2016年哈尔滨市中考数学试题
【中考真题】2016年黑龙江省哈尔滨市中考数学试题(含答案解析)
2016年黑龙江省哈尔滨市中考数学真题一、选择题(每小题3分,共计30分)1.(3分)﹣6的绝对值是()A.﹣6 B.6 C.D.﹣2.(3分)下列运算正确的是()A.a2•a3=a6B.(a2)3=a5C.(﹣2a2b)3=﹣8a6b3D.(2a+1)2=4a2+2a+13.(3分)下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.4.(3分)点(2,﹣4)在反比例函数y=的图象上,则下列各点在此函数图象上的是()A.(2,4)B.(﹣1,﹣8)C.(﹣2,﹣4)D.(4,﹣2)5.(3分)五个大小相同的正方体搭成的几何体如图所示,其主视图是()A. B.C.D.6.(3分)不等式组的解集是()A.x≥2B.﹣1<x≤2C.x≤2D.﹣1<x≤17.(3分)某车间有26名工人,每人每天可以生产800个螺钉或1000个螺母,1个螺钉需要配2个螺母,为使每天生产的螺钉和螺母刚好配套.设安排x名工人生产螺钉,则下面所列方程正确的是()A.2×1000(26﹣x)=800x B.1000(13﹣x)=800xC.1000(26﹣x)=2×800x D.1000(26﹣x)=800x8.(3分)如图,一艘轮船位于灯塔P的北偏东60°方向,与灯塔P的距离为30海里的A 处,轮船沿正南方向航行一段时间后,到达位于灯塔P的南偏东30°方向上的B处,则此时轮船所在位置B处与灯塔P之间的距离为()A.60海里B.45海里C.20海里D.30海里9.(3分)如图,在△ABC中,D、E分别为AB、AC边上的点,DE∥BC,BE与CD相交于点F,则下列结论一定正确的是()A.=B.C.D.10.(3分)明君社区有一块空地需要绿化,某绿化组承担了此项任务,绿化组工作一段时间后,提高了工作效率.该绿化组完成的绿化面积S(单位:m2)与工作时间t(单位:h)之间的函数关系如图所示,则该绿化组提高工作效率前每小时完成的绿化面积是()A.300m2B.150m2C.330m2D.450m2二、填空题(每小题3分,共计30分)11.(3分)将5700 000用科学记数法表示为.12.(3分)函数y=中,自变量x的取值范围是.13.(3分)计算2﹣的结果是.14.(3分)把多项式ax2+2a2x+a3分解因式的结果是.15.(3分)一个扇形的圆心角为120°,面积为12πcm2,则此扇形的半径为cm.16.(3分)二次函数y=2(x﹣3)2﹣4的最小值为.17.(3分)在等腰直角三角形ABC中,∠ACB=90°,AC=3,点P为边BC的三等分点,连接AP,则AP的长为.18.(3分)如图,AB为⊙O的直径,直线l与⊙O相切于点C,AD⊥l,垂足为D,AD交⊙O于点E,连接OC、BE.若AE=6,OA=5,则线段DC的长为.19.(3分)一个不透明的袋子中装有黑、白小球各两个,这些小球除颜色外无其他差别,从袋子中随机摸出一个小球后,放回并摇匀,再随机摸出一个小球,则两次摸出的小球都是白球的概率为.20.(3分)如图,在菱形ABCD中,∠BAD=120°,点E、F分别在边AB、BC上,△BEF 与△GEF关于直线EF对称,点B的对称点是点G,且点G在边AD上.若EG⊥AC,AB=6,则FG的长为.三、解答题(其中21-22题各7分,23-24题各8分,25-27题各10分,共计60分)21.(7分)先化简,再求代数式(﹣)÷的值,其中a=2sin 60°+tan 45°.22.(7分)图1、图2是两张形状和大小完全相同的方格纸,方格纸中每个小正方形的边长均为1,线段AC的两个端点均在小正方形的顶点上.(1)如图1,点P在小正方形的顶点上,在图1中作出点P关于直线AC的对称点Q,连接AQ、QC、CP、P A,并直接写出四边形AQCP的周长;(2)在图2中画出一个以线段AC为对角线、面积为6的矩形ABCD,且点B和点D均在小正方形的顶点上.23.(8分)海静中学开展以“我最喜爱的职业”为主题的调查活动,围绕“在演员、教师、医生、律师、公务员共五类职业中,你最喜爱哪一类?(必选且只选一类)”的问题,在全校范围内随机抽取部分学生进行问卷调查,将调查结果整理后绘制成如图所示的不完整的统计图,请你根据图中提供的信息回答下列问题:(1)本次调查共抽取了多少名学生?(2)求在被调查的学生中,最喜爱教师职业的人数,并补全条形统计图;(3)若海静中学共有1500名学生,请你估计该中学最喜爱律师职业的学生有多少名?24.(8分)已知:如图,在正方形ABCD中,点E在边CD上,AQ⊥BE于点Q,DP⊥AQ于点P.(1)求证:AP=BQ;(2)在不添加任何辅助线的情况下,请直接写出图中四对线段,使每对中较长线段与较短线段长度的差等于PQ的长.25.(10分)早晨,小明步行到离家900米的学校去上学,到学校时发现眼镜忘在家中,于是他立即按原路步行回家,拿到眼镜后立即按原路骑自行车返回学校.已知小明步行从学校到家所用的时间比他骑自行车从家到学校所用的时间多10分钟,小明骑自行车速度是步行速度的3倍.(1)求小明步行速度(单位:米/分)是多少;(2)下午放学后,小明骑自行车回到家,然后步行去图书馆,如果小明骑自行车和步行的速度不变,小明步行从家到图书馆的时间不超过骑自行车从学校到家时间的2倍,那么小明家与图书馆之间的路程最多是多少米?26.(10分)已知:△ABC内接于⊙O,D是上一点,OD⊥BC,垂足为H.(1)如图1,当圆心O在AB边上时,求证:AC=2OH;(2)如图2,当圆心O在△ABC外部时,连接AD、CD,AD与BC交于点P,求证:∠ACD=∠APB;(3)在(2)的条件下,如图3,连接BD,E为⊙O上一点,连接DE交BC于点Q、交AB于点N,连接OE,BF为⊙O的弦,BF⊥OE于点R交DE于点G,若∠ACD﹣∠ABD=2∠BDN,AC=5,BN=3,tan∠ABC=,求BF的长.27.(10分)如图,在平面直角坐标系中,O为坐标原点,抛物线y=ax2+2xa+c经过A(﹣4,0),B(0,4)两点,与x轴交于另一点C,直线y=x+5与x轴交于点D,与y轴交于点E.(1)求抛物线的解析式;(2)点P是第二象限抛物线上的一个动点,连接EP,过点E作EP的垂线l,在l上截取线段EF,使EF=EP,且点F在第一象限,过点F作FM⊥x轴于点M,设点P的横坐标为t,线段FM的长度为d,求d与t之间的函数关系式(不要求写出自变量t的取值范围);(3)在(2)的条件下,过点E作EH⊥ED交MF的延长线于点H,连接DH,点G为DH 的中点,当直线PG经过AC的中点Q时,求点F的坐标.参考答案解析一、选择题(每小题3分,共计30分)1.B【解析】﹣6的绝对值是6.故选B.2.C【解析】A、a2•a3=a5,故此选项错误;B、(a2)3=a6,故此选项错误;C、(﹣2a2b)3=﹣8a6b3,正确;D、(2a+1)2=4a2+4a+1,故此选项错误;故选C.3.D【解析】A、是轴对称图形,但不是中心对称图形,故A错误;B、是中心对称图形,不是轴对称图形,故B错误;C、是轴对称图形,不是中心对称图形,故C错误;D、既是轴对称图形,也是中心对称图形,故D正确.故选D.4.D【解析】∵点(2,﹣4)在反比例函数y=的图象上,∴k=2×(﹣4)=﹣8.∵A中2×4=8;B中﹣1×(﹣8)=8;C中﹣2×(﹣4)=8;D中4×(﹣2)=﹣8,∴点(4,﹣2)在反比例函数y=的图象上.故选D.5.C【解析】从正面看第一层是三个小正方形,第二层右边是两个小正方形,故选C.6.A【解析】解不等式x+3>2,得:x>﹣1,解不等式1﹣2x≤﹣3,得:x≥2,∴不等式组的解集为:x≥2,故选A.7.C【解析】设安排x名工人生产螺钉,则(26﹣x)人生产螺母,由题意得1000(26﹣x)=2×800x,故C答案正确,故选C.8.D【解析】由题意可得:∠B=30°,AP=30海里,∠APB=90°,故AB=2AP=60(海里),则此时轮船所在位置B处与灯塔P之间的距离为:BP==30(海里)故选D.9.A【解析】A、∵DE∥BC,∴,故正确;B、∵DE∥BC,∴△DEF∽△CBF,∴,故错误;C、∵DE∥BC,∴,故错误;D、∵DE∥BC,∴△DEF∽△CBF,∴,故错误;故选A.10.B【解析】如图,设直线AB的解析式为y=kx+b,则,解得.故直线AB的解析式为y=450x﹣600,当x=2时,y=450×2﹣600=300,300÷2=150(m2).答:该绿化组提高工作效率前每小时完成的绿化面积是150m2.二、填空题(每小题3分,共计30分)11.5.7×106【解析】5700 000=5.7×106.故答案为:5.7×106.12.x≠【解析】由题意,得2x﹣1≠0,解得x≠,故答案为:x≠.13.﹣2【解析】原式=2×﹣3=﹣3=﹣2,故答案为:﹣2.14.a(x+a)2【解析】ax2+2a2x+a3=a(x2+2ax+a2)=a(x+a)2,故答案为:a(x+a)215.6【解析】设该扇形的半径为R,则=12π,解得R=6.即该扇形的半径为6cm.故答案是:6.16.﹣4【解析】二次函数y=2(x﹣3)2﹣4的开口向上,顶点坐标为(3,﹣4),所以最小值为﹣4.故答案为:﹣4.17.或【解析】①如图1,∵∠ACB=90°,AC=BC=3,∵PB=BC=1,∴CP=2,∴AP==,②如图2,∵∠ACB=90°,AC=BC=3,∵PC=BC=1,∴AP==,综上所述:AP的长为或,故答案为:或.18.4【解析】OC交BE于F,如图,∵AB为⊙O的直径,∴∠AEB=90°,∵AD⊥l,∴BE∥CD,∵CD为切线,∴OC⊥CD,∴OC⊥BE,∴四边形CDEF为矩形,∴CD=EF ,在Rt△ABE中,BE===8,∵OF⊥BE,∴BF=EF=4,∴CD=4.故答案为4.19.【解析】列表得,黑1 黑2 白1 白2黑1 黑1黑1 黑1黑2 黑1白1 黑1白2黑2 黑2黑1 黑2黑2 黑2白1 黑2白2白1 白1黑1 白1黑2 白1白1 白1白2白2 白2黑1 白2黑2 白2白1 白2白2∵由表格可知,不放回的摸取2次共有16种等可能结果,其中两次摸出的小球都是白球有4种结果,∴两次摸出的小球都是白球的概率为:=,故答案为:.20.3【解析】∵四边形ABCD是菱形,∠BAD=120°,∴AB=BC=CD=AD,∠CAB=∠CAD=60°,∴△ABC,△ACD是等边三角形,∵EG⊥AC,∴∠AEG=∠AGE=30°,∵∠B=∠EGF=60°,∴∠AGF=90°,∴FG⊥BC,∴2•S△ABC=BC•FG,∴2××(6)2=6•FG,∴FG=3.故答案为3.三、解答题(其中21-22题各7分,23-24题各8分,25-27题各10分,共计60分)21.解:原式=[﹣]•(a+1)=•(a+1)=•(a+1)=•(a+1)=,当a=2sin 60°+tan 45°=2×+1=+1时,原式==.22.解:(1)如图1所示:四边形AQCP即为所求,它的周长为:4×=4;(2)如图2所示:四边形ABCD即为所求.23.解:(1)12÷20%=60,答:共调查了60名学生.(2)60﹣12﹣9﹣6﹣24=9,答:最喜爱的教师职业人数为9人.如图所示:(3)×1500=150(名)答:该中学最喜爱律师职业的学生有150名.24.解:(1)∵正方形ABCD∴AD=BA,∠BAD=90°,即∠BAQ+∠DAP=90°∵DP⊥AQ∴∠ADP+∠DAP=90°∴∠BAQ=∠ADP∵AQ⊥BE于点Q,DP⊥AQ于点P∴∠AQB=∠DP A=90°∴△AQB≌△DP A(AAS)∴AP=BQ(2)①AQ﹣AP=PQ②AQ﹣BQ=PQ③DP﹣AP=PQ④DP﹣BQ=PQ25.解:(1)设小明步行的速度是x米/分,由题意得:,解得:x=60,经检验:x=60是原分式方程的解,答:小明步行的速度是60米/分;(2)设小明家与图书馆之间的路程是y米,根据题意可得:,解得:y≤600,答:小明家与图书馆之间的路程最多是600米.26.解:(1)∵OD⊥BC,∴由垂径定理可知:点H是BC的中点,∵点O是AB的中点,∴OH是△ABC的中位线,∴AC=2OH;(2)∵OD⊥BC,∴由垂径定理可知:,∴∠BAD=∠CAD,∵,∴∠ABC=∠ADC,∴180°﹣∠BAD﹣∠ABC=180°﹣∠CAD﹣∠ADC,∴∠ACD=∠APB,(3)连接AO延长交于⊙O于点I,连接IC,AB与OD相交于点M,∵∠ACD﹣∠ABD=2∠BDN,∴∠ACD﹣∠BDN=∠ABD+∠BDN,∵∠ABD+∠BDN=∠AND,∴∠ACD﹣∠BDN=∠AND,∵∠ACD+∠ABD=180°,∴∠ABD+∠BDN=180°﹣∠AND,∴∠AND=180°﹣∠AND,∴∠AND=90°,∵tan∠ABC=,BN=3,∴NQ=,∴由勾股定理可求得:BQ=,∵∠BNQ=∠QHD=90°,∴∠ABC=∠QDH,∵OE=OD,∴∠OED=∠QDH,∵∠ERG=90°,∴∠OED=∠GBN,∴∠GBN=∠ABC,∵AB⊥ED,∴BG=BQ=,GN=NQ=,∵AI是⊙O直径,∴∠ACI=90°,∵tan∠AIC=tan∠ABC=,∴=,∴IC=10,∴由勾股定理可求得:AI=25,连接OB,设QH=x,∵tan∠ABC=tan∠ODE=,∴,∴HD=2x,∴OH=OD﹣HD=﹣2x,BH=BQ+QH=+x,由勾股定理可得:OB2=BH2+OH2,∴()2=(+x)2+(﹣2x)2,解得:x=或x=,当QH=时,∴QD=QH=,∴ND=QD+NQ=6,∴MN=3,MD=15∵MD>,∴QH=不符合题意,舍去,当QH=时,∴QD=QH=∴ND=NQ+QD=4,由垂径定理可求得:ED=10,∴GD=GN+ND=∴EG=ED﹣GD=,∵tan∠OED=,∴,∴EG=RG,∴RG=,∴BR=RG+BG=12∴由垂径定理可知:BF=2BR=24.27.解:(1)把A(﹣4,0),B(0,4)代入y=ax2+2xa+c得,解得,所以抛物线解析式为y=﹣x2﹣x+4;(2)如图1,分别过P、F向y轴作垂线,垂足分别为A′、B′,过P作PN⊥x轴,垂足为N,由直线DE的解析式为:y=x+5,则E(0,5),∴OE=5,∵∠PEO+∠OEF=90°,∠PEO+∠EP A′=90°,∴∠EP A′=∠OEF,∵PE=EF,∠EA′P=∠EB′F=90°,∴△PEA′≌△EFB′,∴P A′=EB′=﹣t,则d=FM=OB′=OE﹣EB′=5﹣(﹣t)=5+t;(3)如图2,由直线DE的解析式为:y=x+5,∵EH⊥ED,∴直线EH的解析式为:y=﹣x+5,∴FB′=A′E=5﹣(﹣t2﹣t+4)=t2+t+1,∴F(t2+t+1,5+t),∴点H的横坐标为:t2+t+1,y=﹣t2﹣t﹣1+5=﹣t2﹣t+4,∴H(t2+t+1,﹣t2﹣t+4),连接PH交y轴于A′,∴P与H的纵坐标相等,∴PH∥x轴,∴∠HPQ=∠PQD,∠PGH=∠QGD,∵DG=GH,∴△PGH≌△QGD,∴PH=DQ,∵A(﹣4,0),C(2,0),∴Q(﹣1,0),∵D(﹣5,0),∴DQ=PH=4,∴﹣t+t2+t+1=4,t=±,∵P在第二象限,∴t<0,∴t=﹣,∴F(4﹣,5﹣).。
2016年黑龙江省哈尔滨市中考数学试卷及答案解析
2016年黑龙江省哈尔滨市中考数学试卷一、选择题(每小题3分,共计30分)1.(3分)﹣6的绝对值是()A.﹣6B.6C.D.﹣2.(3分)下列运算正确的是()A.a2•a3=a6B.(a2)3=a5C.(﹣2a2b)3=﹣8a6b3D.(2a+1)2=4a2+2a+13.(3分)下列图形中既是轴对称图形,又是中心对称图形的是()A.B.C.D.4.(3分)点(2,﹣4)在反比例函数y=的图象上,则下列各点在此函数图象上的是()A.(2,4)B.(﹣1,﹣8)C.(﹣2,﹣4)D.(4,﹣2)5.(3分)五个大小相同的正方体搭成的几何体如图所示,其主视图是()A.B.C.D.6.(3分)不等式组的解集是()A.x≥2B.﹣1<x≤2C.x≤2D.﹣1<x≤1 7.(3分)某车间有26名工人,每人每天可以生产800个螺钉或1000个螺母,1个螺钉需要配2个螺母,为使每天生产的螺钉和螺母刚好配套.设安排x名工人生产螺钉,则下面所列方程正确的是()A.2×1000(26﹣x)=800x B.1000(13﹣x)=800xC.1000(26﹣x)=2×800x D.1000(26﹣x)=800x8.(3分)如图,一艘轮船位于灯塔P的北偏东60°方向,与灯塔P的距离为30海里的A 处,轮船沿正南方向航行一段时间后,到达位于灯塔P的南偏东30°方向上的B处,则此时轮船所在位置B处与灯塔P之间的距离为()A.60海里B.45海里C.20海里D.30海里9.(3分)如图,在△ABC中,D、E分别为AB、AC边上的点,DE∥BC,BE与CD相交于点F,则下列结论一定正确的是()A.=B.C.D.10.(3分)明君社区有一块空地需要绿化,某绿化组承担了此项任务,绿化组工作一段时间后,提高了工作效率.该绿化组完成的绿化面积S(单位:m2)与工作时间t(单位:h)之间的函数关系如图所示,则该绿化组提高工作效率前每小时完成的绿化面积是()A.300m2B.150m2C.330m2D.450m2二、填空题(每小题3分,共计30分)11.(3分)将5700000用科学记数法表示为.12.(3分)函数y=中,自变量x的取值范围是.13.(3分)计算2﹣的结果是.14.(3分)把多项式ax2+2a2x+a3分解因式的结果是.15.(3分)一个扇形的圆心角为120°,面积为12πcm2,则此扇形的半径为cm.16.(3分)二次函数y=2(x﹣3)2﹣4的最小值为.17.(3分)在等腰直角三角形ABC中,∠ACB=90°,AC=3,点P为边BC的三等分点,连接AP,则AP的长为.18.(3分)如图,AB为⊙O的直径,直线l与⊙O相切于点C,AD⊥l,垂足为D,AD交⊙O于点E,连接OC、BE.若AE=6,OA=5,则线段DC的长为.19.(3分)一个不透明的袋子中装有黑、白小球各两个,这些小球除颜色外无其他差别,从袋子中随机摸出一个小球后,放回并摇匀,再随机摸出一个小球,则两次摸出的小球都是白球的概率为.20.(3分)如图,在菱形ABCD中,∠BAD=120°,点E、F分别在边AB、BC上,△BEF 与△GEF关于直线EF对称,点B的对称点是点G,且点G在边AD上.若EG⊥AC,AB=6,则FG的长为.三、解答题(其中21-22题各7分,23-24题各8分,25-27题各10分,共计60分)21.(7分)先化简,再求代数式(﹣)÷的值,其中a=2sin60°+tan45°.22.(7分)图1、图2是两张形状和大小完全相同的方格纸,方格纸中每个小正方形的边长均为1,线段AC的两个端点均在小正方形的顶点上.(1)如图1,点P在小正方形的顶点上,在图1中作出点P关于直线AC的对称点Q,连接AQ、QC、CP、PA,并直接写出四边形AQCP的周长;(2)在图2中画出一个以线段AC为对角线、面积为6的矩形ABCD,且点B和点D均在小正方形的顶点上.23.(8分)海静中学开展以“我最喜爱的职业”为主题的调查活动,围绕“在演员、教师、医生、律师、公务员共五类职业中,你最喜爱哪一类?(必选且只选一类)”的问题,在全校范围内随机抽取部分学生进行问卷调查,将调查结果整理后绘制成如图所示的不完整的统计图,请你根据图中提供的信息回答下列问题:(1)本次调查共抽取了多少名学生?(2)求在被调查的学生中,最喜爱教师职业的人数,并补全条形统计图;(3)若海静中学共有1500名学生,请你估计该中学最喜爱律师职业的学生有多少名?24.(8分)已知:如图,在正方形ABCD中,点E在边CD上,AQ⊥BE于点Q,DP⊥AQ 于点P.(1)求证:AP=BQ;(2)在不添加任何辅助线的情况下,请直接写出图中四对线段,使每对中较长线段与较短线段长度的差等于PQ的长.25.(10分)早晨,小明步行到离家900米的学校去上学,到学校时发现眼镜忘在家中,于是他立即按原路步行回家,拿到眼镜后立即按原路骑自行车返回学校.已知小明步行从学校到家所用的时间比他骑自行车从家到学校所用的时间多10分钟,小明骑自行车速度是步行速度的3倍.(1)求小明步行速度(单位:米/分)是多少;(2)下午放学后,小明骑自行车回到家,然后步行去图书馆,如果小明骑自行车和步行的速度不变,小明步行从家到图书馆的时间不超过骑自行车从学校到家时间的2倍,那么小明家与图书馆之间的路程最多是多少米?26.(10分)已知:△ABC内接于⊙O,D是上一点,OD⊥BC,垂足为H.(1)如图1,当圆心O在AB边上时,求证:AC=2OH;(2)如图2,当圆心O在△ABC外部时,连接AD、CD,AD与BC交于点P,求证:∠ACD=∠APB;(3)在(2)的条件下,如图3,连接BD,E为⊙O上一点,连接DE交BC于点Q、交AB于点N,连接OE,BF为⊙O的弦,BF⊥OE于点R交DE于点G,若∠ACD﹣∠ABD =2∠BDN,AC=5,BN=3,tan∠ABC=,求BF的长.27.(10分)如图,在平面直角坐标系中,O为坐标原点,抛物线y=ax2+2xa+c经过A(﹣4,0),B(0,4)两点,与x轴交于另一点C,直线y=x+5与x轴交于点D,与y轴交于点E.(1)求抛物线的解析式;(2)点P是第二象限抛物线上的一个动点,连接EP,过点E作EP的垂线l,在l上截取线段EF,使EF=EP,且点F在第一象限,过点F作FM⊥x轴于点M,设点P的横坐标为t,线段FM的长度为d,求d与t之间的函数关系式(不要求写出自变量t的取值范围);(3)在(2)的条件下,过点E作EH⊥ED交MF的延长线于点H,连接DH,点G为DH的中点,当直线PG经过AC的中点Q时,求点F的坐标.2016年黑龙江省哈尔滨市中考数学试卷参考答案与试题解析一、选择题(每小题3分,共计30分)1.(3分)﹣6的绝对值是()A.﹣6B.6C.D.﹣【分析】根据负数的绝对值是它的相反数,可得答案.【解答】解:﹣6的绝对值是6.故选:B.【点评】本题主要考查绝对值的定义,规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.(3分)下列运算正确的是()A.a2•a3=a6B.(a2)3=a5C.(﹣2a2b)3=﹣8a6b3D.(2a+1)2=4a2+2a+1【分析】分别利用幂的乘方运算法则以及合并同类项法则以及完全平方公式、同底数幂的乘法运算法则、积的乘方运算法则分别化简求出答案.【解答】解:A、a2•a3=a5,故此选项错误;B、(a2)3=a6,故此选项错误;C、(﹣2a2b)3=﹣8a6b3,正确;D、(2a+1)2=4a2+4a+1,故此选项错误;故选:C.【点评】此题主要考查了幂的乘方运算以及合并同类项以及完全平方公式、同底数幂的乘法运算、积的乘方运算等知识,正确掌握相关运算法则是解题关键.3.(3分)下列图形中既是轴对称图形,又是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形,故此选项错误;B、是轴对称图形,又是中心对称图形,故此选项正确;C、不是轴对称图形,是中心对称图形,故此选项错误;D、是轴对称图形,不是中心对称图形,故此选项错误;故选:B.【点评】此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.4.(3分)点(2,﹣4)在反比例函数y=的图象上,则下列各点在此函数图象上的是()A.(2,4)B.(﹣1,﹣8)C.(﹣2,﹣4)D.(4,﹣2)【分析】由点(2,﹣4)在反比例函数图象上结合反比例函数图象上点的坐标特征,即可求出k值,再去验证四个选项中横纵坐标之积是否为k值,由此即可得出结论.【解答】解:∵点(2,﹣4)在反比例函数y=的图象上,∴k=2×(﹣4)=﹣8.∵A中2×4=8;B中﹣1×(﹣8)=8;C中﹣2×(﹣4)=8;D中4×(﹣2)=﹣8,∴点(4,﹣2)在反比例函数y=的图象上.故选:D.【点评】本题考查了反比例函数图象上点的坐标特征,解题的关键是求出反比例系数k.本题属于基础题,难度不大,解决该题型题目时,结合点的坐标利用反比例函数图象上点的坐标特征求出k值是关键.5.(3分)五个大小相同的正方体搭成的几何体如图所示,其主视图是()A.B.C.D.【分析】根据从正面看得到的图形是主视图,可得答案.【解答】解:从正面看第一层是三个小正方形,第二层右边是两个小正方形,故选:C.【点评】本题考查了简单组合体的三视图,从正面看得到的图形是主视图.6.(3分)不等式组的解集是()A.x≥2B.﹣1<x≤2C.x≤2D.﹣1<x≤1【分析】分别求出每一个不等式的解集,根据口诀:同大取大确定不等式组的解集.【解答】解:解不等式x+3>2,得:x>﹣1,解不等式1﹣2x≤﹣3,得:x≥2,∴不等式组的解集为:x≥2,故选:A.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.7.(3分)某车间有26名工人,每人每天可以生产800个螺钉或1000个螺母,1个螺钉需要配2个螺母,为使每天生产的螺钉和螺母刚好配套.设安排x名工人生产螺钉,则下面所列方程正确的是()A.2×1000(26﹣x)=800x B.1000(13﹣x)=800xC.1000(26﹣x)=2×800x D.1000(26﹣x)=800x【分析】题目已经设出安排x名工人生产螺钉,则(26﹣x)人生产螺母,由一个螺钉配两个螺母可知螺母的个数是螺钉个数的2倍从而得出等量关系,就可以列出方程.【解答】解:设安排x名工人生产螺钉,则(26﹣x)人生产螺母,由题意得1000(26﹣x)=2×800x,故C答案正确,故选:C.【点评】本题是一道列一元一次方程解的应用题,考查了列方程解应用题的步骤及掌握解应用题的关键是建立等量关系.8.(3分)如图,一艘轮船位于灯塔P的北偏东60°方向,与灯塔P的距离为30海里的A 处,轮船沿正南方向航行一段时间后,到达位于灯塔P的南偏东30°方向上的B处,则此时轮船所在位置B处与灯塔P之间的距离为()A.60海里B.45海里C.20海里D.30海里【分析】根据题意得出:∠B=30°,AP=30海里,∠APB=90°,再利用勾股定理得出BP的长,求出答案.【解答】解:由题意可得:∠B=30°,AP=30海里,∠APB=90°,故AB=2AP=60(海里),则此时轮船所在位置B处与灯塔P之间的距离为:BP==30(海里)故选:D.【点评】此题主要考查了勾股定理的应用以及方向角,正确应用勾股定理是解题关键.9.(3分)如图,在△ABC中,D、E分别为AB、AC边上的点,DE∥BC,BE与CD相交于点F,则下列结论一定正确的是()A.=B.C.D.【分析】根据平行线分线段成比例定理与相似三角形的对应边成比例,即可求得答案.【解答】解;A、∵DE∥BC,∴,故正确;B、∵DE∥BC,∴△DEF∽△CBF,∴,故错误;C、∵DE∥BC,∴,故错误;D、∵DE∥BC,∴△DEF∽△CBF,∴,故错误;故选:A.【点评】此题考查了相似三角形的判定与性质以及平行线分线段成比例定理.注意掌握各线段的对应关系是解此题的关键.10.(3分)明君社区有一块空地需要绿化,某绿化组承担了此项任务,绿化组工作一段时间后,提高了工作效率.该绿化组完成的绿化面积S(单位:m2)与工作时间t(单位:h)之间的函数关系如图所示,则该绿化组提高工作效率前每小时完成的绿化面积是()A.300m2B.150m2C.330m2D.450m2【分析】根据待定系数法可求直线AB的解析式,再根据函数上点的坐标特征得出当x=2时,y的值,再根据工作效率=工作总量÷工作时间,列出算式求出该绿化组提高工作效率前每小时完成的绿化面积.【解答】解:如图,设直线AB的解析式为y=kx+b,则,解得.故直线AB的解析式为y=450x﹣600,当x=2时,y=450×2﹣600=300,300÷2=150(m2).答:该绿化组提高工作效率前每小时完成的绿化面积是150m2.故选:B.【点评】考查了一次函数的应用和函数的图象,关键是根据待定系数法求出该绿化组提高工作效率后的函数解析式,同时考查了工作效率=工作总量÷工作时间的知识点.二、填空题(每小题3分,共计30分)11.(3分)将5700000用科学记数法表示为 5.7×106.【分析】科学记数法的表示形式为a×10n的形式.其中1≤|a|<10,n为整数,确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:5700000=5.7×106.故答案为:5.7×106.【点评】此题考查科学记数法的表示方法,表示时关键要正确确定a的值以及n的值.12.(3分)函数y=中,自变量x的取值范围是x≠.【分析】根据分母不为零是分式有意义的条件,可得答案.【解答】解:由题意,得2x﹣1≠0,解得x≠,故答案为:x≠.【点评】本题考查了函数自变量的取值范围,利用分母不为零得出不等式是解题关键.13.(3分)计算2﹣的结果是﹣2.【分析】先将各个二次根式化成最简二次根式,再把同类二次根式进行合并求解即可.【解答】解:原式=2×﹣3=﹣3=﹣2,故答案为:﹣2.【点评】本题考查了二次根式的加减法,解答本题的关键在于掌握二次根式的化简与同类二次根式合并.14.(3分)把多项式ax2+2a2x+a3分解因式的结果是a(x+a)2.【分析】首先提取公因式a,然后将二次三项式利用完全平方公式进行分解即可.【解答】解:ax2+2a2x+a3=a(x2+2ax+a2)=a(x+a)2,故答案为:a(x+a)2【点评】本题考查了因式分解的知识,解题的关键是能够首先确定多项式的公因式,难度不大.15.(3分)一个扇形的圆心角为120°,面积为12πcm2,则此扇形的半径为6cm.【分析】根据扇形的面积公式S=即可求得半径.【解答】解:设该扇形的半径为R,则=12π,解得R=6.即该扇形的半径为6cm.故答案是:6.【点评】本题考查了扇形面积的计算.正确理解公式是关键.16.(3分)二次函数y=2(x﹣3)2﹣4的最小值为﹣4.【分析】题中所给的解析式为顶点式,可直接得到顶点坐标,从而得出解答.【解答】解:二次函数y=2(x﹣3)2﹣4的开口向上,顶点坐标为(3,﹣4),所以最小值为﹣4.故答案为:﹣4.【点评】本题考查二次函数的基本性质,解题的关键是正确掌握二次函数的顶点式,若题目给出是一般式则需进行配方化为顶点式或者直接运用顶点公式.17.(3分)在等腰直角三角形ABC中,∠ACB=90°,AC=3,点P为边BC的三等分点,连接AP,则AP的长为或.【分析】①如图1根据已知条件得到PB=BC=1,根据勾股定理即可得到结论;②如图2,根据已知条件得到PC=BC=1,根据勾股定理即可得到结论.【解答】解:①如图1,∵∠ACB=90°,AC=BC=3,∵PB=BC=1,∴CP=2,∴AP==,②如图2,∵∠ACB=90°,AC=BC=3,∵PC=BC=1,∴AP==,综上所述:AP的长为或,故答案为:或.【点评】本题考查了等腰直角三角形的性质,勾股定理,熟练掌握等腰直角三角形的性质是解题的关键.18.(3分)如图,AB为⊙O的直径,直线l与⊙O相切于点C,AD⊥l,垂足为D,AD交⊙O于点E,连接OC、BE.若AE=6,OA=5,则线段DC的长为4.【分析】OC交BE于F,如图,有圆周角定理得到∠AEB=90°,加上AD⊥l,则可判断BE∥CD,再利用切线的性质得OC⊥CD,则OC⊥BE,原式可判断四边形CDEF为矩形,所以CD=EF,接着利用勾股定理计算出BE,然后利用垂径定理得到EF的长,从而得到CD的长.【解答】解:OC交BE于F,如图,∵AB为⊙O的直径,∴∠AEB=90°,∵AD⊥l,∴BE∥CD,∵CD为切线,∴OC⊥CD,∴OC⊥BE,∴四边形CDEF为矩形,∴CD=EF,在Rt△ABE中,BE===8,∵OF⊥BE,∴BF=EF=4,∴CD=4.