中考数学一轮复习学案第23讲-视图与投影

合集下载

最新备考中考数学一轮专题复习学案23 视图和投影

最新备考中考数学一轮专题复习学案23 视图和投影

备考中考数学一轮专题复习学案23投影与视图这种关系在现实生活中的应用个小正方体;(3)几何体的展开图1.投影的定义:用光线照射物体,在地面上或墙壁上得到的影子,叫做物体的投影.2.平行投影:由平行光线(如太阳光线)形成的投影称为平行投影.3.中心投影:由同一点发出的光线所形成的投影称为中心投影.4.正投影:投影线垂直于投影面的投影叫做正投影.5.视点、视线、盲区:人朝着某个方向看时,眼睛的位置称为视点,由视点发出的线称为视线,视线之外看不到的地方称为盲区.【例1】(2019·通辽20/26)两栋居民楼之间的距离CD=30m,楼AC和BD均为10层,每层楼高为3m.上午某时刻,太阳光线GB与水平面的夹角为30°,此刻楼BD的影子会遮挡到楼AC 的第几层?(参考数据:3≈1.7,2≈1.4)典型例题知识点梳理知识点1:投影【解答】解:设太阳光线GB 交AC 于点F ,过F 作FH ⊥BD 于H ,由题意知,AC =BD =3×10=30m ,FH =CD =30m ,∠BFH =∠α=30°,在Rt △BFH 中,tan ∠BFH =BH FH =30BH 3,∴BH =303=310×1.7=17,∴FC =HD =BD ﹣BH ≈30﹣17=13, ∵133≈4.3,所以在四层的上面,即第五层, 答:此刻楼BD 的影子会遮挡到楼AC 的第5层. 1.视图:当我们从某一角度观察一个实物时,所看到的图像叫做物体的一个视图.2.物体的三视图特指主视图、俯视图、左视图.(1)主视图:在正面内得到的由前向后观察物体的视图,叫做主视图.(2)俯视图:在水平面内得到的由上向下观察物体的视图,叫做俯视图.知识点梳理 知识点2: 视图(3)左视图:在侧面内得到的由左向右观察物体的视图,叫做左视图,有时也叫做侧视图.3.画三视图的要素:画三视图时,三个视图要放在正确的位置,并且使主视图与俯视图的长对正,主视图与左视图的高平齐,左视图与俯视图的宽相等.【例2】(2019•包头4/26)一个圆柱的三视图如图所示,若其俯视图为圆,则这个圆柱的体积为()A.24 B.24πC.96 D.96π【答案】B.【解答】解:由三视图可知圆柱的底面直径为4,高为6,∴底面半径为2,∴V=πr2h=22×6•π=24π,故选:B.1.(2016•北京14/29)如图,小军、小珠之间的距离为2.7 m,他们在同一盏路灯下的影长分别为1.8 m,1.5 m,已知小军、小珠巩固训练典型例题的身高分别为1.8 m,1.5 m,则路灯的高为m.2.(2019•赤峰5/26)如图是一个几何体的三视图,则这个几何体是()A.三棱锥B.圆锥C.三棱柱D.圆柱3.(2019·通辽4/26)下列几何体是由4个相同的小正方体搭成的,其中左视图和俯视图相同的是()A.B.C.D.4.(2019·天津市5/25)如图是一个由6个相同的正方体组成的立体图形,它的主视图是()A.B.C.D.5.(2019·重庆市2/26)如图是由4个相同的小正方体组成的一个立体图形,其主视图是()A.B.C.D.6.(2019·河南省5/23)如图①是由大小相同的小正方体搭成的几何体,将上层的小正方体平移后得到图②.关于平移前后几何体的三视图,下列说法正确的是()A.主视图相同B.左视图相同C.俯视图相同D.三种视图都不相同7.(2019·河北省14/26)图2是图1中长方体的三视图,若用S表示面积,S主=x2+2x,S左=x2+x,则S俯=()A.x2+3x+2 B.x2+2 C.x2+2x+1 D.2x2+3x 8.(2019·北京市11/28)在如图所示的几何体中,其三视图中有矩形的是.(写出所有正确答案的序号)9.(2019·安徽省3/23)一个由圆柱和长方体组成的几何体如图水平放置,它的俯视图是()A.B.C.D.10.(2019•呼和浩特7/25)如图是一个几何体的三视图,其中主视图与左视图完全一样,则这个几何体的表面积是()A.80﹣2πB.80+4πC.80 D.80+6π11.(2018·通辽5/26)如图,一个几何体的主视图和左视图都是边长为6的等边三角形,俯视图是直径为6的圆,则此几何体的全面积是()A.18πB.24πC.27πD.42π12.(2018·兴安盟呼伦贝尔3/26)如图,是一个长方体的主视图与左视图,由图示数据(单位:)cm可得出该长方体的体积是()A.38cm C.6 3cm D.18 3cm 9cm B.313.(2018·呼和浩特4/25)下面是几个一样的小正方体摆出的立体图形的三视图,由三视图可知小正方体的个数为()A.6个B.5个C.4个D.3个14.(2018·赤峰5/26)如图是一个空心圆柱体,其俯视图是()A.B.C.D.15.(2018·包头2/26)如图,是由几个大小相同的小立方块所搭几何体的俯视图,其中小正方形中的数字表示在该位置的小立方块的个数,则这个几何体的主视图是()A.B.C.D.16.(2018·巴彦淖尔5/24)如图是一个几何体的三视图,则这个几何体的表面积是()A.60π+48 B.68π+48 C.48π+48 D.36π+48 17.(2015•兰州24/28)如图,在一面与地面垂直的围墙的同一侧有一根高10米的旗杆AB和一个高度未知的电线杆CD,它们都与地面垂直.为了测得电线杆的高度,一个小组的同学进行了如下测量:某一时刻,在太阳光的照射下,旗杆落在围墙上的影子EF的长度为2米,落在地面上的影子BF的长为10米;而电线杆落在围墙上的影子GH的长度为3米,落在地面上的影子DH的长为5米.依据这些数据,该小组的同学计算出了电线杆的高度.(1)该小组的同学在这里利用的是____________投影的有关知识进行计算的;(2)试计算出电线杆的高度,并写出计算的过程.1.【答案】3.【解答】解:方法一:如下图,因为小军、小珠都身高与影长相等,所以,∠E=∠F=45°,所以,AB=BE=BF,设路灯的高AB为x m,则BD=x-1.5,BC=x-1.8,又CD=2.7,所以,x-1.5+x-1.8=2.7,解得:x=3(m).巩固训练参考答案方法二:如图:∵CD ∥AB ∥MN ,∴△ABE ∽△CDE ,△ABF ∽△MNF , ∴CD DE AB BE =,FN MN FB AB=, 即:1.8 1.81.8AB BD =+,1.5 1.51.5 2.7AB BD =+-, 解得:AB =3 m ,答:路灯的高为3 m.2.【答案】B .【解答】解:由于主视图和左视图为三角形可得此几何体为锥体,由俯视图为圆形可得为圆锥.故选:B .3.【答案】B .【解答】解:A 、左视图第一层两个小正方形,俯视图第一层一个小正方形,故A 不符合题意;B 、左视图和俯视图相同,故B 符合题意;C 、左视图第一层两个小正方形,俯视图第一层一个小正方形,故C 不符合题意;D 、左视图是一列两个小正方形,俯视图一层三个小正方形,故D不符合题意;故选:B.4.【答案】B.【解答】解:从正面看,共有3列,每列的小正方形的个数从左到右依次为1、1、2.故选:B.5.【答案】A.【解答】解:从正面看易得第一层有2个正方形,第二层左边有一个正方形,如图所示:.故选:A.6.【答案】C.【解答】解:图①的三视图为:图②的三视图为:故选:C.7.【答案】A.【解答】解:∵S主=x2+2x=x(x+2),S左=x2+x=x(x+1),∴俯视图的长为x+2,宽为x+1,则俯视图的面积S俯=(x+2)(x+1)=x2+3x+2,故选:A.8.【答案】①②.【解答】解:长方体主视图,左视图,俯视图都是矩形,圆柱体的主视图是矩形,左视图是矩形,俯视图是圆,圆锥的主视图、左视图是等腰三角形,俯视图是带有圆心的圆,故答案为:①②.9.【答案】C.【解答】解:几何体的俯视图是:故选:C.10.【答案】B.【解答】解:由三视图可知,该几何体是长方体,中间是空心圆柱体,正方体的长宽高分别为4,4,3,圆柱体直径为2,高为3,正方体表面积:4×4×2+4×3×4=80,圆柱体表面积2×3=6π,上下表面空心圆面积:2π,∴这个几何体的表面积是:80+6π﹣2π=80+4π,故选:B.11.【答案】C.【解答】解:圆锥的全面积=π×32+π×3×6=27π.故选:C.12.【答案】D.【解答】解:观察其视图知:该几何体为立方体,且立方体的长为3cm,宽为2cm,高为3cm,故其体积为:3⨯⨯=,33218cm故选:D.13.【答案】C.【解答】解:综合三视图,这个立体图形的底层应该有3个,第二层应该有1个小正方体,因此构成这个立体图形的小正方体的个数是3+1=4个.故选:C.14.【答案】D.【解答】解:该空心圆柱体的俯视图是故选:D.15.【答案】C.【解答】解:由俯视图知该几何体共2列,其中第1列前一排1个正方形、后1排2个正方形,第2列只有前排2个正方形,所以其主视图为:故选:C .16.【答案】A .【解答】解:此几何体的表面积为π•42××2+•2π•4×6+(4+4)×6=60π+48,故选:A .17.【答案】(1)平行;(2)7 m.【解答】解:(1)平行;(2)连接AM 、CG ,过点E 作EN ⊥AB 于点N ,过点G 作GM ⊥CD 于点M ,则BN =EF=2,GH =MD =3,EN=BF =10,DH =MG =5所以AN =10-2=8, 有平行投影可知:MG CM NE AN =即53108-=CD . 解得CD =7.所以电线杆的高度为7 m. MN。

备战中考数学分点透练真题视图与投影(解析版)

备战中考数学分点透练真题视图与投影(解析版)

