBI F B π220== dεU C λE F E 022π2== 由0=+E B F F 可得dεU C d I μ02220π2π2= 解得A 105.4300⨯==μεCU I (2) 输出功率 W 1025.29⨯==IU N11-24 在氢原子中,设电子以轨道角动量π2/h L =绕质子作圆周运动,其半径为m 1029.5110-⨯=a .求质子所在处的磁感强度.h 为普朗克常量,其值为s J 1063.634⋅⨯-分析 根据电子绕核运动的角动量π20h a m L ==v 可求得电子绕核运动的速率v .如认为电子绕核作圆周运动,其等效圆电流v/π20a e T e i == 在圆心处,即质子所在处的磁感强度为02a i μB = 解 由分析可得,电子绕核运动的速率π2ma h =v 其等效圆电流 2020π4/π2ma he v a e i == 该圆电流在圆心处产生的磁感强度T 5.12π82202000===ma he μa i μB 11-25 如图[a]所示,一根长直同轴电缆,内、外导体之间充满磁介质,磁介质的相对磁导率为μr (μr <1),导体的磁化可以忽略不计.沿轴向有恒定电流I 通过电缆,内、外导体上电流的方向相反.求:(1) 空间各区域内的磁感强度和磁化强度;*(2) 磁介质表面的磁化电流.题 11-25 图分析 电流分布呈轴对称,依照右手定则,磁感线是以电缆对称轴线为中心的一组同心圆.选取任一同心圆为积分路径,应有⎰⋅=⋅r H d π2l H ,利用安培环路定理 ⎰∑=⋅f I d l H求出环路内的传导电流,并由H μB =,()H μM r 1-=,可求出磁感强度和磁化强度.再由磁化电流的电流面密度与磁化强度的关系求出磁化电流. 解 (1) 取与电缆轴同心的圆为积分路径,根据磁介质中的安培环路定理,有∑=f π2I r H对r <R 1221f ππr R I I =∑ 得 2112πR Ir H = 忽略导体的磁化(即导体相对磁导率μr =1),有01=M ,21012πR Ir μB =对R 2 >r >R 1 I I=∑f得 rI H 2π2=填充的磁介质相对磁导率为μr ,有 ()r I μM r 2π12-=,rI μμB r 2π02= 对R 3 >r >R 2 ()()2223223ππR r R R I I I f -⋅--=∑ 得()()222322332πR R r r R I H --= 同样忽略导体的磁化,有03=M ,()()2223223032πR R r r R I μB --= 对r >R 3 0=-=∑I I If得 04=H ,04=M ,04=B(2) 由r M I s 2π⋅=,磁介质内、外表面磁化电流的大小为()()I μR R M I r si 12π112-=⋅=()()I μR R M I r se 12π222-=⋅=对抗磁质(1r μ<),在磁介质内表面(r =R 1 ),磁化电流与内导体传导电流方向相反;在磁介质外表面(r =R 2 ),磁化电流与外导体传导电流方向相反.顺磁质的情况与抗磁质相反.H (r )和B (r )分布曲线分别如图(b)和(c )所示.第十二章 电磁感应 电磁场和电磁波 12-1 一根无限长平行直导线载有电流I ,一矩形线圈位于导线平面内沿垂直于载流导线方向以恒定速率运动(如图所示),则( )(A ) 线圈中无感应电流(B ) 线圈中感应电流为顺时针方向(C ) 线圈中感应电流为逆时针方向(D ) 线圈中感应电流方向无法确定题 12-1 图分析与解 由右手定则可以判断,在矩形线圈附近磁场垂直纸面朝里,磁场是非均匀场,距离长直载流导线越远,磁场越弱.因而当矩形线圈朝下运动时,在线圈中产生感应电流,感应电流方向由法拉第电磁感应定律可以判定.因而正确答案为(B ).12-2 将形状完全相同的铜环和木环静止放置在交变磁场中,并假设通过两环面的磁通量随时间的变化率相等,不计自感时则( )(A ) 铜环中有感应电流,木环中无感应电流(B ) 铜环中有感应电流,木环中有感应电流(C ) 铜环中感应电动势大,木环中感应电动势小(D ) 铜环中感应电动势小,木环中感应电动势大分析与解 根据法拉第电磁感应定律,铜环、木环中的感应电场大小相等, 但在木环中不会形成电流.因而正确答案为(A ).12-3 有两个线圈,线圈1对线圈2 的互感系数为M 21 ,而线圈2 对线圈1的互感系数为M 12 .若它们分别流过i 1 和i 2 的变化电流且t i t i d d d d 21<,并设由i 2变化在线圈1 中产生的互感电动势为12 ,由i 1 变化在线圈2 中产生的互感电动势为ε21 ,下述论断正确的是( ).(A )2112M M = ,1221εε=(B )2112M M ≠ ,1221εε≠(C )2112M M =, 1221εε<(D )2112M M = ,1221εε<分析与解 教材中已经证明M21 =M12 ,电磁感应定律t i M εd d 12121=;ti M εd d 21212=.因而正确答案为(D ). 12-4 对位移电流,下述说法正确的是( )(A ) 位移电流的实质是变化的电场(B ) 位移电流和传导电流一样是定向运动的电荷(C ) 位移电流服从传导电流遵循的所有定律(D ) 位移电流的磁效应不服从安培环路定理分析与解 位移电流的实质是变化的电场.变化的电场激发磁场,在这一点位移电流等效于传导电流,但是位移电流不是走向运动的电荷,也就不服从焦耳热效应、安培力等定律.因而正确答案为(A ).12-5 下列概念正确的是( )(A ) 感应电场是保守场(B ) 感应电场的电场线是一组闭合曲线(C ) LI Φm =,因而线圈的自感系数与回路的电流成反比(D ) LI Φm =,回路的磁通量越大,回路的自感系数也一定大分析与解 对照感应电场的性质,感应电场的电场线是一组闭合曲线.因而 正确答案为(B ).12-6 一铁心上绕有线圈100匝,已知铁心中磁通量与时间的关系为t Φπ100sin 100.85⨯=,式中Φ的单位为Wb ,t 的单位为s ,求在s 100.12-⨯=t 时,线圈中的感应电动势.分析 由于线圈有N 匝相同回路,线圈中的感应电动势等于各匝回路的感应电动势的代数和,在此情况下,法拉第电磁感应定律通常写成tψt ΦN ξd d d d -=-=,其中ΦN ψ=称为磁链. 解 线圈中总的感应电动势())V (π100cos 51.2d d t tΦN =-=ξ 当s 100.12-⨯=t 时,V 51.2=ξ.12-7 载流长直导线中的电流以tI d d 的变化率增长.若有一边长为d 的正方形线圈与导线处于同一平面内,如图所示.求线圈中的感应电动势.分析 本题仍可用法拉第电磁感应定律tΦd d -=ξ,来求解.由于回路处在非均匀磁场中,磁通量就需用⎰⋅=SS B Φd 来计算.为了积分的需要,建立如图所示的坐标系.由于B 仅与x 有关,即B =B (x ),故取一个平行于长直导线的宽为d x 、长为d 的面元d S ,如图中阴影部分所示,则d S =d d x ,所以,总磁通量可通过线积分求得(若取面元d S =d x d y ,则上述积分实际上为二重积分).本题在工程技术中又称为互感现象,也可用公式 tI M d d -=ξ求解. 解1 穿过面元d S 的磁通量为x d x I S B Φd π2d d 0μ=⋅=因此穿过线圈的磁通量为2ln π2d π2d 200⎰⎰===d d Id x x Id ΦΦμμ再由法拉第电磁感应定律,有 tI d t Φd d 21ln π2d d 0)(μξ=-= 解2 当两长直导线有电流I 通过时,穿过线圈的磁通量为2ln π20dI Φμ=线圈与两长直导线间的互感为 2ln π20d I ΦM μ== 当电流以tI d d 变化时,线圈中的互感电动势为 tI d t I M d d 21ln π2d d 0)(μξ=-=题 12-7 图12-8 有一测量磁感强度的线圈,其截面积S =4.0 cm 2 、匝数N =160 匝、电阻R =50Ω.线圈与一内阻R i =30Ω的冲击电流计相连.若开始时,线圈的平面与均匀磁场的磁感强度B 相垂直,然后线圈的平面很快地转到与B 的方向平行.此时从冲击电流计中测得电荷值54.010C q -=⨯.问此均匀磁场的磁感强度B 的值为多少?分析 在电磁感应现象中,闭合回路中的感应电动势和感应电流与磁通量变化的快慢有关,而在一段时间内,通过导体截面的感应电量只与磁通量变化的大小有关,与磁通量变化的快慢无关.工程中常通过感应电量的测定来确定磁场的强弱.解 在线圈转过90°角时,通过线圈平面磁通量的变化量为NBS NBS ΦΦΦ=-=-=0Δ12 因此,流过导体截面的电量为ii R R NBS R R Φq +=+=Δ 则 ()T 050.0=+=NS R R q B i 12-9 如图所示,一长直导线中通有I =5.0 A 的电流,在距导线9.0 cm 处,放一面积为0.10 cm 2 ,10匝的小圆线圈,线圈中的磁场可看作是均匀的.今在1.0 ×10-2s 内把此线圈移至距长直导线10.0 cm 处.求:(1) 线圈中平均感应电动势;(2) 设线圈的电阻为1.0×10-2Ω,求通过线圈横截面的感应电荷.题 12-9 图分析 虽然线圈处于非均匀磁场中,但由于线圈的面积很小,可近似认为穿过线圈平面的磁场是均匀的,因而可近似用NBS ψ=来计算线圈在始、末两个位置的磁链.解 (1) 在始、末状态,通过线圈的磁链分别为1011π2r IS μN S NB ψ==,2022π2r IS μN S NB ψ== 则线圈中的平均感应电动势为V 1011.111πΔ2ΔΔ8210-⨯=⎪⎪⎭⎫ ⎝⎛-==r r t IS N t μψξ 电动势的指向为顺时针方向.(2) 通过线圈导线横截面的感应电荷为C 101.11821-⨯=∆=-=t RR q ξψψ 12-10 如图(a)所示,把一半径为R 的半圆形导线OP 置于磁感强度为B 的均匀磁场中,当导线以速率v 水平向右平动时,求导线中感应电动势E 的大小,哪一端电势较高?题 12-10 图分析 本题及后面几题中的电动势均为动生电动势,除仍可由t ΦE d d -=求解外(必须设法构造一个闭合回路),还可直接用公式()l B d ⋅⨯=⎰l E v 求解.在用后一种方法求解时,应注意导体上任一导线元dl 上的动生电动势()l B d d ⋅⨯=v E .在一般情况下,上述各量可能是dl 所在位置的函数.矢量(v ×B )的方向就是导线中电势升高的方向.解1 如图(b)所示,假想半圆形导线O P 在宽为2R 的静止形导轨上滑动,两者之间形成一个闭合回路.设顺时针方向为回路正向,任一时刻端点O 或端点P 距 形导轨左侧距离为x ,则B R Rx Φ⎪⎭⎫ ⎝⎛+=2π212 即B R tx RB t ΦE v 2d d 2d d -=-=-= 由于静止的 形导轨上的电动势为零,则E =-2R v B .式中负号表示电动势的方向为逆时针,对OP 段来说端点P 的电势较高.解2 建立如图(c )所示的坐标系,在导体上任意处取导体元dl ,则()θR θB l θB E o d cos d cos 90sin d d v v ==⋅⨯=l B vB R θθBR E v v 2d cos d E π/2π/2===⎰⎰- 由矢量(v ×B )的指向可知,端点P 的电势较高.解3 连接OP 使导线构成一个闭合回路.由于磁场是均匀的,在任意时刻,穿过回路的磁通量==BS Φ常数.由法拉第电磁感应定律tΦE d d -=可知,E =0又因 E =E OP +E PO即 E OP =-E PO =2R v B由上述结果可知,在均匀磁场中,任意闭合导体回路平动所产生的动生电动势为零;而任意曲线形导体上的动生电动势就等于其两端所连直线形导体上的动生电动势.上述求解方法是叠加思想的逆运用,即补偿的方法. 12-11 长为L 的铜棒,以距端点r 处为支点,以角速率ω绕通过支点且垂直于铜棒的轴转动.设磁感强度为B 的均匀磁场与轴平行,求棒两端的电势差.题 12-11 图分析 应该注意棒两端的电势差与棒上的动生电动势是两个不同的概念,如同电源的端电压与电源电动势的不同.在开路时,两者大小相等,方向相反(电动势的方向是电势升高的方向,而电势差的正方向是电势降落的方向).本题可直接用积分法求解棒上的电动势,亦可以将整个棒的电动势看作是O A 棒与O B 棒上电动势的代数和,如图(b)所示.而E O A 和E O B 则可以直接利用第12-2 节例1 给出的结果.解1 如图(a)所示,在棒上距点O 为l 处取导体元dl ,则()()r L lB ωl lB ωE L-r r AB AB 221d d --=-=⋅⨯=⎰⎰-l B v 因此棒两端的电势差为()r L lB ωE U AB AB 221--== 当L >2r 时,端点A 处的电势较高解2 将AB 棒上的电动势看作是O A 棒和O B 棒上电动势的代数和,如图(b)所示.其中221r ωB E OA =,()221r L B ωE OB -= 则 ()r L BL ωE E E OB OA AB 221--=-= 12-12 如图所示,长为L 的导体棒OP ,处于均匀磁场中,并绕OO ′轴以角速度ω旋转,棒与转轴间夹角恒为θ,磁感强度B 与转轴平行.求OP 棒在图示位置处的电动势.题 12-12 图分析 如前所述,本题既可以用法拉第电磁感应定律tΦE d d -= 计算(此时必须构造一个包含OP 导体在内的闭合回路, 如直角三角形导体回路OPQO ),也可用()l B d ⋅⨯=⎰lE v 来计算.由于对称性,导体OP 旋转至任何位置时产生的电动势与图示位置是相同的.解1 由上分析,得()l B d ⋅⨯=⎰OP OP E vl αB lo d cos 90sin ⎰=v ()()l θB θωl o d 90cos sin ⎰-=l ()⎰==L L B l l B 022sin 21d sin θωθω 由矢量B ⨯v 的方向可知端点P 的电势较高.解2 设想导体OP 为直角三角形导体回路OPQO 中的一部分,任一时刻穿过回路的磁通量Φ为零,则回路的总电动势QO PQ OP E E E tΦE ++==-=0d d 显然,E QO =0,所以 ()221PQ B ωE E E QO PQ OP ==-=2)sin (21θωL B = 由上可知,导体棒OP 旋转时,在单位时间内切割的磁感线数与导体棒QP 等效.12-13 如图(a)所示,金属杆AB 以匀速12.0m s -=⋅v 平行于一长直导线移动,此导线通有电流I =40 A .求杆中的感应电动势,杆的哪一端电势较高?。
