九年级数学切线的判定
九年级数学上册《切线的判定》教案、教学设计
4.设计丰富的例题和练习题,让学生在解答过程中,巩固所学知识,提高学生的解题技巧和应变能力。
(三)情感态度与价值观
1.培养学生对数学学科的兴趣,激发学生学习数学的积极性,使其形成良好的学习习惯。
2.培养学生勇于探索、克服困难的意志品质,增强学生的自信心和自我成就感。
3.引导学生认识到数学知识在实际生活中的应用价值,培养学生运用数学知识解决实际问题的意识。
4.培养学生的审美观念,让学生感受几何图形的和谐美,提高学生的审美情趣。
二、学情分析
九年级的学生已经具备了一定的几何知识和逻辑思维能力,能够理解和运用基本的几何概念和定理。在本章节学习之前,学生已经掌握了圆的基本性质、圆的方程以及点与圆的位置关系等基础知识,这为学习切线的判定打下了良好的基础。然而,学生在面对几何问题的解决策略上,可能还存在一定的局限性,需要教师在教学过程中给予适当的引导和启发。此外,学生的空间想象能力和抽象思维能力的发展水平不一,教学中应关注个体差异,因材施教,激发学生的学习潜能。通过本章节的学习,旨在进一步提高学生的几何推理能力,培养他们运用数学知识解决实际问题的能力,增强学生对数学学科的兴趣和信心。
(二)过程与方法
1.通过观察、分析、归纳,培养学生发现问题和解决问题的能力。
2.采用问题驱动的教学方法,引导学生从特殊到一般,从具体到抽象地理解切线的判定定理。
3.创设合作学习情境,让学生在小组讨论、交流中共同探究,提高团队协作能力和沟通表达能力。
4.设计丰富的例题和练习题,巩固所学知识,提高解题技巧和应变能力。
4.让学生尝试编写一道关于切线的原创题目,并给出解题过程和答案。此举旨在激发学生的创新思维,提高学生对知识点的深入理解。
九年级数学-切线长定理—知识讲解-提高
切线长定理—知识讲解(提高)审稿:【学习目标】1.了解切线长定义;理解切线的判定和性质;理解三角形的内切圆及内心的定义;2.掌握切线长定理;利用切线长定理解决相关的计算和证明.【要点梳理】要点一、切线的判定定理和性质定理1.切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线.要点诠释:切线的判定方法:(1)定义:直线和圆有唯一公共点时,这条直线就是圆的切线;(2)定理:和圆心的距离等于半径的直线是圆的切线;(3)判定定理:经过半径外端并且垂直于这条半径的直线是圆的切线.(切线的判定定理中强调两点:一是直线与圆有一个交点,二是直线与过交点的半径垂直,缺一不可).2.切线的性质定理:圆的切线垂直于过切点的半径.要点诠释:切线的性质:(1)切线和圆只有一个公共点;(2)切线和圆心的距离等于圆的半径;(3)切线垂直于过切点的半径;(4)经过圆心垂直于切线的直线必过切点;(5)经过切点垂直于切线的直线必过圆心.要点二、切线长定理1.切线长:经过圆外一点作圆的切线,这点和切点之间的线段的长,叫做这点到圆的切线长.要点诠释:切线长是指圆外一点和切点之间的线段的长,不是“切线的长”的简称.切线是直线,而非线段. 2.切线长定理:从圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角. 要点诠释:切线长定理包含两个结论:线段相等和角相等.3.圆外切四边形的性质:圆外切四边形的两组对边之和相等.要点三、三角形的内切圆1.三角形的内切圆:与三角形各边都相切的圆叫做三角形的内切圆.2.三角形的内心:三角形内切圆的圆心是三角形三条角平分线的交点,叫做三角形的内心.要点诠释:(1) 任何一个三角形都有且只有一个内切圆,但任意一个圆都有无数个外切三角形;(2) 解决三角形内心的有关问题时,面积法是常用的,即三角形的面积等于周长与内切圆半径乘积的一半,即(S为三角形的面积,P为三角形的周长,r为内切圆的半径).【典型例题】类型一、切线长定理1.如图,等腰三角形ABC中,6AC BC==,8AB=.以BC为直径作⊙O交AB于点D,交AC于点G,DF AC⊥,垂足为F,交CB的延长线于点E.求证:直线EF是⊙O的切线.【答案与解析】如图,连结OD、CD,则90BDC∠=︒.∴CD AB⊥.∵ AC BC=,∴AD BD=.∴D是AB的中点.∵O是BC的中点,∴DO AC∥.∵EF AC⊥于F.∴EF DO⊥.∴EF是⊙O的切线.【总结升华】连半径,证垂直.举一反三:【变式】已知:如图,在梯形 ABCD中,AB∥DC,∠B=90°,AD=AB+DC,AD是⊙O的直径.求证:BC和⊙O相切.【答案】作OE⊥BC,垂足为E,∵ AB∥DC,∠B=90°,∴ OE∥AB∥DC,∵ OA=OD,∴ EB=EC,∴ BC是⊙O的切线.2.