10.圆锥曲线综合应用(圆锥曲线一轮复习)

合集下载

2024届高考一轮复习数学课件(新教材人教A版强基版):圆锥曲线中的综合问题全文

2024届高考一轮复习数学课件(新教材人教A版强基版):圆锥曲线中的综合问题全文

所以B→D=(x1-2,y1),B→E=(x2-2,y2),
则(x1-2)(x2-2)+y1y2=0,
将x1=ky1+m,x2=ky2+m代入上式得
(k2+1)y1y2+k(m-2)(y1+y2)+(m-2)2=0,







(k2+
1)
m2-4 k2+4

k(m

2)
-k2+2km4 +
(m
x1+x2=-8 267m,x1x2=4m227-3, y1y2=6x1x2+ 6m(x1+x2)+m2=24m2-3-2748m2+27m2, ∵O→A·O→B=0,∴x1x2+y1y2=0, 代入根与系数的关系得 m2=12,m=±2 3,满足 Δ>0, ∴直线 l 的方程为 y= 6x±2 3.
4k2+1
又直线 OP 的斜率为--12--00=12,且直线 OP 与 MQ 不重合,
所以MQ∥OP.
题型二 定点与定值
例 2 (2022·济南模拟)已知椭圆 C:ax22+by22=1(a>b>0)的左、右顶点分别为 A,B,点 P(0,2),连接 PA,PB 交椭圆 C 于点 M,N,△PAB 为直角三角 形,且|MN|=35|AB|. (1)求椭圆的标准方程;
设经过点F且斜率为k(k≠0)的直线的方程为y=kx+1,与曲线C的方 程联立得 y=kx+1, x32+y42=1, 消去 y 整理得(4+3k2)x2+6kx-9=0, Δ=36k2+4×9×(4+3k2)=144(1+k2)>0恒成立, 设M(x1,y1),N(x2,y2),
则|MN|= 1+k2|x1-x2|= 1+k2×4+Δ3k2=124+1+3kk22, x1+x2=-4+6k3k2,

圆锥曲线的综合应用一

圆锥曲线的综合应用一

点评:运用几何法要注意数形结合,运用曲线的定义和 几何性质及平面几何中的有关重要结论.本例中,要使长轴 最短,由椭圆的定义可知,即要使|MF1|+|MF2|最短,再由 平面几何的知识知,M点为F1关于l的对称点F1′与F2的连线 和l的交点.
第18页/共23页
【变式探究】
2.已知抛物线x2=4y上有一条长为6的动弦AB,求AB的 中点到x轴的最短距离.
2 k2+1.
所以△OPQ的面积S△OPQ=12d·|PQ|=4
4k2-3 4k2+1 .
设 4k2-3=t,则t>0,S△OPQ=t2+4t 4=t+4 4t .
因为t+4t ≥4,当且仅当t=2,即k=± 27时等号成立,
且满足Δ>0.
所以当△OPQ的面积最大时,l的方程为y=
7 2
x-2或
y=- 27x-2.
y1),Q(x2,y2). 将y=kx-2代入x42+y2=1得(1+4k2)x2-16kx+12=0. 当Δ=16(4k2-3)>0,即k2>43时,x1,2=8k±42k2+4k12-3.
从而|PQ|=
k2+1|x1-x2|=4
k2+1· 4k2-3
4k2+1
.
第10页/共23页
又点O到直线PQ的距离d=
所以F1′F2的方程为x+2y-3=0. 所以xx+ -2y+y-93==00,, 得交点M(-5,4), 即过M(-5,4)的椭圆,长轴最短. 由|MF1|+|MF2|=2a,则2a=6 5,所以a2=45, 又c2=9,所以b2=36. 故所求椭圆的方程为4x52 +3y62 =1.
第17页/共23页
第13页/共23页
解:(1)设椭圆C的方程为ax22+by22=1(a>b>0),则

圆锥曲线综合大题练 分类题组-2023届高三数学一轮复习

圆锥曲线综合大题练 分类题组-2023届高三数学一轮复习

题组:圆锥曲线综合大题练题型1:定点问题1.椭圆C:x 2a2+y2b2=1(a>b>0)的离心率为12,其左焦点到点P(2,1)的距离为√10.(Ⅰ)求椭圆C的标准方程;(Ⅱ)若直线l:y=kx+m与椭圆C相交于A,B两点(A,B不是左右顶点),且以AB为直径的圆过椭圆C的右顶点.求证:直线l过定点,并求出该定点的坐标.2.已知抛物线C:y2=2px经过点M(2,2),C在点M处的切线交x轴于点N,直线l1经过点N且垂直于x轴.(Ⅰ)求线段ON的长;(Ⅱ)设不经过点M和N的动直线l2:x=my+b交C于点A和B,交l1于点E,若直线MA、ME、MB的斜率依次成等差数列,试问:l2是否过定点?请说明理由.3.已知椭圆C:2222=1x ya b(a>b>0),四点P1(1,1),P2(0,1),P3(–1,32),P4(1,32)中恰有三点在椭圆C上.(1)求C的方程;(2)设直线l不经过P2点且与C相交于A,B两点.若直线P2A与直线P2B的斜率的和为–1,证明:l过定点.4.如图,椭圆E:x 2a2+y2b2=1(a>b>0)的左焦点为F1,右焦点为F2,离心率e=12.过F1的直线交椭圆于A、B两点,且∆ABF2的周长为8.(Ⅰ)求椭圆E的方程.(Ⅱ)设动直线l:y=kx+m与椭圆E有且只有一个公共点P,且与直线x=4相交于点Q.试探究:在坐标平面内是否存在定点M,使得以PQ为直径的圆恒过点M?若存在,求出点M的坐标;若不存在,说明理由.5.如图,已知椭圆Γ:x 2b2+y2a2=1(a>b>0)的离心率e=√22,短轴右端点为A,M(1.0)为线段OA的中点.(Ⅰ)求椭圆Γ的方程;(Ⅱ)过点M任作一条直线与椭圆Γ相交于P,Q两点,试问在x轴上是否存在定点N,使得∠PNM=∠QNM,若存在,求出点N的坐标;若不存在,说明理由.题型2:定值问题1.已知椭圆C :22221+=x y a b (0a b >>)的离心率为 32 ,(,0)A a ,(0,)B b ,(0,0)O ,OAB ∆的面积为1.(1)求椭圆C 的方程;(2)设P 的椭圆C 上一点,直线PA 与y 轴交于点M ,直线PB 与x 轴交于点N.求证:BM AN ⋅为定值.2.如图, 在平面直角坐标系中, 抛物线的准线与轴交于点,过点的直线与抛物线交于两点, 设到准线的距离. (1)若,求抛物线的标准方程;(2)若,求证:直线的斜率的平方为定值.xOy ()220y px p =>l x M M ,A B ()11,A x y l ()20d p λλ=>13y d ==0AM AB λ+=AB3.椭圆C:x 2a2+y2b2=1(a>b>0)的离心率√22,点(2,√2)在C上.(1)求椭圆C的方程;(2)直线l不过原点O且不平行于坐标轴,l与C有两个交点A,B,线段AB的中点为M.证明:直线OM的斜率与l的斜率的乘积为定值.4.已知椭圆C:x 2a2+y2b2=1(a>b>0)的离心率√22,的离心率为,点A(1,√32)在椭圆C上,O为坐标原点.(Ⅰ)求椭圆C的方程;(Ⅱ)设动直线l与椭圆C有且仅有一个公共点,且l与圆x2+y2=5的相交于不在坐标轴上的两点P1,P2,记直线OP1,OP2的斜率分别为k1,k2,求证:k1∙k2为定值.5.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率√22,若圆x 2+y 2=a 2被直线x − y −√2=0截得的弦长为2。

高三数学人教版A版数学(理)高考一轮复习教案2 圆锥曲线的综合应用

高三数学人教版A版数学(理)高考一轮复习教案2 圆锥曲线的综合应用

第二课时 圆锥曲线的综合应用考点一 最值范围问题|(2015·高考浙江卷)已知椭圆x 22+y 2=1上两个不同的点A ,B 关于直线y =mx +12对称.(1)求实数m 的取值范围;(2)求△AOB 面积的最大值(O 为坐标原点).[解] (1)由题意知m ≠0,可设直线AB 的方程为y =-1mx +b .由⎩⎨⎧x 22+y 2=1,y =-1m x +b ,消去y ,得⎝⎛⎭⎫12+1m 2x 2-2bmx +b 2-1=0. 因为直线y =-1m x +b 与椭圆x 22+y 2=1有两个不同的交点,所以Δ=-2b 2+2+4m 2>0,①设M 为AB 的中点,则M ⎝ ⎛⎭⎪⎫2mb m 2+2,m 2b m 2+2,代入直线方程y =mx +12解得b =-m 2+22m 2.②由①②得m <-63或m >63. (2)令t =1m ∈⎝⎛⎭⎫-62,0∪⎝⎛⎭⎫0,62,则|AB |=t 2+1·-2t 4+2t 2+32t 2+12,且O 到直线AB 的距离d =t 2+12t 2+1.设△AOB 的面积为S (t ),所以 S (t )=12|AB |·d =12-2⎝⎛⎭⎫t 2-122+2≤22, 当且仅当t 2=12时,等号成立.故△AOB 面积的最大值为22.(1)最值问题的求解方法:①建立函数模型,利用二次函数、三角函数的有界性求最值或利用导数法求最值. ②建立不等式模型,利用基本不等式求最值. ③数形结合,利用相切、相交的几何性质求最值. (2)求参数范围的常用方法:①函数法:用其他变量表示该参数,建立函数关系,利用求函数值域的方法求解. ②不等式法:根据题意建立含参数的不等式,通过解不等式求参数范围. ③判别式法:建立关于某变量的一元二次方程,利用判别式Δ求参数的范围. ④数形结合法:研究该参数所表示的几何意义,利用数形结合思想求解.1.(2016·宁波模拟)如图,抛物线C 的顶点为O (0,0),焦点在y 轴上,抛物线上的点(x 0,1)到焦点的距离为2.(1)求抛物线C 的标准方程;(2)过直线l :y =x -2上的动点P (除(2,0))作抛物线C 的两条切线,切抛物线于A ,B 两点.①求证:直线AB 过定点Q ,并求出点Q 的坐标;②若直线OA ,OB 分别交直线l 于M ,N 两点,求△QMN 的面积S 的取值范围. 解:(1)由已知条件得1-⎝⎛⎭⎫-p 2=1+p2=2, ∴p =2,∴抛物线的标准方程为x 2=4y . (2)①证明:设A (x 1,y 1),B (x 2,y 2),y ′=x2,A 处切线方程为y -y 1=x 12(x -x 1),又∵4y 1=x 21,∴y =x 12x -x 214,a同理B 处切线方程为y =x 22x -x 224,bab 联立可得⎩⎪⎨⎪⎧x =x 1+x22,y =x 1x 24,即P ⎝⎛⎭⎪⎫x 1+x 22,x 1x 24.直线AB 的斜率显然存在,设直线AB :y =kx +m ,⎩⎪⎨⎪⎧ y =kx +m ,x 2=4y ,可得x 2-4kx -4m =0, ⎩⎪⎨⎪⎧x 1+x 2=4k ,x 1x 2=-4m ,即P (2k ,-m ), ∵P 在直线l :y =x -2上, ∴m =-2k +2,即AB 直线为y =k (x -2)+2, ∴直线AB 过定点Q (2,2). ②∵O 不会与A ,B 重合.定点Q (2,2)到直线l :y =x -2的距离h = 2. 由⎩⎪⎨⎪⎧y =y 1x 1x ,y =x -2,⇒x M =2x 1x 1-y 1=84-x 1,同理得x N =2x 2x 2-y 2=84-x 2.∴|MN |=2|x M -x N |=82⎪⎪⎪⎪⎪⎪14-x 1-14-x 2=82⎪⎪⎪⎪⎪⎪x 1-x 2(4-x 1)(4-x 2)=82⎪⎪⎪⎪⎪⎪x 1-x 216-4(x 1+x 2)+x 1x 2=82⎪⎪⎪⎪⎪⎪⎪⎪16k 2+16m -4m -16k +16. ∵m =-2k +2,∴|MN |=42·(k -1)2+1|k -1|=4 21+1(k -1)2.∴S △QMN =12|MN |·h =41+1(k -1)2∈(4,+∞). 考点二 定点最值问题|已知抛物线C :y 2=2px (p >0)的焦点F (1,0),O 为坐标原点,A ,B 是抛物线C上异于O 的两点.(1)求抛物线C 的方程;(2)若直线OA ,OB 的斜率之积为-12,求证:直线AB 过x 轴上一定点.[解] (1)因为抛物线y 2=2px (p >0)的焦点坐标为(1,0),所以p2=1,所以p =2.所以抛物线C 的方程为y 2=4x .(2)证明:①当直线AB 的斜率不存在时, 设A ⎝⎛⎭⎫t 24,t ,B ⎝⎛⎭⎫t24,-t . 因为直线OA ,OB 的斜率之积为-12,所以t t 24·-t t 24=-12,化简得t 2=32.所以A (8,t ),B (8,-t ),此时直线AB 的方程为x =8.②当直线AB 的斜率存在时,设其方程为y =kx +b ,A (x A ,y A ),B (x B ,y B ),联立得⎩⎪⎨⎪⎧y 2=4x ,y =kx +b ,化简得ky 2-4y +4b =0. 根据根与系数的关系得y A y B =4b k ,因为直线OA ,OB 的斜率之积为-12,所以y A x A ·y Bx B=-12, 即x A x B +2y A y B =0.即y 2A 4·y 2B4+2y A y B =0,解得y A y B =0(舍去)或y A y B =-32. 所以y A y B =4bk =-32,即b =-8k ,所以y =kx -8k ,y =k (x -8).综上所述,直线AB 过定点(8,0).(1)解决定点问题的关键就是建立直线系或者曲线系方程,要注意选用合适的参数表达直线系或者曲线系方程,如果是双参数,要注意这两个参数之间的相互关系.(2)解决圆锥曲线中的定值问题的基本思路很明确,即定值问题必然是在变化中所表现出来的不变的量,那么就可以用变化的量表示问题中的直线方程、数量积、比例关系等,其不受变化的量所影响的一个值就是要求的定值.解决这类问题的关键就是引进参数表示直线方程、数量积、比例关系等,根据等式的恒成立、数式变换等寻找不受参数影响的量.2.已知椭圆x 2a 2+y 2b 2=1(a >b >0)的左焦点F 1(-1,0),长轴长与短轴长的比是2∶ 3.(1)求椭圆的方程;(2)过F 1作两直线m ,n 交椭圆于A ,B ,C ,D 四点,若m ⊥n ,求证:1|AB |+1|CD |为定值.解:(1)由已知得⎩⎪⎨⎪⎧2a ∶2b =2∶3,c =1,a 2=b 2+c 2.解得a =2,b = 3.故所求椭圆方程为x 24+y 23=1.(2)证明:由已知F 1(-1,0),当直线m 不垂直于坐标轴时, 可设直线m 的方程为y =k (x +1)(k ≠0).由⎩⎪⎨⎪⎧y =k (x +1),x 24+y 23=1,得(3+4k 2)x 2+8k 2x +4k 2-12=0. 由于Δ>0,设A (x 1,y 1),B (x 2,y 2),则有 x 1+x 2=-8k 23+4k 2,x 1x 2=4k 2-123+4k 2, |AB |=(1+k 2)[(x 1+x 2)2-4x 1x 2]=(1+k 2)⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫-8k 23+4k 22-4×4k 2-123+4k 2 =12(1+k 2)3+4k 2.同理|CD |=12(1+k 2)3k 2+4.所以1|AB |+1|CD |=3+4k 212(1+k 2)+3k 2+412(1+k 2)=7(1+k 2)12(1+k 2)=712.当直线m 垂直于坐标轴时, 此时|AB |=3,|CD |=4; 或|AB |=4,|CD |=3,1|AB |+1|CD |=13+14=712. 综上,1|AB |+1|CD |为定值712. 考点三 探索存在性与证明问题|(2015·高考北京卷)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为22,点P (0,1)和点A (m ,n )(m ≠0)都在椭圆C 上,直线P A 交x 轴于点M .(1)求椭圆C 的方程,并求点M 的坐标(用m ,n 表示);(2)设O 为原点,点B 与点A 关于x 轴对称,直线PB 交x 轴于点N .问:y 轴上是否存在点Q ,使得∠OQM =∠ONQ ?若存在,求点Q 的坐标;若不存在,说明理由.[解] (1)由题意得⎩⎪⎨⎪⎧b =1,c a =22,a 2=b 2+c 2.解得a 2=2.故椭圆C 的方程为x 22+y 2=1.设M (x M,0).因为m ≠0,所以-1<n <1. 直线P A 的方程为y -1=n -1m x ,所以x M =m1-n,即M ⎝⎛⎭⎫m 1-n ,0.(2)因为点B 与点A 关于x 轴对称,所以B (m ,-n ).设N (x N,0),则x N =m1+n.“存在点Q (0,y Q )使得∠OQM =∠ONQ ”等价于“存在点Q (0,y Q )使得|OM ||OQ |=|OQ ||ON |”,即y Q 满足y 2Q =|x M ||x N |.因为x M =m 1-n ,x N =m 1+n ,m 22+n 2=1,所以y 2Q =|x M ||x N |=m 21-n 2=2. 所以y Q =2或y Q =- 2.故在y 轴上存在点Q ,使得∠OQM =∠ONQ .且点Q 的坐标为(0,2)或(0,-2).解决存在性问题注意事项存在性问题,先假设存在,推证满足条件的结论,若结论正确则存在,若结论不正确则不存在.(1)当条件和结论不唯一时要分类讨论.(2)当给出结论而要推导出存在的条件时,先假设成立,再推出条件.(3)当条件和结论都不知,按常规方法解题很难时,要思维开放,采取另外的途径.3.(2015·高考安徽卷)设椭圆E 的方程为x 2a 2+y 2b 2=1(a >b >0),点O 为坐标原点,点A 的坐标为(a,0),点B 的坐标为(0,b ),点M 在线段AB 上,满足|BM |=2|MA |,直线OM 的斜率为510. (1)求E 的离心率e ;(2)设点C 的坐标为(0,-b ),N 为线段AC 的中点,证明:MN ⊥AB . 解:(1)由题设条件知,点M 的坐标为⎝⎛⎭⎫23a ,13b ,又k OM =510,从而b 2a =510. 进而a =5b ,c =a 2-b 2=2b ,故e =c a =255.(2)证明:由N 是线段AC 的中点知, 点N 的坐标为⎝⎛⎭⎫a 2,-b2, 可得NM →=⎝⎛⎭⎫a 6,5b 6.又AB →=(-a ,b ),从而有AB →·NM →=-16a 2+56b 2=16(5b 2-a 2).由(1)可知a 2=5b 2,所以AB →·NM →=0,故MN ⊥AB .A 组 考点能力演练1.如图,已知抛物线C :y 2=2px (p >0),焦点为F ,过点G (p,0)作直线l 交抛物线C 于A ,M 两点,设A (x 1,y 1),M (x 2,y 2).(1)若y 1y 2=-8,求抛物线C 的方程;(2)若直线AF 与x 轴不垂直,直线AF 交抛物线C 于另一点B ,直线BG 交抛物线C 于另一点N .求证:直线AB 与直线MN 斜率之比为定值.解:(1)设直线AM 的方程为x =my +p ,代入y 2=2px 得y 2-2mpy -2p 2=0, 则y 1y 2=-2p 2=-8,得p =2. ∴抛物线C 的方程为y 2=4x . (2)设B (x 3,y 3),N (x 4,y 4). 由(1)可知y 3y 4=-2p 2,y 1y 3=-p 2. 又直线AB 的斜率k AB =y 3-y 1x 3-x 1=2py 1+y 3, 直线MN 的斜率k MN =y 4-y 2x 4-x 2=2py 2+y 4,∴k AB k MN =y 2+y 4y 1+y 3=-2p 2y 1+-2p 2y 3y 1+y 3=-2p 2y 1y 3(y 1+y 3)y 1+y 3=2. 2.设F 是椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左焦点,直线l 为其左准线,直线l 与x 轴交于点P ,线段MN 为椭圆的长轴,已知|MN |=8,且|PM |=2|MF |.(1)求椭圆C 的标准方程;(2)若过点P 的直线与椭圆相交于不同两点A ,B ,求证:∠AFM =∠BFN ; (3)求三角形ABF 面积的最大值. 解:(1)∵|MN |=8,∴a =4,又∵|PM |=2|MF |得a 2c -a =2(a -c ),即2e 2-3e +1=0⇒e =12或e =1(舍去).∴c =2,b 2=a 2-c 2=12, ∴椭圆的标准方程为x 216+y 212=1.(2)当AB 的斜率为0时,显然∠AFM =∠BFN =0.满足题意. 当AB 的斜率不为0时,设A (x 1,y 1),B (x 2,y 2), AB 方程为x =my -8,代入椭圆方程整理得: (3m 2+4)y 2-48my +144=0,则Δ=(48m )2-4×144(3m 2+4),y 1+y 2=48m 3m 2+4,y 1·y 2=1443m 2+4. ∴k AF +k BF =y 1x 1+2+y 2x 2+2=y 1my 1-6+y 2my 2-6=2my 1y 2-6(y 1+y 2)(my 1-6)(my 2-6)=0,∴k AF +k BF =0,从而∠AFM =∠BFN . 综上可知:恒有∠AFM =∠BFN .(3)S△ABF =S△PBF -S△P AF=12|PF |·|y 2-y 1|=72m 2-43m 2+4=72m 2-43(m 2-4)+16=723m 2-4+16m 2-4≤7223·16=3 3. 当且仅当3m 2-4=16m 2-4即m 2=283(此时适合Δ>0的条件)取得等号.三角形ABF 面积的最大值是3 3.3.已知点A ,B ,C 是抛物线L :y 2=2px (p >0)上的不同的三点,O 为坐标原点,直线OA ∥BC ,且抛物线L 的准线方程为x =-1.(1)求抛物线L 的方程;(2)若三角形ABC 的重心在直线x =2上,求三角形ABC 的面积的取值范围.解:(1)抛物线L 的方程为y 2=4x .(2)设直线OA ,BC 的方程分别为y =kx 和y =kx +b (k ≠0).由⎩⎪⎨⎪⎧y =kx ,y 2=4x联立消去y 得k 2x 2=4x , 解得点A 的坐标为A ⎝⎛⎭⎫4k 2,4k . 设B (x 1,y 1),C (x 2,y 2),由⎩⎪⎨⎪⎧y =kx +b ,y 2=4x ,消去y 得k 2x 2+(2kb -4)x +b 2=0.Δ=(2kb -4)2-4k 2b 2=16-16kb >0,即kb <1. 又由韦达定理可得x 1+x 2=4-2kb k 2,∴三角形ABC 的重心的横坐标为4k 2+4-2kb k 23=8-2kb 3k 2=2,化简得b =4-3k 2k ,代入kb <1可得k 2>1.又三角形ABC 的面积为 S =12×k 2+1×16-16kbk 2×|b |1+k 2=|2b |1-kb k 2=2|4-3k 2|k 2|k |×3k 2-3=2⎪⎪⎪⎪4k 2-3 3-3k2. 令t =1k2,则S =23×(4t -3)2(1-t ),t ∈(0,1).考虑函数f (t )=(4t -3)2(1-t ),t ∈(0,1), 则易得函数f (t )在⎝⎛⎭⎫0,34和⎝⎛⎭⎫1112,1上单调递减, 在⎝⎛⎭⎫34,1112上单调递增,且f (0)=9,f ⎝⎛⎭⎫34=0,f ⎝⎛⎭⎫1112=127, ∴△ABC 的面积的取值范围是(0,63).B 组 高考题型专练1.(2015·高考全国卷Ⅱ)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为22,点(2,2)在C 上.(1)求C 的方程;(2)直线l 不过原点O 且不平行于坐标轴,l 与C 有两个交点A ,B ,线段AB 的中点为M .证明:直线OM 的斜率与直线l 的斜率的乘积为定值.解:(1)由题意有a 2-b 2a =22,4a 2+2b2=1, 解得a 2=8,b 2=4.所以C 的方程为x 28+y 24=1. (2)证明:设直线l :y =kx +b (k ≠0,b ≠0),A (x 1,y 1),B (x 2,y 2),M (x M ,y M ).将y =kx +b 代入x 28+y 24=1得 (2k 2+1)x 2+4kbx +2b 2-8=0.故x M =x 1+x 22=-2kb 2k 2+1,y M =k ·x M +b =b 2k 2+1. 于是直线OM 的斜率k OM =y M x M =-12k, 即k OM ·k =-12. 所以直线OM 的斜率与直线l 的斜率的乘积为定值.2.(2015·高考山东卷)平面直角坐标系xOy 中,已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的离心率为32,且点⎝⎛⎭⎫3,12在椭圆C 上. (1)求椭圆C 的方程;(2)设椭圆E :x 24a 2+y 24b2=1,P 为椭圆C 上任意一点,过点P 的直线y =kx +m 交椭圆E 于A ,B 两点,射线PO 交椭圆E 于点Q .a .求|OQ ||OP |的值;b .求△ABQ 面积的最大值.解:(1)由题意知3a 2+14b 2=1, 又a 2-b 2a =32,解得a 2=4,b 2=1, 所以椭圆C 的方程为x 24+y 2=1. (2)由(1)知,椭圆E 的方程为x 216+y 24=1. a .设P (x 0,y 0),|OQ ||OP |=λ, 由题意知Q (-λx 0,-λy 0).因为x 204+y 20=1, 又(-λx 0)216+(-λy 0)24=1,即λ24⎝⎛⎭⎫x 204+y 20=1, 所以λ=2,即|OQ ||OP |=2. b .设A (x 1,y 1),B (x 2,y 2).将y =kx +m 代入椭圆E 的方程,可得(1+4k 2)x 2+8kmx +4m 2-16=0, 由Δ>0,可得m 2<4+16k 2.①则有x 1+x 2=-8km 1+4k 2,x 1x 2=4m 2-161+4k 2. 所以|x 1-x 2|=416k 2+4-m 21+4k 2. 因为直线y =kx +m 与y 轴交点的坐标为(0,m ),所以△OAB 的面积S =12|m ||x 1-x 2|=216k 2+4-m 2|m |1+4k 2=2(16k 2+4-m 2)m 21+4k 2=2⎝ ⎛⎭⎪⎫4-m 21+4k 2m 21+4k 2. 设m 21+4k 2=t ,将y =kx +m 代入椭圆C 的方程,可得(1+4k2)x2+8kmx+4m2-4=0,由Δ≥0,可得m2≤1+4k2.②由①②可知0<t≤1,因此S=2(4-t)t=2-t2+4t,故S≤23,当且仅当t=1,即m2=1+4k2时,S取得最大值23,由a知,△ABQ的面积为3S,所以△ABQ面积的最大值为6 3.。

