(八年级数学教案)最简二次根式

合集下载

八年级数学二次根式教学设计6篇

八年级数学二次根式教学设计6篇

八年级数学二次根式教学设计6篇二次根式的混合运算(1)教学目的:会进行二次根式的加减、乘混合运算。

重点:二次根式的加减乘混合运算。

难点:运算法则的综合运用。

关键:掌握混合运算顺序和步骤。

教学过程:复习提问:1.叙述二次根式加减法的两个步骤。

2.填空:当a≥0,b≥0时,;3.叙述单项式乘以多项式运算顺序;4.叙述多项式乘以多项式的运算法则。

二次根式的乘法:(a≥0,b≥0)二次根式的除法:(a≥0,b>0)新课:形如的式子,表示什么?a需要满足什么条件?根据平方根的定义,当a≥0时,表示a的算术平方根,是一个非负数,它的平方等于a;当a16.1第一课时二次根式的概念教学目标:1、解决实际问题,体会学习二次根式是实际的需要。

2、通过二次根式概念的学习,经历观察、概括的思维过程,理解二次根式的概念。

3、通过二次根式概念的建立,理解二次根式中被开方数中字母的取值范围。

教学重点:二次根式概念的理解。

教学难点:二次根式概念的理解。

教学方法:自主学习问题启发相结合。

教学手段:多媒体课件、学案。

教学过程:一、复习1、式子(﹣3)2中,-3叫2叫2、求数4,5,10,49,0的平方根和算术平方根,4的立方根是3、-4有没有算术平方根?我们已经学习了平方根和算术平方根的定义,引进了一个新的符号word/media/image1_1.png。

今天我们学习一个和前面的算术平方根有关的知识:二次根式2、探究定义1、观察:完成课本第二页“思考”的内容。

观察word/media/image2_1.png,word/media/image3_1.png,word/media/image4_1.png,word/media/image5_1.png这些式子在形式上有什么共同特点?2、思考:(1)都含有word/media/image1_1.png(2)被开方数都是非负数(S表示面积,h是高度。

)。

3、归纳:二次根式的定义形如word/media/image6_1.png(a≥0)的式子叫作二次根式,根号下的数叫作被开方数。

二次根式教案(优秀8篇)

二次根式教案(优秀8篇)
(二)、探索新知:
本环节通过1个引题,2个例题的活动达到让学生学会从实际问题中抽象出中心对称的基本性质,并会用二次根式的加减法则解决有关实际问题。既培养了学生的观察能力,又培养了学生的有理有据的作图能力。
(三)、巩固练习:
在此环节中,利用课后的练习和选取的课外习题来巩固二次根式的加减,来达到突出重点的目的。
(三)教学手段
采用多媒体教学,通过直观演示图象,更好地教会学生“二次根式的加减的研究方法,同时通过多媒体辅助手段展示教学内容,扩大课堂容量,提高教学效率。
六、说教学过程的设计:
本课共分为五个环节:
(一)、复习引入新课:
利用"同类二次根式的"引入,激发学生好奇心和求知欲,创设情景,旨在引出新课题。既达到了复习的目的,又引出了新课。
(注:合作学习阶段与集体讲授阶段可以根据授课内容进行适当调整次序或交叉进行)
三、课后作业(课后作业见附件2)
教师发放根据本节课所学内容制定的针对性作业,以帮助学生进一步巩固提高课堂所学。
四、板书设计
课题:二次根式(1)
二次根式概念例题例题
二次根式性质
反思:
次根式教案篇六
第十六章二次根式
代数式用运算符号把数和表示数的字母连接起来的式子叫代数式①式子中不能出现“=,≠,≥,≤,”;②单个的数字或单个的字母也是代数式
2、会运用积和商的算术平方根的性质,把一个二次根式化为最简二次根式。
教学重点
最简二次根式的定义。
教学难点
一个二次根式化成最简二次根式的方法。
教学过程
一、复习引入
1、把下列各根式化简,并说出化简的根据:
2、引导学生观察考虑:
化简前后的根式,被开方数有什么不同?
化简前的被开方数有分数,分式;化简后的被开方数都是整数或整式,且被开方数中开得尽方的因数或因式,被移到根号外。

二次根式教学设计(通用15篇)

二次根式教学设计(通用15篇)

二次根式教学设计〔通用15篇〕篇1:二次根式教学设计【知识与技能】1.理解二次根式的概念,并利用〔a≥0〕的意义解答详细题目.2.理解〔a≥0〕是非负数和( )2=a.3.理解 =a〔a≥0〕并利用它进展计算和化简.【过程与方法】1.提出问题,根据问题给出概念,应用概念解决实际问题.2.通过复习二次根式的概念,用逻辑推理的方法推出〔a≥0〕是一个非负数,用详细数据结合算术平方根的意义导出( )2=a〔a≥0〕,最后运用结论严谨解题.3.通过详细数据的解答,探究并利用这个结论解决详细问题.【情感态度】通过详细的数据体会从特殊到一般、分类的数学思想,理解二次根式的概念及二次根式的有关性质.【教学重点】1.形如〔a≥0〕的式子叫做二次根式.2. 〔a≥0〕是一个非负数;( )2=a〔a≥0〕及其运用.【教学难点】利用“ 〔a≥0〕”解决详细问题.关键:用分类思想的方法导出a〔a≥0〕是一个非负数;用探究的方法导出一、情境导入,初步认识回忆:当a是正数时,表示a的算术平方根,即正数a的正的平方根.当a是零时,等于0,它表示零的平方根,也叫做零的.算术平方根.当a是负数时,没有意义.【教学说明】通过对算术平方根的回忆引入二次根式的概念.二、考虑探究,获取新知概括:〔a≥0〕表示非负数a的算术平方根,也就是说,〔a≥0〕是一个非负数,它的平方等于a.即有:〔1〕≥0;〔2〕( )2=a〔a≥0〕.形如〔a≥0〕的式子叫做二次根式.注意:在中,a的取值必须满足a≥0,即二次根式的被开方数必须是非负数.考虑:等于什么?我们不妨取a的一些值,如2,-2,3,-3等,分别计算对应的的值,看看有什么规律.概括:当a≥0时, =a;当a<0时, =-a.三、运用新知,深化理解1.x取什么实数时,以下各式有意义?2.计算以下各式的值:【教学说明】可由学生抢答完成,再由老师总结归纳.四、师生互动,课堂小结1.师生共同回忆二次根式的概念及有关性质:〔1〕( )2=a〔a≥0〕;〔2〕当a≥0时, =a;当a<0时, =-a.2.通过这节课的学习,你掌握了哪些新知识,还有哪些疑问?请与同伴交流.【教学说明】老师引导学生回忆知识点,让学生大胆发言,进展知识提炼和知识归纳.1.布置作业:从教材相应练习和“习题21.1”中选取.2.完成练习册中本课时练习的“课时作业”局部.本节课从复习算术平方根入手引入二次根式的概念,再通过特殊数据的计算,理解二次根式的有关性质,经历观察、归纳、分类讨论等思维过程,从中获得数学知识与技能,体验教学活动的方法.篇2:二次根式乘法教学设计两个含有二次根式的代数式相乘,假如他们的积不含有二次根式,那么这两个代数式叫做互为有理化因式。

数学最简二次根式教案(精选7篇)

数学最简二次根式教案(精选7篇)

数学最简二次根式教案(精选7篇)最简二次根式篇一教学建议1.教材分析本节是在前两节的基础上,从实际运算的客观需要出发,引出的概念,然后通过一组例题介绍了化简二次根式的方法。

本小节内容比较少(求学生了解的概念并掌握化简二次根式的方法),但是本节知识在全章中却起着承上启下的重要枢纽作用,二次根式性质的应用、二次根式的化简以及二次根式的运算都需要来联接。

(1)知识结构(2)重难点分析①本节的重点Ⅰ.概念Ⅰ.利用二次根式的性质把二次根式化简为。

重点分析本章的主要内容是二次根式的性质和运算,但自始至终围绕着二次根式的化简和运算。

二次根式化简的最终目标就是;而二次根式的运算则是合并同类二次根式,怎样判定同类二次根式,是在化简为的基础上进行的。

因此本节以二次根式的概念和二次根式的性质为基础,内容虽然简单,在本章中却起着穿针引线的作用,教师在教学中应给于极度重视,不可因为内容简单而采取弱化处理;同时初二学生代数成绩的分化一般是由本节开始的,分化的根本原因就是对概念理解不够深刻,遇到相关问题不知怎样操作,具体操作到哪一步。

②本节的难点是化简二次根式的方法与技巧。

难点分析化简二次根式,实际上是二次根式性质的综合运用。

化简二次根式的过程,一般按以下步骤:把根号下的带分数或绝对值大于1的小数化成假分数,把绝对值小于1的小数化成分数;被开方数是多项式的要因式分解;使被开放数不含分母;将被开方数中能开的尽方的因数或因式用它的算术平方根代替后移到根号外面;化去分母中的根号;约分。

所以对初学者来说,这一过程容易出现符号和计算出错的问题。

熟练掌握化简二次根式的方法与技巧,能够进一步开拓学生的解题思路,提高学生的解题能力。

③重难点的解决办法是对于这一概念,并不要求学生能否背出定义,关键是遇到实际式子能够加以判断。

因此建议在教学过程中对概念本身采取弱化处理,让学生在反复练习中熟悉这个概念;同时教学中应充分对概念理解后应用具体的实例归纳总结出把一个二次根式化为的方法,在观察对比中引导学生总结具体解决问题的方法技巧。

初高衔接数学教案1:最简二次根式及分母有理化

初高衔接数学教案1:最简二次根式及分母有理化

(一)教材分析《最简二次根式及分母有理化》是北师大版八年级数学上册第二章《实数》部分的内容之一。

教材中没有直接给出最简二次根式及分母有理化的概念,这样的编排对学生学习这部分内容有一定困难。

《最简二次根式及分母有理化》是二次根式运算的重要组成部分,它在二次根式的运算中起着承上启下的作用,就此内容我们作了深入细致的研究。

在初二的教学中可以将它放在《二次根式2a的化简》及《二次根式的乘除法》之后,为本课的学习提供了方法技能基础,同时它又是后面学习较复杂二次根式的混合运算的根本。

从初中代数的学习来看,该部分是初中代数中进行数式运算的一个重要课题,也是提高学生运算能力的好时机。

这里培养起来的实数的运算能力不仅会影响学生代数部分的后继学习,同时在几何的学习中起着举足轻重的作用。

(二)学情分析知识方面:学生会分解质因数,能对2a、2)(a进行化简,已经掌握的《二次根式的乘除法》及二次根式的性质都为本节课的学习作好了充分而必要的知识铺垫。

就知识掌握情况而言,仍有部分学生对公式感觉较抽象,运用起来还不太熟练。

能力方面:学习能力强一点的同学已经拥有一定的知识迁移能力,归纳能力和较强的合作交流能力。

心理方面:初二的学生经过一年的培养,能够有序地进行小组合作学习。

初二的学生好胜心较强,有较强的自主意识,能对知识是非进行分辨。

(三)教学目标知识与技能目标:1.能判断所给的二次根式是否是最简二次根式;2.能把所给的二次根式化为最简二次根式;3.能进行分母有理化。

过程与方法目标:让学生经历二次根式化简的过程,体验数学的简洁美。

通过一题多解使学生体会数学中的最优、最简思想,感受数学计算的魅力。

情感态度与价值观目标:通过本节课的学习让学生体验学习的乐趣,增强学生对学习的信心。

(四) 教学重、难点教学重点:化二次根式为最简二次根式及分母有理化。

理由是:能把所给的二次根式化为最简二次根式及分母有理化既是学生前面所学过的二次根式的乘除运算的具体应用,又是后面学习二次根式的加减之根本;在实数的计算中起着至关重要的作用。

人教版数学八年级下册16章《二次根式》单元整体教学设计

人教版数学八年级下册16章《二次根式》单元整体教学设计
3.互动评价:鼓励学生互相批改、评价,共同进步。
(五)总结归纳
在总结归纳环节,我将引导学生回顾本节课所学内容,总结二次根式的性质、化简方法和运算规则。
1.回顾总结:请学生回顾本节课所学的内容,总结二次根式的性质、化简方法和运算规则。
2.归纳提升:引导学生发现数学规律,提高数学思维能力。
3.反馈评价:教师对学生的学习情况进行反馈,给予鼓励和指导,激发学生的学习动力。
-学会化简二次根式,包括分解质因数、提取平方因子等方法,使二次根式达到最简形式。
2.学会解决实际问题中涉及二次根式的计算,如长度、面积和体积的计算等。
-能够将实际问题转化为数学问题,建立二次根式相关的数学模型。
-运用二次根式的运算方法解决实际问题,培养将数学知识应用于实际生活的能力。
3.了解二次根式在几何图形中的应用,如勾股定理等。
4.运算讲解:详细讲解二次根式的乘除法运算规则,通过例题使学生熟练掌握运算方法。
(三)学生小组讨论
在小组讨论环节,我将组织学生进行合作学习,共同探讨二次根式的性质、化简和运算规则。
1.分组讨论:将学生分成若干小组,每组选一个组长,负责组织讨论。
2.讨论主题:每组针对二次根式的性质、化简方法和运算规则进行讨论,探讨解决实际问题的方法。
3.拓展应用:
-探究题:让学生自主探索二次根式在几何图形中的其他应用,如圆的面积、体积计算等,并撰写探究报告。
-研究性学习:小组合作,选择一个与二次根式相关的研究主题,如二次根式在建筑、工程中的应用,进行深入研究,并制作PPT进行课堂分享。
-数学阅读:推荐阅读相关数学历史资料,了解二次根式的历史背景和发展过程,拓宽学生的数学视野。
五、作业布置
为了巩固学生对二次根式的理解和应用,作业布置将包括基础巩固、能力提升和拓展应用三个层次,确保学生在课后能够自主复习、巩固所学知识,并提高解决问题的能力。