第二十四讲视图与投影命题点1 三视图的判断类型一常见几何体视图的判断1.(2021•苏州)如图,圆锥的主视图是()A.B.C.D.【答案】A【解答】解:圆锥的主视图是一个等腰三角形,故选:A.2.(2021•温州)直六棱柱如图所示,它的俯视图是()A.B.C.D.【答案】C【解答】解:从上面看这个几何体,看到的图形是一个正六边形,因此选项C中的图形符合题意,故选:C.3.(2021•湘潭)下列几何体中,三视图不含圆的是()A.B.C.D.【答案】C【解答】解:A、圆柱的俯视图是圆,故不符合题意;B、球的三视图都是圆,故不符合题意;C、正方体的三视图都是正方形,故符合题意;D、圆锥的俯视图是圆,故不符合答题,故选:C.类型二组合体不规则几何体视图的判断4.(2021•江西)如图,几何体的主视图是()A.B.C.D.【答案】C【解答】解:从正面看该组合体,长方体的主视图为长方形,圆柱体的主视图是长方形,因此选项C中的图形符合题意,故选:C.5.(2021•泰州)如图所示几何体的左视图是()A.B.C.D.【答案】C【解答】解:从左边看,是一列两个矩形.故选:C.6.(2021•聊城)如图所示的几何体,其上半部有一个圆孔,则该几何体的俯视图是()A.B.C.D.【答案】A【解答】解:从上面看该几何体,能看见的轮廓线用实线表示,看不见的轮廓线用虚线表示,因此所看到的图形与选项A中的图形相同,故选:A.7.(2021•本溪)如图,该几何体的左视图是()A.B.C.D.【答案】D【解答】解:从左面看该几何体所得到的图形是一个长方形,被挡住的棱用虚线表示,图形如下:故选:D.8.(2021•福建)如图所示的六角螺栓,其俯视图是()A.B.C.D.【答案】A【解答】解:从上边看,是一个正六边形,六边形内部是一个圆,故选:A.9.(2021•吉林)如图,粮仓可以近似地看作由圆锥和圆柱组成,其主视图是()A.B.C.D.【答案】A【解答】解:粮仓主视图上部视图为等腰三角形,下部视图为矩形.故选:A.类型四小正方体组合体视图的判断10.(2020•北碚区自主招生)如图是由4个相同的小正方体组成的一个立体图形,其主视图是()A.B.C.D.【答案】A【解答】解:从正面看有两层,底层两个正方形,上层左边一个正方形,左齐.故选:A.11.(2021•河南)如图是由8个相同的小正方体组成的几何体,其主视图是()A.B.C.D.【答案】A【解答】解:该几何体的主视图有三层,从上而下第一层主视图为一个正方形,第二层主视图为两个正方形,第三层主视图为三个正方形,且左边是对齐的.故选:A.12.(2021•随州)如图是由4个相同的小正方体构成的一个组合体,该组合体的三视图中完全相同的是()A.主视图和左视图B.主视图和俯视图C.左视图和俯视图D.三个视图均相同【答案】A【解答】解:如图所示:故该组合体的三视图中完全相同的是主视图和左视图,故选:A.13.(2021•泰安)如图是由若干个同样大小的小正方体所搭几何体的俯视图,小正方形中的数字表示在该位置小正方体的个数,则这个几何体的左视图是()A.B.C.D.【答案】B【解答】解:从左边看从左到右第一列是两个小正方形,第二列有4个小正方形,第三列有3个小正方形,故选:B.14.(2021•齐齐哈尔)由一些大小相同的小正方体搭成的几何体的主视图和俯视图如图所示,则搭成该几何体的小正方体的个数最多为()A.7个B.8个C.9个D.10个【答案】A【解答】解:根据题意得:,则搭成该几何体的小正方体最多是1+1+1+2+2=7(个).故选:A.命题点2 三视图还原几何体及其相关计算15.(2021•安徽)几何体的三视图如图所示,这个几何体是()A.B.C.D.【答案】C【解答】解:根据该组合体的三视图发现该几何体为.故选:C.16.(2021•东营)已知某几何体的三视图如图所示,则该几何体的侧面展开图圆心角的度数为()A.214°B.215°C.216°D.217°【答案】C【解答】解:由三视图可知,该几何体为圆锥;由三视图数据知圆锥的底面圆的直径为6、半径为3,高为4,则母线长为=5,所以则该几何体的侧面展开图圆心角的度数为π×6÷(π×5)×180°=216°.故选:C.17.(2021•眉山)我国某型号运载火箭的整流罩的三视图如图所示,根据图中数据(单位:米)计算该整流罩的侧面积(单位:平方米)是()A.7.2πB.11.52πC.12πD.13.44π【答案】C【解答】解:观察图形可知:圆锥母线长为:=2(米),所以该整流罩的侧面积为:π×2.4×4+π×(2.4÷2)×2=12π(平方米).答:该整流罩的侧面积是12π平方米.故选:C.18.(2021•云南)如图图形是某几何体的三视图(其中主视图也称正视图,左视图也称侧视图).已知主视图和左视图是两个全等的矩形.若主视图的相邻两边长分别为2和3,俯视图是直径等于2的圆,则这个几何体的体积为.【答案】3π【解答】解:由三视图知几何体为圆柱,且底面圆的半径是1,高是3,∴这个几何体的体积为:π×12×3=3π.故答案为:3π.命题点3 立体图形的展开与折叠类型一常见几何体的展开图19.(2021•扬州)把如图中的纸片沿虚线折叠,可以围成一个几何体,这个几何体的名称是()A.五棱锥B.五棱柱C.六棱锥D.六棱柱【答案】A【解答】解:由图可知:折叠后,该几何体的底面是五边形,则该几何体为五棱锥,故选:A.20.(2021•金华)将如图所示的直棱柱展开,下列各示意图中不可能是它的表面展开图的是()A.B.C.D.【答案】D【解答】解:选项A、B、C均可能是该直棱柱展开图,不符合题意,而选项D中的两个底面会重叠,不可能是它的表面展开图,符合题意,故选:D.类型二正方体的展开图21.(2021•自贡)如图是一个小正方体的展开图,把展开图折叠成小正方体后,有“迎”字一面的相对面上的字是()A.百B.党C.年D.喜【答案】B【解答】解:这是一个正方体的平面展开图,共有六个面,其中面“迎”与“党”相对,面“建”与面“百”相对,“喜”与面“年”相对.故选:B.22.(2021•河北)一个骰子相对两面的点数之和为7,它的展开图如图,下列判断正确的是()A.A代表B.B代表C.C代表D.B代表【答案】A【解答】解:根据正方体的表面展开图,相对的面之间一定相隔一个正方形,A与点数是1的对面,B与点数是2的对面,C与点数是4的对面,∵骰子相对两面的点数之和为7,∴A代表的点数是6,B代表的点数是5,C代表的点数是3.故选:A.11。

专题训练20:视图与投影-2021年中考数学一轮复习知识点课标要求

专题训练20:视图与投影-2021年中考数学一轮复习知识点课标要求

2021年中考数学一轮复习知识点课标要求专题训练20:视图与投影(含答案)一、知识要点:1、投影(1)投影:用光线照射物体,在某个平面上得到的影子叫做物体的投影。

(2)平行投影:由平行光线形成的投影是平行投影。

(3)中心投影:由同一点发出的光线形成的投影叫做中心投影。

(4)正投影:投影线垂直于投影面产生的投影叫做正投影。

2、视图(1)视图:从某一方向观察一个物体时,所看到的平面图形叫做物体的一个视图。

视图可以看作物体在某一方向光线下的正投影。

(2)主视图、俯视图、左视图对一个物体在三个投影面内同时进行正投影,在正面内得到的由前向后观察物体的视图,叫做主视图;在水平面内得到的由上向下观察物体的视图,叫做俯视图;在侧面内得到的由左向右观察物体的视图,叫做左视图。

主视图与俯视图的长对正;主视图与左视图的高平齐;左视图与俯视图的宽相等。

二、课标要求:1、通过丰富的实例,了解中心投影和平行投影的概念。

2、会画直棱柱、圆柱、圆锥、球的主视图、左视图、俯视图,能判断简单物体的视图,并会根据视图描述简单的几何体。

3、了解直棱柱、圆锥的侧面展开图,能根据展开图想象和制作实物模型。

4、通过实例,了解上述视图与展开图在现实生活中的应用。

三、常见考点:1、中心投影和平行投影。

2、常见几何体的三视图。

3、常见几何体的折叠与展开。

四、专题训练:1.如图,在下面四种用相同的正方体储物箱堆放在一起的形态中,从正面看到的和从左面看到的图形不相同的是()A.B.C.D.2.如图所示的几何体的左视图是()A.B.C. D.3.用棱长为1的小立方体摆成如图所示的几何体,从左面看这个几何体得到的平面图形的面积是()A.3 B.4 C.5 D.64.如图,晚上小明在路灯下沿路从A处径直走到B处,这一过程中他在地上的影子()A.一直都在变短B.先变短后变长C.一直都在变长D.先变长后变短5.如图是由一些相同的小正方体搭成的几何体从正面、左面、上面看到的形状图,则搭成这个几何体的小正方体的个数是()A.4 B.5 C.6 D.76.如图是一个空心圆柱体,其主视图是()A.B.C.D.7.同一时刻,小明在阳光下的影长为2米,与他邻近的旗杆的影长为6米,小明的身高为1.6米,则旗杆的高为()A.3.2米B.4.8米C.5.2米D.5.6米8.一个几何体由大小相同的小立方块搭成,从上面看到的几何体的形状如图所示,其中小正方形中的数字表示在该位置的小立方块的个数,则从正面看到的这个几何体的形状图是()A.B.C.D.9.由若干个相同的小立方体搭成的一个几何体的主视图和俯视图如图所示,俯视图的方格中的字母和数字表示该位置上小立方体的个数,则以下说法正确的是()A.x=1或2,y=3 B.x=1或2,y=1或3C.x=1,y=1或3 D.x=2,y=1或310.由一些大小相同的小正方体搭成的几何体的左视图和俯视图,如图所示,则搭成该几何体的小正方体的个数最多是()A.7 B.8 C.9 D.1011.如图是某几何体从不同方向看到的图形.若从正面看的高为10cm,从上面看的圆的直径为4cm,求这个几何体的侧面积(结果保留π)为.12.长方体从正面看和从上面看所得到的图形如图所示,则这个长方体的体积是.13.如图所示的是三个直立在地面上的艺术字母的投影(阴影部分)效果,在艺术字母“L,K,C”的投影中,属于同一种投影是.14.由一些大小相同的小正方体搭成的几何体的主视图和左视图如图所示,则搭成该几何体的小正方体的个数最少是.15.如图,是由几个边长为1的小立方体所组成的几何体的俯视图,小正方形中的数字表示在该位置的小正方体的个数,则这个几何体的表面积为.16.由若干个相同的小正方体搭成的几何体的三视图相同,如图所示.至少再加个小正方体,该几何体可成为一个正方体.17.如图,小树AB在路灯O的照射下形成投影BC.若树高AB=2m,树影BC=3m,树与路灯的水平距离BP=4m.则路灯的高度OP为m.18.如图是由一些相同的小正方体构成的立体图形的三种视图,则构成这个立体图形的小正方体的个数是个.19.小华家客厅有一张直径为1.2m,高为0.8m的圆桌AB,有一盏灯E到地面垂直距离EF 为2m,圆桌的影子为CD,FC=2,则点D到点F的距离为m.20.用小立方块搭一几何体,它的主视图和俯视图如图所示,这个几何体最少要个立方块,最多要个立方块.21.如图所示的几何体是由七个相形状同的正方体搭成的,请画出这个几何体的从正面、从左面、从上面看到的形状图.22.一个几何体由几个大小相同的小立方块搭成,从上面观察这个几何体,看到的形状如图所示,其中小正方形中的数字表示在该位置的小立方块的个数.请画出从正面、左面看到的这个几何体的形状图.23.一个几何体的三视图如图所示.说出这个几何体的形状,并求出它的表面积.24.把边长为1厘米的6个相同正方体摆成如图的形式.(1)画出该几何体的主视图、左视图、俯视图;(2)直接写出该几何体的表面积为cm2;(3)如果在这个几何体上再添加一些相同的小正方体,并保持这个几何体的左视图和俯视图不变,那么最多可以再添加小正方体.参考答案1.解:A、从正面看到的和从左面看到的图形相同,底层是三个小正方形,中层和上层的左边分别是一个小正方形,故本选项不合题意;B、从正面看到的和从左面看到的图形相同,底层是两个小正方形,上层的左边是一个小正方形,故本选项不合题意;C、从正面看到的和从左面看到的图形相同,底层是三个小正方形,上层的左边是一个小正方形,故本选项不合题意;D、从正面看,底层是三个小正方形,上层是两个小正方形;从左面看,底层是三个小正方形,上层的左边是一个小正方形,故本选项符合题意.故选:D.2.解:从左边看,是一列2个矩形.故选:C.3.解:从左面看这个几何体得到图形是,此平面图形的面积是4,故选:B.4.解:在小明由A处径直走到路灯下时,他在地上的影子逐渐变短,当他从路灯下走到B 处时,他在地上的影子逐渐变长.故选:B.5.解:从主视图和俯视图可知,几何体的底层有3个正方体,从主视图和左视图可知,几何体的第二层有2个正方体,则搭成这个几何体的小正方体的个数为:3+2=5,故选:B.6.解:从前面观察物体可以发现:它的主视图应为矩形,又因为该几何体为空心圆柱体,故中间的两条棱在主视图中应为虚线,故选:D.7.解:设旗杆的高为x,有,可得x=4.8米.故选:B.8.解:根据所给出的图形和数字可得:主视图有4列,每列小正方形数目分别为1,2,3,2,则符合题意的是故选:C.9.解:由俯视图可知,该组合体有两行两列,左边一列前一行有两个正方体,结合主视图可知左边一列叠有2个正方体,故x=1或2;由主视图右边一列可知,右边一列最高可以叠3个正方体,故y=3,故选:A.10.解:由俯视图易得最底层有6个小正方体,第二层最多有3个小正方体,那么搭成这个几何体的小正方体最多为3+6=9个.故选:C.11.解:观察三视图可得这个几何体是圆柱;∵从正面看的高为10cm,从上面看的圆的直径为4cm,∴该圆柱的底面直径为4cm,高为10cm,∴该几何体的侧面积为2πrh=2π×2×10=40π(cm2).故这个几何体的侧面积(结果保留π)为40πcm2.故答案为:40πcm2.12.解:由主视图和俯视图知,该长方体的长为4、宽为3、高为3,则这个长方体的体积为4×3×3=36.故答案为:36.13.解:根据题意,字母L、K的投影为中心投影,字母C的投影为平行投影.故答案为L、K.14.解:仔细观察物体的主视图和左视图可知:该几何体的下面最少要有2个小正方体,上面最少要有1个小正方体,故该几何体最少有3个小正方体组成.故答案为:3.15.解:这个几何体的主视图有三列,从左到右分别是3,4,1,左视图有三列,从左到右分别是3,4,2,表面积为:(8+9+6)×2=46,故答案为:46.16.解:易得第一层有3个正方体,第二层有1个正方体,共有4个小正方体,8﹣4=4(个).故至少再加4个小正方体,该几何体可成为一个正方体.故答案为:4.17.解:∵AB∥OP,∴△ABC∽△OPC,∴=,即=,∴OP=(m).故答案为.18.解:由俯视图易得最底层有6个正方体,第二层有2个正方体,则构成这个立体图形的小正方体的个数是6+2=8个.故答案为:8.19.解:如图,由题意得,AB=1.2,GF=0.8,EF=2,FC=2,∵AB∥CD,∴△EAB∽△ECD,∴=,即=,解得,CD=2,∴DF=CD+FC=2+2=4,故答案为:4.20.解:由主视图可得,这个几何体(第2列,第3列组合不唯一)最少要1+3+4=8个立方块;由主视图可得,这个几何体最多要1+4+6=11个立方块;故答案为:8,11.21.解:如图所示:22.解:如图所示:23.解:由题意推知几何体是长方体,长、宽、高分别220mm、100mm、60mm,(220×100+220×60+100×60)×2=(22000+13200+6000)×2=41200×2=82400(mm2).故它的表面积是82400mm2.24.解:(1)如图所示:(2)几何体表面积:2×(5+4+3)+2=26(cm2),故答案为:26;(3)最多可以再添加2个小正方体.故答案为:2。

