《数学分析下册》期末考试卷及参考答案

合集下载

《数学分析下册》期末考试卷及参考答案

《数学分析下册》期末考试卷及参考答案

《数学分析下册》期末考试卷及参考答案一、填空题(第1题每空2分,第2,3,4,5题每题5分,共26分)1、已知uln某2y2,则uu,,y某du2、设L:某2y2a2,则某dyyd某L某=3cot,L:3、设(0t2),则曲线积分(某2+y2)d=y=3int.L4、改变累次积分dy(f某,y)d某的次序为2y33某y1,则(51)d某dy=5、设D:D得分阅卷人二、判断题(正确的打“O”;错误的打“某”;每题3分,共15分)p某0,y0)p某0,y0)1、若函数(在点(连续,则函数(点(必存在一f某,y)f某,y)阶偏导数。

()p某0,y0)p某0,y0)2、若函数(在点(可微,则函数(在点(连续。

f某,y)f某,y)()p某0,y0)3、若函数(在点(存在二阶偏导数f某y(某0,y0)和fy某(某0,y0),则f某,y)必有f某y(某0,y0)fy某(0某,0y) L(B,A)()()4、L(A,B)f(某,y)d某f(某,y)d某。

5、若函数(在有界闭区域D上连续,则函数(在D上可积。

()f某,y)f某,y)第1页共5页得分阅卷人三、计算题(每小题9分,共45分)1、用格林公式计算曲线积分I(e某iny3y)d某(e某coy3)dy,AOAO为由A(a,0)到O(0,0)经过圆某2y2a某上半部分的路线。

其中2、计算三重积分------线--------------------------------------(某V2y2)d某dydz,其中是由抛物面z某2y2与平面z4围成的立体。

第2页共5页3、计算第一型曲面积分IdS,S其中S是球面某2y2z2R2上被平面za(0aR)所截下的顶部(za)。

4、计算第二型曲面积分22Iy(某z)dydz某dzd某(y某z)d某dy,S其中S是立方体V0,b0,b0,b的外表面。

第3页共5页5、设D(某,y)某2y2R曲顶柱体的体积。

得分阅卷人四、证明题(每小题7分,共14分)1、验证曲线积分第4页共5页2.求以圆域D为底,以曲面ze(某2y2)为顶的(某22yz)d某(2y2某)zdy2(z2,某)ydzL与路线无关,并求被积表达式的一个原函数u(某,y,z)。

西华师范大学数学分析大二期末试题(含答案)

西华师范大学数学分析大二期末试题(含答案)

西华师范大学数学分析(2)期末试题课程名称数学分析(Ⅱ)适用时间试卷类别1适用专业、年级、班应用、信息专业一、单项选择题(每小题3分,3×6=18分)1、下列级数中条件收敛的是().A .1(1)nn ∞=−∑B .nn ∞=C .21(1)nn n∞=−∑D .11(1)nn n ∞=+∑2、若f 是(,)−∞+∞内以2π为周期的按段光滑的函数,则f 的傅里叶(Fourier )级数在它的间断点x 处().A .收敛于()f xB .收敛于1((0)(0))2f x f x −++C .发散D .可能收敛也可能发散3、函数)(x f 在],[b a 上可积的必要条件是().A .有界B .连续C .单调D .存在原函数4、设()f x 的一个原函数为ln x ,则()f x ′=()A .1xB .ln x xC .21x −D .xe5、已知反常积分20 (0)1dxk kx +∞>+∫收敛于1,则k =()A .2πB .22πC .2D .24π6、231ln (ln )(ln )(1)(ln )n nx x x x −−+−+−+⋯⋯收敛,则()A .x e<B .x e>C .x 为任意实数D .1e x e−<<二、填空题(每小题3分,3×6=18分)1、已知幂级数1nn n a x∞=∑在2x =处条件收敛,则它的收敛半径为.2、若数项级数1n n u ∞=∑的第n 个部分和21n nS n =+,则其通项n u =,和S =.3、曲线1y x=与直线1x =,2x =及x 轴所围成的曲边梯形面积为.4、已知由定积分的换元积分法可得,10()()bxxaef e dx f x dx =∫∫,则a =,b =.5、数集(1)1, 2 , 3, 1nn n n ⎧⎫−=⎨⎬+⎩⎭⋯的聚点为.6、函数2()x f x e =的麦克劳林(Maclaurin )展开式为.65三、计算题(每小题6分,6×5=30分)1、(1)dxx x +∫.2、2ln x x dx ∫.3、 0(0)dx a >∫.4、 2 0cos limsin xx t dt x→∫.5、dx ∫.四、解答题(第1小题6分,第2、3小题各8分,共22分)1、讨论函数项级数21sin n nxn ∞=∑在区间(,)−∞+∞上的一致收敛性.2、求幂级数1nn x n ∞=∑的收敛域以及收敛区间内的和函数.3、设()f x x =,将f 在(,)ππ−上展为傅里叶(Fourier )级数.五、证明题(每小题6分,6×2=12分)1、已知级数1nn a∞=∑与1nn c∞=∑都收敛,且, 1, 2, 3 n n n a b c n ≤≤=⋯,证明:级数1nn b∞=∑也收敛.2、证明:22 00sin cos nn x dx x dx ππ=∫∫.66试题参考答案与评分标准课程名称数学分析(Ⅱ)适用时间试卷类别1适用专业、年级、班应用、信息专业一、单项选择题(每小题3分,3×6=18分)⒈B⒉B⒊A⒋C⒌D⒍D二、填空题(每小题3分,3×6=18分)⒈2⒉2, =2(1)n u S n n =+⒊ln 2⒋1, a b e ==⒌1±⒍201, (,)!nn x x n ∞=∈−∞+∞∑三、计算题(每小题6分,6×5=30分)1.解111(1)1x x x x=−++∵1(1)dxx x ∴+∫(3分)11(1dxx x=−+∫ ln ln 1.x x C =−++(3分)2.解由分部积分公式得231ln ln 3x xdx xdx =∫∫3311ln ln 33x x x d x =−∫(3分)33111ln 33x x x dx x =−⋅∫3211ln 33x x x dx =−∫3311ln 39x x x C =−+(3分)3.解令sin , [0, ]2x a t t π=∈由定积分的换元积分公式,得0∫2220cos atdtπ=∫(3分)6768220(1cos 2)2a t dtπ=+∫221(sin 2)22a t t π=+2.4a π=(3分)4.解由洛必达(L 'Hospital)法则得200cos limsin xx tdtx →∫20cos x x →=4分)lim cos x x→=1=(2分)5.解=(2分)20 sin cos x x dxπ=−∫4204(cos sin ) (sin cos )x x dx x x dx πππ=−+−∫∫(2分)244(sin cos )(sin cos )x x x x πππ=+−+2.=−(2分)四、解答题(第1小题6分,第2、3小题各8分,共22分)1.解(, ), x n ∀∈−∞∞∀+(正整数)22sin nx n n ≤(3分)而级数211n n ∞=∑收敛,故由M 判别法知,21sin n nxn ∞=∑在区间(,)−∞+∞上一致收敛.(3分)2.解幂级数1nn x n∞=∑的收敛半径111lim nn R n→∞==,收敛区间为(1,1)−.(2分)易知1nn x n ∞=∑在1x =−处收敛,而在1x =发散,故1nn x n∞=∑的收敛域为[1,1)−.(2分)01, (1, 1)1n n x x x ∞==∈−−∑(2分)逐项求积分可得0001, (1,1)1xx nn dt t dt x t ∞==∈−−∑∫∫.即101ln(1), (1,1).1n nn n x x x x n n+∞∞==−−==∈−+∑∑(2分)3.解函数f 及其周期延拓后的图形如下函数f 显然是按段光滑的,故由收敛性定理知它可以展开为Fourier 级数。