2022届高考数学一轮复习(新高考版) 第8章 强化训练10 圆锥曲线中的综合问题

2022届高考数学一轮复习(新高考版) 第8章 强化训练10 圆锥曲线中的综合问题
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
由题意可知O→A⊥O→B,即O→A·O→B=0, ∴x1·x2+y1·y2=(1+k2)x1·x2+2k(x1+x2)+4=0, ∴121+1+4kk22-13+2k42k2+4=0, 解得 k2=4>34, ∴|AB|= 1+k2|x1-x2|= 1+k2· x1+x22-4x1x2
= 1+k2·4 1+4k42-k2 3=41765. 综上,直线 l 的方程为 2x-y+2=0 或 2x+y-2=0,|AB|=41765.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
技能提升练
13.焦点为F的抛物线C:y2=4x的对称轴与准线交于点E,点P在抛物线C
所以△PAB的面积
S△PAB=12|PM|·|y1-y2|=342
y02 4x0
3
2.
因为 x20+y420=1(-1≤x0<0),
所以 y20-4x0=-4x20-4x0+4∈[4,5],
所以△PAB 面积的取值范围是6
2,15
4
10.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
7.已知双曲线 C:ax22-by22=1,且圆 E:(x-2)2+y2=1 的圆心是双曲线 C 的右焦点.若圆 E 与双曲线 C 的渐近线相切,则双曲线 C 的方程为 __x32_-__y_2_=__1__.
解析 ∵c=2⇒a2+b2=4.
12.已知椭圆 L:ax22+by22=1(a>b>0)的离心率为 23,短轴长为 2. (1)求椭圆L的标准方程; 解 由 e2=ac22=a2-a2b2=1-ba22=34,得 a2=4b2, 又短轴长为2,可得b=1,a2=4, ∴椭圆 L 的标准方程为x42+y2=1.

2022版高考数学大一轮复习第10章圆锥曲线与方程第4讲圆锥曲线的综合应用1

2022版高考数学大一轮复习第10章圆锥曲线与方程第4讲圆锥曲线的综合应用1

第十章 圆锥曲线与方程第四讲 圆锥曲线的综合问题拓展变式1。

[2017浙江,21,15分]如图10—4—2,已知抛物线x 2=y ,点A (−12,14),B (32,94),抛物线上的点P (x ,y )(−12<x 〈32)。

过点B 作直线AP 的垂线,垂足为Q.图10—4-2(1)求直线AP 斜率的取值范围; (2)求|PA |·|PQ |的最大值。

2。

[2020全国卷Ⅰ,21,12分][文]已知A ,B 分别为椭圆E :x 2a 2+y 2=1(a 〉1)的左、右顶点,G 为E 的上顶点,AG ⃗⃗⃗⃗⃗ ·GB⃗⃗⃗⃗⃗ =8。

P 为直线x =6上的动点,PA 与E 的另一交点为C ,PB 与E 的另一交点为D.(1)求E 的方程;(2)证明:直线CD 过定点。

3.[2021武汉四地六校高三联考]已知椭圆C:x2a2+y2b2=1(a〉b〉0)的离心率为12,以原点为圆心,椭圆的短半轴为半径的圆与直线√7x−√5y+12=0相切。

(1)求椭圆C的方程.(2)已知A(-4,0),过点R(3,0)作与x轴不重合的直线l交椭圆C于P,Q两点,连接AP,AQ,分别交直线x=163于M,N两点,若直线MR,NR的斜率分别为k1,k2,问:k1k2是否为定值?若是,求出该定值;若不是,请说明理由.4。

[2021湖北省部分重点中学摸底联考]已知点A(1,−√32)在椭圆C:x2a2+y2b2=1(a〉b>0)上,O为坐标原点,直线l:xa2−√3y2b2=1的斜率与直线OA的斜率之积为−14.(1)求椭圆C的方程。

(2)不经过点A的直线m:y=√32x+t(t≠0)与椭圆C交于P,Q两点,P关于原点的对称点为R(与点A不重合),直线AQ,AR与y轴分别交于点M,N,求证:|AM|=|AN|.5。

[2020山西大同一联]已知椭圆C的中心在原点,焦点在坐标轴上,直线y=32x与椭圆C在第一象限内的交点是M,点M在x 轴上的射影恰好是椭圆C的右焦点F2,椭圆C的另一个焦点是F1,且MF1⃗⃗⃗⃗⃗⃗⃗⃗ ·MF2⃗⃗⃗⃗⃗⃗⃗⃗ =94。

2023届高三数学一轮复习专题 直线与圆锥曲线的综合运用 讲义 (解析版)

2023届高三数学一轮复习专题  直线与圆锥曲线的综合运用  讲义 (解析版)

直线与圆锥曲线的综合运用一、知识梳理1.直线与圆锥曲线的位置关系的判断将直线方程与圆锥曲线方程联立,消去一个变量得到关于x(或y)的一元方程:ax2+bx+c=0(或ay2+by+c=0).(1)若a≠0,可考虑一元二次方程的判别式Δ,有①Δ>0①直线与圆锥曲线相交;①Δ=0①直线与圆锥曲线相切;①Δ<0①直线与圆锥曲线相离.(2)若a=0,b≠0,即得到一个一元一次方程,则直线l与圆锥曲线E相交,且只有一个交点.①若E为双曲线,则直线l与双曲线的渐近线的位置关系是平行;①若E为抛物线,则直线l与抛物线的对称轴的位置关系是平行或重合.2.圆锥曲线的弦长设斜率为k(k≠0)的直线l与圆锥曲线C相交于A(x1,y1),B(x2,y2)两点,则AB=1+k2|x2-x1|=1+1k2|y2-y1|.3.过一点的直线与圆锥曲线的位置关系(1)过椭圆外一点总有两条直线与椭圆相切;过椭圆上一点有且只有一条直线与椭圆相切;过椭圆内一点的直线与椭圆相交.(2)过抛物线外一点总有三条直线和抛物线有且只有一个公共点:两条切线和一条与对称轴平行或重合的直线;过抛物线上一点总有两条直线与抛物线有且只有一个公共点:一条切线和一条与对称轴平行或重合的直线;过抛物线内一点只有一条直线与抛物线有且只有一个公共点:一条与对称轴平行或重合的直线.(3)过双曲线外不在渐近线上的一点总有四条直线与双曲线有且只有一个交点:两条切线和两条与渐近线平行的直线;过双曲线上条直线与双曲线有且只有一个交点:一条切线和两条与渐近线平行的直线; 过双曲线内一点总有两条直线与双曲线有且只有一个交点:两条与渐近线平行的直线.二、课前预习1.若直线y =kx +1与椭圆x 25+y 2m =1总有公共点,则m 的取值范围是____.2.斜率为1的直线l 与椭圆x 24+y 2=1相交于A ,B 两点,则|AB |的最大值为____.3.直线mx +ny =4与①O :x 2+y 2=4没有交点,则过点P (m ,n )的直线与椭圆x 29+y 24=1的交点个数是____个.4.已知A 1,A 2分别为椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左,右顶点,P 是椭圆C 上异于A 1,A 2的任意一点,若直线P A 1,P A 2的斜率的乘积为-49,则椭圆C 的离心率为____.5.在平面直角坐标系xOy 中,已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)过点)23,1(P ,离心率为12.(1) 求椭圆C 的方程. (2) 若斜率为32的直线l 与椭圆C 交于A ,B 两点,试探究OA 2+OB 2是否为定值?若为定值,求出此定值;若不是定值,请说明理由.三、典型例题题型一. 直线与圆锥曲线的位置关系例1已知直线l :y =2x +m ,椭圆C :x 24+y 22=1.试问当m 取何值时,直线l 与椭圆C :(1)有两个不重合的公共点; (2)有且只有一个公共点; (3)没有公共点.变式 在平面直角坐标系xOy 中,已知椭圆C 1:x 2a 2+y 2b 2=1(a >b >0)的左焦点为F 1(-1,0),且点P (0,1)在C 1上. (1)求椭圆C 1的方程;(2)设直线l 同时与椭圆C 1和抛物线C 2:y 2=4x 相切,求直线l 的方程.例2 如图,在平面直角坐标系xOy 中,已知焦点在x 轴上,离心率为12的椭圆E 的左顶点为A ,点A 到右准线的距离为6. (1)求椭圆E 的标准方程; (2)过点A 且斜率为32的直线与椭圆E 交于点B ,过点B 与右焦点F 的直线交椭圆E 于M 点,求M 点的坐标.题型二 弦长问题例3 如图,在平面直角坐标系xOy中,已知椭圆x 2a 2+y 2b 2=1(a >b >0) 的离心率e =22,右焦点F 到左准线l 的距离为3.(1)求椭圆的标准方程;(2)过F 的直线交椭圆于A ,B 两点,线段AB 的垂直平分线分别交直线l 和AB 于点P ,C ,若PC =2AB ,求直线AB 的方程.变式 如图,在平面直角坐标系xOy 中,椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率为12,过椭圆右焦点F 作两条互相垂直的弦AB 与CD .当直线AB 斜率为0时,AB =4. (1)求椭圆的方程;(2)若|AB |+|CD |=487,求直线AB 的方程.BAOxy lP C题型三 定点问题例4 如图,在平面直角坐标系xOy中,离心率为2的椭圆:C 22221(0)x y a b a b+=>>的左顶点为A ,过原点O 的直线(与坐标轴不重合)与椭圆C 交于,P Q 两点,直线,PA QA 分别与y 轴交于,M N 两点.若直线PQ斜率为2时,PQ = (1)求椭圆C 的标准方程;(2)试问以MN 为直径的圆是否经过定点(与直线PQ 的斜率无关)?请证明你的结论.例5 已知椭圆C :x 2a 2+y 2=1(a >1)的上顶点为A ,右焦点为F ,直线AF 与圆M :x 2+y 2-6x -2y +7=0相切.(1)求椭圆C 的方程;(2)若不过点A 的动直线l 与椭圆C 相交于P 、Q 两点,且AP →·AQ →=0,求证:直线l 过定点,并求出该定点N 的坐标.变式1 已知椭圆C :x 2a 2+y 2b 2=1(a >b >0),四点1P (1,1),2P (0,1),)23,1(3 P ,)23,1(4P 中恰有三点在椭圆C 上. (1)求C 的方程;(2)设直线l 不经过P 2点且与C 相交于A ,B 两点.若直线P 2A 与直线P 2B 的斜率的和为-1,证明:l 过定点.变式2 如图,在平面直角坐标系xOy 中,椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为22,椭圆上动点P 到一个焦点的距离的最小值为3(2-1).(1) 求椭圆C 的标准方程;(2) 已知过点M (0,-1)的动直线l 与椭圆C 交于A ,B 两点,试判断以线段AB 为直径的圆是否恒过定点,并说明理由.题型四 定值问题例6 已知椭圆)(:012222>>=+b a by a x C 的离心率为23,且过点),(12-P .(1)求椭圆C 的方程;(2)设点Q 在椭圆C 上,且PQ 与x 轴平行,过P 点作两条直线分别交椭圆C 于),(11y x A),(22y x B 两点,若直线PQ 平分APB ∠,求证:直线AB 的斜率是定值,并求出这个定值.变式 在平面直角坐标系xOy 中,已知椭圆22221(0)x y a b a b+=>>的焦距为2,离心率为22,椭圆的右顶点为A . (1)求该椭圆的方程;(2)过点(2,2)D -作直线PQ 交椭圆于两个不同点,P Q ,求证:直线,AP AQ 的斜 率之和为定值.例7 如图,在平面直角坐标系xOy 中,已知椭圆22221x y a b+=(0)a b >>,焦点到相应准线的距离为1. (1)求椭圆的标准方程;(2)若P 为椭圆上的一点,过点O 作OP 的垂线交直线y =于点Q ,求2211OP OQ +的值.变式在平面直角坐标系xOy 中,已知圆222:O x y b +=经过椭圆222:14x y E b +=(02)b <<的焦点.(1)求椭圆E 的标准方程;(2)设直线:l y kx m =+交椭圆E 于,P Q 两点,T 为弦PQ 的中点,(1,0),(1,0)M N -,记直线,TM TN 的斜率分别为12,k k ,当22221m k -=时,求12k k ⋅的值.题型五 最值、范围问题例8 已知椭圆C :22221(0)x y a b a b+=>>的左焦点为F (-1,0),左准线方程为x =-2.(1) 求椭圆C 的标准方程;(2) 若椭圆C 上有A ,B 两点,满足OA ①OB (O 为坐标原点),求①AOB 面积的取值范围.例9 如图,在平面直角坐标系xOy 中,椭圆C :22221(0)x y a b a b+=>>的左顶点为A ,点B 是椭圆C 上异于左、右顶点的任一点,P 是AB 的中点,过点B 且与AB 垂直的直线与直线OP 交于点Q ,已知椭圆C 的离心率为12,点A 到右准线的距离为6。

高考数学一轮复习《圆锥曲线》练习题(含答案)

高考数学一轮复习《圆锥曲线》练习题(含答案)