【知识学习】中考数学视图与投影复习教案

【知识学习】中考数学视图与投影复习教案

中考数学视图与投影复习教案本资料为woRD文档,请点击下载地址下载全文下载地址章节第九章课题课型复习课教法讲练结合教学目标(知识、能力、教育).通过实例能够判断简单物体的三视图,能根据三种视图描述基本几何或实物原型,实现简单物体与其三种视图之间的相互转化.2.通过实例了解中心投影和平行投影的含义及其简单应用,初步进行物体及其投影之间的相互转化.3.通过实例了解视点、视线、盲区的含义及其在生话中的应用教学重点实现简单物体与其三种视图之间的相互转化.了解中心投影和平行投影的含义及其简单应用.教学难点根据三种视图描述基本几何或实物原型以及投影生话中简单应用.教学媒体学案教学过程一:【课前预习】(一):【知识梳理】.三视图(1)主视图:从看到的图;(2)左视图:从看到的图;(3)俯视图:从看到的图;2.画三视图的原则(如图)长对正,高平齐,宽相等;在画图时,看得见部分的轮廓线通常画成实线,看不见的轮廓线通常画成虚线。

3.投影物体在光线的照射下,会在地面或墙壁上留下它的影子,这就是;投影分投影和投影。

(1)平行投影:太阳光线可以看成光线,像这样的光线所形成的投影称为投影;物体的三视图实际上就是该物体在垂直于投影面的平行光线下的平行投影。

(2)中心投影:手电筒、路灯和台灯的光线可以看成是由一点出发的光线,像这样的光线所形成的投影称为投影。

(3)像眼睛的位置称为,由视点出发的线称为,两条视线的夹角称为,看不到的地方称为。

(二):【课前练习】.小明从正面观察图(1)所示的两个物体,看到的是图(2)中的()(图1)(图2)2.在同一时刻的阳光下,小明的影子比小强的影子长,那么在同一路灯下()A.小明的影子比小强的影子长;B.小明的影子比小强的影子短c.小明的影子和小强的影子一样长;D.无法判断谁的影子长3.你在路灯下漫步时,越接近路灯,其影子成长度将()A.不变B.变短c.变长D.无法确定4.一个矩形窗框被太阳光照射后,留在地面上的影子是________5.将如图1-4-22所示放置的一个直角三角形ABc,绕斜边AB旋转一周所得到的几何体的主视图是图1-4-23四个图形中的_________(只填序号).二:【经典考题剖析】.某物体的三视图是如图所示的3个图形,那么该物体的形状是()A.长方体B.圆锥体c.立方体D.圆柱体2.在同一时刻,身高1.6m的小强的影长是1.2m,旗杆的影长是15m,则旗杆高为()A.16mB.18mc.20mD.22m3.一天上午小红先参加了校运动会女子100m比赛,过一段时间又参加了女子400m比赛,如图是摄影师在同一位置拍摄的两张照片,那么下列说法正确的是()A.乙照片是参加100m的;B.甲照片是参加400m的c.乙照片是参加400m的;D.无法判断甲、乙两张照片4.已知:如图,AB和DE是直立在地面上的两根立柱.AB=5m,某一时刻AB在阳光下的投影Bc=3m.(1)请你在图中画出此时DE在阳光下的投影;(2)在测量AB的投影时,同时测量出DE在阳光下的投影长为6m,请你计算DE的长.5.某居民小区有一朝向为正南方向的居民楼(如图),该居民楼的一楼是高6米的小区超市,超市以上是居民住房.在该楼的前面15米处要盖一栋高20米的新楼,当冬季正午的阳光与水平线的夹角为32°时.(1)问超市以上的居民住房采光是否有影响,为什么?(2)若要使超市采光不受影响,两楼应相距多少米?(结果保留整数,参考数据:)三:【课后训练】.如果用□表示1个立方体,用表示两个立方体叠加,用■表示三个立方体叠加,那么下面右图由7个立方体叠成的几何体,从正前方观察,可画出的平面图形是()2.夜晚在亮有路灯的路上,若想没有影子,你应该站的位置是()。

第23讲 尺规作图 视图与投影.doc

第23讲 尺规作图 视图与投影.doc

ቤተ መጻሕፍቲ ባይዱ 数学
1.(2015乌鲁木齐)在下列的四个几何体中,其主视图与俯视图相同的是 (D )
解析:A,圆柱主视图是矩形,俯视图是圆; B,圆锥主视图是三角形,俯视图是带圆心的圆; C,正三棱柱的主视图是矩形,俯视图是正三角形; D,球的主视图与俯视图都是圆; 故选D.
数学 2.(2015沈阳)如图是由6个相同的小立方块搭成的几何体,这个几何体的左 视图是( A )
数学
6.(2015武威)如图,已知在△ABC中,∠A=90°, (1)请用圆规和直尺作出☉P,使圆心P在AC边上,且与AB,BC两边都相切(保 留作图痕迹,不写作法和证明). (2)若∠B=60°,AB=3,求☉P的面积. 解:(1)作∠ABC的平分线交AC于P,再以P为圆心PA 为半径作出☉P,如图所示,则☉P为所求作的圆. (2)∵∠ABC=60°,BP 平分∠ABC, ∴∠ABP=30°,
解析:∵AB∥CD, ∴△PAB∽△PCD, 假设 CD 到 AB 距离为 x, 则 AB = 2.7 x ,
CD 2.7 1.5 = 2.7 x ,x=1.8, 4.5 2.7 ∴AB 与 CD 间的距离是 1.8 m.
数学
尺规作图的应用 【例3】 (6分)(2014白银)如图,△ABC中,∠C=90°,∠A=30°. (1)用尺规作图作AB边上的中垂线DE,交AC于点D,交AB于点E.(保留作图痕迹, 不要求写作法和证明);
数学
尺规作图的关键: (1)掌握5种基本作图的步骤; (2)读懂题意,判断题目要求,综合运用基本作图解决问题.
数学
考向训练3:如图,两条公路OA和OB相交于O点,在∠AOB的内部有工厂C和D,现 要修建一个货站P,使货站P到两条公路OA,OB的距离相等,且到两工厂C,D的距 离相等,用尺规作出货站P的位置.(要求:不写作法,保留作图痕迹,写出结论) 解:如图所示,P1,P2 即为所求的点.

中学中考数学第一轮复习导学案-视图与投影

中学中考数学第一轮复习导学案-视图与投影

中学中考数学第一轮复习导学案-视图与投影以下是为大家整理的中学中考数学第一轮复习导学案-视图与投影的相关范文,本文关键词为中学,中考,数学,第一轮,复习,导学案,视图,投影,视图,投,您可以从右上方搜索框检索更多相关文章,如果您觉得有用,请继续关注我们并推荐给您的好友,您可以在中考初中中查看更多范文。

视图与投影◆课前热身1.如图,箭头表示投影的方向,则图中圆柱体的投影是()A.圆b.矩形c.梯形D.圆柱2.小华拿着一块正方形木板在阳光下做投影实验,这块正方形木板在地面上形成的投影不可能是()3.如图所示几何体的主(正)视图是()A.b.c.D.4.一个几何体的三视图如图所示,这个几何体是()A.圆柱【参考答案】1.b2.A3.b4.A◆考点聚焦b.球c.圆锥D.正方体主(正)视图左视图俯视图知识点几何体的三视图侧面展开图投影大纲要求1.能画出基本几何体的三视图,根据三视图描述基本几何体.2.能画直棱柱、圆锥、圆柱的侧面展开图.3.根据展开图判断和制作相应的立体模型.4.准确地进行平面图形与空间几何体的相互转换,?并能熟练地进行立体图形表达上路径最短问题的计算.5.掌握中心投影与平行投影的区别与联系.-1-考查重点和常考题型1.主要考查几何体的三视图,主要以选择题出现2.主要考查根据光线的方向辨认实物的阴影。

主要以选择题或者填空题出现◆备考兵法1.正确区分常见几何体的三视图.2.综合运用勾股定理,?解直角三角形的有关知识解决几何体的展开图的计算问题.3.学习立体图形展开与将展开图折叠成立体图形的问题.?通过实际动手操作,加深理解和掌握.培养自己的空间想象能力.◆考点链接1.从观察物体时,看到的图叫做主视图;从观察物体时,看到的图叫做左视图;从观察物体时,看到的图叫做俯视图.2.主视图与俯视图的一致;主视图与左视图的一致;俯视图与左视图的一致.3.叫盲区.4.投影可分为平行投影与中心投影.其中所形成的投影叫平行投影;所形成的投影叫中心投影.5.利用光线是否平行或是否交于一点来判断是投影或投影,以及光源的位置和物体阴影的位置.◆典例精析例1(河南)一个几何体由一些大小相同的小正方体组成,如图是它的主视图和俯视图,那么组成该几何体所需小正方体的个数最少为()A.3b.4c.5D.6【解析】本题主要考查三视图的相关知识:主视图主要确定物体的长和高,左视图确定物体的宽和高,俯视图确定物体的长和宽。

2024年中考数学一轮复习考点精讲课件—投影与视图

2024年中考数学一轮复习考点精讲课件—投影与视图
然后综合起来考虑整体形状.
2)由物体的三视图想象几何体的形状是有一定难度的,可以从以下途径进行分析:
① 根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状,以及几何体的长、宽、高;
② 从实线和虚线想象几何体看得见部分和看不见部分的轮廓线;
③ 熟记一些简单的几何体的三视图对复杂几何体的想象会有帮助.
考点一 图形的投影
3)立体图形的正投影
物体的正投影的形状、大小与物体相对于投影面的位置有关,立体图形的正投影与平行于投影面且过立体图形的最
大截面全等.
投影的判断方法:
1)判断投影是否为平行投影的方法是看光线是否是平行的,如果光线是平行的,那么所得到的投影就是平行投影.
2)判断投影是否为中心投影的方法是看光线是否相交于一点,如果光线是相交于一点的,那么所得到的投影就是中
【例2】(2021·安徽淮南·校联考模拟预测)下列现象中,属于中心投影的是(
A.白天旗杆的影子
B.阳光下广告牌的影子
C.灯光下演员的影子
D.中午小明跑步的影子

考点一 图形的投影
题型03 正投影
【例3】(2022·浙江温州·温州绣山中学校联考二模)由四个相同小立方体拼成的几何体如图所示,当光线由上向
1 ) 等 高 的 物 体 垂 直 地 面 放 置 时 ( 图 1 ) , 在 太 阳 光 下 , 它 们 的 影 子 一 样 长 .
2)等长的物体平行于地面放置时(图2),它们在太阳光下的影子一样长,且影长等于物体本身的长度.
图1
图2
【小技巧】
1)图1中,两个物体及它们各自的影子及光线构成的两个直角三角形相似,相似三角形对应边成比例.
【变式8-1】(2021·宁夏吴忠·统考模拟预测)一个几何体的三视图如图所示,则该几何体的表面积为 3π+4 .

冀教版九年级数学下册第三十二章《投影与视图》导学案

冀教版九年级数学下册第三十二章《投影与视图》导学案

冀教版九年级数学下册第三十二章《投影与视图》导学案一、学习目的1、阅历实际探求,了解投影、投影面、平行投影和中心投影的概念;2、了解平行投影和中心投影的区别。

3、学会关注生活中有关投影的数学效果,提高数学的应意图识。

【学习重点】了解平行投影和中心投影的特征【学习难点】在投影面上画出平面图形的平行投影或中心投影【导学进程】预习案细心阅读课本P90—P100,完成下面的效果。

1、普通地,用光线照射物体,在某个平面〔空中、墙壁等〕上失掉的影子叫做物体的________,照射光线叫做________,投影所在的平面叫做___________。

2、有光阴线是一组相互平行的射线,例如太阳光或探照灯光的一束光中的光线。

由平行光线构成的投影是_____________。

3、由同一点〔点光源收回的光线〕构成的投影叫做__________。

投影线垂直于投影面发生的投影叫做_________。

物体正投影的外形、大小与它相关于投影面的位置有关。

4太阳光与影子的关系:物体在太阳光照射的不同时辰,不但影子的大小在变化,而且影子的方向也在变化,在早晨太阳位于_,此时的影子较长,位于_______:在上午,影子随着太阳位置的变化,其长度逐突变短,方向向正南方向移动;半夜影子最短,方向正北;下午,影子的长度又逐渐______,其方向向正东移动。

