2018年必修一-函数图象的平移和翻折
高中数学人教B版必修一课件2.x函数图像变换
(2)不能将解析式化简为熟悉的函数时,那么 就先分析函数的定义域、值域、与坐标轴交 点、奇偶性、单调性等,从总体把握曲线的 范围和变化趋势,然后列表描点作图。
函数图像变换:
1,平移变换
(1) y=f(x) y f(x+a)
上加下减
例:画出y 1 +3 的函数图像 x1
例:画出y 1 3 的函数图像 x1
2,对称变换 (1) y=f(x) y f(x) ;将图像关于x轴作对称
பைடு நூலகம்
例,由y= 1 得y= 1
x+1
x+1
(2) y=f(x) y f( x) ; 将图像关于y轴作对称
a 0时,左移| a | 个单位 a<0时,右移| a | 个单位
左加右减
例,由y=x2 画出y ( x 2)2的函数图像
例,由y=x2 画出y ( x 2)2的函数图像
练习:画出y 1 的函数图像 x+3
(2) y=f(x) y f(x)+b
b 0时,上移| b | 个单位 b<0时,下移| b | 个单位
高中数学课件
灿若寒星整理制作
函数图象变换 什么是函数图象?
点的集合{(x,y)|y=f(x),x∈A}叫做f(x)的图象。
函数图象能够形象直观地刻画出变量y与x的 关系;定义域、值域、单调性,奇偶性等在 图象上一目了然。
所以,函数图象是研究函数的重要工具, 掌握函数图象是学习函数的捷径。
通过分析函数的特征画函数图象:
(2) y=f(x) y | f(x)| ;
高一必修1-函数图象的变换ppt课件.ppt
练习: 将直线y=2x+1向左平移5个单位,
得到的函数为__y_=_2_x+_1_1_______
左右平移时,发生变化的仅是x本身,如果x的系 数不是1时,需要把系数提出来,再进行变换.
(6)y=f(|x|)的图象:可先作出y=f(x)当x≥0 时的图象,再利用_偶__函__数__的__图__象__关__于__y_轴__对__称, 作出y=f(x)(x≤0)的图象.
函数y=|log2x|的图象是( A )
解析
f
(x)
|
lo g2
x
|
lo g2
lo
g1
2
x, x x,0
1, x
课前练习:
当a>2时,函数 y ax和y (a 1)x2 的图 象只可能是( )
y
y
y
y
0
x
A
0
x
B
0x
C
0x
D
知识回顾:基本初等函数及图象(大致图象)
函数 一次函数 y=kx+b
图象
二次函数
y=ax2+bx+ c
指数函数 y=ax
对数函数 y=logax
知识回顾:
下列二次函数的图象,是由 抛物线y=x2通过怎样的平移变换得 到的?
y f 1(x) 与y=f(x)的图象关于直线y=x对称.
设奇函数 f(x) 的定义域为[-5, 5], 若当x∈[0, 5]时, f(x)的图象如右图所
示. 则不等式 f(x)<0 的解集
是 (-2, 0)∪(2, 5]
函数图像的变换课件
平移变换—水平平移
f(x+2)=(x+2)2
y
f(x)=x2
f(x-2)=(x-2)2
-2 O
2
x
平移变换—水平平移
小结: y=f(x) y=f(x+a) 当a>0时,向左平移 a个单位 当a<0时,向右平移 |a|个单位 规律:左加右减
沿x轴
平移变换—竖直平移 y
2 y=x
2、
y x2 4 x 3
y
0,3
4 y x2 4x 3 3 2 1
注意区分
y
y x2 4x 3
4 3 2
2,1 1,0
2
3,0
3 4
y f ( x )与 y f ( x) 的表
x
0,3
-4
-3 -2
-1
0 1 -1 -2 -3
现形式哦!
y f ( x)
关于x 轴对称
y f ( x)
关于直线 y=x对称
反函数
y f ( x)
关于原点对称
y f ( x)
y f ( x)
2、用图像变换法画函数图像时,往往要找出该函数的基本初等函数,分析其 通过怎样变换得到所求函数图像,有时要先对解析式进行适当变形。 3、利用函数的图像判定单调性、求方程根的个数、解不等式、求最值等,体现 了数形结合的数学思想。
-4
-3 -2
-1
2
3
4
1 y ( ) 2
0 1 2 1 ,1 2 -1 1,1 -2 1 ,2
2
3
4
x
x
y log2 1
函数图像的变换法则
( 0,1 )和( 0,1 ) ( 2,0 )和( 2, 2 )
三﹑对称变换
y
(-x,y) .
(-x,-y) .
(y,x) . .(x,y)
x
.(x,-y)
函数图象对称变换的规律:
1. y f ( x) y f ( x)
关于x轴对称
2. y f ( x) y f ( x)
函数图象变换的应用:
①作图﹑② 识图﹑ ③用图
(2)方程 f(x)-a=x 的根的个数等价于 y=f(x)与 y=x-a 的交点的个数,所以可以借助图像进行分析.
规范解答 解
2 x-2 -1, x∈-∞,1]∪[3,+∞ f(x)= 2 -x-2 +1, x∈1,3
作出图像如图所示.