已知:如图,AB是⊙O的直径,BC是⊙O的切线,切点为B,OC平行于弦AD,求证:DC是⊙O的切线.【答案与解析】连接OD.∵ OA=OD,∴∠1=∠2.∵ AD∥OC,∴∠1=∠3,∠2=∠4.因此∠3=∠4.又∵ OB=OD,OC=OC,∴△OBC≌△ODC.∴∠OBC=∠ODC.∵BC是⊙O的切线,∴∠OBC=90°,∴∠ODC=90°,∴ DC是⊙O的切线.【总结升华】因为AB是直径,BC切⊙O于B,所以BC⊥AB.要证明DC是⊙O的切线,而DC和⊙O有公共点D,所以可连接OD,只要证明DC⊥OD.也就是只要证明∠ODC=∠OBC.而这两个角分别是△ODC和△OBC的内角,所以只要证△ODC≌△OBC.这是不难证明的.举一反三:【高清ID号:356967 关联的位置名称(播放点名称):练习题精讲】【变式】已知:∠MAN=30°,O为边AN上一点,以O为圆心、2为半径作⊙O,交AN于D、E两点,设AD=x,⑴如图⑴当x取何值时,⊙O与AM相切;⑵如图⑵当x为何值时,⊙O与AM相交于B、C两点,且∠BOC=90°.【答案】(1)设AM与⊙O相切于点B,并连接OB,则OB⊥AB;在△AOB中,∠A=30°,则AO=2OB=4,所以AD=AO-OD,即AD=2.x=AD=2.(2)过O点作OG⊥AM于G∵OB=OC=2,∠BOC=90°,∴BC=,,∵∠A=30°∴OA=图(2)∴x=AD= 2类型二、三角形的内切圆3.如图,点I 为△ABC 的内心,点O 为△ABC 的外心,∠O =140°,则∠I 为( ) (A )140° (B )125° (C )130° (D )110°【答案】B .【解析】因点O 为△ABC 的外心,则∠BOC 、∠A 分别是BC 所对的圆心角、圆周角,所以∠O =2∠A ,故∠A =21×140°=70°.又因为I 为△ABC 的内心, 所以∠I =90°+21∠A =90°+21×70°=125°.【总结升华】本题考查圆心角与圆周角的关系,内心、外心的概念.注意三角形的内心与两顶点组成的角与另一角的关系式.类型三、与相切有关的计算与证明【高清ID 号: 356967 关联的位置名称(播放点名称):经典例题4】4. 如图,已知直径与等边△ABC 的高相等的圆O 分别与边AB 、BC 相切于点D 、E ,边AC 过圆心O与圆O 相交于点F 、G. (1) 求证:DE ∥AC.(2) 若△ABC 的边长为a ,求△ECG 的面积.【答案与解析】(1)∵△ABC 是等边三角形,∴∠B=∠A=60°∵AB 、BC 是圆O 的切线,D 、E 是切点,∴BD=BE.∴∠BDE=60°=∠A, ∴DE//AC.(2)分别连接OD 、OE ,作EH ⊥AC 于点H .∵AB 、BC 是圆O 的切线,D 、E 是切点,O 是圆心, ∴∠ADO=∠OEC=90°,OD=OE ,AD=EC.∴△ADO ≌△CEO,有AO=OC=12a . ∵圆O 直径等于△ABC 的高,∴半径 ,∴CG=OC+OG=2a . ∵EH ⊥OC ,∠C =60°,可推知EH =8a . ∴【总结升华】本题是一道综合性很强的习题,考查到切线的性质,全等三角形的判断,等边三角形的性质等,是一道很不错的题.。
数学人教版九年级上册切线的概念·切线的判断
小结
判定直线与圆相切有哪些常用方法?
(1)如果已知直线经过圆上某一点,则作过这点的半 注意 径为辅助线,再证所作半径与这条直线垂直。简记为: 连半径,证垂直。 (2)如果已知条件中未指明直线与圆的公共点,则过 圆心作直线的垂线段为辅助线,再证垂线段长等于半 径长。简记为:作垂直,证半径。
练习1.如图,AB是⊙O的直径,点D在AB的延长 线上,BD=OB,点C在⊙上,∠CAB=30°, 求证:DC是⊙O的切线.
D
B
2:如图,在Rt△ABC中,∠B=90°,∠A的 平分线交BC于D,E为AB上一点, DE=DC,以D为圆心,以DB的长为半径画 圆.求证:(1)AC是⊙D的切线; (2)AB+EB=AC.
反馈练习
1.如图,AB是⊙O的直径,AD是弦,E是⊙O外 一点,EF⊥AB于F,交AD于点C,且CE=ED, A 求证:DE为⊙O的切线.
例1.已知:直线AB经过⊙O上的点C,并且OA=OB,
CA=CB. 求证:直线AB是⊙O的切线.
证明:连结OC ∵ OA=OB CA=CB ∴ AB⊥OC ∵ 直线AB经过半径OC的外端 ∴ AB是⊙O的切线
O
A
C
B
练习1.如图:AB是⊙O的直径,∠B=450,AT=BA. 求证:AT是⊙O的切线.