故答案为4.【点评】本题考查了切线的性质:圆的切线垂直于经过切点的半径.解决本题的关键是证明四边形CDEF为矩形.19.(3分)一个不透明的袋子中装有黑、白小球各两个,这些小球除颜色外无其他差别,从袋子中随机摸出一个小球后,放回并摇匀,再随机摸出一个小球,则两次摸出的小球都是白球的概率为.【分析】依据题意先用列表法或画树状图法分析所有等可能的出现结果,然后根据概率公式求出该事件的概率即可.【解答】解:列表得,黑1黑2白1白2黑1黑1黑1黑1黑2黑1白1黑1白2黑2黑2黑1黑2黑2黑2白1黑2白2白1白1黑1白1黑2白1白1白1白2白2白2黑1白2黑2白2白1白2白2∵由表格可知,不放回的摸取2次共有16种等可能结果,其中两次摸出的小球都是白球有4种结果,∴两次摸出的小球都是白球的概率为:=,故答案为:.【点评】本题考查概率的概念和求法,用树状图或表格表达事件出现的可能性是求解概率的常用方法.用到的知识点为:概率=所求情况数与总情况数之比.20.(3分)如图,在菱形ABCD 中,∠BAD =120°,点E 、F 分别在边AB 、BC 上,△BEF 与△GEF 关于直线EF 对称,点B 的对称点是点G ,且点G 在边AD 上.若EG ⊥AC ,AB =6,则FG 的长为3.【分析】首先证明△ABC ,△ADC 都是等边三角形,再证明FG 是菱形的高,根据2•S △ABC =BC •FG即可解决问题.【解答】解:∵四边形ABCD 是菱形,∠BAD =120°,∴AB =BC =CD =AD ,∠CAB =∠CAD =60°,∴△ABC ,△ACD 是等边三角形,∵EG ⊥AC ,∴∠AEG =∠AGE =30°,∵∠B =∠EGF =60°,∴∠AGF =90°,∴FG⊥BC,=BC•FG,∴2•S△ABC∴2××(6)2=6•FG,∴FG=3.故答案为3.【点评】本题考查菱形的性质、等边三角形的判定和性质、翻折变换、菱形的面积等知识,记住菱形的面积=底×高=对角线乘积的一半,属于中考常考题型.三、解答题(其中21-22题各7分,23-24题各8分,25-27题各10分,共计60分)21.(7分)先化简,再求代数式(﹣)÷的值,其中a=2sin60°+tan45°.【分析】先算括号里面的,再算除法,最后把a的值代入进行计算即可.【解答】解:原式=[﹣]•(a+1)=•(a+1)=•(a+1)=•(a+1)=,当a=2sin60°+tan45°=2×+1=+1时,原式==.【点评】本题考查的是分式的化简求值,分式求值题中比较多的题型主要有三种:转化已知条件后整体代入求值;转化所求问题后将条件整体代入求值;既要转化条件,也要转化问题,然后再代入求值.22.(7分)图1、图2是两张形状和大小完全相同的方格纸,方格纸中每个小正方形的边长均为1,线段AC的两个端点均在小正方形的顶点上.(1)如图1,点P在小正方形的顶点上,在图1中作出点P关于直线AC的对称点Q,连接AQ、QC、CP、PA,并直接写出四边形AQCP的周长;(2)在图2中画出一个以线段AC为对角线、面积为6的矩形ABCD,且点B和点D均在小正方形的顶点上.【分析】(1)直接利用网格结合勾股定理得出符合题意的答案;(2)直接利用网格结合矩形的性质以及勾股定理得出答案.【解答】解:(1)如图1所示:四边形AQCP即为所求,它的周长为:4×=4;(2)如图2所示:四边形ABCD即为所求.【点评】此题主要考查了轴对称变换以及矩形的性质、勾股定理等知识,正确应用勾股定理是解题关键.23.(8分)海静中学开展以“我最喜爱的职业”为主题的调查活动,围绕“在演员、教师、医生、律师、公务员共五类职业中,你最喜爱哪一类?(必选且只选一类)”的问题,在全校范围内随机抽取部分学生进行问卷调查,将调查结果整理后绘制成如图所示的不完整的统计图,请你根据图中提供的信息回答下列问题:(1)本次调查共抽取了多少名学生?(2)求在被调查的学生中,最喜爱教师职业的人数,并补全条形统计图;(3)若海静中学共有1500名学生,请你估计该中学最喜爱律师职业的学生有多少名?【分析】(1)用条形图中演员的数量结合扇形图中演员的百分比可以求出总调查学生数;(2)用总调查数减去其他几个职业类别就可以得到最喜爱教师职业的人数;(3)利用调查学生中最喜爱律师职业的学生百分比可求出该中学中的相应人数.【解答】解:(1)12÷20%=60,答:共调查了60名学生.(2)60﹣12﹣9﹣6﹣24=9,答:最喜爱的教师职业人数为9人.如图所示:(3)×1500=150(名)答:该中学最喜爱律师职业的学生有150名.【点评】本题考查的是扇形统计图和条形统计图,解题的关键是读懂统计图,从统计图中得到必要的信息.24.(8分)已知:如图,在正方形ABCD中,点E在边CD上,AQ⊥BE于点Q,DP⊥AQ 于点P.(1)求证:AP=BQ;(2)在不添加任何辅助线的情况下,请直接写出图中四对线段,使每对中较长线段与较短线段长度的差等于PQ的长.【分析】(1)根据正方形的性质得出AD=BA,∠BAQ=∠ADP,再根据已知条件得到∠AQB=∠DPA,判定△AQB≌△DPA并得出结论;(2)根据AQ﹣AP=PQ和全等三角形的对应边相等进行判断分析.【解答】解:(1)∵正方形ABCD∴AD=BA,∠BAD=90°,即∠BAQ+∠DAP=90°∵DP⊥AQ∴∠ADP+∠DAP=90°∴∠BAQ=∠ADP∵AQ⊥BE于点Q,DP⊥AQ于点P∴∠AQB=∠DPA=90°∴△AQB≌△DPA(AAS)∴AP=BQ(2)①AQ﹣AP=PQ②AQ﹣BQ=PQ③DP﹣AP=PQ④DP﹣BQ=PQ【点评】本题主要考查了正方形以及全等三角形,解决问题的关键是掌握:正方形的四条边相等,四个角都是直角.解题时需要运用:有两角和其中一角的对边对应相等的两个三角形全等,以及全等三角形的对应边相等.25.(10分)早晨,小明步行到离家900米的学校去上学,到学校时发现眼镜忘在家中,于是他立即按原路步行回家,拿到眼镜后立即按原路骑自行车返回学校.已知小明步行从学校到家所用的时间比他骑自行车从家到学校所用的时间多10分钟,小明骑自行车速度是步行速度的3倍.(1)求小明步行速度(单位:米/分)是多少;(2)下午放学后,小明骑自行车回到家,然后步行去图书馆,如果小明骑自行车和步行的速度不变,小明步行从家到图书馆的时间不超过骑自行车从学校到家时间的2倍,那么小明家与图书馆之间的路程最多是多少米?【分析】(1)设小明步行的速度是x米/分,根据题意可得等量关系:小明步行回家的时间=骑车返回时间+10分钟,根据等量关系列出方程即可;(2)根据(1)中计算的速度列出不等式解答即可.【解答】解:(1)设小明步行的速度是x米/分,由题意得:,解得:x=60,经检验:x=60是原分式方程的解,答:小明步行的速度是60米/分;(2)设小明家与图书馆之间的路程是y米,根据题意可得:,解得:y≤600,答:小明家与图书馆之间的路程最多是600米.【点评】此题主要考查了分式方程的应用,关键是正确理解题意,找出题目中的等量关系,列出方程.26.(10分)已知:△ABC内接于⊙O,D是上一点,OD⊥BC,垂足为H.(1)如图1,当圆心O在AB边上时,求证:AC=2OH;(2)如图2,当圆心O在△ABC外部时,连接AD、CD,AD与BC交于点P,求证:∠ACD=∠APB;(3)在(2)的条件下,如图3,连接BD,E为⊙O上一点,连接DE交BC于点Q、交AB于点N,连接OE,BF为⊙O的弦,BF⊥OE于点R交DE于点G,若∠ACD﹣∠ABD =2∠BDN,AC=5,BN=3,tan∠ABC=,求BF的长.【分析】(1)OD⊥BC可知点H是BC的中点,又中位线的性质可得AC=2OH;(2)由垂径定理可知:,所以∠BAD=∠CAD,由因为∠ABC=∠ADC,所以∠ACD=∠APB;(3)由∠ACD﹣∠ABD=2∠BDN可知∠AND=90°,由tan∠ABC=可知NQ和BQ 的长度,再由BF⊥OE和OD⊥BC可知∠GBN=∠ABC,所以BG=BQ,连接AO并延长交⊙O于点I,连接IC后利用圆周角定理可求得IC和AI的长度,设QH=x,利用勾股定理可求出QH和HD的长度,利用垂径定理可求得ED的长度,最后利用tan∠OED =即可求得RG的长度,最后由垂径定理可求得BF的长度.【解答】解:(1)∵OD⊥BC,∴由垂径定理可知:点H是BC的中点,∵点O是AB的中点,∴OH是△ABC的中位线,∴AC=2OH;(2)∵OD⊥BC,∴由垂径定理可知:,∴∠BAD=∠CAD,∵,∴∠ABC=∠ADC,∴180°﹣∠BAD﹣∠ABC=180°﹣∠CAD﹣∠ADC,∴∠ACD=∠APB,(3)连接AO延长交于⊙O于点I,连接IC,AB与OD相交于点M,∵∠ACD﹣∠ABD=2∠BDN,∴∠ACD﹣∠BDN=∠ABD+∠BDN,∵∠ABD+∠BDN=∠AND,∴∠ACD﹣∠BDN=∠AND,∵∠ACD+∠ABD=180°,∴∠ABD+∠BDN=180°﹣∠AND,∴∠AND=180°﹣∠AND,∴∠AND=90°,∵tan∠ABC=,BN=3,∴NQ=,∴由勾股定理可求得:BQ=,∵∠BNQ=∠QHD=90°,∴∠ABC=∠QDH,∵OE=OD,∴∠OED=∠QDH,∵∠ERG=90°,∴∠OED=∠GBN,∴∠GBN=∠ABC,∵AB⊥ED,∴BG=BQ=,GN=NQ=,∵AI是⊙O直径,∴∠ACI=90°,∵tan∠AIC=tan∠ABC=,∴=,∴IC=10,∴由勾股定理可求得:AI=25,连接OB,设QH=x,∵tan∠ABC=tan∠ODE=,∴,∴HD=2x,∴OH=OD﹣HD=﹣2x,BH=BQ+QH=+x,由勾股定理可得:OB2=BH2+OH2,∴()2=(+x)2+(﹣2x)2,解得:x=或x=,当QH=时,∴QD=QH=,∴ND=QD+NQ=6,∴MN=3,MD=15∵MD>,∴QH=不符合题意,舍去,当QH=时,∴QD=QH=∴ND=NQ+QD=4,由垂径定理可求得:ED=10,∴GD=GN+ND=∴EG=ED﹣GD=,∵tan∠OED=,∴,∴EG=RG,∴RG=,∴BR=RG+BG=12∴由垂径定理可知:BF=2BR=24.【点评】本题考查圆的综合问题,涉及圆周角定理,中位线的性质,锐角三角函数,勾股定理等知识,综合性较强,解答本题需要我们熟练各部分的内容,对学生的综合能力要求较高,一定要注意将所学知识贯穿起来.27.(10分)如图,在平面直角坐标系中,O为坐标原点,抛物线y=ax2+2xa+c经过A(﹣4,0),B(0,4)两点,与x轴交于另一点C,直线y=x+5与x轴交于点D,与y轴交于点E.(1)求抛物线的解析式;(2)点P是第二象限抛物线上的一个动点,连接EP,过点E作EP的垂线l,在l上截取线段EF,使EF=EP,且点F在第一象限,过点F作FM⊥x轴于点M,设点P的横坐标为t,线段FM的长度为d,求d与t之间的函数关系式(不要求写出自变量t的取值范围);(3)在(2)的条件下,过点E作EH⊥ED交MF的延长线于点H,连接DH,点G为DH的中点,当直线PG经过AC的中点Q时,求点F的坐标.【分析】(1)利用待定系数法求二次函数的解析式;(2)如图1,作辅助线构建两个直角三角形,利用斜边PE=EF和两角相等证两直角三角形全等,得PA′=EB′,则d=FM=OE﹣EB′代入列式可得结论,但要注意PA′=﹣t;(3)如图2,根据直线EH的解析式表示出点F的坐标和H的坐标,发现点P和点H 的纵坐标相等,则PH与x轴平行,证明△PGH≌△QGD,得PH=DQ=4,列式可得t 的值,求出t的值并取舍,计算出点F的坐标.也可以利用线段中点公式求出结论.【解答】解:(1)把A(﹣4,0),B(0,4)代入y=ax2+2xa+c得,解得,所以抛物线解析式为y=﹣x2﹣x+4;(2)如图1,分别过P、F向y轴作垂线,垂足分别为A′、B′,过P作PN⊥x轴,垂足为N,由直线DE的解析式为:y=x+5,则E(0,5),∴OE=5,∵∠PEO+∠OEF=90°,∠PEO+∠EPA′=90°,∴∠EPA′=∠OEF,∵PE=EF,∠EA′P=∠EB′F=90°,∴△PEA′≌△EFB′,∴PA′=EB′=﹣t,则d=FM=OB′=OE﹣EB′=5﹣(﹣t)=5+t;(3)如图2,由直线DE的解析式为:y=x+5,∵EH⊥ED,∴直线EH的解析式为:y=﹣x+5,∴FB′=A′E=5﹣(﹣t2﹣t+4)=t2+t+1,∴F(t2+t+1,5+t),∴点H的横坐标为:t2+t+1,y=﹣t2﹣t﹣1+5=﹣t2﹣t+4,∴H(t2+t+1,﹣t2﹣t+4),连接PH交y轴于A′,。
【真卷】2016年黑龙江省哈尔滨市中考全新体验数学试卷及解析PDF(五)
一、选择题(每小题 3 分,共 30 分) 1. (3 分)下列各实数中,是有理数的是( A.π B. C. D.0. ) =±3 ) )
2. (3 分)下列运算正确的是(
A.a•a2=a3 B.3a+2a2=5a2 C.2﹣3=﹣8 D.
3. (3 分)下列图形中,既是轴对称图形又是中心对称图形的个数有(
A.10° B.15° C.20° D.25° 10. (3 分)小强由甲地匀速步行到乙地后原路返回,小亮由甲地匀速步行经乙 地到丙地后原路返回,两人同时出发,他们离乙地的路程 S(km)与步行的时间 t(h)间的函数关系如图所示,则下列说法中正确的个数有( ①甲、乙两地之间的路程为 8km ②乙、丙两地之间的路程为 2km ③小亮的平均速度为 10 千米/时 ④小强的平均速度为 4km/时. )
A.
=
B.
=
C.
=
D.
=
8. (3 分)某商店购进甲、乙两种商品共 160 件,甲每件进价 15 元,售价 20 元; 乙每件进价为 35 元,售价 45 元;售完这批商品利润为 1100 元,则购进甲商品 x 件满足方程( )
A.30x+15(160﹣x)=1100 B.5(160﹣x)+10x=1100 C.20x+25(160﹣x)=1100 D.5x+10(160﹣x)=1100 9. (3 分)如图,在△ABC 中,∠ABC=90°,∠A=30°,将△ABC 绕点 B 顺时针旋 转得到△A′BC′,连结 CC′,若点 C 在边 A′B 上,则∠A′C′C 的度数为( )
24. (8 分)如图所示,△ABC 中,D 是 BC 边上一点,E 是 AD 的中点,过点 A 作 BC 的平行线交 CE 的延长线于 F,且 AF=BD,连接 BF. (1)求证:D 是 BC 的中点; (2)若 AB=AC,试判断四边形 AFBD 的形状,并证明你的结论.
【真卷】2016年黑龙江省哈尔滨市中考全新体验数学试卷及解析PDF(八)
2016年黑龙江省哈尔滨市中考全新体验数学试卷(八)一、选择题(每题3分,共30分)1.(3分)下列实数中,绝对值最小的是()A.2 B.﹣3 C.0 D.﹣12.(3分)下列运算中,正确的是()A.x3•x3=x6B.3x2+2x3=5x5C.(x2)3=x5D.(x+y2)2=x2+y43.(3分)下列图形中,是轴对称图形但不是中心对称图形的是()A.B.C.D.4.(3分)下列函数中,图象不经过点(2,1)的是()A.y=﹣x2+5 B.y= C.y=x D.y=﹣2x+35.(3分)由五个同样大小的立方体组成如图的几何体,则关于此几何体三种视图叙述正确的是()A.左视图与俯视图相同B.左视图与主视图相同C.主视图与俯视图相同D.三种视图都相同6.(3分)在△ABC中,∠B=90°,∠A=20°,BC=5,则AC的边的长为()A.B.C.D.5tan20°7.(3分)如图,直线a∥b∥c,直线m、n分别交直线a、b、c于点A、B、C、D、E、F,若AB=2,CB=DE=3,则线段EF的长为()A.B.4 C.D.58.(3分)企业退休职工李师傅2013年月退休金为1500元,2015年达到2160元,设李师傅的月退休金年平均增长率为x,则可列方程为()A.2160(1﹣x)2=1500B.1500+1500(1+x)+1500(1+x)2=2160C.1500(1﹣x)2=2160D.1500(1+x)2=21609.(3分)如图,在正方形ABCD外侧作等边三角形CDE,AE、BD交于点F,则∠AFB的度数为()A.45°B.55°C.60°D.75°10.(3分)A、B两地路程为45千米,图中折线表示骑车人离A地的路程y与时间x的函数关系,一辆客车10:30从A地出发,沿与骑车人相同的路线以45千米/时的速度往返于A、B两地之间(往返中不停留),以下结论正确的个数有()①骑车人12点到达B地②客车11:15追上骑车人③骑车人平均速度为15千米/时④客车返回与骑车人相遇后,骑车人还需7.5分钟到达B地.A.1个 B.2个 C.3个 D.4个二、填空题(每题3分,共30分)11.(3分)钓鱼岛面积约4400000平方米,将数据4400000用科学记数法可表示为.12.(3分)在函数y=中,自变量x的取值范围是.13.(3分)计算:×2=.14.(3分)分解因式:4x2y﹣16y=.15.(3分)不等式组的解集是.16.(3分)一个扇形的弧长是20πcm,面积是240πcm2,则这个扇形的圆心角是度.17.(3分)袋子中装有4个黑球、2个白球,这些球除颜色外无其他差别,在看不到球的情况下,随机从袋子中摸出1个球,则摸到黑球的概率是.18.(3分)某商店把一种商品按标价的九折出售,获得的利润是进价的20%,该商品的标价为每件288元,则该商品的进价为每件元.19.(3分)等腰三角形的一个内角为70°,它一腰上的高与底边所夹的度数为.20.(3分)如图,四边形ABCD为矩形,点E在AD边上,DE=4AE,EF∥AC,交CD边于点F,连接BE,若∠DEF=2∠ABE,BE=2,则线段EF的长为.三、解答题21.(7分)先化简,再求代数式÷(x﹣)的值,其中x=2sin60°+tan45°.22.(7分)图1、图2均为10×7的正方形格纸,方格纸中每个小正方形的边长都是1,小正方形的顶点叫格点,请画出符合要求的图形,并计算.(1)在图1中画出面积为12的▱ABCD,且C、D均在格点上;(2)在图2中画▱ABEF,较短的对角线长为,且点E、F均在格点上;(3)直接写出图2中▱ABEF的周长.23.(8分)为迎接2016年中考,某中学对全校九年级学生进行了一次数学模拟考试,并随机抽取了部分学生的测试成绩作为样本进行分析,绘制成如下两幅不完整的统计图,请你根据统计图中提供的信息解答下列问题:(1)这次调査中,一共抽取了多少名学生?(2)求样本中表示成绩为“中”的人数,并将条形统计图补充完整;(3)该学校九年级共有1000人参加了这次数学考试,估计该校九年级共有多少名学生的数学成绩可以达到优秀?24.(8分)如图,点B、E、F、C在同一直线上,点A、D位于BC同侧,AB=DC,BE=CF,∠B=∠C.(1)求证:OA=OD;(2)连接AE、DF、AD,请直接写出图中的全等三角形.25.(10分)某商店欲购进A、B两种商品,已知购进A种商品5件和B种商品4件共需300元;若购进A种商品6件和B种商品8件共需440元;(1)求A、B两种商品每件的进价分别为多少元?(2)若该商店每销售1件A种商品可获利8元,每销售1件B种商品可获利6元,且商店将购进A、B共50件的商品全部售出后,要获得的利润不低于348元,问A种商品至少购进多少件?26.(10分)四边形ABCD内接于⊙O,AC为其中一条对角线,且S△ABC:S△ADC=AB:AD.(1)如图1,求证:BC=CD;(2)如图2:连接OC,交对角线BD于点E,若∠BAD=60°,求证:OE=EC;(3)如图3,在(2)的条件下,过点D作DF⊥AC于点F,连接FO并延长FO,交AB边于点G,若FG⊥AB,OC=,求△OFC的面积.27.(10分)在平面直角坐标系中,O为坐标原点,直线y=2ax+6与x轴的正半轴交于点B,与y轴交于点C,抛物线y=ax2﹣4ax+b经过B、C两点,与x轴交于另一点A.(1)如图1,求a,b的值;(2)如图2,点D在第一象限内的抛物线上,过点D作DE⊥BC于点E,作DG ⊥x轴,交线段BC于点F,垂足为点G,若BE=2EF,求点D的坐标;(3)如图3,在(2)的条件下,点P在第一象限的抛物线上,其横坐标为2t,PQ⊥x轴于点Q,R为OQ的中点,点H在线段DF上,DH=t,点M在RH的延长线上,∠RMB=45°,射线BM交射线FD于点N,当DN=2t时,求点P的坐标.2016年黑龙江省哈尔滨市中考全新体验数学试卷(八)参考答案与试题解析一、选择题(每题3分,共30分)1.(3分)下列实数中,绝对值最小的是()A.2 B.﹣3 C.0 D.﹣1【解答】解:∵|2|=2,|﹣3|=3,|0|=0,|﹣1|=1,∴绝对值最小的数是0.故选:C.2.(3分)下列运算中,正确的是()A.x3•x3=x6B.3x2+2x3=5x5C.(x2)3=x5D.(x+y2)2=x2+y4【解答】解:A、x3•x3=x6,此选项正确;B、3x2+2x3=3x2+2x3,此选项错误;C、(x2)3=x6,此选项错误;D、(x+y2)2=x2+2xy4+y4,此选项错误.故选A.3.(3分)下列图形中,是轴对称图形但不是中心对称图形的是()A.B.C.D.【解答】解:A、图形是中心对称轴图形,不是轴对称图形,此选项错误;B、图形不是中心对称轴图形,是轴对称图形,此选项正确;C、图形是中心对称轴图形,也是轴对称图形,此选项错误;D、图形不是中心对称轴图形,也不是轴对称图形,此选项错误;故选B.4.(3分)下列函数中,图象不经过点(2,1)的是()A.y=﹣x2+5 B.y= C.y=x D.y=﹣2x+3【解答】解:A、当x=2时,y=﹣4+1=1,则点(2,1)在抛物线y=﹣x2+5上,所以A选项错误;B、当x=2时,y==1,则点(2,1)在双曲线y=上,所以B选项错误;C、当x=2时,y=×2=1,则点(2,1)在直线y=x上,所以C选项错误;D、当x=2时,y=﹣4+3=﹣1,则点(2,1)不在直线y=﹣2x+3上,所以D选项正确.故选D.5.(3分)由五个同样大小的立方体组成如图的几何体,则关于此几何体三种视图叙述正确的是()A.左视图与俯视图相同B.左视图与主视图相同C.主视图与俯视图相同D.三种视图都相同【解答】解:如图所示几何体的左视图与主视图都是两列,每列正方形的个数从左往右都是3,1,左视图与主视图相同;俯视图是两列,每列正方形的个数从左往右都是2,1.故选:B.6.(3分)在△ABC中,∠B=90°,∠A=20°,BC=5,则AC的边的长为()A.B.C.D.5tan20°【解答】解:∵△ABC中,∠B=90°,∠A=20°,BC=5,∴sin20°==,∴AC=,故选A.7.(3分)如图,直线a∥b∥c,直线m、n分别交直线a、b、c于点A、B、C、D、E、F,若AB=2,CB=DE=3,则线段EF的长为()A.B.4 C.D.5【解答】解:∵a∥b∥c,∴=,即=,解得,EF=,故选:C.8.(3分)企业退休职工李师傅2013年月退休金为1500元,2015年达到2160元,设李师傅的月退休金年平均增长率为x,则可列方程为()A.2160(1﹣x)2=1500B.1500+1500(1+x)+1500(1+x)2=2160C.1500(1﹣x)2=2160D.1500(1+x)2=2160【解答】解;由题意可得,1500(1+x)2=2160,故选D.9.(3分)如图,在正方形ABCD外侧作等边三角形CDE,AE、BD交于点F,则∠AFB的度数为()A.45°B.55°C.60°D.75°【解答】解:∵四边形ABCD为正方形,△CDE为等边三角形,∴AD=CD=DE,∠ADF=∠ABF=45°,∠ADC=90°,∠CDE=60°,∴∠ADE=150°.∵AD=DE,∴∠DAE=∠DEA=15°,∴∠AFB=∠ADF+∠DAF=45°+15°=60°.故选C.10.(3分)A、B两地路程为45千米,图中折线表示骑车人离A地的路程y与时间x的函数关系,一辆客车10:30从A地出发,沿与骑车人相同的路线以45千米/时的速度往返于A、B两地之间(往返中不停留),以下结论正确的个数有()①骑车人12点到达B地②客车11:15追上骑车人③骑车人平均速度为15千米/时④客车返回与骑车人相遇后,骑车人还需7.5分钟到达B地.A.1个 B.2个 C.3个 D.4个【解答】解:①∵点(12,45)表示骑车人在12时距离A地45千米,而A、B 两地路程为45,∴①骑车人12点到达B地说法正确;②∵11:15客车已经行驶了45分钟=小时,则客车行驶的路程是:45×=33.75(千米),而此时骑车人行驶时间为:11:15﹣9:00=2小时,其行驶路程为:30+15×=33.75(千米),∴客车11:15追上骑车人,即:②说法正确;③∵骑车人整个运动过程所用时间15﹣9=6(小时),行程为45×2=90(千米),∴骑车人的平均速度为:90÷6=15千米/时故:③的说法正确;④∵由题意可知,客车到达B地用1小时,而此时骑车人还未到达,又客车在11:30到达B地,而此时骑车人距离B地45﹣30﹣15×=7.5(千米),设客车返回后t小时与骑车人相遇,则:45t+15t=7.5解之得,t=故:选C二、填空题(每题3分,共30分)11.(3分)钓鱼岛面积约4400000平方米,将数据4400000用科学记数法可表示为 4.4×106.【解答】解:将4400000用科学记数法表示为:4.4×106.故答案为:4.4×106.12.(3分)在函数y=中,自变量x的取值范围是x≠±1.【解答】解:由题意得,x2﹣1≠0,解得x≠±1.故答案为:x≠±1.13.(3分)计算:×2=2.【解答】解:原式=2=2,故答案为:2.14.(3分)分解因式:4x2y﹣16y=4y(x+2)(x﹣2).【解答】解:原式=4y(x2﹣4)=4y(x+2)(x﹣2),故答案为:4y(x+2)(x﹣2).15.(3分)不等式组的解集是x>﹣1.【解答】解:,由①得,x>﹣1,由②得,x>﹣2,所以,不等式组的解集是x>﹣1.故答案为:x>﹣1.16.(3分)一个扇形的弧长是20πcm,面积是240πcm2,则这个扇形的圆心角是150度.【解答】解:扇形的面积公式=lr=240πcm2,解得:r=24cm,又∵l==20πcm,∴n=150°.故答案为:150.17.(3分)袋子中装有4个黑球、2个白球,这些球除颜色外无其他差别,在看不到球的情况下,随机从袋子中摸出1个球,则摸到黑球的概率是.【解答】解:根据题意可得:袋子中4个黑球、2个白球共6个,随机地从这个袋子中摸出一个球,摸到黑球的概率为:=.故答案为:.18.(3分)某商店把一种商品按标价的九折出售,获得的利润是进价的20%,该商品的标价为每件288元,则该商品的进价为每件216元.【解答】解:设该商品的进价是x元,由题意得:(1+20%)x=288×0.9,解得:x=216,即该商品的进价为216元,故答案为:21619.(3分)等腰三角形的一个内角为70°,它一腰上的高与底边所夹的度数为35°或20°.【解答】解:在△ABC中,AB=AC,①当∠A=70°时,则∠ABC=∠C=55°,∵BD⊥AC,∴∠DBC=90°﹣55°=35°;②当∠C=70°时,∵BD⊥AC,∴∠DBC=90°﹣70°=20°;故答案为:35°或20°.20.(3分)如图,四边形ABCD为矩形,点E在AD边上,DE=4AE,EF∥AC,交CD边于点F,连接BE,若∠DEF=2∠ABE,BE=2,则线段EF的长为.【解答】解:如图,过点B作BG⊥EF于点G,延长EF交BC延长线于点H,设AE=x,则DE=4x,AD=BC=5x,∵AB∥CD,EF∥AC,∴四边形AEHC是平行四边形,∴AE=CH=x,∵DE∥CH,∴△DEF∽△CHF,∴===4,即DF=4CF,设CF=a,则DF=4a,又∵∠BGH=∠FCH=90°,∠BHG=∠FHC,∴△BGC∽△FCH,设∠ABE=α,则∠DEF=∠H=2α,∴∠HBG=90°﹣∠H=90°﹣2α,∴∠EBG=90°﹣∠ABE﹣∠HBG=90°﹣α﹣(90°﹣2α)=α=∠ABE,∵∠BAE=∠BGE=90°,BE=BE,∴△ABE≌△GBE,∴AB=BG=5a,∵,即,∴FH=,则FC===,即a=∴AB=5a=x,在Rt△ABE中,由AB2+AE2=BE2得11x2+x2=(2)2,解得:x=1或x=﹣1(舍),则DF=4a=x=,DE=4,∴EF==,故答案为:.三、解答题21.(7分)先化简,再求代数式÷(x﹣)的值,其中x=2sin60°+tan45°.【解答】解:原式=÷=•=,当x=2×+1=+1时,原式=.22.(7分)图1、图2均为10×7的正方形格纸,方格纸中每个小正方形的边长都是1,小正方形的顶点叫格点,请画出符合要求的图形,并计算.(1)在图1中画出面积为12的▱ABCD,且C、D均在格点上;(2)在图2中画▱ABEF,较短的对角线长为,且点E、F均在格点上;(3)直接写出图2中▱ABEF的周长.【解答】解:(1)如图所示:平行四边形ABCD即为所求;(2)如图所示:▱ABEF即为所求;(3)▱ABEF的周长为:5+5++=10+2.23.(8分)为迎接2016年中考,某中学对全校九年级学生进行了一次数学模拟考试,并随机抽取了部分学生的测试成绩作为样本进行分析,绘制成如下两幅不完整的统计图,请你根据统计图中提供的信息解答下列问题:(1)这次调査中,一共抽取了多少名学生?(2)求样本中表示成绩为“中”的人数,并将条形统计图补充完整;(3)该学校九年级共有1000人参加了这次数学考试,估计该校九年级共有多少名学生的数学成绩可以达到优秀?【解答】解:(1)22÷44%=50,即这次调査中,一共抽取了50名学生;(2)50×20%=10,补全的条形统计图如右图所示,(3)1000×=200,即该校九年级共有200名学生的数学成绩可以达到优秀.24.(8分)如图,点B、E、F、C在同一直线上,点A、D位于BC同侧,AB=DC,BE=CF,∠B=∠C.(1)求证:OA=OD;(2)连接AE、DF、AD,请直接写出图中的全等三角形.【解答】证明:(1)∵BE=CF,∴BF=CE,在△ABF和△DCE中,,∴△ABF≌△DCE(SAS),∴∠OEF=∠OFE,AF=DE,∴OE=OF,∴AF﹣OF=DE﹣OE,即OA=OD.(2)解:依照题意画出图形,如图所示.由(1)可知△ABF≌△DCE;在△AOE和△DCF中,,∴△AOE≌△DCF(SAS);在△ABE和△DCF中,,∴△ABE≌△DCF(SAS);在△AEF和△DFE中,,∴△AEF≌△DFE(SAS);在△AED和△DFA中,,∴△AED≌△DFA(SSS).故全等的三角形有:△ABF≌△DCE,△AOE≌△DCF,△ABE≌△DCF,△AEF≌△DFE,△AED≌△DFA.25.(10分)某商店欲购进A、B两种商品,已知购进A种商品5件和B种商品4件共需300元;若购进A种商品6件和B种商品8件共需440元;(1)求A、B两种商品每件的进价分别为多少元?(2)若该商店每销售1件A种商品可获利8元,每销售1件B种商品可获利6元,且商店将购进A、B共50件的商品全部售出后,要获得的利润不低于348元,问A种商品至少购进多少件?【解答】解:(1)设A种进价为x元,B种进价为y元.由题意,得,解得:答:A种进价为40元,B种进价为25元.(2)设购进A种商品a件,则购进B种商品(50﹣a)件.由题意,得8a+6(50﹣a)≥348,解得:a≥24答:至少购进A种商品24件.26.(10分)四边形ABCD内接于⊙O,AC为其中一条对角线,且S△ABC:S△ADC=AB:AD.(1)如图1,求证:BC=CD;(2)如图2:连接OC,交对角线BD于点E,若∠BAD=60°,求证:OE=EC;(3)如图3,在(2)的条件下,过点D作DF⊥AC于点F,连接FO并延长FO,交AB边于点G,若FG⊥AB,OC=,求△OFC的面积.【解答】(1)证明:过C作CK⊥AB于点K,过C作CL⊥AD于点L,∴S△ABC=AB•CK,S△ADC=AD•CL,∵S△ABC :S△ADC=AB:AD.∴CL=CK,∵∠B+∠ADC=180°,∠CDL+∠ADC=180°,∴∠B=∠CDL,∵∠CKB=∠L=90°,在△CKB和△CLD中,∴△CKB≌△CLD(AAS),∴BC=CD.(2)证明:如图2,连接OB、OD,∵BC=CD,∴∠BOC=∠DOC∵OB=OD,∴OE⊥BD,∵∠BAD=60°,∴∠BOC=∠DOC=60°,∴△OBC是等边三角形,∴OB=BC,∴OE=EC;(3)解:如图3,延长DF交AB于点M,连接OB,∵∠BAD=60°,∴∠BAC=∠CAD=30°,∵AF⊥DF,∴∠AFM=∠AFD=90°,∴∠AMD=∠ADM=60°,∴△AMD是等边三角形,设MG=a,则MF=2a,AM=AD=MD=4a,GF=a,∴AG=BG=3a,∴BM=2a∵E、F分别是BD、MD中点,∴EF=a,EF∥AB过B作BN⊥MD,则MN=a,BN=a,∴DN=5a,∵BD=OC,∴BD=3在Rt△BND中,(a)2+(5a)2=(3)2解得a=,∴BG=,EF=,在Rt△OGB中,OG=,∴OF=,∵EF∥AB,∴∠EFO=∠AGF=90°∴S=OF•EF=××=△OEF∵OE=EC,=2 S△OEF=.∴S△OFC27.(10分)在平面直角坐标系中,O为坐标原点,直线y=2ax+6与x轴的正半轴交于点B,与y轴交于点C,抛物线y=ax2﹣4ax+b经过B、C两点,与x轴交于另一点A.(1)如图1,求a,b的值;(2)如图2,点D在第一象限内的抛物线上,过点D作DE⊥BC于点E,作DG ⊥x轴,交线段BC于点F,垂足为点G,若BE=2EF,求点D的坐标;(3)如图3,在(2)的条件下,点P在第一象限的抛物线上,其横坐标为2t,PQ⊥x轴于点Q,R为OQ的中点,点H在线段DF上,DH=t,点M在RH的延长线上,∠RMB=45°,射线BM交射线FD于点N,当DN=2t时,求点P的坐标.【解答】解(1)直线y=2ax+6与x轴的正半轴交于点B,与y轴交于点C∴C(0,6),B(﹣,0)∵抛物线y=ax2﹣4ax+b经过B、C两点∴b=0,a×(﹣)2﹣4a×(﹣)+b=0∴a=﹣(2)由(1)可知抛物线的解析式为y=﹣x2+2x+6,直线BC的解析式为y=﹣x+6设D(m,﹣m2+2m+6),∵DG⊥x轴∴F(m,﹣m+6),∴DF=﹣m2+2m+6﹣(﹣m+6)=﹣m2+3m,FG=﹣m+6∵C(0,6),B(6,0)∴OB=OC=6∴∠OBC=∠OCB=45°∵DG⊥x轴,DE⊥BC∴∠DFE=∠BFG=45°∴DF=EF,BF=FG∵BE=2EF∴BF=EF∴DF=2FG∴﹣m2+3m=2(﹣m+6)∴m=6(舍)或m=4∴D(4,6)(3)如图3.过N作NS⊥BC于点D,设RM与BC相交于点T 点P横坐标为2t,PQ⊥x轴于点Q∴Q(2t,0)∵R是OQ中点,∴R(t,0)∵∠RMB=45°=∠HFT,∠HTF=∠BTM∴180°﹣∠RMB﹣∠BTM=180°﹣∠HFT﹣∠HTF ∴∠MBT=∠RHG∴tan∠MBT=tan∠RHG∴∵NF=DF+DN=4+2t,FG=2∴NS=SF=NF=2+t,BF=2∴BS=2+t+2=4+t∵G(4,0),∴RG=4﹣t∵DG=6,DH=t,∴HG=6﹣t∴,解得t=1此时2t=2,即P点的横坐标为2,代入抛物线y=﹣x2+2x+6的解析式中,得,纵坐标为8,。