[2 分]
(1)递增区间为[1,2],[3,+∞), 递减区间为(-∞,1],[2,3]. [4 分] (2)原方程变形为 |x2-4x+3|=x+a, 于是,设 y=x+a,在同一坐标系下再作出 y=x+a 的图 像.如图. 则当直线 y=x+a 过点(1,0)时,a=-1; [6 分]
a a
1 x
a
a ax a a a
x
ax a ax
1 y 1
a a a
x
a
x
x
a a
f (1 x)
所以,函数y=f(x)的图象关于点(1/2,1/2)对称
(2)由对称性知f(1-x)+f(x)=1,所以 f(-2)+ f(-1)+ f(0)+ f(1)+ f(2)+ f(3)=3。
对称变换是指两个函数图象之间的对称关系,而”满足 f(x)= f(2a-x)或f(a+x)= f(a-x)有y=f(x)关于直线x=a对称”是 指一个函数自身的性质属性,两者不可混为一谈.
数学必修一第四章课本习题答案
数学必修一第四章课本习题答案数学必修一的第四章通常涉及函数的基本概念、性质、图像以及函数的基本运算等内容。
由于不同的教材版本可能会有所不同,以下答案仅供参考,具体答案需要依据你所使用的教材版本来确定。
函数的基本概念1. 函数的定义:函数是一种特殊的关系,它将一个集合中的元素(称为自变量)与另一个集合中的元素(称为因变量)一一对应起来。
通常用f(x)表示因变量与自变量x的关系。
2. 函数的三要素:定义域、值域和对应关系。
3. 函数的表示方法:列表法、解析法、图象法。
函数的性质1. 单调性:函数在某个区间内,随着自变量的增加,因变量也增加或减少的性质。
2. 奇偶性:函数的图象关于y轴或原点对称的性质。
3. 周期性:函数值在一定周期内重复出现的性质。
函数的图像1. 函数图像的绘制:通常通过画出函数的若干点,然后用平滑曲线连接这些点来绘制函数图像。
2. 函数图像的平移:根据函数图像的平移规律,可以确定函数图像的平移方向和距离。
函数的基本运算1. 函数的加法和减法:两个函数相加或相减,相当于将两个函数的值域相加或相减。
2. 函数的乘法和除法:两个函数相乘或相除,相当于将两个函数的值域相乘或相除。
3. 复合函数:一个函数的值域作为另一个函数的定义域,形成的新函数。
习题答案示例- 例题1:求函数f(x)=x^2在区间[-2,2]上的单调性。
答案:函数f(x)=x^2在区间[-2,0]上单调递减,在区间[0,2]上单调递增。
- 例题2:判断函数f(x)=|x|的奇偶性。
答案:函数f(x)=|x|是偶函数,因为它满足f(-x)=f(x)。
- 例题3:绘制函数f(x)=sin(x)的图像。
答案:函数f(x)=sin(x)的图像是一个周期为2π的正弦波形,它的图像在-1和1之间波动。
- 例题4:计算复合函数g(x)=f(f(x)),其中f(x)=x+1。
答案:首先计算f(x)=x+1,然后代入得到g(x)=f(x+1)=(x+1)+1=x+2。
函数图像的变换(周期,平移,对称)
函数的变换(平移,对称,翻折,周期)【自主梳理】1.() (0)y f x a a =+>的图象可由()y f x =的图象向 平移单位而得到.() (0)y f x a a =->的图象可由()y f x =的图象向 平移单位而得到. 2.() (0)y f x b b =+>的图象可由()y f x =的图象向 平移单位而得到.() (0)y f x b b =->的图象可由()y f x =的图象向 平移单位而得到. 3.() (0)y Af x A =>的图象可由()y f x =图象上所有点的纵坐标变为 ,不变而得到.4.() (0)y f ax a =>的图象可由()y f x =图象上所有点的横坐标变为 ,不变而得到. 【自我检测】1.若()f x 的图象过(0,1)点,则(1)f x +的图象过点 . 2.函数2xy =的图象向右平移2个单位所得函数解析式为 . 3.将函数lg()y x =-的图象 可得函数lg(1)y x =-+的图象.4.函数xy x a =-+的图象的对称中心为(1,1)--,则a = . 5.将函数1cos 2y x =图象的横坐标缩短到原来的21倍,纵坐标扩大为原来的2倍,所得函数解析式为 . 6.为了得到函数3lg10x y +=的图象,只需把函数lg y x =的图象上所有的点向左平移 个单位长度,再向 平移个单位长度. 二、课堂活动: 【例1】填空题:(1)设函数()y f x =图象进行平移变换得到曲线C ,这时()y f x =图象上一点(2,1)A -变为曲线C 上点(3,3)A '-,则曲线C 的函数解析式为.(2)如果直线l 沿x 轴负方向平移3个单位,再沿y 轴正方向平移1个单位后,又回到原来的位置,那么直线l 的斜率是.(3)要得到函数sin(2)3y x π=-的图象,只需将函数cos2y x =的图象. (4)若函数()2sin y x θ=+的图象按向量(,2)6π平移后,它的一条对称轴是4x π=,则θ的一个可能的值是.【例2】作出下列函数的图象.(1)12x y -= (2)211x y x +=-【例3】(1)函数()24log 12y x x =-+的图象经过怎样的变换可得到函数2log y x =的图象?(2)函数21cos cos 12y x x x =+⋅+的图象可由sin y x =的图象经过怎样的平移和伸缩变换得到?【自主梳理】1.