二次根式全章教案(8课时)

二次根式全章教案(8课时)

初二数学二次根式全章教案授课时间:年月日第周星期课时序号一、课前导学:学生自学课本2-3页内容,并完成下列问题 1. 温故而知新:(1)如果一个数x 的平方等于a ,即2x =a ,那么x 叫做a 的,记为x =,(2)如果一个非负数x 的平方等于a ,即2x =a (0≥x ),那么非负数x 叫做a 的,记为x =, (3)计算下列各式的值:=,=,=,=,=,2)9(=,2.一般地我们把形如()叫做二次根式,a 叫做_____________, 3. 试一试:判断下列各式,哪些是二次根式?哪些不是?为什么?3, 16-, 34, )0(3≥a a , 12+x4.根据算术平方根意义计算 :(1) 2)4( (2)(3)2)5.0( (4)2)31(根据计算结果,你能得出结论: (0≥a ), 5.计算:(1)2)23( (2)2)52(- 二、合作、交流、展示: 1.理解二次根式概念(1)二次根式a 中,字母a 必须满足 ; (2)二次根式与算术平方根有何关系呢? (3)当0≥a 时,a 是什么数?教 学 过 程 设 计2)3(________)(2=a【归纳】二次根式的双重非负性: 2.当x 取何值时,下列各二次根式有意义(1); (2)x 322- (3)2)2(-x (4)x--21 3.若,则= ,4.已知,求xy的值.【收获感悟】:, 三、巩固与应用1. 若x -在实数范围内有意义,则x 为(), A.正数 B.负数 C.非负数 D.非正数2.当x 时,二次根式x 35-有意义,3. 在式子xx+-121中,x 的取值范围是____________.4.在实数范围内因式分解:①72-x ② 4a 2-115a 的值为___________. 6.已知42-x +y x +2=0,则=-y x _____________. 7.已知+3,求y x 的值.8.拓展提高:已知a 、b =b +4,求a 、b 的值.四、小结:1.二次根式的概念:; 2.二次根式的性质:(1),(2); 3.巧用非负数解题. 五、作业:《作业本》第1页. 六、课后反思:授课时间: 年 月 日 第 周 星 期 课时序号 43-x 20a -2a b -一、课前导学:学生自学课本第4页内容,并完成下列问题 1.计算:=24=23.0=2)52(=20观察其结果与根号内幂底数的关系,归纳得到:当=≥2,0a a 时2.计算:=-2)4(=-2)3.0(=-2)52(=-2)20( 观察其结果与根号内幂底数的关系,归纳得到:当=<2,0a a 时 3.【归纳】二次根式的性质:=2a = 4.化简下列各式:(1)=22.0(2)=-2)3.0( (3)=-2)4( (4)()22a =(0<a )5.代数式:用基本运算符号把连接起来的式子叫做代数式. 二、合作、交流、展示:1.理解二次根式三条基本性质: (1)双重非负性:a 0() (2)()=2a () (3) =2a2.【讨论】二次根式的性质:)0()(2≥=a a a 与a a =2有什么区别与联系?教 学 过 程 设 计3.化简下列各式(1))0(42≥x x (2) 4x (3))3()3(2≥-a a4.已知2<x <3,化简:3)2(2-+-x x5.已知a 、b 、c 在数轴上的位置如图所示,化简b b c c a a ---++-22)(.三、巩固与应用 1. 课本第4页练习2; 2.2)4(-π= ;3.a 、b 、c 为三角形的三条边,则=--+-+c a b c b a 2)(________; 4.你能运用公式a a =2比较53与34的大小吗?5.当x = 6.拓展提高:(1)已知0<x <1,化简:4)1(2+-xx -4)1(2-+xx(2)已知实数a 满足a a a =-+-2014)2013(2,求22013-a 的值.四、小结:1.二次根式的性质:,,;2.灵活运用二次根式的性质解题. 五、作业:《作业本》第2页. 六、课后反思:授课时间: 年 月 日 第 周 星 期 课时序号一、课前导学:学生自学课本6-7页内容,并完成下列问题1、探究 ⑴ 计算下列各式,观察计算结果:①×=______ ,=_______ ② × =_______ ,=_______ ③ × =_______ , =_______ ⑵ 仔细观察上题中的规律,猜想b a ∙=()0,0≥≥b a (二次根式乘法法则)再例举两个例子验证你的猜想:; 2、计算× =;×= ;274∙= ;123∙=3、乘法公式反过来得到:=ab ()0,0≥≥b a ,4、填空:⑴=∙=⨯=24248;=∙=⨯=292918;⑵请你用上述方法化简下列二次根式: 12=; 27=; 48=; 72=; 98=; 250x =;二、合作、交流、展示:1.二次根式的乘法法则:b a ∙=,注意:乘法法则成立的条件是: (为什么?)2、积的算术平方根的性质(乘法法则的逆向运用)=ab 注意:⑴性质成立的条件是:(为什么?) ⑵如何化简:()()94-⨯-?4994⨯16252516⨯1003636100⨯23563、例题1 计算:⑴3127⨯ ⑵4510152⨯ ⑶1531372⨯-例题2 化简:⑴()()8116-⨯- ⑵3225b a ⑶4499ab ⑷【收获感悟】:如何进行二次根式的化简,例题3 计算:⑴714⨯ ⑵10253⨯ ⑶ xy x 31122⨯-三、巩固与应用 1、等式成立的条件是( )A .x ≥1B .x ≥-1C .-1≤x ≤1D .x ≥1或x ≤-12、下列各等式成立的是( ). A.4×2=8B .5×4=20 C.5×2=10 D .y x y x +=+224、不改变式子的值,把根号外的数移到根号里面: ⑴=32 ; ⑵313=;⑶ -=62 5、比较下列两数的大小:⑴227 ⑵347 ⑶23-32-6、已知一个三角形的一条边长为502,这条边上的高为83,求这个三角形的面积.7、计算:(1)6×(-2); (28、(拓展)化简⑴a a 1 ⑵aa 1-四、小结:1.二次根式的乘法法则:; 2.积的算术平方根的性质:, 五、作业:《作业本》第3页. 六、课后反思:授课时间: 年 月 日 第 周 星 期 课时序号 2212b a 1112-=-∙+x x x 55532532686一、课前导学:学生自学课本第8-9页内容,并完成下列问题 1、写出二次根式的乘法法则和积的算术平方根的性质b a ∙=,=ab2、计算: (1)38×(-46) (2)3612ab ab ⨯3、填空: (1;(2; (3;(4.你能发现什么规律呢?一般地,对二次根式的除法规定:二次根式的除法法则商的算术平方根的性质 4、计算:(1)312(2)16141÷5、化简:(1)257(2)932(3))0,0(42522≥>b a a b 二、合作、交流、展示:仿照课本例题利用二次根式的除法法则和商的算术平方根的性质完成以下题目1、计算:(1(2(3)52154【温馨提示】:当二次根式前面有系数时,类比单项式除以单项式法则进行计算:即系数之商作为商的系数,教 学 过 程 设 计被开方数之商为被开方数。

二次根式教案(精选10篇)

二次根式教案(精选10篇)

二次根式教案(精选10篇)二次根式教案 1一、教学目标1、使学生能够利用积的算术平方根的性质进行二次根式的化简与运算。

2、会进行简单的二次根式的乘法运算。

3、使学生能联系几何课中学习的勾股定理解决实际问题。

二、教学重点和难点1、重点:会利用积的算术平方根的性质化简二次根式。

2、难点:二次根式的乘法与积的算术平方根的关系及应用。

重点难点分析:本节的教学重点是利用积的算术平方根的性质进行二次根式的计算和化简。

积的算术平方根的性质是本节的中心内容,化简和运算都是围绕其进行的,而运用此性质计算化简又是二次根式的化简和混合运算的基础。

二次根式的计算和化简通常与如勾股定理等几何方面的知识综合在一起。

本节难点是二次根式的乘法与积的算术平方根的关系及应用。

积的算术平方根在应用时既要强调这部分题目中的字母为正数,但又要注意防止学生产生字母只表示正数的片面认识。

要让学生认识到积的算术平方根性质与根式的乘法公式是互为逆运算的关系。

综合应用性质或乘法公式时要注意题目中的条件一定要满足。

三、教学方法从特殊到一般总结归纳的方法,类比的方法,讲授与练习结合法。

1、由于性质、法则和关系式较集中,在二次根式的计算、化简和应用中又相互交错,综合运用,因此要使学生在认识过程中脉络清楚,条理分明,在教学时就一定要逐步有序的展开。

在讲解二次根式的乘法时可以结合积的算术平方根的性质,让学生把握两者的关系。

2、积的算术平方根的.性质和__及比较大小等内容都可以通过从特殊到一般的归纳方法,让学生通过计算一组具体的式子,引导他们做出一般的结论。

由于归纳是通过对一些个别的、特殊的例子的研究,从表象到本质,进而猜想出一般的结论,这种思维过程对于初中学生认识、研究和发现事物的规律有着重要的作用,所以在教学中对于培养的思维品质有着重要的作用。

四、教学手段利用投影仪。

五、教学过程(一)引入新课观察例子得到结果类似地可以得到:由上一节知道一般地,有=(a,b)通过上面的例子,大家会发现=(a,b)也成立(二)新课积的算术平方根。

二次根式教案优秀3篇

二次根式教案优秀3篇

二次根式教案优秀3篇次根式教案篇一教学目的1.使学生掌握最简二次根式的定义,并会应用此定义判断一个根式是否为最简二次根式;2.会运用积和商的算术平方根的性质,把一个二次根式化为最简二次根式。

教学重点最简二次根式的定义。

教学难点一个二次根式化成最简二次根式的方法。

教学过程一、复习引入1.把下列各根式化简,并说出化简的根据:2.引导学生观察考虑:化简前后的根式,被开方数有什么不同?化简前的被开方数有分数,分式;化简后的被开方数都是整数或整式,且被开方数中开得尽方的因数或因式,被移到根号外。

3.启发学生回答:二次根式,请同学们考虑一下被开方数符合什么条件的二次根式叫做最简二次根式?二、讲解新课1.总结学生回答的内容后,给出最简二次根式定义:满足下列两个条件的二次根式叫做最简二次根式:(1)被开方数的因数是整数,因式是整式;(2)被开方数中不含能开得尽的因数或因式。

最简二次根式定义中第(1)条说明被开方数不含有分母;分母是1的例外。

第(2)条说明被开方数中每个因式的指数小于2;特别注意被开方数应化为因式连乘积的形式。

2.练习:下列各根式是否为最简二次根式,不是最简二次根式的说明原因:3.例题:例1把下列各式化成最简二次根式:例2把下列各式化成最简二次根式:4.总结把二次根式化成最简二次根式的根据是什么?应用了什么方法?当被开方数为整数或整式时,把被开方数进行因数或因式分解,根据积的算术平方根的性质,把开得尽方的因数或因式用它的算术平方根代替移到根号外面去。

当被开方数是分数或分式时,根据分式的基本性质和商的算术平方根的性质化去分母。

此方法是先根据分式的基本性质把被开方数的分母化成能开得尽方的因式,然后分子、分母再分别化简。

三、巩固练习1.把下列各式化成最简二次根式:2.判断下列各根式,哪些是最简二次根式?哪些不是最简二次根式?如果不是,把它化成最简二次根式。

四、小结本节课学习了最简二次根式的定义及化简二次根式的方法。

人教版数学八年级下册第16章二次根式知识与小结教案

人教版数学八年级下册第16章二次根式知识与小结教案
4.数学思维:通过二次根式的学习,发展学生的数学思维能力,培养严谨、缜密的思维品质;
5.合作交流:在小组讨论与合作中,培养学生表达、倾听、协作的能力,提高沟通与交流素养。
三、教学难点与重点
1.教学重点
(1)二次根式的定义与性质:理解二次根式的概念,掌握二次根式的基本性质,如乘除法、加减法的运算规则。
(2)最简二次根式的化简:学会将复杂二次根式化简为最简形式,理解化简的步骤和技巧。
举例:化简二次根式$\sqrt{18}$,得出最简形式$\sqrt{18} = 3\sqrt{2}$。
(3)二次根式的混合运算:掌握二次根式的乘除、加减运算,能解决混合运算问题。
举例:计算$\sqrt{3} \cdot \sqrt{12} + \sqrt{27} - \sqrt{8}$,并得出结果。
最后,我注意到在总结回顾环节,有些学生对二次根式的知识点仍然存在疑问。为了帮助学生更好地巩固所学知识,我计划在课后加强个别辅导,针对学生的疑问进行解答,确保他们能够真正掌握二次根式的相关知识。
3.重点难点解析:在讲授过程中,我会特别强调二次根式的乘除运算和最简二次根式的化简这两个重点。对于难点部分,我会通过举例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与二次根式相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,如利用二次根式计算不同形状的面积。
五、教学反思
在本次教学过程中,我发现学生们对二次根式的概念和性质掌握得还算不错,但在具体的运算和应用上,部分学生还存在一定的困难。我想针对以下几个方面进行反思:
首先,关于二次根式的乘除运算,我觉得我在讲授过程中可能没有讲得足够细致,导致部分学生在运算时出现错误。在今后的教学中,我需要更加关注这一部分,通过更多例题和练习,帮助学生熟练掌握乘除运算的规则。