高考数学一轮复习《圆锥曲线》练习题(含答案)一、单选题1.双曲线2228x y -=的渐近线方程是( ) A .12y x =±B .2y x =±C .2y x =±D .22y x =±2.已知双曲线()2222100x y a b a b-=>>,的左右焦点分别为()()1200F c F c -,,,,若直线2y x =与双曲线的一个交点P 的横坐标恰好为c ,则双曲线的离心率为( ) A .5B .2C .21+D .21-3.如图,在体积为3的三棱锥P-ABC 中,P A ,PB ,PC 两两垂直,1AP =,若点M 是侧面CBP 内一动点,且满足AM BC ⊥,则点M 的轨迹长度的最大值为( )A .3B .6C .23D .324.抛物线22y x =的焦点坐标为( ).A .1,02⎛⎫⎪⎝⎭B .1,02⎛⎫- ⎪⎝⎭C .10,8⎛⎫ ⎪⎝⎭D .10,8⎛⎫- ⎪⎝⎭5.设抛物线y 2=4x 的焦点为F ,过点F 的直线l 与抛物线相交于A ,B ,点A 在第一象限,且|AF |﹣|BF |32=,则AF BF =( ) A .32B .2C .3D .46.已知抛物线M :24y x =的焦点为F ,O 是坐标原点,斜率为()0k k >的直线l 交抛物线M 于A ,B 两点,且点A ,B 分别位于第一、四象限,交抛物线的准线l '于点C .若2ACFABFSS=,2BF =,则AOBS=( )A .33-B .33+C .2D .231+7.若双曲线的中心为坐标原点,焦点在y 轴上,其离心率为2,则该双曲线的渐近线方程为( ) A .3y x =±B .33y x =±C .4y x =±D .14y x =±8.已知双曲线E 的左、右焦点分别为12,F F ,O 为坐标原点.若点P 在E 上,2OP OQ =-,22PF OF =,1132QF OF =,则E 的离心率为A .2B .2C .5D .31+9.设1F ,2F 是离心率为5的双曲线222124x y a -=的两个焦点,P 是双曲线上的一点,且1234PF PF =,则12PF F △的面积等于A .42B .83C .24D .4810.已知抛物线C :y 2=4x 的焦点为F ,准线为l ,直线20l :x y '-+=,动点M 在C 上运动,记点M 到直线l 与l ′的距离分别为d 1,d 2,O 为坐标原点,则当d 1+d 2最小时,cos ∠MFO =( ) A .22B .23C .24D .2611.如图,已知正方体1111ABCD A B C D -的棱长为1,,M N 分别是棱1,AA BC 上的动点,若2MN =,则线段MN 的中点P 的轨迹是( )A .一条线段B .一段圆弧C .一部分球面D .两条平行线段12.已知拋物线21:2(0)C y px p =>的焦点F 为椭圆22222:1(0)x y C a b a b+=>>的右焦点,且1C与2C 的公共弦经过F ,则椭圆的离心率为( )A 1B C D二、填空题13.已知点(3,2)在椭圆221(0,0)x y m n m n+=>>上,则点(-3,3)与椭圆的位置关系是__________.14.过点且渐近线与双曲线22:12x C y -=的渐近线相同的双曲线方程为______.15.焦点在y 轴上的双曲线221y mx -=,则m 的值为___________.16.已知过抛物线C :y 2=8x 焦点的直线交抛物线于A ,B 两点,过点A 作抛物线准线的垂线,垂足为M ,AB BM =,则A 点的横坐标为___.三、解答题17.求经过点(3,1)A -,并且对称轴都在坐标轴上的等轴双曲线的标准方程.18.已知椭圆C :22143x y +=,过椭圆右焦点的直线l 与椭圆交于M ,N 两点,求MN 的取值范围.19.已知椭圆()2222:10x y C a b a b+=>>的离心率12e =,且椭圆C 经过点31,2P ⎛⎫-- ⎪⎝⎭.(1)求椭圆C 的方程.(2)不过点P 的直线:2l y kx =+与椭圆C 交于A ,B 两点,记直线P A ,PB 的斜率分别为1k ,2k ,试判断12k k +是否为定值.若是,求出该定值;若不是,请说明理由.20.在平面直角坐标系xOy 中,已知椭圆221:195x y C +=与()222206:136x y b C b =<<+的离心率相等.椭圆1C 的右焦点为F ,过点F 的直线与椭圆1C 交于A ,B 两点,射线OB 与椭圆2C 交于点C ,椭圆2C 的右顶点为D .(1)求椭圆2C 的标准方程;(2)若ABO 10,求直线AB 的方程; (3)若2AF BF =,求证:四边形AOCD 是平行四边形.21.已知(0,2),(3,1)A B 是椭圆2222:1(0)x y G a b a b+=>>上的两点.(1)求椭圆G 的离心率;(2)已知直线l 过点B ,且与椭圆G 交于另一点C (不同于点A ),若以BC 为直径的圆经过点A ,求直线l 的方程.22.已知椭圆C 的离心率2e =()10,1B -,()20,1B . (1)求椭圆C 的方程;(2)设动直线:l y kx m =+与椭圆C 有且只有一个公共点P ,且与直线2x =相交于点Q .问在x 轴上是否存在定点N ,使得以PQ 为直径的圆恒过定点N ,若存在,求出N 点坐标;若不存在,说明理由.23.已知点P 在圆22:4O x y +=上运动,PQ x ⊥轴,垂足为Q ,点A 满足12AQ PQ =. (1)求点A 的轨迹E 的方程;(2)过点30,2⎛⎫⎪⎝⎭的直线l 与曲线E 交于,M N 两点,记OMN ∆的面积为S ,求S 的最大值.24.已知抛物线1C :()220x py p =>的焦点为F ,圆2C :()()22284x y +++=,过y 轴上点G 且与y 轴不垂直的直线l 与抛物线1C 交于A 、B 两点,B 关于y 轴的对称点为D ,O 为坐标原点,连接2GC 交x 轴于点E ,且点E 、F 分别是2GC 、OG 的中点. (1)求抛物线1C 的方程; (2)证明:直线AD 与圆2C 相交参考答案1.C2.C3.A4.C5.B6.B7.B8.D9.C10.A11.B12.A 13.点在椭圆外 14.22163x y -=15.4 16.417.设所求的等轴双曲线的方程为:()220x y λλ-=≠,将(3,1)A -代入得:()2231λ--=,即=8λ, 所以等轴双曲线的标准方程:22188x y -=18.解:由椭圆C :22143x y +=知,2a =,b =1c =,所以椭圆C 的右焦点为()1,0F .当直线l 的斜率不存在时,223b MN a==. 当直线l 的斜率存在时,设直线l 的方程为(1)y k x =-,将其代入椭圆C 的方程得()22223484120kxk x k +-+-=.设()11,M x y ,()22,N x y ,则2122834k x x k +=+,212241234k x x k -=+, 所以=MN ()222121333434+==+++k k k因为20k ≥,所以(]3,4MN ∈. 综上,MN 的取值范围是[]3,4. 19.(1)因为12c e a ==,所以2a c =,所以222234b a c a =-=.因为椭圆C 过31,2P ⎛⎫-- ⎪⎝⎭,所以221914a b +=,所以24a =,23b =,故椭圆C 的标准方程为22143x y +=. (2)因为直线l 不过31,2P ⎛⎫-- ⎪⎝⎭,且直线P A ,PB 的斜率存在,所以72k ≠且12k ≠.设()11,A x y ,()22,B x y ,联立方程组222143y kx x y =+⎧⎪⎨+=⎪⎩,得()22341640k x kx +++=, 则1221634k x x k +=-+,122434x x k =+. 由()()221616340k k ∆=-+>,得214k >且72k ≠.因为()()12121212121212121273377272222211111kx x k x x y y kx kx k k x x x x x x x x ⎛⎫++++++++ ⎪⎝⎭+=+=+=+++++++, 所以2221222271682712482134343416416713434k k k k k k k k k k k k k k ⎛⎫+ ⎪⎝⎭-+-++++===-+-+++, 即12k k +为定值,且123k k +=.20.(1)由题意知,椭圆1C 的长轴长126a =,短轴长12b =124c ==, 椭圆2C 的长轴长2212a =,短轴长2b ,焦距22c =.因为椭圆1C 与2C 的离心相等,所以1212c c a a =,即23= 因为06b <<,所以220b =,所以椭圆2C 的标准方程为2213620x y +=.(2)因为椭圆1C 右焦点为()2,0F ,且A ,O ,B 三点不共线, 设直线AB 的方程为2x my =+,联立22195x y +=,消x 得()225920250m y my ++-=.设()11,A x y ,()22,B x y ,()22(20)100590m m ∆=++>,所以1,2y ==, 即1212222025,5959m y y y y m m -+=-=++. 因为121212111||||||222ABOAOFBOFSS SOF y OFy O y y y F y =+=+=-=-==, 化简得4259m=,所以m =, 所以直线AB 的方程为2x y =+,即5100x ±-=. (3)因为2AF BF =,所以2AF FB =.因为()()1122,,,,(2,0)A x y B x y F ,所以()()11222,22,x y x y --=-,所以121262,2.x x y y =-⎧⎨=-⎩ 因为()()1122,,,A x y B x y 在椭圆22195x y +=上, 所以221122221,951,95x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩,所以()222222226241,951,95x y x y ⎧-+=⎪⎪⎨⎪+=⎪⎩消2y ,得2218x =. 代入2222195x y +=,由对称性不妨设120,0y y ><,所以2y =从而得,113,4x y ==即321,,48A B ⎛⎛ ⎝⎭⎝⎭.所以OC k =,直线OC的方程为y x =, 联立2213620x y +=,得244116x =.由题知0x >,所以21,4x y ==21,4C ⎛ ⎝⎭.又(6,0)D,所以OA CD k k ==又因为,OA CD 不共线,所以//OA CD ,又AD OC k k ==,且,OC AD 不共线,所以//OC AD . 所以四边形AOCD 是平行四边形. 21.解:(1)由已知2b =, 由点(3,1)B 在椭圆G 上可得29114a +=,解得212,a a ==所以2228,c a b c =-== 所以椭圆G的离心率是c e a ==; (2)当直线l 过点B 且斜率不存在时,可得点(3,1)C -,不满足条件; 设直线BC 的方程为1(3)y k x -=-),点(),C C C x y ,由22131124y kx kx y =+-⎧⎪⎨+=⎪⎩可得()222316(13)3(13)120k x k k x k ++-+--=,显然0∆>,此方程两个根是点B 和点C 的横坐标, 所以223(13)12331C k x k --=+,即22(13)431C k x k --=+,所以2236131C k k y k --+=+,因为以BC 为直径的圆经过点A , 所以AB AC ⊥,即0AB AC ⋅=,2222963961(3,1),3131k k k k AB AC k k ⎛⎫-----⋅=-⋅ ⎪++⎝⎭2236128031k k k --==+, 即(32)(31)0k k -+=, 123k ,213k =-, 当213k =-时,即直线AB ,与已知点C 不同于点A 矛盾,所以123BC k k ==, 所以直线BC 的方程为213y x =-. 22.(1)由题意可设椭圆为22221x y a b+=由题意可得c e a ==1b =,可得a =所以椭圆的方程为:2212x y +=.(2)联立2222y kx m x y =+⎧⎨+=⎩,整理可得:()222124220k x kmx m +++-=, 由题意可得()()222216412220k m k m ∆=-+-=,可得2212m k =+;可得()242212P km k x m k -==-+,1P P y kx m m =+=,即21,k P m m ⎛⎫- ⎪⎝⎭. 联立2y kx mx =+⎧⎨=⎩,可得2Q x =,2Q y k m =+,即()2,2Q k m +,设在x 轴上存在()0,0N x .由0PN QN ⋅=,可得()0021,2,20k x x k m m m ⎛⎫+-⋅---= ⎪⎝⎭,可得200242210k k k x x m m m ⎛⎫+--++= ⎪⎝⎭, 即()200022110kx x x m-++-=, 可得20002101x x x ⎧-+=⎨=⎩,可得01x =,即定点()1,0N .23.(1)设(,)A x y ,11(,)P x y , ∵12AQ PQ =,∴A 为PQ 的中点, ∴11,2,x x y y =⎧⎨=⎩∴22(2)4x y +=,即2214x y +=.∴点A 的轨迹E 的方程2214x y +=.(2)显然直线l 的斜率存在,设直线l 的方程为32y kx =+,将直线方程代入椭圆方程中得22(14)1250k x kx +++=, ∴222251444(14)56420016k k k k ∆=-⨯+=->⇒>. 设1122(,),(,)M x y N x y ,∴12133||224OMN POM PON S S S x x ∆∆∆=-=⨯⨯-=令2914()4t k t =+>,则214k t -=,∴3344OMN S S ∆====∵914049t t >⇒<<,∴129t =时,34143OMN S ∆≤⨯=,∴S 的最大值1.24.(1)设点()0,0E x ,()00,G y ,因为圆2C :()()22284x y +++=,所以圆心()22,8C --,因为点E 是2GC 的中点,所以00202820x y -+=⎧⎨-+=⨯⎩,解得0018x y =-⎧⎨=⎩,则点()0,8G ,因为点F 是OG 的中点, 所以()0,4F ,则42p=,解得8p =, 故抛物线的方程为216x y =.(2)因为B 关于y 轴的对称点为D , 所以设()11,B x y ,()22,A x y ,()11,D x y -,设直线AB 的方程为8y kx -=,即80kx y -+=,联立28016kx y x y-+=⎧⎨=⎩,消去x 得()22161640y k y -++=,则1264y y =, 设直线AD 的方程为y mx n =+,联立216y mx n x y=+⎧⎨=⎩,消去x 得()2221620y m n y n -++=,则212y y n =, 故264n =,易知0n <,则8n =-,直线AD 的方程为8y mx =-,必过定点()0,8-, 而圆2C :()()22284x y +++=正好与y 轴交于定点()0,8-, 且过点()0,8-的所有直线中,只有与y 轴重合的直线才能与圆2C :()()22284x y +++=相切,直线AD 显然不可能是y 轴,因此,直线AD 与圆2C 相交.。

高三数学高考一轮复习系列教案第八章 圆锥曲线 大纲版

高三数学高考一轮复习系列教案第八章 圆锥曲线 大纲版

第八章圆锥曲线知识结构高考能力要求1.掌握椭圆的定义、标准方程、简单的几何性质、了解椭圆的参数方程.2.掌握双曲线的定义、标准方程、简单的几何性质.3.掌握抛物线的定义、标准方程、简单的几何性质.4.了解圆锥曲线的初步应用.高考热点分析圆锥曲线是高中数学的一个重要内容,它的基本特点是数形兼备,兼容并包,可与代数、三角、几何知识相沟通,历来是高考的重点内容。