(1)函数()y f x =-与()y f x =的图像关于 对称; (2)函数()y f x =-与()y f x =的图像关于对称;(3)函数()y f x =--与()y f x =的图像关于 对称. 2.奇函数的图像关于对称,偶函数图像关于对称.3.若对于函数()y f x =定义域内的任意x 都有()()f a x f b x +=-,则()y f x =的图像关于直线 对称. 4.对0a >且1a ≠,函数xy a =和函数log a y x =的图象关于直线对称.5.要得到()y f x =的图像,可将()y f x =的图像在x 轴下方的部分以为轴翻折到x 轴上方,其余部分不变.6.要得到()y f x =的图像,可将()y f x =,[)0,x ∈+∞的部分作出,再利用偶函数的图像关于的对称性,作出(),0x ∈-∞时的图像.3.函数y e =-的图象与函数 的图象关于坐标原点对称.4.将函数1()2x f x +=的图象向右平移一个单位得曲线C ,曲线C '与曲线C 关于直线y x =对称,则C '的解析式为 .5.设函数()y f x =的定义域为R ,则函数(1)y f x =-与(1)y f x =-的图像的关系为关 于 对称. 6.若函数()f x 对一切实数x 都有(2)(2)f x f x +=-,且方程()0f x =恰好有四个不同实根,求这些实根之和为 . 二、课堂活动:(1(2)对于定义在R 上的函数()f x ,有下列命题,其中正确的序号为.①若函数()f x 是奇函数,则(1)f x -的图象关于点(1,0)A 对称;②若对x R ∈,有(1)(1)f x f x +=-,则()y f x =的图象关于直线1x =对称;③若函数(1)f x -的图象关于直线1x =对称,则函数()f x 是偶函数;④函数(1)y f x =+与函数(1)y f x =-的图象关于直线1x =对称.(3)将曲线lg y x =向左平移1个单位,再向下平移2个单位得到曲线C .如果曲线C '与C 关于原点对称,则曲线C '所对应的函数式是.【例2】作出下列函数的图象:(1)12log ()y x =-;(2)12xy ⎛⎫=- ⎪⎝⎭;(3)2log y x =;(4)21y x =-.【例3】(1)将函数12log y x =的图象沿x 轴向右平移1个单位,得图象C ,图象C '与C 关于原点对称,图象C ''与C '关于直线y x =对称,求C ''对应的函数解析式; (2)已知函数()y f x =的定义域为R ,并且满足(2)(2)f x f x +=-.①证明函数()y f x =的图象关于直线2x =对称;②若()f x 又是偶函数,且[]0,2x ∈时,()21f x x =-,求[]4,0x ∈-时()f x 的表达式.一.周期函数的定义:设函数y=f(x)的定义域为D ,若存在常数T ≠0,使得对一切x ∈D ,且x+T ∈D 时都有f(x+T)=f(x),则称y=f(x)为D 上的周期函数,非零常数T 叫这个函数的周期。
高中函数图像及其平移与变换
基本初等函数的图像1.一次函数性质: 一次函数图像是直线,当k>0时,函数单调递增;当k<0时,函数单调递减 2.二次函数性质:二次函数图像是抛物线,a决定函数图像的开口方向,判别式b^2-4ac决定了函数图像与x轴的交点,对称轴两边函数的单调性不同。
3.反比例函数性质:反比例函数图像是双曲线,当k>0时,图像经过一、三象限;当k<0时,图像经过二、四象限。
要注意表述函数单调性时,不能说在定义域上单调,而应该说在(-∞,0),(0,∞)上单调。
4.指数函数当0<a<b<1<c<d时,指数函数的图像如下图不同底的指数函数图像在同一个坐标系中时,一般可以做直线x=1,与各函数的交点,根据交点纵坐标的大小,即可比较底数的大小。
5.对数函数当底数不同时,对数函数的图像是这样变换的6.对勾函数对于函数y=x+k/x,当k>0时,才是对勾函数,可以利用均值定理找到函数的最值。
7. 幂函数性质:先看第一象限,即 x>0 时,当 a>1 时,函数越增越快;当0<a<1 时,函数越增越慢;当 a<0 时,函数单调递减;然后当x<0 时,根据函数的定义域与奇偶性判断函数图像即可。
8. 正弦函数、余弦函数、正切函数函数图像的变换 1 平移变换(1)水平平移: 函数 y = f(x + a)的图像可以把函数 y =f(x)的图像沿x轴方向向左(a>0)或向右(a<0)平移|a|个单位即可得到; (2)竖直平移: 函数 y = f(x) + a 的图像可以把函数 y =f(x)的图像沿x轴方向向上(a>0)或向下(a<0)平移|a|个单位即可得到。
2 对称变换(1)函数 y = f(-x) 的图像可以将函数 y = f(x)的图像关于y轴对称即可得到; (2)函数 y = - f(x) 的图像可以将函数 y =f(x)的图像关于x轴对称即可得到;(3)函数 y = - f(-x) 的图像可以将函数 y =f(x)的图像关于原点对称即可得到;3 翻折变换(1)函数 y =| f(x)| 的图像可以将函数 y =f(x)的图像的x轴下方部分沿x轴翻折到x轴上方,去掉x轴下方部分,并保留 y =f(x)的x轴上方部分即可得到;(2)函数 y = f(|x|) 的图像可以将函数 y =f(x)的图像的右边沿y轴翻折到y轴左边替代原y轴左边部分并保留 y =f(x)在y轴右边部分即可得到。
高一数学《图像平移与翻折变换》精品PPT课件