物理学(第五版)下册 马文蔚等改编(东南大学) 答案
第九章振动1、设一物体沿x 轴作谐振动的方程为0.10cos(2)4x t ππ=+,式中x ,t 的单位分别为m ,s .试求:(1)振幅,周期,频率和初相)cos(ϕω+=t A x ;(2)0.5t s =时,物体的位移、速度和加速度.解:(1)谐振动的标准方程为,比较题中所给方程和标准方程,知振幅m A 10.0=,角频率2/rad sωπ=,初4πϕ=.由此,周期为12==ωπT s 频12Hz ωνπ==率为(2)1=t s 时,物体位移m m x 21007.7)45.02cos(10.0)42cos(10.0-⨯-=+⨯=+=ππππ 速度s m s m t dt dx v/44.0/)45.02sin(2.0)42sin(2.0=+⨯-=+-==ππππππ 加速度2222/28/)45.02cos(4)42sin(4s m s m t dtdv a =+⨯-=+-==ππππππ2、有一弹簧,当其下端挂一质量为m 的物体时,伸长量为9.8×10-2m 。
若使物体上、下振动,并规定向上为正方向。
(1)当t=0时,物体在平衡位置下方4.0×10-2m 处,由静止开始向上运动,求运动方程。
(2)当t=0时,物体在平衡位置并处以0.2m ·s -1的速度向下运动,求运动方程。
解:(1)根据题给的条件,20100.4-⨯-=x m, 00=v (题取向上为正方向,且平衡位置处为原点)且2100.4-⨯=A m ,其旋转矢量应为如图9-4-1图位置,所以π0=ϕ。
又mk=ω ,而 0kx mg =,所以x g m k = ,108.98.92⨯=-ω所以谐振动方程:)π10cos(100.42+⨯=-t x m(2)据题意,0=t 时,00=x ,6.00-=v m.s 1-,其旋转矢量应为如图9-4-2图位置则得222222102102.00)(-⨯=+=+=ωv x A m2π0=ϕ 9-4-1图ϕ∆xMM 'O9-5-1图(0=x 的投影有上、下两个矢量,但0v 为负值,故只能选上面的OM 矢量),所以谐振动方程为)2π10cos(100.42+⨯=-t xm 。
大学物理下册答案马文蔚
大学物理下册答案马文蔚【篇一:大学物理第五版马文蔚课后答案(上)】但由于|dr|=ds,故drds?,即||=.由此可见,应选(c). dtdt1-2 分析与解dr表示质点到坐标原点的距离随时间的变化率,在极坐标系中叫径向速率.通常用符号vr表示,dtdrds表示速度矢量;在自然坐标系中速度大小可用公式v?计算,在直dtdt2这是速度矢量在位矢方向上的一个分量;2?dx??dy?角坐标系中则可由公式v??????求解.故选(d).?dt??dt?1-3 分析与解dv表示切向加速度at,它表示速度大小随时间的变化率,是加速度矢量沿速度方向的一个分量,dtdrds在极坐标系中表示径向速率vr(如题1 -2 所述)在自然坐标系中表示质点的速率v;dtdt而dv表示加速度的大小而不是切向加速度at.因此只有(3) 式表达是正确的.故选(d). dt1-4 分析与解加速度的切向分量at起改变速度大小的作用,而法向分量an起改变速度方向的作用.质点作圆周运动时,由于速度方向不断改变,相应法向加速度的方向也在不断改变,因而法向加速度是一定改变的.至于at是否改变,则要视质点的速率情况而定.质点作匀速率圆周运动时, at恒为零;质点作匀变速率圆周运动时, at为一不为零的恒量,当at改变时,质点则作一般的变速率圆周运动.由此可见,应选(b).1-5 分析与解本题关键是先求得小船速度表达式,进而判断运动性质.为此建立如图所示坐标系,设定滑轮距水面高度为h,t 时刻定滑轮距小船的绳长为l,则小船的运动方程为x?船速度v?dx?dtll2?h2,其中绳长l 随时间t 而变化.小dldl,式中表示绳长l 随时间的变化率,其大小即为v0,代入整理后为dtl2?h2v?v0l2?h2/l?v0dx?0来确定其运动方向tdxdx=4.0 s 时质点速度和加速度可用和两式计算.dtdt2dx?0 得知质点的换向时刻为 tp?2s (t=0不合题意) dt,a?2dtt?4.0s1-7 分析根据加速度的定义可知,在直线运动中v-t曲线的斜率为加速度的大小(图中ab、cd 段斜率为定值,即匀变速直线运动;而线段bc 的斜率为0,加速度为零,即匀速直线运动).加速度为恒量,在a-t 图上是平行于t 轴的直线,由v-t 图中求出各段的斜率,即可作出a-t 图线.又由速度的定义可知,x-t 曲线的斜率为速度的大小.因此,匀速直线运动所对应的x -t 图应是一直线,而匀变速直线运动所对应的x–t 图为t 的二次曲线.根据各段时间内的运动方程x=x(t),求出不同时刻t 的位置x,采用描数据点的方法,可作出x-t 图.解将曲线分为ab、bc、cd 三个过程,它们对应的加速度值分别为 dxdx??48m?s?1dtt?4.0?s??36m.s2aab?acd?vb?va?20m?s?2(匀加速直线运动),abc?0(匀速直线运动)tb?tavd?vc??10m?s?2 (匀减速直线运动)td?tc根据上述结果即可作出质点的a-t 图[图(b)].在匀变速直线运动中,有由此,可计算在0~2s和4~6s时间间隔内各时刻的位置分别为1x?x?v0t?t22用描数据点的作图方法,由表中数据可作0~2s和4~6s时间内的x -t 图.在2~4s时间内, 质点是作v?20m?s?1的匀速直线运动, 其x -t 图是斜率k=20的一段直线[图(c)].则ds?解 (1) 由x(t)和y(t)中消去t 后得质点轨迹方程为,y?2?这是一个抛物线方程,轨迹如图(a)所示.(dx)2?(dy)2,最后用s??ds积分求s.12x 4(2) 将t =0s和t =2s分别代入运动方程,可得相应位矢分别为r0?2j , r2?4i?2j图(a)中的p、q 两点,即为t =0s和t =2s时质点所在位置.2222x2?y2?x0?y0?2.47m(dx)2?(dy)2,由轨1xdx,代入ds,则2s内路程为 2s??ds??pq44?x2dx?5.91m1-9 分析由运动方程的分量式可分别求出速度、加速度的分量,再由运动合成算出速度和加速度的大小和方向.解 (1) 速度的分量式为 vx?dxdy??10?60t,vy??15?40t dtdt-1-1当t =0 时, vox =-10 m2s , voy =15 m2s ,则初速度大小为v0?v0x?v0y?18.0m?s?122v0yv0x32(2) 加速度的分量式为ax?dvdvx?60m?s?2 , ay?y??40m?s?2 dtdtax?ay?72.1m?s?222ay21-10分析在升降机与螺丝之间有相对运动的情况下,一种处理方法是取地面为参考系,分别讨论升降机竖直向上的匀加速度运动和初速不为零的螺丝的自由落体运动,列出这两种运动在同一坐标系中的运动方程y1 =y1(t)和y2 =y2(t),并考虑它们相遇,即位矢相同这一条件,问题即可解;另一种方法是取升降机(或螺丝)为参考系,这时,螺丝(或升降机)相对它作匀加速运动,但是,此加速度应该是相对加速度.升降机厢的高度就是螺丝(或升降机)运动的路程.解1 (1) 以地面为参考系,取如图所示的坐标系,升降机与螺丝的运动方程分别为 y1?v0t?121aty2?h?v0t?gt2 22当螺丝落至底面时,有y1 =y2 ,即11v0t?at2?h?v0t?gt222t?2h?0.705s g?a(2) 螺丝相对升降机外固定柱子下降的距离为d?h?y2??v0t?12gt?0.716m 2解2 (1)以升降机为参考系,此时,螺丝相对它的加速度大小a′=g +a,螺丝落至底面时,有 0?h?1(g?a)t2t?22h?0.705s g?a(2) 由于升降机在t 时间内上升的高度为1h??v0t?at2 则d?h?h??0.716m21-11 分析该题属于运动学的第一类问题,即已知运动方程r =r(t)求质点运动的一切信息(如位置矢量、位移、速度、加速度).在确定运动方程时,若取以点(0,3)为原点的o′x′y′坐标系,并采用参数方程x′=x′(t)和y′=y′(t)来表示圆周运动是比较方便的.然后,运用坐标变换x =x0 +x′和y =y0 +y′,将所得参数方程转换至oxy 坐标系中,即得oxy 坐标系中质点p 在任意时刻的位矢.采用对运动方程求导的方法可得速度和加速度.解 (1) 如图(b)所示,在o′点p 的参数方程为t,则质tx??rsiny???rcos坐标变换后,在oxy 坐标系中有x?x??rsiny?y??y0??rcost?r t则质点p 的位矢方程为r?rsindttttt(2) 5s时的速度和加速度分别为1-12 分析为求杆顶在地面上影子速度的大小,必须建立影长与时间的函数关系,即影子端点的位矢方程.根据几何关系,影长可通过太阳光线对地转动的角速度求得.由于运动的相对性,太阳光线对地转动的角速度也就是地球自转的角速度.这样,影子端点的位矢方程和速度均可求得.v?当杆长等于影长时,即s =h,则t?【篇二:物理学教程第二版马文蔚下册课后答案完整版】放置,其周围空间各点电场强度e(设电场强度方向向右为正、向左为负)随位置坐标x 变化的关系曲线为图(b)中的()题 9-1 图板法向向外,依照电场叠加原理可以求得各区域电场强度的大小和方向.因而正确答案为(b).9-2 下列说法正确的是( )(a)闭合曲面上各点电场强度都为零时,曲面内一定没有电荷(b)闭合曲面上各点电场强度都为零时,曲面内电荷的代数和必定为零(c)闭合曲面的电通量为零时,曲面上各点的电场强度必定为零(d)闭合曲面的电通量不为零时,曲面上任意一点的电场强度都不可能为零分析与解依照静电场中的高斯定理,闭合曲面上各点电场强度都为零时,曲面内电荷的代数和必定为零,但不能肯定曲面内一定没有电荷;闭合曲面的电通量为零时,表示穿入闭合曲面的电场线数等于穿出闭合曲面的电场线数或没有电场线穿过闭合曲面,不能确定曲面上各点的电场强度必定为零;同理闭合曲面的电通量不为零,也不能推断曲面上任意一点的电场强度都不可能为零,因而正确答案为(b).9-3 下列说法正确的是( )(a) 电场强度为零的点,电势也一定为零(b) 电场强度不为零的点,电势也一定不为零(c) 电势为零的点,电场强度也一定为零(d) 电势在某一区域内为常量,则电场强度在该区域内必定为零分析与解电场强度与电势是描述电场的两个不同物理量,电场强度为零表示试验电荷在该点受到的电场力为零,电势为零表示将试验电荷从该点移到参考零电势点时,电场力作功为零.电场中一点的电势等于单位正电荷从该点沿任意路径到参考零电势点电场力所作的功;电场强度等于负电势梯度.因而正确答案为(d).*9-4 在一个带负电的带电棒附近有一个电偶极子,其电偶极矩p的方向如图所示.当电偶极子被释放后,该电偶极子将( )(a) 沿逆时针方向旋转直到电偶极矩p 水平指向棒尖端而停止(b) 沿逆时针方向旋转至电偶极矩p 水平指向棒尖端,同时沿电场线方向朝着棒尖端移动(c) 沿逆时针方向旋转至电偶极矩p 水平指向棒尖端,同时逆电场线方向朝远离棒尖端移动(d) 沿顺时针方向旋转至电偶极矩p 水平方向沿棒尖端朝外,同时沿电场线方向朝着棒尖端移动题 9-4 图分析与解电偶极子在非均匀外电场中,除了受到力矩作用使得电偶极子指向电场方向外,还将受到一个指向电场强度增强方向的合力作用,因而正确答案为(b).虑,一个有8个电子,8个质子和8个中子构成的氧原子所带的最大可能净电荷是多少?若将原子视作质点,试比较两个氧原子间的库仑力和万有引力的大小.中子电量为10-21-21 e,e,则由一个氧原子所包含的8个电子、8个质子和8个中子可求原子所带的最大可能净电荷.由库仑定律可以估算两个带电氧原子间的库仑力,并与万有引力作比较.解一个氧原子所带的最大可能净电荷为qmax??1?2??8?10?21e二个氧原子间的库仑力与万有引力之比为范围内时,对于像天体一类电中性物体的运动,起主要作用的还是万有引力. 9-6 1964年,盖尔曼等人提出基本粒子是由更基本的夸克构成,中子就是由一个带21e 的上夸克和两个带?e的下夸克构成.若将夸克作为经典粒33求它们之间的相互作用力.解由于夸克可视为经典点电荷,由库仑定律f 与径向单位矢量er 方向相同表明它们之间为斥力.9-7 点电荷如图分布,试求p点的电场强度.分析依照电场叠加原理,p点的电场强度等于各点电荷单独存在时在p点激发电场强度的矢量和.由于电荷量为q的一对点电荷在p点激发的电场强度大小相等、方向相反而相互抵消,p点的电场强度就等于电荷量为2.0q的点电荷在该点单独激发的场强度.解根据上述分析ep?题 9-7 图9-8 若电荷q均匀地分布在长为l 的细棒上.