纵观近几年高考试题中对圆锥曲线的考查,基本上是两个客观题,一个主观题,分值21分~24分,占15%左右,并且主要体现出以下几个特点:1.圆锥曲线的基本问题,主要考查以下内容:①圆锥曲线的两种定义、标准方程及a、b、c、e、p 五个参数的求解.②圆锥曲线的几何性质的应用.2、求动点轨迹方程或轨迹图形在高考中出现的频率较高,此类问题的解决需掌握四种基本方法:直译法、定义法、相关点法、参数法.3.有关直线与圆锥曲线位置关系问题,是高考的重热点问题,这类问题常涉及圆锥曲线的性质和直线的基本知识以及线段中点、弦长等,分析这类问题时,往往要利用数形结合思想和“设而不求”的方法、对称的方法及韦达定理,多以解答题的形式出现.4.求与圆锥曲线有关的参数或参数范围问题,是高考命题的一大热点,这类问题综合性较大,运算技巧要求较高;尤其是与平面向量、平面几何、函数、不等式的综合,特别近年出现的解析几何与平面向量结合的问题,是常考常新的试题,将是今后高考命题的一个趋势.高考复习建议1.圆锥曲线的定义、标准方程及几何性质是本章的基本内容.复习中对基本概念的理解要深,对公式的掌握要活,充分重视定义在解题中的地位和作用,重视知识间的内在联系.椭圆、双曲线、抛物线它们都可以看成是平面截圆锥所得的截线,其本质是统一的.因此这三种曲线可统一为“一个动点P到定点F和定直线l的距离之比是一个常数e的轨迹”,当0<e<1、e=1、e>1时,分别表示椭圆、抛物线和双曲线.复习中有必要将椭圆、抛物线和双曲线的定义,标准方程及几何性质进行归类、比较,把握它们之间的本质联系,要学会在知识网络交汇处思考问题、解决问题.2.计算能力的考查已引起高考命题者的重视,这一章的复习要注意突破“运算关”,要寻求合理有效的解题途径与方法.3.加强直线与圆锥曲线的位置关系问题的复习,注重数形结合思想和设而不求法与弦长公式及韦达定理的运用.4.重视圆锥曲线与平面向量、函数、方程、不等式、三角、平面几何的联系,重视数学思想方法的训练,达到优化解题思维、简化解题过程的目的.8.1 椭圆知识要点1.椭圆的两种定义(1) 平面内与两定点F1,F2的距离的和等于常数(大于21F F )的点的轨迹叫椭圆,这两个定点叫做椭圆的 , 之间的距离叫做焦距.注:①当2a =|F 1F 2|时,P 点的轨迹是 .②当2a <|F 1F 2|时,P 点的轨迹不存在.(2) 椭圆的第二定义:到 的距离与到 的距离之比是常数e ,且∈e 的点的轨迹叫椭圆.定点F 是椭圆的 ,定直线l 是 ,常数e 是 .2.椭圆的标准方程(1) 焦点在x 轴上,中心在原点的椭圆标准方程是:12222=+b y a x ,其中( > >0,且=2a ) (2) 焦点在y 轴上,中心在原点的椭圆标准方程是12222=+bx ay ,其中a ,b 满足: .3.椭圆的几何性质(对12222=+by a x ,a > b >0进行讨论)(1) 范围: ≤ x ≤ , ≤ y ≤ (2) 对称性:对称轴方程为 ;对称中心为 .(3) 顶点坐标: ,焦点坐标: ,长半轴长: ,短半轴长: ;准线方程: .(4) 离心率:=e ( 与 的比),∈e ,e 越接近1,椭圆越 ;e 越接近0,椭圆越接近于 .(5) 焦半径公式:设21,F F 分别为椭圆的左、右焦点,),(00y x P 是椭圆上一点,则=1PF ,122PF a PF -== .(6) 椭圆的参数方程为 . 4.焦点三角形应注意以下关系: (1) 定义:r 1+r 2=2a(2) 余弦定理:21r +22r -2r 1r 2cos θ=(2c )2(3) 面积:21F PF S ∆=21r 1r 2 sin θ=21·2c | y 0 |(其中P(00,y x )为椭圆上一点,|PF 1|=r 1,|PF 2|=r 2,∠F 1PF 2=θ)例题讲练【例1】 中心在原点,一个焦点为F 1(0,52)的椭圆被直线y =3x -2截得的弦的中点的横坐标为21,求此椭圆的方程.【例2】 已知点P(3, 4)是椭圆2222b y a x +=1 (a >b >0) 上的一点,F 1、F 2是它的两焦点,若PF 1⊥PF 2,求:(1) 椭圆的方程; (2) △PF 1F 2的面积.【例3】如图,射线OA 、OB 分别与x 轴、 y 轴所成的角均为︒30;已知线段PQ 的长度为2,并且保持线段的端点),(11y x P 在射线OA 上运动,点),(22y x Q 在射线OB 上运动(1) 试求动点),(21x x M 的轨迹C 的方程(2) 求轨迹C 上的动点N 到直线03=--y x 的距离的最大值和最小值.【例4】 (2005年全国卷I )已知椭圆的中心在原点,焦点在x 轴上,斜率为1且过椭圆右焦点F 的直线交椭圆于A 、B 两点,+与=(3, -1)共线.(1) 求椭圆的离心率;(2) 设M 是椭圆上任意一点,且=μλ+(λ、μ∈R),证明22μλ+为定值.小结归纳 1.在解题中要充分利用椭圆的两种定义,灵活处理焦半径,熟悉和掌握a 、b 、c 、e 关系及几何意义,能够减少运算量,提高解题速度,达到事半功倍之效.2.由给定条件求椭圆方程,常用待定系数法.步骤是:定型——确定曲线形状;定位——确定焦点位置;定量——由条件求a 、b 、c ,当焦点位置不明确时,方程可能有两种形式,要防止遗漏.3.解与椭圆的焦半径、焦点弦有关的问题时,一般要从椭圆的定义入手考虑;椭圆的焦半径的取值范围是],[c a c a +-.4.“设而不求”,“点差法”等方法,是简化解题过程的常用技巧,要认真领会.5.解析几何与代数向量的结合,是近年来高考的热点,在2005年的考题中足以说明了这一点,应引起重视.基础训练题 一、选择题1. 动点M 到定点)0,4(1-F 和)0,4(2F 的距离的和为8,则动点M 的轨迹为 ( ) A .椭圆 B .线段 C .无图形 D .两条射线2. (2005年全国高考试题III) 设椭圆的两个焦点分别为F 1、F 2,过F 2作椭圆长轴的垂线交椭圆于点P ,若△F 1PF 2为等腰直角三角形,则椭圆的离心率是 ( )A .22 B .212- C .2-2D .2-13. (2004年高考湖南卷)F 1、F 2是椭圆C :14822=+y x 的焦点,在C 上满足PF 1⊥PF 2的点P 的个数为( ) A .2个 B .4个 C .无数个 D .不确定4. 椭圆171622=+y x 的左、右焦点为F 1、F 2,一直线过F 1交椭圆于A 、B 两点,则△ABF 2的周长为 ( ) A .32 B .16 C .8 D .45. 已知点P 在椭圆(x -2)2+2y 2=1上,则xy的最小值为( )A .36-B .26-C .6-D .66-6. 我们把离心率等于黄金比215-的椭圆称为“优美椭圆”,设)0(12222>>=+b a by a x 是优美椭圆,F 、A 分别是它的左焦点和右顶点,B 是它的短轴的一个端点,则ABF ∠等于 ( ) A .︒60 B .︒75 C .︒90 D .︒120二、填空题 7. 椭圆400162522=+y x 的顶点坐标为 和 ,焦点坐标为 ,焦距为 ,长轴长为 ,短轴长为 ,离心率为 ,准线方程为 .8. 设F 是椭圆16722=+y x 的右焦点,且椭圆上至少有21个不同的点P i (i =1,2, ),使得|FP 1|、|FP 2|、|FP 3|…组成公差为d 的等差数列,则d 的取值范围是 . 9. 设1F ,2F 是椭圆14322=+y x 的两个焦点,P 是椭圆上一点,且121=-PF PF ,则得=∠21PF F . 10.若椭圆2222)1(-+m y m x =1的准线平行于x 轴则m 的取值范围是 .三、解答题11.根据下列条件求椭圆的标准方程(1) 和椭圆1202422=+y x 共准线,且离心率为21.(2) 已知P 点在以坐标轴为对称轴的椭圆上,点P 到两焦点的距离分别为534和532,过P 作长轴的垂线恰好过椭圆的一个焦点.12.椭圆14922=+y x 的焦点为21,F F ,点P 为其上的动点,当∠21PF F 为钝角时,求点P 横坐标的取值范围.13.(2005年高考湖南卷)已知椭圆C :12222=+by a x (a >0,b >0)的左、右焦点分别是F 1、F 2,离心率为e .直线l :y =ex +a 与x 轴,y 轴分别交于点A 、B 、M 是直线l 与椭圆C 的一个公共点,P 是点F 1关于直线l 的对称点,设=λ. (Ⅰ)证明:λ=1-e 2;(Ⅱ)若λ=43,△MF 1F 2的周长为6,写出椭圆C 的方程;(Ⅲ)确定λ的值,使得△PF 1F 2是等腰三角形.提高训练题14.(2006年高考湖南卷)已知C 1:13422=+y x ,抛物线C 2:(y -m )2=2px (p >0),且C 1、C 2的公共弦AB 过椭圆C 1的右焦点.(Ⅰ)当AB ⊥x 轴时,求p 、m 的值,并判断抛物线C 2的焦点是否在直线AB 上;(Ⅱ)若p =34,且抛物线C 2的焦点在直线AB 上,求m 的值及直线AB 的方程.15.(成都市2006届毕业班摸底测试)设向量i =(1, 0),j =(0, 1),=(x +m )i +y j ,=(x -m )i +y j ,且||+||=6,0< m < 3,x >0,y ∈R . ( I )求动点P(x ,y )的轨迹方程;( II ) 已知点A(-1, 0),设直线y =31(x -2)与点P 的轨迹交于B 、C 两点,问是否存在实数m ,使得AC AB ⋅=31?若存在,求出m 的值;若不存在,请说明理由.8.2 双 曲 线知识要点 1.双曲线的两种定义(1) 平面内与两定点F 1,F 2的 常数(小于 )的点的轨迹叫做双曲线.注:①当2a =|F 1F 2|时,p 点的轨迹是 .②2a >|F 1F 2|时,p 点轨迹不存在.(2) 平面内动点P 到一个定点F 和一条定直线l (F 不在 上)的距离的比是常数e ,当∈e 时动点P 的轨迹是双曲线.设P 到1F 的对应准线的距离为d ,到2F 对应的准线的距离为2d ,则e d PF d PF ==22112.双曲线的标准方程 (1) 标准方程:12222=-b y a x ,焦点在 轴上;12222=-bx ay ,焦点在 轴上.其中:a 0,b 0,=2a .(2) 双曲线的标准方程的统一形式:)0(122<=+nm ny mx3.双曲线的几何性质(对0,0,122>>=-b a b y a x 进行讨论)(1) 范围:∈x ,∈y .(2) 对称性:对称轴方程为 ;对称中心为 .(3) 顶点坐标为 ,焦点坐标为 ,实轴长为 ,虚轴长为 ,准线方程为 ,渐近线方程为 .(4) 离心率e = ,且∈e ,e 越大,双曲线开口越 ,e 越小,双曲线开口越 ,焦准距P = .(5) 焦半径公式,设F 1,F 2分别是双曲线的左、右焦点,若),(00y x P 是双曲线右支上任意一点,=1PF ,=2PF ,若),(00y x P 是双曲线左支上任意一点,=1PF ,=2PF . (6) 具有相同渐近线x aby ±=的双曲线系方程为 (7) 的双曲线叫等轴双曲线,等轴双曲线的渐近线为 ,离心率为 .(8) 12222=-b y a x 的共轭双曲线方程为 .例题讲练【例1】 根据下列条件,写出双曲线的标准方程 (1) 中心在原点,一个顶点是(0,6),且离心率是1.5.(2) 与双曲线x 2-2y 2=2有公共渐近线,且过点M(2,-2).【例2】 (04年高考湖北卷)直线l :y =kx +1与双曲线C :2x 2-y 2=1的右支交于不同的两点A 、B .(1)求实数k 的取值范围;(2)是否存在实数k ,使得以线段AB 为直径的圆经过双曲线C 的右焦点F ?若存在,求出k 的值;若不存在,说明理由.【例3】 在双曲线1121322-=-y x 的一支上有不同的三点A(x 1,y 1),B(x 2,6),C(x 3,y 3)与焦点F(0,5)的距离成等差数列.(1)求y 1+y 3;(2)求证:线段AC 的垂直平分线经过某一定点,并求出这个定点的坐标.【例4】 (2004年高考全国卷II )设双曲线C :)0(1222>=-a y a x 与直线l :x +y =1相交于两个不同的点.(1) 求双曲线C 的离心率e 的取值范围;(2) 设直线l 与y 的交点为P ,且=125,求a的值.小结归纳1.复习双曲线要与椭圆进行类比,尤其要注意它们之间的区别,如a 、b 、c 、e 的关系.2.双曲线的渐近线的探求是一个热点.①已知双曲线方程求渐近线方程;②求已知渐近线方程的双曲线方程.3.求双曲线的方程,经常要列方程组,因此,方程思想贯穿解析几何的始终,要注意定型(确定曲线形状)、定位(曲线的位置)、定量(曲条件求参数).4.求双曲线的方程的常用方法: (1) 定义法.(2) 待定系数法.涉及到直线与圆锥曲线的交点问题,经常是“设而不求”.5.例2的第(1)问是数材P 132第13题的引申,因此高考第一轮复习要紧扣教材.6.对于直线与双曲线的位置关系,要注意“数形转化”“数形结合”,既可以转化为方程组的解的个数来确定,又可以把直线与双曲线的渐近线进行比较,从“形”的角度来判断.基础训练题 一、选择题1. A 、B 是平面内两定点,动点P 到A 、B 两点的距离的差是常数,则P 的轨迹是 ( ) A .双曲线 B .椭圆 C .双曲线的一支 D .不能确定2. (04年高考湖南卷)如果双曲线1121322=-y x 上一点p 到右焦点的距离等于13,那么点p 到右焦线的距离是 ( )A .513 B .13 C .5D .1353. 已知双曲线的渐近线方程是2xy ±=,焦点在坐标轴上且焦距是10,则此双曲线的方程为 ( )A .152022=-y x B .152022±=-y x C .120522=-y xD .120522±=-y x4. (2005年高考湖南卷)已知双曲线12222=-by a x (a >0,b >0)的右焦点为F ,右焦线与一条渐近线交于点A ,△OAF 的面积为22a ,(0为原点)则两条渐近线的夹角为( ) A .30° B .45° C .60°D .90°5. 已知双曲线14922=-y x ,则过点A(3,1)且与双曲线仅有唯一的公共点的直线有 ( ) A .1条 B .2条 C .3条 D .4条6. (2005年江苏高考最后冲刺题) 设双曲线16x 2-9y 2=144的右焦点为F 2,M 是双曲线上任意一点,点A 的坐标为(9,2),则|MA|+53|MF 2|的最小值为( )A .9B .536C .542D .554二、填空题7. 中心在原点,坐标轴为对称轴,实轴与虚轴长之差为2,离心率为45的双曲线方程为 .8. (2004年高考·吉林、四川)设中心在原点,坐标轴为对称轴的椭圆与双曲线12222=-y x 有公共焦点,且它们的离心率互为倒数,则椭圆方程为 .9. (2006年高考湖南卷)过双曲线M :1222=-b y x 的左顶点A 作斜率为1的直线l ,若l 与双曲线M 的两条渐近线分别相交于点B 、C ,且|AB|=|BC|,则双曲线M 的离心率是 .10.可以证明函数x bax y +=(b ≠0)的图象是双曲线,试问双曲线C :xx y 33+=的离心率e 等于 .三、解答题11.(1) 已知双曲线的渐近线方程为032=±yx ,且过点(2,-6),求双曲线的方程;(2) 已知双曲线的右准线为x =4,右焦点为F(10,0),离心率为e =2,求双曲线的方程. 12.ABC ∆中,固定底边BC ,让顶点A 移动,已知4=BC ,且A B C sin 21sin sin =-,求顶点A 的轨迹方程.13.双曲线12222=-by a x )0,0(>>b a 的右支上存在与右焦点和左准线等距离的点,求离心率e 的取值范围.提高训练题 14.已知动点p 与双曲线13222=-y x 的两个焦点F 1、F 2的距离之和为定值,且cos ∠F 1PF 2的最小值为-91.(1) 求动点p 的轨迹方程;(2) 若已知点D(0,3),点M 、N 在动点p 的轨迹上且λ=,求实数λ的取值范围.15.(2005年武汉市高三调考)已知等轴双曲线C :)0(222>=-a a y x 上一定点P(00,y x )及曲线C 点上两个动点A 、B ,满足0=⋅PB PA(1) M 、N 分别为PA 、PB 中点,求证:0=⋅ON OM (O 为坐标原点);(2) 求|AB|的最小值及此时A 点坐标.抛 物 线 1.抛物线定义:离 的点的轨迹叫抛物线,焦点, 叫做抛物线的准线2.抛物线的标准方程和焦点坐标及准线方程① px y 22=,焦点为 ,准线为 . ② px y 22-=,焦点为 ,准线为 . ③ py x 22=,焦点为 ,准线为 . ④ py x 22-=,焦点为 ,准线为 . 3.抛物线的几何性质:对)0(22>=p px y 进行讨论. ① 点的范围: 、 . ② 对称性:抛物线关于 轴对称. ③ 离心率=e .④ 焦半径公式:设F 是抛物线的焦点,),(o o y x P 是抛物线上一点,则=PF .⑤ 焦点弦长公式:设AB 是过抛物线焦点的一条弦(焦点弦)i) 若),(11y x A ,),(22y x B ,则AB = ,21y y .ii) 若AB 所在直线的倾斜角为θ()0≠θ则AB = .特别地,当θ2π=时,AB 为抛物线的通径,且AB = .iii) S △AOB = (表示成P 与θ的关系式).iv) ||1||1BF AF +为定值,且等于 . 例题讲练【例1】 已知抛物线顶点在原点,对称轴是x 轴,抛物线上的点),3(n A -到焦点的距离为5,求抛物线的方程和n 的值.【例2】 已知抛物线C :x y 42=的焦点为F ,过点F 的直线l 与C 相交于A 、B .(1) 若316=AB ,求直线l 的方程.(2) 求AB 的最小值.【例3】 若A(3,2),F 为抛物线x y 22=的焦点,P 为抛物线上任意一点,求PA PF +的最小值及取得最小值时的P 的坐标.【例4】 (05全国卷(Ⅲ))设A(x 1,y 1),B(x 2,y 2),两点在抛物线y =2x 2上,l 是AB 的垂直平分线.(1)当且仅当x 1+x 2取何值时,直线l 经过抛物线的焦点F ?证明你的结论?(2)当直线l 的斜率为2时,求在y 轴上的截距的取值范围.小结归纳 1.求抛物线方程要注意顶点位置和开口方向,以便准确设出方程,然后用待定系数法.2.利用好抛物线定义,进行求线段和的最小值问题的转化.3.涉及抛物线的弦的中点和弦长等问题要注意利用韦达定理,能避免求交点坐标的复杂运算.4、解决焦点弦问题时,抛物线的定义有广泛的应用,应注意焦点弦的几何性质.基础训练题 一、选择题1. 过抛物线)0(22>=P px y 的焦点作直线交抛物线于),(11y x A ,),(22y x B 两点,若P x x 321=+,则AB等于( )A .2PB .4PC .6PD .8P2. 已知动点),(y x P 满足22)2()1(5-+-y x =|1243|++y x ,则P 点的轨迹是 ( )A .两条相交直线B .抛物线C .双曲线D .椭圆3. 已知抛物线212:x y C =与抛物线2C 关于直线x y -=对称,则2C 的准线方程是( )A .81-=x B .21=xC .81=x D .21-=x4. (2005年高考上海卷)过抛物线y 2=4x 的焦点作一条直线与抛物线相交于A 、B 两点,它们的横坐标之和等于5,则这样的直线 ( ) A .有且仅有一条 B .有且仅有两条 C .有无数条 D .不存在5. (2003年新课程卷)抛物线2ax y =的准线方程是2=y ,则a 的值为 ( )A .81B .81-C .8D .8-6. (04年高考湖北卷)与直线2x -y +4=0平行的抛物线y =x 2的切线方程是 ( ) A .2x -y +3=0 B .2x -y -3=0 C .2x -y +1=0 D .2x -y -1=0二、填空题7. 点M 与点F(4,0)的距离比它到连线l :x +5=0的距了小1,则点M 的轨迹方程为 . 8. 某桥的桥洞是抛物线,桥下水面宽16米,当水面上涨2米后达警戒水位,水面宽变为12米,此时桥洞顶部距水面高度为 米(精确到0.1米). 9. 过点(3,3)的直线与抛物线y 2=3x 只有一个公共点,则这样的直线的条数为 .10.一个酒杯的轴截面是抛物线的一部分,它的方程是x 2)200(2≤≤=y y ,在杯内放入一个玻璃球,要使球触及酒杯底部,则玻璃球的半径r 的取值范围是三、解答题11.求顶点在原点,对称轴是x 轴,并且顶点与焦点的距离等于6的抛物线方程.12.正方形ABCD 中,一条边AB 在直线y =x +4上,另外两顶点C 、D 在抛物线y 2=x 上,求正方形的面积.13.设A 和B 为抛物线y 2=4px (p >0)上原点以外的两个动点,已知OA ⊥OB ,OM ⊥AB ,求点M 的轨迹方程,并说明它表示什么曲线?提高训练题 14.过抛物线y 2=2px (p >0)的焦点F 作直线交抛物线于A 、B 两点,试问:以AB 为直径的圆与抛物线的准线是相交、相切还是相离?若把抛物线改为椭圆12222=+b y a x 或双曲线12222=-b y a x ,结果又如何呢?15.(2004年高考上海卷)如图,直线x y 21=与抛物线4812-=x y 交于A 、B 两点,线段AB 的垂直平分线与直线5-=y 交于Q 点. (1) 求点Q 的坐标;(2) 当P 为抛物线上位于线段AB(含点A 、B)下方的动点时,求OPQ ∆面积的最大值.8.4 直线与圆锥曲线的位置关系知识要点 1.直线与圆锥曲线的位置关系,常用研究方法是将曲线方程与直线方程联立,由所得方程组的解的个数来决定,一般地,消元后所得一元二次方程的判别式记为△,△>0时,有两个公共点,△=0时,有一个公共点,△<0时,没有公共点.但当直线方程与曲线方程联立的方程组只有一组解(即直线与曲线只有一个交点)时,直线与曲线未必相切,在判定此类情形时,应注意数形结合.(对于双曲线,重点注意与渐近线平行的直线,对于抛物线,重点注意与对称轴平行的直线)2.直线与圆锥曲线的交点间的线段叫做圆锥曲线的弦.设弦AB 端点的坐标为A(x 1,y 1),B(x 2,y 2),直线AB 的斜率为k ,则:|AB |=————————或:—————————.利用这个公式求弦长时,要注意结合韦达定理. 当弦过圆锥曲线的焦点时,可用焦半径进行运算. 3.中点弦问题:设A(x 1,y 1),B(x 2,y 2)是椭圆12222=+b y a x 上不同的两点,且x 1≠x 2,x 1+x 2≠0,M(x 0,y 0)为AB 的中点,则 ⎪⎪⎩⎪⎪⎨⎧=+=+11222222221221b y ax b y a x 两式相减可得2221212121ab x x y y x x y y -=++⋅--即 .对于双曲线、抛物线,可得类似的结论.例题讲练 【例1】 直线y =ax +1与双曲线3x 2-y 2=1相交于A 、B 两点.(1) 当a 为何值时,A 、B 两点在双曲线的同一支上?当a 为何值时,A 、B 两点分别在双曲线的两支上?(2) 当a 为何值时,以AB 为直径的圆过原点?x【例2】 已知双曲线方程2x 2-y 2=2.(1) 求以A(2,1)为中点的双曲线的弦所在直线方程; (2) 过点B(1,1)能否作直线l ,使l 与所给双曲线交于Q 1、Q 2两点,且点B 是弦Q 1Q 2的中点?这样的直线l 如果存在,求出它的方程;如果不存在,说明理由.【例3】 在抛物线y 2=4x 上恒有两点关于直线y =kx +3对称,求k 的取值范围.【例4】 (2006届苏州市高三调研测试)已知椭圆222y ax +=1(a 为常数,且a >1),向量m =(1, t ) (t >0),过点A(-a , 0)且以为方向向量的直线与椭圆交于点B ,直线BO 交椭圆于点C (O 为坐标原点).(1) 求t 表示△ABC 的面积S( t );(2) 若a =2,t ∈[21, 1],求S( t )的最大值.小结归纳1.判断直线与圆锥曲线的位置关系时,注意数形结合;用判别式的方法时,若所得方程二次项的系数有参数,则需考虑二次项系数为零的情况.2.涉及中点弦的问题有两种常用方法:一是“设而不求”的方法,利用端点在曲线上,坐标满足方程,作差构造出中点坐标和斜率的关系,它能简化计算;二是利用韦达定理及中点坐标公式.对于存在性问题,还需用判别式进一步检验.3.对称问题,要注意两点:垂直和中点.基础训练题 一、选择题1. 曲线x 2+4y 2+D x +2E y +F =0与x 轴有两个交点,且这两个交点在原点的两侧的充要条件是 ( ) A .D ≠0,E =0,F >0 B .E =0,F <0 C .D 2-F >0 D .F <0 2. 若椭圆193622=+y x 的弦被点(4,2)平分,则此弦所在直线的斜率为 ( ) A .2 B .-2C .31D .-213. 经过抛物线)0(22>=p px y 的所有焦点弦中,弦长的最小值为 ( ) A .p B .2p C .4p D .不确定4. 过双曲线1222=-y x 的右焦点作直线l ,交双曲线于A 、B 两点,若∣AB ∣=4,则这样的直线l 有( ) A .1条 B .2条 C .3条 D .4条5. (华师大二附中2005年模拟试卷2) 直线l :y =kx +1(k ≠0)椭圆E :1422=+y m x ,若直线l 被椭圆E 所截弦长为d ,则下列直线中被椭圆E 截得的弦长不是d 的是 ( ) A .kx +y +1=0 B .kx -y -1=0 C .kx +y -1=0 D .kx +y =06. 椭圆mx 2+ny 2=1与直线y =1-x 交于M 、N 两点,过两点O 与线段MN 之中点的直线的斜率为22,则xnm的值是 ( )A .22B .332 C .229D .2732二、填空题7. 已知直线x -y =2与抛物线y 2-4x 交于A 、B 两点,那么线段AB 的中点坐标是 .8. 对任意实数k ,直线y =kx +b 与椭圆⎩⎨⎧==θθs i n 4c o s 2y x (0≤θ<2π)恒有公共点,则b 的取值范围是 .9. 已知抛物线y 2=4x 的一条弦AB ,A(x 1,y 1),B(x 2,y 2),AB 所在直线与y 轴交点坐标为(0,2),则2111y y += .10.若直线mx +ny -3=0与圆x 2+y 2=3没有公共点,则m 、n 的关系式为___________;以(m ,n )为点P 的坐标,过点P 的一条直线与椭圆13722=+y x 的公共点有____个.三、解答题 11.已知直线l 交椭圆162022y x +=1于M 、N 两点,B(0,4)是椭圆的一个顶点,若△BMN 的重心恰是椭圆的右焦点,求直线l 的方程.12.已知直线y =(a +1)x -1与曲线y 2=ax 恰有一个公共点,求实数a 的值.13.(05重庆)已知椭圆C 1的方程为1422=+y x ,双曲线C 2的左、右焦点分别为C 1的左、右顶点,而C 2的左、右顶点分别是C 1的左、右焦点. (1)求双曲线C 2的方程;(2)若直线l :y =kx +2与椭圆C 1及双曲线C 2恒有两个不同的交点,且l 与C 2的两个交点A 和B 的满足6<⋅(其中O 为原点),求k 的取值范围. 提高训练题14.已知椭圆的一个顶点为A(0,-1),焦点在x 轴上,若右焦点到直线022=+-y x 的距离为3. ⑴ 求椭圆的方程;⑵ 设椭圆与直线y =kx +m (k ≠0)相交于不同的两点M 、N ,当AN AM =时,求m 的取值范围.15.(04湖南)过抛物线x 2=4y 的对称轴上任一点P(0,m )(m >0),作直线与抛物线交于A 、B 两点,点Q 是点P 关于原点的对称点. (Ⅰ)设点P 分有向线段所成的比为λ,证明:)(λ-⊥;(Ⅱ)设直线AB 的方程是x -2y +12=0,过A 、B 两点的圆C与抛物线在点A处有共同的切线,求圆C的方程.8.5 轨迹方程知识要点1.直接法求轨迹的一般步骤:建系设标,列式表标,化简作答(除杂).2.求曲线轨迹方程,常用的方法有:直接法、定义法、代入法(相关点法、转移法)、参数法、交轨法等.例题讲练【例1】一动圆与圆x2+y2+6x+5=0外切,同时与圆x2+y2-6x-91=0内切,求动圆圆心的轨迹方程,并说明它是什么样的曲线.【例2】已知抛物线过点N(1,-1),且准线为l:x =-3,求抛物线顶点M的轨迹.【例3】已知直线l与椭圆12223=+byax(a>b>0)有且仅有一个交点Q,且与x轴、y轴交于R、S,求以线段SR 为对角线的矩形ORPS的顶点P的轨迹方程.【例4】已知点H(0,-3),点P在x轴上,点Q 在y轴正半轴上,点M在直线PQ上,且满足PMHP⋅=0,MQPM23-=.(1) 当点P在x轴上移动时,求动点M的轨迹曲线C 的方程;(2) 过定点A(a,b)的直线与曲线C相交于两点S、R,求证:抛物线S、R两点处的切线的交点B恒在一条直线上.小结归纳1.直接法求轨迹方程关键在于利用已知条件,找出动点满足的等量关系,这个等量关系有的可直接利用已知条件,有的需要转化后才能用.2.回归定义是解决圆锥曲线轨迹问题的有效途径.3.所求动点依赖于已知曲线上的动点的运动而运动,常用代入法求轨迹.4.参数法求轨迹关键在于如何选择好参数,建立起x ,y 的参数方程,以便消参,选择n 个参数,要建立n +1个方程,消参时,要注意等价性.5.求轨迹比求轨迹方程多一个步骤,求轨迹最后须说明轨迹的形状、大小、位置、方向.基础训练题 一、选择题1. 已知椭圆的焦点是F 1、F 2,P 是椭圆上的一个动点,如果延长F 1P 到Q ,使得| PQ |=| PF 2 |,那么动点Q 的轨迹是 ( ) A .圆 B .椭圆 C .双曲线的一支 D .抛物线2. 动点P 与定点)0,1(,)0,1(B A -的连结的斜率之积为1-,则P 点的轨迹方程是( ) A .x 2+y 2=1 B .x 2+y 2=1)1(±≠x C .x 2+y 2=1)0(≠x D .21x y -=3. 已知动点P(x 、y )满足1022)2()1(-+-y x =|3x +4y+2|,则动点P 的轨迹是( )A .椭圆B .双曲线C .抛物线D .无法确定4. 设P 为椭圆12222=+by a x 上一点,过右焦点F 2作∠F 1PF 2的外角平分线的垂线,垂足为Q ,则点Q 的轨迹是( ) A .直线 B .抛物线 C .圆 D .双曲线 5. 设P 为双曲线12222=-b y a x 上一点, 过右焦点F 2作∠F 1PF 2的内角平分线的垂线,垂足为Q ,则点Q 的轨迹是 ( ) A .圆 B .抛物线 C .直线 D .椭圆 6. 已知点P(x ,y )在以原点为圆心,半径为1的圆上运动,则点(x +y ,xy )的轨迹是 ( ) A .半圆 B .抛物线的一部分 C .椭圆 D .双曲线的一支二、填空题7. 长为2a 的线段AB 的两个端点分别在x 轴、y 轴上滑动,则AB 中点的轨迹方程为 .8. 经过定点M(1,2),以y 轴为准线,离心率为21的椭圆左顶点的轨迹方程 . 9. 已知抛物线)(12R m mx x y ∈-+-=,当m 变化时抛物线焦点的轨迹方程为 . 10.(04北京)在正方体ABCD —A 1B 1C 1D 1中,P 是侧面BB 1C 1C 内一动点,若P 到直线BC 与到直线C 1D 1的距离相等,则动点P 的轨迹是 .三、解答题 11.以动点P 为圆心的圆与圆A :(x +5)2+y 2=49及圆B :(x -5)2+y 2=1都外切,求动点P 的轨迹.12.已知双曲线2222ny m x -=1(m >0,n >0)的顶点为A 1、A 2,与y 轴平行的直线l 交双曲线于点P 、Q. (1) 求直线A 1P 与A 2Q 交点M 的轨迹方程; (2) 当m ≠n 时,求所得圆锥曲线的焦点坐标、准线方程和离心率.13.设直线l :y =kx +1与椭圆C :ax 2+y 2=2(a >1)交于A 、B 两点,以OA 、OB 为邻边作平行四边形OAPB (O 为坐标原点).(1)若k =1,且四边形OAPB 为矩形,求a 的值; (2)若a =2,当k 变化时,(k ∈R),求点P 的轨迹方程.提高训练题14.设椭圆方程为1422=+y x ,过点M(0,1)的直线l 交椭圆于点A 、B ,O 是坐标原点,点P 满足)(21OB OA OP +=,点N 的坐标为)21,21(,当l 绕点M 旋转时,求:(1) 动点P 的轨迹方程; (2) ||NP 的最小值与最大值.A1。

圆锥曲线复习课课件

圆锥曲线复习课课件
函数思想法
将问题转化为函数问题,利用函数的性质和图像,求解相关 问题。
05
圆锥曲线的问题与挑战
圆锥曲线中的难题与挑战
圆锥曲线中的复杂计算
圆锥曲线问题往往涉及大量的计算和复杂的数学公式,需要学生 具备较高的数学计算能力和逻辑思维能力。
圆锥曲线中的抽象概念
圆锥曲线问题常常涉及到抽象的概念和性质,需要学生具备较好的 数学基础和空间想象力。
利用圆锥曲线的参数方程,将问 题转化为参数的取值范围或最值 问题,简化计算。
圆锥曲线的特殊解题方法
焦点三角形法
利用圆锥曲线的焦点三角形,结合正 弦定理、余弦定理等,求解相关问题 。
切线法
通过圆锥曲线的切线性质,结合导数 和切线斜率,求解相关问题。
圆锥曲线的综合解题方法
数形结合法
将几何性质与代数表达式相结合,通过数形结合的方法,直 观地解决问题。
作用。
光线的弯曲程度与圆锥曲线的离 心率有关,离心率越大,光线弯
曲程度越明显。
圆锥曲线的对称性质
圆锥曲线具有对称性,包括中 心对称、轴对称和面对称等。
圆具有中心对称和轴对称,椭 圆和双曲线只有中心对称,抛 物线只有轴对称。
对称性是圆锥曲线的一个重要 性质,在解决几何问题时具有 广泛应用。
03
圆锥曲线的应用
路,提高解题能力。
培养数学思维
学生应注重培养数学思维,提高 逻辑推理能力和空间想象力,以
便更好地解决圆锥曲线问题。
如何进一步深化对圆锥曲线的研究
研究圆锥曲线的性质
01
学生可以进一步研究圆锥曲线的性质和特点,探索其内在规律
和数学之美。
探索圆锥曲线与其他数学领域的联系
02
学生可以探索圆锥曲线与其他数学领域之间的联系,例如与代