谢谢欣赏 很多人还在使用老祖先遗留下来的模型,什么都要及时获取。那些通过赌博想要一夜暴富的人,那些把买彩票当成改变自己命运的人,那些刚起步就想一蹶而就的人,那些一直寻找武功秘籍、一旦习得、功力大涨、想要天下无敌的人。 人们太想一瞬间以弱变强,以一个成功者的形象出现在人们面前,灼灼生辉,光芒四射,受万人敬仰。
小结 (对称变换) : 1.函数y=f(-x)与函数y=f(x)的图像关于y轴对称 2.函数y=-f(x)与函数y=f(x)的图像关于x轴对称 3.函数y=-f(-x)与函数y=f(x)的图像关于原点对 称
函数图象的变换
例3. 设f(x)= x2 2 x 求函数y=|f(x)|、y=f(|x|)
前一段时间和一位朋友聊天。他问我:“听说你这几年做投资,收益怎么?”我说:“这不才刚刚开始吗。”他一脸疑惑,问我:“这做投资就像做生意,你得定期盘盘库,明白自己到底是赚了,还是赔了。”
我回答说:“好像没这么简单,除非我从牌桌上下来,从此不再投资,才能真正算清是赚还是赔。”
我有个朋友,儿子几年前考取一所名牌大学。几天前路遇,见他愁眉不展,问他何故?他说:“孩子大学毕业后,已经在家里呆了大半年了。出去参加了几次招聘,大都是私营企业,工资太低,不怎么稳定,所以现在一直待在家里。”
的解 析式及其定义域,并分别作出它们的图象。
y y=f(x)
O
12
x
Y
y f (x)
O
X
Y
高一数学《图像平移与翻折变换》PPT课件11
.
二 对称问题 例1 说出下列函数的图象与指数函数 y=2x 的图象的关系,并画出它们的示意图.
(1) y 2
y
x
(2) y 2
( x ,y ) 和 ( - x y,-y)关 于原点对称!
x
(3) y 2
y
x
o
x
o
x
o
x
(x,y)和(-x,y) 关于y轴对称!
( x ,y ) 和 ( x , - y ) 关 于x轴对称!
x x
(3) y 2 1, y 2 1. y
x x
比较函数
y2
x
x
9 8 7 6 5 4 3 2
y 2 1
y 2 1
x
的图象关系 .
-4 -2
1 O
2 4
x
(3) y 2 1, y 2 1. y
x x
比较函数
y2
x
x
9 8 7 6 5 4 3 2
y 2 1
例4、画出下列函数的图像: 1 (1) y | x |, y | x |, y 2 | x | 2 (2) y 1 x, y 1 | x | (3) y x 1, y | x 1|
2 2
函数图象的变换
小结 (翻折变换) :
1.将函数y=f(x)图像保留x轴上方的部 分并且把x轴下方的部分关于x轴作对 称就得到函数y=|f(x)|的图像
函数图象的变换 小结 (对称变换) : 1.函数y=f(-x)与函数y=f(x)的图像关于y轴对称 2.函数y=-f(x)与函数y=f(x)的图像关于x轴对称 3.函数y=-f(-x)与函数y=f(x)的图像关于原点对 称
56. 函数的图像变换有哪些?
56. 函数的图像变换有哪些?56、函数的图像变换有哪些?在数学的世界里,函数的图像变换是一个非常重要的概念。
它不仅能够帮助我们更深入地理解函数的性质,还能在解决各种数学问题时提供有力的工具。
首先,咱们来说说平移变换。
平移变换包括水平平移和垂直平移。
水平平移,比如说函数 y = f(x) 向左平移 h 个单位,就变成了 y =f(x + h);要是向右平移 h 个单位呢,那就变成了 y = f(x h)。
这就好比是把函数图像在水平方向上“推”了一段距离。
打个比方,y = x²这个函数,如果向左平移 2 个单位,就变成了 y =(x + 2)²,原本顶点在(0, 0) ,现在顶点就到了(-2, 0) 。
垂直平移相对来说更容易理解。
函数 y = f(x) 向上平移 k 个单位,就得到了 y = f(x) + k ;向下平移 k 个单位,就变成了 y = f(x) k 。
比如说 y = x²向上平移 3 个单位,就成了 y = x²+ 3 ,图像整体往上“抬”了 3 个单位。
接下来是伸缩变换。
水平伸缩,对于函数 y = f(x) ,如果把它的横坐标变为原来的 1/a倍(a > 0),就得到了 y = f(ax) 。
比如说 y = sin x ,当 a = 2 时,y = sin 2x ,它的周期就从2π 变成了π ,图像在水平方向上被“压缩”了。
垂直伸缩呢,函数 y = f(x) ,纵坐标变为原来的 A 倍(A > 0),就变成了 y = Af(x) 。
比如 y = x ,当 A = 2 时,y = 2x ,图像在垂直方向上被拉长了。
然后是对称变换。
关于 x 轴对称,函数 y = f(x) 关于 x 轴对称的图像对应的函数是 y = f(x) 。
比如说 y = x²关于 x 轴对称的函数就是 y = x²。
关于 y 轴对称,函数 y = f(x) 关于 y 轴对称的图像对应的函数是 y = f(x) 。
高中数学必修一12.图形变换