北京交通大学第二学期工科数学分析Ⅱ期末考试试卷及其答案

北京交通大学第二学期工科数学分析Ⅱ期末考试试卷及其答案

解此方程组,得
10.设函数 f ( x ) =

0
x
sin t dt .⑴ 试将 f ( x ) 展成 x 的幂级数,并指出其收敛域.⑵ 若在上式中 t
令 x = 1 ,并利用其展开式的前三项近似计算积分 解: ⑴ 由于

1
sin x dx ,试判断其误差是否超过 0.0001 ? x 0
( t 2 t 4 t 6 t 8 t 10 − 1) t 2 n −2 = 1− + − + − +"+ +" (2n − 1)! 3! 5! 7! 9! 11! 所以,在区间 [0, x ]上逐项积分,得
y x+ y ∫∫ e dxdy ,其中积分区域 D 是由直线 x = 0 , y = 0 及 x + y = 1 所围成的闭区 D
6.计算二重积分 域.
解: 作极坐标变换 x = r cos θ ,
y = r sin θ ,则有
rdr
∫∫ e
D
y x+ y
π
dxdy = ∫ dθ
0
2
1 cos θ + sin θ
Σ
(
)
(
)
= ∫∫∫ z + x + y dV
2 2 2
(
)

= ∫ dθ ∫ sin ϕdϕ ∫ ρ 4 dρ
0 0 0
−2

π
2 a
2 = πa 5 5
8.求解微分方程 x y ′′ + xy ′ − 4 y = 2 x . 解:
2
这是 Euler 方程,令 x = e ,或 t = ln x ,原方程化为

《数学分析下册》期末考试卷

《数学分析下册》期末考试卷

数学分析下册期末考试卷 一、填空题(第1题每空2分,第2,3,4,5题每题5分,共26分) 1、已知xy u e =,则u x ∂=∂ ,u y ∂=∂ ,du = 。

2、设:L 224x y +=,则L xdy ydx -=⎰Ñ 。

3、设 :L 229x y +=,则曲线积分ds ⎰22L (x +y )= 。

4、改变累次积分b a dy f dx ⎰⎰b y (x ,y )的次序为 。

5、设2D y ax +≤2:x ,则 D dxdy ⎰⎰= 。

二、判断题(正确的打“O ”;错误的打“×”;每题3分,共15分) 1、若函数f (x ,y)在区域D 上连续,则函数f (x ,y )在D 上的二重积分必存在。

( )2、若函数f (x ,y )在点p 00(x ,y ) 可微,则函数f (x ,y )在点p 00(x ,y )连续。

( )3、若函数f (x ,y )在点p 00(x ,y )存在二阶偏导数00(,)xy f x y 和00(,)yx f x y ,则 必有 0000(,)(,)xy yx f x y f x y =。

( )4、第二型曲线积分与所沿的曲线L (A ,B )的方向有关。

( )5、若函数f (x ,y )在点00(,)x y 连续,则函数f (x ,y ) 在点00(,)x y 必存在一阶偏导数 。

( )三、计算题 ( 每小题9分,共45分)1、用格林公式计算曲线积分22()LI x y dx xy dy =-+⎰Ñ , 其中 L 是圆周222x y a +=2、计算三重积分222()V xy z dxdydz ++⎰⎰⎰,其中2222:V x y z a ++≤。

3、计算第一型曲面积分SI zdS =⎰⎰ ,其中S 是上半球面2222x y z R ++=(0z ≥)。

4、计算第二型曲面积分SI xdydz ydzdx zdxdy =++⎰⎰Ò,其中S 是长方体[][][]0,10,20,3V =⨯⨯的外表面。

数学分析第三版答案下册

数学分析第三版答案下册

数学分析第三版答案下册数学分析第三版答案下册【篇一:2015年下学期数学分析(上)试卷a参考答案】> 一、填空题(每小题3分,共15分):1、126;2、2;3、1?x?x2xn?o(xn);4、arcsinx?c(或?arccosx?c);5、2.二、选择题(每小题3分,共15分)1、c;2、a;3、a;4、d;5、b三、求极限(每小题5分,共10分)1??1、lim1?2? 2、limxlnx ?n??x?0n?n1??lim?1?2?n??n??1nn2?1n1lnx(3分) ?lim?li??x?0x?0112xx(3分)(?x)?0 (2分)?lime?1(2分) ?lim?n??x?03n23 。

四、利用数列极限的??n定义证明:lim2(10分)n??n?3证明:当n?3时,有(1分)3n299(3分) ?3??22n?3n?3n993n2因此,对任给的??0,只要??,即n?便有2 ?3?? (3分)n?n?33n2x{3,},当n?n便有2故,对任给的??0,取n?ma(2 分) ?3??成立。

n?393n23(1分)即得证lim2n??n?3五、证明不等式:arctanb?arctana?b?a,其中a?b。

(10分)证明:设f(x)?arctanx,根据拉格朗日中值定理有(3分)f(b)?f(a)?f?(?)(b?a)?1(b?a),21??(ab) (3分)所以有 f(b)?f(a)?(b?a) (2分)bn?arctaan?b?a (2分)即 arcta六、求函数的一阶导数:y?xsinx。

(10分)解:两边取对数,有: lny?sinxlnx (4分)两边求一次导数,有:y??xsinx(cosxlnx?y?sinx(4分) ?cosxlnx?yxsinx)(2分) x七、求不定积分:?x2e?xdx。

(10分)解:2?x2?xxedx?xde = (2分) ??= ?x2e?x?2?xe?xdx (2分) = ?x2e?x?2?xde?x(2分)= ?x2e?x?2xe?x?2?e?xdx (2分)=?e?x(x2?2x?2)?c (2分)15八、求函数f(x)?|2x3?9x2?12x|在闭区间[?,]上的最大值与最小值。

数学分析期末试题A答案doc

数学分析期末试题A答案doc

数学分析期末试题A答案doc2024年数学分析期末试题A及答案一、选择题1、以下哪个函数在 x = 0 处连续? A. $f(x) = x^2$ B. $f(x) = \frac{1}{x}$ C. $f(x) = sin x$ D. $f(x) = e^x$ 答案:D解析:在 x = 0 处,只有选项 D 中的函数 e^x 是连续的。

因此,答案为 D。

2、设 $f(x) = x^2$,则 $f(3x - 2) =$ __________。

A. $x^2$ B. $(3x - 2)^2$ C. $(3x - 2)^3$ D. $(3x - 2)^2 + 1$ 答案:B解析:将 $x$ 替换为 $3x - 2$,得 $f(3x - 2) = (3x - 2)^2$。

因此,答案为 B。

3、下列等式中,错误的是: A. $\int_{0}^{1}x^2dx =\frac{1}{3}x^3|{0}^{1}$ B. $\int{0}^{\pi}\sin xdx = \cosx|{0}^{\pi}$ C. $\int{0}^{2\pi}\sin xdx = 0$ D.$\int_{0}^{1}(2x + 1)dx = (x^2 + x)|_{0}^{1}$ 答案:A解析:等式两边取极限,只有 A 选项等式两边不相等,因此 A 选项是错误的。

4、下列哪个导数是常数函数? A. $y = x^3$ B. $y = \sin x$ C. $y = e^x$ D. $y = log_a(x)$ 答案:C解析:常数函数的导数为零。

在选项中,只有 C 中的函数 e^x 的导数为常数函数,其导数为 $e^x$。

因此,答案为 C。

高一生物期末考试试题及答案doc高一生物期末考试试题及答案doc高一生物期末考试是一次重要的学业水平测试,旨在考察学生在本学期学习生物课程的效果。

以下是本次考试的部分试题及其答案,供大家参考。

一、选择题1、下列哪一种生物不是由细胞构成的? A. 细菌 B. 植物 C. 动物D. 病毒答案:D2、哪一个器官属于消化系统? A. 口腔 B. 食道 C. 胃 D. 大肠答案:C3、在光合作用中,哪一个物质是植物从空气中吸收的? A. 氧气 B. 二氧化碳 C. 葡萄糖 D. 水答案:B二、填空题1、病毒是一种生物,但它不能 _______ 和保持生命活动,必须_______ 在细胞内。