(八年级数学教案)二次根式的知识点总结

(八年级数学教案)二次根式的知识点总结

二次根式的知识点总结八年级数学教案【知识回顾】1.二次根式:式子( ≥0)叫做二次根式。

2.最简二次根式:必须同时满足下列条件:⑴被开方数中不含开方开的尽的因数或因式; ⑵被开方数中不含分母; ⑶分母中不含根式。

3.同类二次根式:二次根式化成最简二次根式后,若被开方数相同,则这几个二次根式就是同类二次根式。

4.二次根式的性质:(1)( )2= ( ≥0); (2)5.二次根式的运算:(1)因式的外移和内移:如果被开方数中有的因式能够开得尽方,那么,就可以用它的算术根代替而移到根号外面;如果被开方数是代数和的形式,那么先解因式,•变形为积的形式,再移因式到根号外面,反之也可以将根号外面的正因式平方后移到根号里面.(2)二次根式的加减法:先把二次根式化成最简二次根式再合并同类二次根式.(3)二次根式的乘除法:二次根式相乘(除),将被开方数相乘(除),所得的积(商)仍作积(商)的被开方数并将运算结果化为最简二次根式.= ? (a≥0,b≥0); (b≥0,a&gt;0).(4)有理数的加法交换律、结合律,乘法交换律及结合律,•乘法对加法的分配律以及多项式的乘法公式,都适用于二次根式的运算.【典型例题】1、概念与性质例1下列各式1) ,其中是二次根式的是_________(填序号).例2、求下列二次根式中字母的取值范围(1) ;(2)例3、在根式1) ,最简二次根式是( )A.1) 2)B.3) 4)C.1) 3)D.1) 4)例4、已知:例5、(2009____(省、市、区、县))已知数a,b,若=b-a,则( )A. a&gt;bB. a&lt;bC. a≥bD. a≤b2、二次根式的化简与计算例1. 将根号外的a移到根号内,得( )A. ;B. - ;C. - ;D.。

八年级数学上册 2.7.1 二次根式教案 (新版)北师大版

八年级数学上册 2.7.1 二次根式教案 (新版)北师大版

课题:2.7.1 二次根式教学目标:1.认识二次根式和最简二次根式的概念.2.探索积的算术平方根与商的算术平方根的性质.3.利用积的算术平方根和商的算术平方根的性质将二次根式化为最简二次根式.4.通过利用二次根式的性质进行计算,理解最简二次根式的含义.在探究中培养学生的思维能力和归纳概括的意识.教学重点与难点:重点:二次根式的概念、性质及二次根式的化简.难点:(a≥0,b≥0)=(a≥0, b>0).并用它们进行二次根式化简.教学过程:一、创设情境,导入新课活动内容:求下列各数,思考下面的两个问题:1.我校有两个正方形的花坛,一个面积为8平方米,一个面积为2平方米,大家说这两个正方形的边长是多少?2. 5的算术平方根是多少?3.一个正数的平方是7.2,这个数多少?4.直角三角形的斜边长是c,一条直角边是b,那么另一条直角边的长为多少?问题1:它们的值有什么共同特点?问题2:它们的值是最简形式吗?处理方式:学生独立完成,,然后同伴交流所提出的两个问题。

引入我们今天要学习的内容.设计意图:由生活中的数学引出新课要探究的数学问题,一是,使学生感知数学在生活中的应用,激发学生的求知欲,为下一环节奠定了良好的基础.二是加强前后知识间的联系,使学生认识到学习的必要性,从而增强学习的积极性.同时也顺利的引入了新课.二、探究学习,感悟新知活动内容1:(多媒体出示)观察下列各数并思考下面的问题:,5,11,2.7,12149,))((b c b c -+(其中b=24,c=25),上述式子有什么共同特征?处理方式:以小组为单位,让学生充分讨论后回答,只要学生回答的合情合理均给予肯定和鼓励,通过式子的特点介绍二次根式的概念. 一般地,式子)0(≥a a 叫做二次根式.a 叫做被开方数.强调条件:0≥a .设计意图:学生通过观察并与小组成员的讨论这些式子的共同点,使学生能够形成二次根式的概念,初步感知二次根式的形态.同时教会学生在探究中培养学生的思维能力和归纳概括的意识,使学生学会学习.练一练:1.下列式子,哪些是二次根式,哪些不是二次根式?2.当x 在实数范围内有意义?3.若有意义,则m 能取得最小整数值是( ). 参考答案:, 2. 13x ≥ 3. 1处理方式:学生独立完成后进行交流讨论,使学生对二次根式有一个较深刻、全面的认识.使学生认识到:看一个式子是否为二次根式,关键看是否满足)0(≥a a 的形式. 即:二次根式应满足两个条件:第一,有二次根号;第二,被开方数是非负数.设计意图:通过练习,让学生加强对二次根式定义的认识. 第1题着眼于弄清二次根式的形式,巩固二次根式有意义的条件.第2题和第3题都是用不同的形式来考察学生对二次根式有意义的理解.让学生在练习中发现乐趣,掌握知识.活动内容2:(多媒体出示)计算下列各题,你发现了什么规律?(1). 计算下列各式,你能得到哪些猜想?94⨯= ; 94⨯= ,1x2516⨯25= ,;处理方式:让学生完成题目后交流,发现算式的特点及规律.设计意图:引导学生发现算式的特点及规律,并产生猜想, 增强学生的求知欲.(2). 猜猜76⨯7= ,也有类似的关系吗?你还能举出类似的例子吗?并用计算器验证.设计意图:引导学生验证猜想,得出规律,使学生获得成功的喜悦.并且收获了研究数学问题的探究方法.问题1:你能用字母表示这个规律吗?问题2:能用语言描述这个结论的意义吗?处理方式:小组内交流展示,重点引导学生认识算式的特点及二次根式有意义的条件.小组总结出结论a b = ( a ≥0,b ≥0),这里应强调a ,b 的取值范围.预设:如果不能得出a ,b 的取值范围,教师应及时引导学生根据二次根式有意义的条件去发现。

数学二次根式教案优秀10篇

数学二次根式教案优秀10篇

数学二次根式教案优秀10篇次根式教案篇一课题:二次根式教学目标1、知识与技能理解a(a≥0)是一个非负数,(a≥0)2、过程与方法(1)数学思考:学会独立思考、体会数学的体验归纳、类比的思想方法(2)问题解决:能够利用性质进行二次根式的化简计算,能够互助交流合作,分析问题,总结反思3、情感、态度与价值观体验成功的乐趣,锻炼克服困难的意志,培养严谨求实的科学态度教学重难点教学重点:二次根式的概念教学难点:二次根式中根号下必须为非负数教学过程一、课前回顾(2分钟)学生与老师共同回顾上节课所学内容,温故而知新。

什么是二次根式?二次根式中字母的取值范围:①被开方数大于等于零;②分母中有字母时,要保证分母不为零。

③多个条件组合时,应用不等式组求解一、情境引入(3分钟)由生活中的'实例引入投影的概念,引起学生的学习兴趣已知下列各正方形的面积,求其边长。

二、探究1(10分钟)练习1:计算下列各式:三、探究2(10分钟)可以发现它们有如下规律:一般的,二次根式有下列性质:练习2:典型例题例1:计算:例2:计算:达标测试(5分钟)课堂测试,检验学习结果1、判断题2、若,则x的取值范围为(A )(A)x≤1 (B)x≥1(C)0≤x≤1 (D)一切有理数3、计算4、化简5、已知a,b,c为△ABC的三边长,化简:这一类问题注意把二次根式的运算搭载在三角形三边之间的关系这个知识点上,特别要应用好。

应用提高(5分钟)能力提升,学有余力的同学可以仔细研究如图,P是直角坐标系中一点。

(1)用二次根式表示点P到原点O的距离;(2)如果求点P到原点O的距离体验收获今天我们学习了哪些知识二次根式的两条性质。

布置作业教材8页习题第3、4题。

数学二次根式教案篇二一、教学目标1.理解分母有理化与除法的关系.2.掌握二次根式的分母有理化.3.通过二次根式的分母有理化,培养学生的运算能力.4.通过学习分母有理化与除法的关系,向学生渗透转化的数学思想二、教学设计小结、归纳、提高三、重点、难点解决办法1.教学重点:分母有理化.2.教学难点:分母有理化的技巧.四、课时安排1课时五、教具学具准备投影仪、胶片、多媒体六、师生互动活动设计复习小结,归纳整理,应用提高,以学生活动为主七、教学过程【复习提问】二次根式混合运算的步骤、运算顺序、互为有理化因式.例1 说出下列算式的运算步骤和顺序:(1)(先乘除,后加减).(2)(有括号,先去括号;不宜先进行括号内的运算).(3)辨别有理化因式:有理化因式:与,与,与…不是有理化因式:与,与…化简一个式子,如果分母是二次根式,采用分子、分母同乘以分母的有理化因式的方法(依据分式的`基本性质).例如:等式子的化简,如果分母是两个二次根式的和,应该怎样化简?引入新课题.【引入新课】化简式子,乘以什么样的式子,分母中的根式符号可去掉,结论是分子与分母要同乘以的有理化因式,而这个式子就是,从而可将式子化简.例2 把下列各式的分母有理化:(1);(2);(3)解:略.注:通过例题的讲解,使学生理解和掌握化简的步骤、关键问题、化简的依据.式子的化简,若分子与分母可分解因式,则可先分解因式,再约分,使化简变得简单.次根式教案篇三一、素质教育目标(一)知识教学点1.使学生了解最简二次根式的概念和同类二次根式的概念.2.能判断二次根式中的同类二次根式.3.会用同类二次根式进行二次根式的加减.(二)能力训练点通过本节的学习,培养学生的思维能力并提高学生的运算能力.(三)德育渗透点从简单的同类二次根式的合并,层层深入,从解题的过程中,让学生体会转化的思维,渗透辩证唯物主义思想.(四)美育渗透点通过二次根式的加减,渗透二次根式化简合并后的形式简单美.二、学法引导1.教师教法引导法、比较法、剖析法,在比较和剖析中,不断纠正错误,从而树立牢固的'计算方法.2.学生学法通过不断的练习,从中体会、比较、二次根式加减法中,正确的方法使用,并注重小结出二次根式加减法的法则.三、重点·难点·疑点及解决办法1.教学重点二次根式的加减法运算.2.教学难点二次根式的化简.3.疑点及解决办法二次根式的加减法的关键在于二次根式的化简,在适当复习二次根的化简后进行一步引入几个整式加减法的,以引起学生的求知欲与兴趣,从而最后引入同类二次根式的加减法,可进行阶梯式教学,由浅到深、由简单到复杂的教学方法,以利于学生的理解、掌握和运用,通过具体例题的计算,可由教师引导,由学生总结出计算的步骤和注意的问题,还可以通过反例,让学生去伪存真,这种比较法的教学可使学生对概念的理解、法则的运用更加准确和熟练,并能提高学生的学习兴趣,以达到更好的学习效果.四、课时安排2课时五、教具学具准备投影片六、师生互动活动设计1.复习最简二根式整式及的加减运算,引入二次根式的加减运算,尽量让学生回答问题.2.教师通过例题的示范让学生了解什么是二次根式的加减法,并引入同类的二次根式的定义.3.再通过较复杂的二次根式的加减法计算,引导学生小结归纳出二次根式的加减法的法则.4.通过学生的反复训练,发现问题及时纠正,并引导学生从解题过程中体会理解二次根式加减法的实质及解决的方法.七、教学步骤(一)明确目标学习二次根式化简的目的是为了能将一些最终能化为同类二次根式项相合并,从而达到化繁为简的目的,本节课就是研究二次根式的加减法.(二)整体感知同类二次根式的概念应分二层含义去理解(1)化简后(2)被开方数还相同.通过正确理解二次根式加减法的法则来准确地实施二次根式加减法的运算,应特别注意合并同类二次根式时仅将它们的系数相加减,根式一定要保持不变,并可对比整式的加减法则以增加对合并同类二次根式的理解,增强综合运算的能力.次根式教案篇四教案教法:1、引导发现法:通过教师精心设计的问题链,使学生产生认知冲突,感悟新知,建立分式的模型,引导学生观察、类比、参与问题讨论,使感性认识上升为理性认识,充分体现了教师主导和学生主体的作用,对实现教学目标起了重要的作用;2、讲练结合法:在例题教学中,引导学生阅读,与平方根进行类比,获得解决问题的方法后配以精讲,并进行分层练习,培养学生的`阅读习惯和规范的解题格式。