求证:(1) 在棒的延长线,(2) 在棒的垂直平分线上,离棒为r 处的电场强度为若棒为无限长(即l→∞),试将结果与无限长均匀带电直线的电场强度相比较.题 9-8 图分析这是计算连续分布电荷的电场强度.此时棒的长度不能忽略,因而不能将棒当作点电荷处理.但带电细棒上的电荷可看作均匀分布在一维的长直线上.如图所示,在长直线上任意取一线元dx,其电荷为dq =qdx/l,它在点p 的电场强度为de?e??de接着针对具体问题来处理这个矢量积分.(1) 若点p 在棒的延长线上,带电棒上各电荷元在点p 的电场强度方向相同,e??ldei(2) 若点p 在棒的垂直平分线上,如图(a)所示,则电场强度e 沿x 轴方向的分量因对称性叠加为零,因此,点p 的电场强度就是e??deyj??lsin?dej证 (1) 延长线上一点p 的电场强度e电场强度的方向沿x 轴.(2) 根据以上分析,中垂线上一点p的电场强度e 的方向沿y 轴,大小为1q/l此结果与无限长带电直线周围的电场强度分布相同[图(b)].这说明只要满足r2/l2 <<1,带电长直细棒可视为无限长带电直线.电场强度的大小.【篇三:大学物理(第二版)下册答案-马文蔚】>答案9—13 马文蔚第九章静电场(b)中的( )题 9-1 图照电场叠加原理可以求得各区域电场强度的大小和方向.因而正确答案为(b). 9-2 下列说法正确的是( )(a)闭合曲面上各点电场强度都为零时,曲面内一定没有电荷(b)闭合曲面上各点电场强度都为零时,曲面内电荷的代数和必定为零(c)闭合曲面的电通量为零时,曲面上各点的电场强度必定为零(d)闭合曲面的电通量不为零时,曲面上任意一点的电场强度都不可能为零分析与解依照静电场中的高斯定理,闭合曲面上各点电场强度都为零时,曲面内电荷的代数和必定为零,但不能肯定曲面内一定没有电荷;闭合曲面的电通量为零时,表示穿入闭合曲面的电场线数等于穿出闭合曲面的电场线数或没有电场线穿过闭合曲面,不能确定曲面上各点的电场强度必定为零;同理闭合曲面的电通量不为零,也不能推断曲面上任意一点的电1 / 80场强度都不可能为零,因而正确答案为(b).9-3 下列说法正确的是( )(a) 电场强度为零的点,电势也一定为零(b) 电场强度不为零的点,电势也一定不为零(c) 电势为零的点,电场强度也一定为零(d) 电势在某一区域内为常量,则电场强度在该区域内必定为零分析与解电场强度与电势是描述电场的两个不同物理量,电场强度为零表示试验电荷在该点受到的电场力为零,电势为零表示将试验电荷从该点移到参考零电势点时,电场力作功为零.电场中一点的电势等于单位正电荷从该点沿任意路径到参考零电势点电场力所作的功;电场强度等于负电势梯度.因而正确答案为(d).*9-4 在一个带负电的带电棒附近有一个电偶极子,其电偶极矩p 的方向如图所示.当电偶极子被释放后,该电偶极子将( )(a) 沿逆时针方向旋转直到电偶极矩p 水平指向棒尖端而停止(b) 沿逆时针方向旋转至电偶极矩p 水平指向棒尖端,同时沿电场线方向朝着棒尖端移动(c) 沿逆时针方向旋转至电偶极矩p 水平指向棒尖端,同时逆电场线方向朝远离棒尖端移动(d) 沿顺时针方向旋转至电偶极矩p 水平方向沿棒尖端朝外,同时沿电场线方向朝着棒尖端移动题 9-4 图分析与解电偶极子在非均匀外电场中,除了受到力矩作用使得电偶极子指向电场方向外,还将受到一个指向电场强度增强方向的合力作用,因而正确答案为(b).子间的库仑力和万有引力的大小.-21-21-21-21 e,而中子电量与e,由最极端的情况考虑,一个有8个电子,8个质子和8个中子构成的氧原子所带的最大可能净电荷是多少?若将原子视作质点,试比较两个氧原 e,中子电量为10 e,则由一个氧原子所包含的8个电子、8个质子和8个中子可求原子所带的最大可能净电荷.由库仑定律可以估算两个带电氧原子间的库仑力,并与万有引力作比较.解一个氧原子所带的最大可能净电荷为qmax??1?2??8?10?21e二个氧原子间的库仑力与万有引力之比为2 / 80-21e范围内时,对于像天体一类电中性物体的运动,起主要作用的还是万有引力.9-6 1964年,盖尔曼等人提出基本粒子是由更基本的夸克构成,中子就是由一个带上夸克和两个带?2e 的3201e的下夸克构成.若将夸克作为经典粒子处理(夸克线度约为10- m),中3解由于夸克可视为经典点电荷,由库仑定律f 与径向单位矢量er 方向相同表明它们之间为斥力.9-7 点电荷如图分布,试求p点的电场强度.分析依照电场叠加原理,p点的电场强度等于各点电荷单独存在时在p点激发电场强度的矢量和.由于电荷量为q的一对点电荷在p点激发的电场强度大小相等、方向相反而相互抵消,p点的电场强度就等于电荷量为2.0q的点电荷在该点单独激发的场强度.解根据上述分析题 9-7 图(2) 在棒的垂直平分线上,离棒为r 处的电场强度为若棒为无限长(即l→∞),试将结果与无限长均匀带电直线的电场强度相比较.3 / 80题 9-8 图分析这是计算连续分布电荷的电场强度.此时棒的长度不能忽略,因而不能将棒当作点电荷处理.但带电细棒上的电荷可看作均匀分布在一维的长直线上.如图所示,在长直线上任意取一线元dx,其电荷为dq =qdx/l,它在点p 的电场强度为de?e??de接着针对具体问题来处理这个矢量积分.(1) 若点p 在棒的延长线上,带电棒上各电荷元在点p 的电场强度方向相同,e??ldei(2) 若点p 在棒的垂直平分线上,如图(a)所示,则电场强度e 沿x轴方向的分量因对称性叠加为零,因此,点p 的电场强度就是e??deyj??lsin?dej证 (1) 延长线上一点p 的电场强度e沿x 轴.(2) 根据以上分析,中垂线上一点p的电场强度e 的方向沿y 轴,大小为e??-l/2此结果与无限长带电直线周围的电场强度分布相同[图(b)].这说明只要满足r2/l2 <<1,带电长直细棒可视为无限长带电直线.题 9-9 图分析这仍是一个连续带电体问题,求解的关键在于如何取电荷元.现将半球壳分割为一组平行的细圆环,如图所示,从教材第9-3节的例2可以看出,所有平行圆环在轴线上p处的电场强度方向都相同,将所有带电圆环的电场强度积分,即可求得球心o处的电场强度. 解将半球壳分割为一组平行细圆环,任一个圆环所带电荷元de?9-10 水分子h2o 中氧原子和氢原子的等效电荷中心如图所示,假设氧原子和氢原子等效电荷中心间距为r0 .试计算在分子的对称轴线上,距分子较远处的电场强度.5 / 80。
物理学教程第二版马文蔚(下册)课后答案解析(完整版)
第九章 静 电 场9-1 电荷面密度均为+σ的两块“无限大”均匀带电的平行平板如图(A)放置,其周围空间各点电场强度E (设电场强度方向向右为正、向左为负)随位置坐标x 变化的关系曲线为图(B)中的( )题 9-1 图分析与解 “无限大”均匀带电平板激发的电场强度为02εσ,方向沿带电平板法向向外,依照电场叠加原理可以求得各区域电场强度的大小和方向.因而正确答案为(B).9-2 下列说法正确的是( )(A)闭合曲面上各点电场强度都为零时,曲面内一定没有电荷(B)闭合曲面上各点电场强度都为零时,曲面内电荷的代数和必定为零(C)闭合曲面的电通量为零时,曲面上各点的电场强度必定为零(D)闭合曲面的电通量不为零时,曲面上任意一点的电场强度都不可能为零 分析与解 依照静电场中的高斯定理,闭合曲面上各点电场强度都为零时,曲面内电荷的代数和必定为零,但不能肯定曲面内一定没有电荷;闭合曲面的电通量为零时,表示穿入闭合曲面的电场线数等于穿出闭合曲面的电场线数或没有电场线穿过闭合曲面,不能确定曲面上各点的电场强度必定为零;同理闭合曲面的电通量不为零,也不能推断曲面上任意一点的电场强度都不可能为零,因而正确答案为(B).9-3 下列说法正确的是( )(A) 电场强度为零的点,电势也一定为零(B) 电场强度不为零的点,电势也一定不为零(C) 电势为零的点,电场强度也一定为零(D) 电势在某一区域内为常量,则电场强度在该区域内必定为零分析与解电场强度与电势是描述电场的两个不同物理量,电场强度为零表示试验电荷在该点受到的电场力为零,电势为零表示将试验电荷从该点移到参考零电势点时,电场力作功为零.电场中一点的电势等于单位正电荷从该点沿任意路径到参考零电势点电场力所作的功;电场强度等于负电势梯度.因而正确答案为(D).*9-4在一个带负电的带电棒附近有一个电偶极子,其电偶极矩p的方向如图所示.当电偶极子被释放后,该电偶极子将( )(A) 沿逆时针方向旋转直到电偶极矩p水平指向棒尖端而停止(B) 沿逆时针方向旋转至电偶极矩p水平指向棒尖端,同时沿电场线方向朝着棒尖端移动(C) 沿逆时针方向旋转至电偶极矩p水平指向棒尖端,同时逆电场线方向朝远离棒尖端移动(D) 沿顺时针方向旋转至电偶极矩p 水平方向沿棒尖端朝外,同时沿电场线方向朝着棒尖端移动题 9-4 图分析与解电偶极子在非均匀外电场中,除了受到力矩作用使得电偶极子指向电场方向外,还将受到一个指向电场强度增强方向的合力作用,因而正确答案为(B).9-5精密实验表明,电子与质子电量差值的最大范围不会超过±10-21e,而中子电量与零差值的最大范围也不会超过±10-21e,由最极端的情况考虑,一个有8个电子,8个质子和8个中子构成的氧原子所带的最大可能净电荷是多少?若将原子视作质点,试比较两个氧原子间的库仑力和万有引力的大小.分析考虑到极限情况,假设电子与质子电量差值的最大范围为2×10-21e,中子电量为10-21e,则由一个氧原子所包含的8个电子、8个质子和8个中子可求原子所带的最大可能净电荷.由库仑定律可以估算两个带电氧原子间的库仑力,并与万有引力作比较.解 一个氧原子所带的最大可能净电荷为()e q 21max 10821-⨯⨯+=二个氧原子间的库仑力与万有引力之比为1108.2π46202max <<⨯==-Gmεq F F g e 显然即使电子、质子、中子等微观粒子带电量存在差异,其差异在±10-21e 范围内时,对于像天体一类电中性物体的运动,起主要作用的还是万有引力. 9-6 1964年,盖尔曼等人提出基本粒子是由更基本的夸克构成,中子就是由一个带e 32 的上夸克和两个带e 31-的下夸克构成.若将夸克作为经典粒子处理(夸克线度约为10-20 m),中子内的两个下夸克之间相距2.60×10-15 m .求它们之间的相互作用力.解 由于夸克可视为经典点电荷,由库仑定律()r r r r e r q q e e e F N 78.3π41π412202210===εε F 与径向单位矢量e r 方向相同表明它们之间为斥力.9-7 点电荷如图分布,试求P 点的电场强度.分析 依照电场叠加原理,P 点的电场强度等于各点电荷单独存在时在P 点激发电场强度的矢量和.由于电荷量为q 的一对点电荷在P 点激发的电场强度大小相等、方向相反而相互抵消,P 点的电场强度就等于电荷量为2.0q 的点电荷在该点单独激发的场强度.解 根据上述分析2020π1)2/(2π41aq a q E P εε==题 9-7 图9-8 若电荷Q 均匀地分布在长为L 的细棒上.求证:(1) 在棒的延长线,且离棒中心为r 处的电场强度为 2204π1L r Q εE -= (2) 在棒的垂直平分线上,离棒为r 处的电场强度为2204π21L r r Q εE += 若棒为无限长(即L →∞),试将结果与无限长均匀带电直线的电场强度相比较.题 9-8 图分析 这是计算连续分布电荷的电场强度.此时棒的长度不能忽略,因而不能将棒当作点电荷处理.但带电细棒上的电荷可看作均匀分布在一维的长直线上.如图所示,在长直线上任意取一线元d x ,其电荷为d q =Q d x /L ,它在点P 的电场强度为r r q εe E 20d π41d '=整个带电体在点P 的电场强度 ⎰=E E d接着针对具体问题来处理这个矢量积分.(1) 若点P 在棒的延长线上,带电棒上各电荷元在点P 的电场强度方向相同,⎰=L E i E d(2) 若点P 在棒的垂直平分线上,如图(a)所示,则电场强度E 沿x 轴方向的分量因对称性叠加为零,因此,点P 的电场强度就是⎰⎰==L y E E j j E d sin d α证 (1) 延长线上一点P 的电场强度⎰'=L r q E20π2d ε,利用几何关系 r ′=r -x 统一积分变量,则 ()220022204π12/12/1π4d π41L r Q εL r L r L εQ x r L x Q εE L/-L/P -=⎥⎦⎤⎢⎣⎡+--=-=⎰电场强度的方向沿x 轴.(2) 根据以上分析,中垂线上一点P 的电场强度E 的方向沿y 轴,大小为E r εq αE L d π4d sin 2⎰'= 利用几何关系 sin α=r /r ′,22x r r +=' 统一积分变量,则()2202/32222041π2d π41Lr r Q r x L x rQ E L/-L/+=+=⎰εε 当棒长L →∞时,若棒单位长度所带电荷λ为常量,则P 点电场强度 rελL r LQ r εE l 0220π2 /41/π21lim =+=∞→ 此结果与无限长带电直线周围的电场强度分布相同[图(b)].这说明只要满足r 2/L 2 <<1,带电长直细棒可视为无限长带电直线.9-9 一半径为R 的半球壳,均匀地带有电荷,电荷面密度为σ,求球心处电场强度的大小.题 9-9 图分析 这仍是一个连续带电体问题,求解的关键在于如何取电荷元.现将半球壳分割为一组平行的细圆环,如图所示,从教材第9-3节的例2可以看出,所有平行圆环在轴线上P 处的电场强度方向都相同,将所有带电圆环的电场强度积分,即可求得球心O 处的电场强度.