数学分析(2)期末试题参考答案

数学分析(2)期末试题参考答案

∑ A′
∑ ℓα (
)
µ(Iα) µ Jβxα,γ

ε0 m
>
ε.
α=1 γ=1
α=1
γ=1
另 一 方 面, 对 于 每 个 xα, 存 在 一 个 Kk, 使 得 xα ∈ Kk。 因 为 P 是 利 用 K1, . . . , Kκ 的边界构造的网格分划,所以相应的 Iα × Jβxα,γ 一定包含在这个
恰好覆盖
Em,于是
∑A′
α=1
µ(Iα)

ε0。对于每个
Iα (1 于是
≤ α ≤ A′),取一个
∑ℓα
γ=1
µ(Jβxα ,γ
)

1 m
xα ∈ Iα ∩ Em,设 ,所以我们有
Jβxα,1 , . . . , Jβxα,ℓα
恰好覆盖
Kxα ,
∑ A′ ∑ ℓα ( µ Iα
) × Jβxα,γ
=
i) 求证:



ωi = ωi + ωi, i = 1, 2.
γ3
γ1
γ2
ii) 求证:

lim
ωi = 0, i = 1, 2.
R→+∞ γ2
iii) 计算广义积分:
C = ∫ +∞ cos (x2) dx, S = ∫ +∞ sin (x2) dx
0
0
() 解答: i) 因为 ωi ∈ Ω1 R2 、dωi = 0 (i = 1, 2),所以由 Green 公式可知结论
解答:(证法一)因为
K
紧且
Lebesgue ∫
零测,所以
Jordan
零测,于是

数学分析试卷(附答案)(推荐文档)

数学分析试卷(附答案)(推荐文档)
一.(1) 的充要条件是为任何以 为极限的数列 ,都有
(2)设函数 在区间 (或开,或闭,或半开半闭)内满足对任意的 ,可找到只与 有关而与 内的点 无关的 ,使得对 内任意两点 ,当 时,总有 ,就称 在 内一致连续.
二.(1) (2) (提示:利用夹逼准则,得到 )(3)
三.(1) (2) (3)
五.(12分)设函数 四阶可导, ,且 ,证明: .
六.(12分)判别函数 在区间 内的一直连续性,并证明;再证明函数 在 上是一致续的.
七.(12分)设函数 ,求 .
八.(12分)设函数 在 上有二阶导数,且 ,又 ,证明在 内至少存在一点 ,使 ;另外,若 在区间 中有 成立,证明: 在 中一致连续.
一.(10分)(1)叙述“海涅归结原则”
(2)叙述“一致连续定义”
二.(18分)(1) ;
(2) ;
(3) .
三.求下列函数的导数(12分)
(1)
(2)
(3)求 的 阶导数
四.(12分)已知 在 上连续,在 内 存在,设连接 两点的直线与曲线 在异于 点的另一点 处相交, ,试证明:在 内至少有一点 ,使 .
五.证:由 ,可知 前两项均为零构成零比零型,第三项设为 ,易知 (感兴趣可以证明),对 在 处进行泰勒展开, ,两边同时除以 ,得到 ,由极限体现出的性质可知 ,又 ,两边同时取极限( ),由极限保号性得到 .
六、七、八略
四.证:第一步:设函数 在 上连续,在 内可导,且 ,则设 ,可知在 内至少有一点 ,使得
第二步:设 都在 上连续,在 内二阶可导,且 ,则在 内至少存在一点 ,首先由第一步知,存在 ,同理可知在 上有一点 ;再记 ,在 上考虑这两个,易知 满足第一步条件,从而存在 使得 ,即是

《数学分析》期末复习用 各章习题+参考答案

《数学分析》期末复习用 各章习题+参考答案

f f f (x) = x + 2 ; 2x + 3
f f f f (x) = 2x + 3 。 3x + 5
9. f (x) = f (x) + f (−x) + f (x) − f (−x) , f (x) + f (−x) 是偶函数, f (x) − f (−x) 是奇
2
2
2
2
函数.
⎧− 4x + 3
2⋅4⋅6⋅
⋅ (2n) 。 (提示:应用不等式 2k > (2k − 1)(2k + 1) )。
9. 求下列数列的极限:

lim
n→∞
3n2 + 4n − 1 n2 +1 ;

n3 + 2n2 − 3n + 1
lim
n→∞
2n3 − n + 3 ;
2

3n + n3
lim
n→∞
3n+1
+ (n + 1)3
k∈Z ⎝
2
2⎠
(4) y = x −1 ,定义域: (− ∞,−1) ∪ [1,+∞),值域: [0,1)∪ (1,+∞).
x +1
5.(1)定义域: ∪ (2kπ ,(2k +1)π ),值域: (− ∞,0]; k∈Z
(2)定义域:

k∈Z
⎢⎣⎡2kπ

π 2
,2kπ
+
π 2
⎤ ⎥⎦
,值域: [0,1];
1
(3)定义域:
[−
4,1] ,值域:
⎢⎣⎡0,

浙江大学2010-2011数学分析(2)-试卷及答案

浙江大学2010-2011数学分析(2)-试卷及答案

浙江大学20 10 -20 11 学年 春夏 学期《 数学分析(Ⅱ)》课程期末考试试卷(A )课程号: 061Z0010 ,开课学院:___理学部___考试形式:闭卷,允许带___笔____入场考试日期: 2011 年 6 月 24 日,考试时间: 120 分钟诚信考试,沉着应考,杜绝违纪。