即经过半径的外端并且垂直这条半径的直线是圆的切线根据位置关系oorrllaaoorrllaaoorrllaa利用判定定理时要注意直线须具备以下两个条件利用判定定理时要注意直线须具备以下两个条件缺一不可缺一不可11直线经过半径的外端直线经过半径的外端
复习引入
(1)直线和圆有哪几种位置关系? (2)如何判定直线和圆的位置关系呢? (两种方法)
A O
九年级数学下册《切线的性质和判定》教案、教学设计
4.设计不同难度的例题和练习题,由浅入深,让学生逐步掌握切线相关知识,培养逻辑推理能力和数学运算能力。
(三)情感态度与价值观
1.培养学生对几何图形的审美情趣,激发他们对数学学科的兴趣和热爱。
2.培养学生勇于探索、严谨治学的学习态度,让他们在解决问题的过程中体验成功的喜悦。
九年级数学下册《切线的性质和判定》教案、教学设计
一、教学目标
(一)知识与技能
1.理解并掌握切线的定义,能够准确判断一个直线是否为给定圆的切线。
2.掌握切线的性质,如切线与半径垂直、切线段为半径的外切三角形的一条边等。
3.学会使用判定定理判断一个直线是否为圆的切线,如通过圆心到直线的距离等于圆的半径来判断。
4.能够运用切线相关知识解决实际问题,如求圆的切线长度、切线与弦的交点等。
(二)过程与方法
在本章节的教学过程中,学生将通过以下方法培养数学思维与解题能力:
1.通过实际操作和观察,引导学生发现切线的性质,培养观察能力和动手能力。
2.引导学生运用几何画板等教学软件,进行动态演示,激发学生的学习兴趣,提高直观想象能力。
6.开展课堂小结活动,鼓励学生分享自己在学习过程中的收获和困惑,及时反馈教学效果,为后续教学提供参考。
7.教学评价方面,注重过程性评价与终结性评价相结合,关注学生在课堂上的表现、作业完成情况以及解决问题的能力。
8.加强课后辅导,针对学生在学习过程中遇到的问题,提供个性化指导,帮助他们克服难点,提高学习效果。
(2)在平面直角坐标系中,已知圆心为(3,4),半径为5,求过点A(1,1)的切线方程。
3.拓展练习题:
人教版数学九年级上册24.2.2切线的性质与判定(教案)
一、教学内容
人教版数学九年级上册24.2.2切线的性质与判定:
1.理解并掌握切线的定义;
2.掌握切线的判定定理:经过半径外端且垂直于半径的直线为圆的切线;
3.掌握切线的性质:圆的切线垂直于过切点的半径;
4.学会运用切线的性质解决有关切线长度、角度等问题;
五、教学反思
在今天的教学过程中,我发现同学们对切线的性质与判定这一章节的内容兴趣浓厚,这让我感到很欣慰。在导入新课环节,通过提出与日常生活相关的问题,成功吸引了学生的注意力,激发了他们的学习兴趣。但在后续的教学中,我也注意到一些需要改进的地方。
在理论介绍环节,我发现部分学生对切线定义的理解还不够深入,对切线判定定理的掌握也不够牢固。在接下来的教学中,我需要更加注重对基础概念的讲解,通过生动的例子和实际操作,帮助学生更好地理解切线的定义和判定定理。
-切线的性质:理解并掌握圆的切线垂直于过切点的半径,以及切线与圆的相切关系。
-实际问题中的应用:学会将切线的性质和判定定理应用于解决直线与圆的位置关系问题。
举例解释:
(1)通过图形演示和实际操作,让学生理解切线的定义,强调切线与圆只有一个交点。
(2)通过具体例题,如给定一个圆和一点,让学生画出经过该点且为圆的切线,从而加深对切线判定定理的理解。
(3)通过分析切线与过切点的半径的垂直关系,让学生明白切线的性质,并能够应用这一性质解决相关问题。
2.教学难点
-切线判定定理的理解:学生可能难以理解为什么经过半径外端且垂直于半径的直线是圆的切线。
-切线性质的应用:学生在应用切线性质解决实际问题时,可能不知道如何建立数学模型和运用相关定理。
-解决实际问题时图形分析能力:学生在面对复杂的图形时,可能难以识别切线与圆的关系。
人教版数学九年级上册24.2.2.2《切线的判定和性质》说课稿
人教版数学九年级上册24.2.2.2《切线的判定和性质》说课稿一. 教材分析《切线的判定和性质》是人教版数学九年级上册第24章《圆》的第二个知识点。
本节内容是在学生已经掌握了圆的定义、性质以及圆的基本运算的基础上进行学习的。
本节内容主要介绍了切线的定义、判定和性质,以及切线与圆的位置关系。
这些知识对于学生理解和掌握圆的性质,解决与圆有关的问题具有重要意义。