黑龙江省哈尔滨市中考数学升学考试全新体验试题(02)(含解析)
哈尔滨市2016年初中升学考试全新体验(02)数学试题卷一、选择题,每小题3分,共30分1.某日的最低气温为﹣2℃,最高气温比最低气温高为6℃,则这一天的最高气温是()A.8℃B.6℃C.4℃D.2℃2.下列运算正确的是()A.a2•a3=a5B.a(1+b)=a+b C.(a3)2=a5D.(ab)2=ab23.下列图案中,既是轴对称图形又是中心对称图形的是()A.B.C.D.4.从2018年起,俄罗斯开始向我国供气,最终达到每年380亿立方米,将38000000000这个数据用科学记数法可表示为()A.3.8×109B.3.8×1010 C.3.8×1011 D.3.8×10125.如图,小明站在自家阳台上A处观测到对面大楼底部C的俯角为α,A处到地面B处的距离AB=35m,则两栋楼之间的距离BC(单位:m)为()A.35tanαB.35sinαC.D.6.某反比例函数的图象经过点(﹣2,3),则该图象一定不经过点()A.(1,6)B.(﹣1,6)C.(2,﹣3)D.(3,﹣2)7.如图,在△ABC中,点D、E分别在BC、AB边上,DF∥AB,交AC边于点H,EF∥BC,交AC边于点G,则下列结论中正确的是()A.B.C.D.8.某商店出售一种商品,若每件10元,则每天可销售50件,售价每降低1元,可多买6件,要使该商品每天的销售额(总售价)为504元,设每件降低x元,则可列方程为()A.(50+x)(10﹣x)=504 B.50(10﹣x)=504C.(10﹣x)(50+6x)=504 D.(10﹣6x)(50+x)=5049.如图,在△ABC纸片中,∠ABC=90°,将△ABC绕点B顺时针旋转90°,得到△A′BC′,连接CC′,若∠ACC′=15°,则∠A′的度数为()A.25° B.30° C.35° D.40°10.甲、乙两人在操场上赛跑,他们赛跑的路程S(m)与时间(min)间的函数关系如图所示,则下列说法中正确的个数有()①甲、乙两人进行1000米赛跑②甲先慢后快,乙先快后慢③比赛到2分钟时,甲、乙两人跑过的路程相等④甲、乙同时到达终点.A.1个B.2个C.3个D.4个二、填空题,每小题3分,共30分11.在函数中,自变量x的取值范围是.12.计算:×= .13.分解因式:2x2y﹣4xy+2y= .14.不等式组的解集是.15.如图所示的几何体由7个大小相同的小正方体紧密摆放而成,且每个小正方体的棱长均为1,则这个几何体主视图的面积为.16.一个学习兴趣小组有4名女生,6名男生,现要从这10名学生中选出一人担任组长,则女生当选组长的概率是.17.某扇形的半径为5cm,圆心角的度数为150°,则此扇形的弧长为cm.18.红星市场某种高端品牌的家用电器,若按标价八折销售该电器1件,则获利润500元,其利润率为20%,现若按同一标价九折销售该电器1件,则获得的纯利润为元.19.在▱ABCD中,∠A=60°,∠ABC的平分线交直线AD于点E,若AB=3,DE=1,则AD的长为.20.如图,在△ABC中,∠ACB=90°,CD为AB边上的中线,AE⊥CD于点E,交BC边于点F,若AF=4,AB=8,则线段EF的长为.三、解答题21.先化简,再求代数式()×的值,其中x=2sin60°﹣2tan45°.22.如图,在13×6的正方形网格中(每个小正方形的边长均为1)有线段AB,点A、B均在正方形的顶点上.(1)将线段AB绕点B顺时针旋转90°得到线段BC,连接AC,画出△ABC;(2)以AB为对角线作平行四边形ABCD,画出平行四边形ADBC;(3)直接写出平行四边形ADBC的周长.23.某校想了解学生每周的课外阅读时间情况,随机调查了部分学生,对学生的课外阅读时间x(单位:小时)进行分组整理,并绘制了如图所示的不完整的频数分布直方图和扇形统计图.请根据图中提供的信息,解答下列问题:(1)本次共调查了多少名学生(2)通过计算补全频数分布直方图;(3)请估计该校3000名学生中每周的课外阅读时间不小于6小时的人数.24.在平行四边形ABCD中,点E在AD边上,连接BE、CE,EB平分∠AEC(1)如图1,判断△BCE的形状,并说明理由;(2)如图2,若∠A=90°,BC=5,AE=1,求线段BE的长.25.某服装店购进一批甲、乙两种款型时尚的T恤衫,其中甲种款型共用7800元,乙种款型共用6400元,甲种款型的件数是乙种款型件数的1.5倍,甲种款型每件的进价比乙种款型每件的进价少30元(1)甲、乙两种款型的T恤衫各购进多少件?(2)若甲种款型T恤衫每件售价比乙种款型T恤衫的售价少40元,且这批T恤衫全部售出后,商店获利不少于7400元,则甲种T恤衫每件售价至少多少元?26.已知AB为⊙O的直径,点C为的中点,BD为弦,CE⊥BD于点E,(1)如图1,求证:CE=DE;(2)如图2,连接OE,求∠OEB的度数;(3)如图3,在(2)条件下,延长CE,交直径AB于点F,延长EO,交⊙O于点G,连接BG,CE=2,EF=3,求△EBG的面积.27.在平面直角坐标系中,O为坐标原点,抛物线y=ax2﹣2ax﹣5交x轴的负半轴于点A,交x轴的正半轴于点B,交y轴的负半轴于点C,且AB=8.(1)如图1,求a的值(2)如图2,点D在第一象限的抛物线上,连接AD,过点D作DM∥y轴,交直线BC于点M,连接AM、BD、AM与BD交于点N,若S△ABN=S△DMN,求点D的坐标及tan∠DAB的值;(3)如图3,在(2)的条件下,点P在第一象限的抛物线上,过点P作AD的垂线,交x 轴于点F,点E在x轴上(点E在点F的左侧),EF=15,点G在直线FP上,连接EP、OG.若EP=OG,∠PEF+∠G=45°,求点P的坐标.哈尔滨市2016年初中升学考试全新体验(02)数学试题卷参考答案与试题解析一、选择题,每小题3分,共30分1.某日的最低气温为﹣2℃,最高气温比最低气温高为6℃,则这一天的最高气温是()A.8℃B.6℃C.4℃D.2℃【考点】有理数的减法.【分析】根据最高温度﹣最低温度=温差,即可解答.【解答】解:﹣2+6=4(℃),故选:C.2.下列运算正确的是()A.a2•a3=a5B.a(1+b)=a+b C.(a3)2=a5D.(ab)2=ab2【考点】单项式乘多项式;同底数幂的乘法;幂的乘方与积的乘方.【分析】根据同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加;单项式与多项式相乘的运算法则:单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加;幂的乘方法则:底数不变,指数相乘;积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘分别进行计算.【解答】解:A、a2•a3=a5,故原题计算正确;B、a(1+b)=a+ab,故原题计算错误;C、(a3)2=a6,故原题计算错误;D、(ab)2=a2b2,故原题计算错误;故选:A.3.下列图案中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、不是轴对称图形,是中心对称图形;B、是轴对称图形,不是中心对称图形;C、不是轴对称图形,也不是中心对称图形;D、是轴对称图形,也是中心对称图形.故选D.4.从2018年起,俄罗斯开始向我国供气,最终达到每年380亿立方米,将38000000000这个数据用科学记数法可表示为()A.3.8×109B.3.8×1010 C.3.8×1011 D.3.8×1012【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于38000000000万有11位,所以可以确定n=11﹣1=10.【解答】解:将38000000000用科学记数法表示为:3.8×1010.故选:B.5.如图,小明站在自家阳台上A处观测到对面大楼底部C的俯角为α,A处到地面B处的距离AB=35m,则两栋楼之间的距离BC(单位:m)为()A.35tanαB.35sinαC.D.【考点】解直角三角形的应用﹣仰角俯角问题.【分析】在RT△ABC中,根据tan∠ACB=即可解决问题.【解答】解:在RT△ABC中,∵∠ABC=90°,AB=35m,∠ACB=α,∴tan∠ACB=,∴BC==(m),故选D.6.某反比例函数的图象经过点(﹣2,3),则该图象一定不经过点()A.(1,6)B.(﹣1,6)C.(2,﹣3)D.(3,﹣2)【考点】反比例函数图象上点的坐标特征.【分析】先根据反比例函数的图象经过点(﹣2,3),求得比例系数k的值,再根据反比例函数图象上的点(x,y)的横纵坐标的积是定值k进行判断.【解答】解:∵反比例函数的图象经过点(﹣2,3),∴k=﹣2×3=﹣6,∴反比例函数图象上的点(x,y)的横纵坐标的积是定值﹣6,即xy=﹣6,∴该图象一定不经过点(1,6).故选(A)7.如图,在△ABC中,点D、E分别在BC、AB边上,DF∥AB,交AC边于点H,EF∥BC,交AC边于点G,则下列结论中正确的是()A.B.C.D.【考点】平行线分线段成比例.【分析】证出四边形BDFE是平行四边形,得出EF=BD,根据平行线分线段成比例定理列出比例式,再分别对每一项进行判断即可.【解答】解:∵DF∥AB,EF∥BC,∴四边形BDFE是平行四边形,,, =,,∴EF=BD,∴,∴选项A正确,选项B、C、D错误;故选:A.8.某商店出售一种商品,若每件10元,则每天可销售50件,售价每降低1元,可多买6件,要使该商品每天的销售额(总售价)为504元,设每件降低x元,则可列方程为()A.(50+x)(10﹣x)=504 B.50(10﹣x)=504C.(10﹣x)(50+6x)=504 D.(10﹣6x)(50+x)=504【考点】由实际问题抽象出一元二次方程.【分析】根据题意可以列出相应的方程,从而可以解答本题.【解答】解:由题意可得,(10﹣x)(50+6x)=504,故选C.9.如图,在△ABC纸片中,∠AB C=90°,将△ABC绕点B顺时针旋转90°,得到△A′BC′,连接CC′,若∠ACC′=15°,则∠A′的度数为()A.25° B.30° C.35° D.40°【考点】旋转的性质.【分析】先证明△CBC′为等腰直角三角形,从而得到∠C′CB=45°,于是可求得∠ACB的度数,从而可得到∠A的度数,然后由旋转的性质可得到∠A′的度数.【解答】解:由旋转的性质可知:BC=BC′,∠A′=∠A.∵∠CBC′=90°,BC=BC′,∴∠B CC′=45°.∵∠ACC′=15°.∴∠ACB=45°+15°=60°.∴∠A=90°﹣60°=30°.∴∠A′=30°.故选:B.10.甲、乙两人在操场上赛跑,他们赛跑的路程S(m)与时间(min)间的函数关系如图所示,则下列说法中正确的个数有()①甲、乙两人进行1000米赛跑②甲先慢后快,乙先快后慢③比赛到2分钟时,甲、乙两人跑过的路程相等④甲、乙同时到达终点.A.1个B.2个C.3个D.4个【考点】函数的图象.【分析】根据给出的函数图象对每个选项进行分析即可.【解答】解:从图象可以看出,甲、乙两人进行1000米赛跑,①说法正确;甲先慢后快,乙先快后慢,②说法正确;比赛到2分钟时,甲跑了500米,乙跑了600米,甲、乙两人跑过的路程不相等,③说法不正确;甲先到达终点,④说法不正确,故选:C.二、填空题,每小题3分,共30分11.在函数中,自变量x的取值范围是x≠﹣2 .【考点】函数自变量的取值范围;分式有意义的条件.【分析】根据分式有意义的条件是分母不为0;分析原函数式可得关系式x+2≠0,解得答案.【解答】解:根据题意得:x+2≠0,解可得:x≠﹣2.12.计算:×= 2.【考点】二次根式的乘除法.【分析】根据二次根式的乘法可以解答本题.【解答】解: ==2,故答案为:2.13.分解因式:2x2y﹣4xy+2y= 2y(x﹣1)2.【考点】提公因式法与公式法的综合运用.【分析】根据提公因式法,可得完全平方公式,根据完全平方公式,可得答案.【解答】解:原式=2y(x2﹣2x+1),=2y(x﹣1)2,故答案为:2y(x﹣1)2.14.不等式组的解集是x<﹣2 .【考点】解一元一次不等式组.【分析】分别求出各不等式的解集,再求出其公共解集即可.【解答】解:,由①得,x<1,由②得,x<﹣2,故不等式组的解集为:x<﹣2.故答案为:x<﹣2.15.如图所示的几何体由7个大小相同的小正方体紧密摆放而成,且每个小正方体的棱长均为1,则这个几何体主视图的面积为 6 .【考点】简单组合体的三视图.【分析】根据已知几何体的形状得出其主视图,进而得出答案.【解答】解:如图所示:几何体主视图为:,则这个几何体主视图的面积为:6.故答案为:6.16.一个学习兴趣小组有4名女生,6名男生,现要从这10名学生中选出一人担任组长,则女生当选组长的概率是.【考点】概率公式.【分析】随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数,据此用女生的人数除以这个学习兴趣小组的总人数,求出女生当选组长的概率是多少即可.【解答】解:女生当选组长的概率是:4÷10=.故答案为:.17.某扇形的半径为5cm,圆心角的度数为150°,则此扇形的弧长为cm.【考点】弧长的计算.【分析】利用弧长公式和扇形的面积公式即可直接求解.【解答】解:弧长是: =cm;故答案为:.18.红星市场某种高端品牌的家用电器,若按标价八折销售该电器1件,则获利润500元,其利润率为20%,现若按同一标价九折销售该电器1件,则获得的纯利润为875 元.【考点】一元一次方程的应用.【分析】设该商品的进价为x元,标价为y元,根据题意可以得到x,y的值;然后计算打九折销售该电器一件所获得的利润.【解答】解:设该商品的标价为x元,由题意得0.8x﹣=500,解得:x=3750.则3750×0.9﹣2500=875(元).故答案是:875.19.在▱ABCD中,∠A=60°,∠ABC的平分线交直线AD于点E,若AB=3,DE=1,则AD的长为4或2 .【考点】平行四边形的性质.【分析】由平行四边形ABCD得到AB=CD,AD=BC,AD∥BC,再和已知BE平分∠ABC,进一步推出∠ABE=∠AEB,即AB=AE,即可求出AE、AD的长,就能求出答案.【解答】解:如图1:∵四边形ABCD是平行四边形,∴AB=CD,AD=BC,AD∥BC,∴∠AEB=∠EBC,∵BE平分∠ABC,∴∠ABE=∠EBC,∴∠ABE=∠AEB,∴AB=AE=3,∴AD=AE+DE=3+1=4;如图2:∵四边形ABCD是平行四边形,∴AB=CD,AD=BC,AD∥BC,∴∠AEB=∠EBC,∵BE平分∠ABC,∴∠ABE=∠EBC,∴∠ABE=∠AEB,∴AB=AE=3,∴AD=AE﹣DE=3﹣1=2;故答案为:4或2.20.如图,在△ABC中,∠ACB=90°,CD为AB边上的中线,AE⊥CD于点E,交BC边于点F,若AF=4,AB=8,则线段EF的长为.【考点】全等三角形的判定与性质;直角三角形斜边上的中线.【分析】如图,取BF的中点H,连接DH.设EF=x,CE=y.由DH∥EF,得=,得=,推出y=2x,由△ACE∽△CFE,得到=,推出y2=x(4﹣x),解方程组即可.【解答】解:如图,取BF的中点H,连接DH.设EF=x,CE=y.∵∠ACB=90°,AD=DB,∴CD=AD=DB=4,∵AD=DB,FH=HB,∴DH=AF=2,DH∥EF,∴=,∴=,∴y=2x,∵AF⊥CE,∴∠CEA=∠CEF=90°,∵∠ACE+∠CAE=90°,∠ACE+∠ECF=90°,∴∠ECF=∠CAE,∴△ACE∽△CFE,∴=,∴y2=x(4﹣x),∴4x2=x(4﹣x),∵x≠0,∴x=,∴EF=,故答案为.三、解答题21.先化简,再求代数式()×的值,其中x=2sin60°﹣2tan45°.【考点】分式的化简求值;特殊角的三角函数值.【分析】先算括号里面的,再算乘法,最后求出x的值代入进行计算即可.【解答】解:原式=•=•=•=,当x=2×﹣2×1=﹣2时,原式==.22.如图,在13×6的正方形网格中(每个小正方形的边长均为1)有线段AB,点A、B均在正方形的顶点上.(1)将线段AB绕点B顺时针旋转90°得到线段BC,连接AC,画出△ABC;(2)以AB为对角线作平行四边形ABCD,画出平行四边形ADBC;(3)直接写出平行四边形ADBC的周长.【考点】作图﹣旋转变换;平行四边形的性质.【分析】(1)利用网格特点和旋转的性质画出点A的对应点C即可得到△ABC;(2)把AB绕点A逆时针旋转90°得到AD,则四边形ADBC满足条件;(3)先利用勾股定理计算出AD和BD,然后计算四边形ADBC的周长.【解答】解:(1)如图,△ABC为所作;(2)如图,平行四边形ADBC为所作;(3)AD==5,BD==5,所以平行四边形ADBC的周长=2(5+5)=10+10.23.某校想了解学生每周的课外阅读时间情况,随机调查了部分学生,对学生的课外阅读时间x(单位:小时)进行分组整理,并绘制了如图所示的不完整的频数分布直方图和扇形统计图.请根据图中提供的信息,解答下列问题:(1)本次共调查了多少名学生(2)通过计算补全频数分布直方图;(3)请估计该校3000名学生中每周的课外阅读时间不小于6小时的人数.【考点】频数(率)分布直方图;用样本估计总体;扇形统计图.【分析】(1)根据0≤x<2的人数和所占的百分比,即可求出总人数;(2)根据总人数和所占的百分比即可求出6≤x<8的人数,从而补全统计图;(3)用该校的总人数乘以每周的课外阅读时间不小于6小时的人数所占的百分比即可.【解答】解:(1)本次共调查的学生是:10÷10%=100人;(2)6≤x<8的人数是:100×25%=25(人),画图如下:(3)根据题意得:3000×=870(人),答:该校3000名学生中每周的课外阅读时间不小于6小时的人数有870人.24.在平行四边形ABCD中,点E在AD边上,连接BE、CE,EB平分∠AEC(1)如图1,判断△BCE的形状,并说明理由;(2)如图2,若∠A=90°,BC=5,AE=1,求线段BE的长.【考点】平行四边形的性质.【分析】(1)结论:△BCE是等腰三角形,根据平行四边形的性质以及已知条件,只要证明∠CBE=∠BEC即可.(2)先证明四边形ABCD是矩形,然后分别在RT△ECD,和RT△ABE中利用勾股定理即可解决问题.【解答】(1)如图1中,结论:△BCE是等腰三角形.证明:∵四边形ABCD是平行四边形,∴BC∥AD,∴∠CBE=∠AEB,∵BE平分∠AEC,∴∠AEB=∠BEC,∴∠CBE=∠BEC,∴CB=CE,∴△CBE是等腰三角形.(2)解:如图2中,∵四边形ABCD是平行四边形,∠A=90°,∴四边形ABCD是矩形,∴∠A=∠D=90°,BC=AD=5,在RT△ECD中,∵∠D=90°,ED=AD﹣AE=4,EC=BC=5,∴AB=CD===3,在RT△AEB中,∵∠A=90°AB=3.AE=1,∴BE===.25.某服装店购进一批甲、乙两种款型时尚的T恤衫,其中甲种款型共用7800元,乙种款型共用6400元,甲种款型的件数是乙种款型件数的1.5倍,甲种款型每件的进价比乙种款型每件的进价少30元(1)甲、乙两种款型的T恤衫各购进多少件?(2)若甲种款型T恤衫每件售价比乙种款型T恤衫的售价少40元,且这批T恤衫全部售出后,商店获利不少于7400元,则甲种T恤衫每件售价至少多少元?【考点】分式方程的应用;一元一次不等式的应用.【分析】(1)可设乙种款型的T恤衫购进x件,则甲种款型的T恤衫购进1.5x件,根据甲种款型每件的进价比乙种款型每件的进价少30元,列出方程即可求解;(2)设甲种T恤衫每件售价a元,则乙种进价为(a+40)元,先根据(1)求出甲和乙的进价,再根据商店获利不少于7400元,列出不等式进行求解即可.【解答】解:(1)设乙种款型的T恤衫购进x件,则甲种款型的T恤衫购进1.5x件,依题意有+30=,解得x=40,经检验,x=40是原方程组的解,则1.5x=60(件),答:甲种款型的T恤衫购进60件,乙种款型的T恤衫购进40件;(2)设甲种T恤衫每件售价a元,则乙种进价为(a+40)元,=160,160﹣30=130(元),由题意得:60(a﹣130)+40(a+40﹣160)≥7400,解得:a≥200,答:甲种T恤衫每件售价至少200元.26.已知AB为⊙O的直径,点C为的中点,BD为弦,CE⊥BD于点E,(1)如图1,求证:CE=DE;(2)如图2,连接OE,求∠OEB的度数;(3)如图3,在(2)条件下,延长CE,交直径AB于点F,延长EO,交⊙O于点G,连接BG,CE=2,EF=3,求△EBG的面积.【考点】圆的综合题.【分析】(1)如图1中,连接CD、OC.只要证明∠CDE=∠COB=45°即可.(2)如图2中,连接OD,OC,只要证明△OED≌△OEC,推出∠OED=∠CEO=135°,即可解决问题.(3)如图3中,过O作OM⊥BD于M,BN⊥EG于N,则∠EMO=90°,连接OC,设EM=x,则BM=DM=2+x,由EF∥OM,得=列出方程即可解决.【解答】(1)证明:如图1中,连接CD、OC.∵点C是中点,∴=,∴∠AOC=∠BOC,∵∠AOC+∠BOC=180°,∴∠AOC=∠BOC=90°,∴∠D=45°,∵CE⊥BD,∴∠CED=90°,∴∠D=∠DCE=45°,∴CE=DE.(2)证明:如图2中,连接OD,OC在△OED和△OEC中,,∴△OED≌△OEC,∵∠CED=90°,∴∠OED=∠CEO=135°,∴∠OEB=45°.(3)解:如图3中,过O作OM⊥BD于M,BN⊥EG于N,则∠EMO=90°,连接OC.∵CE=2,∴DE=2,设EM=x,则BM=DM=2+x,∴BE=2x+2,∵∠OEB=45°,则BM=DM=2+x,∴OM=x,∵∠OEB=45°,∴∠CEB=∠EMO,∴EF∥OM.∴=,即=,解得x=2或(﹣舍弃),∴OE=2,BM=4,OM=2,BN=3,∴OB=2∴EG=OE+OG=2+2,∴S△EBG=•EG•BN=(2+2)×=6+3.27.在平面直角坐标系中,O为坐标原点,抛物线y=ax2﹣2ax﹣5交x轴的负半轴于点A,交x轴的正半轴于点B,交y轴的负半轴于点C,且AB=8.(1)如图1,求a的值(2)如图2,点D在第一象限的抛物线上,连接AD,过点D作DM∥y轴,交直线BC于点M,连接AM、BD、AM与BD交于点N,若S△ABN=S△DMN,求点D的坐标及tan∠DAB的值;(3)如图3,在(2)的条件下,点P在第一象限的抛物线上,过点P作AD的垂线,交x 轴于点F,点E在x轴上(点E在点F的左侧),EF=15,点G在直线FP上,连接EP、OG.若EP=OG,∠PEF+∠G=45°,求点P的坐标.【考点】二次函数综合题.【分析】(1)求出对称轴以及的A、B坐标即可解决问题.(2)首先证明CM∥AD,然后求出直线AD的解析式,利用方程组即可解决问题.(3)如图3中,作GN⊥OA于N,PM⊥OF于M,PE与DN交于点K,DN与OG交于点H,OG 与PE交于点J.首先证明△PEM≌△OGN,推出ON=PM=FN,GN=EM=FN,根据EF=15,列出方程即可解决问题.【解答】解:(1)如图1中,∵对称轴x=﹣=1,AB=8,∴点A坐标(﹣3,0),点B坐标(5,0),把(﹣3,0)代入抛物线解析式,得到0=9a+6a﹣5,∴a=.(2)如图2中,∵S△ABN=S△DMN,∴S△ABD=S△ADM,∴CM∥AD,∵直线BC解析式为y=x﹣5,设直线AD解析式为y=x+b,把点A(﹣3,0)代入得到b=3,∴直线AD解析式为y=x+3,由解得或,∴点D坐标(8,11).(3)如图3中,作GN⊥OA于N,PM⊥OF于M,PE与DN交于点K,DN与OG交于点H,OG 与PE交于点J.∵∠DAB=∠AEK+∠EKA=45°,∠AEK+∠FGO=45°,∴∠EKA=∠HKJ=∠FGO,∵PG⊥AD,'∴∠FGO+∠CHD=90°,∵∠CHD=∠KHJ,∴∠HKJ+∠KHJ=90°,∴∠PEM+∠EOG=90°,∠NGO+∠GOA=90°,∴∠PEM=∠NGO,∵PE=GO,∠GNO=∠PME=90°,∴△PEM≌△OGN,∴ON=PM=FN,GN=EM=FN,∴EN=FM=ON,设点P(m, m2﹣m﹣5),∵EF=15,∴3(m2﹣m﹣5)+m=15,∴m=6或﹣5(舍弃),∴点P坐标(6,3).。
2016年黑龙江省哈尔滨市中考数学(有解析)