解 将半球壳分割为一组平行细圆环,任一个圆环所带电荷元θθδδd sin π2d d 2⋅⋅==R S q ,在点O 激发的电场强度为()i E 2/3220d π41d r x q x +=ε 由于平行细圆环在点O 激发的电场强度方向相同,利用几何关系θR x cos =,θR r sin =统一积分变量,有()θθθεδθθδθεεd cos sin 2 d sin π2cos π41d π41d 02303/2220=⋅=+=R R R r x q x E 积分得 02/π004d cos sin 2εδθθθεδ⎰==E 9-10 水分子H 2O 中氧原子和氢原子的等效电荷中心如图所示,假设氧原子和氢原子等效电荷中心间距为r 0 .试计算在分子的对称轴线上,距分子较远处的电场强度.题 9-10 图分析 水分子的电荷模型等效于两个电偶极子,它们的电偶极矩大小均为00er P =,而夹角为2θ.叠加后水分子的电偶极矩大小为θcos 20er p =,方向沿对称轴线,如图所示.由于点O 到场点A 的距离x >>r 0 ,利用教材第5 -3 节中电偶极子在延长线上的电场强度302π41xp εE = 可求得电场的分布.也可由点电荷的电场强度叠加,求电场分布. 解1 水分子的电偶极矩θθcos 2cos 200er p p ==在电偶极矩延长线上30030030cos π1cos 4π412π41x θer εx θer εx p εE === 解2 在对称轴线上任取一点A ,则该点的电场强度+-+=E E E2020π42π4cos 2cos 2x εe r εθer E βE E -=-=+ 由于 θxr r x r cos 202022-+=rθr x βcos cos 0-=代入得()⎥⎥⎦⎤⎢⎢⎣⎡--+-=22/30202001cos 2cos π42x xr r x r x e E θθε 测量分子的电场时, 总有x >>r 0 , 因此, 式中()⎪⎭⎫ ⎝⎛⋅-≈⎪⎭⎫ ⎝⎛-≈-+x r x x r x xr r x θθθcos 2231cos 21cos 2032/3032/30202,将上式化简并略去微小量后,得300cos π1x θe r εE = 9-11 两条无限长平行直导线相距为r 0,均匀带有等量异号电荷,电荷线密度为λ.(1) 求两导线构成的平面上任一点的电场强度( 设该点到其中一线的垂直距离为x );(2) 求每一根导线上单位长度导线受到另一根导线上电荷作用的电场力.题 9-11 图分析 (1) 在两导线构成的平面上任一点的电场强度为两导线单独在此所激发的电场的叠加.(2) 由F =q E ,单位长度导线所受的电场力等于另一根导线在该导线处的电场强度乘以单位长度导线所带电量,即:F =λE .应该注意:式中的电场强度E 是另一根带电导线激发的电场强度,电荷自身建立的电场不会对自身电荷产生作用力.解 (1) 设点P 在导线构成的平面上,E +、E -分别表示正、负带电导线在P 点的电场强度,则有()i i E E E x r x r x r x -=⎪⎪⎭⎫ ⎝⎛-+=+=+-00000π211π2ελελ(2) 设F +、F -分别表示正、负带电导线单位长度所受的电场力,则有i E F 00π2r ελλ==-+ i E F 002π2r ελλ-=-=+- 显然有F +=F -,相互作用力大小相等,方向相反,两导线相互吸引.9-12 设匀强电场的电场强度E 与半径为R 的半球面的对称轴平行,试计算通过此半球面的电场强度通量.题 9-12 图分析 方法1:作半径为R 的平面S 与半球面S 一起可构成闭合曲面,由于闭合面内无电荷,由高斯定理∑⎰==⋅01d 0q εS S E 这表明穿过闭合曲面的净通量为零,穿入平面S ′的电场强度通量在数值上等于穿出半球面S 的电场强度通量.因而⎰⎰'⋅-=⋅=S S S E S E Φd d 方法2:由电场强度通量的定义,对半球面S 求积分,即⎰⋅=S S d s E Φ解1 由于闭合曲面内无电荷分布,根据高斯定理,有⎰⎰'⋅-=⋅=S S S E S E Φd d 依照约定取闭合曲面的外法线方向为面元d S 的方向,E R R E 22ππcos π=⋅⋅-=Φ解2 取球坐标系,电场强度矢量和面元在球坐标系中可表示为()r E e e e E ϕθθϕϕθϕsin sin cos sin cos ++=r θθR e S d d sin d 2=ER ER ER S S 2π0π02222πd sin d sin d d sin sin d ===⋅=⎰⎰⎰⎰ϕϕθθϕθϕθS E Φ9-13 地球周围的大气犹如一部大电机,由于雷雨云和大气气流的作用,在晴天区域,大气电离层总是带有大量的正电荷,云层下地球表面必然带有负电荷.晴天大气电场平均电场强度约为1m V 120-⋅,方向指向地面.试求地球表面单位面积所带的电荷(以每平方厘米的电子数表示).分析 考虑到地球表面的电场强度指向地球球心,在大气层中取与地球同心的球面为高斯面,利用高斯定理可求得高斯面内的净电荷.解 在大气层临近地球表面处取与地球表面同心的球面为高斯面,其半径E R R ≈(E R 为地球平均半径).由高斯定理∑⎰=-=⋅q εR E E 021π4d S E 地球表面电荷面密度∑--⋅⨯-=-≈=2902m C 1006.1π4/E R q E εσ单位面积额外电子数25cm 1063.6)/(-⨯=-=e n σ9-14 设在半径为R 的球体内电荷均匀分布,电荷体密度为ρ,求带电球内外的电场强度分布.分析 电荷均匀分布在球体内呈球对称,带电球激发的电场也呈球对称性.根据静电场是有源场,电场强度应该沿径向球对称分布.因此可以利用高斯定理求得均匀带电球内外的电场分布.以带电球的球心为中心作同心球面为高斯面,依照高斯定理有⎰==⋅s Q E r S E 0i 2π4d ε上式中i Q 是高斯面内的电荷量,分别求出处于带电球内外的高斯面内的电荷量,即可求得带电球内外的电场强度分布.解 依照上述分析,由高斯定理可得R r <时, 302π34π4r E r ερ= 假设球体带正电荷,电场强度方向沿径向朝外.考虑到电场强度的方向,带电球体内的电场强度为r E 03ερ= R r >时, 302π34π4R E r ερ= 考虑到电场强度沿径向朝外,带电球体外的电场强度为 r e rR E 2033ερ=9-15 两个带有等量异号电荷的无限长同轴圆柱面,半径分别为R 1 和R 2 (R 2>R 1 ),单位长度上的电荷为λ.求离轴线为r 处的电场强度:(1) r <R 1 ,(2) R 1 <r <R 2 ,(3) r >R 2 .题 9-15 图分析 电荷分布在无限长同轴圆柱面上,电场强度也必定沿轴对称分布,取同轴圆柱面为高斯面,只有侧面的电场强度通量不为零,且⎰⋅=⋅rL E d π2S E ,求出不同半径高斯面内的电荷∑q .即可解得各区域电场的分布.解 作同轴圆柱面为高斯面,根据高斯定理∑=⋅0/π2εq rL Er <R 1 , 0=∑q01=ER 1 <r <R 2 , L λq =∑rελE 02π2= r >R 2, 0=∑q03=E在带电面附近,电场强度大小不连续,如图(b )所示,电场强度有一跃变 000π2π2ΔεσrL εL λr ελE === 9-16 如图所示,有三个点电荷Q 1 、Q 2 、Q 3 沿一条直线等间距分布且Q 1 =Q 3 =Q .已知其中任一点电荷所受合力均为零,求在固定Q 1 、Q 3 的情况下,将Q 2从点O 移到无穷远处外力所作的功.题 9-16 图分析 由库仑力的定义,根据Q 1 、Q 3 所受合力为零可求得Q 2 .外力作功W ′应等于电场力作功W 的负值,即W ′=-W .求电场力作功的方法有两种:(1)根据功的定义,电场力作的功为l E d 02⎰∞=Q W 其中E 是点电荷Q 1 、Q 3 产生的合电场强度.(2) 根据电场力作功与电势能差的关系,有()0202V Q V V Q W =-=∞其中V 0 是Q 1 、Q 3 在点O 产生的电势(取无穷远处为零电势).解1 由题意Q 1 所受的合力为零()02π4π420312021=+d εQ Q d εQ Q 解得 Q Q Q 414132-=-=由点电荷电场的叠加,Q 1 、Q 3 激发的电场在y 轴上任意一点的电场强度为 ()2/322031π2y d εQ E E E yy y +=+=将Q 2 从点O 沿y 轴移到无穷远处,(沿其他路径所作的功相同,请想一想为什么?)外力所作的功为()d εQ y y d εQ Q Q W y 022/3220002π8d π241d =+⋅⎥⎦⎤⎢⎣⎡--=⋅-='⎰⎰∞∞l E 解2 与解1相同,在任一点电荷所受合力均为零时Q Q 412-=,并由电势的叠加得Q 1 、Q 3 在点O 的电势dεQ d εQ d εQ V 003010π2π4π4=+= 将Q 2 从点O 推到无穷远处的过程中,外力作功dεQ V Q W 0202π8=-=' 比较上述两种方法,显然用功与电势能变化的关系来求解较为简洁.这是因为在许多实际问题中直接求电场分布困难较大,而求电势分布要简单得多. 9-17 已知均匀带电长直线附近的电场强度近似为r rελe E 0π2= 其中λ为电荷线密度.(1)求在r =r 1 和r =r 2 两点间的电势差;(2)在点电荷的电场中,我们曾取r →∞处的电势为零,求均匀带电长直线附近的电势时,能否这样取? 试说明.解 (1) 由于电场力作功与路径无关,若沿径向积分,则有12012ln π2d 21r r ελU r r =⋅=⎰r E (2) 不能.严格地讲,电场强度r e rελE 0π2=只适用于无限长的均匀带电直线,而此时电荷分布在无限空间,r →∞处的电势应与直线上的电势相等. 9-18 一个球形雨滴半径为0.40 mm ,带有电量1.6 pC ,它表面的电势有多大? 两个这样的雨滴相遇后合并为一个较大的雨滴,这个雨滴表面的电势又是多大?分析 取无穷远处为零电势参考点,半径为R 带电量为q 的带电球形雨滴表面电势为Rq εV 0π41= 当两个球形雨滴合并为一个较大雨滴后,半径增大为R 32,代入上式后可以求出两雨滴相遇合并后,雨滴表面的电势.解 根据已知条件球形雨滴半径R 1=0.40 mm ,带有电量q 1=1.6 pC ,可以求得带电球形雨滴表面电势V 36π411101==R q εV 当两个球形雨滴合并为一个较大雨滴后,雨滴半径1322R R =,带有电量 q 2=2q 1 ,雨滴表面电势V 5722π4113102==R q εV 9-19 电荷面密度分别为+σ和-σ的两块“无限大”均匀带电的平行平板,如图(a)放置,取坐标原点为零电势点,求空间各点的电势分布并画出电势随位置坐标x 变化的关系曲线.题 9-19 图分析 由于“无限大”均匀带电的平行平板电荷分布在“无限”空间,不能采用点电荷电势叠加的方法求电势分布:应该首先由“无限大”均匀带电平板的电场强度叠加求电场强度的分布,然后依照电势的定义式求电势分布. 解 由“无限大” 均匀带电平板的电场强度i 02εσ±,叠加求得电场强度的分布, ()()()⎪⎪⎩⎪⎪⎨⎧><<--<=a x a x a a x0 00i E εσ电势等于移动单位正电荷到零电势点电场力所作的功()a x a x εσV x<<--=⋅=⎰ d 00l E ()a x a εσV -<=⋅+⋅=⎰⎰- d d 00a-a x l E l E ()a x a V >-=⋅+⋅=⎰⎰ d d 00a a x εσl E l E 电势变化曲线如图(b)所示. 9-20 两个同心球面的半径分别为R 1 和R 2 ,各自带有电荷Q 1 和Q 2 .求:(1) 各区域电势分布,并画出分布曲线;(2) 两球面间的电势差为多少?题 9-20 图分析 通常可采用两种方法.方法(1) 由于电荷均匀分布在球面上,电场分布也具有球对称性,因此,可根据电势与电场强度的积分关系求电势.取同心球面为高斯面,借助高斯定理可求得各区域的电场强度分布,再由⎰∞⋅=p p V l E d 可求得电势分布.(2)利用电势叠加原理求电势.一个均匀带电的球面,在球面外产生的电势为rεQ V 0π4= 在球面内电场强度为零,电势处处相等,等于球面的电势RεQ V 0π4= 其中R 是球面的半径.根据上述分析,利用电势叠加原理,将两个球面在各区域产生的电势叠加,可求得电势的分布.解1 (1) 由高斯定理可求得电场分布()()()22021321201211 π4 π40R r r εQ Q R r R r εQ R r r r >+=<<=<=e E e E E 由电势⎰∞⋅=r V l E d 可求得各区域的电势分布.当r ≤R 1 时,有20210120212113211π4π4π411π40d d d 2211R εQ R εQ R εQ Q R R εQ V R R R R r +=++⎥⎦⎤⎢⎣⎡-+=⋅+⋅+⋅=⎰⎰⎰∞l E l E l E 当R 1 ≤r ≤R 2 时,有202012021201322π4π4π411π4d d 22R εQ r εQ R εQ Q R r εQ V R R r +=++⎥⎦⎤⎢⎣⎡-=⋅+⋅=⎰⎰∞l E l E当r ≥R 2 时,有rεQ Q V r 02133π4d +=⋅=⎰∞l E (2) 两个球面间的电势差⎪⎪⎭⎫ ⎝⎛-=⋅=⎰210121211π4d 21R R εQ U R R l E 解2 (1) 由各球面电势的叠加计算电势分布.若该点位于两个球面内,即r ≤R 1 ,则2021011π4π4R εQ R εQ V +=若该点位于两个球面之间,即R 1≤r ≤R 2 ,则202012π4π4R εQ r εQ V += 若该点位于两个球面之外,即r ≥R 2 ,则rεQ Q V 0213π4+=(2) 两个球面间的电势差 ()2011012112π4π42R εQ R εQ V V U R r -=-== 9-21 一半径为R 的无限长带电细棒,其内部的电荷均匀分布,电荷的体密度为ρ.