二. 学情分析九年级的学生已经具备了一定的数学基础,对于圆的性质和运算已经有了一定的了解。
但是,对于切线的定义、判定和性质以及切线与圆的位置关系可能还比较陌生。
因此,在教学过程中,我需要注重引导学生从已知的圆的性质出发,推导出切线的性质,从而帮助学生理解和掌握切线的相关知识。
三. 说教学目标1.知识与技能目标:使学生理解和掌握切线的定义、判定和性质,以及切线与圆的位置关系。
2.过程与方法目标:通过观察、思考、讨论和操作,培养学生的观察能力、逻辑思维能力和动手操作能力。
3.情感态度与价值观目标:激发学生对数学的兴趣,培养学生的团队合作意识和自主学习能力。
四. 说教学重难点1.教学重点:切线的定义、判定和性质,以及切线与圆的位置关系。
2.教学难点:切线的判定和性质的推导过程,以及切线与圆的位置关系的理解。
五. 说教学方法与手段在本节课的教学中,我将采用讲授法、引导发现法、小组合作学习和动手操作相结合的教学方法。
同时,利用多媒体课件和几何画板等教学手段,帮助学生直观地理解切线的性质和判定。
六. 说教学过程1.导入:通过复习圆的性质,引导学生思考与圆有关的问题,激发学生的学习兴趣。
2.引导发现:引导学生从已知的圆的性质出发,观察和思考切线的性质,引导学生发现切线的判定和性质。
3.讲解与示范:讲解切线的定义、判定和性质,以及切线与圆的位置关系,并通过几何画板进行演示。
4.动手操作:让学生利用几何画板或者手工画图,自己尝试作出圆的切线,并判断其性质。
5.小组合作学习:让学生分组讨论,总结切线的性质和判定,以及切线与圆的位置关系。
《切线的判定》九年级数学说课稿
《切线的判定》九年级数学说课稿各位评委、各位老师:大家下午好!我说课的内容是《切线的判定》。
我将从教材分析、学情分析、目标重难点分析、教法学法分析、教学过程、教学评价六个方面阐述我对本节课的设计意图。
一、教材分析1、教材的地位和作用本节内容选自九下第三章《圆》第五节《直线和圆的位置关系》的第二课时《切线的判定》。
本课时内容是在学习了直线与圆的位置关系的基础上,进一步探究直线和圆相切的条件,并为探究切线长定理和切割线定理而作准备的,它在圆的学习中起着承上启下的作用,在整个初中几何学习中起着桥梁和纽带的作用。
因此,它是几何学习中必不可少的知识工具。
2、本课主要知识点(1)判定一条直线是否为圆的切线(2)过圆上一点画圆的切线.(3)作三角形的内切圆.3、教材整改结合教学实际及中考要求,我对教材内容略作了调整。
当探究出判定后,为了提高学生将所学的知识应用于实际,我特增加了例1和例2,让学生总结出“证明一条直线是圆的切线时,常常添加辅助线的两种方法”,帮助学生进一步深化理解切线的判定定理,达到学以致用。
同时我对学案也作了调整。
将在后面的学习过程中得以具体的体现。
二、学情分析1、已有的知识能力学生已经掌握了等边三角形的性质,直角三角形的性质,圆周角的知识,与圆有关的性质,切线的定义,切线的性质等。
2、已有的数学能力具有初步的逻辑推理能力和基本的作图能力等。
3、已有的学习能力预习能力、小组合作能力、讲解能力、概括总结能力,评价能力等。
三、目标、重难点分析基于上述情况,结合《新课程标准》和我校学生的实际情况,特制定了如下教学目标。
(一)目标分析1、知识与技能(1)能判定一条直线是否为圆的切线.(2)会过圆上一点画圆的切线.(3)会作三角形的内切圆.2、过程与方法。
人教版数学九年级上册:24. 切线的判定定理 课件
O l
r
A
O r
O l
●
O
l
r
┐
l
A
A
AБайду номын сангаас
2、已知如图△ABC内接于⊙O,过点A作直线 EF,AB为直径,还需添加的条A件B是⊥_E_F___.使 得EF是⊙O的切线。
F
O
B
A
C
E
定理应用:
例1、如图 AB是⊙O的直径,∠ABT=45°AT=AB, 求证:AT 是⊙O的切线.
证明: ∵ ∠1 = 45°,AT=AB
定理应用:
例3、 如图,已知:O为∠BAC平分线上一
点,OD⊥AB于D,以O为圆心,OD为半径
作 ⊙O。求证:⊙O与AC相切。
A
DB O
E C
无交点,作垂直,证半径
归纳: 例2与例3的证法有何不同?
O AC B
DB
A
O
E C
(1)有交点,连半径,证垂直. (2)无交点, 作垂直,证半径.
练习1、如图,在△ABC中,AB=AC,以AB 为直径的⊙O交边BC于P, PE⊥AC于E.