探求案例1:王丽和赵亮两个小冤家早晨在广场的一盏灯下玩,如图1,AB的长表示王丽的身高,BM表示她的影子,CD的长表示赵亮的身高,DN表示他的影子,请画出这盏灯的位置.例2、某时辰两根木棒在同一平面内的影子如下图,此时,第三根木棒的影子表示正确的选项是【】例3:如图,路灯距空中8米,身高1.6米的小明从距离灯的底部〔点O〕20米的点A 处,沿OA所在的直线行走14米到点B时,人影的长度【】A.增大1.5米 B. 减小1.5米 C. 增大3.5米 D. 减小3.5米训练案1.探照灯、手电筒、路灯等的光线可以看成是从______个点收回的,像这样的光线所构成的投影称为________.2.投影可分为_____和_____;一个平面图形,共有_______种视图.3.在太阳光的照射下,矩形窗框在空中上的影子经常是______形,在不同时辰,这些外形普通不一样.3.以下物品①探照灯;②车灯;③太阳;④月亮;⑤台灯中所成的投影是中心投影的是〔〕A.①②B.①③C.①②③D.①②⑤4.太阳收回的光照在物体上是______,车灯收回的光照在物体上是_____〔〕A.中心投影,平行投影B.平行投影,中心投影C.平行投影,平行投影D.中心投影,中心投影5.图1是一天中四个不同时辰两个修建物的影子:将它们按时间先后顺序停止陈列,正确的选项是〔〕A、③④②①B、②④③①C③④①②Dƒ①②④6.如图,身高为1.6m的某先生想测量一棵大树的高度,她沿着树影BA由B到A走去,当走到C点时,她的影子顶端正好与树的影子顶端重合,测得BC=3.2m,CA=0.8m,那么树的高度为〔〕〔A〕4.8m 〔B〕6.4m 〔C〕8m 〔D〕10m〔7〕〔8〕7.在同一时辰的阳光下,小明的影子比小强的影子长,那么在同一路灯下〔〕A、小明的影子比小强的影子长B、小明的影子比小强的影子短C、小明的影子和小强的影子一样长D、无法判别谁的影子长8.某数学课外实验小组想应用树影测量树高。

2024中考数学一轮复习核心知识点精讲—投影与视图

2024中考数学一轮复习核心知识点精讲—投影与视图

2024中考数学一轮复习核心知识点精讲—投影与视图1.掌握平行投影和中心投影的区别和性质;2.根据简单几何体或简单组合几何体判断其三视图;3.掌握立体图形的展开与折叠。

考点1:投影1.投影:在光线的照射下,空间中的物体落在平面内的影子能够反映出该物体的形状和大小,这种现象叫做投影现象.影子所在的平面称为投影面.2.平行投影、中心投影、正投影(1)中心投影:在点光源下形成的物体的投影叫做中心投影,点光源叫做投影中心.【注意】灯光下的影子为中心投影,影子在物体背对光的一侧.等高的物体垂直于地面放置时,在灯光下,离点光源近的物体的影子短,离点光源远的物体的影子长.(2)平行投影:投射线相互平行的投影称为平行投影.【注意】阳光下的影子为平行投影,在平行投影下,同一时刻两物体的影子在同一方向上,并且物高与影长成正比.考点2:视图1.视图:由于可以用视线代替投影线,所以物体的正投影通常也称为物体的视图.2.三视图:1)主视图:从正面看得到的视图叫做主视图.2)左视图:从左面看得到的视图叫做左视图.3)俯视图:从上面看得到的视图叫做俯视图.【注意】在三种视图中,主视图反映物体的长和高,左视图反映了物体的宽和高,俯视图反映了物体的长和宽.3.三视图的画法1)画三视图要注意三要素:主视图与俯视图长度相等;主视图与左视图高度相等;左视图与俯视图宽度相等.简记为“主俯长对正,主左高平齐,左俯宽相等”.2)注意实线与虚线的区别:能看到的线用实线,看不到的线用虚线.【题型1:平行投影与中心投影】【典例1】(2021•绍兴)如图,树AB在路灯O的照射下形成投影AC,已知路灯高PO=5m,树影AC=3m,树AB与路灯O的水平距离AP=4.5m,则树的高度AB长是()A.2m B.3m C.m D.m【答案】A【解答】解:∵AB∥OP,∴△CAB∽△CPO,∴,∴,∴AB=2(m),故选:A.【变式1-1】(2021•南京)如图,正方形纸板的一条对角线垂直于地面,纸板上方的灯(看作一个点)与这条对角线所确定的平面垂直于纸板.在灯光照射下,正方形纸板在地面上形成的影子的形状可以是()A.B.C.D.【答案】D【解答】解:根据正方形纸板的一条对角线垂直于地面,纸板上方的灯(看作一个点)与这条对角线所确定的平面垂直于纸板,灯在纸板上方,∴上面两条边离点光源近,在同一投影面上的影子就长于下方离点光源远的两条边,∴上方投影比下方投影要长,故选:D.【变式1-2】(2020•贵阳)下列四幅图中,能表示两棵树在同一时刻太阳光下的影子的图是()A.B.C.D.【答案】C【解答】解:A、两棵小树的影子的方向相反,不可能为同一时刻阳光下影子,所以A选项错误;B、两棵小树的影子的方向相反,不可能为同一时刻阳光下影子,所以B选项错误;C、在同一时刻阳光下,树高与影子成正比,所以C选项正确.D、图中树高与影子成反比,而在同一时刻阳光下,树高与影子成正比,所以D选项错误;故选:C.【题型2:三视图】【典例2】(2023•德州)如图所示几何体的俯视图为()A.B.C.D.【答案】C【解答】解:从上面看,是一个矩形,矩形的两边与矩形内部的圆相切.故选:C.【变式2-1】(2023•沈阳)如图是由5个相同的小立方块搭成的几何体,这个几何体的主视图是()A.B.C.D.【答案】A【解答】解:此几何体的主视图从左往右分3列,小正方形的个数分别是1,2,1.故选:A.【变式2-2】(2023•枣庄)榫卯是古代中国建筑、家具及其他器械的主要结构方式,是我国工艺文化精神的传承,凸出部分叫榫,凹进部分叫卯.如图是某个部件“卯”的实物图,它的主视图是()A.B.C.D.【答案】C【解答】解:如图所示的几何体的主视图如下:.故选:C.【变式2-3】(2023•青岛)一个正方体截去四分之一,得到如图所示的几何体,其左视图是()A.B.C.D.【答案】D【解答】解:A、选项不符合三种视图,不符合题意;B、选项是主视图,不符合题意;C、选项是右视图,不符合题意;D、选项是左视图,符合题意;故选:D.【变式2-4】(2023•金华)某物体如图所示,其俯视图是()A.B.C.D.【答案】B【解答】解:该物体的俯视图是:B.故选:B.【题型3:由三视图还原几何体】【典例3】(2023•淮安)如图是一个几何体的三视图,则该几何体的侧面积是()A.12πB.15πC.18πD.24π【答案】B【解答】解:由三视图可知此几何体为圆锥,∵d=6,h=4,∴圆锥的母线长为=5,∴圆锥的侧面积为:×6π×5=15π,故选:B.【典例3-1】(2023•河北)如图1,一个2×2的平台上已经放了一个棱长为1的正方体,要得到一个几何体,其主视图和左视图如图2,平台上至少还需再放这样的正方体()A.1个B.2个C.3个D.4个【答案】B【解答】解:平台上至少还需再放这样的正方体2个,故选:B.【变式3-2】(2023•呼和浩特)如图是某几何体的三视图,则这个几何体是()A.B.C.D.【答案】C【解答】解:根据主视图可知,这个组合体是上、下两个部分组成且上下两个部分的高度相当,上面是长方形,可能是圆柱体或长方体,由左视图可知,上下两个部分的宽度相等,且高度相当,由俯视图可知,上面是圆柱体,下面是长方体,综上所述,这个组合体上面是圆柱体,下面是长方体,且宽度相等,高度相当,所以选项C中的组合体符合题意,故选:C.【变式3-3】(2023•湖北)如图是一个立体图形的三视图,该立体图形是()A.三棱柱B.圆柱C.三棱锥D.圆锥【答案】D【解答】解:根据三视图的知识,正视图和左视图都为一个三角形,而俯视图为一个圆,故可得出这个图形为一个圆锥.故选:D.一.选择题(共8小题)1.用3个同样的小正方体摆出的几何体,从正面看到的形状图如图所示,则这个几何体可能是()A.B.C.D.【答案】A【解答】解:A.从正面看到,底层是两个小正方形,上层的右边是一个小正方形,故本选项符合题意;B.从正面看到,是一行两个相邻的小正方形,故本选项不符合题意;C.从正面看到,底层是两个小正方形,上层的左边是一个小正方形,故本选项不符合题意;D.从正面看到,是一行两个相邻的小正方形,故本选项不符合题意.故选:A.2.下列四个几何体中,从正面看和从上面看都是圆的是()A.B.C.D.【答案】D【解答】解:A、圆柱的主视图是矩形、俯视图是圆,不符合题意;B、圆台主视图是等腰梯形,俯视图是圆环,不符合题意;C、圆锥主视图是等腰三角形,俯视图是圆和圆中间一点,不符合题意;D、球的主视图、俯视图都是圆,符合题意.故选:D.3.从正面、左面、上面观察某个立体图形,得到如图所示的平面图形,那么这个立体图形是()A.B.C.D.【答案】C【解答】解:∵主视图和左视图都是长方形,∴此几何体为柱体,∵俯视图是一个三角形,∴此几何体为三棱柱.故选:C.4.日晷是我国古代利用日影测定时刻的一种计时仪器,它由“晷面”和“晷针”组成.当太阳光照在日晷上时,晷针的影子就会投向晷面.随着时间的推移,晷针的影子在晷面上慢慢地移动,以此来显示时刻.则晷针在晷面上形成的投影是()A.中心投影B.平行投影C.既是平行投影又是中心投影D.不能确定【答案】B【解答】解:晷针在晷面上形成的投影是平行投影.故选:B.5.下列四幅图形中,表示两棵小树在同一时刻同一地点阳光下的影子的图形可能是()A.B.C.D.【答案】A【解答】解:两棵小树在同一时刻同一地点阳光下的影子的方向应该一致,树高与影长的比相等,所以A选项满足条件.故选:A.6.如图,在一间黑屋子的地面A处有一盏探照灯,当人从灯向墙运动时,他在墙上的影子的大小变化情况是()A.变大B.变小C.不变D.不能确定【答案】B【解答】解:如图所示:当人从灯向墙运动时,他在墙上的影子的大小变化情况是变小.故选:B.7.如图是小红在一天中四个时刻看到的一棵树的影子的图,请你将它们按时间先后顺序进行排列()A.①②③④B.①③④②C.②①④③D.④②①③【答案】D【解答】解:西为④,西北为②,东北为①,东为③,故其按时间的先后顺序为:④②①③.故选:D.8.如图,阳光从教室的窗户射入室内,窗户框AB在地面上的影长DE=1.8m,窗户下檐到地面的距离BC =1m,EC=1.2m,那么窗户的高AB为()A.1.5m B.1.6m C.1.86m D.2.16m【答案】A【解答】解:∵BE∥AD,∴△BCE∽△ACD,∴即=且BC=1,DE=1.8,EC=1.2∴=∴1.2AB=1.8,∴AB=1.5m.故选:A.二.填空题(共1小题)9.一天下午,小红先参加了校运动会女子200m比赛,然后又参加了女子400m比赛,摄影师在同位置拍摄了她参加这两场比赛的照片,如图所示,则小红参加200m比赛的照片是图2.(填“图1”或“图2”)【答案】图2.【解答】解:图1中的人的影子比较长,所以图1中反映的时间比图2中反映的时间要晚,所以小红参加200m比赛的照片为图2.故答案为图2.三.解答题(共1小题)10.如图,是由若干个完全相同的小正方体组成的一个几何体.从正面、左面、上面观察该几何体,在方格图中画出你所看到的几何体的形状图.(用阴影表示)【答案】见解答.【解答】解:如图所示.一.选择题(共7小题)1.如图是一个正六棱柱的主视图和左视图,则图中a的值为()A.B.4C.2D.【答案】D【解答】解:正六棱柱的底面如图所示,过点A作AH⊥BC于H.由题意得,2AH+BD=4,∵∠BAC=120°,AC=AB,∴∠CAH=∠BAH=60°,∴∠ABH=30°,∴AB=2AH,∴4AH=4,∴AH=1,∴BH=AH=,∴a的值为,故选:D.2.如图所示的是由两个长方体组成的几何体,这两个长方体的底面都是正方形,则该几何体的俯视图是()A.B.C.D.【答案】C【解答】解:该几何体的俯视图是.故选:C.3.如图所示是一个由若干个相同的正方体组成的几何体的主视图和左视图,则组成这个几何体的小正方体的个数最少是()A.5个B.6个C.11个D.13个【答案】A【解答】解:底层正方体最少的个数应是3个,第二层正方体最少的个数应该是2个,因此这个几何体最少有5个小正方体组成,故选:A.4.如图,是圆桌正上方的灯泡O发出的光线照射桌面后,在地面上形成阴影(圆形)的示意图.已知桌面的直径为1.6m,桌面距离地面1m,若灯泡O距离地面3m,则地面上阴影部分的面积为()A.0.64πm2B.2.56πm2C.1.44πm2D.5.76πm2【答案】C【解答】解:如图设C,D分别是桌面和其地面影子的圆心,CB∥AD,∴△OBC∽△OAD∴=,而OD=3,CD=1,∴OC=OD﹣CD=3﹣1=2,BC=×1.6=0.8,∴=,∴AD=1.2,=π×1.22=1.44πm2,∴S⊙D即地面上阴影部分的面积为1.44πm2.故选:C.5.如图,上下底面为全等的正六边形礼盒,其主视图与左视图均由矩形构成,主视图中大矩形边长如图所示,左视图中包含两全等的矩形,如果用彩色胶带如图包扎礼盒,所需胶带长度至少为()A.320cm B.395.2cm C.297.9cm D.480cm【答案】C【解答】解:根据题意,作出实际图形的上底,如图:AC,CD是上底面的两边.则AC=40÷2=20(cm),∠ACD=120°,作CB⊥AD于点B,那么AB=AC×sin60°=10(cm),所以AD=2AB=20(cm),胶带的长至少=20×6+15×6≈297.8(cm).所以至少需要297.9cm的胶带故选:C.6.一个几何体的三视图如图所示,则这个几何体是()A.B.C.D.【答案】D【解答】解:根据主视图和左视图为矩形可判断出该几何体是柱体,根据俯视图是两个矩形可判断出该几何体为.故选:D.7.一个物体的三视图如图所示,其中主视图和左视图是全等的等边三角形,俯视图是圆,根据图中所示数据,可求这个物体的表面积为()A.9πB.6πC.3πD.(3+)π【答案】A【解答】解:由三视图可知:该几何体是一个圆锥,其轴截面是一个高为3的正三角形.∴正三角形的边长==2,∴圆锥的底面圆半径是,母线长是2,∴底面周长为2π∴侧面积为×2π×2=6π,∵底面积为πr2=3π,∴这个物体的表面积是9π.故选:A.二.填空题(共3小题)8.如图,在平面直角坐标系中,点光源位于P(4,4)处,木杆AB两端的坐标分别为(0,2),(6,2).则木杆AB在x轴上的影长CD为12.【答案】见试题解答内容【解答】解:过P作PE⊥x轴于E,交AB于M,如图,∵P(4,4),A(0,2),B(6,2).∴PM=2,PE=4,AB=6,∵AB∥CD,∴=.∴=,∴CD=12,故答案为:12.9.如图,在直角坐标系中,点P(3,2)是一个点光源.木杆AB两端的坐标分别为(2,1),(5,1).则木杆AB在x轴上的投影长为6.【答案】6.【解答】解:如图,延长PAPB交x轴分别于点A′、点B′,过点P作PN⊥x轴,交AB于点M,垂足为N,∵点A(2,1),点B(5,1),∴AB=|2﹣5|=3,AB∥x轴,∴PN⊥AB,又∵点P(3,2),∴PN=2,PM=MN=1,∵AB∥x轴,∴△PAB∽△PA′B′,∴==,∴A′B′=2AB=6,即AB在x轴上的影长为6,故答案为:6.10.航拍器拍出的照片会给我们视觉上带来震撼的体验,越来越受追捧.如图,航拍器在空中拍摄地面的区域是一个圆,且拍摄视角α固定:(1)现某型号航拍器飞行高度为36m,测得可拍摄区域半径为48m.若要使拍摄区域面积为现在的2倍,则该航拍器还要升高(36﹣36)m;(2)航拍器由遥控器控制,与(1)中同型号的航拍器最远飞行距离为距遥控器2000m,则该航拍器可拍摄区域的最大半径为m.(忽略遥控器所在高度)【答案】见试题解答内容【解答】解:(1)由题意:tan==,∵拍摄区域面积为现在的2倍,∴可拍摄区域半径为48m,设航拍器飞行高度为hm,则有tan==,∴h=36,该航拍器还要升高(36﹣36)m,故答案为(36﹣36).(2)如图,由题意航拍器在以O为圆心,2000m为半径的圆上运动.航拍器可拍摄区域的最大直径为EE′,此时PE⊥OP,PE′⊥OP′,则有=,∴OE=(m),故答案为.三.解答题(共1小题)11.李明在参观某工厂车床工作间时发现了一个工件,通过观察并画出了此工件的三视图,借助直尺测量了部分长度.如图所示,该工件的体积是多少?【答案】17πcm3.【解答】解:根据三视图可知该几何体是两个圆柱体叠加在一起,底面直径分别是2cm和4cm,高分别是4cm和1cm,∴体积为:4π×22+π×12×1=17π(cm3).答:该工件的体积是17πcm3.1.(2023•大庆)一个长方体被截去一部分后,得到的几何体如图水平放置,其俯视图是()A.B.C.D.【答案】A【解答】解:从上面看,是一个矩形.故选:A.2.(2023•广州)一个几何体的三视图如图所示,则它表示的几何体可能是()A.B.C.D.【答案】D【解答】解:由主视图和左视图可以得到该几何体是圆柱和小圆锥的复合体,由俯视图可以得到小圆锥的底面和圆柱的底面完全重合.故选:D.3.(2023•陕西)陕西饮食文化源远流长,“老碗面”是陕西地方特色美食之一.图②是从正面看到的一个“老碗”(图①)的形状示意图.是⊙O的一部分,D是的中点,连接OD,与弦AB交于点C,连接OA,OB.已知AB=24cm,碗深CD=8cm,则⊙O的半径OA为()A.13cm B.16cm C.17cm D.26cm【答案】A【解答】解:∵是⊙O的一部分,D是的中点,AB=24cm,∴OD⊥AB,AC=BC=AB=12cm.设⊙O的半径OA为R cm,则OC=OD﹣CD=(R﹣8)cm.在Rt△OAC中,∵∠OCA=90°,∴OA2=AC2+OC2,∴R2=122+(R﹣8)2,∴R=13,即⊙O的半径OA为13cm.故选:A.4.(2023•牡丹江)由若干个完全相同的小正方体搭成的几何体的主视图和左视图如图所示,则搭成该几何体所用的小正方体的个数最多是()A.6B.7C.8D.9【答案】B【解答】解:根据主视图和左视图可得:这个几何体有2层,3列,最底层最多有3×2=6个正方体,第二层有1个正方体,则搭成这个几何体的小正方体的个数最多是6+1=7个;5.(2023•贵州)如图所示的几何体,从正面看,得到的平面图形是()A.B.C.D.【答案】A【解答】解:从正面看到的平面图形为等腰梯形.故选:A.6.(2023•自贡)如图中六棱柱的左视图是()A.B.C.D.【答案】A【解答】解:由题可得,六棱柱的左视图是两个相邻的长相等的长方形,如图:.7.(2021•毕节市)学习投影后,小华利用灯光下自己的影子长度来测量一路灯的高度.如图,身高1.7m的小明从路灯灯泡A的正下方点B处,沿着平直的道路走8m到达点D处,测得影子DE长是2m,则路灯灯泡A离地面的高度AB为8.5m.【答案】见试题解答内容【解答】解:∵AB⊥BE,CD⊥BE,∴AB∥CD,∴△ECD∽△EAB,∴=,∴=,解得:AB=8.5,答:路灯灯泡A离地面的高度AB为8.5米,故答案为:8.5.8.(2022•杭州)某项目学习小组为了测量直立在水平地面上的旗杆AB的高度,把标杆DE直立在同一水平地面上(如图).同一时刻测得旗杆和标杆在太阳光下的影长分别是BC=8.72m,EF=2.18m.已知B,C,E,F在同一直线上,AB⊥BC,DE⊥EF,DE=2.47m,则AB=9.88m.【答案】9.88.【解答】解:∵同一时刻测得旗杆和标杆在太阳光下的影长分别是BC=8.72m,EF=2.18m.∴AC∥DF,∴∠ACB=∠DFE,∵AB⊥BC,DE⊥EF,∴∠ABC=∠DEF=90°,∴Rt△ABC∽Rt△DEF,∴,即,解得AB=9.88,∴旗杆的高度为9.88m.故答案为:9.88.9.(2022•徐州)如图,公园内有一个垂直于地面的立柱AB,其旁边有一个坡面CQ,坡角∠QCN=30°.在阳光下,小明观察到AB在地面上的影长为120cm,在坡面上的影长为180cm.同一时刻,小明测得直立于地面长60cm的木杆的影长为90cm(其影子完全落在地面上).求立柱AB的高度.【答案】(170+60)cm.【解答】解:延长AD交BN于点E,过点D作DF⊥BN于点F,在Rt△CDF中,∠CFD=90°,∠DCF=30°,则DF=CD=90(cm),CF=CD•cos∠DCF=180×=90(cm),由题意得:=,即=,解得:EF=135,∴BE=BC+CF+EF=(255+90)cm,则=,解得:AB=170+60,答:立柱AB的高度为(170+60)cm.。