高考数学(圆锥曲线)第一轮复习

高考数学(圆锥曲线)第一轮复习

高考数学(圆锥曲线)第一轮复习资料知识小结一.椭圆第一种定义:平面内与两个定点F 1、F 2的距离之和等于常数(大于|F 1F 2|)的点的轨迹叫做椭圆,这两个定点叫做椭圆的焦点,两焦点间的距离叫做焦距.第二种定义:平面内一个动点到一个定点的距离和它到一条定直线的距离的比是小于1的正常数,这个动点的轨迹叫椭圆,定点是椭圆的焦点,定直线叫做椭圆的准线.3.椭圆的标准方程:(1))0(12222>>=+b a b y a x ,焦点:F 1(-c,0),F 2(c,0),其中c=22b a -.(2))0(12222>>=+b a ay b x ,焦点:F 1(0,-c),F 2(0,c),其中c=22b a -.4.椭圆的参数方程:⎩⎨⎧==θθsin cos b y a x ,(参数θ是椭圆上任意一点的离心率).5.椭圆的几何性质:以标准方程)0(12222>>=+b a by a x 为例:①范围:|x|≤a,|y|≤b;②对称性:对称轴x=0,y=0,对称中心为O(0,0);③顶点A(a,0),A′(-a,0),B(0,b),B′(0,-b);长轴|AA′|=2a,短轴|BB′|=2b;④离心率:e=a c,0<e<1;⑤准线x=±ca 2;⑥焦半径:|PF 1|=a+ex,|PF 2|=a-ex,其中P(x,y)是椭圆上任意一点.二.双曲线1.双曲线的定义(1)双曲线的第一定义:平面内与两定点F 1、F 2的距离差的绝对值等于常数2a(0<2a<|F 1F 2|)的点的轨迹叫双曲线.两定点F 1、F 2是焦点,两焦点间的距离|F 1F 2|是焦距,用2c 表示.常数用2a 表示.(2)双曲线的第二定义:若点M 到一个定点的距离和它到一条定直线的距离的比是一个常数e(e>1) 2.双曲线的标准方程(1)焦点在x 轴上:)0,0(12222>>=-b a by a x ,焦点坐标为F 1(-c,0),F 2(c,0),22b a c +=.(2)焦点在y 轴上: )0,0(12222>>=-b a bx a y ,焦点坐标为F 1(0,-c),F 2(0,c).22b a c +=.3.双曲线简单几何性质:以标准方程)0,0(12222>>=-b a by a x 为例.(1)范围:|x|≥a;即x ≥a,x ≤-a.(2)对称性:对称轴为x=0,y=0;对称中心为O(0,0).(3)顶点:A 1(-a,0),A 2(a,0)为双曲线的两个顶点;线段A 1A 2叫双曲线的实轴,B 1B 2叫双曲线的虚轴,其中B 1(0,b),B 2(0,b).|A 1A 2|=2a,|B 1B 2|=2b.(4)渐近线:双曲线渐近线的方程为y=ab±x;(5)准线:x=ca 2±;(6)离心率:e=ac,e>1. 4.等轴双曲线:x 2-y 2=±a 2,实轴长等于虚轴长,其渐近线方程为y=±x,离心率e=2三.抛物线1.抛物线的定义:平面内与一个定点F 和一条定直线l 的距离相等的点的轨迹叫做抛物线,点F 叫做抛物线的焦点,直线l 叫做抛物线的准线,定点不在定直线上.2.开口向右、向左、向上、向下的抛物线及其标准方程的异同点:相同点:(1)原点在抛物线上;(2)对称轴为坐标轴;p 值的意义表示焦点到准线的距离;(3)p>0为常数;(4)p 值等于一次项系数绝对值的一半;(5)准线与对称轴垂直,垂足与焦点关于原点对称,它们与原点的距离等于一次项系数的绝对值的1/4,即2p/4=p/2. 不同点:四.直线与圆锥曲线的位置关系1.关于直线与圆锥曲线的交点问题:一般方法是用解方程组的方法求其交点的坐标.2.判断直线与圆锥曲线交点个数问题:即判断方程组解的个数.3.直线与圆锥曲线位置关系的判定:通法是消去一个未知数若得到的是关于另一未知数的一元二次方程,可用根的判别式∆来判断,注意直线与圆锥曲线相切必有一个公共点,对圆与椭圆来说反之亦对,但对双曲线和抛物线来说直线与其有一公共点,可能是相交的位置关系.4.直线与圆锥曲线相交的弦长计算:(1)连结圆锥曲线上两点的线段称为圆锥曲线的弦;(2)易求出弦端点坐标时用距离公式求弦长;(3)一般情况下,解由直线方程和圆锥曲线方程组成的方程组,得到关于x(或y)的一元二次方程,利用方程组的解与端点坐标的关系,结合韦达定理得到弦长公式:|AB|=]4))[(1(212212x x x x k -++.5.关于相交弦的中点问题:涉及到弦的中点时,常结合韦达定理.6.曲线关于直线对称问题:注意两点关于直线对称的条件:(1)两点连线与该直线垂直;(2)中点在此直线上.7.弦长公式1212||||AB x x y y =-=- 8.焦点弦长:||PF e d=(点P 是圆锥曲线上的任意一点,F 是焦点,d 是P 到相应于焦点F 的准线的距离,e 是离心率)五.轨迹问题1.常见的轨迹:(1)在平面内,到两定点的距离相等的点的轨迹是连接两定点的线段的垂直平分线.(2)平面内到角的两边距离相等的点的轨迹是这个角的平分线.(3)平面内到定点的距离等于定长的点的轨迹是以定点为圆心的圆.(4)平面内到定点的距离与到定直线的距离之比等于常数的点的轨迹是圆锥曲线.当常数大于1时表示双曲线;当常数等于1时,表示抛物线;当常数大于0而小于1时表示椭圆.定点和定直线分别是圆锥曲线的焦点和相应的准线.(5)平面内到定直线的距离等于某一定值的点的轨迹是与这条直线平行的两条直线.2.求动点的轨迹的步骤:(1)建立坐标系,设动点坐标M(x,y);(2)列出动点M(x,y)满足的条件等式;(3)化简方程;(4)验证(可以省略);(5)说明方程的轨迹图形,最后“补漏”和“去掉增多”的点.3.求动点轨迹的常用方法:直接法;定义法;代入法(相关点法);参数法. 4.相关点法(代入法):对于两个动点00(,),(,)P x y Q x y ,点P 在已知曲线上运动导致点Q 运动形成轨迹时,只需根据条件找到这两个点的坐标之间的等量关系并化为00(,)(,)x f x y y g x y =⎧⎨=⎩然后将其代入已知曲线的方程即得到点Q 的轨迹方程.5.参数法(交规法):当动点P 的坐标,x y 之间的直接关系不易建立时,可适当地选取中间变量t ,并用t 表示动点P 的坐标,x y ,从而动点轨迹的参数方程()()x f t y g t =⎧⎨=⎩消去参数t ,便可得到动点P 的的轨迹的普通方程,但要注意方程的等价性,即有t 的范围确定出,x y 的范围.六.圆锥曲线的应用 1.相关点法(代入法):对于两个动点00(,),(,)P x y Q x y ,点P 在已知曲线上运动导致点Q 运动形成轨迹时,只需根据条件找到这两个点的坐标之间的等量关系并化为00(,)(,)x f x y y g x y =⎧⎨=⎩然后将其代入已知曲线的方程即得到点Q 的轨迹方程.2.参数法(交规法):当动点P 的坐标,x y 之间的直接关系不易建立时,可适当地选取中间变量t ,并用t 表示动点P 的坐标,x y ,从而动点轨迹的参数方程()()x f t y g t =⎧⎨=⎩消去参数t ,便可得到动点P 的的轨迹的普通方程,但要注意方程的等价性,即有t 的范围确定出,x y 的范围.试题选讲1.椭圆12222=+by a x (a>b>0)的两焦点为F 1F 2,连接点F1,F 2为边作正三角形,若椭圆恰1-2.已知N (3,1),点A 、B 分别在直线y=x 和y =0上,则△ABN 的周长的最小值是3.一个动圆的圆心在抛物线28y x =上,且动圆恒与直线20x +=相切,则此动圆必经过点______(2,0)________4.抛物线顶点在原点,焦点在y 轴上,其上一点(,1)M m 到焦点的距离为5,则此抛物线的方程为 216x =5.椭圆22221(0)x y a b ab +=>>那么双曲线22221x y ab -=的离心率为6.已知椭圆的焦点是12,,F F P 是椭圆上的一个动点,如果延长1F P 到Q ,使得2PQ PF =,那么动点Q 的轨迹是 圆7.椭圆221123x y +=的焦点是12,F F ,点P 在椭圆上,如果线段1F P 的中点在y 轴上,那么12:PF PF = 7:18.过点(0,1)M 且与抛物线2:4C y x =仅有一个公共点的直线方程是 0,1x y ==及1y x =+9.函数()()1x 1x x 21x f 2≤≤---=的图象为C,则C 与x 轴围成的封闭图形的面积为______2-2π______.10.若椭圆)0(12222>>=+b a by a x 的左、右焦点分别为21,F F ,抛物线bx y 42=的焦点为M ,若||2||21M F M F =,则此椭圆的离心率为10103101011.已知双曲线)0(122>=-m my x 的右顶点为A ,而B 、C 是双曲线右支上两点,若三角形ABC 为等边三角形,则m 的取值范围是 ),3(+∞ 。

2020年高考文科数学一轮复习大题篇—圆锥曲线综合问题

2020年高考文科数学一轮复习大题篇—圆锥曲线综合问题

2020年高考文科数学一轮复习大题篇—圆锥曲线综合问题【归类解析】题型一 范围问题【解题指导】 解决圆锥曲线中的取值范围问题应考虑的五个方面(1)利用圆锥曲线的几何性质或判别式构造不等关系,从而确定参数的取值范围.(2)利用已知参数的范围,求新参数的范围,解这类问题的核心是建立两个参数之间的等量关系.(3)利用隐含的不等关系建立不等式,从而求出参数的取值范围.(4)利用已知的不等关系构造不等式,从而求出参数的取值范围.(5)利用求函数的值域的方法将待求量表示为其他变量的函数,求其值域,从而确定参数的取值范围.【例】已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)与双曲线x 23-y 2=1的离心率互为倒数,且直线x -y -2=0经过椭圆的右顶点.(1)求椭圆C 的标准方程;(2)设不过原点O 的直线与椭圆C 交于M ,N 两点,且直线OM ,MN ,ON 的斜率依次成等比数列,求△OMN 面积的取值范围.【解】 (1)∵双曲线的离心率为233, ∴椭圆的离心率e =c a =32. 又∵直线x -y -2=0经过椭圆的右顶点,∴右顶点为点(2,0),即a =2,c =3,b =1,∴椭圆方程为x 24+y 2=1. (2)由题意可设直线的方程为y =kx +m (k ≠0,m ≠0),M (x 1,y 1),N (x 2,y 2).联立⎩⎪⎨⎪⎧y =kx +m ,x 24+y 2=1, 消去y ,并整理得(1+4k 2)x 2+8kmx +4(m 2-1)=0,则x 1+x 2=-8km 1+4k 2,x 1x 2=4m 2-11+4k 2, 于是y 1y 2=(kx 1+m )(kx 2+m )=k 2x 1x 2+km (x 1+x 2)+m 2.又直线OM ,MN ,ON 的斜率依次成等比数列,故y 1x 1·y 2x 2=k 2x 1x 2+km x 1+x 2+m 2x 1x 2=k 2, 则-8k 2m 21+4k2+m 2=0. 由m ≠0得k 2=14,解得k =±12. 又由Δ=64k 2m 2-16(1+4k 2)(m 2-1)=16(4k 2-m 2+1)>0,得0<m 2<2,显然m 2≠1(否则x 1x 2=0,x 1,x 2中至少有一个为0,直线OM ,ON 中至少有一个斜率不存在,与已知矛盾).设原点O 到直线的距离为d ,则S △OMN =12|MN |d =12·1+k 2·|x 1-x 2|·|m |1+k 2故由m 的取值范围可得△OMN 面积的取值范围为(0,1).【训练】如图,已知点P 是y 轴左侧(不含y 轴)一点,抛物线C :y 2=4x 上存在不同的两点A ,B 满足P A ,PB 的中点均在C 上.(1)设AB 中点为M ,证明:PM 垂直于y 轴;(2)若P 是半椭圆x 2+y 24=1(x <0)上的动点,求△P AB 面积的取值范围. (1)【证明】 设P (x 0,y 0),A ⎝⎛⎭⎫14y 21,y 1,B ⎝⎛⎭⎫14y 22,y 2. 因为P A ,PB 的中点在抛物线上,所以y 1,y 2为方程⎝⎛⎭⎫y +y 022=4·14y 2+x 02,即y 2-2y 0y +8x 0-y 20=0的两个不同的实根.所以y 1+y 2=2y 0,所以PM 垂直于y 轴.(2)【解】 由(1)可知⎩⎪⎨⎪⎧y 1+y 2=2y 0,y 1y 2=8x 0-y 20,所以|PM |=18(y 21+y 22)-x 0=34y 20-3x 0, |y 1-y 2|=22y 20-4x 0. 所以△P AB 的面积S △P AB =12|PM |·|y 1-y 2|=()322003244y x -.因为x 20+y 204=1(-1≤x 0<0), 所以y 20-4x 0=-4x 20-4x 0+4∈[4,5],所以△P AB 面积的取值范围是⎣⎡⎦⎤62,15104. 题型二 最值问题1 利用三角函数有界性求最值【解题指导】 处理圆锥曲线最值问题的求解方法圆锥曲线中的最值问题类型较多,解法灵活多变,但总体上主要有两种方法:一是利用几何法,即通过利用曲线的定义、几何性质以及平面几何中的定理、性质等进行求解;二是利用代数法,即把要求最值的几何量或代数表达式表示为某个(些)参数的函数(解析式),然后利用函数方法、不等式方法等进行求解.【例】过抛物线y 2=4x 的焦点F 的直线交抛物线于A ,B 两点,点O 是坐标原点,则|AF |·|BF |的最小值是【解】 设直线AB 的倾斜角为θ,可得|AF |=21-cos θ,|BF |=21+cos θ, 则|AF |·|BF |=21-cos θ×21+cos θ=4sin 2θ≥4. 2 数形结合利用几何性质求最值【例】在平面直角坐标系xOy 中,P 为双曲线x 2-y 2=1右支上的一个动点.若点P 到直线x -y +1=0的距离大于c 恒成立,求实数c 的最大值为。

高考一轮复习必备—圆锥曲线讲义全

高考一轮复习必备—圆锥曲线讲义全

高考一轮复习必备—圆锥曲线讲义全-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIANⅠ复习提问一、直线l 与圆锥曲线C 的位置关系的判断判断直线l 与圆锥曲线C 的位置关系时,通常将直线l 的方程0Ax By C ++=(A ,B 不同时为0)代入圆锥曲线C 的方程F (x ,y )=0,消去y (也可以消去x )得到关于一个变量的一元二次方程,即联立(,)0Ax By C F x y ++=⎧⎨=⎩消去y 后得20ax bx c ++= (1)当0a =时,即得到一个一元一次方程,则l 与C 相交,有且只有一个交点,此时,若C 为双曲线,则直线l 与双曲线的渐近线平行;若C 为抛物线,则直线l 抛物线的对称轴平行。

(2)当0a ≠时,0∆>,直线l 与曲线C 有两个不同的交点;0∆=,直线l 与曲线C 相切,即有唯一公共点(切点);0∆<,直线l 与曲线C 相离。

二、圆锥曲线的弦长公式相交弦AB的弦长1212AB AB AB x y y ⎧⎪=⎪⎪⎪=⎨⎪⎪=-==-⎪⎪⎩三、中点弦所在直线的斜率(1)若椭圆方程为22221(0)x y a b a b +=>>时,以P 00(x ,y )为中点的弦所在直线斜率202(0)b k y a =-≠00x y ,即22op b k k a =-;若椭圆方程为22221(0)y x a b a b +=>>时,相应结论为202(0)a k y b =-≠0x y ,即22op a k k b =-;(2)P 00(x ,y )是双曲线22221x y a b -=内部一点,以P 为中点的弦所在直线斜率202(0)b k y a =≠0x y ,即22op b k k a =; 若双曲线方程为22221y x a b -=时,相应结论为202(0)a k y b =≠0x y ,即22op a k k b =;(3))P 00(x ,y )是抛物线22y px =内部一点,以P 为中点的弦所在直线斜率0(0)pk y =≠0y ;若方程为22x py =时,相应结论为k p=0x 。

高三数学一轮复习圆锥曲线综合问题

高三数学一轮复习圆锥曲线综合问题

直线与圆锥曲线的位置关系 [典题导入]
(2014· 长春三校调研)在直角坐标系 xOy 中, 点
1 M2,-2 ,
点 F 为抛物线 C:y=mx2(m>0)的焦点,线段 MF 恰被抛物线 C 平分. (1)求 m 的值; (2)过点 M 作直线 l 交抛物线 C 于 A、B 两点,设直线 FA、FM、 FB 的斜率分别为 k1、k2、k3,问 k1、k2、k3 能否成公差不为零的 等差数列?若能,求直线 l 的方程;若不能,请说明理由.
解析
(1)设 A(x1,y1),B(x2,y2),P(x0,y0),
[跟踪训练] 2. (2013· 新课标全国卷Ⅱ高考)平面直角坐标系 xOy 中, 过椭圆 M: x2 y2 + =1(a>b>0)右焦点的直线 x+y- 3=0 交 M 于 A,B a2 b2 1 两点,P 为 AB 的中点,且 OP 的斜率为 . 2 (1)求 M 的方程; (2)C,D 为 M 上两点,若四边形 ACBD 的对角线 CD⊥AB,求 四边形 ACBD 面积的最大值.






2 .在利用代数法解决最值与范围问题时常从 以下五个方面考虑: (1) 利用判别式来构造不等关系,从而确定参 数的取值范围; (2) 利用已知参数的范围,求新参数的范围, 解这类问题的核心是在两个参数之间建立等量 关系; (3) 利用隐含或已知的不等关系建立不等式, 从而求出参数的取值范围; (4)利用基本不等式求出参数的取值范围; (5) 利用函数的值域的求法,确定参数的取值 范围.
所以当且仅当 m=1- 7时,u(m)取到最大值. 故当且仅当 m=1- 7时,S 取到最大值. 综上,所求直线 l 的方程为 3x+2y+2 7-2=0.