现取棒表面为零电势,求空间电势分布并画出分布曲线.题 9-21 图分析 无限长均匀带电细棒电荷分布呈轴对称,其电场和电势的分布也呈轴对称.选取同轴柱面为高斯面,利用高斯定理⎰⎰=⋅V V d 1d 0ρεS E 可求得电场分布E (r ),再根据电势差的定义 ()l E d ⋅=-⎰b ab a r V V 并取棒表面为零电势(V b =0),即可得空间任意点a 的电势.解 取高度为l 、半径为r 且与带电棒同轴的圆柱面为高斯面,由高斯定理 当r ≤R 时02/ππ2ερl r rl E =⋅得 ()02εr ρr E =当r ≥R 时 02/ππ2ερl R rl E =⋅得 ()rεR ρr E 022= 取棒表面为零电势,空间电势的分布有当r ≤R 时()()22004d 2r R ερr εr ρr V R r -==⎰当r ≥R 时 ()rR εR ρr r εR ρr V Rr ln 2d 20202==⎰ 如图所示是电势V 随空间位置r 的分布曲线. 9-22 一圆盘半径R =3.00 ×10-2 m.圆盘均匀带电,电荷面密度σ=2.00×10-5 C ·m -2 .(1) 求轴线上的电势分布;(2) 根据电场强度与电势梯度的关系求电场分布;(3) 计算离盘心30.0 cm 处的电势和电场强度.题 9-22 图分析 将圆盘分割为一组不同半径的同心带电细圆环,利用带电细环轴线上一点的电势公式,将不同半径的带电圆环在轴线上一点的电势积分相加,即可求得带电圆盘在轴线上的电势分布,再根据电场强度与电势之间的微分关系式可求得电场强度的分布.解 (1) 如图所示,圆盘上半径为r 的带电细圆环在轴线上任一点P 激发的电势220d π2π41d x r r r σεV += 由电势叠加,轴线上任一点P 的电势的()x x R εσx r r r εσV R -+=+=⎰22002202d 2 (1) (2) 轴线上任一点的电场强度为i i E ⎥⎦⎤⎢⎣⎡+-=-=22012d d x R x εσx V (2) 电场强度方向沿x 轴方向. (3) 将场点至盘心的距离x =30.0 cm 分别代入式(1)和式(2),得V 6911=V-1m V 6075⋅=E当x >>R 时,圆盘也可以视为点电荷,其电荷为C 1065.5π82-⨯==σR q .依照点电荷电场中电势和电场强度的计算公式,有V 1695π40==xεq V 1-20m V 5649π4⋅==xεq E 由此可见,当x >>R 时,可以忽略圆盘的几何形状,而将带电的圆盘当作点电荷来处理.在本题中作这样的近似处理,E 和V 的误差分别不超过 0.3%和0.8%,这已足以满足一般的测量精度.9-23 两个很长的共轴圆柱面(R 1 =3.0×10-2m ,R 2 =0.10 m),带有等量异号的电荷,两者的电势差为450 V.求:(1) 圆柱面单位长度上带有多少电荷?(2) r =0.05 m 处的电场强度.解 (1) 由习题9-15 的结果,可得两圆柱面之间的电场强度为 rελE 0π2=根据电势差的定义有120212ln π2d 21R R ελU R R =⋅=⎰l E 解得 1812120m C 101.2ln /π2--⋅⨯==R R U ελ (2) 解得两圆柱面之间r =0.05m 处的电场强度10m V 475 7π2-⋅==rE ελ 9-24 轻原子核(如氢及其同位素氘、氚的原子核)结合成为较重原子核的过程,叫做核聚变.在此过程中可以释放出巨大的能量.例如四个氢原子核(质子)结合成一个氦原子核(α粒子)时,可释放出25.9MeV 的能量.即MeV 25.9e 2He H 4014211++→这类聚变反应提供了太阳发光、发热的能源.如果我们能在地球上实现核聚变,就能获得丰富廉价的能源.但是要实现核聚变难度相当大,只有在极高的温度下,使原子热运动的速度非常大,才能使原子核相碰而结合,故核聚变反应又称作热核反应.试估算:(1)一个质子(H 11)以多大的动能(以电子伏特表示)运动,才能从很远处到达与另一个质子相接触的距离? (2)平均热运动动能达到此值时,温度有多高? (质子的半径约为1.0 ×10-15 m) 分析 作为估算,可以将质子上的电荷分布看作球对称分布,因此质子周围的电势分布为 rεe V 0π4= 将质子作为经典粒子处理,当另一质子从无穷远处以动能E k 飞向该质子时,势能增加,动能减少,如能克服库仑斥力而使两质子相碰,则质子的初始动能Re r eV E 2π41202R k 0ε=≥ 假设该氢原子核的初始动能就是氢分子热运动的平均动能,根据分子动理论知:kT E 23k = 由上述分析可估算出质子的动能和此时氢气的温度.解 (1) 两个质子相接触时势能最大,根据能量守恒eV 102.72π415202R K0⨯==≥Re r εeV E 由20k021v m E =可估算出质子初始速率 17k 00s m 102.1/2-⋅⨯==m E v该速度已达到光速的4%.(2) 依照上述假设,质子的初始动能等于氢分子的平均动能kT E E 23k k0== 得 K 106.5329k0⨯≈=kE T 实际上在这么高的温度下,中性原子已被离解为电子和正离子,称作等离子态,高温的等离子体不能用常规的容器来约束,只能采用磁场来约束(托卡马克装置)9-25 在一次典型的闪电中,两个放电点间的电势差约为109V,被迁移的电荷约为30 C.(1) 如果释放出来的能量都用来使0 ℃的冰融化成0 ℃的水,则可溶解多少冰? (冰的融化热L =3.34 ×105 J· kg)(2) 假设每一个家庭一年消耗的能量为3 000kW ·h ,则可为多少个家庭提供一年的能量消耗?解 (1) 若闪电中释放出来的全部能量为冰所吸收,故可融化冰的质量 kg 1098.8Δ4⨯===LqU L E m 即可融化约 90 吨冰. (2) 一个家庭一年消耗的能量为J 1008.1h kW 0003100⨯=⋅=E8.2Δ00===E qU E E n 一次闪电在极短的时间内释放出来的能量约可维持3个家庭一年消耗的电能.9-26 已知水分子的电偶极矩p =6.17×10-30 C · m.这个水分子在电场强度E =1.0 ×105 V · m -1的电场中所受力矩的最大值是多少?分析与解 在均匀外电场中,电偶极子所受的力矩为E p M ⨯=当电偶极子与外电场正交时,电偶极子所受的力矩取最大值.因而有m N 1017.625max ⋅⨯==-pE M9-27 电子束焊接机中的电子枪如图所示,K 为阴极,A 为阳极,阴极发射的电子在阴极和阳极电场加速下聚集成一细束,以极高的速率穿过阳极上的小孔,射到被焊接的金属上使两块金属熔化在一起.已知V 105.24AK⨯=U ,并设电子从阴极发射时的初速度为零,求:(1)电子到达被焊接金属时具有的动能;(2)电子射到金属上时的速度.分析 电子被阴极和阳极间的电场加速获得动能,获得的动能等于电子在电场中减少的势能.由电子动能与速率的关系可以求得电子射到金属上时的速度.解 (1)依照上述分析,电子到达被焊接金属时具有的动能 eV 105.24AK k ⨯==eU E(2)由于电子运动的动能远小于电子静止的能量,可以将电子当做经典粒子处理.电子射到金属上时的速度题 9-27 图第十章静电场中的导体与电介质10-1将一个带正电的带电体A从远处移到一个不带电的导体B 附近,则导体B 的电势将()(A)升高(B)降低(C)不会发生变化(D)无法确定分析与解不带电的导体B 相对无穷远处为零电势.由于带正电的带电体A 移到不带电的导体B附近时,在导体B 的近端感应负电荷;在远端感应正电荷,不带电导体的电势将高于无穷远处,因而正确答案为(A).10-2将一带负电的物体M靠近一不带电的导体N,在N的左端感应出正电荷,右端感应出负电荷.若将导体N的左端接地(如图所示),则()(A) N上的负电荷入地(B)N上的正电荷入地(C) N上的所有电荷入地(D)N上所有的感应电荷入地题 10-2 图分析与解导体N接地表明导体N为零电势,即与无穷远处等电势,这与导体N在哪一端接地无关.因而正确答案为(A).10-3如图所示将一个电量为q的点电荷放在一个半径为R的不带电的导体球附近,点电荷距导体球球心为d ,参见附图.设无穷远处为零电势,则在导体球球心O 点有( )(A )d εq V E 0π4,0== (B )dεq V d εq E 020π4,π4== (C )0,0==V E (D )Rεq V d εq E 020π4,π4==题 10-3 图分析与解 达到静电平衡时导体内处处各点电场强度为零.点电荷q 在导 体球表面感应等量异号的感应电荷±q′,导体球表面的感应电荷±q′在球心O 点激发的电势为零,O 点的电势等于点电荷q 在该处激发的电势.因而正确答案为(A ).10-4 根据电介质中的高斯定理,在电介质中电位移矢量沿任意一个闭合曲面的积分等于这个曲面所包围自由电荷的代数和.下列推论正确的是( )(A ) 若电位移矢量沿任意一个闭合曲面的积分等于零,曲面内一定没有自由电荷(B ) 若电位移矢量沿任意一个闭合曲面的积分等于零,曲面内电荷的代数和一定等于零(C ) 若电位移矢量沿任意一个闭合曲面的积分不等于零,曲面内一定有极化电荷(D ) 介质中的高斯定律表明电位移矢量仅仅与自由电荷的分布有关 (E ) 介质中的电位移矢量与自由电荷和极化电荷的分布有关。
2024版大学物理学(全套课件下册)马文蔚
态的变化过程。
宇宙的基本规律和演化
03
研究宇宙的大尺度结构、天体演化、宇宙起源和演化等基本问
题。
物理学的研究方法和意义
实验方法 通过实验手段观测和测量物理现象, 验证物理规律和理论。
理论方法
通过数学和物理理论,建立物理模型 和理论框架,解释和预测物理现象。
计算方法
利用计算机进行数值模拟和计算,研 究复杂物理系统的性质和行为。
物理学的意义
物理学的研究不仅有助于人类认识自 然规律,也为其他科学和工程领域提 供了基础理论和技术支持。
大学物理学的课程内容和要求
课程内容
大学物理学通常包括力学、热学、 电磁学、光学、近代物理等基础 内容,以及一些拓展内容,如相 对论、量子力学等。
课程要求
学生需要掌握基本的物理概念、 原理和定律,具备分析和解决物 理问题的能力,同时培养实验技 能和科学思维方法。
利用几何光学原理设计的仪 器,如显微镜、望远镜、照
相机等。
利用全反射原理实现光信号 在光纤中的长距离传输,具 有传输容量大、抗干扰能力
强等优点。
利用受激辐射原理产生高强 度、高单色性、高方向性的 光束,广泛应用于工业加工、
医疗、科研等领域。
利用光学系统对信息进行变 换和处理,如全息照相、光
学计算机等。
02
03
磁感应强度
描述磁场强弱和方向的物 理量。
毕奥-萨伐尔定律
计算电流元在空间中产生 磁场的定律。
磁场对电流的作用
探讨磁场对通电导线的作 用力,即安培力。
电磁感应
1 2
法拉第电磁感应定律 描述磁场变化时会在导体中产生感应电动势的定 律。
楞次定律
判断感应电流方向的定律,即感应电流的磁场总 是阻碍引起感应电流的磁通量的变化。
物理学教程马文蔚习题答案
物理学教程马文蔚习题答案物理学教程马文蔚习题答案在学习物理学的过程中,我们常常会遇到一些难题,需要寻找答案来解决疑惑。
而马文蔚的物理学教程就是一本非常优秀的教材,它不仅提供了丰富的知识点,还包含了大量的习题。
在这篇文章中,我将为大家提供一些马文蔚物理学教程中的习题答案,希望能够对大家的学习有所帮助。
1. 习题一:一个质量为2kg的物体以10m/s的速度向东运动,受到一个向西的5N的力,求物体在2s后的速度。
解答:根据牛顿第二定律F=ma,可以求得物体的加速度a=F/m=5N/2kg=2.5m/s^2。
根据物体的匀加速运动公式v=v0+at,可以求得物体在2s后的速度v=10m/s+2.5m/s^2*2s=15m/s。
2. 习题二:一个弹簧的劲度系数为100N/m,如果将它拉伸1cm,求所需的力。
解答:根据胡克定律F=kx,可以求得所需的力F=100N/m*0.01m=1N。
3. 习题三:一个质量为0.1kg的物体从高度为10m的位置自由落下,求物体落地时的速度。
解答:根据重力势能和动能的转化关系mgh=1/2mv^2,可以求得物体落地时的速度v=sqrt(2gh)=sqrt(2*10m/s^2*10m)=sqrt(200)m/s=14.14m/s。
4. 习题四:一个质量为2kg的物体以10m/s的速度水平投掷,求物体在0.5s后的位置。
解答:根据物体的匀速直线运动公式x=x0+vt,可以求得物体在0.5s后的位置x=10m/s*0.5s=5m。
以上是我为大家提供的一些马文蔚物理学教程中的习题答案。
希望通过这些答案的解析,能够帮助大家更好地理解物理学的知识点,提高解题能力。
当然,这只是一部分习题的答案,马文蔚的物理学教程中还有更多的习题等待大家去探索和解答。
希望大家在学习物理学的过程中能够勤于思考,不断探索,提高自己的物理素养。
物理学下第五版马文蔚复习PPT(精简版)光学2-衍射讲述
2
R
L
A
A1
C
B
/2
R
L
A
A1
A2
C
B /2
P
Q
o
PQ
o
6
物理学
第五版
11-7 单缝衍射
R L
A
A1
A2
C
B /2
P Q BC bsin
k
o
Байду номын сангаас
2
( k 个半波带)
bsin 0
中央明纹中心
bsin 2k k 干涉相消(暗纹) 2k个半波带
b sin b sin
2 (2k
1)
干涉加强(明纹)
26
物理学
第五版
11-9 衍射光栅
(4) 光栅衍射的强度被一个单缝图样调制
光栅衍射强度分布
很多缝,却为何只有一个衍射图样?