精选-中考数学复习第6章投影与视图第23课时投影与视图精讲课件(1)

精选-中考数学复习第6章投影与视图第23课时投影与视图精讲课件(1)

最新
精选中小学课件
17
二、翻译文中重点句子 1.呜呼!此吾故人陈慥季常也。何为而在此? 译文:________________________________________ _____________________________________________ 答案:哎,这是我的老朋友陈慥陈季常呀,怎么会在
第二单元
最新
精选中小学课件
1
第8课 方 山 子 传
最新
精选中小学课件
2
学国学
为学 1.躬自厚而薄责于人,则远怨矣。
——《论语·卫灵公》 赏读:对自己要求严格,对他人宽容。 2.贤者小学以明,不贤者废学为昏。
——方孝孺《逊志斋集》 赏读:贤能的人稍微学学就明白道理,不贤明的人废弃 学习变得昏聩。
最新
xūn f yú
最新
精选中小学课件
10
[教材重点词句]
第一段重点词句
一、解释下列句中加点词的含义或说出用法
1.闾里之侠皆宗.之(
)
2.稍壮,折.节.读书(
)
3.然终不遇.,晚乃遁.于光、黄间(
)
最新
精选中小学课件
11
答案:1.以……为宗,效法,尊崇 2.改变志趣 3. 遇:遇合,指得到重用 遁:隐居
最新
精选中小学课件
19
第三段重点词句
一、解释下列句中加点词的含义或说出用法
1.因.与余马上论用兵及古今成败(
2.今.几.日.耳.,精悍之色,犹见于眉间(来自3.而岂.山中之人哉(
)
) )
答案:1.趁机 2.至今才过了多少日子啊 3.怎么
最新
精选中小学课件
20
二、翻译文中重点句子 1.独念方山子少时使酒好剑,用财如粪土。 译文:________________________________________ 答案:我对此感到十分惊异。回想起方山子年轻的时 候,是酗酒任性、喜欢使剑、挥金如土的游侠之士。

2023年中考数学一轮复习:投影与视图(含解析)

2023年中考数学一轮复习:投影与视图(含解析)