请注意:所有题目必须做在答题本上!做在试卷纸上的一律无效!请勿将答题本拆开或撕页!如发生此情况责任自负! 考生姓名: 学号: 所属院系: _一、 计算下列各题: ( 前4题每题5分,最后一题6分,共26分 )1. 2()(03)sin lim .x y xy x→,,求: 2222()(03)()(03)sin sin lim lim 9.x y x y xy xy y x xy →→=⋅=,,,,2.(122)().f x y z gradf =,,设,,23(122)(122)(122)(122)11..2722.27271{122}.27f x x f r x r r r xf f y zgradf ∂∂==-⋅=-=-∂∂∂∂=-=-∂∂=-,,,,,,,,令,则:则:同样,,因此,,,3. 2222320(321)S x y z ++=求曲面:在点,,处的法线方程.222()2320246.321(321){686}.343x y z F x y z x y z F x F y F z x y z n =++-===---===令:,,,则:,,因此,在点,,的法向量,,,故法线为: 4. 2221.(2).4Cx C y L x y ds +=+⎰设曲线:的长度为计算: 222(2)(44)44.=0.C C C Cx y ds x y xy ds ds L xyds +=++==⎰⎰⎰⎰其中:5.02z z z ∑===设为曲面和之间部分的下侧,计算: (1)(2).dS dxdy ∑∑⎰⎰⎰⎰;22224.4.x y x y x y z z z dS dxdy dxdy π∑+≤∑+≤======-=-⎰⎰⎰⎰⎰⎰⎰⎰由于因此,二、 计算题:(每题8分,共56分)1. 22()2()()()2x f x f x x f x ππππ=--≤≤设是周期为的函数,且,求:的 211.n Fourier n +∞=∑级数,并计算的和22222020022112222211(1)()20.2522(1)()()cos (12).2325(1)()2cos .()(*)65(1)(1)(2)(*)0(0)2.61n nn nn n n n n f x b x x a dx a nxdx n nf x nx x R n x f n n ππππππππππππ∞=-+∞∞===-=-=-=-==-=-+∈--==-=-+⇒=⎰⎰∑∑∑由于是周期为的偶函数,则:,,,因此,式中,令,则:12222221111122122222211.21111(1)2.2.2(2)2(2)121.6511(*)2..266n n n n n n n n n n n n n n n x n n σσπσππππππ-+∞+∞+∞+∞∞=====+∞=+∞+∞==-==⇒=-====-=-+⇒=∑∑∑∑∑∑∑∑令:,则:因此,【或】:在式中令,则:2. 211(2)1.44n n n n n x n n +∞+∞==-⋅⋅∑∑计算级数的收敛域及和函数,并计算的值 222112221111211()(2)4(2)(1)lim lim 10 4.()(1)4(2)4(2)12104.44(04).(2)(2)()()4n n n n n n n nn n n n n n n n n n n u x x n x x u x n x x x n n n n x t t S t S t t n +++→∞→∞+∞+∞+∞+∞====∞-=-⋅-=⋅=<<<+⋅--====⋅⋅-'===∑∑∑∑∑,则:当时,发散;当时,发散因此,级数的收敛域为:,令,,则:1222111.(11).1(2)(2)()ln(1).ln 1ln 4ln(4).440 4.14(3)3ln .43n nn n n n t t x x S t t x x n x x n ∞=+∞=+∞==-≤<-⎛⎫--=--=--=-- ⎪⋅⎝⎭<<==⋅∑∑∑其中:故,所以,其中:上式中令,可得,2111112211(2)lim lim 141(1)11.11.(2)(2)[11).110444.(04)n nn n n n n n n n n n nn n n a x t n t t n a n nt t n n t x x x n n ∞∞+→∞→∞==∞∞==∞+∞==-===+-=-=----≤<<<⋅∑∑∑∑∑∑【或】:令,对于级数而言,,因此,的收敛半径为而当时,级数收敛;当时,级数发散故级数的收敛域为,因此,当,即时收敛因此,原级数的收敛域为,..下面与上同3. 222()2.y z z z f x y f x x x y ∂∂=+∂∂∂设,,且具有阶连续偏导,计算:, 12221112221222221112222232(1)2.111(2)222214(2).z y xf f x xz y x yf f f yf f x y x x x x y y xyf f f f x x x ∂=-∂∂⎛⎫⎛⎫=+--+ ⎪ ⎪∂∂⎝⎭⎝⎭=+---4. 2222(){()|}.Dx y dxdy D x y x y x y +=+≤+⎰⎰计算,其中,222222002212221cos 111()2()()..1222()sin 213cos sin ).281()112 1.()()1()222u v x r x y D x y r r y r I d r r r rdr x u x y I u v dudv u v y v u v πθθθθθθπ+≤⎧=+⎪∂⎪-+-≤=⎨∂⎪=+⎪⎩=+++=⎧=+⎪∂⎪⎛⎫==+++⎨ ⎪∂⎝⎭⎪=+⎪⎩=++⎰⎰⎰,方法一、区域:令:,则:,,方法二、令:,则:,2222001233cos sin 34440443444442004113).2281(cos sin )41313)]sin 2sin 2.444228u v u u v dudv d r rdr I d r dr d d udu udu πππθθπππθππππθπθθθθππθθπ+≤+--+=-⎛⎫++=+⋅= ⎪⎝⎭==+⋅=+===⋅⋅=⋅⎰⎰⎰⎰⎰⎰⎰⎰⎰方法三、5. 222{()|1}.ze dxdydz x y z x y z ΩΩ=++≤⎰⎰⎰计算三重积分:,其中,,()2222221(0)2110000cos 0cos 2011012.241(sin )4sin cos 2422.22z z x y z z z u x x u z z x y z xoy e z I e dV I d rdr dz r dr r x x xe dx ue du I e dzdxdy e ππθπππππππ++≤≥=+≤-===-==⋅---===⎰⎰⎰⎰⎰⎰=⎰⎰⎰⎰⎰由于积分区域关于平面对称,被积函数关于为奇函数,因此,方法一、令:方法二、()120211cos 2cos 2220000011cos 2000(1)2.2sin 4sin 44(1)2.z dz I d d e d d e d e d e d πππρϕρϕπρϕρπθϕρϕρπρρϕϕπρρπρρπ-====-=-=⎰⎰⎰⎰⎰⎰⎰⎰方法三、6. 2222()M x y z a ξηζ++=设点,,是球面第一卦限中的一点,S 是球面在该点处的切平面被3个坐标平面所截三角形的上侧,求:点()M ξηζ,,使曲面积分:⎰⎰++=Szdxdy ydzdx xdydz I 为最小,并求此最小值.22222226322262222222(1)()(cos cos cos )11.2cos 2(2).327S SS Sx y z a M x y z a xdydz ydzdx zdxdy x y z dSx y z a a a dS a dS a a a a a a ξηζξηζαβγξηζξηγξηζξηζξηζξηζξηζ++=++=++=++⎛⎫=++==⨯⨯⨯⨯= ⎪⎝⎭⎛⎫++++=≤=⇒ ⎪⎝⎭⎰⎰⎰⎰⎰⎰⎰⎰球面在点,,处的切平面方程为:由于,则:333..2.S xdydz ydzdx zdxdy a x y z M ≤++≥===⎰⎰因此,等号在故,点为62222(1).30..2(2)xy yz zx xy yz zx xy yz zx S S S S S S S S S S S Guass I xdydz ydzdx zdxdy xdydz ydzdx zdxdy a a a a dV x y z a L ξηζξηζξηζ+++ΩΩ=++-++⎛⎫=+=++= ⎪⎝⎭⎰⎰⎰⎰⎰⎰⎰++【或】:添加切平面与坐标平面所围立体的另三个三角形、、,使其与所围闭曲面方向为外侧则:根据公式可得:切平面:,截距分别为:、、构造222222223min ()().20(1)20(2)20(3)0(4)02.(4)x y z agrange f x y z xyz x y z a f yz x f zx y f xy z f x y z a yz zx xy x y z x y z x y z x y z xyz I λλλλλλλ=+++-=+=⎧⎪=+=⎪⎨=+=⎪⎪=++-=⎩>===-======函数:,,,令:由于、、,则:将其代入可得,由于驻点唯一,根据实际问题当因此,3.=7. 22(0)cos (0)42C xdy ydx x C A y B x y ππ-=-+⎰计算,其中曲线是从点,沿到点,,再从 (2).BD ππ-点沿直线到点,22222222222222222222022224.44(4)4(0).444410arc 42C C DA L DA LL y x P y x Q P Q x y x y y x y xDA L x y xdy ydx xdy ydx xdy ydx xdy ydx x y x y x y x y dy xdy ydx y πδδδπππδπ++--∂-∂∙====++∂+∂∙+=>----=--++++=---=-+⎰⎰⎰⎰⎰⎰方法一、,,则:连接,作:,足够小,方向为顺时针则:2220224221122332222222221tan 2217.88(0)(2)(2)(2).444(4)x y y dxdyA A A A A A A D L y x P y x Q P Q C L x y x y y x y xP Q πδπδππδπδπππππππ-+≤+=-+⋅=----∂-∂====++∂+∂⎰⎰方法二、从点,沿直线到点,、再从点沿直线到点,、从点沿直线到点,、再从点沿直线到点;记此路径为由于,,则:;且在由曲线、所围区域内、都11223322222222222222022202442244444422arctan arctan arctan arctan 2242248C L AA A A A A A Dxdy ydx xdy ydx x y x y dy dx dy dx y x y x y x y x πππππππππππππππππππππππππππππππππππ--------==+++++--=+++++++--=+++=⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰有一阶连续连导数,因此,7.4448ππππ+++=三、 证明题:(每题9分,共18分)1. 210cos ()()1n n n nx u x D f x n +∞∞===+∑∑叙述级数在数集上一致收敛的定义,并证明: (02).π在,内连续,且有连续导数22220022022200cos 11cos (1)(02)1111cos (02)(02)1cos ()(02)1cos sin (2)(){}111n n n n n nx nx x n n n n nx n N n nx f x n nx n nx n g x n n n ππππ∞∞==+∞=∞∞==∀∈≤++++∀∈+=+'⎛⎫==- ⎪+++⎝⎭∑∑∑∑∑由于对,,有,而收敛,故级数在,内一致收敛.另外,对,函数在,内连续,因此,在,内也连续.记,由于12200221cos()cos 1220()[2]sin .sin 2sin 22sin sin [2](02)11.cos sin (02)()(0211n k n n x n x kx x n nx n nx Dirichlet n n nx n nx f x n n δδπδπδδδπδπππ=∞∞==+-∀><∀∈-=≤-++'⎛⎫=- ⎪++⎝⎭∑∑∑单调趋向于零,且对,及,,根据判别法,在,上一致收敛,即在,上内闭一致收敛又在,内连续,故,在,)内具有连续的导数. 2. 0()()y f x δδδ>-=证明:存在,及定义在,内的具有连续导数的函数, ()220(0)0sin ()2()cos 1..x dy f x f x f x x dx ==+++=满足,且并计算的值 22222222222()sin()2cos 1()(1)()(2)(00)0(3)2cos()2(4)(00)20(5)2cos()sin 0()()(0)0sin (y y x F x y x y y x F x y R F F y x y R F F x x y x R y f x f x f δδδ∙=+++-==++=>=+->-==+令:,,*则:,在上连续;,;在上连续;,;在上连续.根据隐函数存在性定理,存在,及定义在,内的具有连续导数的函数,满足,且()222222)2()cos 1.sin()2cos 100.cos()(22)2sin 0.sin 2cos()x f x x x y y x x x y x y x yy y x x x x y dy++=∙+++===''+++-=-+'在两边同时对求导,且当时,则:。