新高考2024版高考数学一轮复习:高考大题专练五圆锥曲线的综合运用

新高考2024版高考数学一轮复习:高考大题专练五圆锥曲线的综合运用

专练48高考大题专练(五)圆锥曲线的综合运用1.[2023·新课标Ⅰ卷]在直角坐标系xOy中,点P到x轴的距离等于点P距离,记动点P的轨迹为W.(1)求W的方程;(2)已知矩形ABCD有三个顶点在W上,证明:矩形ABCD的周长大于3 3.2.[2023·新课标Ⅱ卷]已知双曲线C的中心为坐标原点,左焦点为(-25,0),离心率为 5.(1)求C的方程;(2)记C的左、右顶点分别为A1,A2,过点(-4,0)的直线与C的左支交于M,N两点,M在第二象限,直线MA1与NA2交于点P.证明:点P在定直线上.3.[2023·全国乙卷(理)]已知椭圆C:y2a2+x2b2=1(a>b>0)的离心率为53,点A(-2,0)在C上.(1)求C的方程;(2)过点(-2,3)的直线交C于P,Q两点,直线AP,AQ与y轴的交点分别为M,N,证明:线段MN的中点为定点.4.[2022·全国甲卷(理),20]设抛物线C :y 2=2px (p >0)的焦点为F ,点D (p ,0),过F 的直线交C 于M ,N 两点.当直线MD 垂直于x 轴时,|MF |=3.(1)求C 的方程;(2)设直线MD ,ND 与C 的另一个交点分别为A ,B ,记直线MN ,AB 的倾斜角分别为α,β.当α-β取得最大值时,求直线AB 的方程.5.[2023·全国甲卷(理)]已知直线x -2y +1=0与抛物线C :y 2=2px (p >0)交于A ,B 两点,|AB |=415.(1)求p ;(2)设F 为C 的焦点,M ,N 为C 上两点,且FM →·FN →=0,求△MFN 面积的最小值.6.[2022·新高考Ⅱ卷,21]已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的右焦点为F (2,0),渐近线方程为y =±3x .(1)求C 的方程.(2)过F 的直线与C 的两条渐近线分别交于A ,B 两点,点P (x 1,y 1),Q (x 2,y 2)在C 上,且x 1>x 2>0,y 1>0.过P 且斜率为-3的直线与过Q 且斜率为3的直线交于点M .从下面①②③中选取两个作为条件,证明另外一个成立.①M 在AB 上;②PQ ∥AB ;③|MA |=|MB |.注:若选择不同的组合分别解答,则按第一个解答计分.7.[2022·全国乙卷(理),20]已知椭圆E 的中心为坐标原点,对称轴为x 轴、y 轴,且过A (0,-2),B (32,-1)两点.(1)求E 的方程;(2)设过点P (1,-2)的直线交E 于M ,N 两点,过M 且平行于x 轴的直线与线段AB 交于点T ,点H 满足MT →=TH →.证明:直线HN 过定点.8.[2022·新高考Ⅰ卷,21]已知点A (2,1)在双曲线C :x 2a 2-y 2a 2-1=1(a >1)上,直线l 交C 于P ,Q 两点,直线AP ,AQ 的斜率之和为0.(1)求l 的斜率;(2)若tan ∠PAQ =22,求△PAQ 的面积.专练48高考大题专练(五)圆锥曲线的综合运用1.解析:(1)设点P 的坐标为(x ,y ),依题意得|y |=x 2+(y -12)2,化简得x 2=y -14,所以W 的方程为x 2=y -14.(2)设矩形ABCD 的三个顶点A ,B ,C 在W 上,则AB ⊥BC ,矩形ABCD 的周长为2(|AB |+|BC |).设B (t ,t 2+14),依题意知直线AB 不与两坐标轴平行,故可设直线AB 的方程为y -(t 2+14)=k (x -t ),不妨设k >0,与x 2=y -14联立,得x 2-kx +kt -t 2=0,则Δ=k 2-4(kt -t 2)=(k -2t )2>0,所以k ≠2t .设A (x 1,y 1),所以t +x 1=k ,所以x 1=k -t ,所以|AB |=1+k 2|x 1-t |=1+k 2|k -2t |=1+k 2|2t -k |,|BC |=1+(1-1k )2|-1k -2t |=1+k 2k |1k +2t |=1+k 2k 2|2kt +1|,且2kt +1≠0,所以2(|AB |+|BC |)=21+k 2k2(|2k 2t -k 3|+|2kt +1|).因为|2k 2t -k 3|+|2kt +1|k 2-2k )t +k 3-1,t ≤-12kk -2k 2)t +k 3+1,-12k <t ≤k 2k 2+2k )t -k 3+1,t >k 2,当2k -2k 2≤0,即k ≥1时,函数y =(-2k 2-2k )t +k 3-1在(-∞,-12k]上单调递减,函数y =(2k -2k 2)t +k 3+1在(-12k ,k2]上单调递减或是常函数(当k =1时是常函数),函数y=(2k 2+2k )t -k 3+1在(k2,+∞)上单调递增,所以当t =k2时,|2k 2t -k 3|+|2kt +1|取得最小值,且最小值为k 2+1,又k ≠2t ,所以2(|AB |+|BC |)>21+k 2k 2(k 2+1)=2(1+k 2)32k 2.令f (k )=2(1+k 2)32k 2,k ≥1,则f ′(k )=2(1+k 2)12(k +2)(k -2)k3,当1≤k <2时,f ′(k )<0,当k >2时,f ′(k )>0,所以函数f (k )在[1,2)上单调递减,在(2,+∞)上单调递增,所以f (k )≥f (2)=33,所以2(|AB |+|BC |)>2(1+k 2)32k 2≥3 3.当2k -2k 2>0,即0<k <1时,函数y =(-2k 2-2k )t +k 3-1在(-∞,-12k]上单调递减,函数y =(2k -2k 2)t +k 3+1在(-12k ,k 2]上单调递增,函数y =(2k 2+2k )t -k 3+1在(k2,+∞)上单调递增,所以当t =-12k时,|2k 2t -k 3|+|2kt +1|取得最小值,且最小值为k 3+k =k (1+k 2),又2kt +1≠0,所以2(|AB |+|BC |)>21+k 2k 2k (k 2+1)=2(1+k 2)32k .令g (k )=2(1+k 2)32k ,0<k <1,则g ′(k )=2(1+k 2)12(2k 2-1)k2,当0<k <22时,g ′(k )<0,当22<k <1时,g ′(k )>0,所以函数g (k )在(0,22)上单调递减,在(22,1)上单调递增,所以g (k )≥g (22)=33,所以2(|AB |+|BC |)>2(1+k 2)32k≥3 3.综上,矩形ABCD 的周长大于3 3.2.解析:(1)设双曲线C 的方程为x 2a 2-y 2b2=1(a >0,b >0),c 为双曲线C 的半焦距,=25=5=a 2+b 2=25=2=4.所以双曲线C 的方程为x 24-y 216=1.(2)方法一设M (x 1,y 1),N (x 2,y 2),直线MN 的方程为x =my -4,则x 1=my 1-4,x 2=my 2-4.my -4-y 216=1,得(4m 2-1)y 2-32my +48=0.因为直线MN 与双曲线C 的左支交于M ,N 两点,所以4m 2-1≠0,且Δ>0.1+y 2=32m4m 2-11y 2=484m 2-1,所以y 1+y 2=2m3y 1y 2.因为A 1,A 2分别为双曲线C 的左、右顶点,所以A 1(-2,0),A 2(2,0).直线MA 1的方程为y 1x 1+2=y x +2,直线NA 2的方程为y 2x 2-2=yx -2,所以y 1x 1+2y 2x 2-2=yx +2y x -2,得(x 2-2)y 1(x 1+2)y 2=x -2x +2,(my 2-6)y 1(my 1-2)y 2=my 1y 2-6y 1my 1y 2-2y 2=x -2x +2.因为my 1y 2-6y 1my 1y 2-2y 2=my 1y 2-6(y 1+y 2)+6y 2my 1y 2-2y 2=my 1y 2-6·2m3y 1y 2+6y 2my 1y 2-2y 2=-3my 1y 2+6y 2my 1y 2-2y 2=-3,所以x -2x +2=-3,解得x =-1,所以点P 在定直线x =-1上.方法二由题意得A 1(-2,0),A 2(2,0).设M (x 1,y 1),N (x 2,y 2),直线MN 的方程为x =my -4,则x 214-y 21164x 21-y 21=16.如图,连接MA 2,kMA 1·kMA 2=y 1x 1+2·y 1x 1-2=y 21x 21-4=4x 21-16x 21-4=4①.由x 24-y 216=1,得4x 2-y 2=16,4[(x -2)+2]2-y 2=16,4(x -2)2+16(x -2)+16-y 2=16,4(x -2)2+16(x -2)-y 2=0.由x =my -4,得x -2=my -6,my -(x -2)=6,16[my -(x -2)]=1.4(x -2)2+16(x -2)·16[my -(x -2)]-y 2=0,4(x -2)2+83(x -2)my -83(x -2)2-y 2=0,两边同时除以(x -2)2,得43+8m 3·yx -2-=0,-8m 3·y x -2-43=0.kMA 2=y 1x 1-2,kNA 2=y 2x 2-2,由根与系数的关系得kMA 2·kNA 2=-43②.由①②可得kMA 1=-3kNA 2.:y =kMA 1(x +2)=-3kNA 2(x +2),lNA 2:y =kNA 2(x -2).=-3kNA 2(x +2)=kNA 2(x -2),解得x =-1.所以点P 在定直线x =-1上.3.解析:(1)因为点A (-2,0)在C 上,所以4b2=1,得b 2=4.因为椭圆的离心率e =c a =53,所以c 2=59a 2,又a 2=b 2+c 2=4+59a 2,所以a 2=9,c 2=5,故椭圆C 的方程为y 29+x 24=1.(2)由题意知,直线PQ 的斜率存在且不为0,设l PQ :y -3=k (x +2),P (x 1,y 1),Q (x 2,y 2),k (x +2),+x 24=1,得(4k 2+9)x 2+(16k 2+24k )x +16k 2+48k =0,则Δ=(16k 2+24k )2-4(4k 2+9)(16k 2+48k )=-36×48k >0,故x 1+x 2=-16k 2+24k 4k 2+9,x 1x 2=16k 2+48k4k 2+9.直线AP :y =y 1x 1+2(x +2),令x =0,解得y M =2y 1x 1+2,同理得y N =2y 2x 2+2,则y M +y N =2y 1(x 2+2)+y 2(x 1+2)(x 1+2)(x 2+2)=2(kx 1+2k +3)(x 2+2)+(kx 2+2k +3)(x 1+2)(x 1+2)(x 2+2)=22kx 1x 2+(4k +3)(x 1+x 2)+8k +12x 1x 2+2(x 1+x 2)+4=22k (16k 2+48k )+(4k +3)(-16k 2-24k )+(8k +12)(4k 2+9)16k 2+48k +2(-16k 2-24k )+4(4k 2+9)=2×10836=6.所以MN 的中点的纵坐标为y M +y N2=3,所以MN 的中点为定点(0,3).4.解析:(1)方法一由题意可知,当x =p 时,y 2=2p 2.设M 点位于第一象限,则点M 的纵坐标为2p ,|MD |=2p ,|FD |=p2.在Rt△MFD 中,|FD |2+|MD |2=|FM |2+(2p )2=9,解得p =2.所以C 的方程为y 2=4x .方法二抛物线的准线方程为x =-p2.当MD 与x 轴垂直时,点M 的横坐标为p .此时|MF |=p +p2=3,所以p =2.所以抛物线C 的方程为y 2=4x .(2)设直线MN 的斜率为k 1,直线AB 的斜率为k 2,则k 1=tan α,k 2=tan β.由题意可得k 1≠0,k 2≠0.设M (x 1,y 1),N (x 2,y 2),y 1>0,y 2<0,A (x 3,y 3),B (x 4,y 4),y 3<0,y 4>0.设直线AB 的方程为y =k 2(x -m ),m 为直线AB 与x 轴交点的横坐标,直线MN 的方程为y =k 1(xMD 的方程为y =k 3(x -2),直线ND 的方程为y =k 4(x -2).=k 1(x -1),2=4x ,所以k 21x 2-(2k 21+4)x +k 21=0,则x 1x 2=1.=k2(x-m),2=4x,所以k22x2-(2mk22+4)x+k22m2=0,则x3x4=m2.=k3(x-2),2=4x,所以k23x2-(42+4)x+4k23=0,则x1x3=4.=k4(x-2),2=4x,所以k24x2-(4k24+4)x+4k24=0,则x2x4=4.所以M(x1,2x1),N(1x1,-2x1),A(4x1,-4x1),B(4x1,4x1).所以k1=2x1x1-1,k2=x1x1-1,k1=2k2,所以tan(α-β)=tanα-tanβ1+tanαtanβ=k1-k21+k1k2=k21+2k22=11k2+2k2.因为k1=2k2,所以k1与k2同号,所以α与β同为锐角或钝角.当α-β取最大值时,tan(α-β)取得最大值.所以k2>0,且当1k2=2k2,即k2=22时,α-β取得最大值.易得x3x4=16x1x2=m2,又易知m>0,所以m=4.所以直线AB的方程为x-2y-4=0.5.解析:(1)设A(x1,y1),B(x2,y2),把x=2y-1代入y2=2px,得y2-4py+2p=0,由Δ1=16p2-8p>0,得p>12.y1+y2=4p,y1y2=2p,所以|AB·(y1+y2)2-4y1y2=5·16p2-8p=415,解得p=2或p=-32(舍去),故p=2.(2)设M(x3,y3),N(x4,y4),由(1)知抛物线C:y2=4x,则点F(1,0).因为FM→·FN→=0,所以∠MFN=90°,则S△MFN=12|MF||NF|=12(x3+1)(x4+1)=12(x3x4+x3+x4+1)(*).当直线MN的斜率不存在时,点M与点N关于x轴对称,因为∠MFN=90°,所以直线MF与直线NF的斜率一个是1,另一个是-1.MF的斜率为1,则MF:y=x-1,=x-1,2=4x,得x2-6x+1=0,3=3-22,4=3-223=3+22,4=3+22.代入(*)式计算易得,当x3=x4=3-22时,△MFN的面积取得最小值,为4(3-22).当直线MN的斜率存在时,设直线MN的方程为y=kx+m.=kx +m ,2=4x ,得k 2x 2-(4-2km )x +m 2=0,Δ2=(4-2km )2-4m 2k 2>0,3+x 4=4-2kmk 2,3x 4=m 2k2,y 3y 4=(kx 3+m )(kx 4+m )=k 2x 3x 4+mk (x 3+x 4)+m 2=4mk.又FM →·FN →=(x 3-1,y 3)·(x 4-1,y 4)=x 3x 4-(x 3+x 4)+1+y 3y 4=0,所以m 2k 2-4-2km k 2+1+4m k=0,化简得m 2+k 2+6km =4.所以S △MFN =12(x 3x 4+x 3+x 4+1)=m 2+k 2-2km +42k 2=m 2+k 2+2kmk 2=令t =mk,则S △MFN =t 2+2t +1,2k 2=4,+1=4k2>0,即t 2+6t +1>0,得t >-3+22或t <-3-22,从而得S △MFN =t 2+2t +1>12-82=4(3-2 2.故△MFN 面积的最小值为4(3-22).=1,=3.所以C 的方程为x 2-y 23=1.(2)当直线PQ 斜率不存在时,x 1=x 2x 1>x 2>0,所以直线PQ 斜率存在,所以设直线PQ 的方程为y =kx +h (k =kx +h ,2-y 23=1.消去y 并整理,得(3-k 2)x 2-2khx -h 2-3=0.则x 1+x 2=2kh 3-k 2,x 1x 2=h 2+3k 2-3,x 1-x 2=(x 1+x 2)2-4x 1x 2=23(h 2+3-k 2)|3-k 2|.因为x 1>x 2>0,所以x 1x 2=h 2+3k 2-3>0,即k 2>3.所以x 1-x 2=23(h 2+3-k 2)k 2-3.设点M 的坐标为(x M ,y M ),则y M -y 2=3(x M -x 2),y M -y 1=-3(x M -x 1),两式相减,得y 1-y 2=23x M -3(x 1+x 2).因为y 1-y 2=(kx 1+h )-(kx 2h )=k (x 1-x 2),所以23x M =k (x 1-x 2)+3(x 1+x 2),解得x M=k h2+3-k2-khk2-3.两式相加,得2y M-(y1+y2)=3(x1-x2).因为y1+y2=(kx1+h)+(kx2+h)=k(x1+x2)+2h,所以2y M=k(x1+x2)+3(x1-x2)+2h,解得y M=3h2+3-k2-3hk2-3=3kx M.所以点M的轨迹为直线y=3kx,其中k为直线PQ的斜率.选择①②.因为PQ∥AB,所以k AB=k.设直线AB的方程为y=k(x-2),并设点A的坐标为(x A,y A),点B的坐标为(x B,y B),A=k(x A-2),A=3x A,解得x A=2kk-3,y A=23kk-3.同理可得x B=2kk+3,y B=-23kk+3.此时x A+x B=4k2k2-3,y A+y B=12kk2-3.因为点M在AB上,且其轨迹为直线y=3kx,M=k(x M-2),M=3kx M.解得x M=2k2k2-3=x A+x B2,y M=6kk2-3=y A+y B2,所以点M为AB的中点,即|MA|=|MB|.选择①③.当直线AB的斜率不存在时,点M即为点F(2,0),此时点M不在直线y=3kx上,与题设矛盾,故直线AB的斜率存在.当直线AB y=m(x-2)(m≠0),并设点A的坐标为(x A,y A),点B的坐标为(x B,y B-2),解得x A=2mm-3,y A同理可得x B=2mm+3,.此时x M=x A+x B2=2mm2-3,y M=y A+y B2=6mm2-3.由于点M同时在直线y=3k上,故6m=3k·2m2,解得k=m,因此PQ∥AB.选择②③.因为PQ∥AB,所以k AB=k.AB的方程为y=k(x-2),并设点A的坐标为(x A,y A),点B的坐标为(x B,y B),A=k(x A-2),A=3x A,解得x A=2kk-3,y A=23kk-3.同理可得x B =2kk +3,y B =-23kk +3.设AB 的中点为C (x C ,y C ),则x C =x A +x B 2=2k 2k 2-3,y C =y A +y B 2=6kk 2-3.因为|MA |=|MB |,所以点M 在AB 的垂直平分线上,即点M 在直线y -y C =-1k (x -x C )上.将该直线方程与y =3k x 联立,解得x M =2k 2k 2-3=x C ,y M =6kk 2-3=y C ,即点M 恰为AB 的中点,所以点M 在直线AB 上.7.解析:(1)设椭圆E 的方程为mx 2+ny 2=1(m >0,n >0,m ≠n ).将点A (0,-2),B (32,-1)的坐标代入,得=1,+n =1,=13,=14.所以椭圆E 的方程为x 23+y24=1.(2)证明:(方法一)设M (x 1,y 1),N (x 2,y 2).由题意,知直线MN 与y 轴不垂直,设其方程为x -1=t (y +2).t (y +2),+y 24=1.消去x 并整理,得(4t 2+3)y 2+(16t 2+8t )y +16t 2+16t -8=0,所以y 1+y 2=-16t 2+8t 4t 2+3,y 1y 2=16t 2+16t -84t 2+3.设T (x 0,y 1).由A ,B ,T 三点共线,得y 1+2x 0=y 1+1x 0-32,得x 0=32y 1+3.设H (x ′,y ′).由MT →=TH →,得(32y 1+3-x 1,0)=(x ′-32y 1-3,y ′-y 1),所以x ′=3y 1+6-x 1,y ′=y 1,所以直线HN 的斜率k =y 2-y ′x 2-x ′=y 2-y 1x 2+x 1-(3y 1+6)=y 2-y 1t (y 1+y 2)-3y 1+4t -4,所以直线HN 的方程为y -y 2=y 2-y 1t (y 1+y 2)-3y 1+4t -4·(x -x 2).令x =0,得y =y 2-y 1t (y 1+y 2)-3y 1+4t -4·(-x 2)+y 2=(y 1-y 2)(ty 2+2t +1)t (y 1+y 2)-3y 1+4t -4+y 2=(2t -3)y 1y 2+(2t -5)(y 1+y 2)+6y 1t (y 1+y 2)-3y 1+4t -4=(2t -3)·16t 2+16t -84t 2+3+(5-2t )·16t 2+8t4t 2+3+6y 1-t (16t 2+8t )4t 2+3-3y 1+4t -4=-2.所以直线NH 过定点(0,-2).(方法二)由A (0,-2),B (32,-1)可得直线AB 的方程为y =23x -2.a.若过点P (1,-2)的直线的斜率不存在,则其直线方程为x =1.将直线方程x =1代入x 23+y 24=1,可得N (1,263),M (1,-263).将y =-263代入y =23x -2,可得T (3-6,-263).由MT →=TH →,得H (5-26,-263).此时直线HN 的方程为y =(2+263)(x -1)+263,则直线HN 过定点(0,-2).b.若过点P (1,-2)的直线的斜率存在,设此直线方程为kx -y -(k +2)=0,M (x 1,y 1),N (x 2,y 2).-y -(k +2)=0,+y 24=1.消去y 并整理,得(3k 2+4)x 2-6k (2+k )x +3k (k +4)=0.1+x 2=6k (2+k )3k 2+4,1x 2=3k (4+k )3k 2+4,1+y 2=-8(2+k )3k 2+4,1y 2=4(4+4k -2k 2)3k 2+4,且x 1y 2+x 2y 1=-24k3k 2+4.①=y 1,=23x -2,可得T (3y 12+3,y 1).由MT →=TH →,得H (3y 1+6-x 1,y 1).则直线HN 的方程为y -y 2=y 1-y 23y 1+6-x 1-x 2(x -x 2).将点(0,-2)的坐标代入并整理,得2(x 1+x 2)-6(y 1+y 2)+x 1y 2+x 2y 1-3y 1y 2-12=0.②将①代入②,得24k +12k 2+96+48k -24k -48-48k +24k 2-36k 2-48=0,显然成立.综上可得,直线HN 过定点(0,-2).8.解析:(1)∵点A (2,1)在双曲线C :x 2a 2-y 2a 2-1=1(a >1)上,∴4a 2-1a 2-1=1,解得a 2=2.∴双曲线C 的方程为x 22-y 2=1.显然直线l 的斜率存在,可设其方程为y =kx +m .kx +m ,y 2=1.消去y 并整理,得(1-2k 2)x 2-4kmx -2m 2-2=0.Δ=16k 2m 2+4(1-2k 2)(2m 2+2)=8m 2+8-16k 2>0.设P (x 1,y 1),Q (x 2,y 2),则x 1+x 2=4km 1-2k 2,x 1x 2=-2m 2-21-2k 2.由k AP +k AQ =0,得y 1-1x 1-2+y 2-1x 2-2=0,即(x 2-2)(kx 1+m -1)+(x 1-2)(kx 2+m -1)=0.整理,得2kx 1x 2+(m -1-2k )(x 1+x 2)-4(m -1)=0,即2k ·-2m 2-21-2k 2+(m -1-2k )·4km1-2k 2-4(m -1)=0,即(k +1)(m +2k -1)=0.∵直线l 不过点A ,∴k =-1.(2)设∠PAQ =2α,0<α<π2,则tan 2α=22,∴2tan α1-tan 2α=22,解得tan α=22(负值已舍去).由(1)得k =-1,则x 1x 2=2m 2+2>0,∴P ,Q 只能同在双曲线左支或同在右支.当P ,Q 同在左支时,tan α即为直线AP 或AQ 的斜率.设k AP =22.∵22为双曲线一条渐近线的斜率,∴直线AP 与双曲线只有一个交点,不成立.当P ,Q 同在右支时,tan (π2-α)=1tan α即为直线AP 或AQ 的斜率.设k AP =122=2,则k AQ =-2,∴直线AP 的方程为y -1=2(x -2),即y =2x -22+1.=2x -22+1,y 2=1.消去y 并整理,得3x 2-(16-42)x +20-82=0,则x P ·2=20-823,解得x P =10-423.∴|x A -x P |=|2-10-423|=4(2-1)3.同理可得|x A -x Q |=4(2+1)3.∵tan 2α=22,0<2α<π,∴sin 2α=223,∴S △PAQ =12|AP |·|AQ |·sin 2α=12×3×|x A -x P |×3×|x A -x Q |×sin 2α=12×3×169×223=1629.。

高三数学一轮复习圆锥曲线的综合问题

高三数学一轮复习圆锥曲线的综合问题

备考例题 3
已知
F1,F2
为椭圆x2+y2=1(a>b>0)的左、右焦点,A a2 b2
是椭圆上位于第一象限内的一点,点
B
也在椭圆上,且满足O→A+O→B=
0(O 为坐标原点),且A→F2·F→1F2=0,若椭圆的离心率等于 2. 2
(1)求直线 AB 的方程;
(2)若△ABF2 的面积为 4 2,求椭圆的方程;
则 P 到直线 y= 2x 的距离为 2
|2
2cosθ-2 6
2sinθ|=4 3
6|cos(θ+π)|≤4 43
6<4,故椭圆上不存在点 M 使△MAB 面积为 8
3.
2
题型四
圆锥曲线与其他知识交汇的问 题
1-ky0-1+ky0
∴kEF=yxEE- -yxFF=(1-kky
-k 0)2-(1+ky
0)2
k2
k2
2
= k =- 1 (定值), -4ky0 2y0
k2 所以直线 EF 的斜率为定值.
题型二 最值与范围问题
①正确理解圆锥曲线的定义、标 思维提 准方程;
示 ②联立方程组,对有关参数进行 讨论.
[解] (1)∵F0(c,0),F1(0, b2-c2),F2(0,- b2-c2),
∴|F0F1|= (b2-c2)+c2=b=1,
|F1F2|=2 b2-c2=1⇒c2=3, 4
于是 a=1 (x≥0) 7
所求“果圆”的方程为 y2+4x2=1 (x≤0)
.
m2 m2-1
(2)设 Q(x1,y1), ∵P(m,y0),P→F=λF→Q,
2
1-m=λ(x1-1)
∴2