2023年中考数学一轮复习:投影与视图一、单选题1.如图,用一个平面去截正方体,截掉了正方形的一个角,且截面经过原正方体三条棱的中点,剩下几何体的展开图应该是()A.B.C.D.2.如图是由5个相同小正方形搭成的几何体,若将小正方体A放到小正方体B的正上方,则关于该几何体变化前后的三视图,下列说法正确的是()A.主视图不变B.俯视图改变C.左视图不变D.以上三种视图都改变3.两个完全相同的长方体,按如图方式摆放,其主视图为()A.B.C.D.二、填空题4.一个几何体是由许多规格相同的小正方体堆积而成的,其主视图、左视图如图所示,要摆成这样的几何体,至少需用个正方体,最多需用个正方体;5.如图,是正方体的一种平面展开图,各面都标有数字,则数字为-4的面与它对面的数字之积是.6.如图所示,水平放置的长方体的底面是长为4 cm、宽为2 cm的长方形,它的主视图的面积为12 2cm,则长方体的体积等于3cm.三、综合题7.下面图(1),图(2)分别是两种不同情形下旗杆和木杆的影子.(1)哪个图反映了阳光下的情形?(2)若同一时刻阳光下,木杆的影子长为0.8米,旗杆的影子长为7.2米,木杆的高为1.5米,求旗杆的高度.8.如图是由10个同样大小的小正方体搭成的物体,(1)请分别画出它的主视图和俯视图.(2)在主视图和俯视图不变的情况下,你认为最多还可以添加个小正方体.9.如图是小明用10块棱长都为3cm的正方体搭成的几何体.(1)分别画出从正面、从左面、从上面看到的所搭几何体的形状图;(2)小明所搭几何体的表面积(包括与桌面接触的部分)是.10.李明同学设计了某个产品的正方体包装盒如图所示,由于粗心少设计了其中一个顶盖,请你把它补上,使其成为一个两面均有盖的正方体盒子.(1)共有种弥补方法;(2)任意画出一种成功的设计图(在图中补充);(3)在你帮忙设计成功的图中,要把-6,8,10,-10,-8,6这些数字分别填入六个小正方形,使得折成的正方体相对面上的两个数相加得0.(直接在图中填上)11.如图是一个正方体纸盒的表面展开图,纸盒中相对两个面上的数互为倒数.(1)填空:a=,b=;(2)先化简,再求值:()()2223252ab a b ab a ab⎡⎤------⎣⎦.12.有若干个完全相同的小正方体堆成一个如图所示几何体.(1)图中共有个小正方体.(2)画出该几何体的主视图、左视图、俯视图.(3)若现在你手头还有一些相同的小正方体,如果保持俯视图和左视图不变,最多可以再添加个小正方体.13.我们知道,将一个正方体或长方体的表面沿某些棱剪开,可以展成一个平面图形.(1)下列图形中,是正方体的表面展开图的是.(2)如图所示的长方体,长、宽、高分别为4、3、6,若将它的表面沿某些棱剪开,展成一个平面图形.则下列图形中,可能是该长方体表面展开图的有(填序号)(3)下列图是题(2)中长方体的一种表面展开图,它的外围周长为52,事实上,题(2)中长方体的表面展开图还有不少,聪明的你能画出一个使外围周长最大的表面展开图吗?请画出这个表面展开图,并求出它的外围周长.14.小彬做了探究物体投影规律的实验,并提出了一些数学问题请你解答:(1)如图1,白天在阳光下,小彬将木杆AB水平放置,此时木杆在水平地面上的影子为线段A B''.①若木杆AB的长为1m,则其影子A B''的长为m;②在同一时刻同一地点,将另一根木杆CD直立于地面,请画出表示此时木杆CD在地面上影子的线段DM;(2)如图2,夜晚在路灯下,小彬将木杆EF水平放置,此时木杆在水平地面上的影子为线段E F''.①请在图中画出表示路灯灯泡位置的点P;②若木杆EF的长为1m,经测量木杆EF距离地面1m,其影子E F''的长为1.5m,则路灯P距离地面的高度为m.15.如图,在平整的地面上,用10个棱长都为2cm的小正方体堆成一个几何体.(1)画出这个几何体的三视图;(2)求这个几何体的表面积;(3)如果现在你还有一些棱长都为2cm的小正方体,要求保持俯视图和左视图都不变,最多可以再添加个小正方体.16.用若干个完全相同的小正方体搭成一个几何体,使它从正面和左面看到的形状图如图所示.(1)搭这样一个几何体最多需要多少个小正方体?(2)画出(1)中所搭几何体从上面看到的形状图,并标出各个小正方形所在位置的小正方体的个数. 17.如图,是由6个大小相同的小正方体块搭建的几何体,其中每个小正方体的棱长为l厘米.(1)如果在这个几何体上再添加一些小立方体块,并保持俯视图和左视图不变,最多可以再添加个小立方块.(2)请按要求在方格内分别画出从这个几何体的三个不同方向看到的形状图.18.晚上,小亮在广场乘凉,图中线段AB表示站立在广场上的小亮,线段PO表示直立在广场上的灯杆,点P表示照明灯.(1)请你在图中画出小亮在照明灯P照射下的影子BC(请保留作图痕迹,并把影子描成粗线);(2)如果小亮的身高 1.6AB m=,测得小亮影长2BC m=,小亮与灯杆的距离13BO m=,请求出灯杆的高PO.19.综合实践问题情景:某综合实践小组进行废物再利用的环保小卫士行动. 他们准备用废弃的宣传单制作装垃圾的无.盖.纸盒.操作探究:(1)若准备制作一个无盖..的正方体形纸盒,如图1,下面的哪个图形经过折叠能围成无盖..正方体形纸盒?(2)如图2是小明的设计图,把它折成无盖..正方体形纸盒后与“保”字相对的是哪个字?(3)如图3,有一张边长为20cm的正方形废弃宣传单,小华准备将其四角各剪去一个小正方形,折成无.盖.长方体形纸盒.①请你在图3中画出示意图,用实线表示剪切线,虚线表示折痕.②若四角各剪去了一个边长为xcm的小正方形,用含x的代数式表示这个纸盒的高以及底面积,当小正方形边长为4cm时,求纸盒的容积.20.如图所示,一透明的敞口正方体容器ABCD﹣A'B'C'D'装有一些液体,棱AB始终在水平桌面上,液面刚好过棱CD,并与棱BB'交于点Q.此时液体的形状为直三棱柱,其三视图及尺寸见下图所示请解决下列问题:(1)CQ与BE的位置关系是,BQ的长是dm:(2)求液体的体积;(提示:直棱柱体积=底面积×高)(3)若容器底部的倾斜角∠CBE=α,求α的度数.(参考数据:sin49°=cos41°=34,tan37°=34)21.【问题情境】小圣所在的综合实践小组准备制作一些无盖纸盒收纳班级讲台上的粉笔.【操作探究】(1)图1中的哪些图形经过折叠能围成无盖正方体纸盒?(填序号).(2)小圣所在的综合实践小组把折叠成6个棱长都为2dm的无盖正方体纸盒摆成如图2所示的几何体.①请计算出这个几何体的体积;②如果在这个几何体上再添加一些相同的正方体纸盒,并保持从上面看到的形状和从左面看到的形状不变,最多可以再添加个正方体纸盒.22.阅读以下文字并解答问题:在“物体的高度”活动中,某数学兴趣小组的4名同学选择了测量学校里的四棵树的高度.在同一时刻的阳光下,他们分别做了以下工作:小芳:测得一根长为1米的竹竿的影长为0.8米,甲树的影长为4.08米(如图1).小华:发现乙树的影子不全落在地面上,有一部分影子落在教学楼的墙壁上(如图2),墙壁上的影长为1.2米,落在地面上的影长为2.4米.小丽:测量的丙树的影子除落在地面上外,还有一部分落在教学楼的第一级台阶上(如图3),测得此影子长为0.2米,一级台阶高为0.3米,落在地面上的影长为4.4米.小明:测得丁树落在地面上的影长为2.4米,落在坡面上影长为3.2米(如图4).身高是1.6m的小明站在坡面上,影子也都落坡面上,小芳测得他的影长为2m.(1)在横线上直接填写甲树的高度为米.(2)求出乙树的高度(画出示意图).(3)请选择丙树的高度为()A.6.5米B.5.75米C.6.05米D.7.25米(4)你能计算出丁树的高度吗?试试看.23.如图1是边长为20cm的正方形薄铁片,小明将其四角各剪去一个相同的小正方形(图中阴影部分)后,发现剩余的部分能折成一个无盖的长方体盒子,图2为盒子的示意图(铁片的厚度忽略不计).(1)设剪去的小正方形的边长为 (cm)x ,折成的长方体盒子的容积为 ()3cm V ,直接写出用只含字母x 的式子表示这个盒子的高为 cm ,底面积为 2cm ,盒子的容积 V 为3cm ,(2)为探究盒子的体积与剪去的小正方形的边长 x 之间的关系,小明列表分析:填空:①m = , n = ;②由表格中的数据观察可知当 x 的值逐渐增大时, V 的值 .(从“逐渐增大”,“逐渐减小”“先增大后减小”,“先减小后增大”中选一个进行填空)24.如图,A 、B 、C 分别表示甲、乙、丙三个物体的顶端,甲物体高3米,影长2米,乙物体高2米,影长3米,甲乙两物体相距4米.(1)请在图中画出光源灯的位置及灯杆,并画出物体丙的影子.(2)若甲、乙、丙及灯杆都与地面垂直,且在同一直线上,求灯杆的高度.25.测量金字塔高度:如图1,金字塔是正四棱锥 S ABCD -,点O是正方形 ABCD 的中心 SO 垂直于地面,是正四棱锥 S ABCD - 的高,泰勒斯借助太阳光.测量金字塔影子 PBC 的相关数据,利用平行投影测算出了金字塔的高度,受此启发,人们对甲、乙、丙三个金字塔高度也进行了测量.甲、乙、丙三个金字塔都用图1的正四棱锥 S ABCD - 表示.(1)测量甲金字塔高度:如图2,是甲金字塔的俯视图,测得底座正方形 ABCD 的边长为 80m ,金字塔甲的影子是 50m PBC PC PB ==, ,此刻,1米的标杆影长为0.7米,则甲金字塔的高度为m.(2)测量乙金字塔高度:如图1,乙金字塔底座正方形 ABCD 边长为 80m ,金字塔乙的影子是PBC , 75PCB PC ∠=︒=, ,此刻1米的标杆影长为0.8米,请利用已测出的数据,计算乙金字塔的高度.答案解析部分1.【答案】B【解析】【解答】将A、C、D折叠,发现都不能合成切口,只有B选项折叠后两个剪去的三角形与另一个剪去的三角形交于一点,与题目中的题设一致,故答案为:B.【分析】利用正方体的展开图定义和特征逐项判断即可。

初中九年级上册数学第四章视图与投影学案 视图与投影1

初中九年级上册数学第四章视图与投影学案 视图与投影1

1、视图与投影(1)设计人:许艳晶教师寄语:没有自信,成功远在天涯。

拥有自信,你已成功了一半。

【学习目标】知识与技能:经历探索基本几何体(圆柱、圆锥、球)与其三视图间关系。

能力培养:绘画基本几何体的三视图,会判断简单物体的三视图。

情感与态度:结合具体实例初步体会视图在现实生活中应用。

【学习重点】会画基本几何体的三视图,会判断简单物体的三视图。

【学习过程】(教师寄语:自信是成功的前提!)一、前置准备:请画出下面几何体的三视图:二、自学探究:经历探索基本几何体(圆柱、圆锥、球)与其三视图间关系。

(1)如图. 将两个圆盘,一个茶叶桶,一个足球,一个蒙古包模型摆放在一起,你能画出其主视图吗?(2)下面各图中物体形状分别可以看成什么样的几何体?从正面、侧面、上面看这些几何体,它们的形状各是什么?你能画出它们的主视图,左视图,俯视图吗?(3)相信自己:你能画出蒙古包的三视图吗?三、合作交流:如图. 将两个圆盘,一个茶叶桶,一个足球,一个蒙古包模型摆放在一起,你能画出其主视图吗?四、归纳总结:通过本节课的学习你学到了哪些知识?与同学交流一下。