2016年黑龙江省哈尔滨市中考数学试卷一、选择题(每小题3分,共计30分)1.﹣6的绝对值是()A.﹣6 B.6 C.D.﹣【解析】﹣6的绝对值是6.故选:B.2.下列运算正确的是()A.a2•a3=a6 B.(a2)3=a5 C.(﹣2a2b)3=﹣8a6b3 D.(2a+1)2=4a2+2a+1【解析】A、a2•a3=a5,故此选项错误;B、(a2)3=a6,故此选项错误;C、(﹣2a2b)3=﹣8a6b3,正确;D、(2a+1)2=4a2+4a+1,故此选项错误;故选:C.3.下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【解析】A、是轴对称图形,但不是中心对称图形,故A错误;B、是轴对称图形,也是中心对称图形,故B正确;C、是中心对称图形,但不是轴对称图形,故C错误;D、是轴对称图形,但不是中心对称图形,故D错误.故选:B.4.点(2,﹣4)在反比例函数y=的图象上,则下列各点在此函数图象上的是()A.(2,4)B.(﹣1,﹣8)C.(﹣2,﹣4)D.(4,﹣2)【解析】∵点(2,﹣4)在反比例函数y=的图象上,∴k=2×(﹣4)=﹣8.∵A中2×4=8;B中﹣1×(﹣8)=8;C中﹣2×(﹣4)=8;D中4×(﹣2)=﹣8,∴点(4,﹣2)在反比例函数y=的图象上.故选D.5.五个大小相同的正方体搭成的几何体如图所示,其主视图是()A.B.C.D.【解析】从正面看第一层是三个小正方形,第二层右边是两个小正方形,故选:C.6.不等式组的解集是()A.x≥2 B.﹣1<x≤2 C.x≤2 D.﹣1<x≤1【解析】解不等式x+3>2,得:x>﹣1,解不等式1﹣2x≤﹣3,得:x≥2,∴不等式组的解集为:x≥2,故选:A.7.某车间有26名工人,每人每天可以生产800个螺钉或1000个螺母,1个螺钉需要配2个螺母,为使每天生产的螺钉和螺母刚好配套.设安排x名工人生产螺钉,则下面所列方程正确的是()A.2×1000(26﹣x)=800x B.1000(13﹣x)=800xC.1000(26﹣x)=2×800x D.1000(26﹣x)=800x【解答】解:设安排x名工人生产螺钉,则(26﹣x)人生产螺母,由题意得1000(26﹣x)=2×800x,故C答案正确,故选C8.如图,一艘轮船位于灯塔P的北偏东60°方向,与灯塔P的距离为30海里的A处,轮船沿正南方向航行一段时间后,到达位于灯塔P的南偏东30°方向上的B处,则此时轮船所在位置B处与灯塔P之间的距离为()A.60海里B.45海里C.20海里D.30海里【解析】由题意可得:∠B=30°,AP=30海里,∠APB=90°,故AB=2AP=60(海里),则此时轮船所在位置B处与灯塔P之间的距离为:BP==30(海里).故选:D.9.如图,在△ABC中,D、E分别为AB、AC边上的点,DE∥BC,BE与CD相交于点F,则下列结论一定正确的是()A.=B.C.D.【解答】解;A、∵DE∥BC,∴,故正确;B、∵DE∥BC,∴△DEF∽△CBF,∴,故错误;C、∵DE∥BC,∴,故错误;D、∵DE∥BC,∴△DEF∽△CBF,∴,故错误;故选:A.10.明君社区有一块空地需要绿化,某绿化组承担了此项任务,绿化组工作一段时间后,提高了工作效率.该绿化组完成的绿化面积S(单位:m2)与工作时间t(单位:h)之间的函数关系如图所示,则该绿化组提高工作效率前每小时完成的绿化面积是()A.300m2 B.150m2 C.330m2 D.450m2【解析】如图,设直线AB的解析式为y=kx+b,则,解得.故直线AB的解析式为y=450x﹣600,当x=2时,y=450×2﹣600=300,300÷2=150(m2).答:该绿化组提高工作效率前每小时完成的绿化面积是150m2.二、填空题(每小题3分,共计30分)11.将5700 000用科学记数法表示为 5.7×106.【解析】5700 000=5.7×106.故答案为:5.7×106.12.函数y=中,自变量x的取值范围是x≠.【解析】由题意,得2x﹣1≠0,解得x≠,故答案为:x≠.13.计算2﹣的结果是﹣2.【解析】原式=2×﹣3=﹣3=﹣2,故答案为:﹣2.14.把多项式ax2+2a2x+a3分解因式的结果是a(x+a)2.【解析】ax2+2a2x+a3=a(x2+2ax+a2)=a(x+a)2,故答案为:a(x+a)215.一个扇形的圆心角为120°,面积为12πcm2,则此扇形的半径为6cm.【解析】设该扇形的半径为R,则=12π,解得R=6.即该扇形的半径为6cm.故答案是:6.16.二次函数y=2(x﹣3)2﹣4的最小值为﹣4.【解析】二次函数y=2(x﹣3)2﹣4的开口向上,顶点坐标为(3,﹣4),所以最小值为﹣4.故答案为:﹣4.17.在等腰直角三角形ABC中,∠ACB=90°,AC=3,点P为边BC的三等分点,连接AP,则AP的长为或.【解析】①如图1,∵∠ACB=90°,AC=BC=3,∵PB=BC=1,∴CP=2,∴AP==,②如图2,∵∠ACB=90°,AC=BC=3,∵PC=BC=1,∴AP==,综上所述:AP的长为或,故答案为:或.18.如图,AB为⊙O的直径,直线l与⊙O相切于点C,AD⊥l,垂足为D,AD交⊙O于点E,连接OC、BE.若AE=6,OA=5,则线段DC的长为4.【解析】OC交BE于F,如图,∵AB为⊙O的直径,∴∠AEB=90°,∵AD⊥l,∴BE∥CD,∵CD为切线,∴OC⊥CD,∴OC⊥BE,∴四边形CDEF为矩形,∴CD=EF,在Rt△ABE中,BE===8,∵OF⊥BE,∴BF=EF=4,∴CD=4.故答案为4.19.一个不透明的袋子中装有黑、白小球各两个,这些小球除颜色外无其他差别,从袋子中随机摸出一个小球后,放回并摇匀,再随机摸出一个小球,则两次摸出的小球都是白球的概率为.【解析】列表得,黑1 黑2 白1 白2黑1 黑1黑1 黑1黑2 黑1白1 黑1白2黑2 黑2黑1 黑2黑2 黑2白1 黑2白2白1 白1黑1 白1黑2 白1白1 白1白2白2 白2黑1 白2黑2 白2白1 白2白2∵由表格可知,不放回的摸取2次共有16种等可能结果,其中两次摸出的小球都是白球有4种结果,∴两次摸出的小球都是白球的概率为:=,故答案为:.20.如图,在菱形ABCD中,∠BAD=120°,点E、F分别在边AB、BC上,△BEF与△GEF关于直线EF 对称,点B的对称点是点G,且点G在边AD上.若EG⊥AC,AB=6,则FG的长为3.【解析】∵四边形ABCD是菱形,∠BAD=120°,∴AB=BC=CD=AD,∠CAB=∠CAD=60°,∴△ABC,△ACD是等边三角形,∵EG⊥AC,∴∠AEG=∠AGE=30°,∵∠B=∠EGF=60°,∴∠AGF=90°,∴FG⊥BC,∴2•S△ABC=BC•FG,∴2××(6)2=6•FG,∴FG=3.故答案为3.三、解答题(其中21-22题各7分,23-24题各8分,25-27题各10分,共计60分)21.先化简,再求代数式(﹣)÷的值,其中a=2sin60°+tan45°.【解】原式=[﹣]•(a+1)=•(a+1)=•(a+1)=•(a+1)=,当a=2sin60°+tan45°=2×+1=+1时,原式==.22.图1、图2是两张形状和大小完全相同的方格纸,方格纸中每个小正方形的边长均为1,线段AC的两个端点均在小正方形的顶点上.(1)如图1,点P在小正方形的顶点上,在图1中作出点P关于直线AC的对称点Q,连接AQ、QC、CP、PA,并直接写出四边形A QCP的周长;(2)在图2中画出一个以线段AC为对角线、面积为6的矩形ABCD,且点B和点D均在小正方形的顶点上.【解】(1)如图1所示:四边形AQCP即为所求,它的周长为:4×=4;(2)如图2所示:四边形ABCD即为所求.23.海静中学开展以“我最喜爱的职业”为主题的调查活动,围绕“在演员、教师、医生、律师、公务员共五类职业中,你最喜爱哪一类?(必选且只选一类)”的问题,在全校范围内随机抽取部分学生进行问卷调查,将调查结果整理后绘制成如图所示的不完整的统计图,请你根据图中提供的信息回答下列问题:(1)本次调查共抽取了多少名学生?(2)求在被调查的学生中,最喜爱教师职业的人数,并补全条形统计图;(3)若海静中学共有1500名学生,请你估计该中学最喜爱律师职业的学生有多少名?【解】(1)12÷20%=60,答:共调查了60名学生.(2)60﹣12﹣9﹣6﹣24=9,答:最喜爱的教师职业人数为9人.如图所示:(3)×1500=150(名)答:该中学最喜爱律师职业的学生有150名.24.已知:如图,在正方形ABCD中,点E在边CD上,AQ⊥BE于点Q,DP⊥AQ于点P.(1)求证:AP=BQ;(2)在不添加任何辅助线的情况下,请直接写出图中四对线段,使每对中较长线段与较短线段长度的差等于PQ的长.【解】(1)证明:∵正方形ABCD∴AD=BA,∠BAD=90°,即∠BAQ+∠DAP=90°∵DP⊥AQ∴∠ADP+∠DAP=90°∴∠BAQ=∠ADP∵AQ⊥BE于点Q,DP⊥AQ于点P∴∠AQB=∠DPA=90°∴△AQB≌△DPA(AAS)∴AP=BQ(2)解:①AQ﹣AP=PQ ②AQ﹣BQ=PQ ③DP﹣AP=PQ ④DP﹣BQ=PQ 25.早晨,小明步行到离家900米的学校去上学,到学校时发现眼镜忘在家中,于是他立即按原路步行回家,拿到眼镜后立即按原路骑自行车返回学校.已知小明步行从学校到家所用的时间比他骑自行车从家到学校所用的时间多10分钟,小明骑自行车速度是步行速度的3倍.(1)求小明步行速度(单位:米/分)是多少;(2)下午放学后,小明骑自行车回到家,然后步行去图书馆,如果小明骑自行车和步行的速度不变,小明步行从家到图书馆的时间不超过骑自行车从学校到家时间的2倍,那么小明家与图书馆之间的路程最多是多少米?【解】(1)设小明步行的速度是x米/分,由题意得:,解得:x=60,经检验:x=60是原分式方程的解,答:小明步行的速度是60米/分;(2)小明家与图书馆之间的路程最多是y米,根据题意可得:,解得:y≤240,答:小明家与图书馆之间的路程最多是240米.26.已知:△ABC内接于⊙O,D是上一点,OD⊥BC,垂足为H.(1)如图1,当圆心O在AB边上时,求证:AC=2OH;(2)如图2,当圆心O在△ABC外部时,连接AD、CD,AD与BC交于点P,求证:∠ACD=∠APB;(3)在(2)的条件下,如图3,连接BD,E为⊙O上一点,连接DE交BC于点Q、交AB于点N,连接OE,BF为⊙O的弦,BF⊥OE于点R交DE于点G,若∠ACD﹣∠ABD=2∠BDN,AC=5,BN=3,tan∠ABC=,求BF的长.【解】(1)∵OD⊥BC,∴由垂径定理可知:点H是BC的中点,∵点O是AB的中点,∴OH是△ABC的中位线,∴AC=2OH;(2)∵OD⊥BC,∴由垂径定理可知:,∴∠BAD=∠CAD,∵,∴∠ABC=∠ADC,∴180°﹣∠BA D﹣∠ABC=180°﹣∠CAD﹣∠ADC,∴∠ACD=∠APB,(3)连接AO延长交于⊙O于点I,连接IC,AB与OD相交于点M,∵∠ACD﹣∠ABD=2∠BDN,∴∠ACD﹣∠BDN=∠ABD+∠BDN,∵∠ABD+∠BDN=∠AND,∴∠ACD﹣∠BDN=∠AND,∵∠ACD+∠ABD=180°,∴∠ABD+∠BDN=180°﹣∠AND,∴∠AND=180°﹣∠AND,∴∠AND=90°,∵tan∠ABC=,BN=3,∴NQ=,∴由勾股定理可求得:BQ=,∵∠BNQ=∠QHD=90°,∴∠ABC=∠QDH,∵OE=OD,∴∠OED=∠QDH,∵∠ERG=90°,∴∠OED=∠GBN,∴∠GBN=∠ABC,∵AB⊥ED,∴BG=BQ=,GN=NQ=,∵AI是⊙O直径,∴∠ACI=90°,∵tan∠AIC=tan∠ABC=,∴=,∴IC=10,∴由勾股定理可求得:AI=25,连接OB,设QH=x,∵tan∠ABC=tan∠ODE=,∴,∴HD=2x,∴OH=OD﹣HD=﹣2x,BH=BQ+QH=+x,由勾股定理可得:OB2=BH2+OH2,∴()2=(+x)2+(﹣2x)2,解得:x=或x=,当QH=时,∴QD=QH=,∴ND=QD+NQ=6,∴MN=3,MD=15∵MD,∴QH=不符合题意,舍去,当QH=时,∴QD=QH=∴ND=NQ+QD=4,由垂径定理可求得:ED=10,∴GD=GN+ND=∴EG=ED﹣GD=,∵tan∠OED=,∴,∴EG=RG,∴RG=,∴BR=RG+BG=12∴由垂径定理可知:BF=2BR=24.27.如图,在平面直角坐标系中,O为坐标原点,抛物线y=ax2+2xa+c经过A(﹣4,0),B(0,4)两点,与x轴交于另一点C,直线y=x+5与x轴交于点D,与y轴交于点E.(1)求抛物线的解析式;(2)点P是第二象限抛物线上的一个动点,连接EP,过点E作EP的垂线l,在l上截取线段EF,使EF=EP,且点F在第一象限,过点F作FM⊥x轴于点M,设点P的横坐标为t,线段FM的长度为d,求d与t之间的函数关系式(不要求写出自变量t的取值范围);(3)在(2)的条件下,过点E作EH⊥ED交MF的延长线于点H,连接DH,点G为DH的中点,当直线PG经过AC的中点Q时,求点F的坐标.【解】(1)把A(﹣4,0),B(0,4)代入y=ax2+2xa+c得,解得,所以抛物线解析式为y=﹣x2﹣x+4;(2)如图1,分别过P、F向y轴作垂线,垂足分别为A′、B′,过P作PN⊥x轴,垂足为N,由直线DE的解析式为:y=x+5,则E(0,5),∴OE=5,∵∠PEO+∠OEF=90°,∠PEO+∠EPA′=90°,∴∠EPA′=∠OEF,∵PE=EF,∠EA′P=∠EB′F=90°,∴△PEA′≌△EFB′,∴PA′=EB′=﹣t,则d=FM=OB′=OE﹣EB′=5﹣(﹣t)=5+;(3)如图2,由直线DE的解析式为:y=x+5,∵EH⊥ED,∴直线EH的解析式为:y=﹣x+5,∴FB′=A′E=5﹣(﹣t2﹣t+4)=t2+t+1,∴F(t2+t+1,5+t),∴点H的横坐标为:t2+t+1,y=﹣t2﹣t﹣1+5=﹣t2﹣t+4,∴H(t2+t+1,﹣t2﹣t+4),∵G是DH的中点,∴G(,),∴G(t2+t﹣2,﹣t2﹣t+2),∴PH∥x轴,∵DG=GH,∴PG=GQ,∴=t2+t﹣2,t=,∵P在第二象限,∴t<0,∴t=﹣,∴F(4﹣,5﹣).。
哈尔滨中考数学试题及答案-中考 (2).doc
:2016年哈尔滨中考数学试题及答案-中考总结:话题作文与学期梳理课程特色:以写作问题为纲,以解决中高考语文写作问题和讲授踩分词为主,每节课仍会讲解2—3篇阅读题,作为对应练习和提高。
学习时,要求学生熟记理解每一讲的”地图内容”,以便考试时融会运用。
适合学员想扎实写作基础,稳固提高作文水平的初中生赠送《中学语文知识地图—中学必考文学常识一本通》第十五章:学期课程融汇与升华课程特色:以解决阅读问题为纲,融会踩分词和阅读答题要求,进行专题训练,侧重点分为两个方面,一是结合《中学语文知识地图踩分词》进行阅读答题运用,二是答题结构与题型,每节课中以阅读概括能力、理解表述能力、判定分析能力和鉴赏能力题为引导进行学习。
适合学员现代文阅读答题技巧掌握不够全面,想稳固提高的初中生赠送《中学语文知识地图—中学文言文必考140字》课程特色:全面地检测与分析学生考试丢分的问题,让学生清楚自己问题在哪,并且怎样改,通过思维训练,加以解决,重点教会学生如何凭借一张知识地图,去解决所有的语文阅读写作问题。
适合学员想夯实语文基础知识,成绩稳步提高的初中生赠送《学生优秀作品及点评指导(2.0版)》第八章:以小见大与虚实相应课程特色:对考场三大作文类型悉数讲解,针对考场作文,黄保余老师现场充精彩点评得失。
适合学员作文写作水平寻求短期突破的初中生赠送《中学考场作文训练营》(图书)第八章:以小见大与虚实相应课程特色:对考场三大作文类型悉数讲解,针对考场作文,黄保余老师现场充精彩点评得失。
适合学员作文写作水平寻求短期突破的初中生赠送《中学考场作文训练营》(图书)课程特色:针对小学阶段学生最应该掌握的三种阅读考试能力进行讲解。
该课程两个重心:一是各类题型答题方法和技巧的分析,特别是易错点的点评;另一个方面是对概括能力、理解能力,表述能力的训练。
适合学员阅读能力迅速提升的5—7级学生赠送《语文阅读得高分策略与技巧》(小学版)课程特色:针对小学阶段学生最应该掌握的三种阅读考试能力进行讲解。
哈尔滨市2016年初中升学考试数学试题(7)含答案解析
黑龙江省哈尔滨市2016年初中升学考试全新体验(7)数学试题一、选择题,每小题3分,共30分1.下列各数中,比﹣3小的数是()A.﹣3 B.﹣2 C.0 D.﹣42.下列计算正确的是()A.(﹣x2)3=x5B.x8÷x4=x2C.x3+3x3=3x6D.(﹣x2)3=﹣x63.下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.4.如图,一个几何体由5个大小相同、棱长为1的小正方体搭成,下列关于这个几何体的说法正确的是()A.主视图的面积为5 B.左视图的面积为3C.俯视图的面积为3 D.三种视图的面积都是45.若点(1,﹣3)在反比例函数y=的图象上,则k的值是()A.B.3 C.﹣ D.﹣36.如图,一个小球由地面沿着坡度i=1:2的坡面向上前进了10m,此时小球距离地面的高度为()A.5m B. mC.4m D.2m7.如图,点F是▱ABCD的边CD上一点,直线BF交AD的延长线与点E,则下列结论错误的是()A.B.C.D.8.如图,在△ABC中,∠BAC=50°,将△ABC绕点A逆时针旋转80°得到△AB′C,则∠CAB′的度数为()A.30° B.40° C.50° D.80°9.绿苑小区在规划设计时,准备在两幢楼房之间,设置一块面积为900平方米的矩形绿地,并且长比宽多10米.设绿地的宽为x米,根据题意,可列方程为()A.x(x﹣10)=900 B.x(x+10)=900 C.10(x+10)=900 D.2[x+(x+10)]=900 10.两辆汽车沿同一条路赶赴出发地480km的某地,甲匀速行驶一段时间出现故障,停车检修后继续行驶,图中折线OABC,线段DE分别表示甲、乙所行的路程y(km)与甲车出发时间x(h)间的函数关系,以下结论中错误的个数有()①乙车比甲车晚出发2h;②乙车的平均速度为60km/h;③甲车检修后的平均速度为120km/h;④两车第二次相遇时,它们距出发地320km;⑤图中EF=DF.A.1个B.2个C.3个D.4个二、填空题(共10小题,每小题3分,满分30分)11.保护水资源,人人有责,我国目前可利用的淡水资源总量仅为899000亿立方米,请用科学记数法表示这个数899000是.12.在函数y=中,自变量x的取值范围是.13.化简的结果是.14.把多项式x3﹣4x2y+4xy2分解因式,结果为.15.不等式组的解集是.16.某扇形的弧长为2π,圆心角为90°,此扇形的面积为.17.有一个正方体,6个面上分别标有1﹣6这6个整数,投掷这个正方体一次,则出现向上一面的数字不小于3的概率为.18.某商场对某种商品作调价,按原价8折出售,此时商品的利润率是10%,若商品的进价为1200元,则商品的原价是元.19.在△ABC中,AB=2,AC=,以A为圆心,1为半径的圆与BC边所在的直线相切,则∠BAC的度数是.20.如图,在△ABC中,AB=AC,BD⊥AC于点D,点E在AB边上,CE交BD于点F,BE=BF,EG⊥AC 于点G,若EG=2,CD=3,则线段EF的长为.三、解答题21.先化简,在求代数式÷(x﹣2﹣)的值,其中x=4sin30°+2cos45°.22.如图,网格中每个小正方形的边长均为1,线段AB的顶点在校正方形的顶点上,按要求画出图形.(1)画一个以线段AB为底边的锐角等腰三角形ABC,使得点C在小正方形的顶点上;(2)画出Rt△ABD和Rt△BCD使得△ABD和△BCD的面积相等,要求点D在小正方形的顶点上;(3)直接写出线段AD的长.23.教育行政部门规定学生每天参加户外活动的平均时间不少于1小时,为了解学生参加户外活动的情况,对部分中学生参加户外活动的时间进行抽样调查,并将调查结果绘制成如下两幅不完整的统计图,请根据图中信息解答下列问题:(1)本次调查中共调查了多少名学生?(2)将频数分布直方图补充完整(3)我市九年级学生大约有50000人,请你计算参加户外活动不少于1.5小时的人数.24.如图,在△ABC中,∠ACB=90°,BC的垂直平分线DE交BC于D,交AB于E,F在DE上,并且AF=CE.(1)求证:四边形ACEF是平行四边形;(2)当∠B满足什么条件时,四边形ACEF是菱形?请回答并证明你的结论.25.某中学在教化电子大世界购进A、B两种品牌的平板电脑,购买A品牌的平板电脑用去了200000元,购买B品牌的平板电脑用去了150000元,且购买A品牌平板电脑的数量是购买B品牌平板电脑数量的2倍,已知购买一台A品牌平板电脑比购买一台B品牌平板电脑少用500元.(1)求购买一台A品牌平板电脑、一台B品牌平板电脑各需多少元?(2)该中学决定再次购进A、B两种品牌的平板电脑共500台.正逢教化电子大世界对两种品牌平板电脑的售价进行调整A品牌平板电脑售价比第一次购买提高了5%,B品牌的平板电脑按第一次购买时售价的8.5折出售.如果这所中学此次购买A、B两种品牌的平板电脑的总费用不超过600000元,求该中学此次最多可购买B品牌的平板电脑多少台?26.已知△ABC内接⊙O,半径OC平分∠ACB,射线CO交弦AB于点K.(1)如图1,求证:∠A=∠B.(2)如图2,点D在圆周上,它与搭建C位于弦AB的两侧,连接BO并延长BO,交弦AD于点E,连接BD,若∠BAD=2∠BAC,求证:AD=2AE;(3)如图3,在(2)的条件下,连接AO并延长AO,交⊙O于点F,交弦CB的延长线于点G,连接DG,若BG=CB,AC=,求线段DG的长.27.在平面直角坐标系中,O为坐标原点,抛物线y=a(x+3)(x﹣4)与x轴从左到有依次交于A,B两点,于y轴的正半轴交于点C,且AB﹣OC=1.(1)如图1,求a的值;(2)如图2,点D在y轴的负半轴上,BD=5,点E在第二象限的抛物线上,其横坐标为t,设△BDE 的面积为S求S与t间的函数关系式,并直接写出自变量t的取值范围;(3)如图3,在(2)的条件下,当S=15时,将ED沿直线BE折叠,DE折叠后所在的直线交抛物线于点G,求G点的坐标.黑龙江省哈尔滨市2016年初中升学考试全新体验(7)数学试题参考答案与试题解析一、选择题,每小题3分,共30分1.下列各数中,比﹣3小的数是()A.﹣3 B.﹣2 C.0 D.﹣4【考点】有理数大小比较.【分析】根据0大于负数,负数比较大小绝对值大的反而小,即可解答.【解答】解:∵﹣4<﹣3<﹣2<0,∴比﹣3小的数是﹣4,故选:D.【点评】本题考查了有理数的大小比较,解决本题的关键是熟记0大于负数,负数比较大小绝对值大的反而小.2.下列计算正确的是()A.(﹣x2)3=x5B.x8÷x4=x2C.x3+3x3=3x6D.(﹣x2)3=﹣x6【考点】同底数幂的除法;合并同类项;幂的乘方与积的乘方.【分析】根据合并同类项法则;幂的乘方,底数不变指数相乘;同底数幂相除,底数不变指数相减,对各选项分析判断后利用排除法求解.【解答】解:A、(﹣x2)3=﹣x6,此选项错误;B、x8÷x4=x4,此选项错误;C、x3+3x3=4x3,此选项错误;D、(﹣x2)3=﹣x6,此选项正确;故选D.【点评】本题考查合并同类项、同底数幂的乘法、幂的乘方、同底数幂的除法,熟练掌握运算性质和法则是解题的关键.3.下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、图形不是中心对称轴图形,是轴对称图形,此选项错误;B、图形即是中心对称轴图形,也是轴对称图形,此选项正确;C、图形是中心对称轴图形,不是轴对称图形,此选项错误;D、图形不是中心对称轴图形,也不是轴对称图形,此选项错误;故选B.【点评】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.4.如图,一个几何体由5个大小相同、棱长为1的小正方体搭成,下列关于这个几何体的说法正确的是()A.主视图的面积为5 B.左视图的面积为3C.俯视图的面积为3 D.三种视图的面积都是4【考点】简单组合体的三视图.【专题】几何图形问题.【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形,看分别得到几个面,比较即可.【解答】解:A、从正面看,可以看到4个正方形,面积为4,故A选项错误;B、从左面看,可以看到3个正方形,面积为3,故B选项正确;C、从上面看,可以看到4个正方形,面积为4,故C选项错误;D、三种视图的面积不相同,故D选项错误.故选:B.【点评】本题主要考查了几何体的三种视图面积的求法及比较,关键是掌握三视图的画法.5.若点(1,﹣3)在反比例函数y=的图象上,则k的值是()A.B.3 C.﹣ D.﹣3【考点】反比例函数图象上点的坐标特征.【分析】先将点(1,﹣3)代入反比例函数y=,再求得k的值即可.【解答】解:∵点(1,﹣3)在反比例函数y=的图象上,∴将点(1,﹣3)代入反比例函数y=,可得k=﹣3×1=﹣3,即k的值是﹣3.故选(D)【点评】本题主要考查了反比例函数图象上点的坐标特征,反比例函数y=图象上的点(x,y)的横、纵坐标的积是定值k,即xy=k,这是解题的关键.6.如图,一个小球由地面沿着坡度i=1:2的坡面向上前进了10m,此时小球距离地面的高度为()A.5m B. mC.4m D.2m【考点】解直角三角形的应用-坡度坡角问题.【分析】可利用勾股定理及所给的比值得到所求的线段长.【解答】解:∵AB=10米,tanA==.∴设BC=x,AC=2x,由勾股定理得,AB2=AC2+BC2,即100=x2+4x2,解得x=2,∴AC=4,BC=2米.故选D.【点评】本题主要考查了勾股定理在直角三角形中的运用,i的定义,能从实际问题中整理出直角三角形是解答本题的关键.7.如图,点F是▱ABCD的边CD上一点,直线BF交AD的延长线与点E,则下列结论错误的是()A.B.C.D.【考点】平行线分线段成比例;平行四边形的性质.【分析】由四边形ABCD是平行四边形,可得CD∥AB,AD∥BC,CD=AB,AD=BC,然后平行线分线段成比例定理,对各项进行分析即可求得答案.【解答】解:∵四边形ABCD是平行四边形,∴CD∥AB,AD∥BC,CD=AB,AD=BC,∴,故A正确;∴,∴,故B正确;∴,故C错误;∴,∴,故D正确.故选C.【点评】本题考查平行线分线段成比例定理,找准对应关系,避免错选其他答案.8.如图,在△ABC中,∠BAC=50°,将△ABC绕点A逆时针旋转80°得到△AB′C,则∠CAB′的度数为()A.30° B.40° C.50° D.80°【考点】旋转的性质.【分析】根据旋转的性质找到对应点、对应角进行解答.【解答】解:∵△ABC绕点A逆时针旋转80°得到△AB′C′,∴∠BAB′=80°,又∵∠BAC=50°,∴∠CAB′=∠BAB′﹣∠BAC=30°.故选A.【点评】本题考查旋转的性质,旋转变化前后,对应线段、对应角分别相等,图形的大小、形状都不改变.解答此题的关键是要注意旋转的三要素:①定点﹣﹣旋转中心;②旋转方向;③旋转角度.9.绿苑小区在规划设计时,准备在两幢楼房之间,设置一块面积为900平方米的矩形绿地,并且长比宽多10米.设绿地的宽为x米,根据题意,可列方程为()A.x(x﹣10)=900 B.x(x+10)=900 C.10(x+10)=900 D.2[x+(x+10)]=900【考点】由实际问题抽象出一元二次方程.【专题】几何图形问题.【分析】首先用x表示出矩形的长,然后根据矩形面积=长×宽列出方程即可.【解答】解:设绿地的宽为x,则长为10+x;根据长方形的面积公式可得:x(x+10)=900.故选B.【点评】本题考查了由实际问题抽象出一元二次方程,找到关键描述语,记住长方形面积=长×宽是解决本题的关键,此题难度不大.10.两辆汽车沿同一条路赶赴出发地480km的某地,甲匀速行驶一段时间出现故障,停车检修后继续行驶,图中折线OABC,线段DE分别表示甲、乙所行的路程y(km)与甲车出发时间x(h)间的函数关系,以下结论中错误的个数有()①乙车比甲车晚出发2h;②乙车的平均速度为60km/h;③甲车检修后的平均速度为120km/h;④两车第二次相遇时,它们距出发地320km;⑤图中EF=DF.A.1个B.2个C.3个D.4个【考点】函数的图象.【专题】函数的综合应用.【分析】因为(1)坐标系中横坐标表示时间(单位:时),纵坐标表示两车的行程(单位:米),故分析两图象始点坐标即可解①;(2)利用平均速度=可求;(3)求出F的纵坐标,即可求出甲在6时到8时的速度即可解决问题③④;(4)利用相似三角形的性质解决问题⑤.【解答】解:①∵点D(2,0)表示2时乙的行程为0米,即:乙车比甲车晚出发2h,∴①说法正确;②∵乙总行程为480米=0.48千米,用时10﹣2=8(小时),∴乙的平均速度=0.48÷8=0.06km/h,即:结论②错误③∵乙的平均速度=0.06km/h,当x=6h时,其行路程是:0.06×6=0.36千米=360米,∴甲检修后行驶480﹣360=120米=0.12千米,所用时间为2小时,故:甲车检修后的平均速度为:0.12÷2=0.06km/h;即:结论③错误④∵点F是两函数图象的交点,表示此刻甲乙两车相遇,∴由上述分析可知结论④错误⑤∵由题意可知:,即:DE=2DF,DF=EF,∴结论⑤正确故:选C【点评】本题考查了函数图象的性质及其应用,解题的关键是利用图象特点分析两车的运动状态,理清两车在运动过程中的位置、时间等关系.二、填空题(共10小题,每小题3分,满分30分)11.保护水资源,人人有责,我国目前可利用的淡水资源总量仅为899000亿立方米,请用科学记数法表示这个数899000是8.99×105.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将899000用科学记数法表示为:8.99×105.故答案为:8.99×105.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.在函数y=中,自变量x的取值范围是x≠﹣3 .【考点】函数自变量的取值范围.【分析】根据分母不等于0解答即可.【解答】解:由题意得,x+3≠0,解得x≠﹣3.故答案为:x≠﹣3.【点评】本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.13.化简的结果是2+.【考点】分母有理化.【专题】计算题.【分析】原式分子分母乘以有理化因式,计算即可得到结果.【解答】解:原式==2+.故答案为:2+【点评】此题考查了分母有理化,找出分母的有理化因式是解本题的关键.14.把多项式x3﹣4x2y+4xy2分解因式,结果为x(x﹣2y)2.【考点】提公因式法与公式法的综合运用.【分析】先提取公因式x,再对余下的多项式运用完全平方差公式继续分解.【解答】解:x3﹣4x2y+4xy2,=x(x2﹣4xy+4y2),=x(x﹣2y)2.【点评】本题考查提公因式法分解因式和利用完全平方公式分解因式,熟记公式是解题的关键,难点在于要进行二次因式分解.15.不等式组的解集是.【考点】解一元一次不等式组.【专题】推理填空题.【分析】根据解不等式组的方法可以求得不等式组的解集,从而可以解答本题.【解答】解:解不等式①,得x>,解不等式②,得x<,故原不等式组的解集是,故答案为:.【点评】本题考查解一元一次不等式组,解题的关键是明确解一元一次不等式组的方法.16.某扇形的弧长为2π,圆心角为90°,此扇形的面积为4π.【考点】扇形面积的计算;弧长的计算.【分析】利用弧长公式即可求扇形的半径,进而利用扇形的面积公式即可求得扇形的面积.【解答】解:设扇形的半径为r.则=2π,解得r=4,∴扇形的面积==4π.故答案为:4π.【点评】此题主要考查了扇形面积求法,用到的知识点为:扇形的弧长公式l=;扇形的面积公式S=.17.有一个正方体,6个面上分别标有1﹣6这6个整数,投掷这个正方体一次,则出现向上一面的数字不小于3的概率为.【考点】概率公式.【分析】根据概率求法,找准两点:1,全部情况的总数;2,符合条件的情况数目;二者的比值就是其发生的概率.【解答】解:投掷这个正方体一次,共有6种情况,其中出现向上一面的数字不小于3的情况有4种:3,4,5,6,故出现向上一面的数字不小于3的概率==.故本题答案为:.【点评】此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.18.某商场对某种商品作调价,按原价8折出售,此时商品的利润率是10%,若商品的进价为1200元,则商品的原价是1650 元.【考点】一元一次方程的应用.【分析】设该商品的原价为每件x元,根据等量关系为:原价×80%﹣进价=进价×10%,列方程求解即可.【解答】解:设该商品的原价为每件x元,由题意得,0.8x﹣1200=1200×10%,解得:x=1650.答:该商品的原价为每件1650元.故答案为:1650.【点评】本题考查了一元一次方程的应用,解答本题的关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.19.在△ABC中,AB=2,AC=,以A为圆心,1为半径的圆与BC边所在的直线相切,则∠BAC的度数是15°或105°.【考点】切线的性质.【分析】首先通过作辅助线构建直角三角形,然后分别得出三角形各内角度数,进而得出答案.【解答】解:如图1,设圆A与BC切于点D,连接AD,则AD⊥BC,在直角△ABD中,AB=2,AD=1,则sinB==,∴∠B=30°,∴∠BAD=60°,同理,在直角△ACD中,tanC==,得到∠CAD=45°,因而∠BAC的度数是105°.如图2,设圆A与BC延长线切于点D,连接AD,则AD⊥BC,在直角△ABD中,AB=2,AD=1,则sinB==,∴∠B=30°,∴∠BAD=60°,同理,在直角△ACD中,tan∠ACD==,得到∠CAD=45°,因而∠BAC的度数是15°.故答案为:15°或105°.【点评】此题主要考查了切线的性质以及锐角三角函数关系,通过作辅助线连接圆心和切点,利用垂直构造直角三角形解决有关问题是解题关键.20.如图,在△ABC中,AB=AC,BD⊥AC于点D,点E在AB边上,CE交BD于点F,BE=BF,EG⊥AC于点G,若EG=2,CD=3,则线段EF的长为.【考点】全等三角形的判定与性质;等腰三角形的性质;勾股定理.【分析】作CH⊥AB于H,EK⊥BD于K.首先证明△CEG≌△CEH,推出CH=CG,EH=EG=2,△ABD≌△ACH,推出BD=CH=CG,AH=AD,推出BH=CD=3,设EK=DG=x,则CG=BD=3+x,DK=EG=2,推出BK=x+1,在Rt△EKB中,利用勾股定理得到(x+1)2+x2=52,求出x的值,再利用勾股定理求出EC,然后证明EF=CF即可.【解答】解:作CH⊥AB于H,EK⊥BD于K.∵EG⊥AC,BD⊥AC,∴EG∥BD,∴∠GEC=∠BFE,∵BE=BF,∴∠BEC=∠BFE=∠GEC,在△CEG和△CEH中,,∴△CEG≌△CEH(AAS),∴CH=CG,EH=EG=2,在△ABD和△ACH中,,∴△ABD≌△ACH(AAS),∴BD=CH=CG,AH=AD,∴BH=CD=3,设EK=DG=x,则CG=BD=3+x,DK=EG=2,∴BK=x+1,在Rt△EKB中,(x+1)2+x2=52,∴x=3或﹣4(舍弃),∴DG=3,CG=6,∴CE=2,∵BD∥EG,CD=DG=3,∴EF=CF=,故答案为.