函数的图像(1)平移变换①水平平移:y =f (x )的图象向左平移a (a >0)个单位长度,得到________的图象;y =f (x -a )(a >0)的图象可由y =f (x )的图象向________平移a 个单位长度而得到.②竖直平移:y =f (x )的图象向上平移b (b >0)个单位长度,得到________的图象;y =f (x )-b (b >0)的图象可由y =f (x )的图象向________平移b 个单位长度而得到.总之,对于平移变换,记忆口诀为“左加右减,上加下减”. (2)对称变换①y =f (-x ),y =-f (x ),y =-f (-x )三个函数的图象与y =f (x )的图象分别关于 、 、 对称;②若对定义域内的一切x 均有f (m +x )=f (m -x ),则y =f (x )的图象关于直线 对称. (3)伸缩变换①要得到y =Af (x )(A >0)的图象,可将y =f (x )的图象上每点的纵坐标伸(A >1时)或缩(A <1时)到原来的__________;②要得到y =f (ax )(a >0)的图象,可将y =f (x )的图象上每点的横坐标伸(a <1时)或缩(a >1时)到原来的__________.(4)翻折变换①y =|f (x )|的图象作法:作出y =f (x )的图象,将图象位于x 轴下方的部分以x 轴为对称轴翻折到x 轴上方,上方的部分不变;②y =f (|x |)的图象作法:作出y =f (x )在y 轴右边的图象,以y 轴为对称轴将其翻折到左边得y =f (|x |)在y 轴左边的图象,右边的部分不变.(5)有关对称①类奇函数 ②类偶函数 y=f(x)关于(a,0)对称 y=f(x)关于x=a 对称⟺y=f(x+a)为奇函数 ⟺y=f(x+a)为偶函数 ⟺f(a+x)= -f(a-x) ⟺f(a+x)= f(a-x) ⟺f(x)=-f(2a-x) ⟺f(x)= f(2a-x)③对于函数)(x f y =(R x ∈),()()f a+x f b -x =恒成立,则函数)(x f 的对称轴是函数2b a x +=;两个函数()f a+x 与)(x b f y -= 的图象关于直线x=2b a- 对称. ④对于函数)(x f y =(R x ∈), ()()f a+x f b -x =-恒成立,则函数)(x f 的对称中心是(2a b +,0),两个函数()f a+x 与()y f b -x =-的图象关于直线(2b a -,0)对称.练习题1.函数y =1-1x -1的图象是( )2.为了得到函数y =lg x +310的图象,只需把函数y =lg x 的图象上所有的点( )A .向左平移3个单位长度,再向上平移1个单位长度B .向右平移3个单位长度,再向上平移1个单位长度C .向左平移3个单位长度,再向下平移1个单位长度D .向右平移3个单位长度,再向下平移1个单位长度3.若函数f (x )=ax -2x -1的图象关于点(1,1)对称,则实数a =________4.(2013·北京)函数f (x )的图象向右平移1个单位长度,所得图象与曲线y =e x 关于y 轴对称,则f (x )=( )A .e x +1 B .e x -1 C .e-x +1D .e-x -15.若将函数y =f (x )的图象向左平移2个单位,再沿y 轴对折,得到y =lg(x +1)的图象,则f (x )=________.6.下列函数的图像中,经过平移或翻折后不能与函数y =log 2x 的图像重合的函数是( )A.y =2xB.y =log 12x C.y =4x2D.y =log 21x+17.把函数y =log 2(x -1)的图象上各点的横坐标缩短到原来的12倍,再向右平移12个单位长度所得图象的函数式为( )A .y =log 2(2x +1)B .y =log 2(2x +2)C .y =log 2(2x -1)D .y =log 2(2x -2)8.(1)已知函数)(x f 是R 上的增函数,A(0 ,-1) ,B (3,1)是其图象上的两点,那么|)1( x f |<1的解集的补集是( )A .(-1 ,2)B .(1 ,4)C .(-∞,-1)∪[4 ,+∞)D .(-∞,-1] ∪[2 ,+∞)(2). 若直线y=2a 与函数y=|a x -1|(a >0且a≠1)的图象有两个公共点,则a 的取值范围是______.9.已知f (x )=|2x -1|,当a <b <c 时,有f (a )>f (c )>f (b ),则必有( )A .a <0,b <0,c <0B .a <0,b >0,c >0C .2-a <2c D .1<2a +2c <210.已知图①中的图象对应的函数为y =f (x ),则图②中的图象对应的函数可能为( )A .y =f (|x |)B .y =|f (x )|C .y =f (-|x |)D .y =-f (|x |)11..已知a >0且a ≠1,函数f (x )=log a (x +x 2+b )在区间(-∞,+∞)上既是奇函数又是增函数,则函数g (x )=log a ||x |-b |的图象是( )12. 若函数)0()(2≠++=a c bx ax x f 的定义域R ,如方程)(,)(R k k x f ∈=最多只有两个根,则实数a 、b 、c 满足( )A .,042≥-ac b B .042≤-ac b C .,02b c R a∈-≥ D .,2bc R a ∈-≤0 13.(2016·全国甲卷)已知函数f (x )(x ∈R)满足f (x )=f (2-x ),若函数y =|x 2-2x -3|与y =f (x )图象的交点为(x 1,y 1),(x 2,y 2),…,(x m ,y m ),则∑i =1mx i =( )A .0B .mC .2mD .4m14.设函数y =f (x +1)是定义在(-∞,0)∪(0,+∞)上的偶函数,在区间(-∞,0)上是减函数,且图象过点(1,0),则不等式(x -1)f (x )≤0的解集为________.15.已知定义域为R 的奇函数()f x 满足()()13f x f x +=-,当(]0,2x ∈时,()24f x x =-+,则函数()()y f x a a R =-∈在区间[]4,8-上的零点个数最多时,所有零点之和为 .16、已知函数满足,关于轴对称,当时,,则下列结论中正确的是( )A .B .C .D . 