二次根式教案

二次根式教案

二次根式教案通用一、教学内容本节课我们将学习人教版数学八年级下册第14章“二次根式”的内容。

具体包括:二次根式的定义与性质;二次根式的乘除法运算;最简二次根式的概念与化简方法。

重点章节为14.1节和14.2节。

二、教学目标1. 理解并掌握二次根式的定义,能够识别常见的二次根式。

2. 学会二次根式的乘除法运算,并能解决实际问题。

3. 能够化简最简二次根式,提高数学思维能力。

三、教学难点与重点教学难点:二次根式的乘除法运算、最简二次根式的化简。

教学重点:二次根式的定义与性质、二次根式的乘除法运算。

四、教具与学具准备1. 教具:多媒体教学设备、黑板、粉笔。

2. 学具:学生用计算器、草稿纸、笔。

五、教学过程1. 导入新课:通过实际情景引入,如土地面积的测算,让学生感受到二次根式的实际意义。

2. 新知讲解:(1)讲解二次根式的定义,让学生理解根号下为何种类型的式子。

(2)通过例题讲解,让学生掌握二次根式的乘除法运算。

(3)介绍最简二次根式的概念,并进行化简方法的讲解。

3. 随堂练习:布置一些具有代表性的练习题,让学生巩固所学知识。

4. 答疑解惑:针对学生在练习中遇到的问题,进行解答和指导。

六、板书设计1. 二次根式的定义与性质2. 二次根式的乘除法运算3. 最简二次根式的概念与化简方法七、作业设计1. 作业题目:(1)计算:√18 ÷ √2,√27 × √8(2)化简:√(4/9),√(1/24)2. 答案:(1)3,3√6(2)2/3,√6/4八、课后反思及拓展延伸本节课通过实际情景引入、例题讲解、随堂练习等方式,让学生掌握了二次根式的定义与性质、乘除法运算以及最简二次根式的化简方法。

课后,教师应关注学生对知识的掌握情况,并进行针对性的辅导。

拓展延伸部分,可以让学生探索二次根式的加减法运算,为下一节课的学习打下基础。

重点和难点解析1. 教学内容的设置与衔接2. 教学目标的明确与实现3. 教学难点与重点的把握4. 教学过程的实践情景引入5. 例题讲解的深度与广度6. 随堂练习的设计与反馈7. 板书设计的逻辑性与条理性8. 作业设计的针对性与拓展性9. 课后反思及拓展延伸的实际应用一、教学内容的设置与衔接教学内容应紧密联系学生的已有知识,确保学生能够顺利过渡到新的知识点。