圆心到直线距
离d与半径r的 d < r d = r d > r
关系(数量)
O
l
O
d
l
点A叫半径OA的外端
作半径OA
经过点A作直线
无数条
O
·A
相交 相切
与圆O的位置关系
1、判断: 两个条件缺一不可
(1)过半径的外端的直线是圆的切线(×)
(2)与半径垂直的的直线是圆的切线(×)
(3)过半径的端点与半径垂直的直线是圆的
人教版九年级上册
切线的性质与判定方法
切线的性质与判定方法引言在数学中,切线是用于描述曲线和函数图像上某一点附近的直线。
切线具有重要的几何性质,能够帮助我们理解曲线在某一点的变化规律。
本文将介绍切线的性质以及判定方法,以帮助读者更好地理解和应用切线概念。
切线的定义和性质切线是曲线在某一点处与曲线相切的直线。
切线具有以下性质:1.切线与曲线相切于相交点,且相交点上的切线方向与曲线方向一致;2.切线与曲线的变化趋势相近,可以用切线来近似曲线在该点的变化规律。
切线的判定方法方法一:利用导数切线的判定方法之一是利用函数的导数。
对于函数f(x),若某一点x=a处的导数存在,则可以通过求出该点的导数值来判定是否存在切线。
具体步骤如下:1.计算函数f(x)关于x的导数f′(x);2.判断导数在点x=a处是否存在,即f′(a)是否有定义;3.若f′(a)存在,则点(a,f(a))处存在切线,其斜率为导数值f′(a)。
方法二:利用近似线性化切线的判定方法之二是利用近似线性化,即将曲线在某一点附近进行线性化处理,将曲线近似看作直线。
具体步骤如下:1.选择一个点P,并计算其横坐标和纵坐标分别为x0和y0;2.确定一个合适的区间范围,例如x在[x0−ℎ,x0+ℎ]的范围内,其中ℎ为一个较小的正数;3.在该区间内选择另外一个点Q,并计算其横坐标和纵坐标分别为x和y;4.计算点P和点Q之间的斜率 $k=\\frac{y-y_0}{x-x_0}$;5.若在不同的点对P和Q计算得到的斜率值都相近,则表示该曲线在点P的附近存在切线。
切线的应用举例例一:求曲线y=x2在点(1,1)处的切线方程首先,计算函数y=x2的导数:$$ \\frac{dy}{dx} = 2x $$在点(1,1)处的导数值为2,因此切线的斜率为2。
切线方程可以表示为:y−1=2(x−1)例二:利用切线近似计算函数值考虑函数 $y = \\sin(x)$,在x=0处的切线方程为y=x。
利用切线的性质,我们可以近似计算 $\\sin(0.1)$ 的值:将x=0.1代入切线方程y=x,得到y=0.1。
九年级数学上册《切线的判定定理》优秀教学案例
一、案例背景
在我国九年级数学上册的教学中,平面几何占据了重要的地位,其中切线的判定定理是学生难以掌握的一个知识点。针对这一情况,本教学案例旨在通过生活实例引入,激发学生兴趣,运用探究与合作的学习方式,帮助学生理解并掌握切线的判定定理。本案例结合教材内容,注重培养学生的几何直观和逻辑思维能力,提高他们解决实际问题的能力。
3.能够运用圆的性质和切线的判定定理推导出相关结论,如圆的切线垂直于过切点的半径等。
4.掌握切线方程的求解方法,能够根据实际问题列出切线方程并求解。
5.提高学生的几何直观和空间想象能力,培养他们在解决几何问题时运用直观和逻辑思维的能力。
(二)过程与方法
在本章节的教学过程中,教师将采用以下方法引导学生学习:
1.采用生活实例引入切线的概念,激发学生的学习兴趣。
2.通过观察、猜想、验证、总结等步骤,引导学生发现并掌握切线的判定定理。
3.创设问题情境,鼓励学生独立思考、合作交流,培养他们的探究能力和团队协作精神。
4.设置不同难度的练习题,使学生在实践中巩固所学知识,提高解决问题的能力。
5.引导学生运用所学知识解决实际问题,培养学生的创新意识和实践能力。
a.除了判定定理,还有哪些方法可以判断直线是否为圆的切线?
b.在解决实际问题时,如何灵活运用切线的判定定理?
3.提醒学生注意作业的规范性和解题思路的清晰性,培养良好的学习习惯。
五、案例亮点
1.生活情境的巧妙运用
本教学案例的最大亮点之一是巧妙地运用生活情境导入新课。通过引入公园湖泊与直线的图片,激发学生的好奇心,使他们在生活实例中感受数学的魅力。这种情境创设不仅拉近了数学与生活的距离,还激发了学生的学习兴趣,提高了课堂参与度。
切线的概念、切线的判定和性质-人教版九年级数学上册教案
切线的概念、切线的判定和性质-人教版九年级数学上册教案一、切线的概念1. 切线的定义在圆上取一点P,连接P与圆心O,若通过点P的直线与圆相交于点P,则这条直线称为该圆在点P处的切线。
2. 切线的性质切线只与圆相交于切点,且垂直于半径。
二、切线的判定1. 判定方法1在圆上任取一点P,连接P与圆心O。
若连接P与圆心O的线段与已知直线L 垂直,则L与圆的交点就是切点,而L即为此点处的切线。