17.(2015·安徽)函数f (x )=ax +b(x +c )2的图象如图所示,则下列结论成立的是( )A .a >0,b >0,c <0B .a <0,b >0,c >0C .a <0,b >0,c <0D .a <0,b <0,c <018.已知函数f (x )=x |x -2|,则不等式f (2-x )≤f (1)的解集为________.19.已知y =f(x)与y =g(x)的图象如右图:则F(x)=f(x)·g(x)的图象可能是下图中的( )20.(2013·四川)函数y =x 33x -1的图象大致是( )()f x )2()2(-=+x f x f (2)y f x =-y )2,0(∈x 22()log f x x =(4.5)(7)(6.5)f f f <<(7)(4.5)(6.5)f f f <<(7)(6.5)(4.5)f f f <<(4.5)(6.5)(7)f f f <<21.已知函数f(x)的定义域为[a,b],函数y=f(x)的图像如下图所示,则函数f(|x|)的图像大致是()log x(ab≠0,|a|≠|b|)在同一直角坐标系中的图像22.(湖南高考题)函数y=ax2+bx与y=ba可能是()答案 D23.(2016·全国乙卷)函数y=2x2-e|x|在[-2,2]的图象大致为()24.已知函数21(0)2x f(x)x e x =+-< 与2()ln()g x x x+a =+的图象上存在关于y 轴对称的点 ,则a 的取值范围( )A . 1(,)e -∞ B .(,)e -∞ C .1(,)e e- D .1(,)e e - 25.关于x 的方程x +lgx =3,x +10x =3的根分别为α,β,则α+β是( ) A.3 B.4 C.5D.626.(1)若不等式2x -log a x<0在x ∈(0,12)时恒成立,则实数a 的取值范围是(2) 当时,不等式(其中且)恒成立,则的取值范围为A. B. C. D.(3)当1(0,)2x ∈时,不等式4log xa x <恒成立,则实数a 的取值范围是27.(海南高考题)用min{a ,b ,c}表示a ,b ,c 三个数中的最小值.设f(x)=min{2x ,x +2,10-x}(x ≥0),则f(x)的最大值为( )A.4B.5C.6D.728. 设表示三者中较小的一个,若函数,则当时,的值域是( ) A. B.C.D.。
函数图像及其变换(完整版)
函数的图像及变换一、函数图像的变换对称变换(||)翻折翻折变换|()|翻折左右平移平移变换上下平移横坐标不变,纵坐标伸缩伸缩变换纵坐标不变,横坐标伸缩y f x y f x ⎧⎪⎧=⎪⎨⎪=⎩⎪⎪⎧⎨⎨⎪⎩⎪⎪⎧⎪⎨⎪⎩⎩关于x 轴对称:(,)(,)x y x y →- 关于y 轴对称:(,)(,)x y x y →- 关于原点对称:(,)(,)x y x y →-- 关于y x =对称:(,)(,)x y y x →关于y x =-对称:(,)(,)x y y x →-- 关于直线x a =对称:(,)(2,)x y a x y →-(轴对称) 关于y x b =+对称:(,)(,)x y y b x b →-+ 关于y x b =-+对称:(,)(,)x y b y x b →--+ 关于点(,)P a b 对称:(,)(2,2)x y a x b y →--(点对称)例1:已知2()2f x x x =-,且()g x 与()f x 关于点(1,2)对称,求()g x 的解析式.(相关点法)例2:已知函数()y f x =的图像关于直线1x =-对称,且当(0,)x ∈+∞时,有1()f x x=,则当 (,2)x ∈-∞-时,()f x 的解析式是( ).A. 1x -B. 12x +C.12x -+D. 12x- 例3:下列函数中,同时满足两个条件“①x R ∀∈,()()01212f x f x ππ++-=;②当6π-<x 3π<时,'()0f x >”的一个函数是( ) A.()sin(2)6f x x π=+B. ()cos(2)3f x x π=+C. ()sin(2)6f x x π=-D. ()cos(2)6f x x π=-①关于形如()y f x =的图像画法:当0x ≥时,()y f x =;当0x ≤时,()y f x =-()y f x =为偶函数,关于y 轴对称,即把0x ≥时()y f x =的图像画出,然后0x ≤时的图像与 0x ≥的图像关于y 轴对称即可得到所求图像.②关于形如()y f x =的图像画法当()0f x ≥时,()y f x =;当()0f x ≤时,()y f x =-先画出()y f x =的全部图像,然后把()y f x =的图像x 轴下方全部关于x 轴翻折上去,原x 轴上方的图像保持不变,x 轴下方的图像去掉不要即可得到所求图像.例3:画出下列函数的图像.(1)12log y x = (2)228y x x =--例4:设函数2()45f x x x =--.(1)在区间[2,6]-上,画出函数()f x 的图像;(2)设集合{}()5A x f x =≥,(,2][0,4][6,)B =-∞-+∞.试判断集合A B 、之间的关系,并给出证明;(3)当2k >时,求证:在区间[1,5]-上,3y kx k =+的图像位于函数()f x 图像的上方.