【点评】本题考查全等三角形的判定和性质、等腰三角形的性质、勾股定理、平行线的性质等知识,解题的关键是灵活运用所学知识解决问题,学会添加辅助线,属于中考常考题型.三、解答题21.先化简,在求代数式÷(x﹣2﹣)的值,其中x=4sin30°+2cos45°.【考点】分式的化简求值;特殊角的三角函数值.【专题】计算题;分式.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,利用特殊角的三角函数值求出x的值,代入计算即可求出值.【解答】解:原式=÷=•=,当x=4×+2×=2+时,原式=.【点评】此题考查了分式的化简求值,以及特殊角的三角函数值,熟练掌握运算法则是解本题的关键.22.如图,网格中每个小正方形的边长均为1,线段AB的顶点在校正方形的顶点上,按要求画出图形.(1)画一个以线段AB为底边的锐角等腰三角形ABC,使得点C在小正方形的顶点上;(2)画出Rt△ABD和Rt△BCD使得△ABD和△BCD的面积相等,要求点D在小正方形的顶点上;(3)直接写出线段AD的长.【考点】作图—应用与设计作图;三角形的面积;等腰三角形的判定与性质;正方形的判定与性质.【分析】(1)画BC=5,连接AC,再根据勾股定理可得AC=5;(2)首先以AB为边,A为顶点画∠BAD=90°,再连接AD,BD即可;(3)利用勾股定理计算出AD长即可.【解答】解:(1)如图所示:(2)如图所示:(3)AD==.【点评】此题主要考查了作图与应用设计,关键是根据网格正确画出直角.23.教育行政部门规定学生每天参加户外活动的平均时间不少于1小时,为了解学生参加户外活动的情况,对部分中学生参加户外活动的时间进行抽样调查,并将调查结果绘制成如下两幅不完整的统计图,请根据图中信息解答下列问题:(1)本次调查中共调查了多少名学生?(2)将频数分布直方图补充完整(3)我市九年级学生大约有50000人,请你计算参加户外活动不少于1.5小时的人数.【考点】频数(率)分布直方图;用样本估计总体;扇形统计图.【分析】(1)根据时间是0.5小时的人数是20,对应的百分比是20%,即可求得调查的总人数;(2)利用总人数乘以对应的频率求得时间是1.5小时的人数,补全直方图;(3)利用总人数乘以对应的比例即可求解.【解答】解:(1)调查的总人数是10÷20%=50(人);(2)时间是1.5小时的人数是50×24%=12(人),;(3)参加户外活动不少于1.5小时的人数是50000×=20000(人).答:参加户外活动不少于1.5小时的人数是20000人.【点评】本题考查的是条形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.用到的知识点为:总体数目=部分数目÷相应百分比.频率=所求情况数与总情况数之比.24.如图,在△ABC中,∠ACB=90°,BC的垂直平分线DE交BC于D,交AB于E,F在DE上,并且AF=CE.(1)求证:四边形ACEF是平行四边形;(2)当∠B满足什么条件时,四边形ACEF是菱形?请回答并证明你的结论.【考点】菱形的判定;线段垂直平分线的性质;平行四边形的判定.【专题】证明题.【分析】(1)ED是BC的垂直平分线,根据中垂线的性质:中垂线上的点线段两个端点的距离相等,则EB=EC,故有∠3=∠4,在直角三角形ACB中,∠2与∠4互余,∠1与∠3互余,则可得到AE=CE,从而证得△ACE和△EFA都是等腰三角形,又因为FD⊥BC,AC⊥BC,所以AC∥FE,再根据内错角相等得到AF∥CE,故四边形ACEF是平行四边形;(2)由于△ACE是等腰三角形,当∠1=60°时△ACE是等边三角形,有AC=EC,有平行四边形ACEF 是菱形.【解答】解:(1)∵ED是BC的垂直平分线∴EB=EC,ED⊥BC,∴∠3=∠4,∵∠ACB=90°,∴FE∥AC,∴∠1=∠5,∵∠2与∠4互余,∠1与∠3互余∴∠1=∠2,∴AE=CE,又∵AF=CE,∴△ACE和△EFA都是等腰三角形,∴∠5=∠F,∴∠2=∠F,∴在△EFA和△ACE中∵,∴△EFA≌△ACE(AAS),∴∠AEC=∠EAF∴AF∥CE∴四边形ACEF是平行四边形;(2)当∠B=30°时,四边形ACEF是菱形.证明如下:∵∠B=30°,∠ACB=90°∴∠1=∠2=60°∴∠AEC=60°∴AC=EC∴平行四边形ACEF是菱形.【点评】本题综合利用了中垂线的性质、等边对等角和等角对等边、直角三角形的性质、平行四边形和判定和性质、菱形的判定求解,有利于学生思维能力的训练.涉及的知识点有:有一组邻边相等的平行四边形是菱形.25.某中学在教化电子大世界购进A、B两种品牌的平板电脑,购买A品牌的平板电脑用去了200000元,购买B品牌的平板电脑用去了150000元,且购买A品牌平板电脑的数量是购买B品牌平板电脑数量的2倍,已知购买一台A品牌平板电脑比购买一台B品牌平板电脑少用500元.(1)求购买一台A品牌平板电脑、一台B品牌平板电脑各需多少元?(2)该中学决定再次购进A、B两种品牌的平板电脑共500台.正逢教化电子大世界对两种品牌平板电脑的售价进行调整A品牌平板电脑售价比第一次购买提高了5%,B品牌的平板电脑按第一次购买时售价的8.5折出售.如果这所中学此次购买A、B两种品牌的平板电脑的总费用不超过600000元,求该中学此次最多可购买B品牌的平板电脑多少台?【考点】分式方程的应用;一元一次不等式的应用.【分析】(1)设购买一台A品牌平板电脑x元,一台B品牌平板电脑(x+500)元,根据题意购买A品牌平板电脑的数量是购买B品牌平板电脑数量的2倍,列方程求解;(2)设购买B品牌的平板电脑y台,则购买A品牌的平板电脑(500﹣y)台,根据提价和打折之后两种品牌的平板电脑的总费用不超过600000元,列出不等式求解.【解答】解:(1)设购买一台A品牌平板电脑x元,一台B品牌平板电脑(x+500)元,由题意得, =2×,解得:x=1000,经检验,x=1000是原分式方程的解,且符合题意,则x+500=1500.答:购买一台A品牌平板电脑1000元,一台B品牌平板电脑1500元;(2)设购买B品牌的平板电脑y台,则购买A品牌的平板电脑(500﹣y)台,由题意得,1000×(1+5%)(500﹣y)+1500×0.85y≤600000,解得:y≤333.故向阳中学此次最多可购买333台B品牌的平板电脑.【点评】本题考查了分式方程和一元一次不等式的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系和不等关系,列方程和不等式求解,注意检验.26.已知△ABC内接⊙O,半径OC平分∠ACB,射线CO交弦AB于点K.(1)如图1,求证:∠A=∠B.(2)如图2,点D在圆周上,它与搭建C位于弦AB的两侧,连接BO并延长BO,交弦AD于点E,连接BD,若∠BAD=2∠BAC,求证:AD=2AE;(3)如图3,在(2)的条件下,连接AO并延长AO,交⊙O于点F,交弦CB的延长线于点G,连接DG,若BG=CB,AC=,求线段DG的长.【考点】圆的综合题.【分析】(1)延长CO交圆O于点D,连结AD、BD.由角平分线的定义可知∠ACD=∠BCD,接下来,依据圆周角定理可知∠DAB=∠DBA,∠CAD=∠CBD=90°,依据等式的性质可得到∠CAB=∠CBA,从而可证明AC=BC.(2)连结OA、OD.先证明∠ADB=∠COB,然后再证明∠COB=∠BAD,从而得到AB=BD,接下来依据线段垂直平分线的判定定理证明OB是AD的垂直平分线即可;(3)连结BF、DF,过点D作DM⊥AG,垂足为M.由(1)可知AC=BC.依据等腰三角形三线合一的性质可证明AK=BK,CK⊥AB,从而可知OK是△ABF的中位线,然后结合平行线分线段成比例定理可得到OC=2BF=4OK.设OK=x.先求得AK的长,然后在△ACK中,依据勾股定理可求得k的值,从而得到OA=OC=OF=FG=4,BK=AK=,接下来依据锐角三角函数的定义求得AE、AM的长,最后在△AMD 和△GDM中依据勾股定理可求得DG的长.。
2016年黑龙江省哈尔滨市中考数学试卷-答案
黑龙江省哈尔滨市2016年初中升学考试数学答案解析第Ⅰ卷一、选择题1.【答案】B【解析】根据负数的绝对值是它的相反数,6-的绝对值是6。
【提示】本题主要运用绝对值的定义。
规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。
【考点】绝对值2.【答案】C【解析】分别利用幂的乘方运算法则以及合并同类项法则以及完全平方公式、同底数幂的乘法运算法则、积的乘方运算法则分别化简求出答案。
因为235a a a =,故选项A 错误;236(a )a =,故选项B 错误;22(2a 1)4a 4a 1+=++,故选项D 错误。
【提示】此题主要运用了幂的乘方运算以及合并同类项以及完全平方公式、同底数幂的乘法运算、积的乘方运算等知识,正确掌握相关运算法则是解题关键。
【考点】幂的乘方与积的乘方,同底数幂的乘法,完全平方公式3.【答案】B【解析】依据轴对称图形的定义和中心对称图形的定义回答即可。
选项A 中的图形是轴对称图形,但不是中心对称图形,故A 错误。
选项B 中的图形是轴对称图形,也是中心对称图形,故B 正确。
选项C 中的图形是中心对称图形,但不是轴对称图形,故C 错误。
选项D 中的图形是轴对称图形,但不是中心对称图形,故D 错误。
【提示】本题掌握轴对称图形和中心对称图形的特点是关键。
【考点】中心对称图形,轴对称图形4.【答案】D【解析】由点(2,4)-在反比例函数图象上结合反比例函数图象上点的坐标特征,即可求出k 值,再去验证四个选项中横纵坐标之积是否为k 值。
因为点(2,4)-在反比例函数k y x=的图象上,所以有k 2(4)8=⨯-=-。
选项A 中248⨯=,选项B 中1(8)8-⨯-=,选项C 中2(4)8-⨯-=,选项D 中4(2)8⨯-=-。
所以点(4,2)-在反比例函数k y x =的图象上。
故选D 。
【提示】本题运用了反比例函数图象上点的坐标特征,解题的关键是求出反比例系数k 。
2016年黑龙江省哈尔滨市中考全新体验数学试卷(九)
2016年黑龙江省哈尔滨市中考全新体验数学试卷(九)一、选择题,每小题3分,共30分1.(3分)﹣3的倒数是()A.﹣3 B.3 C.D.﹣2.(3分)下列银行标志图案中,是轴对称图形但不是中心对称图形的是()A.B.C.D.3.(3分)下列运算正确的是()A.(a2)5=a7B.a2•a3=a5 C.(ab)2=a2b D.3ab﹣2b=a4.(3分)如图,热气球从C地垂直上升2km到达A处,观察员在A处观察B 地的俯角为30°,则B、C两地之间的距离为()A.km B.C.2km D.25.(3分)下列由五个全等的小正方体堆成的几何体中,左视图与其他三个不同的是()A.B. C. D.6.(3分)反比例函数y=的图象,当x>0时,y随x的增大而增大,则k的取值范围是()A.k<3 B.k≤3 C.k>3 D.k≥37.(3分)如图,已知AB∥CD∥EF,直线AF与直线BE相交于点O,下列结论错误的是()A.B.C.D.8.(3分)如图,在△ABC中,∠ACB=90°,将△ABC绕点A顺时针旋转90°,得到△ADE,连接BD,若AC=3,DE=1,则线段BD的长为()A.2 B.2 C.4 D.29.(3分)某企业今年1月份产值为x万元,2月份比1月份减少了10%,3月份比2月份增加了15%,则3月份的产值是()A.(1﹣10%)(1+15%)x万元B.(1﹣10%+15%)x万元C.(x﹣10%)(x+15%)万元D.(1+10%﹣15%)x万元10.(3分)小明和小亮晨练跑步,小明比小亮早1分钟离开家门,3分钟后迎面遇到从家跑来的小亮,两人并行跑了2分钟后,决定进行长跑比赛,比赛时小明的速度始终是180米/分,小亮以大于小明的速度匀速跑.如图是两人间的距离y(米)与小明离开家的时间x(分钟)之间的函数图象,则下列说法中正确的个数是()①小明比赛前的速度为100米/分;②小亮比赛前的速度是120米/分;③比赛时小亮的速度一定是220米/分;④小明出发或分钟时,两人相距110米.A.1个 B.2个 C.3个 D.4个二、填空题(共10小题,每小题3分,满分30分)11.(3分)苹果公司2016财年第二财季度营收505亿美元,比去年同期有所下滑,将50500000000用科学记数法表示为.12.(3分)计算:=.13.(3分)在函数y=中,自变量x的取值范围是.14.(3分)把多项式3x2y+12xy2+12y3分解因式的结果是.15.(3分)不等式组的解集为.16.(3分)把一些图书分给某班学生,若每人分3本,则剩余20本,若每人分4本,则还缺25本,这个班共有学生人.17.(3分)扇形的弧长为3πcm,面积为9πcm2,则这个扇形的圆心角的度数为.18.(3分)小亮的收藏盒中有一套福娃纪念币(贝贝,晶晶,欢欢,迎迎,妮妮),随机取出2枚,恰好能够组成“欢迎”的概率是.19.(3分)在正方形ABCD中,点E在射线BC上,点F在BC边的延长线上,点G在∠DCF的角平分线上,∠AEG=90°,若AB=2,CE=1,则线段EG长为.20.(3分)如图,四边形ABCD为正方形,点E、F在对角线BD上,点G在BC 边上,EG⊥AE,GF⊥BD,若BF=3DE,CG=,则线段AE的长为.三、解答题21.(7分)先化简,再求值:,其中a=2sin60°+3tan45°.22.(7分)如图,在8×8的正方形网格中(每个小正方形的边长均为1)有一个△ABC,其顶点均在小正方形顶点上,请按要求画出图形.(1)将△ABC绕点C顺时针旋转90°得到△CDE(点A、B的对应点分别为D、E),画出△CDE;(2)在正方形网格的格点上找一点F,连接BF、FE、BE,使得△FBE的面积等于△BCE的面积.(画出一种情况即可)23.(8分)网瘾低龄化问题已引起社会各界的高度关注,有关部门在全国范围内对12﹣35岁的网瘾人群进行了简单的随机抽样调查,得到了如图所示的两个不完全统计图.请根据图中的信息,解决下列问题:(1)求条形统计图中a的值;(2)求扇形统计图中18﹣23岁部分的圆心角;(3)据报道,目前我国12﹣35岁网瘾人数约为2000万,请估计其中12﹣23岁的人数.24.(8分)在△ABC中,∠ACB=90°,D为AB边的中点,将△ADC沿着AC折叠,得到△AEC.(1)如图1,求证:四边形ADCE是菱形;(2)如图2,若BC=AC,菱形ADCE的面积为24,求AB边的长.25.(10分)2016年4月28日是哈尔滨市解放70周年纪念日,某旅游商品经销店发现商机并从厂家购进A、B两种纪念品共80件,其中购进A种商品用去400元,购进B种商品用去600元,又知5件A种商品的进价与2件B种商品的进价相同(1)求A、B两种商品每件的进价;(2)若该商店决定购进A、B两种纪念品共100件,若该商店每销售1件A种纪念品可获利2元,每销售1件B种纪念品可获利5元,且两批商品销售总额不低于2730元,求该经销店这次最多购进A种商品多少件.26.(10分)四边形ABCD内接于⊙O,BD为其中一条对角线,且∠BAD=2∠BDC.(1)如图1,求证:BC=CD;(2)如图2,作CE∥DB,BE⊥CE,连接OD,若OD平分∠ADB,求证:AD=2CE;(3)如图3,在(2)的条件下,连接AC,若BC=5,AC=11,求四边形ACEB的面积.27.(10分)在平面直角坐标系中,O为坐标原点,抛物线y=ax2﹣6ax+c.与x 轴从左到右依次交于点A、B与y轴交于点C,其中点A的坐标为(1,0),且OB=OC.(1)如图1,求a、c的值;(2)如图2,点D在x轴下方的抛物线上,CD交x轴于点E,连接BC、BD若S=10,求点D的坐标;△BCD(3)如图3,在(2)的条件先,过点B作BF⊥BD,交CD于点F,点P在第一象限的抛物线上,连接PF、OD,若∠PFC=∠ODB,求点P的坐标.2016年黑龙江省哈尔滨市中考全新体验数学试卷(九)参考答案与试题解析一、选择题,每小题3分,共30分1.(3分)﹣3的倒数是()A.﹣3 B.3 C.D.﹣【解答】解:﹣3的倒数是﹣,故选:D.2.(3分)下列银行标志图案中,是轴对称图形但不是中心对称图形的是()A.B.C.D.【解答】解:A、不是轴对称图形,也不是中心对称图形;B、是轴对称图形,也是中心对称图形;C、是轴对称图形,不是中心对称图形;D、不是轴对称图形,是中心对称图形.故选C.3.(3分)下列运算正确的是()A.(a2)5=a7B.a2•a3=a5 C.(ab)2=a2b D.3ab﹣2b=a【解答】解:A、(a2)5=a10≠a7,本选项错误;B、a2•a3=a5,本选项正确;C、(ab)2=a2b2≠a2b,本选项错误;D3ab﹣2b=b(3a﹣2)≠a,本选项错误.故选B.4.(3分)如图,热气球从C地垂直上升2km到达A处,观察员在A处观察B 地的俯角为30°,则B、C两地之间的距离为()A.km B.C.2km D.2【解答】解:在Rt△ABC中,AC=2km,∠ABC=30°,∴tan30°=,即=,解得:BC=2km,则B、C两地之间的距离为2km,故选D5.(3分)下列由五个全等的小正方体堆成的几何体中,左视图与其他三个不同的是()A.B. C. D.【解答】解:A,B,D选项的左视图都是;C选项的左视图是,故选C.6.(3分)反比例函数y=的图象,当x>0时,y随x的增大而增大,则k的取值范围是()A.k<3 B.k≤3 C.k>3 D.k≥3【解答】解:∵当x>0时,y随x的增大而增大,∴函数图象必在第四象限,∴k﹣3<0,∴k<3.故选A.7.(3分)如图,已知AB∥CD∥EF,直线AF与直线BE相交于点O,下列结论错误的是()A.B.C.D.【解答】解:A、由AB∥CD∥EF,则=,所以A选项的结论正确;B、由AB∥CD,则=,所以B选项的结论错误;C、由CD∥EF,则=,所以C选项的结论正确;D、由AB∥EF,则=,所以D选项的结论正确.故选B.8.(3分)如图,在△ABC中,∠ACB=90°,将△ABC绕点A顺时针旋转90°,得到△ADE,连接BD,若AC=3,DE=1,则线段BD的长为()A.2 B.2 C.4 D.2【解答】解:由旋转的性质可知:BC=DE=1,AB=AD∵在RT△ABC中,AC=3,BC=1,∠ACB=90°,∴由勾股定理得:AB=AD==又旋转角为90°,∴∠BAD=90°,∴在RT△ADB中,BD==2即:BD的长为2故:选A9.(3分)某企业今年1月份产值为x万元,2月份比1月份减少了10%,3月份比2月份增加了15%,则3月份的产值是()A.(1﹣10%)(1+15%)x万元B.(1﹣10%+15%)x万元C.(x﹣10%)(x+15%)万元D.(1+10%﹣15%)x万元【解答】解:3月份的产值为:(1﹣10%)(1+15%)x万元.故选A10.(3分)小明和小亮晨练跑步,小明比小亮早1分钟离开家门,3分钟后迎面遇到从家跑来的小亮,两人并行跑了2分钟后,决定进行长跑比赛,比赛时小明的速度始终是180米/分,小亮以大于小明的速度匀速跑.如图是两人间的距离y(米)与小明离开家的时间x(分钟)之间的函数图象,则下列说法中正确的个数是()①小明比赛前的速度为100米/分;②小亮比赛前的速度是120米/分;③比赛时小亮的速度一定是220米/分;④小明出发或分钟时,两人相距110米.A.1个 B.2个 C.3个 D.4个【解答】解:①小明比赛前的速度:(540﹣440)÷1=100(米/分),①正确;②小亮比赛前的速度:440÷(3﹣1)﹣100=120(米/分),②正确;③比赛时小亮的速度:80÷(7﹣5)+180=220(米/分),③正确;④设两人间的距离y(米)与小明离开家的时间x(分钟)之间的函数关系式为y=kx+b,当1≤x≤3时,有,解得:,∴此时y=﹣220x+660;当x≥5时,有,解得:,∴此时y=40x﹣200.令y=110,即﹣220x+660=110或40x﹣200=110,解得:x=或x=,④正确.综上可知正确的说法有4个.故选D.二、填空题(共10小题,每小题3分,满分30分)11.(3分)苹果公司2016财年第二财季度营收505亿美元,比去年同期有所下滑,将50500000000用科学记数法表示为 5.05×1010.【解答】解:将50500000000用科学记数法表示为:5.05×1010.故答案为5.05×1010.12.(3分)计算:=﹣.【解答】解:原式=2﹣3=﹣.13.(3分)在函数y=中,自变量x的取值范围是x≠.【解答】解:∵3﹣4x≠0,∴x≠;故答案为x≠.14.(3分)把多项式3x2y+12xy2+12y3分解因式的结果是3y(x+2y)2.【解答】解:原式=3y(x2+4xy+4y2)=3y(x+2y)2.故答案是:3y(x+2y)2.15.(3分)不等式组的解集为﹣1<x≤3.【解答】解:,由①得,x≤3,由②得,x>﹣1.故不等式组的解集为:﹣1<x≤3.故答案为:﹣1<x≤3.16.(3分)把一些图书分给某班学生,若每人分3本,则剩余20本,若每人分4本,则还缺25本,这个班共有学生45人.【解答】解:设有x名学生,根据书的总量相等可得:3x+20=4x﹣25,解得:x=45.答:这个班有45名学生.故答案为45.17.(3分)扇形的弧长为3πcm,面积为9πcm2,则这个扇形的圆心角的度数为90°.【解答】解:扇形的面积公式=lr=9πcm2,解得:r=6cm,又∵l==3π(cm),∴n=90.故答案为:90°.18.(3分)小亮的收藏盒中有一套福娃纪念币(贝贝,晶晶,欢欢,迎迎,妮妮),随机取出2枚,恰好能够组成“欢迎”的概率是.【解答】解:如图表所示:一共有20种可能,恰好能够组成“欢迎”的有2种,故恰好能够组成“欢迎”的概率是:=.故答案为:.19.(3分)在正方形ABCD中,点E在射线BC上,点F在BC边的延长线上,点G在∠DCF的角平分线上,∠AEG=90°,若AB=2,CE=1,则线段EG长为.【解答】解:延长BA到M使得AM=CE,∵四边形ABCD是正方形,∴AB=BC=2,∠B=∠BCD=∠DCF=90°,∴BM=BE,∴∠BME=∠BEM=45°,∵CG平分∠DCF,∴∠GCE=45°=∠M,∵∠AEG=90°,∴∠GEF+∠AEB=90°,∠AEB+∠BAE=90°,∴∠GEF=∠BAE,∵∠GEF+∠CEG=180°,∠BAE+∠MAE=180°,∴∠CEG=∠MAE,在△MAE和△CEG中,,∴△MAE≌△CEG,∴EG=AE,在RT△ABE中,∵∠B=90°,AB=2,BE=3,∴AE==,∴EG=.故答案为.20.(3分)如图,四边形ABCD为正方形,点E、F在对角线BD上,点G在BC 边上,EG⊥AE,GF⊥BD,若BF=3DE,CG=,则线段AE的长为5.【解答】解:如图,连接AC交BD于点O,作EM⊥AB于M,EN⊥BC于N,∵四边形ABCD是正方形,∴∠EBM=∠EBN,∴EM=EN,∵∠AEG=∠MEN=90°,∴∠AEM=∠GEN,在△EMA和△ENG中,,∴△EMA≌△ENG,∴AE=EG,∵∠AEO+∠FEG=90°.∠FEG+∠FGE=90°,∴∠AEO=∠EGF,在△AEO和△EGF中,,∴△AEO≌△EGF,∴AO=EF=AC=BD,∵BF=3DE,∴设DE=x,则BF=3x,EF=4x,BD=AC=8x,BC=4x,BG=3x.∴GC=BC﹣BG=x=,∴x=1,∴BF=FG=3,EF=4,∴EG===5,∴AE=EG=5.故答案为5.三、解答题21.(7分)先化简,再求值:,其中a=2sin60°+3tan45°.【解答】解:原式=÷(﹣)=÷=,∵a=2sin60°+3tan45°=2×+3×1=+3∴原式==﹣.22.(7分)如图,在8×8的正方形网格中(每个小正方形的边长均为1)有一个△ABC,其顶点均在小正方形顶点上,请按要求画出图形.(1)将△ABC绕点C顺时针旋转90°得到△CDE(点A、B的对应点分别为D、E),画出△CDE;(2)在正方形网格的格点上找一点F,连接BF、FE、BE,使得△FBE的面积等于△BCE的面积.(画出一种情况即可)【解答】解:(1)如图,△CDE为所作;(2)如图,点F为所作.23.(8分)网瘾低龄化问题已引起社会各界的高度关注,有关部门在全国范围内对12﹣35岁的网瘾人群进行了简单的随机抽样调查,得到了如图所示的两个不完全统计图.请根据图中的信息,解决下列问题:(1)求条形统计图中a的值;(2)求扇形统计图中18﹣23岁部分的圆心角;(3)据报道,目前我国12﹣35岁网瘾人数约为2000万,请估计其中12﹣23岁的人数.【解答】解:(1)被调查的人数=330÷22%=1500人,a=1500﹣450﹣420﹣330=1500﹣1200=300人;(2)360°××100%=108°;(3)∵12﹣35岁网瘾人数约为2000万,∴12~35岁的人数约为2000万×=1000万.24.(8分)在△ABC中,∠ACB=90°,D为AB边的中点,将△ADC沿着AC折叠,得到△AEC.(1)如图1,求证:四边形ADCE是菱形;(2)如图2,若BC=AC,菱形ADCE的面积为24,求AB边的长.【解答】解:(1)∵∠ACB=90°,D为中点,∴CD=AD,∵△ADC折叠得到△AEC,∴AE=EC=CD=AD,∴四边形ADCE是菱形;(2)连接DE,设BC=3a,AC=4a,则AB=5a,∵四边形ADCE是菱形,∴CE∥BD,∵CE=CD=BD,∴四边形BDEC是平行四边形,∴DE=BC=3a,∵四边形ADCE是菱形,∴AC⊥DE,∴S=2S△ACD==24,菱形ADCE∴a=2,∴AB=5a=10.25.(10分)2016年4月28日是哈尔滨市解放70周年纪念日,某旅游商品经销店发现商机并从厂家购进A、B两种纪念品共80件,其中购进A种商品用去400元,购进B种商品用去600元,又知5件A种商品的进价与2件B种商品的进价相同(1)求A、B两种商品每件的进价;(2)若该商店决定购进A、B两种纪念品共100件,若该商店每销售1件A种纪念品可获利2元,每销售1件B种纪念品可获利5元,且两批商品销售总额不低于2730元,求该经销店这次最多购进A种商品多少件.【解答】解:(1)设A种纪念品每件2x元,B种纪念品每件5x元,根据题意得:,解得:x=4,经检验:x=4是原方程的解,2x=8,5x=20,答:A种纪念品每件8元,B种纪念品每件20元;(2)设购进A商品a件,400÷8=50,600÷20=30,根据题意得:(2+8)×(50+a)+(20+5)×(100﹣a+30)≥2730,解得:a≤68,答:该经销店这次最多购进A种商品68件.26.(10分)四边形ABCD内接于⊙O,BD为其中一条对角线,且∠BAD=2∠BDC.(1)如图1,求证:BC=CD;(2)如图2,作CE∥DB,BE⊥CE,连接OD,若OD平分∠ADB,求证:AD=2CE;(3)如图3,在(2)的条件下,连接AC,若BC=5,AC=11,求四边形ACEB的面积.【解答】(1)证明:如图1所示:∵四边形ABCD内接于⊙O,∴∠A+∠C=180°,∵∠C+∠BDC+∠DBC=180°,∴∠A=∠BDC+∠DBC,∵∠BAD=2∠BDC,∴∠BDC=∠DBC,∴BC=CD;(2)证明:连接OC交BD于M,延长DO交⊙O于N,如图2所示:由(1)得:CB=CD,,∴OC⊥BD,∴BM=DM=BD,∠BMC=90°,∵CE∥DB,∴∠MCE=180°﹣90°=90°,又∵BE⊥CE,∴∠BEC=90°,∴四边形BECM是矩形,∴BM=CE,∵OD平分∠ADB,∴∠ADN=∠BDN,∴,∴DN垂直平分AB,∴AD=BD,∴AD=2BM=2CE;(3)解:在AC上截取AF=BC=5,连接DF,过D作DG⊥AC于G,过B作BH⊥AC于H,如图3所示:由(2)得:AD=BD=2CE,∵AF=DF,∴∠DAF=∠ADF,∵∠DAF=∠DBC,∠BDC=∠DBC,∴∠DAF=∠ADF=∠BDC=∠DBC,在△DAF和△DBC中,,∴△DAF≌△DBC(ASA),∴DF=DC=5,∴CG=FG,∵AC=11,∴CG=FG=3,∴AG=AF+FG=8,DG==4,∴tan∠DAG===,∵BC=CD,∴,∴∠BAC=∠DAG,∴tan∠BAC==,∴AH=2BH,设BH=x,AH=2x,∴CH=11﹣2x,在Rt△BCH中,BH2+CH2=BC2,即x2+(11﹣x)2=52,解得:x=4(舍去),或x=,∴BH=,∴△ABC的面积=AC•BH=×11×=,∵OC⊥BD,CE∥BD,∴OC⊥CE,∴CE为⊙O的切线,∴∠BCE=∠BCA,∴tan∠BCE==,∵BC=5,∴BE=,CE=2,∴△BCE的面积=BE•CE=××2=5,∴四边形ACEB的面积=△ABC的面积+△BCE的面积=+5=.27.(10分)在平面直角坐标系中,O为坐标原点,抛物线y=ax2﹣6ax+c.与x 轴从左到右依次交于点A、B与y轴交于点C,其中点A的坐标为(1,0),且OB=OC.(1)如图1,求a、c的值;(2)如图2,点D在x轴下方的抛物线上,CD交x轴于点E,连接BC、BD若S =10,求点D的坐标;△BCD(3)如图3,在(2)的条件先,过点B作BF⊥BD,交CD于点F,点P在第一象限的抛物线上,连接PF、OD,若∠PFC=∠ODB,求点P的坐标.【解答】解(1)∵抛物线y=ax2﹣6ax+c,∴抛物线的对称轴为x=﹣=3,∵A(1,0),∴B(5,0),∴OC=OB=5,∴C(0,5),∵抛物线过点A和C,∴,∴,∴抛物线解析式为y=x2﹣6x+5,(2)如图2,过点D作DT⊥x轴于T,设D(t,t2﹣6t+5),∴直线CD的解析式为y=(t﹣6)x+5,∴E(﹣,0)∴BE=5+,=10,∵S△BCD∴BE×OC+BE×DT=10,∴BE(OC+DT)=10,∴(5+)(5﹣t2+6t﹣5)=10,∴t=1(舍)或t=4,∴D(4,﹣3),(3)如图3,过点F作FH⊥x轴于H,过PG⊥FH于G,由(2)知,E(,0),D(4,﹣3),∴直线CD解析式为y=﹣2x+5,∵BT=OB﹣OT=1,DT=3.∴tan∠ABD==3,∵BF⊥BD,∴∠FHB+∠ABD=90°,∵FH⊥x轴,∴∠FHB=90°,∴∠FBH+∠HFB=90°,∴∠ABD=∠HFB,∴tan∠ABD=tan∠HFB,∴BH=3FH,设F(m,﹣2m+5),∴FH=﹣2m+5,BH=5﹣m,∴5﹣m=3(﹣2t+5),∴m=2,∴F(2,1),∴FH=BT,∵∠FHB=∠BTD=90°,∠HFB=∠TBD,∴△FHB≌△BTD,∴BF=BD,∴∠BDF=45°,∵AT=4,TD=3,∴OD=5=OC,∴∠ODB=45°+∠ODC=45°+∠OCD,∵∠PFC=∠PFG+∠GFC=∠PFG+∠OCD,∴∠PFG=45°,∴GP=GF,设P(n,n2﹣6n+5),∴PG=n﹣2,∴GF=n﹣2,GH=n﹣2+1=n﹣1,∴n2﹣6n+5=n﹣1,∴n=1(舍)或n﹣6,∴P(6,5).。
2016年黑龙江省哈尔滨市中考全新体验数学试卷和解析PDF版(六)
A.1 个 B.2 个 C.3 个 D.4 个
二、填空题,每小题 3 分,共 30 分 11. (3 分)2016 年 4 月 14 日科比常规赛收官之战,全球大约有 24 亿的观众收 看了直播.将数字 2400000000 用科学记数法可表示为 12. (3 分)在函数 y= 13. (3 分)计算: ,自变量 x 的取值范围是 ﹣6 = . . . . .