27
物理学
11-9 衍射光栅
第五版
单缝衍射光强曲线
2
1
0
1
2
多光束干涉光强曲线
6 5 4 3 2 1 0
光栅衍射光强曲线
12 3 4
单缝衍射 轮廓线
中央明纹的宽度
l0
2 x1
2
b
f
13
物理学
第五版
11-7 单缝衍射
(4)条纹宽度(相邻条纹间距)
bsin 2k k 干涉相消(暗纹)
b sin
(2k
2
1)
干涉加强(明纹)
2
l
k1 f
k
f
f
b
除了中央明纹外 其它明纹的宽度
14
物理学
马文蔚《物理学》(第6版)(下册)配套题库【名校考研真题+课后习题+章..
目 录第一部分 名校考研真题第9章 振 动第10章 波 动第11章 光 学第12章 气体动理论第13章 热力学基础第14章 相对论第15章 量子物理第二部分 课后习题第9章 振 动第10章 波 动第11章 光 学第12章 气体动理论第13章 热力学基础第14章 相对论第15章 量子物理第三部分 章节题库第9章 振 动第10章 波 动第11章 光 学第12章 气体动理论第13章 热力学基础第14章 相对论第15章 量子物理第四部分 模拟试题马文蔚等《物理学》配套模拟试题及详解第一部分 名校考研真题第9章 振 动一、选择题一弹簧振子,重物的质量为m ,弹簧的劲度系数为k ,该振子作振幅为A 的简谐振动.当重物通过平衡位置且向规定的正方向运动时开始计时,则其振动方程为( ).[电子科技大学2007研]A.B .C .D.E.二、填空题一物体作简谐振动,其振动方程为(国际单位制).则此简谐振动的周期为______;当t =0.6s 时,物体的速度为______.[南京航空航天大学2008研]三、计算题1.考虑n =2摩尔的理想气体氦气,置于一垂直放置的圆柱体所缸中,如图9-1所示.水平放置的活塞可以在气缸中无摩擦上下运动.活塞质量为,气缸截面积为.活塞被一无质量的弹簧与气缸上端连接,活塞向下运动时将氦气向下压缩,活塞上方为真空.系统开始阶段活塞与氦气处于平衡状态时,弹簧处于未形变状态,氦气压强为B【答案】1.2s ;-20.9cm/s【答案】、温度为、体积为.假定弹簧弹性常数,气体常数,对于单原子氦气,热容比.活塞在平衡位置作小幅谐振动,计算其谐振频率f.[南京大学2006研]图9-1解:对弹簧,由牛顿第二定律可得: ①由于振动很快,系统来不及与外界发生热量交换,视为绝热过程,因此有:由于活塞在平衡位置作小幅谐振动,因此V0与V之间的变化很小,利用泰勒展开得: ②将②式代入①式有: ③初始时活塞处于平衡状态,有: ④将④代入③有: 整理得: 解得振动频率为: 2.质量分别为和的两个物体A、B,固定在倔强系数为的弹簧两端,竖直地放在水平桌面上,如图9-2所示.用一力垂直地压在A上,并使其静止不动.然后突然撤去,问欲使B离开桌面至少应多大?[中科院–中科大2007研]图9-2解:欲使B刚好弹起,则A到达最高点时弹簧的伸长量至少应为.假设力F作用下弹簧的压缩量为(初始位置),弹簧无变形时A的坐标为0(平衡位置).运动方程为: 当时,,则方程的解为:利用对称性,在最高点有.整理可得:又,于是:3.如图9-3所示,已知轻弹簧的劲度系数为k,定滑轮可看作质量为M,半径为R的均质圆盘,物体的质量为m,试求:(1)系统的振动周期;(2)当将m托至弹簧原长并释放时,求m的运动方程(以向下为正方向).[南京理工大学2005研]图9-3 图9-4解:(1)受力分析如图9-4所示,设平衡位置为原点,向下为正,则将物体拉至处时:对m:对: (为角加速度)解得:即: 则系统振动圆频率: 振动周期: (2)设振动方程,其中,.初始条件,当时: 解得: 求得m的运动方程为: 第10章 波 动一、选择题一平面简谐波沿x 轴正方向传播,振幅为A ,频率为.设时刻的波形曲线如图10-1所示,则x=0处质点的振动方程为( ).[电子科技大学2006研]图10-1A.B .C .D.二、填空题1.一质点沿x 轴作简谐振动,它的振幅为A ,周期为T .时,质点位于x 轴负向离平衡最大位移的一半处且向负方向运动,则质点的振动方程为x =______.在一周期内质点从初始位置运动到正方向离平衡位置为最大位移的一半处的时间为______.[南京航空航天大学2007研]2.一平面简谐机械波在弹性媒质中传播,一媒质质元在通过平衡位置时,其振动动能与弹性势能______(填相同或不同).[湖南大学2007研]B 【答案】【答案】相同【答案】3.以波速u 向x 正方向传播的平面简谐波,振幅为A ,圆频率为,设位于坐标处的质点,t =0时,位移,且向y 负方向运动,则该质点的振动方程为______,该平面简谐波的波动方程(波函数)为______.[南京理工大学2005研]三、计算题1.火车以匀速行驶而过,铁路边探测器所测得的火车汽笛最高和最低频率分别为和,设声速为,求火车的行驶速度.[南京大学2006研]解:由多普勒效应可得: ① ②①、②两式相除,得:解得火车车速为:2.一列平面简谐纵波在均匀各向同性弹性介质中传播,求单位体积介质所具有的能量?(自设相关物理量).[北京师范大学2008研]解:波动方程:振动速度: 设介质的密度为,用dV 表示体元体积,则该体积元动能:体积应变: 则势能: 因为,所以: 则有: 所以,单位体积介质所具有的能量为:【答案】3.已知一平面简谐波的表达式为y=0.25cos(125t-0.37x)(SI).(1)分别求x1=10m,x2=25m两点处质点的振动方程.(2)求x1、x2两点间的振动相位差.(3)求x1点在t=4s时的振动位移.[浙江大学2008研]解:(1),(2)由,可得: 所以: (3)时的振动位移为:4.甲火车以43.2千米/小时的速度行驶,其上一乘客听到对面驶来的乙火车鸣笛声的频率为v1=512赫兹;当这一火车过后,听其鸣笛声的频率为v2=428赫兹.求乙火车上的人听到乙火车鸣笛的频率v0和乙火车对于地面的速度u.设空气中声波的速度为340米/秒.[中科院—中科大2009研]解:由题可得: 其中,v=340m/s,v0=43.2km/h=12m/s.解得:v0=468Hz,u=18.4m/s=66.3km/h5.如图10-2所示,一平面简谐波沿x轴正方向传播,已知振幅为A,频率为,波速为u.(1)若t=0时,原点O处质元正好由平衡位置向位移正方向运动,写出此波的波函数.(2)若该波在离原点处被竖直的墙面反射,欲使坐标原点处为波节,求满足的条件(设反射时无能量损失).[厦门大学2006研]图10-2解:(1)t=0时,y0=0,u0>0,所以初始相位,故波动方程为:(2)欲使波在x0处反射后到达y0处与原行波叠加产生波节,则原点O处两振动必须反相.即:所以有: ,k=0,1,2,…6.已知一平面余弦波振幅A=0.03m,波速u=1ms-1,波长,若以坐标原点O处质点恰好在平衡位置且向负方向运动时作为计时起点,求:(1)O点振动方程.(2)波动方程.(3)与原点相距处,t=1秒时,质点的位移、速度;(4)和两点间的相位差.[南京航空航天大学2006研]解:(1)设O点振动方程为:.其中,,由题意知:.于是: (2)波动方程为:.得:(3)与原点相距处,波动方程:得质点速度: 当t=1秒时: (4)相位差: 7.设入射波的表达式为,在处发生反射,反射点为一固定端,设反射时无能量损失,求:(1)反射波的表达式.(2)合成的驻波的表达式.(3)波腹和波节的位置.[湖南大学2007研]解:(1)反射波的表达式为: (2)驻波的表达式为:(3)由,可得波腹位置为:由,可得波节位置为:,8.图10-3所示为一沿x轴正方向传播的平面余弦行波在t=2s时刻的波形曲线,波速u=0.5m/s,求:(1)原点o的振动方程;(2)波动方程.[电子科技大学2007研]图10-3解:(1)由已知得:.可得振动方程:(2)波动方程为: 9.一横波沿绳子传播,其波的表达式为.(1)求此波的振幅、波速、频率和波长.(2)求绳子上各质点的最大振动速度和最大振动加速度.(3)求处和处二质点振动的相位差.[宁波大学2009研]解:(1)将波的表达式与标准形式比较,得:,(2) (3),二振动反相.第11章 光 学一、选择题1.在迈克耳孙干涉仪的一条光路中,放入一折射率为n 厚度为d 的透明介质片后,两光路光程差的改变量为( ).[暨南大学2010研]A.B.C.D.【解析】迈克尔孙干涉仪的原理为光的干涉,两束光进过G1平面镜被分为两束光,这两束光发生干涉.当在其中一条光路中放入折射率为n 的厚透明介质时,被放入介质的那条光路光程将发生变化,由于需要两次穿过新加入的透明介质,故光程差的改变量为:.2.自然光从空气入射到某介质表面上,当折射角为30°时,反射光是完全偏振光,则此介质的折射率为( ).[暨南大学2010研]A.B.C.D.3.若把牛顿环装置(都是用折射率为1.52的玻璃制成的)由空气搬入折射率为1.33的水中,则干涉条纹( ).[暨南大学2010研]C【答案】B【答案】当折射光线与反射光线垂直时反射完全偏振光,由折射公式得.【解析】A .中心暗斑变成亮斑B .间距不变C .变疏D .变密【解析】设牛顿环中某处的空气薄层厚度为e ,互相干涉的两束反射光的光程差为,若n 增大,则每个位置处的光程差增大,形成更大级数的干涉条纹,所以条纹变密.4.根据惠更斯——菲涅耳原理,若已知光在某时刻的波阵面为S ,则S 的前方某点P 的光强度决定于波阵面S 上所有面积元发出的子波各自传到P 点的( ).[暨南大学2010研]A .振动的相干叠加B .振动振幅之和C .光强之和D .振动振幅平方之和5.在单缝夫琅和费衍射实验中,波长为l 的单色光垂直入射在宽度为a=4l 的单缝上,对应于衍射角为30°的方向,单缝处波阵面可分成的半波带数目为( ).[暨南大学2010研]A .2个B .6个C .4个D .8个D【答案】A【答案】由惠更斯—菲涅耳原理,统一波阵面各点发出的子波,经传播而在空间某点相遇,发生的是相干叠加.【解析】C【答案】可近似将单缝所在平面看作波阵面,则每一半波带都沿单缝方向,设总半波带【解析】得N=4.6.一束白光垂直入射在光栅上,在形成的同一级光栅光谱中,偏离中央明纹最远的是( ).[暨南大学2010研]A .紫光B .黄光C .红光D .绿光【解析】根据光栅公式,同一级条纹满足,可见光中红光波长最长,故偏离中央明纹最远.7.光强为I 0的自然光依次垂直通过两个偏振片,且此两偏振片的偏振化方向夹角a=45°,若不考虑偏振片的反射和吸收,则透射偏振光的强度I 是( ).[暨南大学2010研]A.B.C.D.由此可得,8.一光波分别通过两种不同介质的光程相同,则( ).[暨南大学2011研]数为N ,则C【答案】A【答案】自然光经过任一偏振片后光强减半,再经过另一个偏振片,根据马吕斯定律【解析】A .光波通过这两种介质的时间不相同B .光波通过这两种介质的时间相同C .光波通过这两种介质后的位相不相同D .光波通过这两种介质后的位相相同9.在迈克耳孙干涉仪的一臂中放入一折射率为厚度为的透明介质片,同时在另一臂中放入一折射率为厚度为的透明介质片,设没有放两透明介质片时两臂的光程差为 则放入两透明介质片后两臂的光程差为( ).[暨南大学2011研]A.;B .C.D.10.关于光学仪器的分辨本领,下述表述错误的是( ).[暨南大学2011研]A .分辨本领受到衍射极限的限制B .分辨本领和光学仪器的通光口径有关C .分辨本领和照明光的波长有关D .分辨本领和照明光的强度有关B【答案】光程差公式为 L =nd ,在不同介质中光速不同,v =c/n,故传播时间为 t =d/v =L/c ,对不同的介质相同.出射光的位相与入射光有关,故不能确定.【解析】B【答案】放入介质片后,相应光路中的光两次经过此介质,光程变化为2nd ,所以放入两个介质片后,两臂的光程差变化为2(n2-n1)d【解析】D【答案】光学仪器的分辨率,与由衍射导致的像点的展宽有关,而衍射条纹与通光孔径【解析】11.自然光从空气入射到某透明介质表面上,则( ).[暨南大学2011研]A .反射光一定是完全偏振光B .反射光一定是部分偏振光C .折射光一定是部分偏振光D .折射光一定是完全偏振光12.眼镜片上的增透膜是根据光的以下什么现象做成的( ).[暨南大学2011研]A .光的干涉B .光的衍射C .光的布儒斯特定律D .光的马吕斯定律13.光强度( ).[暨南大学2011研]A .