人教版-数学-八年级下册《二次根式》教学详案

人教版-数学-八年级下册《二次根式》教学详案

人教版-数学-八年级下册《二次根式》教学详案《二次根式》教学详案1.了解二次根式的概念,理解二次根式有意义的条件.2.掌握二次根式的性质,并能将二次根式的性质运用于化简.3.了解最简二次根式的概念,会判断一个二次根式是不是最简二次根式.经历观察、比较,总结二次根式概念和被开方数取值范围的过程,发展学生的归纳概括能力.经历观察、比较和应用等数学活动,感受数学活动充满了探索性和创造性,体验发现的快乐,并提高应用的意识.【重点】会求二次根式中字母的取值范围,理解和掌握二次根式的性质,熟练化简二次根式.【难点】运用二次根式的双重非负性解决问题,二次根式性质的综合运用.第课时使学生理解并掌握二次根式的概念,掌握二次根式中被开方数的取值范围和二次根式的取值范围.经历观察、比较,总结二次根式概念和被开方数取值范围的过程,发展学生的归纳概括能力.经历观察、比较和应用等数学活动,感受数学活动充满了探索性和创造性,体验发现的快乐,并提高应用的意识.【重点】了解二次根式的概念,理解二次根式有意义的条件.【难点】会求二次根式中字母的取值范围.【教师准备】教学所需的习题资料.【学生准备】复习平方根和立方根的有关知识.导入一:唐僧师徒在万寿山五庄观做客.猪八戒来到后花园,看见人参果树上结满了人参果,嘴馋得直流口水.正准备伸手摘时,突然一道金光,在同一个枝头上一大一小的两个果子同时掉了下来,噗的一声同时着地.有爱好数学的电视迷算了人参果下落的时间t与h之间的关系式为t=,你觉得他算的正确吗?要解决这个问题,我们得从二次根式说起.将数学问题融入到学生喜爱的神话故事中,激发学生学习的兴趣,拉近了数学与学生的距离,为探究本节课奠定了基础.导入二:1.教师出示复习题:(1)4的平方根是;0的平方根是;-16的平方根是.(2)5的平方根是;5的算术平方根是.学生口答:(1)4的平方根是±2;0的平方根是0;-16没有平方根.(2)5的平方根是±;5的算术平方根是.2.教师出示教材第2页“思考”题:用带有根号的式子填空,看看写出的结果有什么特点:(1)面积为3的正方形的边长为,面积为S的正方形的边长为.(2)一个长方形的围栏,长是宽的2倍,面积为130 m2,则它的宽为m.(3)一个物体从高处自由落下,落到地面所用的时间t(单位:s)与开始落下时离地面的高度h(单位:m)满足关系h=5t2.如果用含有h的式子表示t,那么t为.学生思考后回答,教师补充得出答案:(1),;(2);(3).以回顾练习和思考的形式引导学生回忆,巩固所学知识,并引入新课.1.二次根式的概念思路一(针对导入二)让我们一起来看下面的问题:上面得到的式子,,,分别表示什么意义?它们有什么共同特征?教师引导学生说出各式的意义,概括它们的共同特征:都表示一个非负数(包括字母或式子表示的非负数)的算术平方根.讨论:你能用一个式子表示一个非负数的算术平方根吗?学生小组讨论,全班交流.教师由此给出二次根式的定义:一般地,我们把形如(a≥0)的式子叫做二次根式,“”称为二次根号.追问:在二次根式的概念中,为什么要强调“a≥0”?教师引导学生举出例子说明,经过讨论知道二次根式被开方数必须是非负数.让学生在填空过程中初步感知二次根式与实际生活的紧密联系,体会研究二次根式的必要性,再让学生体会由特殊到一般的过程,培养学生的概括能力,最后通过讨论二次根式中被开方数a≥0,进一步加深学生对二次根式被开方数必须是非负数的理解.思路二像,,,这样的式子有什么共同特点呢?学生观察,交流发现:一是从形式上看,都含有二次根号;二是被开方数的取值范围有限制:被开方数必须是非负数.教师进一步明确:形如(a≥0)的式子叫做二次根式.引导学生说一说对二次根式的认识:(1)表示a的算术平方根;(2)a可以是数,也可以是代数式;(3)从形式上看,含有二次根号;(4)a≥0,≥0.加深对二次根式的理解,进一步明确二次根式的非负性.2.例题讲解二次根式的定义怎样理解?让我们一起来学习几个例题.下列各式中,哪些是二次根式?并指出二次根式中的被开方数.,,,(x≥3),(y>-1),,,(xy>0).引导学生观察根指数和被开方数分析发现:显然不是二次根式(因为它的根指数是4,含有四次根号),其余式子都含有二次根号,关键看根号下的被开方数是否为非负数.若根号下是负数,则二次根式没有意义.解:,(x≥3),,(xy>0)是二次根式.其中被开方数依次是7,x-3,(x+1)2,.①当被开方数形式是含有字母的代数式时,可以把这个代数式看成一个整体.如的被开方数是x2+2015.②当被开方数形式比较复杂时,可以将这个被开方数适当化简.如,因为(-3)2-7=9-7=2,所以它的被开方数其实就是2.【变式训练】下列各式中,一定是二次根式的是()A. B.C. D.(其中a<0)〔解析〕的被开方数-9<0,的被开方数m-1可能是负数,的根指数是3,所以选项A,B,C中的式子都不是二次根式.含有二次根号,并且无论a取什么负数,被开方数a2+8都是正数,所以一定是二次根式.故选D.(教材例1)当x是怎样的实数时,在实数范围内有意义?引导学生从概念出发进行思考:二次根式的被开方数为非负数,则x-2≥0.解:由x-2≥0,得x≥2.当x≥2时,在实数范围内有意义.【变式训练】若式子1+有意义,则x的取值范围是.〔解析〕根据二次根式的性质可知:x+1≥0,即x≥-1;又因为分式的分母不能为0,所以x的取值范围是x≥-1且x≠0.故填x≥-1且x≠0.容易产生只考虑到x+1≥0,而忽略了x≠0的错误.通过变式训练,加深学生对二次根式被开方数为非负数的理解,提高学生对所学知识的迁移能力和应用意识.(1)二次根式的定义是从代数式的结果和形式上界定的,必须含有二次根号“”,如,都是二次根式,而就不是二次根式了.(2)在二次根式中,被开方数可以是具体的数,也可以是含有字母的单项式、多项式、分式等代数式.(3)形如b(a≥0)的式子也是二次根式,其表示的是b与的乘积,如3表示3×,-表示-×,但是不能写成3的形式.(4)当a≥0时,表示a的算术平方根.也就是说,有意义的条件是a≥0.(5)当a是非负数时,(其中a≥0)本身也是一个非负数.师生共同回顾本节课所学主要内容:知识要点关键点注意事项二次根式的概念形如≥0(a≥0)的式子叫做二次根式,其中被开方数是a被开方数也可以是含有字母的单项式、多项式、分式等二次根式有意义的条件被开方数必须是非负数求解二次根式中字母的取值范围,要注意根号下的式子整体不小于零1.已知下列各式:,(a≥2),,,其中二次根式的个数是()A.1个B.2个C.3个D.4个解析:的被开方数不是非负数,所以不是二次根式,其余3个都是二次根式.故选C.2.(2014·南通中考)若在实数范围内有意义,则x的取值范围是()A.x≥B.x≥-C.x>D.x≠解析:是二次根式,因此2x-1≥0,在分母上,因此≠0.则解得x>.故选C.3.当x=时,二次根式有最小值,其最小值是.解析:∵二次根式有意义,∴x+3≥0,即x+3的最小值是0,∴x+3=0,解得x=-3.答案:-304.求下列各式中字母a的取值范围:(1);(2);(3);(4).解:(1)由a+1≥0,得a≥-1.∴字母a的取值范围是大于或等于-1的实数.(2)由>0,得1-2a>0,即a<.∴字母a的取值范围是小于的实数.(3)因为无论a取何值,都有(a-3)2≥0,所以字母a的取值范围是全体实数.(4)因为无论a取何值,都有|a|+1>0,所以字母a的取值范围是全体实数.第1课时1.二次根式的概念2.例题讲解例1例2一、教材作业【必做题】教材第3页练习第1,2题;教材第5页习题16.1第1题.【选做题】教材第5页习题16.1第7题.二、课后作业【基础巩固】1.若是二次根式,则下列结论正确的是()A.x≥0,y≥0B.x>0,y>0C.x,y同号D.≥02.已知实数x,y,m满足+=0,且y为负数,则m的取值范围是()A.m>6B.m<6C.m>-6D.m<-63.如果式子+有意义,那么在直角坐标系中点A(a,b)的位置在()A.第一象限B.第二象限C.第三象限D.第四象限4.(2015·遵义中考)使二次根式有意义的x的取值范围是. 【能力提升】5.当x时,+在实数范围内有意义.6.(2015·攀枝花中考)若y=++2,则x y=.7.已知x,y为实数,且满足-(y-1)=0,求x2016-y2016的值.8.已知实数a满足+=a,求a-20142的值.【拓展探究】9.若x,y,n满足关系式+=·,试确定m的值.【答案与解析】1.D(解析:依题意得≥0,即≥0.故选D.)2.A(解析:根据题意,结合非负数的性质,得=0,=0,所以解得因为y是负数,所以6-m<0.解得m>6.故选A.)3.A(解析:根据二次根式有意义的条件,易得a>0,b>0.故选A.)4.x≥(解析:要使二次根式有意义,则需满足5x-2≥0,∴x≥.)5.≥-且x≠-1(解析:要使+在实数范围内有意义,必须同时满足的被开方数2x+3≥0和的分母x+1≠0,即由①得x≥-,由②得x≠-1.∴当x≥-且x≠-1时,+在实数范围内有意义.)6.9(解析:由题意得x-3≥0,3-x≥0,得x=3,故y=2,∴x y=9.)7.解:∵-(y-1)=0,∴+(1-y)=0.∴x+1=0,1-y=0.解得x=-1,y=1.∴x2016-y2016=(-1)2016-12016=1-1=0.8.解:由a-2015≥0,得a≥2015,故已知式子可化为a-2014+=a.∴=2014.两边平方并整理,得a-20142=2015.9.解:由等式的右边,根据二次根式有意义的条件得x-2013+y≥0且2013-x-y≥0,得x+y≥2013且x+y≤2013,所以x+y=2013.所以+=0.所以①-②,得x+2y=2.又x+y=2013,两式相加,得2x+3y=2015.所以m=2015.我们经常说过程比结果更重要.我对整节课的设计力求符合学生的认知特点,想方设法创设生动活泼的教学情境,使学生始终处在好奇、好学的高亢的学习情绪当中,同时,整节课努力做到先有框架,中有深化,后有突破.学生学有情趣,学有所获,并由衷感到:学习是快乐的事,学会了更是幸福的事.在教学中,我适当增加了有拓展性的练习,层层递进,想使不同的学生得到不同程度的发展和提高,但受到教材中练习题的局限,就当a是非负数时,本身也是一个非负数的练习没有落实到位.根据教学时间多少调整例题教学,适当增加对二次根式非负性的例题的讲解,注重变式练习,以加深对二次根式具有双重非负性的理解.练习(教材第3页)1.解:设长方形的长和宽分别为3a cm,2a cm.由题意,得3a·2a=18,∴a2=3,a=(舍去a=-),∴3a=3,2a=2.故长方形的长取3 cm,宽取2 cm.2.解:(1)当a-1≥0,即a≥1时,有意义.(2)当2a+3≥0,即a≥-时,有意义. (3)当-a≥0,即a≤0时,有意义.(4)当5-a≥0时,即a≤5时,有意义.若x,y为实数,且满足y=+-3,求x+2y的值.〔解析〕根据二次根式的被开方数不小于0,求得x,y的值,然后将其代入所求的代数式并计算.解:由二次根式有意义的条件得即x2-4=0,所以x=±2.当x=±2时,y=-3.①当x=2,y=-3时,x+2y=2+2×(-3)=-4;②当x=-2,y=-3时,x+2y=-2+2×(-3)=-8.所以x+2y的值是-4或-8.根据已知得出并得到x=±2是解决本题的关键.已知(3a-6)2+=0,求b a的值.〔解析〕根据非负数的性质:若两个非负数的和为0,则这两个非负数的值都为0,解出a,b 的值,再代入原式中计算.解:因为(3a-6)2与都是非负数,且它们的和为0,所以3a-6=0,b-3=0,即a=2,b=3.此时b a=32=9.本题考查了非负数的性质,初中阶段有三种类型的非负数:(1)绝对值;(2)偶次方;(3)二次根式(算术平方根).当它们的和为0时,必须满足其中的每一项都等于0.根据这个结论可以求解这类问题.第课时1.理解()2=a(a≥0)和=a(a≥0),并利用它们进行计算和化简.2.用具体数据结合算术平方根的意义推出()2=a(a≥0)和探究=a(a≥0),会用这个结论解决具体问题.3.了解代数式的概念.在明确()2=a(a≥0)和=a(a≥0)的算理的过程中,感受数学的实用性.通过运用二次根式的性质化简的相关计算,解决一些实际问题,培养学生解决问题的能力.【重点】掌握二次根式的性质,并能将二次根式的性质运用于化简.【难点】能运用二次根式的性质化简.【教师准备】教学所需的习题资料.【学生准备】自学教材第3~4页的内容.导入一:教师出示问题:先化简再求值:当a=9时,求a+值,甲、乙两人的解答如下:甲的解答为:原式=a+=a+(1-a)=a+1-a=1;乙的解答为:原式=a+=a+(a-1)=2a-1=17.两种解答中,谁的解答是错误的呢?本节课,我们一起来学习二次根式的性质,然后就可以解决上面的问题了.以问题设疑,发挥问题导向作用,激发学生的求知欲,为本节课学习打下基础.导入二:1.什么叫二次根式?2.当a≥0时,叫什么?当a<0时,有意义吗?学生口答,老师点评.通过前面的学习,我们知道了二次根式具有双重非负性.今天我们主要学习一些二次根式的其他性质.复习旧知导入新知,让本节课自然过渡,为本节课学习奠定了基础.思路一1.二次根式的性质1:()2=a(a≥0)我们先来探究性质1:()2=a(a≥0).提问:你能解释下列式子的含义吗?()2,()2,,()2.学生口述,教师根据情况评价.()2表示4的算术平方根的平方;()2表示2的算术平方根的平方;表示的算术平方根的平方;()2表示0的算术平方根的平方.追问:根据算术平方根的意义填空,并说出得到结论的依据.()2=;()2=;=;()2=.学生独立完成填空后,让学生展示其思维过程,说出得到结论的依据.教师引导学生说出每一个式子的含义.是4的算术平方根,根据算术平方根的意义,是一个平方等于4的非负数,因此有()2=4.是2的算术平方根,根据算术平方根的意义,是一个平方等于2的非负数,因此有()2=2.是的算术平方根,根据算术平方根的意义,是一个平方等于的非负数,因此有=.表示0的算术平方根,因此有()2=0.讨论:从以上的结论中你能发现什么规律?你能用一个式子表示这个规律吗?引导学生归纳得出二次根式的性质:一个非负数的算术平方根的平方等于这个非负数,即()2=a(a≥0).(教材例2)计算:(1)()2;(2)(2)2.学生独立完成,两名学生板演,再集体订正.〔解析〕(1)直接运用()2=a(a≥0)化简即可.(2)运用幂的性质(ab)2=a2b2.解:(1)()2=1.5.(2)(2)2=22×()2=4×5=20.把底数看成根号外因数与二次根式的积,按照积的乘方计算即可.【变式训练】计算:(-2)2.〔解析〕把原式的底数看成是-2与的积,先利用(mn)2=m2n2,再根据()2=a(a≥0)化简.解:(-2)2=(-2)2()2=4×3=12.形如(x)2的关于二次根式的运算可结合(ab)2=a2b2得到(x)2=x2a.让学生经历从特殊到一般的过程,概括出二次根式的性质1,培养学生抽象概括的能力,并通过例题和变式训练及时巩固二次根式的性质1,学会灵活运用.2.二次根式的性质2:=a(a≥0)提问:你能解释下列式子的含义吗?,,,.教师引导学生说出每一个式子的含义.表示2的平方的算术平方根;表示0.1的平方的算术平方根;表示的平方的算术平方根;表示0的平方的算术平方根.追问:根据算术平方根的意义填空,并说出得到结论的依据.=;=;=;=.学生独立完成填空后,让学生展示其思维过程,说出得到结论的依据.∵4=22,∴=2,因此=2;∵0.01=0.12,∴=0.1,因此=0.1;∵=,∴=,因此=;∵0=02,∴=0,因此=0.讨论:从以上的结论中你能发现什么规律?你能用一个式子表示这个规律吗?引导学生归纳得出:一个非负数的平方的算术平方根等于这个数.即=a(a≥0).(教材例3)化简:(1);(2).引导学生根据=a(a≥0)进行分析:(1)因为16=42,所以=,再计算即可得出结果.(2)因为(-5)2=52,所以=.学生独立完成,集体订正.解:(1)==4.(2)==5.(1)中的a的取值范围可以是任意实数,即不论a取何值,一定有意义.(2)化简时,一定要弄明白被开方数的底数a是正数还是负数,若是正数或0,则等于a本身,即=a(a≥0);若a是负数,则等于a的相反数-a,即=-a(a<0).小组讨论:()2和有什么关系?学生自由讨论,教师根据情况引导学生从式子的意义和结果两个方面去分析,得出:()2表示a的算术平方根的平方,()2=a(a≥0);表示a的平方的算术平方根,=|a|= 让学生经历从特殊到一般的过程,概括出二次根式的性质2,培养学生抽象概括的能力,并通过例题练习及时巩固二次根式的性质2.思路二请同学们阅读和自学课本第3~4页的内容,并思考下面的问题:1.(1)填空:()2=;()2=;=;()2=;=;()2=.(2)猜想当a≥0时,()2=.2.(1)观察下列各式的特点,找出各式的共同规律,并用表达式表示你发现的规律.==;==;==;==;….通过观察,你得到的结论是什么?试着说一说.(2)发现:当a≥0时,=,当a<0时,=.学生用充足的时间学习后,交流学习情况,教师分析并讲解.1.(1)根据算术平方根与乘方运算的关系,得=2,所以()2=22=4;=4,所以()2=42=16;=,所以==.根据以上规律,可以得出()2=2;=;()2=0.(2)从第(1)问可以发现,一个非负数的算术平方根的平方等于这个非负数,即()2=a(a≥0).2.先计算==2;==2;==3;==3;….可以看出:一个正数的平方的算术平方根等于这个数,一个负数的平方的算术平方根等于这个数的相反数.于是当a≥0时,=a,当a<0时,=-a.归纳并板书:二次根式的性质:1.()2=a(a≥0);2.=a(a≥0).提问:()2和有什么关系?学生自由讨论,教师根据情况引导学生从式子的意义和结果两个方面去分析,得出:()2表示a的算术平方根的平方,()2=a(a≥0);表示a的平方的算术平方根,=|a|=在计算的基础上,引导学生观察、猜想、归纳得出二次根式的两个性质,并从式子的意义和结果进行比较,得出二者之间的关系.3.代数式提问:回顾我们学过的式子,如a+b,-ab,,-x3,,(a≥0),这些式子有哪些共同特征?学生概括式子的共同特征,得出代数式的概念.这些式子都是用基本运算符号把数或表示数的字母连接起来的式子,我们称这样的式子为代数式.学生举出一些例子,并书写,教师针对学生书写出现问题的地方进行指导.学生通过观察式子的共同特征,形成代数式的概念,培养学生的概括能力.4.例题讲解(补充)计算:(-5)2,,-.〔解析〕利用()2=a(a≥0)和=a(a≥0)化简,注意被开方数的符号.解:(-5)2=(-5)2×()2=25×2=50.==.-=-=-.(补充)比较2与3的大小.〔解析〕直接比较这两个二次根式的大小不太容易,由于这两个二次根式平方后得到两个有理数,因此可以通过比较这两个二次根式平方的大小来比较它们的大小.解:∵(2)2=22×()2=44,(3)2=32×()2=45,又∵44<45,且2>0,3>0,∴2<3.师生共同回顾本节课所学主要内容:知识要点关键点注意事项()2=a(a≥0)任何非负数的算术平方根的平方,其结果仍然是它本身被开方数a是非负数=|a|=任何实数的平方的算术平方根是它的绝对值底数a可以是任何实数代数式用运算符号把数和表示数的字母连接起来的式子叫代数式①式子中不能出现“=,≠,≥,≤,<,>”;②单个的数字或单个的字母也是代数式1.计算的结果是()A.-3B.3C.-9D.9解析:==3.故选B.2.下列各式:①m2-3;②(a>0);③a-1=6;④3x-5>0;⑤;⑥66.其中代数式的个数是()A.2个B.3个C.4个D.5个解析:③a-1=6是方程,不是代数式;④3x-5>0是一元一次不等式,也不是代数式;其余都是代数式.故选C.3.+的值是.解析:+=2+2=4.故填4.4.(1)当x时,=2-x成立;(2)计算=.解析:(1)当x-2≤0时,=2-x,所以x≤2;(2)因为3<π,所以3-π<0,因此=π-3.答案:(1)≤2(2)π-35.计算:(1);(2)(2)2;(3);(4)(-)2.解:(1)=0.9.(2)(2)2=22×()2=12.(3)=(-2)2×=2.(4)(-)2=(-1)2×()2=15.第2课时1.二次根式的性质1:()2=a(a≥0)例12.二次根式的性质2:=a(a≥0)例23.代数式4.例题讲解例3例4一、教材作业【必做题】教材第4页练习第1,2题;教材第5页习题16.1第2,3,4,5,6题.【选做题】教材第5页习题16.1第7,8,9,10题.二、课后作业【基础巩固】1.已知二次根式的值为3,那么x的值是()A.3B.9C.-3D.3或-32.若=1-2a,则()A.a<B.a≤C.a>D.a≥3.(2015·杭州中考)若k<<k+1(k是整数),则k等于()< p="">A.6B.7C.8D.94.实数a,b在数轴上的位置如图所示,则化简-|a+b|的结果为()A.2a+bB.-2a+bC.bD.2a-b【能力提升】5.若是一个正整数,则正整数m的最小值是.6.在实数范围内分解因式:(1)x2-3=;(2)n5-6n3+9n=.7.列出下列代数式:(1)面积为3的圆的半径;(2)面积为S且两条邻边之比为3∶5的长方形的长、宽.8.计算:(1);(2)(3)2;(3);(4)-;(5).9.先化简,再求值:-,其中x=6.【拓展探究】10.对于题目“化简并求值:+,其中a=”,甲、乙两人的解答不同.甲的解答是:+=+=+-a=-a=;乙的解答是:+=+=+a-=a=.谁的解答是错误的?为什么?【答案与解析】1.D(解析:根据题意得x2=9,解得x=±3.故选D.)2.B(解析:由已知得2a-1≤0,解得a≤.故选B.)3.D(解析:本题主要考查了算术平方根的化简及算术平方根的估算,而<<,即9<<10,所以k=9.)4.C(解析:观察图可知a<0,b>0,且|a|>|b|,那么可知a+b<0,再结合二次根式、绝对值的性质进行化简计算.原式=-a-=-a+a+b=b.故选C.)5.5(解析:这类题保证被开方数是最小的完全平方数即可得出结论.20=22×5,所以正整数m的最小值为5.)6.(1)(x+)(x-)(2)n(n+)2(n-)2(解析:关键是逆用()2=a(a≥0)将3变成()2.(1)x2-3=(x+)(x-).(2)n5-6n3+9n=n(n4-6n2+9)=n(n2-3)2=n(n+)2(n-)2.)7.解:(1).(2)宽:3;长:5.8.解:(1)=.(2)(3)2=32×()2=18.(3)=(-2)2×=.(4)-=-=-3π.(5)==.9.解:原式=-=-.∵x=6,∴x+1>0,x-8<0.∴原式=x+1-=x+1+x-8=2x-7=12-7=5.10.解析:在利用=|a|=化简二次根式时,当根号内的因式移到根号外面时,一定要注意原来根号里面的符号,这也是化简时最容易出错的地方.解:乙的解答是错误的.因为当a=时,=5,a-<0,所以≠a-,而应是=-a.</k+1(k是整数),则k等于()<>。