(2)在网格的格点中画出点 E,使得以 A、B、C、E 为顶点的四边形为平行四边 形,且周长为 10+2 ;
(3)连接 DE,直接写出线段 DE 的长.
23. (8 分)某小学为了了解学生每天完成家庭作业所用时间的情况,从每班抽 取相同数量的学生进行调查, 并将所得数据进行整理,制成条形统计图和扇形统 计图如下:
9. (3 分)如图,在△ABC 中,∠B=40°,将△ABC 绕点 A 逆时针旋转,得到△ ADE,点 D 恰好落在直线 BC 上,则旋转角的度数为( )
A.70° B.80° C.90° D.100° 10. (3 分)甲、乙两车分别从相距 480km 的 A、B 两地相向而行,乙车比甲车 先出发 1 小时, 并以各自的速度匀速行驶, 途径 C 地, 甲车到达 C 地停留 1 小时, 因有事按原速返回 A 地,乙车从 B 地直达 A 地,两车同时到达 A 地.甲、乙两 车距各自出发地的路程 y(千米)与甲车出发所用的时间 x(小时)的关系如图, 则下列说法中正确的个数为( ①乙车的速度是 60 千米/时; ②t 的值为 3 ③当乙车出发 160 分钟时,两车第一次相距 120 千米; ④当乙车出发 360 分钟时,两车相距 120 千米. )
3. (3 分)下列图形中既是轴对称图形,又是中心对称图形的是(
2016年黑龙江省哈尔滨市中考全新体验数学试卷及解析答案word版(四)
2016年黑龙江省哈尔滨市中考全新体验数学试卷(四)一、选择题(每小题3分,共30分)1.(3分)下列各数中,最大的是()A.﹣2 B.﹣C.﹣3 D.﹣12.(3分)下列计算正确的是()A.3﹣1=﹣3 B.(a4)2=a8C.a6÷a2=a3D.﹣=3.(3分)如图,将“米”字正方形内涂上阴影,其中是中心对称图形,但不是轴对称图形的是()A. B.C. D.4.(3分)如图所示的几何体是由六个小正方体组合而成的,它的左视图是()A.B.C.D.5.(3分)对于函数y=,下列说法错误的是()A.这个函数的图象位于第一、第三象限B.这个函数的图象既是轴对称图形又是中心对称图形C.当x>0时,y随x的增大而增大D.当x<0时,y随x的增大而减小6.(3分)如图,在△ABC中,∠B=90°,AC=5,BC=3,则下列三角函数表示正确的是()A.sinA=B.cosA=C.tanA=D.tanB=镖盘被平均分成8份),小明一次投镖能获得奖品的概率是()A.B.C.D.8.(3分)我省2013年的快递业务量为1.4亿件,2014年位居全国第一,2015年快递业务量达4.5亿件,设2014年与2013年这两年的平均增长率为x,则下列方程正确的是()A.1.4(1+x)=4.5 B.1.4(1+2x)=4.5C.1.4(1+x)2=4.5 D.4(1+x)+1.4(1+x)2=4.59.(3分)如图,AC∥BD,AD与BC交于点E,过点E作EF∥BD,交线段AB于点F,则下列各式错误的是()A.=B.=C.+=1 D.=10.(3分)小亮家与姥姥家相距24km,小亮8:00从家出发,骑自行车去姥姥家,妈妈8:30从家出发,乘车沿相同路线去姥姥家,小亮和妈妈的行进路程S (km)与时间t(时)的函数图象如图所示,则下列说法中错误的有()①小亮骑自行车的平均速度是12km/h②妈妈比小亮提前0.5小时达到姥姥家③妈妈在距家12km处追上小亮④9:30妈妈追上小亮.A.1个 B.2个 C.3个 D.4个二、填空题(每小题3分,共30分)11.(3分)PM2.5指的是直径小于或等于0.0000025米的可入肺的颗粒灰尘,将数据0.0000025用科学记数法表示为.12.(3分)在函数y=中,自变量x的取值范围是.13.(3分)计算:×+=.14.(3分)分解因式:ax2﹣ay2=.15.(3分)不等式组的解集是.16.(3分)已知扇形的弧长为2πcm,圆心角为120°,则扇形的面积为cm2.17.(3分)如图,四边形ABCD为矩形,AB=4,BC=6,点E是BC边的中点,将△ABE沿直线AE折叠,点B落在点F处,连接CF,则sin∠ECF的值为.18.(3分)湘潭盘龙大观园开园啦!其中杜鹃园的门票售价为:成人票每张50元,儿童票每张30元.如果某日杜鹃园售出门票100张,门票收入共4000元.那么当日售出成人票张.19.(3分)在△ABC中,AD为BC边上的高,AC=5,BC=6,△ABC的面积为9,AB边的长为.20.(3分)在△ABC中,AC=BC,BD⊥AC,交AC边的延长线于点D,点E在AB 边上,EF⊥BD于点F,且EF=BD,若AC=,DF=1(BF>CD),则线段BE的长为.三、解答题(共60分,其中21、22题各7分,23、24题各8分,25、26、27题各10分)21.(7分)先化简,再求代数式1÷(+)的值,其中a=2sin45°﹣tan30°.22.(7分)图a、图b均为7×6的正方形网格,点A、B、C均在格点(小正方形的顶点)上,在图a、图b中确定格点D,并画出一个以A、B、C、D为顶点的四边形,并满足以下要求:(1)图a所画的四边形中,∠B为钝角,且四边形是轴对称图形.(2)图b所画的四边形中,∠B为钝角,且四边形是中心对称图形.23.(8分)某区教研部门对本区八年级学生进行了一次随机抽样问卷调查,其中有这样一个问题:老师在课余上放手让学生提问和表达的频率()A.从不B.很少C.有时D.常常E.总是答题的学生在这个选项中只能选择一项,下面是根据学生对该问题的答卷情况绘制的两幅不完整的统计图.(1)求本次调查的学生的总数;(2)通过计算将条形统计图补充完整;(3)若全市共有32000名八年级学生,请你估计选择“有时”的学生有多少名.24.(8分)如图,已知点A、C在EF上,AD∥BC,DE∥BF,AE=CF.(1)求证:四边形ABCD是平行四边形;(2)直接写出图中所有相等的线段(AE=CF除外).25.(10分)为迎接“六一”儿童节,某儿童品牌玩具专卖店购进了A、B两种玩具,其中A类玩具的进价比B玩具的进价每个多3元,经调查:用900元购进A 类玩具的数量与用750元购进B类玩具的数量相同(1)求A、B两类玩具的进价分别是每个多少元?(2)该玩具店共购进了A、B两类玩具共100个,若玩具店将每个A类玩具定价为30元出售,每个B类玩具定价25元出售,且全部售出后所获得利润不少于1080元,则商店至少购进A类玩具多少个?26.(10分)在△ABC中,AB=AC,以AB为直径的⊙O交BC边于点D,连接AD.(1)如图1,求证:CD=BD;(2)如图2,设⊙O交AC边于点E,过D点作DG⊥AB,垂足为点G,交⊙O于点F,连接DE、EF,求证:∠DEC=∠AEF;(3)在(2)的条件下,若tan∠CED=,OG=,求△AED的面积.27.(10分)在平面直角坐标系中,O为坐标原点,抛物线y=ax2﹣4ax﹣12a交x轴于点A、B(A左B右),交y轴于点C,直线y=﹣x﹣6a经过B点,交y轴于点D.(1)如图1,求a的值;(2)如图2,点P在第一象限内的抛物线上,过点A、B作x轴的垂线,分别交直线PD于点E、F,若PF=DE,求点P的坐标;(3)如图3,在(2)的条件下,点Q在第一象限内的抛物线上,过点Q作QE ⊥DP于点E,交直线BD于点R,当QE=ER时,求点Q、R的坐标.2016年黑龙江省哈尔滨市中考全新体验数学试卷(四)参考答案与试题解析一、选择题(每小题3分,共30分)1.(3分)下列各数中,最大的是()A.﹣2 B.﹣C.﹣3 D.﹣1【解答】解:∵1<<2<3,∴﹣1>﹣>﹣2>﹣3.故选:D.2.(3分)下列计算正确的是()A.3﹣1=﹣3 B.(a4)2=a8C.a6÷a2=a3D.﹣=【解答】解:A、3﹣1=,故此选项错误;B、(a4)2=a8,正确;C、a6÷a2=a4,故此选项错误;D、﹣无法计算,故此选项错误;故选:B.3.(3分)如图,将“米”字正方形内涂上阴影,其中是中心对称图形,但不是轴对称图形的是()A. B.C. D.【解答】解:A、图形是中心对称轴图形,不是轴对称图形,此选项正确;B、图形即是中心对称轴图形,也是轴对称图形,此选项错误;C、图形即不是中心对称轴图形,也不是轴对称图形,此选项错误;D、图形不是中心对称轴图形,是轴对称图形,此选项错误;故选A.4.(3分)如图所示的几何体是由六个小正方体组合而成的,它的左视图是()A.B.C.D.【解答】解:从左边看得到的图形,有两列,第一列有两个正方形,第二列有一个正方形,故选C.5.(3分)对于函数y=,下列说法错误的是()A.这个函数的图象位于第一、第三象限B.这个函数的图象既是轴对称图形又是中心对称图形C.当x>0时,y随x的增大而增大D.当x<0时,y随x的增大而减小【解答】解:函数y=的图象位于第一、第三象限,A正确;图象既是轴对称图形又是中心对称图形,B正确;当x>0时,y随x的增大而减小,C错误;当x<0时,y随x的增大而减小,D正确,由于该题选择错误的,故选:C.6.(3分)如图,在△ABC中,∠B=90°,AC=5,BC=3,则下列三角函数表示正确的是()A.sinA=B.cosA=C.tanA=D.tanB=【解答】解:∵∠ACB=90°,AC=5,BC=3,∴AB===4,A、sinA==,故本选项正确;B、cosA==,故本选项错误.C、tanA==,故本选项错误;D、tanB是无穷大,故本选项错误;故选A.7.(3分)小明“六、一”去公园玩投掷飞镖的游戏,投中国中阴影部分由奖品(飞镖盘被平均分成8份),小明一次投镖能获得奖品的概率是()A.B.C.D.【解答】解:∵飞镖盘被平均分成8份分,阴影部分占3块,∴小明能获得奖品的概率是.故选B.8.(3分)我省2013年的快递业务量为1.4亿件,2014年位居全国第一,2015年快递业务量达4.5亿件,设2014年与2013年这两年的平均增长率为x,则下列方程正确的是()A.1.4(1+x)=4.5 B.1.4(1+2x)=4.5C.1.4(1+x)2=4.5 D.4(1+x)+1.4(1+x)2=4.5【解答】解:设2014年与2015年这两年的年平均增长率为x,由题意得,1.4×(1+x)2=4.5.故选C9.(3分)如图,AC∥BD,AD与BC交于点E,过点E作EF∥BD,交线段AB于点F,则下列各式错误的是()A.=B.=C.+=1 D.=【解答】解:∵AC∥BD,EF∥BD,∴EF∥AC,∴=,=,故A、B正确,∵=,=,∴+=+===1,故C正确,∵=,而DE≠EB,故D错误,故选D.10.(3分)小亮家与姥姥家相距24km,小亮8:00从家出发,骑自行车去姥姥家,妈妈8:30从家出发,乘车沿相同路线去姥姥家,小亮和妈妈的行进路程S (km)与时间t(时)的函数图象如图所示,则下列说法中错误的有()①小亮骑自行车的平均速度是12km/h②妈妈比小亮提前0.5小时达到姥姥家③妈妈在距家12km处追上小亮④9:30妈妈追上小亮.A.1个 B.2个 C.3个 D.4个【解答】解:①∵小亮到姥姥家用时10﹣8=2(小时),行程24千米,∴v==12km/h故:①正确.②∵妈妈9:30到家,而小亮10:00到家,∴妈妈比小亮提前半小时达到姥姥家,故:②正确.③∵二人在9:00相遇,此时小亮已骑车1小时而妈妈距出发0.5小时,∴妈妈的行程=×0.5=12(千米),小亮的行程==12(千米)∴妈妈在距家12km处追上小亮故:③正确.④∵图象中交点表示二人相遇,此时对应的时间t=9∴应该是9:00妈妈追上小亮的,即:④错误.故:选A二、填空题(每小题3分,共30分)11.(3分)PM2.5指的是直径小于或等于0.0000025米的可入肺的颗粒灰尘,将数据0.0000025用科学记数法表示为 2.5×10﹣6.【解答】解:0.0000025=2.5×10﹣6.故答案为:2.5×10﹣6.12.(3分)在函数y=中,自变量x的取值范围是任意实数.【解答】解:∵分母上没有自变量x,∴自变量x的取值范围是任意实数.故答案为:任意实数.13.(3分)计算:×+=3.【解答】解:原式=2+=3.故答案为3.14.(3分)分解因式:ax2﹣ay2=a(x+y)(x﹣y).【解答】解:ax2﹣ay2,=a(x2﹣y2),=a(x+y)(x﹣y).故答案为:a(x+y)(x﹣y).15.(3分)不等式组的解集是﹣1<x≤2.【解答】解:,由①得,x≤2;由②得,x>﹣1不等式组的解集为﹣1<x≤2.故答案为﹣1<x≤2.16.(3分)已知扇形的弧长为2πcm,圆心角为120°,则扇形的面积为3πcm2.【解答】解:设该扇形的弧长为λ,半径为μ,圆心角为α°,则,而α=120,解得:μ=3,∴该扇形的面积==3π(cm2),故答案为3π.17.(3分)如图,四边形ABCD为矩形,AB=4,BC=6,点E是BC边的中点,将△ABE沿直线AE折叠,点B落在点F处,连接CF,则sin∠ECF的值为.【解答】解:∵点E为BC的中点,∴BE=EC=3.在△ABE中,由勾股定理得:AE==5由翻折的性质可知:FE=BE,∠BEA=∠FEA,∴FE=EC.∴∠EFC=∠FCE.∵∠CFE+∠FCE=∠BEA+∠AEF,∴2∠ECF=2∠BEA.∴∠ECF=∠BEA.∴sinECF=sin∠BEA==.故答案为:.18.(3分)湘潭盘龙大观园开园啦!其中杜鹃园的门票售价为:成人票每张50元,儿童票每张30元.如果某日杜鹃园售出门票100张,门票收入共4000元.那么当日售出成人票50张.【解答】解:设当日售出成人票x张,儿童票(100﹣x)张,可得:50x+30(100﹣x)=4000,解得:x=50.答:当日售出成人票50张.故答案为:50.19.(3分)在△ABC中,AD为BC边上的高,AC=5,BC=6,△ABC的面积为9,AB边的长为或.【解答】解:分两种情况考虑:∵AC=5,BC=6,△ABC的面积为9,∴AD=3,如图1所示,此时△ABC为锐角三角形,在Rt△ACD中,根据勾股定理得:DC==4;在Rt△ABD中,根据勾股定理得:AB=,如图2所示,此时△ABC为钝角三角形,在Rt△ACD中,根据勾股定理得:DC==4;在Rt△ABD中,根据勾股定理得:AB=,故答案为:或20.(3分)在△ABC中,AC=BC,BD⊥AC,交AC边的延长线于点D,点E在AB 边上,EF⊥BD于点F,且EF=BD,若AC=,DF=1(BF>CD),则线段BE的长为.【解答】解:如图,设BF=x,CD=y,在Rt△BCD中,∵BC2=CD2+BD2,∴y2+(x+1)2=()2①,∵EF⊥DE,AD⊥BD,∴EF∥AD,∴=,∴=②,由①②解得,∴EF=3,BF=2,在Rt△BEF中,BE===.故答案为.三、解答题(共60分,其中21、22题各7分,23、24题各8分,25、26、27题各10分)21.(7分)先化简,再求代数式1÷(+)的值,其中a=2sin45°﹣tan30°.【解答】解:原式=1÷==,当a=2×﹣×=﹣1时,原式=.22.(7分)图a、图b均为7×6的正方形网格,点A、B、C均在格点(小正方形的顶点)上,在图a、图b中确定格点D,并画出一个以A、B、C、D为顶点的四边形,并满足以下要求:(1)图a所画的四边形中,∠B为钝角,且四边形是轴对称图形.(2)图b所画的四边形中,∠B为钝角,且四边形是中心对称图形.【解答】解:(1)点D如图①所示,(2)点D如图②所示;23.(8分)某区教研部门对本区八年级学生进行了一次随机抽样问卷调查,其中有这样一个问题:老师在课余上放手让学生提问和表达的频率()A.从不B.很少C.有时D.常常E.总是答题的学生在这个选项中只能选择一项,下面是根据学生对该问题的答卷情况绘制的两幅不完整的统计图.(1)求本次调查的学生的总数;(2)通过计算将条形统计图补充完整;(3)若全市共有32000名八年级学生,请你估计选择“有时”的学生有多少名.【解答】解:(1)本次调查的学生的总数=96÷3%=3200(人);(2)回答“有时”的人数为3200﹣96﹣320﹣736﹣1344=704(人),补全条形图为:(3)320000×=7040,所以估计选择“有时”的学生有704名.24.(8分)如图,已知点A、C在EF上,AD∥BC,DE∥BF,AE=CF.(1)求证:四边形ABCD是平行四边形;(2)直接写出图中所有相等的线段(AE=CF除外).【解答】(1)证明:∵AD∥BC,DE∥BF,∴∠E=∠F,∠DAC=∠BCA,∴∠DAE=∠BCF,在△ADE和△CBF中,,∴△ADE≌△CBF(ASA),∴AD=CB,∴四边形ABCD是平行四边形;(2)解:AD=BC、EC=AF、ED=BF、AB=DC;理由如下:∵△ADE≌△CBF,∴AD=BC,ED=BF,∵AE=CF,∴EC=AF,∵四边形ABCD是平行四边形,∴AB=DC.25.(10分)为迎接“六一”儿童节,某儿童品牌玩具专卖店购进了A、B两种玩具,其中A类玩具的进价比B玩具的进价每个多3元,经调查:用900元购进A 类玩具的数量与用750元购进B类玩具的数量相同(1)求A、B两类玩具的进价分别是每个多少元?(2)该玩具店共购进了A、B两类玩具共100个,若玩具店将每个A类玩具定价为30元出售,每个B类玩具定价25元出售,且全部售出后所获得利润不少于1080元,则商店至少购进A类玩具多少个?【解答】解:(1)设B的进价为x元,则a的进价是(x+3)元由题意得=,解得x=15,经检验x=15是原方程的解.所以15+3=18(元)答:A的进价是18元,B的进价是15元;(2)设A玩具a个,则B玩具(100﹣a)个,由题意得:2a+10(100﹣a)≥1080,解得a≥40.答:至少购进A40个.26.(10分)在△ABC中,AB=AC,以AB为直径的⊙O交BC边于点D,连接AD.(1)如图1,求证:CD=BD;(2)如图2,设⊙O交AC边于点E,过D点作DG⊥AB,垂足为点G,交⊙O于点F,连接DE、EF,求证:∠DEC=∠AEF;(3)在(2)的条件下,若tan∠CED=,OG=,求△AED的面积.【解答】(1)证明:∵AB是⊙O的直径,∴∠ADB=90°,∴AD⊥BC,∵AB=AC,∴CD=BD;(2)证明:∵AB⊥DF,∴=,∴∠ABD=∠AEF,∴∠ABD+∠AED=180°,∠DEC+∠AED=180°,∴∠DEC=∠ABD=∠AEF;(3)连接OD,由(2)知,∠DEC=∠AEF,∵∠AEF=∠ADF,∴∠DEC=∠ADF,∴tan∠ADF=tan∠DEC=,∵AB⊥DG,∴tan∠ADF==,设AG=4x,DG=3x,∵OG=,∴OD=OA=4x﹣,在Rt△ODG中,()2+(3x)2=(4x﹣)2,解得:x=,∴AG=,DG=4,过点D作DH⊥CE于点H,由(1)可知:AD平分∠BAC,∴DH=DG=4,AH=AG=,∵tan∠EDC=,∴EH=3,∴AE=﹣3=,=AE•DH=××4=.∴S△AED27.(10分)在平面直角坐标系中,O为坐标原点,抛物线y=ax2﹣4ax﹣12a交x轴于点A、B(A左B右),交y轴于点C,直线y=﹣x﹣6a经过B点,交y轴于点D.(1)如图1,求a的值;(2)如图2,点P在第一象限内的抛物线上,过点A、B作x轴的垂线,分别交直线PD于点E、F,若PF=DE,求点P的坐标;(3)如图3,在(2)的条件下,点Q在第一象限内的抛物线上,过点Q作QE ⊥DP于点E,交直线BD于点R,当QE=ER时,求点Q、R的坐标.【解答】解:直线y=2kx﹣12k交x轴于点B,∴B(6,0),∵A(﹣2,0),B在抛物线上,∴,∴,(2)如图2,过点P作PL⊥x轴于L,过B做BT⊥OP,∵抛物线解析式为y=﹣x2+x+4,∴C(0,4),∴OC=4,∵D是OC中点,∴OD=2,∴D(0,2),tan∠ODB==3,∴tan∠OPB=tan∠ODB=3,∴BT=3PT,∵P(m,m)在第一象限,∴PL=OL=m,∴∠POL=45°,OP=m,∴BT=OT,∵OB=6,∴OT=BT=3PT=3,∴OP=4,∴m=4,∴P(4,4);此时点P在抛物线上,(3)如图3,连接PC,DQ,过点Q作QM⊥y轴,过R作RN⊥y轴,∵P(4,4),C(0,4),∴PC⊥y轴,∴∠PCD=∠PLB=90°,∵CD=BL=2,PC=PL=4,∴△PCD≌△PLB,∴∠CPD=∠LPB,PD=PB,∴∠DPB=∠DPL+∠LPB=∠DPL+∠CPD=90°,∴∠PDB=45°,∵QR⊥PD,QE=ER,∴DQ=DR,∴∠QDE=∠PDB=45°,∴∠QDR=90°,∴∠QDM+∠RDN=90°,∵∠QDM+∠DQM=90°,∴∠QDE=∠RDN,∵∠QMD=∠DNR=90°,∴△QMD≌△DNR,∴QM=DN,DM=NR,∵D(0,2)在直线y=2kx﹣12k上,∴﹣12k=2,∴k=﹣,∴直线解析式为y=﹣x+2,设R(n,﹣n+2),∴DM=NR=n,QM=DN=2﹣(﹣n+2)=n,Q(n,n+2),∵点Q在抛物线上,∴n+2=﹣(n)2+×n+4,∴n=3或n=﹣18(舍),∴Q(1,5),R(3,1)赠送:初中数学几何模型【模型一】半角型:图形特征:F AB正方形ABCD中,∠EAF=45°∠1=12∠BAD推导说明:1.1在正方形ABCD中,点E、F分别在BC、CD上,且∠FAE=45°,求证:EF=BE+DFE-aa B E1.2在正方形ABCD中,点E、F分别在BC、CD上,且EF=BE+DF,求证:∠FAE=45°E-a aBE挖掘图形特征:x-aa-a运用举例:1.正方形ABCD的边长为3,E、F分别是AB、BC边上的点,且∠EDF=45°.将△DAE绕点D逆时针旋转90°,得到△DCM.(1)求证:EF=FM(2)当AE=1时,求EF的长.E3.如图,梯形ABCD中,AD∥BC,∠C=90°,BC=CD=2AD=4,E为线段CD上一点,∠ABE=45°.(1)求线段AB的长;(2)动点P从B出发,沿射线..BE运动,速度为1单位/秒,设运动时间为t,则t为何值时,△ABP为等腰三角形;(3)求AE-CE的值.。
黑龙江哈尔滨2016中考试题数学卷(解析版)
一、选择题(共8小题,每小题3分,满分24分)1.﹣6的绝对值是( )A .﹣6B .6C .61D .61- 【答案】B.【解析】试题分析:负数的绝对值是它相反数,-6的绝对值是6.故选B.考点:绝对值.2.下列运算正确的是( )A .a 2•a 3=a 6B .(a 2)3=a 5C .(﹣2a 2b )3=﹣8a 6b 3D .(2a+1)2=4a 2+2a+1【答案】C.考点:1幂的运算;2完全平方公式.3.下列图形中,既是轴对称图形又是中心对称图形的是( )A .B .C .D .【答案】B【解析】试题分析:根据轴对称图形和中心对称图形的定义可发现只有B 符合要求,故选B. 考点:1中心对称图形;2轴对称图形.4.点(2,﹣4)在反比例函数xk y =的图象上,则下列各点在此函数图象上的是( ) A .(2,4) B .(﹣1,﹣8) C .(﹣2,﹣4) D .(4,﹣2)【答案】D.【解析】试题分析:同一反比例函数图像上点的坐标满足:横纵坐标乘积相等.只有D :4×(-2)=2×(-4).故选D.考点:反比例函数.5.五个大小相同的正方体搭成的几何体如图所示,其主视图是( )A .B .C .D .【答案】C.【解析】试题分析:主视图是从正面看到的图形.故选C.考点:三视图.6.不等式组⎩⎨⎧-≤->+32123x x 的解集是( ) A .x≥2 B .﹣1<x≤2 C .x≤2 D .﹣1<x≤1【答案】A.考点:一元一次不等式组.7.某车间有26名工人,每人每天可以生产800个螺钉或1000个螺母,1个螺钉需要配2个螺母,为使每天生产的螺钉和螺母刚好配套.设安排x 名工人生产螺钉,则下面所列方程正确的是( )A .2×1000(26﹣x )=800xB .1000(13﹣x )=800xC .1000(26﹣x )=2×800xD .1000(26﹣x )=800x【答案】C.【解析】试题分析:此题等量关系为:2×螺钉总数=螺母总数.据此设未知数列出方程即可.故选C. 考点:一元一次方程.8.如图,一艘轮船位于灯塔P 的北偏东60°方向,与灯塔P 的距离为30海里的A 处,轮船沿正南方向航行一段时间后,到达位于灯塔P 的南偏东30°方向上的B 处,则此时轮船所在位置B 处与灯塔P 之间的距离为( )A .60海里B .45海里C .320海里D .330海里【答案】D.考点:1方位角;2直角三角形.9.如图,在△ABC 中,D 、E 分别为AB 、AC 边上的点,DE∥BC,BE 与CD 相交于点F ,则下列结论一定正确的是( )A .AC AE AB AD = B .EC AE FC DF = C .BC DE DB AD = D .FCEF BF DF = 【答案】A.【解析】试题分析: ∵DE ∥BC ,∴ACAE AB AD =(平行线分线段成比例).故选A. 考点:平行线分线段成比例.10.明君社区有一块空地需要绿化,某绿化组承担了此项任务,绿化组工作一段时间后,提高了工作效率.该绿化组完成的绿化面积S (单位:m 2)与工作时间t (单位:h )之间的函数关系如图所示,则该绿化组提高工作效率前每小时完成的绿化面积是( )A .300m 2B .150m 2C .330m 2D .450m 2【答案】B.【解析】考点:一次函数.二、填空题(每小题3分,共计30分)11.将5700 000用科学记数法表示为 .【答案】5.7×106.【解析】试题分析:科学记数法的表示形式为a ×10n 的形式.其中1≤|a|<10,n 为整数,∴5700000=5.7×106.考点:科学计数法.12.函数122-=x y 中,自变量x 的取值范围是 . 【答案】21≠x 【解析】 试题分析:122-x 有意义只需满足2x-1≠0,即21≠x . 考点:函数自变量取值范围.13.计算18212-的结果是 . 【答案】22-.【解析】试题分析:2223221218212-=-⨯=- 考点:二次根式化简.14.把多项式ax 2+2a 2x+a 3分解因式的结果是 .【答案】a (x+a )2.考点:因式分解.15.一个扇形的圆心角为120°,面积为12πcm 2,则此扇形的半径为 cm .【答案】6.【解析】 试题分析: 设此扇形的半径为r ,则ππ123601202=⨯r ,解得r=6. 考点:扇形有关计算.16.二次函数y=2(x ﹣3)2﹣4的最小值为 .【答案】-4.【解析】试题分析:二次函数y=2(x ﹣3)2﹣4为顶点式,因此最小值为-4.考点:二次函数极值.17.在等腰直角三角形ABC 中,∠ACB=90°,AC=3,点P 为边BC 的三等分点,连接AP ,则AP 的长为 . 【答案】13或10.【解析】试题分析:①如图1,∵∠ACB=90°,AC=BC=3,∵PB=31BC=1,∴CP=2,∴1322=+=PC AC AP ,②如图2,∵∠ACB=90°,AC=BC=3,∵PC=31BC=1,∴1022=+=PC AC AP ,AP 的长为13或10.考点:1分类思想;2等腰直角三角形.18.如图,AB 为⊙O 的直径,直线l 与⊙O 相切于点C ,AD⊥l,垂足为D ,AD 交⊙O 于点E ,连接OC 、BE .若AE=6,OA=5,则线段DC 的长为 .【答案】4.【解析】考点:1切线;2矩形的性质;3勾股定理.19.一个不透明的袋子中装有黑、白小球各两个,这些小球除颜色外无其他差别,从袋子中随机摸出一个小球后,放回并摇匀,再随机摸出一个小球,则两次摸出的小球都是白球的概率为 . 【答案】41. 【解析】试题分析:列表得:∴P (两次摸出是白球)=41164=. 考点:概率.20.如图,在菱形ABCD 中,∠BAD=120°,点E 、F 分别在边AB 、BC 上,△BEF 与△GEF 关于直线EF 对称,点B 的对称点是点G ,且点G 在边AD 上.若EG⊥AC,AB=26,则FG 的长为 .【答案】63.【解析】考点:1菱形;2等边三角形.三、解答题(其中21-22题各7分,23-24题各8分,25-27题各10分,共计60分)21.先化简,再求代数式11132122+÷⎪⎭⎫ ⎝⎛---+a a a a 的值,其中a=2sin60°+tan45°. 【答案】11-a .33. 【解析】试题分析:先化简,再根据特殊角三角函数值求出a 得值,代入求值即可.试题解析:()()()()1113222111321211132122-=-+--=+⋅-++--=+÷⎪⎭⎫ ⎝⎛---+a a a a a a a a a a a a a .当a=2sin60°+tan45°=131232+=+⨯时,原式=331131=-+. 考点:1分式化简求值;2特殊角三角函数.22.图1、图2是两张形状和大小完全相同的方格纸,方格纸中每个小正方形的边长均为1,线段AC 的两个端点均在小正方形的顶点上.(1)如图1,点P 在小正方形的顶点上,在图1中作出点P 关于直线AC 的对称点Q ,连接AQ 、QC 、CP 、PA ,并直接写出四边形AQCP 的周长;(2)在图2中画出一个以线段AC 为对角线、面积为6的矩形ABCD ,且点B 和点D 均在小正方形的顶点上.【答案】(1)作图见解析;104;(2)作图见解析.【解析】考点:1轴对称;2勾股定理.23.23.海静中学开展以“我最喜爱的职业”为主题的调查活动,围绕“在演员、教师、医生、律师、公务员共五类职业中,你最喜爱哪一类?(必选且只选一类)”的问题,在全校范围内随机抽取部分学生进行问卷调查,将调查结果整理后绘制成如图所示的不完整的统计图,请你根据图中提供的信息回答下列问题:(1)本次调查共抽取了多少名学生?(2)求在被调查的学生中,最喜爱教师职业的人数,并补全条形统计图;(3)若海静中学共有1500名学生,请你估计该中学最喜爱律师职业的学生有多少名?【答案】(1)60;(2)9,图形见解析;(3)150.【解析】试题解析:(1)12÷20%=60,答:共调查了60名学生.(2)60﹣12﹣9﹣6﹣24=9,答:最喜爱的教师职业人数为9人.如图所示:(3)1501500606=⨯(名)答:该中学最喜爱律师职业的学生有150名. 考点:1条形统计图;2扇形统计图;3样本估计总体.24.已知:如图,在正方形ABCD 中,点E 在边CD 上,AQ⊥BE 于点Q ,DP⊥AQ 于点P .