2. 判定方法2在圆上任取一点P,连接P与圆心O。
作过点P并与已知直线L平行的直线,与圆相交于点Q。
再连接点Q与圆心O,则Q与L的交点即为圆在点P处的切点,L即为点P处的切线。
三、切线性质的应用1. 切线定理若一条直线与圆相交于点A、B,则与这条直线垂直的切线分别过点A、B。
2. 判定定理在圆上任取两点P、Q,以这两点为端点连一条线段,若该线段平分圆周角,则它的延长线必过圆的圆心。
3. 弦割定理两条互相垂直的弦互相垂直。
4. 弦长定理两条互相垂直的弦所对圆周的两段弧相等。
5. 弧上点角定理圆周上一点的任意两个角所对的弧长相等。
四、练习题1.已知圆O,半径为3.4cm,P为圆上一点,PA为一条直线,且PA=8.1cm。
求PA的垂线与OP的夹角。
2.已知圆的直径是20cm,D,E,F,G均在圆上。
若DE⊥FG,DE=12cm,FG=9cm,求DG的长。
3.已知圆心角ACB的弧度是20度,线段AB上一点D是圆上的一点,求角ADC的角度。
五、课堂小结1.切线的定义和性质。
2.切线判定方法和定理。
3.切线性质的应用。
4.练习题的解答。
六、作业1.完成课堂练习题。
2.独立思考,将切线定理、判定定理、弦割定理、弦长定理和弧上点角定理的证明写出来。
九年级数学上册《切线的概念切线的判定和性质》教案、教学设计
(五)总结归纳
1.回顾本节课所学内容,引导学生总结切线的定义、判定定理和性质。
2.强调切线在实际问题中的应用,如最短路线、圆的切线方程等。
3.提醒学生注意切线知识在后续学习中的重要性,为后续课程打下基础。
4.鼓励学生在生活中观察、发现切线相关的现象,将数学知识运用到实际中。
4.老师将根据作业完成情况,给予评价和反馈,帮助学生不断提高。
3.实践应用:
-设计具有挑战性的问题,让学生运用切线知识解决实际问题,提高学生的应用能力。
-组织学生进行小组讨论,分享解题思路,培养学生的合作精神和交流能力。
-针对不同难度的练习题,给予学生适当的指导,帮助他们突破难点,提高解题能力。
4.教学方法:
-采用启发式教学,引导学生主动思考,培养他们的创新意识。
2.切线的判定定理:讲解切线的判定定理,如“过圆上一点的直线,若与圆的切线垂直,则该直线为圆的切线”。
3.切线的性质:引导学生观察切线与半径的关系,推导出切线的性质,如“切线垂直于过切点的半径”。
4.实例讲解:通过具体实例,讲解切线判定定理和性质的应用。
(三)学生小组讨论ຫໍສະໝຸດ 1.分组:将学生分成若干小组,每个小组讨论以下问题:
在教学过程中,注重学生的个体差异,关注学生的成长需求,充分调动学生的积极性、主动性和创造性,使学生在轻松愉快的环境中掌握知识,提高能力。同时,注重情感教育,培养学生的道德品质和人文素养,为学生的全面发展奠定基础。
二、学情分析
九年级的学生已经具备了一定的数学基础,掌握了圆的基本概念和相关性质,但对于切线的概念及其判定与性质的理解尚浅。在学习本章节时,学生可能面临以下问题:对切线定义的理解不够深入,难以区分切线与割线;对切线判定方法的掌握不够熟练,容易混淆判定条件;对切线性质的应用不够灵活,难以解决实际问题。因此,在教学过程中,应注重以下几点:
人教版数学九年级上册24.切线的判定和性质课件(共25张)
3.判定定理:经过半径的外端且垂直于这条半径 的直线是圆的切线.
l dr
l
O
A
l
例1:如图,∠ABC=45°,直线AB是☉O上的直径,且AB=AC. 求证:AC是☉O的切线.
分析:直线AC经过半径的一端,因此只要证OA垂直于AB即可.
AP;这样就凑齐了角边角,可证得△ACB≌△APO;
(2)由已知条件可得△AOP为直角三角形,因此可以通过解直角三角
形求出半径OA的长.
(1)求证:△ACB≌△APO;
(1)证明:∵PA为⊙O的切线,A为切点,
A
∴∠OAP=90°.
又∵∠P=30°,∴∠AOB=60°,
C
又OA=OB,∴△AOB为等边三角形.
PA
O
B
第2题
第3题
4.如图, ⊙O切PB于点B,PB=4,PA=2,则⊙O的半径多少?
解:连接OB,则∠OBP=90°.
B
设⊙O的半径为r,则OA=OB=r, OP=OA+PA=2+r.
O
A
P
在Rt△OBP中,
OB2+PB2=PO2,即r2+42=(2+r)2. 解得 r=3, 即⊙O的半径为3.
5.如图,△ABC中,AB=AC,以AB为直径的⊙O交边BC于P, PE⊥AC于E.
O
B
P
∴AB=AO,∠ABO=60°.
又∵BC为⊙O的直径,∴∠BAC=90°.
在△ACB和△APO中,
∠BAC=∠OAP,AB=AO,∠ABO=∠AOB,
∴△ACB≌△APO.
(2)若AP= 3,求⊙O的半径.