最简二次更式教案

最简二次更式教案

最简二次更式教案【篇一:最简二次根式教案】一.教学目标1.了解最简二次根式的意义,并能作出准确判断.2.能熟练地把二次根式化为最简二次根式.3.了解把二次根式化为最简二次根式在实际问题中的应用.4.进一步培养学生运用二次根式的性质进行二次根式化简的能力,提高运算能力.5.通过多种方法化简二次根式,渗透事物间相互联系的辩证观点. 6.通过本节的学习,渗透转化的数学思想.二.重点难点1.教学重点会把二次根式化简为最简二次根式2.教学难点准确运用化二次根式为最简二次根式的方法三.教学方法程序式教学四.课时安排2课时五.教学过程1.复习引入教师准备本节内容需要的二次根式的性质和与性质相关例题、练习题以及引入材料.【预备资料】⑴.二次根式的性质⑵.二次根式性质例题⑶.二次根式性质练习题【引入材料】看下面的问题:已知:解法1:解法2:=1.732,如何求出的近似值?比较两种解法,解法1很繁,解法2较简便,比例说明,将二次根式化简,有时会带来方便.2.概念讲解与巩固学生阅读教师预备的材料,理解后自主完成教师准备的正选练习题,每完成一套与教师交流一次,在教师的指示下继续进行.教师要及时了解学生对最简二次根式概念的反馈情况,如果掌握比较理想,则要求进入下一步操作,否则应与学生进行适当沟通,如需要可从备选练习题选择巩固.【概念讲解材料】满足下列条件的二次根式,叫做最简二次根式:(1) 被开方数的因数是整数,因式是整式;(2) 被开方数中不含能开得尽方的因数或因式.如: 都不是最简二次根式,因为被开方数的因数(或系数)为分数或因式为分式,不符合条件(1),条件(1)实际上就是要求被开方数的分母中不带根号.又如也不是最简二次根式,因为被开方数中含有能开得尽方的因数或因式,不满足条件(2).注意条件(2)是对被开方数分解成质因数或分解成因式后而言的,如.判断一个二次根式是不是最简二次根式的方法,就是逐个检查定义中的两个条件是否同时满足,同时满足两个条件的就是,否则就不是.【概念理解学习材料1】例1 下列二次根式中哪些是最简二次根式?哪些不是?为什么?分析:判断一个二次根式是不是最简二次根式的方法,就是逐个检查定义中的两个条件是否同时满足,同时满足两个条件的就是,否则就不是.解:最简二次根式有,因为被开方数中含能开得尽方的因数9,所以它不是最简二次根式.说明:判断一个二次根式是否为最简二次根式主要方法是根据最简二次根式的定义进行,或直观地观察被开方数的每一个因数(或因式)的指数都小于根指数2,且被开方数中不含有分母,被开方数是多项式时要先因式分解后再观察。