(1)求证:AP=BQ ;(2)在不添加任何辅助线的情况下,请直接写出图中四对线段,使每对中较长线段与较短线段长度的差等于PQ 的长.【答案】(1)证明见解析;(2)①AQ ﹣AP=PQ ,②AQ ﹣BQ=PQ ,③DP ﹣AP=PQ ,④DP ﹣BQ=PQ.【解析】考点:(1)正方形;(2)全等三角形的判定与性质.25.. 25.早晨,小明步行到离家900米的学校去上学,到学校时发现眼镜忘在家中,于是他立即按原路步行回家,拿到眼镜后立即按原路骑自行车返回学校.已知小明步行从学校到家所用的时间比他骑自行车从家到学校所用的时间多10分钟,小明骑自行车速度是步行速度的3倍.(1)求小明步行速度(单位:米/分)是多少;(2)下午放学后,小明骑自行车回到家,然后步行去图书馆,如果小明骑自行车和步行的速度不变,小明步行从家到图书馆的时间不超过骑自行车从学校到家时间的2倍,那么小明家与图书馆之间的路程最多是多少米?【答案】(1)60;(2)240.【解析】试题分析:(1)此题等量关系为:小明步行回家的时间=骑车返回时间+10分钟,根据等量关系列出方程求解即可;(2)此题等量关系为:小明步行时间=自行车时间×2,根据等量关系列出方程求解即可.试题解析:(1)设小明步行的速度是x 米/分,由题意得:103900900+=xx ,解得:x=60,经检验:x=60是原分式方程的解,答:小明步行的速度是60米/分;(2)小明家与图书馆之间的路程最多是y 米,根据题意可得:218090060⨯=y ,解得:y=240,答:小明家与图书馆之间的路程最多是240米.考点:1分式方程的应用;2一元一次方程的应用.26.26.已知:△ABC 内接于⊙O,D 是弧BC 上一点,OD⊥BC,垂足为H .(1)如图1,当圆心O 在AB 边上时,求证:AC=2OH ;(2)如图2,当圆心O 在△ABC 外部时,连接AD 、CD ,AD 与BC 交于点P ,求证:∠ACD=∠APB;(3)在(2)的条件下,如图3,连接BD ,E 为⊙O 上一点,连接DE 交BC 于点Q 、交AB 于点N ,连接OE ,BF 为⊙O 的弦,BF⊥OE 于点R 交DE 于点G ,若∠ACD﹣∠ABD=2∠BDN,AC=55,BN=53,tan∠ABC=21,求BF 的长.【答案】(1)证明见解析;(2)证明见解析;(3)24.【解析】试题解析:(1)在⊙O 中,∵OD ⊥BC ,∴BH=HC ,∵点O 是AB 的中点,∴AC=2OH ;(2)在⊙O 中,∵OD ⊥BC ,∴弧BD=弧CD ,∴∠PAC=∠BCD ,∵∠APB=∠PAC+∠ACP ,∠ACD=∠ACB+∠BCD ,∴∠ACD=∠APB ;(3)连接AO 延长交于⊙O 于点I ,连接IC ,AB 与OD 相交于点M ,连接OB ,∵∠ACD ﹣∠ABD=2∠BDN ,∴∠ACD ﹣∠BDN=∠ABD+∠BDN ,∵∠ABD+∠BDN=∠AND ,∴∠ACD ﹣∠BDN=∠AND ,∵∠ACD+∠ABD=180°,∴2∠AND=180°,∴∠AND=90°,∵tan ∠ABC=21,∴21=BN NQ ,∴253=NQ ,考点:1圆;2相似三角形;3三角函数;4直角三角形.27.27.如图,在平面直角坐标系中,O为坐标原点,抛物线y=ax2+2xa+c经过A(﹣4,0),B(0,4)两点,与x轴交于另一点C,直线y=x+5与x轴交于点D,与y轴交于点E.(1)求抛物线的解析式;(2)点P是第二象限抛物线上的一个动点,连接EP,过点E作EP的垂线l,在l上截取线段EF,使EF=EP,且点F在第一象限,过点F作FM⊥x轴于点M,设点P的横坐标为t,线段FM的长度为d,求d与t之间的函数关系式(不要求写出自变量t的取值范围);(3)在(2)的条件下,过点E作EH⊥ED交MF的延长线于点H,连接DH,点G为DH的中点,当直线PG经过AC的中点Q时,求点F的坐标.【答案】(1)4212+--=x x y ;(2)d=5+t ;(3)F ()65,64--. 【解析】试题解析:(1)由题意得⎩⎨⎧==+-40816c c a a ,解得⎪⎩⎪⎨⎧=-=421c a ,∴抛物线解析式为4212+--=x x y ;(2)分别过P 、F 向y 轴作垂线,垂足分别为A ′、B ′,过P 作PN ⊥x 轴,垂足为N ,当x=0时,y=5,∴E (0,5),∴OE=5,∵∠PEO+∠OEF=90°,∠PEO+∠EPA ′=90°,∴∠EPA ′=∠OEF ,∵PE=EF ,∠EA ′P=∠EB ′F=90°,∴△PEA ′≌△EFB ′,∴PA ′=EB ′=﹣t ,∴d=FM=OB ′=OE ﹣EB ′=5﹣(﹣t )=5+t ;(3)如图,由直线DE 的解析式为:y=x+5,∵EH ⊥ED ,∴直线EH 的解析式为:y=﹣x+5, ∴FB ′=A ′E=5﹣(﹣21t 2﹣t+4)=21t 2+t+1,∴F (21t 2+t+1,5+t ),∴点H的横坐标为:21t 2+t+1, y=﹣21t 2﹣t ﹣1+5=﹣21t 2﹣t+4,∴H (21t 2+t+1,﹣21t 2﹣t+4),∵G 是DH 的中点,∴G (2421,2121522+--+++-t t t t ),即G (41t 2+21t ﹣2,﹣41t 2﹣21t+2),∴PH ∥x 轴,∵DG=GH ,∴PG=GQ , ∴22141212-+=+-t t t ,解得t=6±,∵P 在第二象限,∴t <0,∴t=6-,∴F (()65,64--).考点:二次函数综合应用.。
2016年黑龙江省哈尔滨市中考全新体验数学试卷四附答案解析
2016年黑龙江省哈尔滨市中考全新体验数学试卷(四)一、选择题(每小题3分,共30分)1.下列各数中,最大的是()A.﹣2 B.﹣C.﹣3 D.﹣12.下列计算正确的是()A.3﹣1=﹣3 B.(a4)2=a8C.a6÷a2=a3D.﹣=3.如图,将“米”字正方形内涂上阴影,其中是中心对称图形,但不是轴对称图形的是()A. B.C. D.4.如图所示的几何体是由六个小正方体组合而成的,它的左视图是()A.B.C.D.5.对于函数y=,下列说法错误的是()A.这个函数的图象位于第一、第三象限B.这个函数的图象既是轴对称图形又是中心对称图形C.当x>0时,y随x的增大而增大D.当x<0时,y随x的增大而减小6.如图,在△ABC中,∠B=90°,AC=5,BC=3,则下列三角函数表示正确的是()A.sinA=B.cosA=C.tanA=D.tanB=7.小明“六、一”去公园玩投掷飞镖的游戏,投中国中阴影部分由奖品(飞镖盘被平均分成8份),小明一次投镖能获得奖品的概率是()A.B.C.D.8.我省2013年的快递业务量为1.4亿件,2014年位居全国第一,2015年快递业务量达4.5亿件,设2014年与2013年这两年的平均增长率为x,则下列方程正确的是()A.1.4(1+x)=4.5 B.1.4(1+2x)=4.5C.1.4(1+x)2=4.5 D.4(1+x)+1.4(1+x)2=4.59.如图,AC∥BD,AD与BC交于点E,过点E作EF∥BD,交线段AB于点F,则下列各式错误的是()A.=B.= C. +=1 D.=10.小亮家与姥姥家相距24km,小亮8:00从家出发,骑自行车去姥姥家,妈妈8:30从家出发,乘车沿相同路线去姥姥家,小亮和妈妈的行进路程S(km)与时间t(时)的函数图象如图所示,则下列说法中错误的有()①小亮骑自行车的平均速度是12km/h②妈妈比小亮提前0.5小时达到姥姥家③妈妈在距家12km处追上小亮④9:30妈妈追上小亮.A.1个 B.2个 C.3个 D.4个二、填空题(每小题3分,共30分)11.PM2.5指的是直径小于或等于0.0000025米的可入肺的颗粒灰尘,将数据0.0000025用科学记数法表示为.12.在函数y=中,自变量x的取值范围是.13.计算:×+=.14.分解因式:ax2﹣ay2=.15.不等式组的解集是.16.已知扇形的弧长为2πcm,圆心角为120°,则扇形的面积为cm2.17.如图,四边形ABCD为矩形,AB=4,BC=6,点E是BC边的中点,将△ABE沿直线AE折叠,点B 落在点F处,连接CF,则sin∠ECF的值为.18.湘潭盘龙大观园开园啦!其中杜鹃园的门票售价为:成人票每张50元,儿童票每张30元.如果某日杜鹃园售出门票100张,门票收入共4000元.那么当日售出成人票张.19.在△ABC中,AD为BC边上的高,AC=5,BC=6,△ABC的面积为9,AB边的长为.20.在△ABC中,AC=BC,BD⊥AC,交AC边的延长线于点D,点E在AB边上,EF⊥BD于点F,且EF=BD,若AC=,DF=1(BF>CD),则线段BE的长为.三、解答题(共60分,其中21、22题各7分,23、24题各8分,25、26、27题各10分)21.先化简,再求代数式1÷(+)的值,其中a=2sin45°﹣tan30°.22.图a、图b均为7×6的正方形网格,点A、B、C均在格点(小正方形的顶点)上,在图a、图b 中确定格点D,并画出一个以A、B、C、D为顶点的四边形,并满足以下要求:(1)图a所画的四边形中,∠B为钝角,且四边形是轴对称图形.(2)图b所画的四边形中,∠B为钝角,且四边形是中心对称图形.23.某区教研部门对本区八年级学生进行了一次随机抽样问卷调查,其中有这样一个问题:老师在课余上放手让学生提问和表达的频率()A.从不B.很少C.有时D.常常E.总是答题的学生在这个选项中只能选择一项,下面是根据学生对该问题的答卷情况绘制的两幅不完整的统计图.(1)求本次调查的学生的总数;(2)通过计算将条形统计图补充完整;(3)若全市共有32000名八年级学生,请你估计选择“有时”的学生有多少名.24.如图,已知点A、C在EF上,AD∥BC,DE∥BF,AE=CF.(1)求证:四边形ABCD是平行四边形;(2)直接写出图中所有相等的线段(AE=CF除外).25.为迎接“六一”儿童节,某儿童品牌玩具专卖店购进了A、B两种玩具,其中A类玩具的进价比B 玩具的进价每个多3元,经调查:用900元购进A类玩具的数量与用750元购进B类玩具的数量相(1)求A、B两类玩具的进价分别是每个多少元?(2)该玩具店共购进了A、B两类玩具共100个,若玩具店将每个A类玩具定价为30元出售,每个B类玩具定价25元出售,且全部售出后所获得利润不少于1080元,则商店至少购进A类玩具多少个?26.在△ABC中,AB=AC,以AB为直径的⊙O交BC边于点D,连接AD.(1)如图1,求证:CD=BD;(2)如图2,设⊙O交AC边于点E,过D点作DG⊥AB,垂足为点G,交⊙O于点F,连接DE、EF,求证:∠DEC=∠AEF;(3)在(2)的条件下,若tan∠CED=,OG=,求△AED的面积.27.在平面直角坐标系中,O为坐标原点,抛物线y=ax2﹣4ax﹣12a交x轴于点A、B(A左B右),交y轴于点C,直线y=﹣x﹣6a经过B点,交y轴于点D.(1)如图1,求a的值;(2)如图2,点P在第一象限内的抛物线上,过点A、B作x轴的垂线,分别交直线PD于点E、F,若PF=DE,求点P的坐标;(3)如图3,在(2)的条件下,点Q在第一象限内的抛物线上,过点Q作QE⊥DP于点E,交直线BD于点R,当QE=ER时,求点Q、R的坐标.2016年黑龙江省哈尔滨市中考全新体验数学试卷(四)参考答案与试题解析一、选择题(每小题3分,共30分)1.下列各数中,最大的是()A.﹣2 B.﹣C.﹣3 D.﹣1【考点】实数大小比较.【分析】依据几个负数比较大小,绝对值大的反而小进行比较即可.【解答】解:∵1<<2<3,∴﹣1>﹣>﹣2>﹣3.故选:D.2.下列计算正确的是()A.3﹣1=﹣3 B.(a4)2=a8C.a6÷a2=a3D.﹣=【考点】二次根式的加减法;幂的乘方与积的乘方;同底数幂的除法;负整数指数幂.【分析】利用二次根式加减运算法则以及幂的乘方运算法则和同底数幂除法运算法则、负整数指数幂的性质分别化简求出答案.【解答】解:A、3﹣1=,故此选项错误;B、(a4)2=a8,正确;C、a6÷a2=a4,故此选项错误;D、﹣无法计算,故此选项错误;故选:B.3.如图,将“米”字正方形内涂上阴影,其中是中心对称图形,但不是轴对称图形的是()A. B.C. D.【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A 、图形是中心对称轴图形,不是轴对称图形,此选项正确;B 、图形即是中心对称轴图形,也是轴对称图形,此选项错误;C 、图形即不是中心对称轴图形,也不是轴对称图形,此选项错误;D 、图形不是中心对称轴图形,是轴对称图形,此选项错误;故选A .4.如图所示的几何体是由六个小正方体组合而成的,它的左视图是( )A .B .C .D .【考点】简单组合体的三视图.【分析】左视图是从左边观看得到的图形,结合选项判断即可.【解答】解:从左边看得到的图形,有两列,第一列有两个正方形,第二列有一个正方形,故选C .5.对于函数y=,下列说法错误的是( )A .这个函数的图象位于第一、第三象限B .这个函数的图象既是轴对称图形又是中心对称图形C .当x >0时,y 随x 的增大而增大D .当x <0时,y 随x 的增大而减小【考点】反比例函数的性质.【分析】根据反比例函数的性质:对于反比例函数y=,当k >0时,在每一个象限内,函数值y 随自变量x 的增大而减小;当k <0时,在每一个象限内,函数值y 随自变量x 增大而增大解答即可.【解答】解:函数y=的图象位于第一、第三象限,A 正确;图象既是轴对称图形又是中心对称图形,B 正确;当x >0时,y 随x 的增大而减小,C 错误;当x <0时,y 随x 的增大而减小,D 正确,由于该题选择错误的,故选:C.6.如图,在△ABC中,∠B=90°,AC=5,BC=3,则下列三角函数表示正确的是()A.sinA=B.cosA=C.tanA=D.tanB=【考点】锐角三角函数的定义.【分析】先利用勾股定理求出AC的长,然后根据锐角三角函数的定义对各选项分别进行计算,再利用排除法求解即可.【解答】解:∵∠ACB=90°,AC=5,BC=3,∴AB===4,A、sinA==,故本选项正确;B、cosA==,故本选项错误.C、tanA==,故本选项错误;D、tanB==,故本选项错误;故选A.7.小明“六、一”去公园玩投掷飞镖的游戏,投中国中阴影部分由奖品(飞镖盘被平均分成8份),小明一次投镖能获得奖品的概率是()A.B.C.D.【考点】概率公式.【分析】用阴影部分的份数除以总份数即可求得获得奖品的概率.【解答】解:∵飞镖盘被平均分成8份分,阴影部分占3块,∴小明能获得奖品的概率是.故选B.8.我省2013年的快递业务量为1.4亿件,2014年位居全国第一,2015年快递业务量达4.5亿件,设2014年与2013年这两年的平均增长率为x,则下列方程正确的是()A.1.4(1+x)=4.5 B.1.4(1+2x)=4.5C.1.4(1+x)2=4.5 D.4(1+x)+1.4(1+x)2=4.5【考点】一元二次方程的应用.【分析】设2014年与2015年这两年的年平均增长率为x,根据题意可得,2013年的快速的业务量×(1+平均增长率)2=2015年快递业务量,据此列方程.【解答】解:设2014年与2015年这两年的年平均增长率为x,由题意得,1.4×(1+x)2=4.5.故选C9.如图,AC∥BD,AD与BC交于点E,过点E作EF∥BD,交线段AB于点F,则下列各式错误的是()A.=B.= C. +=1 D.=【考点】平行线分线段成比例.【分析】根据平行线分线段成比例定理一一判断即可.【解答】解:∵AC∥BD,EF∥BD,∴EF∥AC,∴=,=,故A、B正确,∵=,=,∴+=+===1,故C正确,∵=,而DE≠EB,故D错误,故选D.10.小亮家与姥姥家相距24km,小亮8:00从家出发,骑自行车去姥姥家,妈妈8:30从家出发,乘车沿相同路线去姥姥家,小亮和妈妈的行进路程S(km)与时间t(时)的函数图象如图所示,则下列说法中错误的有()①小亮骑自行车的平均速度是12km/h②妈妈比小亮提前0.5小时达到姥姥家③妈妈在距家12km处追上小亮④9:30妈妈追上小亮.A.1个 B.2个 C.3个 D.4个【考点】函数的图象.【分析】由图象可知,小亮骑完全程用了2小时,而妈妈用了1小时,二人的行程都是24千米可根据公式s=tv进行计算平均速度;两个图象的交点表示二人在同一时刻到达相同的位置,由图象可知9:00二人相遇,由此可分析其行程.【解答】解:①∵小亮到姥姥家用时10﹣8=2(小时),行程24千米,∴v==12km/h故:①正确.②∵妈妈9:30到家,而小亮10:00到家,∴妈妈比小亮提前半小时达到姥姥家,故:②正确.③∵二人在9:00相遇,此时小亮已骑车1小时而妈妈距出发0.5小时,∴妈妈的行程=×0.5=12(千米),小亮的行程==12(千米)∴妈妈在距家12km处追上小亮故:③正确.④∵图象中交点表示二人相遇,此时对应的时间t=9∴应该是9:00妈妈追上小亮的,即:④错误.故:选A二、填空题(每小题3分,共30分)11.PM2.5指的是直径小于或等于0.0000025米的可入肺的颗粒灰尘,将数据0.0000025用科学记数法表示为 2.5×10﹣6.【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.0000025=2.5×10﹣6.故答案为:2.5×10﹣6.12.在函数y=中,自变量x的取值范围是任意实数.【考点】函数自变量的取值范围.【分析】根据函数表达式是整式时,自变量可取任意实数解答.【解答】解:∵分母上没有自变量x,∴自变量x的取值范围是任意实数.故答案为:任意实数.13.计算:×+=3.【考点】二次根式的混合运算.【分析】先把化简,然后合并即可.【解答】解:原式=2+=3.故答案为3.14.分解因式:ax2﹣ay2=a(x+y)(x﹣y).【考点】提公因式法与公式法的综合运用.【分析】应先提取公因式a,再对余下的多项式利用平方差公式继续分解.【解答】解:ax2﹣ay2,=a(x2﹣y2),=a(x+y)(x﹣y).故答案为:a(x+y)(x﹣y).15.不等式组的解集是﹣1<x≤2.【考点】解一元一次不等式组.【分析】分别求出每个不等式的解集,再找到其公共部分即可.【解答】解:,由①得,x≤2;由②得,x>﹣1不等式组的解集为﹣1<x≤2.故答案为﹣1<x≤2.16.已知扇形的弧长为2πcm,圆心角为120°,则扇形的面积为3πcm2.【考点】扇形面积的计算;弧长的计算.【分析】首先运用弧长公式求出扇形的半径,运用扇形的面积公式直接计算,即可解决问题.【解答】解:设该扇形的弧长为λ,半径为μ,圆心角为α°,则,而α=120,解得:μ=3,∴该扇形的面积==3π(cm2),故答案为3π.17.如图,四边形ABCD为矩形,AB=4,BC=6,点E是BC边的中点,将△ABE沿直线AE折叠,点B落在点F处,连接CF,则sin∠ECF的值为.【考点】翻折变换(折叠问题);矩形的性质;解直角三角形.【分析】先求得BE的长,然后依据勾股定理可求得AE的长,然后证明EF=EC,从而得到∠EFC=∠FCE,由翻折的性质可知∠BEA=∠FEA,依据三角形的外角的性质可证明∠AEB=∠FCE,最后依据三角函数的定义求解即可.【解答】解:∵点E为BC的中点,∴BE=EC=3.在△ABE中,由勾股定理得:AE==5由翻折的性质可知:FE=BE,∠BEA=∠FEA,∴FE=EC.∴∠EFC=∠FCE.∵∠CFE+∠FCE=∠BEA+∠AEF,∴2∠ECF=2∠BEA.∴∠ECF=∠BEA.∴sinECF=sin∠BEA==.故答案为:.18.湘潭盘龙大观园开园啦!其中杜鹃园的门票售价为:成人票每张50元,儿童票每张30元.如果某日杜鹃园售出门票100张,门票收入共4000元.那么当日售出成人票50张.【考点】一元一次方程的应用.【分析】根据总售出门票100张,共得收入4000元,可以列出方程求解即可.【解答】解:设当日售出成人票x张,儿童票张,可得:50x+30=4000,解得:x=50.答:当日售出成人票50张.故答案为:50.19.在△ABC中,AD为BC边上的高,AC=5,BC=6,△ABC的面积为9,AB边的长为或.【考点】三角形的面积.【分析】分两种情况考虑:如图1所示,此时△ABC为锐角三角形,在直角三角形ABD与直角三角形ACD中,利用勾股定理求出AB的长即可;如图2所示,此时△ABC为钝角三角形,同理求出AB 的长即可.【解答】解:分两种情况考虑:∵AC=5,BC=6,△ABC的面积为9,∴AD=3,如图1所示,此时△ABC为锐角三角形,在Rt△ACD中,根据勾股定理得:DC==4;在Rt△ABD中,根据勾股定理得:AB=,如图2所示,此时△ABC为钝角三角形,在Rt△ACD中,根据勾股定理得:DC==4;在Rt△ABD中,根据勾股定理得:AB=,故答案为:或20.在△ABC中,AC=BC,BD⊥AC,交AC边的延长线于点D,点E在AB边上,EF⊥BD于点F,且EF=BD,若AC=,DF=1(BF>CD),则线段BE的长为.【考点】全等三角形的判定与性质;勾股定理.【分析】如图,设BF=x,CD=y,由BC2=CD2+BD2,得y2+(x+1)2=()2①,由EF∥AD,得=,得=②,解方程组即可解决问题.【解答】解:如图,设BF=x,CD=y,在Rt△BCD中,∵BC2=CD2+BD2,∴y2+(x+1)2=()2①,∵EF⊥DE,AD⊥BD,∴EF∥AD,∴=,∴=②,由①②解得,∴EF=3,BF=2,在Rt△BEF中,BE===.故答案为.三、解答题(共60分,其中21、22题各7分,23、24题各8分,25、26、27题各10分)21.先化简,再求代数式1÷(+)的值,其中a=2sin45°﹣tan30°.【考点】分式的化简求值;特殊角的三角函数值.【分析】原式括号中两项变形后,利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,利用特殊角的三角函数值求出a的值,代入计算即可求出值.【解答】解:原式=1÷==,当a=2×﹣×=﹣1时,原式=.22.图a、图b均为7×6的正方形网格,点A、B、C均在格点(小正方形的顶点)上,在图a、图b 中确定格点D,并画出一个以A、B、C、D为顶点的四边形,并满足以下要求:(1)图a所画的四边形中,∠B为钝角,且四边形是轴对称图形.(2)图b所画的四边形中,∠B为钝角,且四边形是中心对称图形.【考点】利用旋转设计图案;利用轴对称设计图案.【分析】(1)以BC的垂直平分线为对称轴,再确定出点A的对称点D的位置即可;(2)根据平行四边形是中心对称图形,取AD=BC确定出点D的位置即可.【解答】解:(1)点D如图①所示,(2)点D如图②所示;23.某区教研部门对本区八年级学生进行了一次随机抽样问卷调查,其中有这样一个问题:老师在课余上放手让学生提问和表达的频率()A.从不B.很少C.有时D.常常E.总是答题的学生在这个选项中只能选择一项,下面是根据学生对该问题的答卷情况绘制的两幅不完整的统计图.(1)求本次调查的学生的总数;(2)通过计算将条形统计图补充完整;(3)若全市共有32000名八年级学生,请你估计选择“有时”的学生有多少名.【考点】列表法与树状图法;用样本估计总体;扇形统计图;条形统计图.【分析】(1)用回答“从不”的人数除以它所占的百分比即可得到调查的总人数;(2)先计算出回答“有时”的人数,然后补全条形统计图;(3)利用样本估计总体,用320000乘以样本中“有时”的百分比即可.【解答】解:(1)本次调查的学生的总数=96÷3%=3200(人);(2)回答“有时”的人数为3200﹣96﹣320﹣736﹣1344=704(人),补全条形图为:(3)320000×=7040,所以估计选择“有时”的学生有704名.24.如图,已知点A、C在EF上,AD∥BC,DE∥BF,AE=CF.(1)求证:四边形ABCD是平行四边形;(2)直接写出图中所有相等的线段(AE=CF除外).【考点】平行四边形的判定与性质.【分析】(1)证△ADE≌△CBF,得AD=CB,从而得出四边形ABCD是平行四边形;(2)由全等三角形的性质和平行四边形的性质容易得出结果.【解答】(1)证明:∵AD∥BC,DE∥BF,∴∠E=∠F,∠DAC=∠BCA,∴∠DAE=∠BCF,在△ADE和△CBF中,,∴△ADE≌△CBF(ASA),∴AD=CB,∴四边形ABCD是平行四边形;(2)解:AD=BC、EC=AF、ED=BF、AB=DC;理由如下:∵△ADE≌△CBF,∴AD=BC,ED=BF,∵AE=CF,∴EC=AF,∵四边形ABCD是平行四边形,∴AB=DC.25.为迎接“六一”儿童节,某儿童品牌玩具专卖店购进了A、B两种玩具,其中A类玩具的进价比B 玩具的进价每个多3元,经调查:用900元购进A类玩具的数量与用750元购进B类玩具的数量相同(1)求A、B两类玩具的进价分别是每个多少元?(2)该玩具店共购进了A、B两类玩具共100个,若玩具店将每个A类玩具定价为30元出售,每个B类玩具定价25元出售,且全部售出后所获得利润不少于1080元,则商店至少购进A类玩具多少个?【考点】分式方程的应用;一元一次不等式的应用.【分析】(1)设B的进价为x元,则a的进价是(x+3)元;根据用900元购进A类玩具的数量与用750元购进B类玩具的数量相同这个等量关系列出方程即可.(2)设A玩具a个,则B玩具个,结合“玩具店将每个A类玩具定价为30元出售,每个B类玩具定价25元出售,且全部售出后所获得利润不少于1080元”列出不等式并解答.【解答】解:(1)设B的进价为x元,则a的进价是(x+3)元由题意得=,解得x=15,经检验x=15是原方程的解.所以15+3=18(元)答:A的进价是18元,B的进价是15元;(2)设A玩具a个,则B玩具个,由题意得:2a+10≥1080,解得a≥40.答:至少购进A40个.26.在△ABC中,AB=AC,以AB为直径的⊙O交BC边于点D,连接AD.(1)如图1,求证:CD=BD;(2)如图2,设⊙O交AC边于点E,过D点作DG⊥AB,垂足为点G,交⊙O于点F,连接DE、EF,求证:∠DEC=∠AEF;(3)在(2)的条件下,若tan∠CED=,OG=,求△AED的面积.【考点】圆的综合题.【分析】(1)由AB是⊙O的直径,根据直径所对的圆周角是直角,可得∠ADB=90°,然后由AB=AC,根据三线合一的性质,可证得CD=BD;(2)由DG⊥AB,可得=,即可得∠ABD=∠AEF,继而证得结论;(3)首先连接OD,易求得tan∠ADF==,再设AG=4x,DG=3x,在Rt△ODG中,可得()2+(3x)2=(4x﹣)2,即可求得AG,DG的长,然后再过点D作DH⊥CE于点H,求得AE的长,继而求得答案.【解答】(1)证明:∵AB是⊙O的直径,∴∠ADB=90°,∴AD⊥BC,∵AB=AC,∴CD=BD;(2)证明:∵AB⊥DF,∴=,∴∠ABD=∠AEF,∴∠ABD+∠AED=180°,∠DEC+∠AED=180°,∴∠DEC=∠ABD=∠AEF;(3)连接OD,由(2)知,∠DEC=∠AEF,∵∠AEF=∠ADF,∴∠DEC=∠ADF,∴tan∠ADF=tan∠DEC=,∵AB⊥DG,∴tan∠ADF==,设AG=4x,DG=3x,∵OG=,∴OD=OA=4x﹣,在Rt△ODG中,()2+(3x)2=(4x﹣)2,解得:x=,∴AG=,DG=4,过点D作DH⊥CE于点H,由(1)可知:AD平分∠BAC,∴DH=DG=4,AH=AG=,∵tan∠EDC=,∴EH=3,∴AE=﹣3=,=AE•DH=××4=.∴S△AED27.在平面直角坐标系中,O为坐标原点,抛物线y=ax2﹣4ax﹣12a交x轴于点A、B(A左B右),交y轴于点C,直线y=﹣x﹣6a经过B点,交y轴于点D.(1)如图1,求a的值;(2)如图2,点P在第一象限内的抛物线上,过点A、B作x轴的垂线,分别交直线PD于点E、F,若PF=DE,求点P的坐标;(3)如图3,在(2)的条件下,点Q在第一象限内的抛物线上,过点Q作QE⊥DP于点E,交直线BD于点R,当QE=ER时,求点Q、R的坐标.【考点】二次函数综合题.【分析】(1)用待定系数法求出a的值.(2)先确定出OD,再判断出BT=3PT,进而得出∠POL=45°,OP=m,即可;(3)由等角的余角相等判断出∠QDE=∠RDN,进而△QMD≌△DNR,再确定出直线解析式为y=﹣x+2即可.【解答】解:直线y=2kx﹣12k交x轴于点B,∴B(6,0),∵A(﹣2,0),B在抛物线上,∴,∴,(2)如图2,过点P作PL⊥x轴于L,过B做BT⊥OP,∵抛物线解析式为y=﹣x2+x+4,∴C(0,4),∴OC=4,∵D是OC中点,∴OD=2,∴D(0,2),tan∠ODB==3,∴tan∠OPB=tan∠ODB=3,∴BT=3PT,∵P(m,m)在第一象限,∴PL=OL=m,∴∠POL=45°,OP=m,∴BT=OT,∵OB=6,∴OT=BT=3PT=3,∴OP=4,∴m=4,∴P(4,4);此时点P在抛物线上,(3)如图3,连接PC,DQ,过点Q作QM⊥y轴,过R作RN⊥y轴,∵P(4,4),C(0,4),∴PC⊥y轴,∴∠PCD=∠PLB=90°,∵CD=BL=2,PC=PL=4,∴△PCD≌△PLB,∴∠CPD=∠LPB,PD=PB,∴∠DPB=∠DPL+∠LPB=∠DPL+∠CPD=90°,∴∠PDB=45°,∵QR⊥PD,QE=ER,∴DQ=DR,∴∠QDE=∠PDB=45°,∴∠QDR=90°,∴∠QDM+∠RDN=90°,∵∠QDM+∠DQM=90°,∴∠QDE=∠RDN,∵∠QMD=∠DNR=90°,∴△QMD≌△DNR,∴QM=DN,DM=NR,∵D(0,2)在直线y=2kx﹣12k上,∴﹣12k=2,∴k=﹣,∴直线解析式为y=﹣x+2,设R(n,﹣n+2),∴DM=NR=n,QM=DN=2﹣(﹣n+2)=n,Q(n,n+2),∵点Q在抛物线上,∴n+2=﹣(n)2+×n+4,∴n=3或n=﹣18(舍),∴Q(1,5),R(3,1)2017年3月14日。
2016哈尔滨中考数学试卷含答案
14.分解因式:a +ab -2a b=.