和光波的振幅成正比B .和光波的振幅的平方成正比C .和光波的位相成正比D .和光波的位相的平方成正比和波长有关,与光强无关.C【答案】根据菲涅耳反射折射公式,自然光入射产生的反射和折射光都将变成部分偏振光.但当入射角为布鲁斯特角时,反射光为完全偏振光.【解析】A【答案】增透膜的原理是通过在镜片表面镀膜,使得某波长的光在膜前后表面反射光之间光程差是半波长的奇数倍,从而使反射光相干抵消,增加透射.【解析】B【答案】光强度是单位面积单位时间内辐射光的平均能量,此平均能量与电场分量或磁场分量的振幅的平方成正比,而由于是时间平均效果,与位相无关.【解析】14.一束白光垂直入射在单缝上,在第一级夫琅和费衍射明纹中,靠近中央明纹的颜色是( ).[暨南大学2011研]A .紫光B .黄光C .红光D .绿光【解析】单缝衍射明纹满足,故条纹到中央明纹的距离与波长正相关,所以紫光一级明纹最靠近中间.15.光强为I0的自然光依次垂直通过三个偏振片,且第一和第三偏振片的偏振化方向夹角a=90°,第二和第三偏振片的偏振化方向夹角a=45°,若不考虑偏振片的反射和吸收,则从第三偏振片透射出的光强I 是( ).[暨南大学2011研]A.B.C.D.二、填空题1.一个平凸透镜的顶点和一平板玻璃接触,用单设光垂直照射,观察反射光形成的牛顿环,测得中央暗斑外第k 个暗环半径为r 1.现将透镜和玻璃板之间的空气换成某种液体(其折射率小于玻璃的折射率),第k 个暗环的半径变为变为r 2,由此可知该液体的折射率为______.[南京航空航天大学2008研]A【答案】C【答案】自然光经过第一个偏振片,光强减半.第一偏振片的偏振方向与第二个,第二个与第三个,夹角都是45°,根据马吕斯定律,【解析】2.自然光入射到空气和某玻璃的分界面上,当入射角为60°时,反射光为完全偏振光,则该玻璃的折射率为______;一束强度为的自然光垂直入射于两种平行放置且透光轴方向夹角为60°的偏振片上,则透射光强度为______.[南京理工大学2005研]三、计算题1.一平凸透镜置于一平板玻璃上,波长为6700Å的红光垂直从上方入射,由透镜凸表面和平板玻璃表面反射的光形成牛顿环干涉条纹.透镜和平玻璃的接触点处为暗纹,测得第12条暗纹的半径为11mm ,求透镜的曲率半径R .[暨南大学2010研]解:牛顿环上r半径处空气层的厚度为第12条暗纹处与第一条暗纹处光程差相差11个波长,可得透镜的曲率半径为 2.(5分)将麦克耳孙干涉仪的一臂稍微调长(移动镜面),观察到有150条暗纹移过视场.若所用光的波长为480nm ,求镜面移动的距离.[暨南大学2010研]解:在迈克尔孙干涉仪中,沿两条光路的光发生干涉,它们之间光程差每变化一个波长,则有一条暗纹移过视场.设镜面移动距离为d,则得.3.在杨氏双缝实验中,两缝相距2mm ,用l =750nm 和l¢=900nm 的混合光照明,若屏幕到缝的距离为2m ,问两种波长的光的干涉明纹重合的位置到中央明纹中线的最小距离为多少?[暨南大学2010研]解:双缝干涉第k级干涉明纹满足,【答案】【答案】要想使不同波长的两束光条纹重合,需要某级条纹距离相同,即可得,k最小值为6,故4.如何利用偏振片和波晶片(1/4波片、半波片等)将一束自然光转化为圆偏振光?又如何利用波晶片将一线偏振光的偏振方向旋转90度?[暨南大学2010研]解:(1)首先将自然光通过偏振片,变成线偏光.然后使线偏光通过1/4波片,保证线偏振方向与波片光轴方向呈45°角,从而出射的o光和e光方向相同,振幅相等,相位差,从而变成圆偏振光.(2)首先将线偏光通过一个1/4波片,变成圆偏光,再经过一个与原偏振方向垂直的偏振片,变成新方向的线偏光.5.白光垂直照射到一厚度为370nm的肥皂膜(膜的两侧都为空气)上,设肥皂的折射率为1.32,试问该膜的正面呈现什么颜色?[暨南大学2011研]解:肥皂膜前后表面反射光的光程差为青色光的波长范围是476-495 nm,所以L正好是青色光波长的二倍;红色光的波长范围是 620-750 nm,所以L正好是红色光波长的3/2倍.所以前后表面反射的红光相干相消,青光相干相长,所以呈青色.6.用波长500nm的单色光垂直照射到宽0.5mm的单缝上,在缝后置一焦距为0.5m的凸透镜,用一屏来观察夫琅和费衍射条纹,求在屏上中央明纹的宽度和第一级明纹的宽度?并定性解释级次越高,明纹的强度越低的原因.[暨南大学2011研]解:(1)单缝夫琅禾费衍射产生暗纹条件为中央和第一级明纹处衍射角很小,可以近似.所以各暗纹距离中央的位置为所以中央明纹和第一级明纹的宽度分别为(2)明纹级次越高,说明单缝两个位置单色光距明纹处的光程差越大,相位差越大.根据光振幅矢量性,相同幅值的相干光相位差越大,合成振幅越小,从而光强越低.7.请解释为什么劈尖干涉条纹是等间距的直条纹而牛顿环是非等间距的圆条纹?如果看到牛顿环的中央是暗纹,解释之?[暨南大学2011研]解:(1)根据干涉原理,不论是劈尖干涉条纹还是牛顿环条纹,相邻条纹处干涉光光程差的差为.因为劈尖上到顶点的距离和厚度成正比,而厚度和光程差成正比,所以会形成等间距的直条纹;而牛顿环空气层厚度与光程差成正比,但由于棱镜下表面是球形,使得厚度与到中心的水平距离不成正比,所以形成非等间距的圆条纹.(2)中央处空气层厚度为0,棱镜底面与平面玻璃表面发射光的光程差为0.但光由光疏介质(空气)进入光密介质(平面玻璃)进行反射时会产生半波损失,使得两束相干光完全相消,出现中央暗纹.8.杨氏双缝实验中,在两缝S1和S2前分别放置两偏振片P1和P2,在两缝S1和S2后放置一偏振片P3,如图11-1所示,照明光为一自然光.问 (1) 当P1和P2偏振化方向相同,P1和P3偏振片的偏振化方向夹角为45°,屏上是否会出现干涉条纹?为什么?(2)当P1和P2偏振化方向垂直,P1和P3偏振片的偏振化方向夹角为45°,屏上是否会出现干涉条纹?为什么?[暨南大学2011研]图11-1解:(1)会出现干涉条纹.因为经过两个偏振片的光具有相同的偏振方向,都沿P3的方向偏振,所以同频率的光会产生相干叠加,出现干涉条纹.(2)会出现干涉条纹.因为虽然经过第一个偏振片的两束光具有垂直的偏振方向,但由于两束光的偏振方向都与P3偏振化方向呈45°角,根据马吕斯定律,经过P3后的两束光偏振方向相同,且振幅相等.所以依然会产生干涉条纹.9.(1)迈克尔逊干涉仪的M2镜前,当插入一薄玻璃片时,可以观察到有150条干涉条纹向一方移过.若玻璃片的折射率为n=1.632,所用单色光的波长为500nm,试求玻璃片的厚度.(2)用钠光灯(,)照明迈克尔逊干涉仪,首先调整干涉仪得到最清晰的干涉条纹,然后移动M1,干涉图样逐渐变得模糊,到第一次干涉现象消失时,M1由原来位置移动了多少距离?[南京大学2006研]解:(1)插入玻璃片后,光程差改变量为,则:解得玻璃片厚度: (2)干涉条纹消失,即、两个波长照射下的亮纹和暗纹重合,即:解得: 10.试按下列要求设计光栅:当白光垂直照射时,在30°衍射方向上观察到波长为600nm 的第二级主极大,且能分辨Δλ=0.05nm的两条谱线,同时该处不出现其他谱线的主极大.[浙江大学2008研]解:由光栅方程: .则:当时,可得: 当,.因为时,主极大,即缺级,因此有:所以有: 11.如图11-2所示,有一缝宽分别为a和2a、两缝中心相距为d的双缝衍射屏,今在缝宽为2a的左半缝前覆盖一个宽度为a的相移片.导出正入射时其夫琅禾费衍射强度分布公式.[山东大学1997研]图11-2解:x方向振幅: y方向振幅: 光强: 12.如图11-3所示,在偏振化方向夹角为60°的两偏振片和之间插入一个四分之一波片C,其光轴与两偏振片偏振化方向的夹角均为30°.一强度为的自然光先后通过偏振片、四分之一波片C和偏振片,求出射的光强度.[厦门大学2006研]图11-3解:经过P1后: ,经过四分之一波片后: ,得出射光振幅: 出射光光强: 第12章 气体动理论一、选择题若为气体分子速率分布函数,则的物理意义是( ).[电子科技大学2005研]A .速率区间内的分子数B .分子的平均速率C .速率区间内的分子数占总分子数的百分比D .速率分布在附近的单位速率区间中的分子数二、填空题1.三个容器A 、B 、C 中装有同种理想气体,其分子数密度n 相同,而最概然速率之比为,则单位体积内的内能之比为______.[南京航空航天大学2007研]2.一定量的理想气体贮于某一容器中,温度为T ,气体分子的质量为m .根据理想气体的分子模型和统计假设,分子速度在x 方向的分量平方的平均值为______.[北京工业大学2004研]3.由绝热材料包围的窗口被隔板隔为两半,左边是理想气体,右边真空,如果把隔板撤去,气体将进行自由膨胀过程,达到平衡后气体的温度______(填升高、降低或不变),气体的熵______(填增加、减小或不变).[湖南大学2007研]4.27℃的1mol 氧气分子的最概然速率为______,其物理意义为______,分子的平均平动动能为______,1mol 理想氧气的内能为______.[南京理工大学2005研]三、计算题B【答案】1∶4∶9【答案】【答案】不变;增加【答案】【答案】1.设气体分子的速率分布满足麦克斯韦分布律.(1)求气体分子速率与最可几速率相差不超过0.5%的分子占全部分子的百分之几?(2)设氦气的温度为300K,求速率在3000~3010m/s之间的分子数与速率在1500~1510m/s之间的分子数之比.(3)某种气体的温度为100K和400K时的最可几速率分别为和.在100K时与相差不超过1m/s的分子数为总数的a%,求400K时与相差不超过1m/s的分子数占总数的百分比.[南京大学2006研]解:(1)设气体分子速率与最可几速率相差不超过0.5%的分子数为,全部分子数为,则:(2)设速率在3000~3010m/s之间的分子数为,速率在1500~1510m/s之间的分子数为,则:(3)2.1摩尔双原子理想气体的某一过程的摩尔热容量,其中为定容摩尔热容量,R 为气体的普适恒量.(1)导出此过程的过程方程;(2)设初态为(,),求沿此过程膨胀到时气体的内能变化,对外做功及吸热(或放热).[北京师范大学2006研]解:(1)理想气体的状态方程为,其微分形式为:由热力学第一定律,则:由上述两式消去,得: 则由的积分可得:上式即为双原子分子理想气体的过程方程.(2)初态,其中;末态.由过程方程,可知:所以,末态为.①气体内能的变化:②对外做功: ③吸收的热量:负号表示与题设相反,即此过程向外放热 .3.0.2g氢气盛于3.0 L的容器中,测得压强为8.31×104Pa,则分子的最概然速率、平均速率和方均根速率各为多大?[浙江大学2008研]解:气体状态方程: 最概然速率:平均速率:方均根速率: 4.设有N个气体分子组成的系统,每个分子质量为m,分子的速率分布函数为求:(1)常数a.(2)分子的平均速率.(3)若分子只有平动,且忽略分子间的相互作用力,求系统的内能E.[厦门大学2006研]解:(1)由归一化条件可得:解得: (2)N个分子的平均速度:=(3)由,得:5.许多星球的温度达到108K,在这温度下原子已经不存在了,而氢核(质子)是存在的,若把氢核视为理想气体,求:(1)氢核的方均根速率是多少?(2)氢核的平均平均平动动能是多少电子伏特?[宁波大学2009研](普适气体常量,玻尔兹曼常量)解:(1)由于,而氢核,所以有:(2)第13章 热力学基础一、选择题在一定量的理想气体向真空作绝热自由膨胀,体积由增至,在此过程中气体的( ).[电子科技大学2007研]A.内能不变,熵增加B.内能不变,熵减少C.内能不变,熵不变D.内能增加,熵增加二、填空题热力学第二定律表明在自然界中与热现象有关的实际宏观过程都是不可逆的.开尔文表述指出了______的过程是不可逆的,而克劳修斯表述指出了______的过程是不可逆的.[北京工业大学2004研]三、计算题1.假设地球大气为干燥空气,导热性能不好.气流上升缓慢,可以视为准静态过程.试导出大气的垂直温度梯度dT/dz,并估算其量值的大小.[南京大学2005研]解:对于绝热过程有: 对上式两边同时求导,得:于是有: 对于大气层,气压强变化满足,再结合理想气体状态方程,得:A【答案】功变热;热传导【答案】。
物理学教程 下册 马文蔚
Fe 2.27 1041 Fg
(微观领域中,万有引力比库仑力小得多,可忽略不计.)