2021-2022学年数学分析II期末试题参考答案

2021-2022学年数学分析II期末试题参考答案

课程编号:100171019 北京理工大学2021-2022学年第二学期2021级数学分析(II )期终考试试题A 卷解答1.(23分)求下列函数的偏导数或全微分 (1)设cos xyz e=,求dz .(2)设(,)z z x y =由方程zx y z e ++=所确定的隐函数,求z x ∂∂和22zx∂∂.(3)设1()()z f xy yg x y x=++,其中f 和g 在R 上有连续的二阶导数,求z x ∂∂,z y ∂∂和2zy x∂∂∂ 解:(1)cos (cos )xy dz e d xy =cos (sin )()xy e xy d xy =−cos sin ()xy xye ydx xdy =−+.(2)方程关于x 求导,y 是常数,z 是x 的函数,1z x x z e z +=,11x zz e =−. 23(1)(1)z zx xx z ze z e z e e =−=−−−. 方法二. zzxx x x xx z e z z e z =+,221(1)z zx xx z ze z e z e e =−=−−−. (3)//211()()()z f xy f xy y yg x y x x x∂=−+⋅++∂ //21()()()yf xy f xy yg x y x x =−+++,//1()()()z f xy x g x y yg x y y x∂=⋅++++∂ //()()()f xy g x y yg x y =++++,2/////()()()zf xy yg x y yg x y y x∂=⋅++++∂∂ /////()()()yf xy g x y yg x y =++++.2.(15分)(1)求二重积分22Dy I dxdy x=⎰⎰,其中D 为由1,2,y y y x x ===所围的区域. (2)求三重积分I x dxdydz Ω=⎰⎰⎰,其中Ω由0,0,0,21x y z x y z ===++=所围成.(3)求第一型曲面积分()MI x y z dS =++⎰⎰,其中M为上半球面:z =222x y R +≤(0)R >. 解:(1)2221221y y Dy y I dxdy dy dx x x==⎰⎰⎰⎰22111()yyy dy x =−⎰2223111()()y y dy y y dy y=−=−⎰⎰ 94=. 方法二. 22212221122212x x Dy y y I dxdy dx dy dx dy x xx ==+⎰⎰⎰⎰⎰⎰.(2)设D 为xy −平面上由0,0,21x y x y ==+=所围成区域.I x dxdydz Ω=⎰⎰⎰120x yDdxdy xdz −−=⎰⎰⎰(12)Dx x y dxdy =−−⎰⎰[]11(1)20(1)2x dx x x xy dy −=−−⎰⎰12011(1)448x x dx =−=⎰. 方法二. 对任意的[0,1]x ∈,x D 为yz −平面上由0,0,21y z y z x ==+=−所围成区域.I x dxdydz Ω=⎰⎰⎰1xD dx xdydz =⎰⎰⎰12011(1)448x x dx =−=⎰(3) x z =y z =,()MI x y z dS =++⎰⎰221(x y x y +≤=++⎰⎰221(x y x y +≤=++⎰⎰221x y Rdxdy +≤=⎰⎰3R π=.3.(8分)设(,)z z x y =在2R 有连续偏导数,并且322cos(2)3cos(2)dz axy x y dx x y b x y dy ⎡⎤⎡⎤=+++++⎣⎦⎣⎦其中,a b 是常数,求,a b 的值和(,)z z x y =的表达式. 解:由条件3cos(2)x z axy x y =++,223cos(2)y z x y b x y =++, 则232sin(2)xy z axy x y =−+,26sin(2)yx z xy b x y =−+. 因为xy z 和yx z 都连续,所以xy yx z z =, 232sin(2)axy x y −+26sin(2)xy b x y =−+, 取,02x y π==,解得2b =,进而得出2a =.再由32cos(2)x z xy x y =++,23(,)sin(2)()z x y x y x y y ϕ=+++, 22/32cos(2)()y z x y x y y ϕ=+++, 于是/()0y ϕ=,()y C ϕ=.故23(,)sin(2)z x y x y x y C =+++.4.(10分)求幂级数211(1)(21)!n n n n x n +∞−=−+∑的收敛域及和函数的表达式.解:记21(1)()(21)!n n n n u x x n −−=+. 对任意的0x ≠,21()0,()2(23)n n u x xn u x n n +=→→+∞+, 则211(1)(21)!n n n n x n +∞−=−+∑收敛. 即得211(1)(21)!n n n n x n +∞−=−+∑的收敛域为(,)−∞+∞. 记211(1)()(21)!n n n n S x x n +∞−=−=+∑,定义域为(,)−∞+∞.容易求得(0)0S =. 对任意的0x ≠,利用幂级数的性质,2/11(1)()()2(21)!nn n S x x n +∞=−=+∑/211(1)2(21)!n n n x n +∞=⎛⎫−= ⎪+⎝⎭∑/21111(1)2(21)!n n n x x n +∞+=⎛⎫−= ⎪+⎝⎭∑/11(sin )2x x x⎛⎫=− ⎪⎝⎭ 2cos sin 2x x xx−=.5.(10分)设()f x 是以2π为周期的函数,它在区间(,]ππ−上的表达式为00()20x f x x ππ−<≤⎧=⎨<≤⎩. (1)求()f x 的Fourier 级数;(2)求()f x 的Fourier 级数的和函数在区间[0,2]π上的表达式;(3)求11(1)21n n n −+∞=−−∑.解:(1)先计算()f x 的Fourier 系数, 01()a f x dx πππ−=⎰122dx ππ==⎰,1()cos n a f x nxdx πππ−=⎰12cos 0nxdx ππ==⎰,1,2,n =,1()sin n b f x nxdx πππ−=⎰ ()0122sin 1(1)n nxdx n πππ==−−⎰2421(21)n k n k k π=⎧⎪=⎨=−⎪−⎩,1,2,k =.()f x 的Fourier 级数为()01cos sin 2n n n a a nx b nx +∞=++∑ 14sin(21)121k k xk π+∞=−=+−∑. (2) 12(0,)4sin(21)10(,2)2110,,2k x k x x k x ππππππ+∞=∈⎧−⎪+=∈⎨−⎪=⎩∑. (3)令2x π=,1411sin (21)2212k k k ππ+∞=⎛⎫+−= ⎪−⎝⎭∑,解得11(1)214n n n π−+∞=−=−∑.6.(12分)(1)判别下列广义积分的收敛性,若收敛,是绝对收敛还是条件收敛?(a) 30411dx +∞−⎰ (b) 20sin x dx +∞⎰ (2)设()af x dx +∞⎰收敛,并且lim ()x f x L →+∞=.证明:0L =.解:(1)(a) 0,1x x ==为瑕点, 考虑30411dx +∞−⎰1122133330122444411111111dx dx dx dx +∞=+++−−−−⎰⎰⎰⎰.因为330004411lim lim111x x x →+→+==−−,3431141lim 111x x x →→−⋅==−,31342433441lim lim111x x xxx +→+∞→+∞⋅==−−,而其中1351244+=>,所以112213333012244441111,,,1111dx dx dx dx +∞−−−−⎰⎰⎰⎰都收敛,于是30411dx +∞−⎰收敛,又被积函数非负,故是绝对收敛.(b)0x =不是瑕点,20sin x dx +∞⎰与21sin x dx +∞⎰具有相同的收敛性,只讨论21sin x dx +∞⎰即可.令2t x =,则2111sin 2x dx +∞+∞=⎰⎰, 1+∞⎰条件收敛. 那么20sin x dx +∞⎰条件收敛.(2)假设0L ≠,不妨设0L >.由lim ()x f x L →+∞=,根据极限性质,存在0X >,使得当x X >时,()2Lf x >.则A X ∀>,()()()A X AaaXf x dx f x dx f x dx =+⎰⎰⎰()()2X aLf x dx A X >+−⎰, 由此推出lim()A aA f x dx →+∞=+∞⎰,与()af x dx +∞⎰收敛矛盾.假设不成立,即0L =.7.(12分)(1)证明:函数项级数1nx n ne +∞−=∑在[,)(0)δδ+∞>一致收敛,但在(0,)+∞不一致收敛.(2)证明:1()nx n f x ne +∞−==∑在区间(0,)+∞上连续且可导.证:(1)对任意的[,)x δ∈+∞和任意的正整数n ,0nx n ne ne δ−−<<, 而1,e n δδ−−=→<→+∞,说明1nn neδ+∞−=∑收敛,根据M 判别法,函数项级数1nx n ne +∞−=∑在[,)(0)δδ+∞>一致收敛.记()nx n u x ne −=,对任意的正整数n ,取1(0,)n x n=∈+∞, 1()0,n n u x ne n −=→+∞,则()nxn u x ne−=在(0,)+∞不一致收敛于0.故函数项级数1nx n ne +∞−=∑在(0,)+∞不一致收敛. (2) (0,)x ∀∈+∞,存在0δ>,使得(,)x δ∈+∞.因为()nxn u x ne−=在(0,)+∞连续(1,2,)n =,利用(1),函数项级数1nx n ne +∞−=∑在[,)(0)δδ+∞>一致收敛,所以和函数1()nx n f x ne +∞−==∑在[,)δ+∞上连续,于是它在x 连续.由x 的任意性,1()nx n f x ne +∞−==∑在区间(0,)+∞上连续.对任意的0δ>,/22()nx n n u x n e n e δ−−=−≤,[,),1,2,x n δ∀∈+∞=,而1,e n δδ−−=→<→+∞,说明21nn n eδ+∞−=∑收敛,根据M 判别法,函数项级数/1()n n u x +∞=∑在[,)(0)δδ+∞>一致收敛.根据一致收敛的函数项级数的逐项可导性,1()nx n f x ne +∞−==∑在区间[,)(0)δδ+∞>可导. 同理可得,1()nx n f x ne +∞−==∑在区间(0,)+∞上可导.8.(10分)设1α>,10n n a a +<≤,0,1,2,n =.证明:111n n n n n a a a a α+∞−=−−∑收敛. 证:由条件,{}n a 单调递增,则要么{}n a 有上界要么{}n a 趋于+∞. (1)设{}n a 有上界. 则{}n a 收敛,记lim n n A a →+∞=,显然0A >.利用极限性质,存在0N ,当0n N >时, 2n Aa >. 则当01n N >+时,由条件1α>,那么1111120()()()22n n n n n n n n a a a a a a A A a a A ααα+−−−−−−≤<=−. 由于1001(),nk k n k a a a a A a n −=−=−→−→+∞∑,说明11()n n n a a +∞−=−∑收敛. 利用比较判别法,111n n n n n a a a a α+∞−=−−∑收敛.(2) 设{}n a 无上界,即lim n n a →+∞=+∞.利用极限性质,存在0N ,当0n N >时,1n a >. 则当01n N >+时,由条件1α>,那么11111110n n n n n n n n n na a a a a a a a a a α−−−−−−−≤≤=−. 由于 110011111(),nk k k n n a a a a a =−−=−→→+∞∑, 说明1111()n n n a a +∞=−−∑收敛. 利用比较判别法,111n n n n n a a a a α+∞−=−−∑收敛.。