15.不等式组 的解集是.
16.如图所示,测量河宽AB(假设河的两岸平行),在C点测得∠ACB=30°,D点测得∠ADB=60°,又CD=60m,则河宽AB为米.
17.一个扇形的圆心角为60°,它所对的弧长为2 cm,则这个扇形的半径为cm.
(1)如图1,求证:CF=2EO;
(2)如图2,连接CE,在不添加其它线的条件下,直接写出图中的等腰三角形(等腰直角三角形除外)
25.(本题10分)
电器商场销售A、B两种型号计算器,两种计算器的进货价格分别为每台30元、40元.商场销售5台A型号和1台B型号计算器,可获利润76元;销售6台A型号和3台B型号计算器,可获利润120元.
(1)在图1中,画直角三角形ABC,点C在小正方形的顶点上,且△ABC的面积为5;
(2)在图2中,画△ABE,点E在小正方形的顶点上,△ABE有一个内角为45°,且面积为3.
23.(本题8分)
某学校为了解学生的课外阅读情况,王老师随机抽查部分学生,并对其暑假期间的课外阅读量进行统计分析,绘制成如图所示但不完整的统计图.已知抽查的学生在暑假期间阅读量为2本的人数占抽查总人数的20%,根据所给出信息,解答下列问题:
(3)在(2)的条件下,过B′作B′H⊥PF于H,点Q在OD下方的抛物线上,连接AQ与B′H交于点M,点G在线段AM上,使∠HPN+∠DAQ =135°,延长PG交AD于N.若AN+ B′M= ,求点Q的坐标.
答案
1、D 2、A 3、B 4、D 5、B 6、B 7、C 8、C 9、C 10、C
11、1.25× 12、X≠—413、 14、 15、-1≤X<316、
2016年黑龙江省哈尔滨市中考数学试卷含答案
2016年黑龙江省哈尔滨市中考数学试卷一、选择题(本题共10小题,每小题3分,共30分)1.-6的绝对值是( )A .-6B .6C .61D .-61 2.下列运算正确的是( )A .a 2 • a 3=a 6B .(a 2)3=a 5C .(-2a 2b )3 = -8a 6b 3D .(2a +1)2=4a 2+2a +13.下列图形既是轴对称图形,又是中心对称图形的是( )A B C D4.若点(2,-4)在反比例函数y =xk 的图像上,则下列各点在此函数图像上的是( ) A .(2,4) B .(-1,-8) C .(-2,-4) D .(4,-2)5.五个大小相同的正方体搭成的几何体如图,其主视图是( )(第5题图)A B C D6.不等式组⎩⎨⎧-≤->+32123x x ,的解集是( ) A .x ≥2 B .-1<x ≤2 C .x ≤2 D .-1<x ≤17.某车间有26名工人,每人每天可以生产800个螺钉或1 000个螺母,1个螺钉需要配 2个螺母,为使每天生产的螺钉和螺母刚好配套.设安排x 名工人生产螺钉,则下面所列方程正确的是( )A .2×1 000(26-x )=800xB .1 000(13-x )=800xC .1 000(26-x )=2×800xD .1 000(26-x )=800x8.如图,一艘轮船位于灯塔P 的北偏东60°方向,与灯塔P 的距离为30海里的A 处,轮船沿正南方向航行一段时间后,到达位于灯塔P 的南偏东30°方向上的B 处,则此时轮船所在位置B 处与灯塔P 之间的距离为( )(第8题图)A .60海里B .45海里C .203海里D .303海里9.如图,在△ABC 中,D ,E 分别为AB ,AC 边上的点,DE ∥BC ,BE 与CD 相交于点F ,则下列结论一定正确的是( )(第9题图)A .AB AD =AC AE B .FC DF =EC AE C .DB AD =BC DE D .BF DF =FCEF 10.明君社区有一块空地需要绿化,某绿化组承担了此项任务,绿化组工作一段时间后,提高了工作效率.该绿化组完成的绿化面积S (单位:m 2)与工作时间t (单位:h )之间的函数关系如图,则该绿化组提高工作效率前每小时完成的绿化面积是( )(第10题图)A .300 m 2B .150 m 2C .330 m 2D .450 m 2二、填空题(本题共10小题,每小题3分,共30分)11.将5 700 000用科学记数法表示为 .12.在函数y =12 x x 中,自变量x 的取值范围是 . 13.计算221-18的结果是 . 14.把多项式ax 2+2a 2x +a 3分解因式的结果是 .15.若一个扇形的圆心角为120°,面积为12π cm 2,则此扇形的半径为 cm .16.二次函数y =2(x -3)2-4的最小值为 .17.在等腰直角三角形ABC 中,∠ACB =90°,AC =3,点P 为边BC 的三等分点,连接AP ,则AP 的长为 .18.如图,AB 为⊙O 的直径,直线l 与⊙O 相切于点C ,AD ⊥l ,垂足为D ,AD 交⊙O 于点E ,连接OC ,BE .若AE =6,OA =5,则线段DC 的长为 .(第18题图) 19.一个不透明的袋子中装有黑、白小球各两个,这些小球除颜色外无其他差别,从袋子中随机摸出一个小球后,放回并摇匀,再随机摸出一个小球,则两次摸出的小球都是白球的概率为 .20.如图,在菱形ABCD 中,∠BAD =120°,点E ,F 分别在边AB ,BC 上,△BEF 与△GEF 关于直线EF 对称,点B 的对称点是点G ,且点G 在边AD 上.若EG ⊥AC ,AB =62,则FG 的长为 .(第20题图)三、解答题(本题共7小题,共60分)21.(7分)先化简,再求代数式(12+a -1322--a a )÷11+a 的值,其中a =2sin 60°+tan 45°. 22.(7分)图①、图②是两张形状和大小完全相同的方格纸,方格纸中每个小正方形的边长均为1,线段AC 的两个端点均在小正方形的顶点上.(1)如图①,点P 在小正方形的顶点上,在图①中作出点P 关于直线AC 的对称点Q ,连接AQ ,QC ,CP ,P A ,并直接写出四边形AQCP 的周长;(2)在图②中画出一个以线段AC 为对角线、面积为6的矩形ABCD ,且点B 和点D 均在小正方形的顶点上.① ②(第22题图) 23.(8分)海静中学开展以“我最喜爱的职业”为主题的调查活动,围绕“在演员、教师、医生、律师、公务员共五类职业中,你最喜爱哪一类?(必选且只选一类)”的问题,在全校范围内随机抽取部分学生进行问卷调查,将调查结果整理后绘制成如图所示的不完整的统计图,请你根据图中提供的信息回答下列问题:(1)本次调查共抽取了多少名学生?(2)求在被调查的学生中,最喜爱教师职业的人数,并补全条形统计图.(3)若海静中学共有1 500名学生,请你估计该中学最喜爱律师职业的学生有多少名.(第23题图)24.(8分)如图,在正方形ABCD 中,点E 在边CD 上,AQ ⊥BE 于点Q ,DP ⊥AQ 于点P .(1)求证:AP =BQ .(2)在不添加任何辅助线的情况下,请直接写出图中四对线段,使每对中较长线段与较短线段长度的差等于PQ 的长.(第24题图) 25.(10分)早晨,小明步行到离家900米的学校去上学,到学校时发现眼镜忘在家中,于是他立即按原路步行回家,拿到眼镜后立即按原路骑自行车返回学校.已知小明步行从学校到家所用的时间比他骑自行车从家到学校所用的时间多10分钟,小明骑自行车速度是步行速度的3倍.(1)求小明步行的速度(单位:米/分)是多少.(2)下午放学后,小明骑自行车回到家,然后步行去图书馆,如果小明骑自行车和步行的速度不变,小明步行从家到图书馆的时间不超过骑自行车从学校到家时间的2倍,那么小明家与图书馆之间的路程最多是多少米?26.(10分)已知:△ABC 内接于⊙O ,D 是BC 上一点,OD ⊥BC ,垂足为H .(1)如图①,当圆心O 在AB 边上时,求证:AC =2OH .(2)如图②,当圆心O 在△ABC 外部时,连接AD ,CD ,AD 与BC 交于点P ,求证:∠ACD =∠APB .(3)在(2)的条件下,如图③,连接BD ,E 为⊙O 上一点,连接DE 交BC 于点Q 交AB 于点N ,连接OE ,BF 为⊙O 的弦,BF ⊥OE 于点R 交DE 于点G ,若∠ACD - ∠ABD =2∠BDN ,AC =55,BN =35,tan ∠ABC =21,求BF 的长.①②③(第26题图)27.(10分)如图,在平面直角坐标系中,O为坐标原点,抛物线y=ax2+2xa+c经过A(-4,0),B(0,4)两点,与x轴交于另一点C,直线y=x+5与x轴交于点D,与y轴交于点E.(1)求抛物线的表达式;(2)点P是第二象限抛物线上的一个动点,连接EP,过点E作EP的垂线l,在l上截取线段EF,使EF=EP,且点F在第一象限,过点F作FM⊥x轴于点M,设点P的横坐标为t,线段FM的长度为d,求d与t之间的函数关系式(不要求写出自变量t的取值范围);(3)在(2)的条件下,过点E作EH⊥ED交MF的延长线于点H,连接DH,点G为DH 的中点,当直线PG经过AC的中点Q时,求点F的坐标.(第27题图)参考答案一、1.B 【分析】-6的绝对值是6.故选B.2.C 【分析】A.a2 •a3=a5,故错误;B.(a2)3 = a6,故错误;C.(-2a2b)3 = -8a6b3,故正确;D.(2a+1)2=4a2+4a+1,故错误.故选C.3.D 【分析】A.是轴对称图形,但不是中心对称图形,故不符合题意;B.是中心对称图形,不是轴对称图形,故不符合题意;C.是轴对称图形,不是中心对称图形,故不符合题意;D .既是轴对称图形,又是中心对称图形,故符合题意.故选D .4.D 【分析】∵点(2,-4)在反比例函数y =xk 的图像上,∴k =2×(-4)=-8.∵2×4=8,-1×(-8)=8,-2×(-4)=8,4×(-2)=-8,∴点(4,-2)在反比例函数y =x k 的图像上.故选D .5.C 【分析】从正面看第一层是三个小正方形,第二层左边是两个小正方形.故选C .6.A 【分析】解不等式x +3>2,得x >-1.解不等式1-2x ≤-3,得x ≥2.∴不等式组的解集是x ≥2.故选A .7.C 【分析】设安排x 名工人生产螺钉,则(26-x )名工人生产螺母.由题意,得1 000(26-x )=2×800x .故选C .8.D 【分析】由题意,得∠B =30°,AP =30海里,∠APB =90°,故AB =2AP =60(海里). 则此时轮船所在位置B 处与灯塔P 之间的距离为BP =AP AB -22=303(海里).故选D .9.A 【分析】A .∵DE ∥BC ,∴AB AD =AC AE ,故正确;B .∵DE ∥BC ,∴△DEF ∽△CBF ,∴FC DF =FB EF ,故错误;C .∵DE ∥BC ,∴AB AD =BCDE ,故错误;D .∵DE ∥BC ,∴△DEF ∽ △CBF ,∴FC DF =BFEF ,故错误.故选A . 10.B 【分析】设直线AB 的表达式为y =kx +b ,则⎩⎨⎧=+=+,,1650512004b k b k 解得⎩⎨⎧-==.600450b k ,故直线AB 的表达式为y =450x -600.当x =2时,y =450×2-600=300,300÷2=150(m 2).故该绿化组提高工作效率前每小时完成的绿化面积是150 m 2.故选B .二、11. 5.7×10612.x ≠21 【分析】由题意,得2x -1≠0,解得x ≠21. 13.-22 【分析】原式=2×22-32=2-32= -22. 14.a (x +a )2 【分析】ax 2+2a 2x +a 3=a (x 2+2ax +a 2)=a (x +a )2.15. 6 【分析】设该扇形的半径为R ,则360π1202R ⨯=12π,解得R =6.即此扇形的半径为 6 cm .16.-4 【分析】二次函数y =2(x -3)2-4的开口向上,顶点坐标为(3,-4),所以最小值为-4.17.13或10 【分析】如答图①,由题意知,∠ACB =90°,AC =BC =3.∵PB =31BC =1,∴CP =2,∴AP =PC AC +22=13.如答图②,由题意知,∠ACB =90°,AC =BC =3.∵PC = 31BC =1,∴AP =PC AC +22=10.① ②(第17题答图) 18. 4 【分析】如答图,OC 交BE 于点F .∵AB 为⊙O 的直径,∴∠AEB =90°.∵AD ⊥l , ∴BE ∥CD .∵CD 为⊙O 的切线,∴OC ⊥CD ,∴OC ⊥BE ,∴四边形CDEF 为矩形,∴CD =EF . 在Rt △ABE 中,BE =AE AB -22=61022-=8.∵OF ⊥BE ,∴BF =EF =4,∴CD =4.(第18题答图)19.41 【分析】列表如下:黑1 黑2白1 白2 黑1 黑1黑1 黑1黑2黑1白1 黑1白2 黑2 黑2黑1 黑2黑2黑2白1 黑2白2 白1 白1黑1 白1黑2白1白1 白1白2 白2 白2黑1 白2黑2 白2白1白2白2 ∵由表格可知,放回地摸取两次共有16种等可能的结果,其中两次摸出的小球都是白球的结果有4种,∴两次摸出的小球都是白球的概率为164=41. 20.36 【分析】∵四边形ABCD 是菱形,∠BAD =120°,∴AB =BC =CD =AD ,∠CAB =∠CAD =60°,∴△ABC ,△ACD 是等边三角形.∵EG ⊥AC ,∴∠AEG =∠AGE =30°. ∵∠B =∠EGF =60°,∴∠AGF =90°,∴FG ⊥BC ,∴2S △ABC =BC • FG ,即2×43×(62)2=62FG ,解得FG =36.三、21.解:原式=[12+a -)1)(1(32-+-a a a ] •(a +1)=)1)(1(32)1(2-++--a a a a •(a +1)=)1)(1(3222-++--a a a a •(a +1)=)1)(1(1-+a a •(a +1)=11-a . 当a =2sin 60°+tan 45°=2×23+1=3+1时,原式=1131-+=33. 22.解:(1)如答图①,四边形AQCP 即为所求,它的周长为4×10=410.(2)如答图②,四边形ABCD 即为所求.① ②(第22题答图) 23.解:(1)共调查了12÷20%=60(名)学生.(2)最喜爱教师职业的人数为60-12-9-6-24=9.补全条形统计图如答图.(第23题答图)(3)606×1 500=150(名). 答:估计该中学最喜爱律师职业的学生有150名.24.(1)证明:∵四边形ABCD 是正方形,∴AD =BA ,∠BAD =90°,即∠BAQ +∠DAP =90°.∵DP ⊥AQ ,∴∠ADP +∠DAP =90°,∴∠BAQ =∠ADP .∵AQ ⊥BE 于点Q ,DP ⊥AQ 于点P ,∴∠AQB =∠DP A =90°,∴△AQB ≌△DP A (AAS ),∴AP =BQ .(2)解:①AQ -AP =PQ ,②AQ -BQ =PQ ,③DP -AP =PQ ,④DP -BQ =PQ .25.解:(1)设小明步行的速度是x 米/分. 由题意,得103900900+=xx , 解得x =60.经检验,x =60是原分式方程的解.答:小明步行的速度是60米/分.(2)设小明家与图书馆之间的路程是y 米. 根据题意,得900260180y ≤⨯, 解得y ≤600.答:小明家与图书馆之间的路程最多是600米.26.(1)证明:∵OD ⊥BC ,∴由垂径定理可知,点H 是BC 的中点.∵点O 是AB 的中点,∴OH 是△ABC 的中位线,∴AC =2OH .(2)证明:∵OD ⊥BC ,∴由垂径定理可知,BD CD =.∴∠BAD =∠CAD .∵AC AC =,∴∠ABC =∠ADC ,∴180°-∠BAD -∠ABC =180°-∠CAD -∠ADC ,即∠ACD =∠APB .(3)解:如答图,连接AO 延长交⊙O 于点I ,连接IC ,AB 与OD 相交于点M . ∵∠ACD -∠ABD =2∠BDN ,∴∠ACD -∠BDN =∠ABD +∠BDN .∵∠ABD +∠BDN =∠AND ,∴∠ACD -∠BDN =∠AND .∵∠ACD +∠ABD =180°,∴∠ABD +∠BDN =180° -∠AND ,∴∠AND =180° -∠AND ,∴∠AND =90°.∵tan ∠ABC =21,BN =35,∴NQ =253. ∴由勾股定理,得BQ =215. ∵∠BNQ =∠QHD =90°,∴∠ABC =∠QDH .∵OE =OD ,∴∠OED =∠QDH .∵∠ERG =90°,∴∠OED =∠GBN ,∴∠GBN =∠ABC .∵AB ⊥ED ,∴BG =BQ =215,GN =NQ =253. ∵AI 是⊙O 的直径,∴∠ACI =90°.∵tan ∠AIC =tan ∠ABC =21, ∴IC AC =21,∴IC =105. 由勾股定理,得AI =25.连接OB ,设QH =x .∵tan ∠ABC =tan ∠ODE =21, ∴HD QH =21,∴HD =2x , ∴OH =OD -HD =225-2x ,BH =BQ +QH =215+x . 由勾股定理,得OB 2 =BH 2+OH 2, 即(225)2=(215+x )2+(225-2x )2, 解得x =29或x =25. 当QH =29时,QD =5QH =259, ∴ND =QD +NQ =65,∴MN =35,MD =15.∵MD >225,∴QH =29不符合题意,舍去.当QH =25时,QD =5QH =255, ∴ND =NQ +QD =45.由垂径定理,得ED =105,∴GD =GN +ND =2511,∴EG =ED -GD =259. ∵tan ∠OED =21,∴ER RG =21, ∴EG =5RG ,∴RG =29, ∴BR =RG +BG =12,∴由垂径定理可知,BF =2BR =24.(第26题答图) 27.解:(1)把点A (-4,0),B (0,4)的坐标分别代入y =ax 2+2xa +c ,得⎩⎨⎧==+-,,40816c c a a ,解得⎪⎩⎪⎨⎧=-=.421c a , 所以抛物线的表达式为y =-21x 2-x +4. (2)如答图①,分别过点P ,F 向y 轴作垂线,垂足分别为A′,B′,过点P 作PN ⊥x 轴,垂足为N .由直线DE 的表达式为y =x +5,得E (0,5),∴OE =5.∵∠PEO +∠OEF =90°,∠PEO +∠EP A′=90°,∴∠EP A′=∠OEF .又∵PE =EF ,∠EA′P =∠EB′F =90°,∴△PEA′ ≌△EFB′,∴P A′ =EB′ =-t .∴d =FM =OB′ =OE -EB′ =5-(-t )=5+t .(3)∵EH ⊥ED ,∴直线EH 的表达式为y =-x +5,∴FB′ =A′E =5-(-21t 2-t +4)=21t 2+t +1, ∴F (21t 2+t +1,5+t ), ∴点H 的横坐标为21t 2+t +1,纵坐标为-21t 2-t -1+5=-21t 2-t +4, ∴H (21t 2+t +1,-21t 2-t +4). 如答图②,连接PH 交y 轴于点A′,则点P 与H 的纵坐标相等, ∴PH ∥x 轴,∴∠HPQ =∠PQD ,∠PGH =∠QGD .∵DG =GH ,∴△PGH ≌△QGD ,∴PH =DQ .∵A (-4,0),C (2,0),∴Q (-1,0).∵D (-5,0),∴DQ =PH =4,即-t +21t 2+t +1=4,解得t =±6. ∵点P 在第二象限,∴t <0,∴t =-6.∴F (4-6,5-6).① ②(第27题答图)。
黑龙江省哈尔滨市香坊区2016届中考数学调研测试题(三)(扫描版)
黑龙江省哈尔滨市香坊区2016届中考数学调研测试题(三)2016年香坊区初中毕业学年调研测试(三)数学试题参考答案及评分标准一、选择题:1.A 2.B 3.B 4.A 5.C 6.B 7.B 8.C 9.D 10.C二、填空题:11.9106.1-⨯; 12. x ≠-23; 13.32; 14.-y (y-2x )²; 15. X >4;16.6π; 17.1; 18.9; 19.75°或15°; 20.65. 三、解答题:21.解:原式=)2(2ab ab a a b a --÷-=a b ab a a b a 222+-÷-=))(2b a a a b a -⋅-=ba -1……………………………3分 ∵a =1332+⨯=332+1, b =222⨯=1…………………………………………2分∴原式=113321-+=3321=23 ……………………………………………………2分22. (1)45度 ………………………………………………3分 (2)画图正确 ………………………………………… 2分sin (α-β)=552……………………………… 2分23.(1)12;8%;………………………………………2分 画图正确 …………………………………………… 1分 (2)12%+24%+32%=68%; ……2分 (3)1000×(8%+4%)=120(户)………………2分 答:根据调查数据估计,该小区月均用水量超过20t 的家庭大约有120户……………………………………………1分24.(1)证明:∵CD=CE ∴∠CED=∠D ……………………………………………1分 ∵∠CED=∠AEH ∴∠AE H=∠D又∵DH 垂直平分AB ∴AE=BE,HE ⊥AB∴∠AEH=∠BEH ,∠AHE=90° ∴∠BEH=∠D ∴CD ∥BE …………………………………1分 又∵∠ABC=90°∴∠ABC=∠AHE ∴ED ∥BC ……………………………………………1分 ∴四边形BCDE 是平行四边形 ……………………………………………………………1分 (2)答:DF ⊥AC …………………………1分理由:∵BD 平分∠ABC ∴∠CBD=∠FBD 又∵BF=BC∴△BCD ≌△BFD ∴∠BFD=∠BCD ………………………………………………………1分 由(1)知,四边形BCDE 是平行四边形 ∴∠BED=∠BCD ∴∠BFD=∠BED∴∠AFG=∠BEH ∴∠AFG=∠AEH ……………………………………………………1分αDEBAC 12在△AFG 中,∠A+∠AFG =∠A+∠AEH=90°∴∠AGF=90° …………………………1分 ∴DF ⊥AC25.(1)解:设乙工程队每天能完成绿化的面积为x 平方米.根据题意得xx 40042400=+…………………………………………………2分 解得x=50………………………………………………………………………1分经检验x=50是原分式方程的解………………………………………………1分 甲:50×2=100(平方米)…………………………………………………1分 答:甲、乙两工程队每天能完成绿化的面积分别是100平方米,50平方米.(2)解:设应安排甲队工作a 天.根据题意得84.025.0501001800≤+⨯-a a………………………………………3分解得:a ≥10…………………………………………………………………………1分 答:至少应安排甲队工作10天. ………………………………………………………1分26.(1)连接OA 、CD 交于K∵AD、AC 是⊙O 的切线 ∴AD=AC,OA 平分∠CAD…………1分 ∴AK⊥CD ,∠CAD=2∠DAK ∴∠AKD=90° ∵CE 是⊙O 的直径 ∴∠CDE=90°∴∠CDE=∠AKD=90° ∴DE∥AO…………………1分 ∴∠BDE=∠DAK ∴∠CAD=2∠BDE…………1分 (2)连接OA 、 CD 交于k∵AD=AC,AC=EC ∴AD=EC∵CE=2OE ∴AD=2OE …………………1分∵DE∥AO ∴BD BEAD OE=…………1分 ∴BD=2BE …………………………………………1分 (3)∵AC 是⊙O 的切线 ∴∠ACB=90°∴BD=2BE ,BE=556 ∴BD=553设CE=x ,则AD=AC=x ,AB=AD+BD=x +553, BC=CE+BE=x+556, 在Rt△ACB 中,222AC BC AB += ∴2225555((x x x += 解得 1255556x x ==(舍) 255,105 KBEODK BE ODNH FBE ODM∵DH∥AC ∴∠BHD=∠BCA=90° ∵s in∠B=DH AC BD AB = cos∠B=BH BCBD AB=∴DH=5,BH=453 ∴CH=25, ∴tan ∠CDH=CHDH=2 连接CD 、CF 、CM 在Rt△CHD 中,225CD DH CH =+= …………………………1分∵∠BHD=90° ∴CE⊥DF ∴弧CD=弧CF ∴CD=CF=5,∠CMD=∠CDF∵四边形CDFM 是圆内接四边形 ∴∠CDF+∠C MF=180°∵∠CMG+∠CMF=180° ∴∠CMG=∠CDF ∴∠CMG=∠CMD…………1分 过C 作CN⊥DM 于N∵CN⊥DM,CN⊥DM ∴∠CNM=∠CND=∠CGM=90° 又∵CM=CM ∴△CNM≌△CGM ∴CN=CG,MN=MG ………………………………1分 ∴Rt△CND≌Rt△CGF ∴DN=FG∵FM=13FG ∴设FM=a ,FG=3a 则MG=2a ∵tan∠CMG=tan∠CDH=CGMG=2 ∴CG=4a在Rt△CGF 中,222CG FG CF +=∴222(4)(3)5a a += ∴121,1a a ==-(舍) …………1分∴MG=2,FG=3∴DM=DN+MN=FG+MG=5……………………………………………1分 27.(1)23(01)2a =- …………1分 解得a=32∴抛物线的的解析式23(1)2y x =-………………………………1分 (2)由33y x b =+可得D (0,b )C (3b - ,0) ∴OD=b,OC=3b 在Rt △COD 中,t an∠OCD=33OD OC = ∴∠OCD=30°…………1分 ∵CD 垂直AE ∴∠CAE=60°过E 作EF ⊥AC 于F在Rt △AFE 中,设AF=m ,则3EF m =xyFEBDCA O∴(1)E m -代入21)y x =-中,解得122,0m m ==(舍)…………1分 ∴(1,E -………………………………………………………1分 (3)连接CE∵CD 垂直平分AE ∴CE=CA ∴CD 平分∠ECA∴∠ACE=2∠OCD=60° ,∠ECD=∠OCD=30° ∴△ACE 为等边三角形, ∴CE=A E ,∠AEC=60°过点A 作AH ⊥PQ 于H ,延长AH 交PE 于G ∵AH ⊥PQ ∴∠PHG=∠PHA=∠AHQ=90°∵PQ∥AC ∴∠OAH=∠PHA =90° ∴∠EAG=90°-∠CAE=30°∴∠EAG=∠ECQ ∵∠CEA=∠PEQ=60°∴∠CEA -∠AEQ=∠PEQ -∠AEQ ∴∠CEQ=∠AEG ∴QCE ∆≌GAE ∆ ∴CQ=AG ,………………1分 过Q 作QM ⊥AC 于M∵QM ⊥AC ∴∠QMA=∠CMQ=90°,∴∠OAH=∠AMQ=∠AHQ=90° ∴四边形AHQM为矩形 ∴MQ=AH 在Rt△CMQ中,∠MCQ=30°,MQ=12CQ ∴AH=12AG ∴AH=GH 又PH ⊥AG ∴PG=PA ∴∠APH=∠GPH…………1分过E 作EF⊥AC 于F ,交PQ 于N ∵EF ⊥AC ∴∠EFA=90°∵PQ∥AC ∴∠PNE=∠EFA=90°在Rt△AHP 中,21)2tan 1)1t AH APH tPH t -∠===-- …………1分 在Rt△PNE 中,tan ENEPN PN∠=∴tan tan EN PN GPH PN APH =⋅∠=⋅∠ ∴21)(1)1)t t t -=+-…………1分 解得12t =,21t =-(舍) ∴2t =…………1分。