第九章 静电场
9-3
一 静电场
电场强度
1.带电体之间的相互作用是通过场来实现的.
电 场 电 荷1 场 实物
相同:都具有能量、动量和质量。 不同:(1)实物物质具有确定的存在空间,场是弥散的; (2)实物物质有不可入性,但运动形态有可叠加性;场本身 和运动形态都有可叠加性。
e 1.60210 C
19
5.电荷的相对论不变性:在相对运动的两惯性系中同一电荷电量相等 二 电荷守恒定律 在孤立系统中,电量的代数和保持不变.
第九章 静电场
9-2 库仑定律
真空中,两个点电荷之间相互作用的规律 一 点电荷模型
(d r)
q1
F
二 库仑定律
q2
r
d
F
在真空中,两个静止的点电荷之间的相互作用力,其大小 与它们电荷的乘积成正比,与它们之间距离的二次方成反比; 作用力的方向沿着两点电荷的连线,同号电荷相斥,异号电荷 相吸。
第九章 静电场 (
0为真空电容率)
12 2 1 2
0 8.8542 10 C N m (SI )
8.85421012 F m1
注意: 1. 2. 3.
r 0, F ,库仑定律仅适用于点电荷。
库仑力遵守牛顿第三定律,牛顿第二定律(低速) 电场力是有心力,可引入电势和电势能的概念。
电荷线密度
q
dl
r
P
dE
第九章 静电场 电场强度的计算 方法:库仑定律 + 电场强度叠加原理 1.静止孤立点电荷的场强 1 q
E
4 π 0 r
物理学下第五版马文蔚复习PPT(精简版)光学3-偏振PPT课件
三 马吕斯定律
研究透射光的强度
I0 A02
IA2
I I0
A A00 cos 2 —马吕斯定律
注意(1)若自然光在 a 的前方强度是 I0 ,则过 a 后的
强度是( I0 2 )
0,1800 Ima x I0
(2)由马吕斯定律知 900,2700 Imin03
布儒斯特定律
各向同性的介质各方向对光
的折射率n相同,不产生双
o 光: 寻常光 线, 遵循折射定律。
折射。 但CaCO3等类各向异性晶体 会存在双折射现象。
e 光: 非常光 线 ,
对 o 光:一个折射率
不遵循折射定律。 对 e 光:无数个折射率7
(3)椭圆(圆)偏振光: 一个振动方向,但振动方向随时间变化(变化沿椭圆)
(4)自然光:实际的光源是大量原子发出自然光,包含 着无数多个振动方向。
自然光
1
实验1: 实验 2:
现在可以解释实验1、2了
偏振片透明 绕轴旋转900, 情况不变。
A//B
偏振片透明
A
B
偏振片全黑
B绕轴旋转,强 度发生变化 2
反射光是完全偏 振光时,实验证明:
i0
2
i0 i0
n 1sini0n 2sinn2sin2(i0)n2coi0s
tg0i
n2 n1
起偏角
n21
i0
arctg
n2 n1
——布儒斯特定律
6
17—14 双折射 偏振棱镜
一 双折射的寻常光和非常光 方解石 CaCO3
CaCO3
oe
oe
双折射现象产生的原因
物理学下第五版马文蔚复习PPT(精简版)磁学1稳恒磁场(总)资料
7-6 安培环路定理
磁场中: 磁感应强度的环流?
L
B dl ?
无限长通电直导线的 B 沿任一闭合回路的线积分: μ0 I B 2 r p点处 L 方向如图 I d L B dl L B cos dl Brd r 2 B dl 0 I
p
磁场对电流元的作用力通常叫做安培力 有限长导线所受到的安培力为:
F dF Idl B
L L
26
例1 在一沿负z方向的磁场中,有一半径为R的半圆形导 线,导线平面与xoy平面平行,载流I,求导线的受力。
解:根据安培定律 dF Idl B
根据对称性分析,合力沿y轴正方向。
dFy dF sin BIdl sin BIR sin d
2 x
dB
X
μ0 R 2 ( nIdx ) 2( R x )
2 2 3 2
dx
B
dB 2( R
B
0 R nIdx
2 2
x )
2
3/ 2
0 nI
2
得:轴线附近
(cos 2 cos 1 )
9
沿x轴正方向
讨论
B
0 nI
2
(cos 2 cos 1 )
F合 = dFy BIR sin d
0
dF
y
Idl
B
dF
I
2 BIR
R
合力方向沿y 轴。
0
R
x
27
相当于直线 -R—+R 所受的力。
例2、任意形状的载流曲线在磁场中受力情况如何? 如图
马文蔚《物理学》第五版-下册总结
8 多普勒效应
u v' o ' u v's
第十一章 波动光学总结
1 相干光产生的条件: 时间相干性、空间相干性 2 杨氏双缝干涉 x k r d 加强 k 0,1,2, (2k 1) d' 减弱 d' 2
x
d' (2k 1) d 2
a m ( P 2 )( V b ) RT V M
m RT 1 理想气体的状态方程 PV M 2 热力学第一定律 Q E W 或 d Q d E d W
3 气体等值过程
第十三章 热力学总结
等压过程 p C Q C T T E C T T W p(V V ) R(T T ) C C R T C pV C E 0 等温过程 Q W RT ln V / V RT ln p / p 绝热过程 pV C,V 1T C, P 1T C Q 0 W E CVm T2 T1
y p y1 p y2 p r2 y2 p A2 cos( t 2 2π ) A A A 振动始终加强
1 2
y1 p A1 cos( t 1 2π
r1
)
2k π 或 k ,k 0,1, 2,
振动始终减弱
A A1 A2
v
2
2kT 2 RT vp m M mol
v
2
8kT 8RT m M mol
3kT 3RT v m M mol
9
气体分子的平均自由程
v 1 kT 2 2 Z 2 d n 2 d p
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Q
q0
r
F
Q:场源电荷 q0:试验电荷
第九章 静电场
1 Qq0 F er 2 4π 0 r F 1 Q (与 q 无关) 0 er 2 q0 4π 0 r F 反映电场本身性质 引入电场强度 E (定义式) q0 单位: N C1; V m1
第九章 静电场
教学基本要求:
1.了解电荷、电量、电荷守恒定律及其量子化概念。 2.掌握库仑定律。 3.理解静电场及其基本性质。 4.掌握描述静电场的两个基本概念:电场强度及电势,并能理解 场强和电势之间的关系。 5.掌握点电荷电场和电场叠加原理,并能用其计算任意带电体的 电场强度和电势。 6.理解电场线和电场强度通量的概念,并能求简单情况下的电场 强度通量。 7.掌握反映电场性质的基本定理:高斯定理、静电场的环路定理, 并能应用高斯定理求电荷简单对称分布情况下的电场强度。
1 q1q2 F F 2 4 π 0 r
第九章 静电场 矢量式
F
q1 e q1 e r
r
r
q2
F
r
q2
F
同号 F
异号
F
或
1 q1q2 er F 2 4 π 0 r
r 1 q1q2 er , F r F 3 r 4π 0 r
第九章 静电场 例 在氢原子内,电子和质子的间距为 5.3 1011 m
求它们之间电相互作用和万有引力,并比较它们的大小.
解:
me 9.110
2
31
kg
e 1.6 1019 C
G 6.67 1011 N m2 kg 2
mp 1.6710
27Leabharlann kg1 e 6 Fe 8 . 1 10 N 2 4π 0 r me mp Fg G 2 3.7 10-47 N r
e 1.60210 C
19
5.电荷的相对论不变性:在相对运动的两惯性系中同一电荷电量相等 二 电荷守恒定律 在孤立系统中,电量的代数和保持不变.
第九章 静电场
9-2 库仑定律
真空中,两个点电荷之间相互作用的规律 一 点电荷模型
(d r)
q1
F
二 库仑定律
q2
r
d
F
在真空中,两个静止的点电荷之间的相互作用力,其大小 与它们电荷的乘积成正比,与它们之间距离的二次方成反比; 作用力的方向沿着两点电荷的连线,同号电荷相斥,异号电荷 相吸。
Q Q
er
r r
第九章 静电场
P
E
E
E
Q
E
Q
真空中,点电荷激发的电场具有球对称性 (非均匀场)
(矢量点函数)
E E (r ) E( x, y, z)
第九章 静电场
例 把一个点电荷( q 6210 C )放在电 6 场中某点处,该电荷受到的电场力为 F 3.2 10 i 6 1.3 10 j N ,求该电荷所在处的电场强度 . 解
电场中某点处的电场强度 E等于位于该点处的单位试 验电荷所受的力. q正, F 、E同向 r * E F qE
Q
q0
r
E
q负, F 、E反向
三
F 1 Q E e 2 r q0 4 π 0 r
点电荷的电场强度
Fe 2.27 1041 Fg
(微观领域中,万有引力比库仑力小得多,可忽略不计.)
第九章 静电场
9-3
一 静电场
电场强度
1.带电体之间的相互作用是通过场来实现的.
电 场 电 荷1 场 实物
相同:都具有能量、动量和质量。 不同:(1)实物物质具有确定的存在空间,场是弥散的; (2)实物物质有不可入性,但运动形态有可叠加性;场本身 和运动形态都有可叠加性。
第九章 静电场
电磁学研究电磁规律的学科 电磁现象:摩擦生电、大自然的雷电、天然磁石的指向 电磁现象的系统研究(十六世纪) 1865年英国物理学家麦克斯韦建立了宏观电磁场理论
9-1 电荷的量子化
电荷守恒定律
一 电荷基本性质 1.物质结构:物质-分子-原子-原子核、电子-夸克、轻子-亚夸克 2.物体的带电. 3. 电荷分正负,同性相斥,异性相吸. q ne (n 1, 2,3) 4. 电荷量子化: 元电荷
qi 对 q0 的作用力 1 qi q0 Fi ei 2 4 π 0 ri
q1 q2 q3
r2 q r3 0
r1
F P 3 F 2
F1
由力的叠加原理得 0 所受合力
q
故 q 0 处总电场强度
电场强度的叠加原理
i F Fi E Ei q0 i q0 i qi 1 E Ei e 2 i 4 0 i ri i
电 荷2
2.场是一种物质形态,它可以脱离源而单独存在.
物 质
第九章 静电场
3.静电场 相对观察者静止的电荷在其周围空间激发的电场, 称为静电场。 静电场的对外表现: (1)对引入电场中的带电体有力的作用。 (2)带电体在电场中移动时,电场力要对带电体做功(能量) (3)电场使导体产生静电感应;使电介质产生极化现象。 二 电场强度 电场强度的定义: 1.试验电荷:电量( q0 )、大小足够小,故对原电场几乎无影响 2.电场强度的引入:
第九章 静电场 (
0为真空电容率)
12 2 1 2
0 8.8542 10 C N m (SI )
8.85421012 F m1
注意: 1. 2. 3.
r 0, F ,库仑定律仅适用于点电荷。
库仑力遵守牛顿第三定律,牛顿第二定律(低速) 电场力是有心力,可引入电势和电势能的概念。
9
2 2 1 大小 E E (51.6) ( 21.0) N C 55.71N C
方向
1
F 1 E (51.6i 21.0 j ) N C q
y
arctan
22.1
Ey Ex
o E
q
F
x
第九章 静电场 四 电场强度的叠加原理 点电荷