《数学分析(二)》题库及答案

《数学分析(二)》题库及答案

《数学分析(二)》题库及答案一、填空1、⎰=+11- 251dx xx ____________。

2、⎰∞+-= 02dx xe x ____________。

3、=++++⋅+⋅ )1(1321211n n ___________。

4、⎰∞+∞=+ - 2______1xdx。

5、_______)15)(45(11161611=++-++⋅+⋅ n n 。

6、幂级数∑∞=--11)1(n nn nx 的收敛域为______ 。

二、单项选择题1、设)(x f 是),(b a 上的连续函数,则在),(b a 上)(x f 必有___________。

A .导函数 B .原函数 C .最大值 D .最小值2、设)(x f 在),(+∞-∞上有连续的的导数)(x f ',则___________。

A .⎰+='c x f dx x f )2(21)2( B .⎰+='c x f dx x f )2()2( C .⎰+='c x f dx x f )()2( D . ⎰=')2(2))2((x f dx x f3、设)(x f 是),(+∞-∞上非零的连续奇函数,则⎰=xdt t f x F 0)()(是___________。

A .奇函数B .偶函数C .非奇非偶函数D .可能是奇,也可能是偶函数 4、设函数)(x f 在],[b a 上可积,则)(x f 在],[b a 上______ 。

A .存在原函数B .有界C .连续D .可导 5、若0lim =∞→n n a ,则数项级数∑∞=1n na______ 。

A .收敛B .发散C .收敛且和为零D .可能收敛,也可能发散 6、若反常积分⎰∞+ 12)(dx x f 收敛,则⎰∞+ 1)(dx x f ______ 。

A .发散B .条件收敛C .绝对收敛D .可能收敛,也可能发散。

三.判断对错1.若)(x f 在(a 、b )内可微,则⎰+=c x f x df )()(。

《数学分析II》期末试卷+参考答案

《数学分析II》期末试卷+参考答案

《数学分析(II )》试题2004.6一.计算下列各题:1.求定积分∫+e x x dx 12)ln 2(;2.求定积分; ∫−222),1max(dx x3.求反常积分dx x x ∫∞++021ln ;4.求幂级数()∑∞=−+1221n n n x n n 的收敛域;5.设,求du 。

yz x u =二.设变量代换可把方程⎩⎨⎧+=−=ay x v y x u ,20622222=∂∂−∂∂∂+∂∂y z y x z x z 简化为02=∂∂∂v u z ,求常数。

a三.平面点集(){}⎭⎬⎫⎩⎨⎧=⎟⎠⎞⎜⎝⎛L U ,2,11sin ,10,0n n n是否为紧集?请说明理由。

四.函数项级数n nn n x x n +⋅−∑∞=−1)1(11在上是否一致收敛?请说明理由。

]1,0[五.设函数在上连续,且满足)(x f ),(∞+−∞1)1(=f 和)arctan(21)2(20x dt t x tf x =−∫。

求。

∫21)(dx x f六.设函数在上具有连续导数,且满足)(x f ),1[∞+1)1(=f 和22)]([1)(x f x x f +=′,+∞<≤x 1。

证明:存在且小于)(lim x f x +∞→41π+。

七.设如下定义函数:dt t t x f x x t1sin 21)(2∫⎟⎠⎞⎜⎝⎛+=,。

1>x 判别级数∑∞=2)(1n n f 的敛散性。

八.设∫=40cos sin πxdx x I n n (L ,2,1,0=n )。

求级数的和。

∑∞=0n n I《数学分析(II )》试题(答案)2004.6一.1.421π⋅; 2.320; 3.; 4. 0)2/1,2/1(−; 5.⎟⎠⎞⎜⎝⎛++=xdz y xdy z dx x yz x dz yz ln ln 。