九年级数学上册《切线的判定定理》教案、教学设计
4.实践应用,巩固提高
设计不同难度的练习题,让学生运用切线判定定理解决实际问题。在解答过程中,教师关注学生的解题思路和方法,及时给予指导和反馈。
5.知识拓展,提升能力
结合学生的实际水平,适当拓展相关知识,如切线长度的求解、切线与圆的位置关系等。通过知识拓展,提高学生的综合运用能力。
4.培养学生面对困难时,勇于挑战、积极进取的精神风貌。
二、学情分析
九年级的学生已经具备了一定的几何知识基础,对圆的性质和方程有一定的了解。在此基础上,学生对切线的判定定理的学习将更加深入。然而,由于切线判定定理涉及到图形的直观理解和逻辑推理,学生可能在实际应用中存在以下问题:对定理的理解不够深入,不能熟练运用定理解决实际问题;对判定过程的逻辑推理能力有待提高;空间想象能力不足,难以在复杂图形中找到切线。因此,在教学过程中,教师应关注学生的个体差异,充分调动学生的积极性,引导他们通过观察、思考和合作交流,逐步提高解决问题的能力。同时,注重培养学生的几何直观和逻辑思维能力,为后续数学学习打下坚实基础。
1.教学活动设计
在讲授新知环节,我将采用讲授与演示相结合的方式,引导学生学习切线判定定理。首先,我会通过几何画板展示切线的生成过程,让学生观察并总结切线与圆的内在联系。
2.教学内容
(1)切线判定定理的推导:利用圆的性质,引导学生推导出切线判定定理——圆的半径垂直于切线于切点。
(2)切线判定定理的应用:通过示例,演示如何利用切线判定定理求解实际问题,如求切线长度、切点坐标等。
4.能够运用勾股定理、相似三角形等知识,解决与切线相关的问题,提高综合运用数学知识的能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
[单选]根据柴油机的基本工作原理,下列哪一种定义最准确()。A.柴油机是一种往复式内燃机B.柴油机是一种在气缸中进行二次能量转换的内燃机C.柴油机是一种压缩发火的往复式内燃机D.柴油机是和种压缩发火的回转式内燃机 [单选]下列各项中,不会影响营业利润金额增减的是()。A.资产减值损失B.财务费用C.投资收益D.营业外收入 [单选,A1型题]关于抗感染免疫的叙述,下列错误的是()A.完整的皮肤与黏膜屏障是抗感染的第一道防线B.吞噬细胞和体液中的杀菌物质是抗感染的第二道防线C.体液免疫主要针对胞外寄生菌的感染D.细胞免疫主要针对胞内寄生菌的感染E.抗体与细菌结合可直接杀死病原菌 [单选]在利润表上,利润总额减去()后,得出净利润。A.管理费用B.增值税C.营业外支出D.所得税费用 [单选,A1型题]疾病的三间分布包括()A.年龄、性别和种族B.职业、家庭和环境C.国家、地区和城乡D.短期波动、季节性和周期性E.时间、地区和人群分布 [单选]关于WHO推荐的葡萄糖耐量试验,正确的是()A.口服葡萄糖100克B.糖耐量减低即可诊断糖尿病C.口服糖耐量试验前3日,每日碳水化合物摄入量应少于250克D.空腹血糖小于7mmol/L,不必做此检查E.同步查尿糖,可大致判断肾糖阈 [判断题]牛副结核病的主要特征是顽固性腹泻和渐进性消瘦。()A.正确B.错误 [单选]6月份大豆现货价格为5000元/吨,某经销商计划在9月份大豆收获时买入500吨大豆。由于担心价格上涨,以5050元/吨的价格买入500吨11月份的大豆期货合约。到9月份,大豆现货价格上涨至5200元/吨,此时期货价格也涨至5250元/吨,此时买入现货并平仓期货。则该经销商进行套期 [判断题]入境展览品中的旧机电产品必须按旧机电产品备案手续办理相关证明。()A.正确B.错误 [单选,A1型题]关于细辛主要药理作用叙述错误的是()A.解热B.镇静C.抗心肌缺血D.平喘E.镇痛 [单选]关于行政事业单位的资产,下列说法正确的是()。A.行政单位在盘盈固定资产时,按重置完全价值入账B.事业单位的存货应当按照市场平均价格记账C.行政事业单位的无形资产不包括非专利技术D.行政事业单位的应收及预付款项一般要计提坏账准备 [单选]物业管理的风险类型包括()。A.前期物业管理的风险、日常管理的风险B.早期介入的风险、前期物业管理的风险C.早期介入的风险、日常管理的风险D.早期介入的风险、前期物业管理的风险、日常管理的风险 [单选]绘制零件图,要立足于(),使人容易看懂和易于理解,不应给人误解和错觉。A、实际B、简单C、方便看图D、美观 [单选]科学家通过观察动物来预测地震,说明思维的()A.间接性B.概括性C.创造性D.敏捷性 [单选,A1型题]每张应用到麻醉药品注射剂的处方,其用量()A.不得超过1日常用量B.不得超过2日常用量C.不得超过3日常用量D.不得超过5日常用量E.不得超过7日常用量 [单选]多人采用走访形式提出共同的信访事项的,应当推选代表,代表人数不得超过()。