-y0=λy1

2020版高考数学(浙江专用)一轮总复习检测:10.6 圆锥曲线的综合问题 含解析

2020版高考数学(浙江专用)一轮总复习检测:10.6 圆锥曲线的综合问题 含解析

10.6圆锥曲线的综合问题挖命题【考情探究】分析解读 1.圆锥曲线的综合问题是高考的热点之一,主要考查两大问题:一是根据条件求出平面曲线的方程;二是通过方程研究平面曲线的性质.2.考查点主要有:(1)圆锥曲线的基本概念和性质;(2)与圆锥曲线有关的最值、对称、位置关系等综合问题;(2)有关定点、定值问题,以及存在性等探索性问题.3.预计2020年高考试题中,圆锥曲线的综合问题仍是压轴题之一,复习时应高度重视.炼技法【方法集训】方法1圆锥曲线中的最值和范围问题的求解方法1.(2018浙江9+1高中联盟期中,21)如图,在平面直角坐标系xOy中,设点M(x0,y0)是椭圆C:+y2=1上一点,从原点O向圆M:+=作两条切线,分别与椭圆C交于点P,Q,直线OP,OQ的斜率分别记为k1,k2.(1)求证:k1k2为定值;(2)求四边形OPMQ面积的最大值.解析(1)证明:因为直线OP:y=k1x,OQ:y=k2x与圆M相切,所以=,=,可知k1,k2是方程(3-2)k2-6x0y0k+3-2=0的两个不相等的实数根,所以3-2≠0,k 1k2=,因为点M(x0,y0)在椭圆C上,所以=1-,所以k1k2==-.(2)易知直线OP,OQ都不能落在坐标轴上,设P(x1,y1),Q(x2,y2),因为2k1k2+1=0,所以+1=0,即=,因为P(x1,y1),Q(x2,y2)在椭圆C上,所以==,整理得+=2,所以+=1,所以OP2+OQ2=3.因为S四边形OPMQ= (OP+OQ)·=(OP+OQ),OP+OQ≤=,所以S四边形OPMQ的最大值为1.2.(2018浙江台州高三期末质检,21,15分)已知椭圆C:+=1(a>b>0)的左,右焦点分别为F1,F2,左顶点为A,点P(,)在椭圆C上,且△PF1F2的面积为2.(1)求椭圆C的方程;(2)过原点O且与x轴不重合的直线交椭圆C于E,F两点,直线AE,AF分别与y轴交于点M,N.求证:以MN为直径的圆恒过焦点F1,F2,并求出△F1MN面积的取值范围.解析(1)∵=×2c×=2,∴c=2,(2分)又点P(,)在椭圆C上,∴+=1,∴a4-9a2+8=0,解得a2=8或a2=1(舍去),又a2-b2=4,∴b2=4,∴椭圆C的方程为+=1.(5分)(2)由(1)可得A(-2,0),F1(-2,0),F2(2,0),当直线EF的斜率不存在时,E,F为短轴的两个端点,不妨设M(0,2),N(0,-2), ∴F1M⊥F1N,F2M⊥F2N,∴以MN为直径的圆恒过焦点F 1,F2.(7分)当直线EF的斜率存在且不为零时,设直线EF的方程为y=kx(k≠0),设点E(x0,y0)(不妨设x0>0),则点F(-x0,-y0),由消去y得x2=,∴x0=,y0=,∴直线AE的方程为y=(x+2),∵直线AE与y轴交于点M,∴令x=0,得y=,即点M,同理可得点N,∴=,=,∴·=0,∴F1M⊥F1N,同理,F2M⊥F2N,则以MN为直径的圆恒过焦点F1,F2,(12分)当直线EF的斜率存在且不为零时,|MN|===2·>4,∴△F1MN的面积S=|OF1|·|MN|>4,又当直线EF的斜率不存在时,|MN|=4,∴△F1MN的面积为|OF1|·|MN|=4,∴△F1MN面积的取值范围是[4,+∞).(15分)方法2 定点、定值问题的求法1.(2017浙江镇海中学模拟卷(四),21)已知椭圆C:+=1(a>b>0)的离心率为,且椭圆C上的点到其焦点的距离的最小值为1.(1)求a,b的值;(2)过点P(3,0)作直线l交C于A,B两点,①求△AOB面积S的最大值;②设Q为线段AB上的点,且满足=,证明:点Q的横坐标x Q为定值.解析(1)由题意知,所以a=2,c=1,因此b==,故a=2,b=.(4分)(2)显然直线l的斜率存在且不为0,故可设l:y=k(x-3)(k≠0),联立消去y,并整理,得(3+4k2)x2-24k2x+36k2-12=0,其中Δ=48(3-5k2)>0.设A(x1,y1),B(x2,y2),则有x1+x2=,x1·x2=.(6分)①原点O到直线l的距离d=,|AB|=|x1-x2|=·,所以S△AOB=|AB|·d=6·|k|·=6·.(8分)设t=,则k2=,其中t∈,则S=6·=·≤·=.当且仅当9-27t=27t-5,即t=时,取等号.(10分)故△AOB面积S的最大值为.②证明:设==λ,则=-λ,=λ,(12分)所以3-x1=-λ(x2-3),x Q-x1=λ(x2-x Q),消去λ得,x Q===,故点Q的横坐标x Q为定值.(15分)2.(2017浙江五校联考(5月),21)如图,已知椭圆Γ:+=1(a>b>0)经过不同的三点A,B,C(C在第三象限),线段BC的中点在直线OA上.(1)求椭圆Γ的方程及点C的坐标;(2)设点P是椭圆Γ上的动点(异于点A,B,C),且直线PB,PC分别交直线OA于M,N两点,问|OM|·|ON|是不是定值?若是,求该值;若不是,请说明理由.解析(1)由点A,B在椭圆Γ上,得解得所以椭圆Γ的方程为+=1.设点C(m,n),则BC中点为,由已知,求得直线OA的方程为x-2y=0,从而m=2n-1.①又点C在椭圆Γ上,故2m2+8n2=5.②由①②得n= (舍去)或n=-,从而m=-,所以点C的坐标为.(2)设P(x0,y0),M(2y1,y1),N(2y2,y2).当x0≠-且x0≠-时,因为P,B,M三点共线,所以=,整理得y1=.因为P,C,N三点共线,所以=,整理得y2=.因为点P在椭圆Γ上,所以2+8=5,即=-4.从而y1y2=====.所以|OM|·|ON|=|y1|·|y2|=5|y1y2|=,为定值.当x0=-或x0=-时,易求得|OM|·|ON|=,为定值.综上,|OM|·|ON|是定值,为.方法3存在性问题的解法1.(2018浙江“七彩阳光”联盟期中,21)已知抛物线C1:x2=4y的焦点为F,过抛物线C2:y=-x2+3上一点M作抛物线C2的切线l,与抛物线C1交于A,B两点.(1)记直线AF,BF的斜率分别为k1,k2,若k1·k2=-,求直线l的方程;(2)是否存在正实数m,使得对任意点M,都有|AB|=m(|AF|+|BF|)成立?若存在,求出m的值;若不存在,请说明理由.解析(1)设M(x0,y0),由y=-+3,得y'=-,则切线l的斜率为k=-.切线l的方程为y=-(x-x0)+y0=-x++y0=-x-2y0+6+y0,即y=-x-y0+6.(3分)与x2=4y联立,消去y得x2+x0x+4y0-24=0.(4分)设A(x1,y1),B(x2,y2),则有x1+x2=-x0,x1x2=4y0-24,(5分)则y1+y2=-(x1+x2)-2y0+12=-2y0+12=-4y0+18,y1y2==,则由k1·k2=×===-,得5-28y0+23=0,解得y0=1或y0=.(8分)∵=-8(y0-3)≥0,∴y0≤3,故y0=1,∴x0=±4.则直线l的方程为y=±x+5.(9分)(2)由(1)知直线l的方程为y=-x-y0+6,且x1+x2=-x0,x1x2=4y0-24,则|AB|=|x1-x2|=·=·,即|AB|=·=2(5-y0),(11分)而|AF|+|BF|=(y1+1)+(y2+1)=-4y0+20=4(5-y0),(13分)则|AB|=(|AF|+|BF|),(14分)故存在正实数m=,使得对任意点M,都有|AB|=(|AF|+|BF|)成立.(15分)2.(2017浙江镇海中学模拟卷(六),21)椭圆C:+=1(a>b>0)的左、右焦点分别为F1、F2,M为椭圆C上任意一点,|MF1|-|MF2|的最大值为2,离心率为.(1)若N为椭圆C上任意一点,且F2M⊥F2N,求·的最小值;(2)若过椭圆C右焦点F2的直线l与椭圆C相交于A,B两点,且=3,试问:在椭圆C上是否存在点P,使得线段OP与线段AB 的交点恰为四边形OAPB的对称中心?若存在,求点P的坐标;若不存在,说明理由.解析(1)由题意知,∴故b=,∴椭圆C的方程是+=1,其右焦点F2的坐标为(1,0).∵·=·(+)=·+·=,∴===4-2.(2)由题意知,直线l的斜率不为0.假设符合条件的点P存在,则=+.设A(x1,y1),B(x2,y2),则点P的坐标为(x1+x2,y1+y2),根据=3,得(1-x1,-y1)=2(x2-1,y2),∴y1=-2y2.设直线l的方程为x=my+1,代入椭圆方程整理得(2m2+3)y2+4my-4=0,故y1+y2=-,y1y2=-.易得-y2=-,-2=-,消去y2,得=,解得m2=,即m=±.当m=时,y1+y2=-,x1+x2=m(y1+y2)+2=-+2=,此时P.当m=-时,y1+y2=,x1+x2=m(y1+y2)+2=-+2=,此时P.经检验,点,都在椭圆C上,故C上存在点P,使得线段OP与线段AB的交点恰为四边形OAPB的对称中心.过专题【五年高考】A组自主命题·浙江卷题组考点圆锥曲线的综合问题1.(2018浙江,21,15分)如图,已知点P是y轴左侧(不含y轴)一点,抛物线C:y2=4x上存在不同的两点A,B满足PA,PB的中点均在C上.(1)设AB中点为M,证明:PM垂直于y轴;(2)若P是半椭圆x2+=1(x<0)上的动点,求△PAB面积的取值范围.解析本题主要考查椭圆、抛物线的几何性质,直线与抛物线的位置关系等基础知识,同时考查运算求解能力和综合应用能力.(1)设P(x0,y0),A,B.因为PA,PB的中点在抛物线上,所以y1,y2为方程=4·即y2-2y0y+8x0-=0的两个不同的实根.所以y1+y2=2y0,因此,PM垂直于y轴.(2)由(1)可知所以|PM|= (+)-x0=-3x0,|y1-y2|=2.因此,△PAB的面积S=|PM|·|y1-y2|=(-4x0.因为+=1(x0<0),所以-4x0=-4-4x0+4∈[4,5].因此,△PAB面积的取值范围是.疑难突破解析几何中“取值范围”与“最值”问题在解析几何中,求某个量(直线斜率,直线在x、y轴上的截距,弦长,三角形或四边形面积等)的取值范围或最值问题的关键是利用条件把所求量表示成关于某个变量(通常是直线斜率,动点的横、纵坐标等)的函数,并求出这个变量的取值范围(即函数的定义域),将问题转化为求函数的值域或最值.2.(2017浙江,21,15分)如图,已知抛物线x2=y,点A,B,抛物线上的点P(x,y).过点B作直线AP的垂线,垂足为Q.(1)求直线AP斜率的取值范围;(2)求|PA|·|PQ|的最大值.解析本题主要考查直线方程、直线与抛物线的位置关系等基础知识,同时考查解析几何的基本思想方法和运算求解能力.(1)设直线AP的斜率为k,k==x-,因为-<x<,所以直线AP斜率的取值范围是(-1,1).(2)解法一:联立直线AP与BQ的方程解得点Q的横坐标是x Q=.因为|PA|==(k+1),|PQ|=(x Q-x)=-,所以|PA|·|PQ|=-(k-1)(k+1)3,令f(k)=-(k-1)(k+1)3.因为f '(k)=-(4k-2)(k+1)2,所以f(k)在区间上单调递增,上单调递减,因此当k=时,|PA|·|PQ|取得最大值.解法二:如图,连接BP,|AP|·|PQ|=|AP|·|PB|·cos∠BPQ=·(-)=·-.易知P(x,x2),则·=2x+1+2x2-=2x2+2x+,=+=x2+x++x4-x2+=x4+x2+x+.∴|AP|·|PQ|=-x4+x2+x+.设f(x)=-x4+x2+x+,则f '(x)=-4x3+3x+1=-(x-1)(2x+1)2,∴f(x)在上为增函数,在上为减函数,∴f(x)max=f(1)=.故|AP|·|PQ|的最大值为.方法总结在解析几何中,遇到求两线段长度之积的最值或取值范围时,一般用以下方法进行转化.1.直接法:求出各点坐标,用两点间的距离公式,转化为某个参变量(如直线斜率、截距,点的横、纵坐标等)的函数,再求函数的最值或值域.2.向量法:三点共线时,转化为两向量的数量积,再转化为动点的横(或纵坐标)的函数,最后求函数的最值或值域.3.参数法:把直线方程化为参数方程,与曲线方程联立,由根与系数的关系转化为直线的斜率(或直线的截距)的函数,最后求函数的最值或值域.3.(2014浙江,21,15分)如图,设椭圆C:+=1(a>b>0),动直线l与椭圆C只有一个公共点P,且点P在第一象限.(1)已知直线l的斜率为k,用a,b,k表示点P的坐标;(2)若过原点O的直线l1与l垂直,证明:点P到直线l1的距离的最大值为a-b.解析(1)设直线l的方程为y=kx+m(k<0),由消去y得(b2+a2k2)x2+2a2kmx+a2m2-a2b2=0.由于l与C只有一个公共点,故Δ=0,即b2-m2+a2k2=0,解得点P的坐标为.又点P在第一象限,故点P的坐标为P.(2)证明:由于直线l1过原点O且与l垂直,故直线l1的方程为x+ky=0,所以点P到直线l1的距离d=,整理得d=.因为a2k2+≥2ab,所以≤=a-b,当且仅当k2=时等号成立.所以点P到直线l1的距离的最大值为a-b.评析本题主要考查椭圆的几何性质、点到直线的距离、直线与椭圆的位置关系等基础知识,同时考查解析几何的基本思想方法、基本不等式的应用等综合解题能力.B组统一命题、省(区、市)卷题组考点圆锥曲线的综合问题1.(2018北京理,19,14分)已知抛物线C:y2=2px经过点P(1,2).过点Q(0,1)的直线l与抛物线C有两个不同的交点A,B,且直线PA交y轴于M,直线PB交y轴于N.(1)求直线l的斜率的取值范围;(2)设O为原点,=λ,=μ,求证: +为定值.解析(1)因为抛物线y2=2px过点(1,2),所以2p=4,即p=2.故抛物线C的方程为y2=4x,由题意知,直线l的斜率存在且不为0.设直线l的方程为y=kx+1(k≠0).由得k2x2+(2k-4)x+1=0.依题意Δ=(2k-4)2-4×k2×1>0,解得k<0或0<k<1.又PA,PB与y轴相交,故直线l不过点(1,-2).从而k≠-3.所以直线l斜率的取值范围是(-∞,-3)∪(-3,0)∪(0,1).(2)设A(x1,y1),B(x2,y2),由(1)知x1+x2=-,x1x2=.直线PA的方程为y-2=(x-1).令x=0,得点M的纵坐标为y M=+2=+2.同理得点N的纵坐标为y N=+2.由=λ,=μ得λ=1-y M,μ=1-y N.所以+=+=+=·=·=2.所以+为定值.方法总结圆锥曲线中的定值问题的常见类型及解题策略(1)求代数式为定值.依题设条件,得出与代数式有关的等式,化简即可得出定值;(2)求点到直线的距离为定值.利用点到直线的距离公式得出距离的表达式,再利用题设条件化简、变形求得;(3)求某线段长度为定值.利用两点间的距离公式求得线段长度的表达式,再依据条件对表达式进行化简、变形即可求得.2.(2017山东理,21,14分)在平面直角坐标系xOy中,椭圆E:+=1(a>b>0)的离心率为,焦距为2.(1)求椭圆E的方程;(2)如图,动直线l:y=k1x-交椭圆E于A,B两点,C是椭圆E上一点,直线OC的斜率为k2,且k1k2=.M是线段OC延长线上一点,且|MC|∶|AB|=2∶3,☉M的半径为|MC|,OS,OT是☉M的两条切线,切点分别为S,T.求∠SOT的最大值,并求取得最大值时直线l 的斜率.解析本题考查椭圆的方程,直线与椭圆、圆的位置关系,考查最值的求解方法和运算求解能力.(1)由题意知e==,2c=2,所以a=,b=1,因此椭圆E的方程为+y2=1.(2)设A(x1,y1),B(x2,y2),联立消y整理得(4+2)x2-4k1x-1=0,由题意知Δ>0,且x1+x2=,x1x2=-,所以|AB|=|x1-x2|=.由题意可知圆M的半径r=|AB|=·.由题设知k1k2=,所以k2=,因此直线OC的方程为y=x.联立得x2=,y2=,因此|OC|==.由题意可知sin==,而==,令t=1+2,则t>1,∈(0,1),因此=·=·=·≥1,当且仅当=,即t=2时等号成立,此时k1=±,所以sin≤,因此≤,所以∠SOT的最大值为.综上所述,∠SOT的最大值为,取得最大值时直线l的斜率k1=±.思路分析(1)由离心率和焦距,利用基本量运算求解;(2)联立直线l与椭圆方程,利用距离公式求|AB|,联立直线OC与椭圆方程求|OC|,进而建立sin与k1之间的函数关系,利用二次函数的性质求解.解题反思最值问题一般利用函数的思想方法求解,利用距离公式建立sin与k1之间的函数关系是解题关键.牢固掌握基础知识和方法是求解的前提.本题的完美解答体现了数学知识、能力、思想、方法的完美结合.3.(2016天津,19,14分)设椭圆+=1(a>)的右焦点为F,右顶点为A.已知+=,其中O为原点,e为椭圆的离心率.(1)求椭圆的方程;(2)设过点A的直线l与椭圆交于点B(B不在x轴上),垂直于l的直线与l交于点M,与y轴交于点H.若BF⊥HF,且∠MOA≤∠MAO,求直线l的斜率的取值范围.解析(1)设F(c,0),由+=,即+=,可得a2-c2=3c2,又a2-c2=b2=3,所以c2=1,因此a2=4,所以椭圆的方程为+=1.(2)设直线l的斜率为k(k≠0),则直线l的方程为y=k(x-2).设B(x B,y B),由方程组消去y,整理得(4k2+3)x2-16k2x+16k2-12=0.解得x=2或x=,由题意得x B=,从而y B=.由(1)知F(1,0),设H(0,y H),有=(-1,y H),=.由BF⊥HF,得·=0,所以+=0,解得y H=.因此直线MH的方程为y=-x+.设M(x M,y M),由方程组消去y,解得x M=.在△MAO中,∠MOA≤∠MAO⇔|MA|≤|MO|,即(x M-2)2+≤+,化简得x M≥1,即≥1,解得k≤-或k≥.所以直线l的斜率的取值范围为∪.评析本题主要考查椭圆的标准方程和几何性质、直线方程、一元二次不等式等基础知识.考查用代数方法研究圆锥曲线的性质.考查运算求解能力,以及用方程思想解决问题的能力.4.(2016北京,19,14分)已知椭圆C:+=1(a>b>0)的离心率为,A(a,0),B(0,b),O(0,0),△OAB的面积为1.(1)求椭圆C的方程;(2)设P是椭圆C上一点,直线PA与y轴交于点M,直线PB与x轴交于点N.求证:|AN|·|BM|为定值.解析(1)由题意得解得a2=4,b2=1.所以椭圆C的方程为+y2=1.(2)由(1)知,A(2,0),B(0,1).设P(x0,y0),则+4=4.当x0≠0时,直线PA的方程为y=(x-2).令x=0,得y M=-,从而|BM|=|1-y M|=.直线PB的方程为y=x+1.令y=0,得x N=-,从而|AN|=|2-x N|=.所以|AN|·|BM|=·===4.当x0=0时,y0=-1,|BM|=2,|AN|=2,所以|AN|·|BM|=4.综上,|AN|·|BM|为定值.一题多解(2)点P在曲线+=1上,不妨设P(2cos θ,sin θ),当θ≠kπ且θ≠kπ+ (k∈Z)时,直线AP的方程为y-0=(x-2),令x=0,得y M=;直线BP的方程为y-1=(x-0),令y=0,得x N=.∴|AN|·|BM|=2·=2=2×2=4(定值).当θ=kπ或θ=kπ+ (k∈Z)时,M,N是定点,易得|AN|·|BM|=4.综上,|AN|·|BM|=4.评析本题考查椭圆的标准方程,直线与圆锥曲线的位置关系及定值问题,方法常规,运算量大,对学生的运算能力要求较高.5.(2016四川,20,13分)已知椭圆E:+=1(a>b>0)的两个焦点与短轴的一个端点是直角三角形的三个顶点,直线l:y=-x+3与椭圆E有且只有一个公共点T.(1)求椭圆E的方程及点T的坐标;(2)设O是坐标原点,直线l'平行于OT,与椭圆E交于不同的两点A,B,且与直线l交于点P.证明:存在常数λ,使得|PT|2=λ|PA|·|PB|,并求λ的值.解析(1)由题意得,a=b,则椭圆E的方程为+=1.由方程组得3x2-12x+(18-2b2)=0.①方程①的判别式为Δ=24(b2-3),由Δ=0,得b2=3,此时方程①的解为x=2,所以椭圆E的方程为+=1,点T的坐标为(2,1).(2)由已知可设直线l'的方程为y=x+m(m≠0),由方程组可得所以P点坐标为,|PT|2=m2.设点A,B的坐标分别为A(x1,y1),B(x2,y2).由方程组可得3x2+4mx+(4m2-12)=0.②方程②的判别式为Δ=16(9-2m2),由Δ>0,解得-<m<.由②得x1+x2=-,x1x2=.所以|PA|==,同理|PB|=.所以|PA|·|PB|====m2.故存在常数λ=,使得|PT|2=λ|PA|·|PB|.评析本题考查了直线与圆锥曲线相交的问题,这类题中常用的方法是方程法,并结合根与系数的关系,两点间的距离公式进行考查,难点是运算量比较大,注意运算技巧.6.(2015课标Ⅱ,20,12分)已知椭圆C:9x2+y2=m2(m>0),直线l不过原点O且不平行于坐标轴,l与C有两个交点A,B,线段AB的中点为M.(1)证明:直线OM的斜率与l的斜率的乘积为定值;(2)若l过点,延长线段OM与C交于点P,四边形OAPB能否为平行四边形?若能,求此时l的斜率;若不能,说明理由. 解析(1)证明:设直线l:y=kx+b(k≠0,b≠0),A(x1,y1),B(x2,y2),M(x M,y M).将y=kx+b代入9x2+y2=m2得(k2+9)x2+2kbx+b2-m2=0,故x M==,y M=kx M+b=.于是直线OM的斜率k OM==-,即k OM·k=-9.所以直线OM的斜率与l的斜率的乘积为定值.(2)四边形OAPB能为平行四边形.因为直线l过点,所以l不过原点且与C有两个交点的充要条件是k>0,k≠3.由(1)得OM的方程为y=-x.设点P的横坐标为x P.由得=,即x P=.将代入l的方程得b=,因此x M=.四边形OAPB为平行四边形当且仅当线段AB与线段OP互相平分,即x P=2x M.于是=2×,解得k1=4-,k2=4+.因为k i>0,k i≠3,i=1,2,所以当l的斜率为4-或4+时,四边形OAPB为平行四边形.评析本题考查直线与圆锥曲线的位置关系,设问常规,但对运算能力要求较高,考查学生的思维能力.C组教师专用题组考点圆锥曲线的综合问题1.(2017山东文,21,14分)在平面直角坐标系xOy中,已知椭圆C:+=1(a>b>0)的离心率为,椭圆C截直线y=1所得线段的长度为2.(1)求椭圆C的方程;(2)动直线l:y=kx+m(m≠0)交椭圆C于A,B两点,交y轴于点M.点N是M关于O的对称点,☉N的半径为|NO|.设D为AB的中点,DE,DF与☉N分别相切于点E,F,求∠EDF的最小值.解析本题考查椭圆的标准方程及圆锥曲线的相关最值.(1)由椭圆的离心率为,得a2=2(a2-b2),又当y=1时,x2=a2-,得a2-=2,所以a2=4,b2=2.因此椭圆方程为+=1.(2)设A(x1,y1),B(x2,y2),联立得(2k2+1)x2+4kmx+2m2-4=0,由Δ>0得m2<4k2+2,(*)且x1+x2=-,因此y1+y2=,所以D,又N(0,-m),所以|ND|2=+,整理得|ND|2=,因为|NF|=|m|,所以==1+.令t=8k2+3,t≥3,故2k2+1=,所以=1+=1+.令y=t+,所以y'=1-.当t≥3时,y'>0,从而y=t+在[3,+∞)上单调递增,因此t+≥,等号当且仅当t=3时成立,此时k=0,所以≤1+3=4,由(*)得-<m<且m≠0.故≥.设∠EDF=2θ,则sin θ=≥.所以θ的最小值为,从而∠EDF的最小值为,此时直线l的斜率是0.综上所述,当k=0,m∈(-,0)∪(0,)时,∠EDF取到最小值.方法总结求解圆锥曲线相关最值的常用方法:1.几何性质法;2.二次函数最值法;3.基本不等式法;4.三角函数最值法;5.导数法.2.(2017课标全国Ⅰ理,20,12分)已知椭圆C:+=1(a>b>0),四点P1(1,1),P2(0,1),P3,P4中恰有三点在椭圆C上.(1)求C的方程;(2)设直线l不经过P2点且与C相交于A,B两点.若直线P2A与直线P2B的斜率的和为-1,证明:l过定点.解析本题考查了圆锥曲线的方程以及圆锥曲线与直线位置关系中的定点问题.(1)由于P3,P4两点关于y轴对称,故由题设知C经过P3,P4两点.又由+>+知,C不经过点P1,所以点P2在C上.因此解得故C的方程为+y2=1.(2)设直线P2A与直线P2B的斜率分别为k1,k2.如果l与x轴垂直,设l:x=t,由题设知t≠0,且|t|<2,可得A,B的坐标分别为,.则k1+k2=-=-1,得t=2,不符合题设.从而可设l:y=kx+m(m≠1).将y=kx+m代入+y2=1得(4k2+1)x2+8kmx+4m2-4=0.由题设可知Δ=16(4k2-m2+1)>0.设A(x1,y1),B(x2,y2),则x1+x2=-,x1x2=.而k1+k2=+=+=,由题设k1+k2=-1,故(2k+1)x1x2+(m-1)(x1+x2)=0.即(2k+1)·+(m-1)·=0.解得k=-.当且仅当m>-1时,Δ>0,于是l:y=-x+m,即y+1=-(x-2),所以l过定点(2,-1).3.(2016山东,21,14分)已知椭圆C:+=1(a>b>0)的长轴长为4,焦距为2.(1)求椭圆C的方程;(2)过动点M(0,m)(m>0)的直线交x轴于点N,交C于点A,P(P在第一象限),且M是线段PN的中点.过点P作x轴的垂线交C于另一点Q,延长QM交C于点B.(i)设直线PM,QM的斜率分别为k,k',证明为定值;(ii)求直线AB的斜率的最小值.解析(1)设椭圆的半焦距为c.由题意知2a=4,2c=2,所以a=2,b==.所以椭圆C的方程为+=1.(2)(i)证明:设P(x0,y0)(x0>0,y0>0). 由M(0,m),可得P(x0,2m),Q(x0,-2m).所以直线PM的斜率k==,直线QM的斜率k'==-.此时=-3.所以为定值-3.(ii)设A(x1,y1),B(x2,y2).直线PA的方程为y=kx+m,直线QB的方程为y=-3kx+m.联立整理得(2k2+1)x2+4mkx+2m2-4=0.由x0x1=,可得x1=.所以y1=kx1+m=+m.同理x2=,y2=+m.所以x2-x1=-=,y2-y1=+m--m=,所以k AB===.由m>0,x0>0,可知k>0,所以6k+≥2,等号当且仅当k=时取得.此时=,即m=,符合题意.所以直线AB的斜率的最小值为.4.(2015山东,21,14分)平面直角坐标系xOy中,已知椭圆C:+=1(a>b>0)的离心率为,且点在椭圆C上.(1)求椭圆C的方程;(2)设椭圆E:+=1,P为椭圆C上任意一点,过点P的直线y=kx+m交椭圆E于A,B两点,射线PO交椭圆E于点Q.(i)求的值;(ii)求△ABQ面积的最大值.解析(1)由题意知+=1,又=,解得a2=4,b2=1.所以椭圆C的方程为+y2=1.(2)由(1)知椭圆E的方程为+=1.(i)设P(x0,y0),=λ,由题意知Q(-λx0,-λy0).因为+=1,又+=1,即=1,所以λ=2,即=2.(ii)设A(x1,y1),B(x2,y2).将y=kx+m代入椭圆E的方程,可得(1+4k2)x2+8kmx+4m2-16=0,由Δ>0,可得m2<4+16k2.①则有x1+x2=-,x1x2=.所以|x1-x2|=.因为直线y=kx+m与y轴交点的坐标为(0,m), 所以△OAB的面积S=|m||x1-x2|===2.设=t.将y=kx+m代入椭圆C的方程,可得(1+4k2)x2+8kmx+4m2-4=0,由Δ≥0,可得m2≤1+4k2.②由①②可知0<t≤1,因此S=2=2.故S≤2,当且仅当t=1,即m2=1+4k2时取得最大值2.由(i)知,△ABQ的面积为3S,所以△ABQ面积的最大值为6.5.(2015陕西,20,12分)如图,椭圆E:+=1(a>b>0)经过点A(0,-1),且离心率为.(1)求椭圆E的方程;(2)经过点(1,1),且斜率为k的直线与椭圆E交于不同的两点P,Q(均异于点A),证明:直线AP与AQ的斜率之和为2.解析(1)由题设知=,b=1,结合a2=b2+c2,解得a=.所以椭圆E的方程为+y2=1.(2)证明:由题设知,直线PQ的方程为y=k(x-1)+1(k≠2),代入+y2=1,得(1+2k2)x2-4k(k-1)x+2k(k-2)=0.由已知可知Δ>0.设P(x1,y1),Q(x2,y2),x1x2≠0,则x1+x2=,x1x2=.从而直线AP,AQ的斜率之和k AP+k AQ=+=+=2k+(2-k)=2k+(2-k)=2k+(2-k)=2k-2(k-1)=2.评析本题考查椭圆标准方程与简单性质的同时,重点考查直线与椭圆的位置关系.6.(2015北京,19,14分)已知椭圆C:+=1(a>b>0)的离心率为,点P(0,1)和点A(m,n)(m≠0)都在椭圆C上,直线PA交x轴于点M.(1)求椭圆C的方程,并求点M的坐标(用m,n表示);(2)设O为原点,点B与点A关于x轴对称,直线PB交x轴于点N.问:y轴上是否存在点Q,使得∠OQM=∠ONQ?若存在,求点Q的坐标;若不存在,说明理由.解析(1)由题意得解得a2=2.故椭圆C的方程为+y2=1.设M(x M,0).因为m≠0,所以-1<n<1.直线PA的方程为y-1=x,所以x M=,即M.(2)存在.因为点B与点A关于x轴对称,所以B(m,-n).设N(x N,0),则x N=.“存在点Q(0,y Q)使得∠OQM=∠ONQ”等价于“存在点Q(0,y Q)使得=”,即y Q满足=|x M||x N|.因为x M=,x N=,+n2=1,所以=|x M||x N|==2.所以y Q=或y Q=-.故在y轴上存在点Q,使得∠OQM=∠ONQ,点Q的坐标为(0,)或(0,-).7.(2015四川,20,13分)如图,椭圆E:+=1(a>b>0)的离心率是,过点P(0,1)的动直线l与椭圆相交于A,B两点.当直线l平行于x轴时,直线l被椭圆E截得的线段长为2.(1)求椭圆E的方程;(2)在平面直角坐标系xOy中,是否存在与点P不同的定点Q,使得=恒成立?若存在,求出点Q的坐标;若不存在,请说明理由.解析(1)由已知得,点(,1)在椭圆E上.因此,解得a=2,b=.所以椭圆E的方程为+=1.(2)当直线l与x轴平行时,设直线l与椭圆相交于C,D两点.如果存在定点Q满足条件,则有==1,即|QC|=|QD|.所以Q点在y轴上,可设Q点的坐标为(0,y0).当直线l与x轴垂直时,设直线l与椭圆相交于M,N两点,则M,N的坐标分别为(0,),(0,-).由=,有=,解得y0=1或y0=2.所以,若存在不同于点P的定点Q满足条件,则Q点坐标只可能为(0,2).下面证明:对任意直线l,均有=.当直线l的斜率不存在时,由上可知,结论成立.当直线l的斜率存在时,可设直线l的方程为y=kx+1,A,B的坐标分别为(x1,y1),(x2,y2).联立得得(2k2+1)x2+4kx-2=0.其Δ=(4k)2+8(2k2+1)>0,所以,x1+x2=-,x1x2=-.因此+==2k.易知,点B关于y轴对称的点B'的坐标为(-x2,y2).又k QA===k-,k QB'===-k+=k-,所以k QA=k QB',即Q,A,B'三点共线.所以===.故存在与P不同的定点Q(0,2),使得=恒成立.评析本题主要考查椭圆的标准方程与几何性质,直线方程、直线与椭圆的位置关系等基础知识,考查推理论证能力、运算求解能力,考查数形结合、化归与转化、特殊与一般、分类与整合等数学思想.8.(2014重庆,21,12分)如图,设椭圆+=1(a>b>0)的左,右焦点分别为F1,F2,点D在椭圆上,DF1⊥F1F2,=2,△DF1F2的面积为.(1)求该椭圆的标准方程;(2)是否存在圆心在y轴上的圆,使圆在x轴的上方与椭圆有两个交点,且圆在这两个交点处的两条切线相互垂直并分别过不同的焦点?若存在,求出圆的方程.若不存在,请说明理由.解析(1)设F1(-c,0),F2(c,0),其中c2=a2-b2.由=2得|DF1|== c.从而=|DF1||F1F2|=c2=,故c=1.从而|DF1|=,由DF1⊥F1F2得|DF2|2=|DF1|2+|F1F2|2=,因此|DF2|=.所以2a=|DF1|+|DF2|=2,故a=,b2=a2-c2=1.因此,所求椭圆的标准方程为+y2=1.(2)如图,设圆心在y轴上的圆C与椭圆+y2=1相交,P1(x1,y1),P2(x2,y2)是两个交点,y1>0,y2>0,F1P1,F2P2是圆C的切线,且F1P1⊥F2P2.由圆和椭圆的对称性,易知,x2=-x1,y1=y2.由(1)知F1(-1,0),F2(1,0),所以=(x1+1,y1),=(-x1-1,y1).再由F1P1⊥F2P2得-(x1+1)2+=0.由椭圆方程得1-=(x1+1)2,即3+4x1=0,解得x1=-或x1=0.当x1=0时,P1,P2重合,不存在满足题设要求的圆.当x1=-时,过P1,P2分别与F1P1,F2P2垂直的直线的交点即为圆心C.设C(0,y0),由CP1⊥F1P1,得·=-1.而y1=|x1+1|=,故y0=.圆C的半径|CP1|==.综上,存在满足题设条件的圆,其方程为x2+=.评析本题考查椭圆的标准方程、圆的方程的求法以及椭圆的几何性质,直线与圆的位置关系的应用.本题考查了学生分析问题,解决问题的能力、逻辑推理能力、运算求解能力以及利用分类讨论思想解决问题的能力.9.(2014课标Ⅰ,20,12分)已知点A(0,-2),椭圆E:+=1(a>b>0)的离心率为,F是椭圆E的右焦点,直线AF的斜率为,O 为坐标原点.(1)求E的方程;(2)设过点A的动直线l与E相交于P,Q两点.当△OPQ的面积最大时,求l的方程.解析(1)设F(c,0),由条件知, =,得c=.又=,所以a=2,b2=a2-c2=1.故E的方程为+y2=1.(2)当l⊥x轴时不合题意,故设l:y=kx-2,P(x1,y1),Q(x2,y2).将y=kx-2代入+y2=1得(1+4k2)x2-16kx+12=0.当Δ=16(4k2-3)>0,即k2>时,x1,2=.从而|PQ|=|x1-x2|=.又点O到直线PQ的距离d=,所以△OPQ的面积S△OPQ=d·|PQ|=.设=t,则t>0,S△OPQ==.因为t+≥4,当且仅当t=2,即k=±时等号成立,且满足Δ>0,所以,当△OPQ的面积最大时,l的方程为y=x-2或y=-x-2.评析本题主要考查椭圆的标准方程、几何性质,直线的方程以及直线与椭圆的位置关系等基础知识,考查用代数方法研究圆锥曲线的综合问题,考查方程思想、函数思想、整体代换以及换元法的应用.考查学生的逻辑推理能力和运算求解能力.10.(2014湖南,21,13分)如图,O为坐标原点,椭圆C1:+=1(a>b>0)的左、右焦点分别为F1、F2,离心率为e1;双曲线C2:-=1的左、右焦点分别为F3、F4,离心率为e2,已知e1e2=,且|F2F4|=-1.(1)求C1,C2的方程;(2)过F1作C1的不垂直于y轴的弦AB,M为AB的中点,当直线OM与C2交于P,Q两点时,求四边形APBQ面积的最小值.解析(1)因为e1e2=,所以·=,即a4-b4=a4,因此a2=2b2,从而F2(b,0),F4(b,0),于是b-b=|F2F4|=-1,所以b=1,所以a2=2.故C1,C2的方程分别为+y2=1,-y2=1.(2)因为AB不垂直于y轴,且过点F1(-1,0),故可设直线AB的方程为x=my-1.由得(m2+2)y2-2my-1=0,易知此方程的判别式大于0,设A(x1,y1),B(x2,y2),则y1,y2是上述方程的两个实根,所以y1+y2=,y1y2=.因此x1+x2=m(y1+y2)-2=,于是AB的中点M的坐标为.故直线PQ的斜率为-,则PQ的方程为y=-x,即mx+2y=0. 由得(2-m2)x2=4,所以2-m2>0,且x2=,y2=,从而|PQ|=2=2.设点A到直线PQ的距离为d,则点B到直线PQ的距离也为d,所以2d=,因为点A,B在直线mx+2y=0的异侧,所以(mx1+2y1)(mx2+2y2)<0,于是|mx1+2y1|+|mx2+2y2|=|mx1+2y1-mx2-2y2|,从而2d=.又因为|y1-y2|==,所以2d=.故四边形APBQ的面积S=|PQ|·2d==2.而0<2-m2<2,故当m=0时,S取得最小值2.综上所述,四边形APBQ面积的最小值为2.11.(2014四川,20,13分)已知椭圆C:+=1(a>b>0)的焦距为4,其短轴的两个端点与长轴的一个端点构成正三角形.(1)求椭圆C的标准方程;(2)设F为椭圆C的左焦点,T为直线x=-3上任意一点,过F作TF的垂线交椭圆C于点P,Q.(i)证明:OT平分线段PQ(其中O为坐标原点);(ii)当最小时,求点T的坐标.解析(1)由已知可得解得a2=6,b2=2,所以椭圆C的标准方程是+=1.(2)(i)证明:由(1)可得,F的坐标是(-2,0),设T点的坐标为(-3,m).则直线TF的斜率k TF==-m.当m≠0时,直线PQ的斜率k PQ=,直线PQ的方程是x=my-2.当m=0时,直线PQ的方程是x=-2,也符合x=my-2的形式.设P(x1,y1),Q(x2,y2),将直线PQ的方程与椭圆C的方程联立,得消去x,得(m2+3)y2-4my-2=0,其Δ=16m2+8(m2+3)>0.所以y1+y2=,y1y2=,x1+x2=m(y1+y2)-4=.所以PQ的中点M的坐标为.所以直线OM的斜率k OM=-,又直线OT的斜率k OT=-,所以点M在直线OT上,因此OT平分线段PQ.(ii)由(i)可得,|TF|=,|PQ|====.所以==≥=.当且仅当m2+1=,即m=±1时,等号成立,此时取得最小值.所以当最小时,T点的坐标是(-3,1)或(-3,-1).评析本题主要考查椭圆的标准方程、直线方程、直线与椭圆的位置关系等基础知识,考查推理论证能力、运算求解能力,考查数形结合、转化与化归、分类与整合等数学思想.12.(2014江西,20,13分)如图,已知抛物线C:x2=4y,过点M(0,2)任作一直线与C相交于A,B两点,过点B作y轴的平行线与直线AO相交于点D(O为坐标原点).(1)证明:动点D在定直线上;(2)作C的任意一条切线l(不含x轴),与直线y=2相交于点N1,与(1)中的定直线相交于点N2.证明:|MN2|2-|MN1|2为定值,并求此定值.解析(1)证明:依题意可设直线AB的方程为y=kx+2,代入x2=4y,得x2=4(kx+2),即x2-4kx-8=0.设A(x1,y1),B(x2,y2),则有x1x2=-8,。