二.。

3=a 三. 是紧集。

四.一致收敛。

五.43。

六.因为,所以单调增加,因此0)(>′x f )(x f 1)1()(=>f x f 。

数学分析试题及答案

数学分析试题及答案
∫∫ 六.计算曲面积分 x2dydz + y 2dzdx + z 2dxdy ,其中 Σ 为锥面 x2 + y 2 = z 2 在平面 Σ
z = 0 与 z = h ( h > 0 )之间的部分,定向为下侧。
七.设 A(x, y) = 2xy(x 4 + y 2 )λ i − x 2 (x 4 + y 2 )λ j 是右半平面 D = { (x, y) | x > 0 } 上 的向量场,试确定常数 λ ,使得 A(x, y) 为 D 上函数 u(x, y) 的梯度场,并求出 u(x, y) 。
∑ 计算 ∞ (−1)n+1 的值。 n2 n=1
4
复旦大学 2005~2006 学年第一学期期末考试试卷
答案
1. (本题满分 40 分,每小题 8 分) (1) 2 2x + y − 2 = 0 。
(2) 1 。 2
1
(3) y = e e 为极大值。 x=e
(4)曲线在 (0, 1] 上为上凸,在[1,+∞) 上为下凸, (1, − 7) 为拐点。
∫∫∫ 四.计算三重积分 e|z|dxdydz ,其中 Ω = { (x, y, z) | x2 + y 2 + z 2 ≤ 1}。 Ω
五. 计算曲线积分
∫ 2 y 2 + z 2 ds ,
L
其中 L 是球面 x2 + y 2 + z 2 = a 2 ( a > 0 )与平面 x = y 相交而成的圆周。
A t(1 + t 2 ) 2
x→+∞ 1 t(1 + t 2 )
∫ 所以存在 X > 0 ,当 x > X 时成立 A cos xt dt < ε ,于是当 x > X 时成立

《数学分析III》期末考试卷及参考答案05

《数学分析III》期末考试卷及参考答案05

第 1 页 共 6 页数学分析下册期末试题及参考答案05一、 填空题(第1题每空2分,第2、3、4、5、6题每题4分,共26分)1、已知、已知 22xy u e-=,,则u x¶¶= ,uy¶=¶ , du = ;2、cos sin x ar y br q q =ìí=î,则(,)J r q = ;3、设L :cos sin x a t y b t=ìí=î 0t p ££,则22()Lx y ds +ò= ;4、120(,)ydyf x y dx òò交换积分顺序后为:交换积分顺序后为: ; 5、2221x y I x ydxdy +£=òò= ;6、令设222L x y a +=:,则Lydx xdy -=ò . 第 2 页 共 6 页二、判断题(对的打√,错的打×,每空3分,共15分)1、若函数(,)z f x y =的重极限和两个累次极限都存在,的重极限和两个累次极限都存在,则他们必相等;则他们必相等; ( )2、若函数(,)z f x y =在00(,)x y 可微,则(,)z f x y =在点00(,)x y 一定连续;一定连续; ( )3、若函数(,)z f x y =在闭区域D 上连续,则函数(,)z f x y =在D 上可积;上可积; ( )4、(,,)P x y z 是定义在双侧曲面S 上的函数,则上的函数,则(,,)(,,)SSP x y z dxdy P x y z dxdy =-òòòò; ( )5、若函数(,)z f x y =的偏导数在00(,)x y 的邻域内存在,则(,)f x y 在点00(,)x y 可微;( )三、计算题(第3、6题各7分,其余每题8分,共46分)1、求曲面22z x y =+与22z x y =+所围立体的体积. 得 分分 阅卷人阅卷人得 分分 阅卷人阅卷人第 3 页 共 6 页2、计算222VI x y z dxdydz =++òòò,其中V 是由222x y z z ++=-所围成的区域. 3、利用二重积分计算椭圆面:22221x y a b+£的面积的面积任教姓学考生答题不得过此线密封线课教师:学班号:名:号:装订线第 4 页 共 6 页4、计算第二型曲面积分:1SI dxdy z =òò,其中S 是椭球面2222221x y z a b c ++=的外侧. 5、计算22()SI x y ds =+òò,其中S 为立体221x y z +££的边界曲面.第 5 页 共 6 页6、利用高斯公式计算235SI xdydz ydzdx zdxdy =++òò,其中S 是单位球面2221x y z ++=的外侧. 四、证明题(四、证明题(66分)1、证明(3sin )(cos )x y dx x y dy ++是全微分,并求原函数(,)u x y得 分分 阅卷人阅卷人 考生答题不得过此线密封线任课教师:教学班号:姓名:学号:装订线得 分分 阅卷人阅卷人第 7 页 共 6 页1、求曲面22z x y =+与22z x y =+所围立体的体积 解:设所求体积为V,V,则则2222[()]xyD V x y x y dxdy =+-+òò,其中,22:1xy D x y +£(3分),令cos ,sin x r y r q q ==,则xy D 可表示为:02,01r q p ££££(4分),所以,,所以, 21200()V d r r rdr pq =-òò(5分)=6p (8分)分)2、计算222VI x y z dxdydz =++òòò,其中V 是由222x y z z ++=-所围成的区域解:令sin cos ,sin sin ,cos x r y r z r j q j q j ===(2分), 则V 可表示为:02,,0cos 2r pq p j p j ££££££-(4分),所以, 222VI x y z dxdydz =++òòò=2cos 3002sin d d r dr ppjp q j j -òòò(5分) =10p(8分)3、利用二重积分计算椭圆面:22221x y a b+£的面积解:设所求面积为S,则Ds dxdy =òò,其中D 为:22221x y a b +£(2分),令cos ,sin x ar y br q q ==(3分),则D 可表示为:02,01r q p ££££(4分),所以, 2100S d abrdr pq =òò(5分),所以S ab p =(7分). 4、计算第二型曲面积分:1S I dxdy z =òò,其中S 是椭球面2222221x y z a b c ++=的外侧解:记1S 为椭球面0z ³的一侧,2S 为椭球面0z £的一侧,则的一侧,则12111S S SI dxdy dxdy dxdy z z z ==+òòòòòò(2分),则12,S S 在xoy 面上的投影都是2222:1xy x y D a b +£(3分),所以222222221111xyxyDD I dxdy dxdy x y x y c c aba b =------òòòò22221x y c a b --21dr c r-=4ab cp(,则221x y z z ++=22x y =+,则2212x y z z ++=(22222)+2)+=(12)2p +23Sxdydz ydzdx +òò235Sxdydz ydzdx =++òò分),所以10I =D 44033p p ´=分)分)则y x ==¶¶,所以第 9 页 共 6 页则00(,)(3sin )(cos )3cos x yM Mu x y x y dx x y dy xdx x ydy =++=+òòòò(5分)分)=23sin 2x x y +(6分)(说明:原函数可以直接观察得出!)五、应用题(五、应用题(77分) 一页长方形白纸,要求印刷面积占2Acm ,并使所留页边空白为:上部与下部宽度之和为:a b h +=cm,左部与右部宽度之和为:c d r +=cm (A,r,h 为已知数),求页面的长(y)和宽(x),使它的面积最小.解:由题意,目标函数与约束条件分别为xy S =与.))(( , ,A h y r x h y r x =-->>(1分)作Lagrange 函数],))([(A h y r x xy L ---+=l (2分)则有分)则有ïîïíì=---==-+==-+=.0))(( ,0)( ,0)(A h y r x L r x x L h y y L yx l l l (3分)分) 由此解得由此解得, , 111r h Ah x y r l l l l l æö===-+ç÷ç÷++èø(5分)分) 于是有于是有. ,h rAhy r h Arx +=+=(6分)分)根据问题的实际意义知,此时页面的面积是最小的根据问题的实际意义知,此时页面的面积是最小的..(7分)分)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