五、当堂训练:大胆猜吧:你能根据下面的视图猜想所代表的立体图吗?主视图俯视图轻松一下,一起来做做吧。

先看老师组合的几何体,请你们画出主视图。

同学们自己试一试吧,看谁摆得更有诗情画意。

【学习笔记】(没有深刻的反思就不会有提高!)记录一下自己的收获吧,看看你还有哪些疑问。

你又认识了哪些几何体?这些几何体的三视图是什么?你的疑惑是什么?【课下训练】(教师寄语:想信自己,你定能成功!):1、画出图中各物体的三视图。

新人教版初中数学——视图与投影-知识点归纳及中考典型题解析

新人教版初中数学——视图与投影-知识点归纳及中考典型题解析

新人教版初中数学——视图与投影知识归纳及中考典型题解析一、投影1.投影在光线的照射下,空间中的物体落在平面内的影子能够反映出该物体的形状和大小,这种现象叫做投影现象.影子所在的平面称为投影面.2.平行投影、中心投影、正投影(1)中心投影:在点光源下形成的物体的投影叫做中心投影,点光源叫做投影中心.【注意】灯光下的影子为中心投影,影子在物体背对光的一侧.等高的物体垂直于地面放置时,在灯光下,离点光源近的物体的影子短,离点光源远的物体的影子长.(2)平行投影:投射线相互平行的投影称为平行投影.【注意】阳光下的影子为平行投影,在平行投影下,同一时刻两物体的影子在同一方向上,并且物高与影长成正比.(3)正投影:投射线与投影面垂直时的平行投影,叫做正投影.二、视图1.视图由于可以用视线代替投影线,所以物体的正投影通常也称为物体的视图.2.三视图(1)主视图:从正面看得到的视图叫做主视图.(2)左视图:从左面看得到的视图叫做左视图.(3)俯视图:从上面看得到的视图叫做俯视图.【注意】在三种视图中,主视图反映物体的长和高,左视图反映了物体的宽和高,俯视图反映了物体的长和宽.3.三视图的画法(1)画三视图要注意三要素:主视图与俯视图长度相等;主视图与左视图高度相等;左视图与俯视图宽度相等.简记为“主俯长对正,主左高平齐,左俯宽相等”.(2)注意实线与虚线的区别:能看到的线用实线,看不到的线用虚线.三、几何体的展开与折叠1.常见几何体的展开图2.正方体的展开图正方体有11种展开图,分为四类:第一类,中间四连方,两侧各有一个,共6种,如下图:第二类,中间三连方,两侧各有一、二个,共3种,如下图:第三类,中间二连方,两侧各有二个,只有1种,如图10;第四类,两排各有三个,也只有1种,如图11.考向一三视图在判断几何体的三视图时,注意以下两个方面:(1)分清主视图、左视图与俯视图的区别;(2)看得见的线画实线,看不见的线画虚线.典例1【广西壮族自治区南宁市2019–2020学年七年级上学期期末数学试题】如图是从不同方向看某一几何体得到的平面图形,则这个几何体是A.圆锥B.长方体C.球D.圆柱【答案】D【解析】∵主视图和左视图都是长方形,∴此几何体为柱体,∵俯视图是一个圆,∴此几何体为圆柱.故选D.【名师点睛】此题考查利用三视图判断几何体,三视图里有两个相同可确定该几何体是柱体,锥体还是球体,由另一个视图确定其具体形状.1.如图所示的几何体的俯视图是A.B.C.D.考向二几何体的还原与计算解答此类问题时,首先要根据三视图还原几何体,再根据图中给出的数据确定还原后的几何体中的数据,最后根据体积或面积公式进行计算.典例2如图所示的是由几个相同小立方体组成的几何体从上面所看到的图形,正方形中的数字表示在该位置的小立方体的个数,则从左面看这个几何体所得到的图形是A.B.C.D.【答案】D【解析】如图,左视图如下:,故选D.2.某一几何体的三视图均如图所示,则搭成该几何体的小正方体的个数为A.9 B.5C.4 D.33.如图是一零件的三视图,则该零件的表面积为A.15πcm2B.24πcm2C.51πcm2D.66πcm2考向三投影1.根据两种物体的影子判断其是在灯光下还是在阳光下的投影,关键是看这两种物体的顶端和其影子的顶端的连线是平行还是相交,若平行则是在阳光下的投影,若相交则是在灯光下的投影.2.光源和物体所处的位置及方向影响物体的中心投影,光源或物体的方向改变,则该物体的影子的方向也发生变化,但光源、物体的影子始终在物体的两侧.3.物体的投影分为中心投影和平行投影.典例3如图是小明一天看到的一根电线杆的影子的俯视图,按时间先后顺序排列正确的是A.①②③④B.④③②①C.④③①②D.②③④①【答案】C【解析】根据平行投影的规律以及电线杆从早到晚影子的指向规律,可知:俯视图的顺序为:④③①②,故选C.【名师点睛】本题主要考查平行投影的规律,掌握“就北半球而言,从早到晚物体影子的指向是:西–西北–北–东北–东”,是解题的关键.4.小明在太阳光下观察矩形木板的影子,不可能是A.平行四边形B.矩形C.线段D.梯形考向四立体图形的展开与折叠正方体展开图口诀:正方体展有规律,十一种类看仔细;中间四个成一行,两边各一无规矩;二三紧连错一个,三一相连一随意;两两相连各错一,三个两排一对齐;一条线上不过四,田七和凹要放弃;相间之端是对面,间二拐角面相邻.典例4如图是一个正方体的表面展开图,把展开图折叠成正方体后,与标号为1的顶点重合的是A.标号为2的顶点B.标号为3的顶点C.标号为4的顶点D.标号为5的顶点【答案】D【解析】根据正方体展开图的特点得出与标号为1的顶点重合的是标号为5的顶点.故选D.5.如图所示正方体的平面展开图是A.B.C.D.1.如图所示几何体的主视图是A.B.C.D.2.如图的几何体是由五个相同的小正方体组合面成的,从左面看,这个几何体的形状图是A.B.C.D.3.如图是一棵小树一天内在太阳下不同时刻的照片,将它们按时间先后顺序进行排列正确的是A.③—④—①—②B.②—①—④—③C.④—①—②—③D.④—①—③—②4.如图,某一时刻太阳光下,小明测得一棵树落在地面上的影子长为2.8米,落在墙上的影子高为1.2米,同一时刻同一地点,身高1.6米他在阳光下的影子长0.4米,则这棵树的高为A.6.2米B.10米C.11.2米D.12.4米5.如图,(1)是几何体(2)的___________视图.6.如图,某长方体的底面是长为4cm,宽为2cm的长方形,如果从左面看这个长方体时看到的图形面积为6cm2,那么这个长方体的体积等于__________.7.如图是一个正方体的展开图,折叠成正方体后与“创”字相对的一面上的字是__________.8.一个几何体由12个大小相同的小正方体搭成,从上面看到的这个几何体的形状图如图所示,若小正方形中的数字表示在该位置小正方体的个数,则从正面看,一共能看到________个小正方体(被遮挡的不计).9.画出如图所示物体的主视图、左视图、俯视图.10.【山东省威海市乳山市2019–2020学年九年级上学期期末数学试题】数学实践小组的同学利用太阳光下形成的影子测量大树的高度.在同一时刻下,他们测得身高为1.5米的同学立正站立时的影长为2米,大树的影子分别落在水平地面和台阶上.已知大树在地面的影长为2.4米,台阶的高度均为0.3米,宽度均为0.5米.求大树的高度AB.1.如图是手提水果篮抽象的几何体,以箭头所指的方向为主视图方向,则它的俯视图为A.B.C.D.2.某几何体的俯视图如图所示,图中数字表示该位置上的小正方体的个数,则这个几何体的主视图是A.B.C.D.3.如图是一个几何体的三视图,则这个几何体是A.三棱锥B.圆锥C.三棱柱D.圆柱4.如图,由6个相同的小正方体组合成一个立体图形,它的俯视图为A.B.C.D.5.如图,是由棱长都相等的四个小正方体组成的几何体.该几何体的左视图是A.B.C.D.6.如图①是由大小相同的小正方体搭成的几何体,将上层的小正方体平移后得到图②.关于平移前后几何体的三视图,下列说法正确的是A.主视图相同B.左视图相同C.俯视图相同D.三种视图都不相同7.图2是图1中长方体的三视图,若用S表示面积,S主=x2+2x,S左=x2+x,则S俯=A.x2+3x+2 B.x2+2 C.x2+2x+1 D.2x2+3x8.如图是由一个长方体和一个球组成的几何体,它的主视图是A.B.C.D.9.下列四个几何体中,主视图为圆的是A.B.C.D.10.一个由圆柱和长方体组成的几何体如图水平放置,它的俯视图是A.B.C.D.11.如图是由10个同样大小的小正方体摆成的几何体.将小正方体①移走后,则关于新几何体的三视图描述正确的是A.俯视图不变,左视图不变B.主视图改变,左视图改变C.俯视图不变,主视图不变D.主视图改变,俯视图改变12.某个几何体的三视图如图所示,该几何体是A.B.C.D.13.下列哪个图形是正方体的展开图A.B.C.D.14.如图,一个几何体上半部为正四棱锥,下半部为立方体,且有一个面涂有颜色,该几何体的表面展开图是A.B.C.D.15.在如图所示的几何体中,其三视图中有矩形的是_________.(写出所有正确答案的序号)16.如图是一个多面体的表面展开图,如果面F 在前面,从左面看是面B ,那么从上面看是面__________.(填字母)17.已知某几何体的三视图如图所示,其中俯视图为等边三角形,则该几何体的左视图的面积为__________.1.【答案】D【解析】根据题意得:几何体的俯视图为,故选C .【名师点睛】此题考查了简单组合体的三视图,熟练掌握几何体三视图的画法是解本题的关键.2.【答案】C【解析】从主视图看第一列有两个正方体,说明俯视图中的左边一列有两个正方体,主视图右边的一列有一个,说明俯视图中的右边一列有一个正方体,所以此几何体共有4个正方体.故选C.3.【答案】B【解析】由三视图知,该几何体是底面半径为3cm、高为4cm的圆锥体,则该圆锥的母线长为(cm),∴该零件的表面积为π•32+12•(2π•3)•5=9π+15π=24π(cm2),故选B.4.【答案】D【解析】A.将木框倾斜放置形成的影子为平行四边形,故该选项不符合题意,B.将矩形木框与地面平行放置时,形成的影子为矩形,故该选项不符合题意,C.将矩形木框立起与地面垂直放置时,形成的影子为线段,D.∵由物体同一时刻物高与影长成比例,且矩形对边相等,梯形两底不相等,∴得到投影不可能是梯形,故该选项符合题意,故选D.【名师点睛】本题考查了平行投影特点:在同一时刻,不同物体的物高和影长成比例,平行物体的影子仍旧平行或重合.灵活运用平行投影的性质是解题的关键.5.【答案】B1.【答案】C【解析】从正面看,共有两列,第一列有两个小正方形,第二列有一个小正方形,在下方,只有选项C符合,故答案选择C.【名师点睛】本题考查的是三视图,比较简单,需要熟练掌握三视图的画法.2.【答案】D【解析】从左边看第一层是两个小正方形,第二层左边一个小正方形,故选D【名师点睛】本题考查了简单几何体的三视图,从左边看得到的图是左视图.3.【答案】B【解析】众所周知,影子方向的变化是上午时朝向西边,中午时朝向北边,下午时朝向东边;影子长短的变化是由长变短再变长,结合方向和长短的变化即可得出答案,故选B【名师点睛】本题主要考查影子的方向和长短变化,掌握影子的方向和长短的变化规律是解题的关键.4.【答案】D【解析】设从墙上的影子的顶端到树的顶端的垂直高度是x米,则1.60.4 2.8x,解得:x=11.2,所以树高=11.2+1.2=12.4(米),故选D.【名师点睛】本题考查的是投影的知识,解本题的关键是正确理解题意、根据同一时刻物体的高度与其影长成比例求出从墙上的影子的顶端到树的顶端的垂直高度.5.【答案】俯【解析】在图中(1)是几何体(2)的俯视图.6.【答案】24cm3【解析】根据题意,得:6×4=24(cm3),因此,长方体的体积是24cm3.故答案为:24cm3.7.【答案】园【解析】正方体的表面展开图,相对的面之间一定相隔一个正方形,“创”与“园”是相对面.8.【答案】8【解析】一共看到的图形是3列,左边一列看到3个,中间一列看到2个,右边一列看到3个.则一共能看到的小正方体的个数是:3+2+3=8.故答案为:8.9.【解析】主视图是从正面看到的图形,左视图是从左面看到的图形,俯视图是从上面看到的图形,据此画出看到的图形如图所示.10.【答案】3.45米【解析】延长DH交BC于点M,延长AD交BC于N.可求 3.4BM =,0.9DM =. 由1.50.92MN =,可得 1.2MN =. ∴ 3.4 1.2 4.6BN =+=. 由1.52 4.6AB =,可得 3.45AB =. 所以,大树的高度为3.45米.【名师点睛】考核知识点:平行投影.弄清平行投影的特点是关键.1.【答案】A【解析】它的俯视图为,故选A .【名师点睛】本题考查了简单几何体的三视图,熟记常见几何体的三视图是解题关键. 2.【答案】B【解析】从正面看去,一共两列,左边有2竖列,右边是1竖列.故选B .【名师点睛】本题考查了由三视图判断几何体,解题的关键是具有几何体的三视图及空间想象能力. 3.【答案】B【解析】由于主视图和左视图为三角形可得此几何体为锥体,由俯视图为圆形可得为圆锥.故选B .【名师点睛】此题主要考查了学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查. 4.【答案】D【解析】从上面看可得四个并排的正方形,如图所示:,故选D .【名师点睛】本题考查了三视图的知识,俯视图是从物体的上面看得到的视图. 5.【答案】B【解析】该几何体的左视图只有一列,含有两个正方形.故选B .【名师点睛】此题主要考查了简单组合体的三视图,关键是掌握左视图所看的位置.6.【答案】C【解析】图①的三视图为:图②的三视图为:,故选C.【名师点睛】本题考查了由三视图判断几何体,解题的关键是学生的观察能力和对几何体三种视图的空间想象能力.7.【答案】A【解析】∵S主=x2+2x=x(x+2),S左=x2+x=x(x+1),∴俯视图的长为x+2,宽为x+1,则俯视图的面积S俯=(x+2)(x+1)=x2+3x+2,故选A.【名师点睛】本题主要考查由三视图判断几何体,解题的关键是根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状,以及几何体的长、宽、高.8.【答案】C【解析】几何体的主视图为:,故选C.【名师点睛】此题考查了简单组合体的三视图,主视图即为从正面看几何体得到的视图.9.【答案】D【解析】A.主视图为正方形,不合题意;B.主视图为长方形,不合题意;C.主视图为三角形,不合题意;D.主视图为圆,符合题意,故选D.【名师点睛】此题考查了简单几何体的三视图,解决此类图的关键是由三视图得到立体图形.10.【答案】C【解析】几何体的俯视图是:,故选C.【名师点睛】本题考查了三视图的知识,俯视图是从物体的正面看得到的视图.11.【答案】A【解析】将正方体①移走后,新几何体的三视图与原几何体的三视图相比,俯视图和左视图没有发生改变,故选A.【名师点睛】此题主要考查了简单组合体的三视图,根据题意正确掌握三视图的观察角度是解题关键.12.【答案】D【解析】由三视图可知:该几何体为圆锥.故选D.【名师点睛】考查了由三视图判断几何体的知识,解题的关键是具有较强的空间想象能力,难度不大.13.【答案】B【解析】根据正方体展开图的特征,选项A、C、D不是正方体展开图;选项B是正方体展开图.故选B.【名师点睛】此题主要考查了正方体的展开图,正方体展开图有11种特征,分四种类型,即:第一种:“1﹣4﹣1”结构,即第一行放1个,第二行放4个,第三行放1个;第二种:“2﹣2﹣2”结构,即每一行放2个正方形,此种结构只有一种展开图;第三种:“3﹣3”结构,即每一行放3个正方形,只有一种展开图;第四种:“1﹣3﹣2”结构,即第一行放1个正方形,第二行放3个正方形,第三行放2个正方形.14.【答案】B【解析】选项A和C带图案的一个面是底面,不能折叠成原几何体的形式;选项B能折叠成原几何体的形式;选项D折叠后下面带三角形的面与原几何体中的位置不同.故选B.【名师点睛】本题主要考查了几何体的展开图.解题时勿忘记正四棱柱的特征及正方体展开图的各种情形.注意做题时可亲自动手操作一下,增强空间想象能力.15.【答案】①②【解析】长方体主视图,左视图,俯视图都是矩形,圆柱体的主视图是矩形,左视图是矩形,俯视图是圆,圆锥的主视图、左视图是等腰三角形,俯视图是带有圆心的圆,故答案为:①②.【名师点睛】本题主要考查三视图的知识,熟练掌握常见几何体的三视图是解题的关键.16.【答案】E【解析】由题意知,底面是C,左侧面是B,前面是F,后面是A,右侧面是D,上面是E,故答案为:E.【名师点睛】考查了几何体的展开图,注意正方体的空间图形,从相对面入手,分析及解答问题.17.【答案】cm2【解析】该几何体是一个三棱柱,底面等边三角形的边长为2 cm,三棱柱的高为3,所以其左视图的面积为cm2),故答案为cm2.【名师点睛】本题考查了三视图,三视图是中考经常考查的知识内容,难度不大,但要求对三视图画法规则要熟练掌握,对常见几何体的三视图要熟悉.。