圆锥曲线综合复习

圆锥曲线综合复习

角度问题
直接法
向量法
利用圆锥曲线的定义和性质,直接求 出角度。
利用向量的数量积、模长等性质,将 角度问题转化为向量的运算问题。
余弦定理或正弦定理法
通过作弦心距或利用余弦定理、正弦 定理解三角形,求出角度。
面积问题
直接法
利用圆锥曲线的定义和性 质,直接求出面积。
底乘高的一半法
通过作底和高,利用三角 形面积公式求出面积。
圆锥曲线上的点可以与三角函数结合,通过三角函数来表示曲线上点的 坐标。例如,在椭圆上任取一点P,可以设点P的坐标为(x, y),利用三角 函数来表示x和y的关系。
圆锥曲线与三角函数的综合问题常常涉及到求最值、求轨迹、求参数范 围等类型的问题。例如,在椭圆上求一点到直线的最短距离,可以通过 三角函数来求解。
它们之间的关系取决于物体的初始速度和重力加速度。
实际应用
03
抛物线运动在实际生活中有广泛的应用,如投篮、投掷标枪等
体育运动,以及导弹、火箭的发射等军事和航天领域。
双曲线在声学中的应用
双曲线描述声波传播
在声学中,双曲线可以用来描述声波的传播路径,特别是在处理反射、折射和干涉等问题 时。
声速与介质的关系
声波在不同介质中的传播速度不同,双曲线的形状会因为声速的变化而变化,这有助于我 们了解声波在不同介质中的传播规律。
实际应用
双曲线在声学中的应用包括建筑设计、声音传播规律的研究以及声音控制等,例如在音乐 厅的设计中利用双曲线来控制声波的传播,以达到最佳的音响效果。
05 圆锥曲线与其他知识点的 综合
与三角函数的综合
圆锥曲线综合复习
目 录
• 圆锥曲线的基本概念 • 圆锥曲线的性质 • 圆锥曲线在几何中的应用 • 圆锥曲线在物理中的应用 • 圆锥曲线与其他知识点的综合 • 圆锥曲线综合题解析

圆锥曲线解题技巧综合运用不同解题方法

圆锥曲线解题技巧综合运用不同解题方法

圆锥曲线解题技巧综合运用不同解题方法圆锥曲线是高中数学中的一个重要内容,经常在各类考试中出现。

掌握圆锥曲线的解题技巧,可以帮助我们高效解答题目。

本文将介绍几种常见的圆锥曲线解题方法,并综合运用它们来解决各类题目。

一、直接法直接法是最常用的解题方法之一,它适用于给定了圆锥曲线的方程,要求我们找出特定点或确定一些性质的情况。

以二次曲线为例,我们可以通过将方程标准化,然后研究其各项系数的符号、平方项的系数与常数项的关系等来推导出特定点的坐标、曲线的类型等信息。

二、参数法参数法常用于求解曲线上的点的坐标或曲线的方程。

当我们遇到较复杂的曲线方程,难以直接分析时,可以通过引入参数的方法,将曲线的方程转化为参数方程进行处理。

例如,对于椭圆和双曲线,我们可以通过引入参数来表示曲线上的点的坐标。

设参数为θ,则椭圆的参数方程为x=acosθ,y=bsinθ;双曲线的参数方程为x=asecθ,y=btanθ。

通过选取不同的参数值,我们可以得到曲线上的不同点,进而求解问题。

三、几何法几何法是通过几何图形的性质来解决问题的方法。

在圆锥曲线的学习过程中,我们会学到各种曲线的几何性质,如椭圆的离心率、焦点定理、双曲线的渐近线等。

利用这些性质,我们可以通过绘制几何图形,运用几何关系来解决问题。

四、导数法导数法常用于求解曲线的切线、法线以及曲率等问题。

对于给定的曲线方程,我们可以通过求导数来得到曲线的斜率,从而得到切线或法线的方程。

同时,导数还可以帮助我们研究曲线的凸凹性、极值等性质,进一步推导出曲线的特点。

五、解析法解析法是一种基于代数分析的方法,适用于较复杂的曲线方程求解。

通过对方程进行代数运算、化简等操作,我们可以得到曲线的一些基本性质或特定点的坐标。

在解析法中,我们常用的技巧包括配方法、消元法、代入法等,根据方程的特点和题目要求来灵活选择合适的方法。

此外,还需要注意方程中的各项系数和常数项之间的关系,以便得到准确的解答。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

此时|S1-S2|=2||y2|-|y1||=2|y2+y1|=2|k(x2+1)+k(x1+1)|=2|k(x1+x2)+2k|=31+2|4kk| 2,
因为 k≠0,上式=|k3|+124|k|≤2
12 = 12 = |k3|·4|k| 2 12
3当且仅当k=±
23时等号成立,
所以|S1-S2|的最大值为 3.
总结:
圆锥曲线最值问题的求解方法 圆锥曲线中的最值问题类型较多,解法灵活多变,但总体上主要有两种方法:一是几何 法,即通过利用曲线的定义、几何性质以及平面几何中的定理、性质等进行求解;二是 代数法,即把要求最值的几何量或代数表达式表示为某个(些)参数的函数(解析式),然后 利用函数方法、不等式方法等进行求解.
【解】 (1)由题意,c=1,b2ቤተ መጻሕፍቲ ባይዱ3,所以 a2=4, 所以椭圆 M 的方程为x42+y32=1, 易求直线方程为 y=x+1,联立方程,得x42+y32=1,
y=x+1,
消去 y,得 7x2+8x-8=0,Δ=288>0,
设 C(x1,y1),D(x2,y2),x1+x2=-87,x1x2=-87, 所以|CD|= 2|x1-x2|= 2 (x1+x2)2-4x1x2=274.
圆锥曲线综合应用
已知椭圆 M:xa22+y32=1(a>0)的一个焦点为 F(-1,0),左、右顶点分别为 A,B.经 过点 F 的直线 l 与椭圆 M 交于 C,D 两点. (1)当直线 l 的倾斜角为 45°时,求线段 CD 的长; (2)记△ABD 与△ABC 的面积分别为 S1 和 S2,求|S1-S2|的最大值.
(2)当直线 l 的斜率不存在时,直线方程为 x=-1,
此时△ABD 与△ABC 面积相等,|S1-S2|=0; 当直线 l 的斜率存在时,设直线方程为 y=k(x+1)(k≠0), 联立方程,得x42+y32=1,
y=k(x+1), 消去 y,得(3+4k2)x2+8k2x+4k2-12=0,
Δ>0,且 x1+x2=-3+8k42k2,x1x2=43k+2-4k122,
相关文档
最新文档