人教版-数学-八年级下册《二次根式》教学详案

人教版-数学-八年级下册《二次根式》教学详案

《二次根式》教学详案1.了解二次根式的概念,理解二次根式有意义的条件.2.掌握二次根式的性质,并能将二次根式的性质运用于化简.3.了解最简二次根式的概念,会判断一个二次根式是不是最简二次根式.经历观察、比较,总结二次根式概念和被开方数取值范围的过程,发展学生的归纳概括能力.经历观察、比较和应用等数学活动,感受数学活动充满了探索性和创造性,体验发现的快乐,并提高应用的意识.【重点】会求二次根式中字母的取值范围,理解和掌握二次根式的性质,熟练化简二次根式.【难点】运用二次根式的双重非负性解决问题,二次根式性质的综合运用.第课时使学生理解并掌握二次根式的概念,掌握二次根式中被开方数的取值范围和二次根式的取值范围.经历观察、比较,总结二次根式概念和被开方数取值范围的过程,发展学生的归纳概括能力.经历观察、比较和应用等数学活动,感受数学活动充满了探索性和创造性,体验发现的快乐,并提高应用的意识.【重点】了解二次根式的概念,理解二次根式有意义的条件.【难点】会求二次根式中字母的取值范围.【教师准备】教学所需的习题资料.【学生准备】复习平方根和立方根的有关知识.导入一:唐僧师徒在万寿山五庄观做客.猪八戒来到后花园,看见人参果树上结满了人参果,嘴馋得直流口水.正准备伸手摘时,突然一道金光,在同一个枝头上一大一小的两个果子同时掉了下来,噗的一声同时着地.有爱好数学的电视迷算了人参果下落的时间t与h之间的关系式为t=,你觉得他算的正确吗?要解决这个问题,我们得从二次根式说起.将数学问题融入到学生喜爱的神话故事中,激发学生学习的兴趣,拉近了数学与学生的距离,为探究本节课奠定了基础.导入二:1.教师出示复习题:(1)4的平方根是;0的平方根是;-16的平方根是.(2)5的平方根是;5的算术平方根是.学生口答:(1)4的平方根是±2;0的平方根是0;-16没有平方根.(2)5的平方根是±;5的算术平方根是.2.教师出示教材第2页“思考”题:用带有根号的式子填空,看看写出的结果有什么特点:(1)面积为3的正方形的边长为,面积为S的正方形的边长为.(2)一个长方形的围栏,长是宽的2倍,面积为130 m2,则它的宽为m.(3)一个物体从高处自由落下,落到地面所用的时间t(单位:s)与开始落下时离地面的高度h(单位:m)满足关系h=5t2.如果用含有h的式子表示t,那么t为.学生思考后回答,教师补充得出答案:(1),;(2);(3).以回顾练习和思考的形式引导学生回忆,巩固所学知识,并引入新课.1.二次根式的概念思路一(针对导入二)让我们一起来看下面的问题:上面得到的式子,,,分别表示什么意义?它们有什么共同特征?教师引导学生说出各式的意义,概括它们的共同特征:都表示一个非负数(包括字母或式子表示的非负数)的算术平方根.讨论:你能用一个式子表示一个非负数的算术平方根吗?学生小组讨论,全班交流.教师由此给出二次根式的定义:一般地,我们把形如(a≥0)的式子叫做二次根式,“”称为二次根号.追问:在二次根式的概念中,为什么要强调“a≥0”?教师引导学生举出例子说明,经过讨论知道二次根式被开方数必须是非负数.让学生在填空过程中初步感知二次根式与实际生活的紧密联系,体会研究二次根式的必要性,再让学生体会由特殊到一般的过程,培养学生的概括能力,最后通过讨论二次根式中被开方数a≥0,进一步加深学生对二次根式被开方数必须是非负数的理解.思路二像,,,这样的式子有什么共同特点呢?学生观察,交流发现:一是从形式上看,都含有二次根号;二是被开方数的取值范围有限制:被开方数必须是非负数.教师进一步明确:形如(a≥0)的式子叫做二次根式.引导学生说一说对二次根式的认识:(1)表示a的算术平方根;(2)a可以是数,也可以是代数式;(3)从形式上看,含有二次根号;(4)a≥0,≥0.加深对二次根式的理解,进一步明确二次根式的非负性.2.例题讲解二次根式的定义怎样理解?让我们一起来学习几个例题.下列各式中,哪些是二次根式?并指出二次根式中的被开方数.,,,(x≥3),(y>-1),,,(xy>0).引导学生观察根指数和被开方数分析发现:显然不是二次根式(因为它的根指数是4,含有四次根号),其余式子都含有二次根号,关键看根号下的被开方数是否为非负数.若根号下是负数,则二次根式没有意义.解:,(x≥3),,(xy>0)是二次根式.其中被开方数依次是7,x-3,(x+1)2,.①当被开方数形式是含有字母的代数式时,可以把这个代数式看成一个整体.如的被开方数是x2+2015.②当被开方数形式比较复杂时,可以将这个被开方数适当化简.如,因为(-3)2-7=9-7=2,所以它的被开方数其实就是2.【变式训练】下列各式中,一定是二次根式的是()A. B.C. D.(其中a<0)〔解析〕的被开方数-9<0,的被开方数m-1可能是负数,的根指数是3,所以选项A,B,C中的式子都不是二次根式.含有二次根号,并且无论a取什么负数,被开方数a2+8都是正数,所以一定是二次根式.故选D.(教材例1)当x是怎样的实数时,在实数范围内有意义?引导学生从概念出发进行思考:二次根式的被开方数为非负数,则x-2≥0.解:由x-2≥0,得x≥2.当x≥2时,在实数范围内有意义.【变式训练】若式子1+有意义,则x的取值范围是.〔解析〕根据二次根式的性质可知:x+1≥0,即x≥-1;又因为分式的分母不能为0,所以x的取值范围是x≥-1且x≠0.故填x≥-1且x≠0.容易产生只考虑到x+1≥0,而忽略了x≠0的错误.通过变式训练,加深学生对二次根式被开方数为非负数的理解,提高学生对所学知识的迁移能力和应用意识.(1)二次根式的定义是从代数式的结果和形式上界定的,必须含有二次根号“”,如,都是二次根式,而就不是二次根式了.(2)在二次根式中,被开方数可以是具体的数,也可以是含有字母的单项式、多项式、分式等代数式.(3)形如b(a≥0)的式子也是二次根式,其表示的是b与的乘积,如3表示3×,-表示-×,但是不能写成3的形式.(4)当a≥0时,表示a的算术平方根.也就是说,有意义的条件是a≥0.(5)当a是非负数时,(其中a≥0)本身也是一个非负数.师生共同回顾本节课所学主要内容:知识要点关键点注意事项二次根式的概念形如≥0(a≥0)的式子叫做二次根式,其中被开方数是a被开方数也可以是含有字母的单项式、多项式、分式等二次根式有意义的条件被开方数必须是非负数求解二次根式中字母的取值范围,要注意根号下的式子整体不小于零1.已知下列各式:,(a≥2),,,其中二次根式的个数是()A.1个B.2个C.3个D.4个解析:的被开方数不是非负数,所以不是二次根式,其余3个都是二次根式.故选C.2.(2014·南通中考)若在实数范围内有意义,则x的取值范围是()A.x≥B.x≥-C.x>D.x≠解析:是二次根式,因此2x-1≥0,在分母上,因此≠0.则解得x>.故选C.3.当x=时,二次根式有最小值,其最小值是.解析:∵二次根式有意义,∴x+3≥0,即x+3的最小值是0,∴x+3=0,解得x=-3.答案:-304.求下列各式中字母a的取值范围:(1);(2);(3);(4).解:(1)由a+1≥0,得a≥-1.∴字母a的取值范围是大于或等于-1的实数.(2)由>0,得1-2a>0,即a<.∴字母a的取值范围是小于的实数.(3)因为无论a取何值,都有(a-3)2≥0,所以字母a的取值范围是全体实数.(4)因为无论a取何值,都有|a|+1>0,所以字母a的取值范围是全体实数.第1课时1.二次根式的概念2.例题讲解例1例2一、教材作业【必做题】教材第3页练习第1,2题;教材第5页习题16.1第1题.【选做题】教材第5页习题16.1第7题.二、课后作业【基础巩固】1.若是二次根式,则下列结论正确的是()A.x≥0,y≥0B.x>0,y>0C.x,y同号D.≥02.已知实数x,y,m满足+=0,且y为负数,则m的取值范围是()A.m>6B.m<6C.m>-6D.m<-63.如果式子+有意义,那么在直角坐标系中点A(a,b)的位置在()A.第一象限B.第二象限C.第三象限D.第四象限4.(2015·遵义中考)使二次根式有意义的x的取值范围是. 【能力提升】5.当x时,+在实数范围内有意义.6.(2015·攀枝花中考)若y=++2,则x y=.7.已知x,y为实数,且满足-(y-1)=0,求x2016-y2016的值.8.已知实数a满足+=a,求a-20142的值.【拓展探究】9.若x,y,n满足关系式+=·,试确定m的值.【答案与解析】1.D(解析:依题意得≥0,即≥0.故选D.)2.A(解析:根据题意,结合非负数的性质,得=0,=0,所以解得因为y是负数,所以6-m<0.解得m>6.故选A.)3.A(解析:根据二次根式有意义的条件,易得a>0,b>0.故选A.)4.x≥(解析:要使二次根式有意义,则需满足5x-2≥0,∴x≥.)5.≥-且x≠-1(解析:要使+在实数范围内有意义,必须同时满足的被开方数2x+3≥0和的分母x+1≠0,即由①得x≥-,由②得x≠-1.∴当x≥-且x≠-1时,+在实数范围内有意义.)6.9(解析:由题意得x-3≥0,3-x≥0,得x=3,故y=2,∴x y=9.)7.解:∵-(y-1)=0,∴+(1-y)=0.∴x+1=0,1-y=0.解得x=-1,y=1.∴x2016-y2016=(-1)2016-12016=1-1=0.8.解:由a-2015≥0,得a≥2015,故已知式子可化为a-2014+=a.∴=2014.两边平方并整理,得a-20142=2015.9.解:由等式的右边,根据二次根式有意义的条件得x-2013+y≥0且2013-x-y≥0,得x+y≥2013且x+y≤2013,所以x+y=2013.所以+=0.所以①-②,得x+2y=2.又x+y=2013,两式相加,得2x+3y=2015.所以m=2015.我们经常说过程比结果更重要.我对整节课的设计力求符合学生的认知特点,想方设法创设生动活泼的教学情境,使学生始终处在好奇、好学的高亢的学习情绪当中,同时,整节课努力做到先有框架,中有深化,后有突破.学生学有情趣,学有所获,并由衷感到:学习是快乐的事,学会了更是幸福的事.在教学中,我适当增加了有拓展性的练习,层层递进,想使不同的学生得到不同程度的发展和提高,但受到教材中练习题的局限,就当a是非负数时,本身也是一个非负数的练习没有落实到位.根据教学时间多少调整例题教学,适当增加对二次根式非负性的例题的讲解,注重变式练习,以加深对二次根式具有双重非负性的理解.练习(教材第3页)1.解:设长方形的长和宽分别为3a cm,2a cm.由题意,得3a·2a=18,∴a2=3,a=(舍去a=-),∴3a=3,2a=2.故长方形的长取3 cm,宽取2 cm.2.解:(1)当a-1≥0,即a≥1时,有意义.(2)当2a+3≥0,即a≥-时,有意义. (3)当-a≥0,即a≤0时,有意义.(4)当5-a≥0时,即a≤5时,有意义.若x,y为实数,且满足y=+-3,求x+2y的值.〔解析〕根据二次根式的被开方数不小于0,求得x,y的值,然后将其代入所求的代数式并计算.解:由二次根式有意义的条件得即x2-4=0,所以x=±2.当x=±2时,y=-3.①当x=2,y=-3时,x+2y=2+2×(-3)=-4;②当x=-2,y=-3时,x+2y=-2+2×(-3)=-8.所以x+2y的值是-4或-8.根据已知得出并得到x=±2是解决本题的关键.已知(3a-6)2+=0,求b a的值.〔解析〕根据非负数的性质:若两个非负数的和为0,则这两个非负数的值都为0,解出a,b 的值,再代入原式中计算.解:因为(3a-6)2与都是非负数,且它们的和为0,所以3a-6=0,b-3=0,即a=2,b=3.此时b a=32=9.本题考查了非负数的性质,初中阶段有三种类型的非负数:(1)绝对值;(2)偶次方;(3)二次根式(算术平方根).当它们的和为0时,必须满足其中的每一项都等于0.根据这个结论可以求解这类问题.第课时1.理解()2=a(a≥0)和=a(a≥0),并利用它们进行计算和化简.2.用具体数据结合算术平方根的意义推出()2=a(a≥0)和探究=a(a≥0),会用这个结论解决具体问题.3.了解代数式的概念.在明确()2=a(a≥0)和=a(a≥0)的算理的过程中,感受数学的实用性.通过运用二次根式的性质化简的相关计算,解决一些实际问题,培养学生解决问题的能力.【重点】掌握二次根式的性质,并能将二次根式的性质运用于化简.【难点】能运用二次根式的性质化简.【教师准备】教学所需的习题资料.【学生准备】自学教材第3~4页的内容.导入一:教师出示问题:先化简再求值:当a=9时,求a+值,甲、乙两人的解答如下:甲的解答为:原式=a+=a+(1-a)=a+1-a=1;乙的解答为:原式=a+=a+(a-1)=2a-1=17.两种解答中,谁的解答是错误的呢?本节课,我们一起来学习二次根式的性质,然后就可以解决上面的问题了.以问题设疑,发挥问题导向作用,激发学生的求知欲,为本节课学习打下基础.导入二:1.什么叫二次根式?2.当a≥0时,叫什么?当a<0时,有意义吗?学生口答,老师点评.通过前面的学习,我们知道了二次根式具有双重非负性.今天我们主要学习一些二次根式的其他性质.复习旧知导入新知,让本节课自然过渡,为本节课学习奠定了基础.思路一1.二次根式的性质1:()2=a(a≥0)我们先来探究性质1:()2=a(a≥0).提问:你能解释下列式子的含义吗?()2,()2,,()2.学生口述,教师根据情况评价.()2表示4的算术平方根的平方;()2表示2的算术平方根的平方;表示的算术平方根的平方;()2表示0的算术平方根的平方.追问:根据算术平方根的意义填空,并说出得到结论的依据.()2=;()2=;=;()2=.学生独立完成填空后,让学生展示其思维过程,说出得到结论的依据.教师引导学生说出每一个式子的含义.是4的算术平方根,根据算术平方根的意义,是一个平方等于4的非负数,因此有()2=4.是2的算术平方根,根据算术平方根的意义,是一个平方等于2的非负数,因此有()2=2.是的算术平方根,根据算术平方根的意义,是一个平方等于的非负数,因此有=.表示0的算术平方根,因此有()2=0.讨论:从以上的结论中你能发现什么规律?你能用一个式子表示这个规律吗?引导学生归纳得出二次根式的性质:一个非负数的算术平方根的平方等于这个非负数,即()2=a(a≥0).(教材例2)计算:(1)()2;(2)(2)2.学生独立完成,两名学生板演,再集体订正.〔解析〕(1)直接运用()2=a(a≥0)化简即可.(2)运用幂的性质(ab)2=a2b2.解:(1)()2=1.5.(2)(2)2=22×()2=4×5=20.把底数看成根号外因数与二次根式的积,按照积的乘方计算即可.【变式训练】计算:(-2)2.〔解析〕把原式的底数看成是-2与的积,先利用(mn)2=m2n2,再根据()2=a(a≥0)化简.解:(-2)2=(-2)2()2=4×3=12.形如(x)2的关于二次根式的运算可结合(ab)2=a2b2得到(x)2=x2a.让学生经历从特殊到一般的过程,概括出二次根式的性质1,培养学生抽象概括的能力,并通过例题和变式训练及时巩固二次根式的性质1,学会灵活运用.2.二次根式的性质2:=a(a≥0)提问:你能解释下列式子的含义吗?,,,.教师引导学生说出每一个式子的含义.表示2的平方的算术平方根;表示0.1的平方的算术平方根;表示的平方的算术平方根;表示0的平方的算术平方根.追问:根据算术平方根的意义填空,并说出得到结论的依据.=;=;=;=.学生独立完成填空后,让学生展示其思维过程,说出得到结论的依据.∵4=22,∴=2,因此=2;∵0.01=0.12,∴=0.1,因此=0.1;∵=,∴=,因此=;∵0=02,∴=0,因此=0.讨论:从以上的结论中你能发现什么规律?你能用一个式子表示这个规律吗?引导学生归纳得出:一个非负数的平方的算术平方根等于这个数.即=a(a≥0).(教材例3)化简:(1);(2).引导学生根据=a(a≥0)进行分析:(1)因为16=42,所以=,再计算即可得出结果.(2)因为(-5)2=52,所以=.学生独立完成,集体订正.解:(1)==4.(2)==5.(1)中的a的取值范围可以是任意实数,即不论a取何值,一定有意义.(2)化简时,一定要弄明白被开方数的底数a是正数还是负数,若是正数或0,则等于a本身,即=a(a≥0);若a是负数,则等于a的相反数-a,即=-a(a<0).小组讨论:()2和有什么关系?学生自由讨论,教师根据情况引导学生从式子的意义和结果两个方面去分析,得出:()2表示a的算术平方根的平方,()2=a(a≥0);表示a的平方的算术平方根,=|a|= 让学生经历从特殊到一般的过程,概括出二次根式的性质2,培养学生抽象概括的能力,并通过例题练习及时巩固二次根式的性质2.思路二请同学们阅读和自学课本第3~4页的内容,并思考下面的问题:1.(1)填空:()2=;()2=;=;()2=;=;()2=.(2)猜想当a≥0时,()2=.2.(1)观察下列各式的特点,找出各式的共同规律,并用表达式表示你发现的规律.==;==;==;==;….通过观察,你得到的结论是什么?试着说一说.(2)发现:当a≥0时,=,当a<0时,=.学生用充足的时间学习后,交流学习情况,教师分析并讲解.1.(1)根据算术平方根与乘方运算的关系,得=2,所以()2=22=4;=4,所以()2=42=16;=,所以==.根据以上规律,可以得出()2=2;=;()2=0.(2)从第(1)问可以发现,一个非负数的算术平方根的平方等于这个非负数,即()2=a(a≥0).2.先计算==2;==2;==3;==3;….可以看出:一个正数的平方的算术平方根等于这个数,一个负数的平方的算术平方根等于这个数的相反数.于是当a≥0时,=a,当a<0时,=-a.归纳并板书:二次根式的性质:1.()2=a(a≥0);2.=a(a≥0).提问:()2和有什么关系?学生自由讨论,教师根据情况引导学生从式子的意义和结果两个方面去分析,得出:()2表示a的算术平方根的平方,()2=a(a≥0);表示a的平方的算术平方根,=|a|=在计算的基础上,引导学生观察、猜想、归纳得出二次根式的两个性质,并从式子的意义和结果进行比较,得出二者之间的关系.3.代数式提问:回顾我们学过的式子,如a+b,-ab,,-x3,,(a≥0),这些式子有哪些共同特征?学生概括式子的共同特征,得出代数式的概念.这些式子都是用基本运算符号把数或表示数的字母连接起来的式子,我们称这样的式子为代数式.学生举出一些例子,并书写,教师针对学生书写出现问题的地方进行指导.学生通过观察式子的共同特征,形成代数式的概念,培养学生的概括能力.4.例题讲解(补充)计算:(-5)2,,-.〔解析〕利用()2=a(a≥0)和=a(a≥0)化简,注意被开方数的符号.解:(-5)2=(-5)2×()2=25×2=50.==.-=-=-.(补充)比较2与3的大小.〔解析〕直接比较这两个二次根式的大小不太容易,由于这两个二次根式平方后得到两个有理数,因此可以通过比较这两个二次根式平方的大小来比较它们的大小.解:∵(2)2=22×()2=44,(3)2=32×()2=45,又∵44<45,且2>0,3>0,∴2<3.师生共同回顾本节课所学主要内容:知识要点关键点注意事项()2=a(a≥0)任何非负数的算术平方根的平方,其结果仍然是它本身被开方数a是非负数=|a|= 任何实数的平方的算术平方根是它的绝对值底数a可以是任何实数代数式用运算符号把数和表示数的字母连接起来的式子叫代数式①式子中不能出现“=,≠,≥,≤,<,>”;②单个的数字或单个的字母也是代数式1.计算的结果是()A.-3B.3C.-9D.9解析:==3.故选B.2.下列各式:①m2-3;②(a>0);③a-1=6;④3x-5>0;⑤;⑥66.其中代数式的个数是()A.2个B.3个C.4个D.5个解析:③a-1=6是方程,不是代数式;④3x-5>0是一元一次不等式,也不是代数式;其余都是代数式.故选C.3.+的值是.解析:+=2+2=4.故填4.4.(1)当x时,=2-x成立;(2)计算=.解析:(1)当x-2≤0时,=2-x,所以x≤2;(2)因为3<π,所以3-π<0,因此=π-3.答案:(1)≤2(2)π-35.计算:(1);(2)(2)2;(3);(4)(-)2.解:(1)=0.9.(2)(2)2=22×()2=12.(3)=(-2)2×=2.(4)(-)2=(-1)2×()2=15.第2课时1.二次根式的性质1:()2=a(a≥0)例12.二次根式的性质2:=a(a≥0)例23.代数式4.例题讲解例3例4一、教材作业【必做题】教材第4页练习第1,2题;教材第5页习题16.1第2,3,4,5,6题.【选做题】教材第5页习题16.1第7,8,9,10题.二、课后作业【基础巩固】1.已知二次根式的值为3,那么x的值是()A.3B.9C.-3D.3或-32.若=1-2a,则()A.a<B.a≤C.a>D.a≥3.(2015·杭州中考)若k<<k+1(k是整数),则k等于()A.6B.7C.8D.94.实数a,b在数轴上的位置如图所示,则化简-|a+b|的结果为()A.2a+bB.-2a+bC.bD.2a-b【能力提升】5.若是一个正整数,则正整数m的最小值是.6.在实数范围内分解因式:(1)x2-3=;(2)n5-6n3+9n=.7.列出下列代数式:(1)面积为3的圆的半径;(2)面积为S且两条邻边之比为3∶5的长方形的长、宽.8.计算:(1);(2)(3)2;(3);(4)-;(5).9.先化简,再求值:-,其中x=6.【拓展探究】10.对于题目“化简并求值:+,其中a=”,甲、乙两人的解答不同.甲的解答是:+=+=+-a=-a=;乙的解答是:+=+=+a-=a=.谁的解答是错误的?为什么?【答案与解析】1.D(解析:根据题意得x2=9,解得x=±3.故选D.)2.B(解析:由已知得2a-1≤0,解得a≤.故选B.)3.D(解析:本题主要考查了算术平方根的化简及算术平方根的估算,而<<,即9<<10,所以k=9.)4.C(解析:观察图可知a<0,b>0,且|a|>|b|,那么可知a+b<0,再结合二次根式、绝对值的性质进行化简计算.原式=-a-=-a+a+b=b.故选C.)5.5(解析:这类题保证被开方数是最小的完全平方数即可得出结论.20=22×5,所以正整数m的最小值为5.)6.(1)(x+)(x-)(2)n(n+)2(n-)2(解析:关键是逆用()2=a(a≥0)将3变成()2.(1)x2-3=(x+)(x-).(2)n5-6n3+9n=n(n4-6n2+9)=n(n2-3)2=n(n+)2(n-)2.)7.解:(1).(2)宽:3;长:5.8.解:(1)=.(2)(3)2=32×()2=18.(3)=(-2)2×=.(4)-=-=-3π.(5)==.9.解:原式=-=-.∵x=6,∴x+1>0,x-8<0.∴原式=x+1-=x+1+x-8=2x-7=12-7=5.10.解析:在利用=|a|=化简二次根式时,当根号内的因式移到根号外面时,一定要注意原来根号里面的符号,这也是化简时最容易出错的地方.解:乙的解答是错误的.因为当a=时,=5,a-<0,所以≠a-,而应是=-a.本节课通过“观察——归纳——运用”的模式,让学生对知识的形成与掌握变得简单起来,将一个一个知识点落实到位,适当增加了拓展性的练习,层层递进,使不同的学生得到了不同的发展和提高.在探究二次根式的性质时,通过“提问——追问——讨论”的形式展开,保证了活动有一定的针对性,但是学生发挥主体作用不够.在探究完成二次根式的性质1后,总结学习方法,再放手让学生自主探究二次根式的性质2.既可以提高学习效率,又可以培养学生自学能力.练习(教材第4页)1.解:(1)()2=3.(2)(3)2=32×()2=9×2=18.2.解:(1)=0.3.(2)=.(3)-=-π.(4)=10-1=.习题16.1(教材第5页)1.解:(1)欲使有意义,则必有a+2≥0,∴a≥-2,∴当a≥-2时,有意义.(2)欲使有意义,则必有3-a≥0,∴a≤3,∴当a≤3时,有意义.(3)欲使有意义,则必有5a≥0,∴a≥0,∴当a≥0时,有意义.(4)欲使有意义,则必有2a+1≥0,∴a≥-,∴当a≥-时,有意义.2.解:(1)()2=5.(2)(-)2=()2=0.2.(3)=.(4)(5)2=52×()2=25×5=125.(5)==10.(6)=72×=49×=14.(7)=.(8)-=-=-.3.解:(1)设圆的半径为R,由圆的面积公式得S=πR2,所以R2=,所以R=±.因为圆的半径不能是负数,所以R=-不符合题意,舍去,故R=,即面积为S的圆的半径为.(2)设较短的边长为2x,则它的邻边长为3x.由长方形的面积公式得2x·3x=S,所以x=±,因为x=-不符合题意,舍去,所以x=,所以2x=2=,3x=3=,即这个长方形的相邻两边的长分别为和.4.解:(1)32.(2)()2.(3)()2.(4)0.52.(5).(6)02.5.解:由题意可知πr2=π·22+π·32,∴r2=13,∴r=±.∵r=-不符合题意,舍去,∴r=,即r的值是.6.解:设AB=x,则AB边上的高为4x,由题意,得x·4x=12,则x2=6,∴x=±.∵x=-不符合题意,舍去,∴x=.故AB的长为.7.解:(1)∵x2+1>0恒成立,∴无论x取任何实数,都有意义.(2)∵(x-1)2≥0恒成立,∴无论x取任何实数,都有意义.(3)∵即x>0,∴当x>0时,在实数范围内有意义.(4)∵即x>-1,∴当x>-1时,在实数范围内有意义.8.解:设h=kt2, 则由题意,得20=k×22,解得k=5,∴h=5t2,∴t=(负值已舍去).当h=10时,t==,当h=25时,t==.故当h=10和h=25时,小球落地所用的时间分别为s和s.9.解:(1)由题意知18-n≥0且为整数,则n≤18,n为自然数且为整数,∴符合条件的n的所有可能的值为2,9,14,17,18.(2)∵24n≥0且是整数,n为正整数,∴符合条件的n的最小值是6.10.解:V=πr2×10,r=(负值已舍去),当V=5π时, r==,当V=10π时,r==1,当V=20π时,r==.如图所示,根据实数a,b在数轴上的位置,化简:+.〔解析〕根据数轴可得出a+b与a-b的正负情况,从而可将二次根式化简.解:由数轴可得:a+b<0,a-b>0,∴+=|a-b|+|a+b|=a-b-(a+b)=-2b.结合数轴得出字母的取值范围,再化简二次根式,此题体现了数形结合的思想.已知a,b,c为三角形的三条边,则+=.〔解析〕根据三角形三边的关系,先判断a+b-c与b-a-c的符号,再去根号、绝对值符号并化简.因为a,b,c为三角形的三条边,所以a+b-c>0,b-a-c<0,所以原式=(a+b-c)+=a+b-c-b+a+c=2a.故填2a.此类化简问题要特别注意符号问题.化简:.〔解析〕题中并没有明确字母x的取值范围,需要分x≥3和x<3两种情况考虑.解:当x≥3时,=|x-3|=x-3;当x<3时,=|x-3|=-(x-3)=3-x.化简时,先将它化成|a|,再根据绝对值的意义分情况进行讨论.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