中考数学一轮复习学案第23讲-视图与投影

中考数学一轮复习学案第23讲-视图与投影

视图与投影【考纲要求】1.了解平行投影和中心投影的含义及其简单的应用.2.会画直棱柱、圆柱、圆锥、球的三视图,能判断简单物体的视图.3.能根据三视图描述基本几何体或实物原型,掌握简单几何体表面展开图.【命题趋势】投影与视图是中考的必考内容,主要考查几何体的三视图的判定,立体图形与它的三视图的互相转化,立体图形的展开图、投影等.题目难度不大,主要以选择题、填空题的形式出现.【考点探究】考点一、投影【例1】如图所示,在一间黑屋子里用一盏白炽灯照一个球,球在地面上的阴影的形状是一个圆,当把白炽灯向远移时,圆形阴影的大小的变化情况是()A.越来越小B.越来越大C.大小不变D.不能确定解析:白炽灯向远移时,两条光线的夹角度数变小,所以圆形的阴影也会跟着变小.答案:A方法总结投影问题在日常生活中随处可见,解答这类题时要注意分清本质(即是中心投影还是平行投影问题)及每种投影的特征.阳光下的影子为平行投影,在同一时刻两物体的影子应在同一方向上,并且物高与影长成正比;灯光下的影子为中心投影,影子应在物体背对光的一侧.触类旁通1 如图所示,位似图形由三角尺与其灯光照射下的中心投影组成,相似比为2:5,且三角尺的一边长为8 cm,则投影三角尺的对应边长为()其中,左视图是平行四边形的有()A.4个B.3个C.2个D.1个解析:圆柱的左视图是矩形、圆锥的左视图是三角形、棱柱的左视图是矩形、长方体的左视图是矩形,所以左视图是平行四边形的有3个.答案:B方法总结判断简单物体的三视图,要先搞清三视图的概念,再从三个方向仔细观察.三种视图的作用:主视图可以清晰地看到物体的长和高,主要提供正面的形状;左视图可以分清物体的宽度和高度;俯视图看不到物体的高度,但能分清物体的长和宽.触类旁通2 下面简单几何体的主视图是()考点三、和三视图有关的计算A .2πB .12π C .4π D .8π解析:先判断此几何体为圆锥,侧面展开图为扇形;再由三视图得到扇形母线长为4、弧长为圆锥底面圆的周长;最后运用公式S =12lR =12×2π×4=4π.答案: C方法总结 由三视图想象立体图形时,先分别根据主视图、俯视图和左视图想象立体图形的前面、上面和左侧面的局部形状,然后再综合起来考虑整体图形.触类旁通3 如图是一个正六棱柱的主视图和左视图,则图中的a =( )A .2 3B . 3C .2D .1 【经典考题】1. (2013四川)下图是小强用八块相同的小正方体搭建的一个积木,它的左视图是( )A.四棱锥B.四棱柱C.三棱锥D.三棱柱5.(2013梅州改编)春蕾数学兴趣小组用一块正方形木板在阳光下做投影实验,这块正方形木板在地面上形成的投影可能是__________(写出符合题意的两个图形即可).6.(2013呼和浩特)如图是某几何体的三视图及相关数据(单位:cm),则该几何体的侧面积为__________ cm2.7.(2013四川)从棱长为2的正方体毛坯的一角,挖去一个棱长为1的小正方体,得到一个如图所示的零件,则这个零件的表面积是__________.【模拟预测】1.如图所示,空心圆柱的左视图是()2.将“创建文明城市”六个字分别写在一个正方体的六个面上,这个正方体的平面展开图如图所示,那么在这个正方体中,和“创”相对的字是()A.文B.明C.城D.市3.在下列几何体中,主视图、左视图与俯视图都是相同的圆,该几何体是()4.如图所示是由一些大小相同的小立方体组成的几何体的主视图和左视图,则组成这个几何体的小立方体的个数不可能是()A.3 B.4 C.5 D.65.如图,正方形ABCD的边长为3,以直线AB为轴,将正方形旋转一周,所得几何体的主视图的周长是__________.6.如图是由若干个大小相同的小正方体堆砌而成的几何体,那么其三种视图中面积最小的是__________.7.如图,小明在A时测得某树的影长为2 m,B时又测得该树的影长为8 m,若两次日照的光线互相垂直,则树的高度为__________m.8.小明想利用太阳光测量楼高,他带着皮尺来到一栋楼下,发现对面墙上有这栋楼的影子,针对这种情况,他设计了一种测量方案,具体测量情况如下:如示意图,小明边移动边观察,发现站到点E处时,可以使自己落在墙上的影子与这栋楼落在墙上的影子重叠,且高度恰好相同.此时,测得小明落在墙上的影子高度CD=1.2 m,CE=0.8 m,CA=30 m(点A,E,C在同一直线上).已知小明的身高EF是1.7 m,请你帮小明求出楼高AB(结果精确到0.1 m).参考答案【考点探究】触类旁通1.B触类旁通2.C几何体主视图的确定,可通过从正面观察它的列数,及每列最高的块数.这个几何体从正面看有3列,从左到右每列最高块数分别为2,1,1,故选C.触类旁通3.B 【经典考题】1.D 左视图从左往右,2列正方形的个数依次为2,1, 依此画出图形.故选D.2.A 由主视图知长为4,高为1,由俯视图知长为4,宽为3,则左视图宽为3,高为1,则其面积为3.3.C ①的俯视图是,②的俯视图是,③的俯视图是,④的俯视图是,故选C.4.D 由于主视图和左视图为长方形可得此几何体为柱体,由俯视图为三角形,可得为棱柱体,所以这个几何体是三棱柱.5.正方形、菱形(答案不唯一)6.2π 因为根据三视图可知该几何体为圆锥,且高为3cm ,母线长为2 cm ,底面圆的直径为2 cm ,则周长即侧面展开图的弧长为2π cm ,所以侧面积为12×2π×2=2π(cm 2).7.24 挖去一个棱长为1 cm 的小正方体,得到的图形与原图形表面积相等,则表面积是2×2×6=24.故答案为24. 【模拟预测】1.C2.B 因“创”和“建”与“文”相连,有公共顶点,故先排除;再根据不相邻左右或上下相对,知“创”与“明”相对.3.A 4.D 5.18 6.左视图 7.48.解:如图,过点D 作DG ⊥AB ,分别交AB ,EF 于点G ,H ,则EH =AG =CD =1.2, DH =CE =0.8,DG =CA =30. ∵EF ∥AB ,∴FHBG=DHDG.由题意,知FH=EF-EH=1.7-1.2=0.5.∴0.5BG=0.830,解得BG=18.75.∴AB=BG+AG=18.75+1.2=19.95≈20.0,∴楼高AB约为20.0米.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

视图与投影
【考纲要求】
1.了解平行投影和中心投影的含义及其简单的应用.
2.会画直棱柱、圆柱、圆锥、球的三视图,能判断简单物体的视图.
3.能根据三视图描述基本几何体或实物原型,掌握简单几何体表面展开图.
【命题趋势】
投影与视图是中考的必考内容,主要考查几何体的三视图的判定,立体图形与它的三视图的互相转化,立体图形的展开图、投影等.题目难度不大,主要以选择题、填空题的形式出现.
【考点探究】
考点一、投影
【例1】如图所示,在一间黑屋子里用一盏白炽灯照一个球,球在地面上的阴影的形状是一个圆,当把白炽灯向远移时,圆形阴影的大小的变化情况是()
A.越来越小B.越来越大
C.大小不变D.不能确定
解析:白炽灯向远移时,两条光线的夹角度数变小,所以圆形的阴影也会跟着变小.答案:A
方法总结投影问题在日常生活中随处可见,解答这类题时要注意分清本质(即是中心投影还是平行投影问题)及每种投影的特征.阳光下的影子为平行投影,在同一时刻两物体的影子应在同一方向上,并且物高与影长成正比;灯光下的影子为中心投影,影子应在物体背对光的一侧.
触类旁通1 如图所示,位似图形由三角尺与其灯光照射下的中心投影组成,相似比为2:5,且三角尺的一边长为8 cm,则投影三角尺的对应边长为()
其中,左视图是平行四边形的有()
A.4个B.3个C.2个D.1个
解析:圆柱的左视图是矩形、圆锥的左视图是三角形、棱柱的左视图是矩形、长方体的左视图是矩形,所以左视图是平行四边形的有3个.
答案:B
方法总结判断简单物体的三视图,要先搞清三视图的概念,再从三个方向仔细观察.三种视图的作用:主视图可以清晰地看到物体的长和高,主要提供正面的形状;左视图可以分清物体的宽度和高度;俯视图看不到物体的高度,但能分清物体的长和宽.触类旁通2 下面简单几何体的主视图是()
考点三、和三视图有关的计算
A .2π
B .1
2
π C .4π D .8π
解析:先判断此几何体为圆锥,侧面展开图为扇形;再由三视图得到扇形母线长为4、弧长为圆锥底面圆的周长;最后运用公式S =12lR =1
2
×2π×4=4π.
答案: C
方法总结 由三视图想象立体图形时,先分别根据主视图、俯视图和左视图想象立体图形的前面、上面和左侧面的局部形状,然后再综合起来考虑整体图形.
触类旁通3 如图是一个正六棱柱的主视图和左视图,则图中的a =( )
A .2 3
B . 3
C .2
D .1 【经典考题】
1. (2013四川)下图是小强用八块相同的小正方体搭建的一个积木,它的左视图是( )
A.四棱锥B.四棱柱
C.三棱锥D.三棱柱
5.(2013梅州改编)春蕾数学兴趣小组用一块正方形木板在阳光下做投影实验,这块正方形木板在地面上形成的投影可能是__________(写出符合题意的两个图形即可).6.(2013呼和浩特)如图是某几何体的三视图及相关数据(单位:cm),则该几何体的侧面积为__________ cm2.
7.(2013四川)从棱长为2的正方体毛坯的一角,挖去一个棱长为1的小正方体,得到一个如图所示的零件,则这个零件的表面积是__________.
【模拟预测】
1.如图所示,空心圆柱的左视图是()
2.将“创建文明城市”六个字分别写在一个正方体的六个面上,这个正方体的平面展开图如图所示,那么在这个正方体中,和“创”相对的字是()
A.文B.明C.城D.市
3.在下列几何体中,主视图、左视图与俯视图都是相同的圆,该几何体是()
4.如图所示是由一些大小相同的小立方体组成的几何体的主视图和左视图,则组成这个几何体的小立方体的个数不可能是()
A.3 B.4 C.5 D.6
5.如图,正方形ABCD的边长为3,以直线AB为轴,将正方形旋转一周,所得几何体的主视图的周长是__________.
6.如图是由若干个大小相同的小正方体堆砌而成的几何体,那么其三种视图中面积最小的是__________.
7.如图,小明在A时测得某树的影长为2 m,B时又测得该树的影长为8 m,若两次日照的光线互相垂直,则树的高度为__________m.
8.小明想利用太阳光测量楼高,他带着皮尺来到一栋楼下,发现对面墙上有这栋楼的影子,针对这种情况,他设计了一种测量方案,具体测量情况如下:
如示意图,小明边移动边观察,发现站到点E处时,可以使自己落在墙上的影子与这栋楼落在墙上的影子重叠,且高度恰好相同.此时,测得小明落在墙上的影子高度CD=1.2 m,CE=0.8 m,CA=30 m(点A,E,C在同一直线上).
已知小明的身高EF是1.7 m,请你帮小明求出楼高AB(结果精确到0.1 m).
参考答案
【考点探究】
触类旁通1.B
触类旁通2.C几何体主视图的确定,可通过从正面观察它的列数,及每列最高的块数.这个几何体从正面看有3列,从左到右每列最高块数分别为2,1,1,故选C.
触类旁通3.B 【经典考题】
1.D 左视图从左往右,2列正方形的个数依次为2,1, 依此画出图形.
故选D.
2.A 由主视图知长为4,高为1,由俯视图知长为4,宽为3,则左视图宽为3,高为1,则其面积为3.
3.C ①的俯视图是,②的俯视图是
,③的俯视图是
,④的俯视图是
,故选C.
4.D 由于主视图和左视图为长方形可得此几何体为柱体,由俯视图为三角形,可得为棱柱体,所以这个几何体是三棱柱.
5.正方形、菱形(答案不唯一)
6.2π 因为根据三视图可知该几何体为圆锥,且高为3cm ,母线长为2 cm ,底面圆的直径为2 cm ,则周长即侧面展开图的弧长为2π cm ,所以侧面积为1
2
×2π×2=2π(cm 2).
7.24 挖去一个棱长为1 cm 的小正方体,得到的图形与原图形表面积相等,则表面积是2×2×6=24.
故答案为24. 【模拟预测】
1.C
2.B 因“创”和“建”与“文”相连,有公共顶点,故先排除;再根据不相邻左右或上下相对,知“创”与“明”相对.
3.A 4.D 5.18 6.左视图 7.4
8.解:如图,过点D 作DG ⊥AB ,分别交AB ,EF 于点G ,H ,则
EH =AG =CD =1.2, DH =CE =0.8,DG =CA =30. ∵EF ∥AB ,
∴FH
BG=
DH
DG.
由题意,知FH=EF-EH=1.7-1.2=0.5.
∴0.5
BG=
0.8
30,解得BG=18.75.
∴AB=BG+AG=18.75+1.2=19.95≈20.0,∴楼高AB约为20.0米.。

相关文档
最新文档