A.3人B.5人C.8人D.10人 [单选]通过()可以将短时记忆的信息转入长时记忆A.思维B.想象C.注意D.复述 [问答题,简答题]发电机励磁电压、电流、功率? [单选]有关检查胎位的四步触诊法,下述哪项是错误的()A.用以了解子宫的大小,胎先露、胎方位B.第一步是双手置于子宫底部了解宫底高度,并判断是胎头还是胎臀C.第二步是双手分别置于腹部两侧,辨别胎背方向D.第三步是双手置于耻骨联合上方,弄清先露部是头还是臀E.第四步双手 [单选,A2型题,A1/A2型题]关于原子能级的相关叙述,错误的是()A.电子在各个轨道上具有的能量是连续的B.原子能级,以电子伏特表示C.结合力与原子序数有关D.移走轨道电子所需的最小能量叫结合能E.原子处于能量最低状态时叫基态 [单选]纵骨架式是()船体骨架型式。A.纵向骨材较稀、尺寸较小,横向骨材较密、尺寸较大B.纵向骨材较密、尺寸较小,横向骨材较稀、尺寸较大C.纵向骨材较密、尺寸较大,横向骨材较稀、尺寸较小D.纵向骨材较稀、尺寸较大,横向骨材较密、尺寸较小 [单选,A4型题,A3/A4型题]患者女,5岁。1岁前妈妈就觉得她跟其他小孩不同,抱她的时候患儿不期待,没有愉悦满足的情感表达,目光一般不追随和注视大人,1岁会走路,到目前为止仍不会叫爸妈,和其他小朋友在一起时,总自己玩自己的,有时和别人凑到一起也只会搞破坏,不会玩过家家的 [单选]下列是建设单位与施工单位经平等协商签订的保修期限条款,其中具有法律效力的是()。A.屋面防水工程的防渗漏为3年B.电气管线工程为3年C.有防水要求的卫生间的防渗漏为2年D.设备安装工程为l年 [问答题]国际单位制的七个基本单位的名称和单位符号是什么? [单选]在直接插入排序、冒泡排序、简单选择排序和快速排序方法中,能在第一趟排序结束后就得到最大(或最小)元素的排序方法是()。A.冒泡排序和快速排序B.直接插入排序和简单选择排序C.冒泡排序和简单选择排序D.直接插入排序和快速排序 [单选]国家一标准型号探测器40s内报警,其型号是()。A.JW系列B.FJ—2704型C.JTY—Lz型D.JTQB一2700/683型 [填空题]压力变送器是利用霍尔疚把压力作用下的弹性元件位移信号转换成()信号,来反应压力的变化 [单选,A2型题,A1/A2型题]缺铁性贫血时红细胞实验室检查应是()A.MCV<100fl,MCHC35%B.MCV<80fl,MCHC32%C.MCV80~100fl,MCHC35%D.MCV80~100fl,MCHC32%E.MCV<80fl,MCHC35% [单选]建筑施工企业确定后,在建筑工程开工前,建设单位应当按照国家有关规定向工程所在地县级以上人民政府建设行政主管部门中请领取()。A.建设用地规划许可证B.建设工程规划许可证C.施工许可证D.安全生产许可证 [问答题,简答题]现代汉语从什么时候开始? [填空题]真空断路器是对密封在()中的触头进行开断、关合的设备,利用电弧在真空中的扩散作用,电弧在()周期内被熄灭。 [单选]矫治过程中,轻度力是指()A.强度在350~500g之间B.强度在60~350g之间C.强度小于60gD.强度在500~1000g之间E.强度大于1000g,但小于1500g [单选]环境卫生学的基本理论是()A.机体与环境在物质上的统一性B.环境因素对机体影响的作用机制C.机体对环境的适应能力D.环境因素对健康影响的复杂性E.环境中有益因素和有害因素对机体的综合作用 [单选,A1型题]掌深部间隙感染处理原则错误的是()。A.切口常选在手背肿胀明显处B.抬高患侧上肢C.切口不超过手掌远侧横纹D.纵轴切开引流E.早期静脉滴注大剂量青霉素 [单选,A2型题,A1/A2型题]DSA成像方式分为()A.局部DSA和全身DSAB.上肢DSA和下肢DSAC.颅脑DSA和躯干DSAD.模拟DSA和数字DSAE.静脉DSA和动脉DSA [单选,A2型题,A1/A2型题]患者男,35岁,工人。诊断分裂情感性精神障碍,五年内住院三次。每次发作,出现躁狂表现和精神病性症状,甚至有暴力倾向。此次急性发作思维奔逸、夸大妄想、被控制妄想、思维被广播、持续性的听幻觉(幻觉内容与情绪无关)、活动量大、睡眠需要减少。入院 [单选]原发性醛固酮增多症出现的代谢紊乱为()A.高血浆肾素B.低尿钾C.低血钾D.高血钾E.血醛固酮水平降低 [单选]《2007版标准文件》规定,监理人应在收到承包人竣工结算申请后()天内完成核查。A.7B.14C.21D.28 [单选]不是放射免疫分析的必备条件的是()A.符合一定质量要求的放射性核素标记的抗原B.高纯度的标准品和高质量的特异性抗体C.合适的标记抗原抗体复合物与游离标记抗原分离技术D.放射性测量仪器E.免疫荧光仪器 [判断题]市场达到有效的重要前提:一是投资者具有正确判断证券价格变动的能力;二是所有影响证券价格的信息都是自由流动的。()A.正确B.错误