最简二次根式
八年级数学教案
教学建议
1 .教材分析
本节是在前两节的基础上,从实际运算的客观需要出发,引出最简二次根式的概念,然后通过一组例题介绍了化简二次根式的方法.本小节内容比较少 (求学生了解最简二次根式的概念并掌握化简二次根式的方法),但是本节知识在全章中却起着承上启下的重要枢纽作用,二次根式性质的应用、二次根式的化简以及二次根式的运算都需要最简二次根式来联接.
(1)知识结构
⑵重难点分析
①本节的重点I.最简二次根式概念
H.利用二次根式的性质把二次根式化简为最简二次根式.
重点分析本章的主要内容是二次根式的性质和运算,但自始至终围绕着二次根式的化简和运算.二次根式化简的最终目标就是最简二次根式;而二次根式的运算则是合并同类二次根式,怎样判定同类二次根式,是在化简为最简二
次根式的基础上进行的.因此本节以二次根式的概念和二次根式的性质为基础,内容虽然简单,在本章中却起着穿针引线的作用,教师在教学中应给于极度重视,不可因为内容简单而采取弱化处理;同时初二学生代数成绩的分化一般是由本节开始的,分化的根本原因就是对最简二次根式概念理解不够深刻,遇到相关问题不知怎样操作,具体操作到哪一步.
②本节的难点是化简二次根式的方法与技巧.
难点分析化简二次根式,实际上是二次根式性质的综合运用.化简二次根式的过程,一般按以下步骤:把根号下的带分数或绝对值大于1的小数化成假
分数,把绝对值小于1的小数化成分数;被开方数是多项式的要因式分解;使被开放数不含分母;将被开方数中能开的尽方的因数或因式用它的算术平方根代替后移到根号外面;化去分母中的根号;约分.所以对初学者来说,这一过程容易出现符号和计算出错的问题.熟练掌握化简二次根式的方法与技巧,能够进一步开拓学生的解题思路,提高学生的解题能力.
③重难点的解决办法是对于最简二次根式这一概念,并不要求学生能否背出定义,关键是遇到实际式子能够加以判断.因此建议在教学过程中对概念本身采取弱化处理,让学生在反复练习中熟悉这个概念;同时教学中应充分对最简二次根式概念理解后应用具体的实例归纳总结出把一个二次根式化为最简二次根式的方法,在观察对比中引导学生总结具体解决问题的方法技巧.
另外,化简运算在本节既是重点也是难点,学生在简洁性和准确性上都容易出现问题,因此建议在教学过程中多要求学生观察二次根式的特点一一根据
其特点分析运用哪条性质、哪种方法来解答,培养学生的分析能力和观察能力一一多要求学生注意每步运算的根据,培养学生的严谨习惯.
2.教法建议
素质教育和新的教改精神的根本是增强学生学习的自主性和学生的参与意识,使每一个学生想学、爱学、会学。

因此教师设计教学时要充分考虑到学生心理特点和思维特点,充分发挥情感因素,使学生完全参与到整个教学中来。

⑴在复习引入时要注意每个学生的反映,对预备知识掌握比较好的学生要用适当的方式给于表扬,掌握差一些的学生要给予鼓励和适当的指导,使每一个学生愉快的进入下一个环节。

⑵学生自主学习时段,教师要注意学生的反馈情况,根据学生的反馈情况和学生的层次采取适当的方式对需要帮助的学生给予帮助,中上等的学生可以启发,中等的学生可以与他探讨,偏后的学生可以帮他分析.
一.教学目标
1.了解最简二次根式的意义,并能作出准确判断.
2.能熟练地把二次根式化为最简二次根式.
3.了解把二次根式化为最简二次根式在实际问题中的应用.
4.进一步培养学生运用二次根式的性质进行二次根式化简的能力,提高运算能力.
5.通过多种方法化简二次根式,渗透事物间相互联系的辩证观点.
6.通过本节的学习,渗透转化的数学思想.
.重点难点
1.教学重点会把二次根式化简为最简二次根式
2.教学难点准确运用化二次根式为最简二次根式的方法
三.教学方法
程序式教学
四.课时安排
2课时
五.教学过程
1.复习引入
教师准备本节内容需要的二次根式的性质和与性质相关例题、练习题以及引入材料.
【预备资料】
(1).二次根式的性质
⑵.二次根式性质例题
⑶.二次根式性质练习题
【引入材料】
看下面的问题:
已知:
=1.732,如何求出
的近似值?
解法1:
解法2:
比较两种解法,解法1很繁,解法2较简便,比例说明,将二次根式化简,有时会带来方便.
2.概念讲解与巩固
学生阅读教师预备的材料,理解后自主完成教师准备的正选练习题,每完成一套与教师交流一次,在教师的指示下继续进行.教师要及时了解学生对最
简二次根式概念的反馈情况,如果掌握比较理想,则要求进入下一步操作,否则应与学生进行适当沟通,如需要可从备选练习题选择巩固.
【概念讲解材料】
满足下列条件的二次根式,叫做最简二次根式:
(1)被开方数的因数是整数,因式是整式;
(2)被开方数中不含能开得尽方的因数或因式.
如:
都不是最简二次根式,因为被开方数的因数(或系数)为分数或因式为分式, 不符合条件(1),条件(1)实际上就是要求被开方数的分母中不带根号.
又如
也不是最简二次根式,因为被开方数中含有能开得尽方的因数或因式,不
满足条件(2).注意条件(2)是对被开方数分解成质因数或分解成因式后而言的,如
判断一个二次根式是不是最简二次根式的方法,就是逐个检查定义中的两个条件是否同时满足,同时满足两个条件的就是,否则就不是.
【概念理解学习材料1】
F列二次根式中哪些是最简二次根式?哪些不是?为什么?
分析:判断一个二次根式是不是最简二次根式的方法,就是逐个检查定义中的两个条件是否同时满足,同时满足两个条件的就是,否则就不是.
解:最简二次根式有
,因为
被开方数中含能开得尽方的因数9,所以它不是最简二次根式.
说明:判断一个二次根式是否为最简二次根式主要方法是根据最简二次根式的定义进行,或直观地观察被开方数的每一个因数(或因式)的指数都小于根指数2,且被开方数中不含有分母,被开方数是多项式时要先因式分解后再观察。

【概念理解巩固材料1】
正选练习题1
判断下列各式是否是最简二次根式?
备选选练习题1
判断下列各式是否是最简二次根式?
【概念理解学习材料2】
例2判断下列各式是否是最简二次根式?
分析:(1)
显然满足最简二次根式的两个条件.
(2)

解:最简二次根式只有
,因为

说明:最简二次根式应该分母里没根式,根式里没分母(或小数). 【概念理解巩固材料2】
正选练习题2
判断下列各式是否是最简二次根式?
备选选练习题2
判断下列各式是否是最简二次根式?
【概念理解学习材料2】
例3判断下列各式是否是最简二次根式?
分析:最简二次根式应该分母里没根式,根式里没分母(或小数)来进行判断发现和
是最简二次根式,而
不是最简二次根式,因为
在根据定义知
也不是最简二次根式,因为
解:最简二次根式有

,因为
【概念理解巩固材料3】
正选练习题3
判断下列各式是否是最简二次根式?
备选选练习题3
题目可根据学生实际情况选择2- 3道.
【概念理解学习材料4】
例4判断下列各式是否是最简二次根式?
分析:被开方数是多项式的要先分解因式再进行观察判断.
(1)
不能分解因式,
显然满足最简二次根式的两个条件.
(2)
解:最简二次根式只有
,因为
说明:被开方数比较复杂时,应先进行因式分解再观察. 【概念理解巩固材料4】正选练习题4
备选选练习题4
判断下列各式是否是最简二次根式?
题目可根据学生实际情况选择2- 3道.
3.化简二次根式为最简二次根式方法学习与巩固
学生阅读教师预备的材料,理解后自主完成教师准备的正选练习题,每完成一套与教师交流一次,在教师的指示下继续进行.教师要及时了解学生对二次根式化简的反馈情况,如果掌握比较理想,则要求进入下一步操作,否则应与学生进行适当沟通,如需要可从备选练习题选择巩固.
【化简方法学习材料1】
例1把下列二次根式化为最简二次根式
分析:本例题中的2道题都是基础题,只要将被开方数中能开的尽方的因数或因式用它的算术平方根代替后移到根号外面即可.
解:
【化简方法巩固材料1】
正选练习题1
化简
备选练习题1
化简
题目可由教师根据学生情况准备.
【化简方法学习材料2】
例2把下列二次根式化为最简二次根式
分析:本例题中的2道题被开方数都是多项式,应先进行因式分解.
解:
说明:被开方数中能开的尽方的因数或因式的算术平方根移到根号外面后要注意符号问题.
在化简二次根式时,要防止出现如下的错误:
化简二次根式的步骤是:
(1)把被开方数(或式)化成积的形式,即分解因式.
(2)化去根号内的分母,即分母有理化.
(3)将根号内能开得尽方的因数(式)开出来.
【化简方法巩固材料2】化简
正选练习题2
化简
备选练习题2
化简
题目可由教师根据学生情况准备.
【化简方法学习材料3】
例3把下列二次根式化为最简二次根式
分析:被开方式比较复杂时,要先对被开方式进行处理解:
说明:运算中要注意运算的准确性和合理性.
【化简方法巩固材料3】
正选练习题3
化简
备选练习题3化简
题目可由教师根据学生情况准备.
4.小结
⑴最简二次根式概念
⑵二次根式的化简
化简二次根式的过程,一般按以下步骤:把根号下的带分数或绝对值大于1的小数化成假分数,把绝对值小于1的小数化成分数;被开方数是多项式的要因式分解;使被开放数不含分母;将被开方数中能开的尽方的因数或因式用它的算术平方根代替后移到根号外面;化去分母中的根号;约分.。

相关文档
最新文档