.
数学分析下册期末模拟试卷及参考答案
一、填空题(第1题每空2分,第2,3,4,5题每题5分,共26分) 1、已
知u =则
u
x
∂=∂ ,u y ∂=∂ ,du = 。

2、设22L y a +=2:x ,则L
xdy ydx -=⎰ 。

3、设L ⎧⎨
⎩x=3cost ,
:y=3sint.(02t π≤≤),则曲线积分ds ⎰22L
(x +y )= 。

4、改变累次积分3
2
dy f dx ⎰⎰3
y

x ,y )的次序为 。

5、设1D x y +≤:
,则1)D
dxdy ⎰⎰= 。

二、判断题(正确的打“O ”;错误的打“×”;每题3分,
共15分)
1、若函数f (x ,y )在点p 00(x ,y )连续,则函数f (x ,y )
点p 00(x ,y )必存在一阶偏导数。

( )
2、若函数f (x ,y )在点p 00(x ,y ) 可微,则函数f (x ,y )
在点p 00(x ,y )连续。

( )
3、若函数f (x ,y )
在点p 00(x ,y )存在二阶偏导数00(,)xy f x y 和00(,)yx f x y ,则 必有 0000(,)(,)xy yx f x y f x y =。

( ) 4、
(,)
(,)
(,)(,)L A B L B A f x y dx f x y dx =

⎰。

( )
5、若函数f (x ,y )在有界闭区域D 上连续,则函数f (x ,y ) 在D 上可积。

( )
.
三、计算题 ( 每小题9分,共45分)
1、用格林公式计算曲线积分
(sin 3)(cos 3)x x AO
I e y y dx e y dy =-+-⎰ ,
其中AO 为由(,0)A a 到(0,0)O 经过圆22x y ax +=上半部分的路线。

、计算三重积分
2
2()V
x
y dxdydz +⎰⎰⎰,
是由抛物面22z x y =+与平面4z =围成的立体。

.
3、计算第一型曲面积分
S
I dS =⎰⎰ ,
其中S 是球面2222x y z R ++=上被平面(0)z a a R =<<所截下的顶部(z a ≥)。

4、计算第二型曲面积分 22
()()S
I y x z dydz x dzdx y
xz dxdy =
-+++⎰⎰,
其中S 是立方体[][][]0,0,0,V b b b =⨯⨯的外表面。

.
5、设{}
222(,)D x y x y R =+≤. 求以圆域D 为底,以曲面2
2()
x y z e -+=为顶的
曲顶柱体的体积。

四、证明题(每小题7分,共14分)
1、验证曲线积分
.
222(2)(2)(2)L
x yz dx y xz dy z xy dz -+-+-⎰,
与路线无关,并求被积表达式的一个原函数(,,)u x y z 。

2、证明:若函数f (x ,y )在有界闭区域D 上连续,则存在(,),D ξη∈ 使得 (,)(,)D
D
f x y d f S
σξη=⋅⎰⎰ ,这里D S 是区域D 的面积。

参考答案
一、填空题(第1题每空2分,第2,3,4,5题每题5分,共26分) 1、
22x x y +;22y x y +;2222
x y
dx dy x y x y
+++。

2、2
2a π; 3、54π ; 4、3
2
2
(,)X
dx f x y dy ⎰⎰ ;5
、1)。

二、判断题(正确的打“O ”;错误的打“×”;每题3分,共15分)
1、×;
2、○;
3、×;
4、× ;
5、○ .
.
三、计算题 ( 每小题9分,共45分)
1、解:补上线段:0,0OA y x a =≤≤ 与弧22:(0)AO x y ax y +=≥构成封闭曲线,由格林公式,有
(sin 3)(cos 3)(sin 3)(cos 3)x x x
x OA
OA AO
I e y y dx e y dy e
y y dx e y dy +=-+--
-+-⎰⎰
----------------------------------------------------------------------------------------------6分 =220:(0)
cos (cos 3)0a
x x D x y ax y e y e y dxdy dx +≤≥⎡⎤---⎣⎦⎰⎰⎰-----------------------------8

=2
338
D
dxdy a π=
⎰⎰--------------------------------------------------------------------9分 2、解:作柱面坐标变换:cos ,sin ,x r y r z z θθ===, 则(,,)J r z r θ= 且
2:4,02,02V V r z r θπ'⇒≤≤≤≤≤≤---------------------------------------------4分
2
22222
4
3
()683293
V
V r x y dxdydz
r rdrd dz d r dr dz π
θθπ
'∴+=⋅--------------------=--------------------=
-------------------------⎰⎰⎰⎰⎰⎰⎰⎰⎰分


3
、解:22S Z R a =∈≤-22:x ,y )D :x +y
.
dS =
.
=
S
D
I dS ∴==⎰⎰--------------------------4分
作极坐标变换:cos x r θθ=,y=rsin , 则 J θ(r ,)=r ,
且0D D r θπ'⇒≤≤≤≤::02
D I θ
'
=
=
20
d π
⎰-----------------------------------7分
2R π=(R-a )----------------------------------------------9分
4、解:用高斯公式,得
I dxdydz
=⎰⎰⎰V (y+0+x )------------------------------------6分
=dx dy dz ⎰⎰⎰b
b
b
(x+y )----------------------------------8分
=4b --------------------------------------------------9分
5、解:曲顶柱体的体积2
2x y D
V e dxdy -
+=⎰⎰()
-----------------4分
作极坐标变换:cos sin x r y r θθ==,,则 J θ(r ,)=r , 且 002D D r R θπ'⇒≤≤≤≤:, ,于是,有 2
r D V e rdrd θ-'=⎰⎰
=
2
20
R
r
d e rdr π
θ-⎰⎰--------------------------------------8分
.
=π2
-R (1-e )-----------------------------------------------9分
四、证明题(每小题7分,共14分)
1、证明:222222P x yz Q y xz R z xy =-=-=-,,
222P Q R Q P R
z x y y x y z z x
∂∂∂∂∂∂==-=-==-∂∂∂∂∂∂,,,
∈3(x ,y ,z )R . ∴曲线积分与路线无关。

-----------------------------------4分 取000x y ==,则
y
z
u P dx Q dy R dz =++⎰⎰⎰x
(x ,y ,z )(x ,0,0)(x ,y ,0)(x ,y ,z )
=220
y
x
z
x dx y dy dz ++⎰⎰⎰2(z -2xz )-------------------7分
=1
3
=333(x +y +z )-2xyz --------------------------9分
1、证明:由 最值定理,函数f (x ,y )
在有界闭区域D 上存在最大值M 和最小值m ,且∀∈(x ,y )D ,有
m f M ≤≤(x ,y ), 上式各端在D 上积分,得
D D D
mS f d MS σ≤≤⎰⎰(x ,y ),
或 f d m M σ≤≤⎰⎰D
D

x ,y )S ,
其中D S 为D 的面积。

根据介质性定理,存在D ξη∈(,),使得
.
f d f f σξησξη=
=⋅⎰⎰⎰⎰D
D D
D

x ,y )(,),即f (x ,y )d (,)S S。

相关文档
最新文档