①左右平移把函数()y f x =的全部图像沿x 轴方向向左(0a >)或向右(0a <)平移a 个单位即可得到函数()y f x a =+的图像②上下平移把函数()y f x =的全部图像沿y 轴方向向上(0a >)或向下(0a <)平移a 个单位即可得到函数()y f x a =+的图像例4:将函数lg(32)1y x =-+按向量(2,3)a =-平移后得到新的图象解析式为 例5:把一个函数的图象按向量(,2)8a π=-平移后得到的图象的解析式为sin(2)24y x π=+-,则原来函数的解析式 .Ⅰ.将函数()y f x =的全部图像中的每一点横坐标不变,纵坐标伸长(1)a >或缩短(01)a <<为原来的a 倍得到函数()(0)y af x a =>的图像.Ⅱ. 将函数()y f x =的全部图像中的每一点纵坐标不变,横坐标伸长(1)a >或缩短(01)a <<为原来的1a倍得到函数()(0)y f ax a =>的图像. 例6:已知函数21()2lg(2)-=++x f x x ,把函数()y f x =的图像关于y 轴对称,然后向右平移1个单位,最后纵坐标保持不变,横坐标变为原来的2倍得到()g x 的图像,求()g x 的解析式.例7:已知函数2()log (1)f x x =+,将()y f x =的图像向左平移1个单位,再将图像上所有点纵坐标伸长到原来的2倍,得到函数()y g x =的图像. (1)求()y g x =的解析式和定义域; (2)求函数()(1)()F x f x g x =--的最大值.【练习】1.为了得到函数321x y -=-的图像,只需要把函数2x y =的图像上所有的点( ).A.向右平移3个单位长度,再向下平移1个单位长度B.向左平移3个单位长度,再向下平移1个单位长度C.向右平移3个单位长度,再向上平移1个单位长度D.向左平移3个单位长度,再向上平移1个单位长度 2.下面四个图形中,与函数22log (1)yx x =+≥的图像关于y x =对称的是( ).3.若函数()()y f x x R =∈满足(2)()f x f x +=,且[1,1]x ∈-时,()f x x =,则函数()y f x =的图像与函数4log y x =的图像的交点的个数为( ).A.3B.4C.6D.84.将函数by a x a=++的图像向右平移2个单位长度后又向下平移2个单位,所得到的函数图像与原图像如果关于直线y x =对称,那么( ).A. 1,0a b =-≠B. 1,a b R =-∈C.1,0a b =≠D. 0,a b R =∈ 5.已知21()f x x x =+,且()g x 与()f x 关于点(1,0)-对称,求()g x 的解析式.6.画出下列函数的图像.(1)ln y x = (2)26y x x =--7. 函数()2xf x =和3()g x x =的图像的示意图如图所示,设两函数的图像交于点11(,)A x y ,22(,)B x y ,且12x x <.(1)请指出示意图中曲线12,C C 分别对应于哪一个函数;(2)若12[,1],[,1]x a a x b b ∈+∈+,且{},1,2,3,4,5,6,7,8,9,10,11,12a b ∈,指出,a b 的值,并说明理由;(3)结合函数图像的示意图,判断(6),(6),(2010),(2010)f g f g 的大小关系.8.已知函数()f x 和()g x 的图像关于原点对称,且2()2f x x x =+. (1)求函数()g x 的解析式; (2)解不等式()()1g x f x x ≥--;(3)若()()()1h x g x f x λ=-+在[1,1]-上是增函数,求实数λ的取值范围.6. 已知函数()y f x =,把函数()y f x =的图像向左平移1个单位,然后横坐标保持不变,纵坐标变为原来的3倍再向下平移3个单位得到()g x 的图像,求()g x 的解析式.补充:请把相应的幂函数图象代号填入表格.①32x y =;②2-=x y ;③21x y =;④1-=x y ;⑤31x y =;⑥23x y =;⑦34x y =; ⑧21-=x y ;⑨35x y =.常规函数图像有:函数代号 ①②③④⑤⑥⑦⑧⑨⑩图象代号HI指数函数:逆时针旋转,底数越来越大 .对数函数:逆时针旋转,底数越来越小幂函数:逆时针旋转,指数越来越大。
函数(三)图像的移动——平移
成长快乐教育学科教师辅导教案学员姓名: 年 级: 高三 课 时 数:班 主 任: 辅导科目: 数学 学科教师: BeMaris授课主题函数(三)图像的移动——平移 教学目标 1、掌握图像平移的规律教学内容图像的移动——平移这节课起,我们将学习图像移动的一般规律.图像的移动包括平移、翻折、旋转、伸缩,我们从最简单的平移开始发现之旅.问题1:这里的图像包括函数的图像与方程的图像,你知道它们之间的区别吗?解析:第一节课函数的定义中,我们知道在函数()x f y =中,一个自变量x 对应唯一确定的因变量y ,从图像来看,在x 轴上任选一点()D x x ∈00,作一条垂线,这条垂线与函数的图像只有一个交点()()00,x f x .而在方程的图像上,比如最简单的圆锥曲线122=+y x 代表的单位圆,在x 轴上任取一点()()1,100-∈x x ,作一条垂线,这条垂线与圆有两个交点()2001,x x -与()2001,x x --.所以方程的图像没有“一个变量x 对应唯一的变量y ”的限制条件,你可以认为函数的图像是一种特殊的方程的图像.我们先规定好平移方向的正负性,如图3.1,沿着坐标轴箭头方向为正,反之为负.图3.1 平移方向的正负性为了方便讨论,我们选择函数()x f y =的图像.但请注意我们讨论的过程与结论是适用于任何图像的.图3.2 最简单的例子——横向平移我们在函数()x f y =图像上任取一点()y x A ,,那么点A 的两个坐标满足()x f y =关系式.将函数()x f y =图像横向平移a 个单位,a 是一个常数,它的符号为“+”则代表向右平移,符号为“-”代表向左平移.那么点()y x A ,会被移动到点()',''y x A ,可以得到:⎩⎨⎧=+=yy a x x ''我们想求出()x f y =图像平移后得到的新图像代表的函数的解析式,也就是说点()',''y x A 两个坐标'x 与'y 之间的关系式.在上面的方程组中有4个变量:x 、y 、'x 和'y .可以利用消元法消去变量x 、y ,仅保留变量'x 、'y ,消元法的过程如下:⎩⎨⎧=-=''y y a x x代入()x f y =后得:()a x f y -=''于是我们找到了'x 与'y 之间的关系式.最后一步我们需要美化加工一下,将变量'x 与'y 的符号换成x 与y (我们在第二节课中也这样做过)得到:()a x f y -=所以将函数()x f y =的图像横向移动a 个单位后,得到了函数()a x f y -=的图像.对于上述过程,我换一种语言来表示可能会更清楚一点:()x f y = (原函数)a x x a x -→,, (第一个符号“x ”代表沿着x 轴方向平移,也就是横向移动;第二个符号“a ”代表移动了a 个单位,注意这里平移的正负性,参见图3.1; 第三个符号“a x x -→”代表在式子()x f y =中,将所有的x 替换成a x -,其 余的保持不变.)()a x f y -= (目标函数)我来举个例子吧!如果将函数142sin +⎪⎭⎫ ⎝⎛--=πx y 的图像向左移动4π个单位,求这个新图像代表的函数的解析式. 你可以模仿上面的语言来表示这个过程:142sin +⎪⎭⎫ ⎝⎛--=πx y 4,4,ππ+→-x x x1442sin +⎪⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛+-=ππx y 最后你可能需要对1442sin +⎪⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛+-=ππx y 美化加工(仅仅是为了好看一点)一下,改写成: 142sin +⎪⎭⎫ ⎝⎛+-=πx y 一定要注意,4π+→x x 代表将所有的x 替换成4π+x ,其余与x 无关的保持不变.很容易发现,在“a x x a x -→,,”中,出现了a 与a -,把它们加起来正好是0.于是我们得出了图像平移的一般规律:正负相消.它适用于所有类型图像的任意平行移动.问题2:将函数()x f y =的图像沿着y 轴方向移动a 个单位,试着模仿图3.2的例子,求出新图像代表的函数的解析式.解析:在()x f y =的图像上任取一点()y x A ,,点A 平移后对应的点是()',''y x A ,四个变量x 、y 、'x 和'y 之间的关系如下:⎩⎨⎧+==a y y x x ''消元法消去变量x 、y⎩⎨⎧-==a y y x x ''代入()x f y =得()''x f a y =-这就是点()',''y x A 两个坐标'x 和'y 之间的关系式最后美化加工一下,将符号'x 、'y 换成x 、y ,得到()a x f y +=这就是新图像代表的函数的解析式.对于这个过程,我们可以这样表示:()x f y =a y y a y -→,,()x f a y =-可能我们还需要对式子()x f a y =-美化加工一下,但我们只关注平移的一般规律——“正负相消”在纵向平移中也是适用的!问题3:将函数()x f y =沿着向量()b a n ,=→平移,试着模仿图3.2的例子,求出新图像代表的函数的解析式.解析:在()x f y =的图像上任取一点()y x A ,,点A 平移后对应的点是()',''y x A ,四个变量x 、y 、'x 和'y 之间的关系如下:⎩⎨⎧+=+=by y a x x '' 消元法消去变量x 、y⎩⎨⎧-=-=by y a x x '' 代入()x f y =得()a x f b y -=-''这就是点()',''y x A 两个坐标'x 和'y 之间的关系式最后美化加工一下,将符号'x 、'y 换成x 、y ,得到()b a x f y +-=这就是新图像代表的函数的解析式.对于这个过程,我们可以这样表示:()x f y =⎩⎨⎧-→-→b y y b y a x x a x ,,,,()a x f b y -=-可能我们还需要对式子()a x f b y -=-美化加工一下,但我们只关注平移的一般规律——“正负相消”在任意方向平移中也是适用的!课后作业1、将椭圆1422=+y x 向右移动4个单位,再向下移动1个单位,求新的曲线的方程.2、已知直线()0:1≠+=k b kx y l ,12:2+-=x y l ,将1l 沿着向量()2,1-=→n 平移后得到的图像与2l 的图像重合,求直线1l 的方程.3、已知曲线214:x y C -=,将曲线2C 的图像沿着向量()2,1--=→n 平移后得到的图像与1C 的图像重合,求曲线2C 的方程.4、图像的平移、伸缩过程中,都体现出了“平衡”的一般规律,下节课我们学习图像的伸缩变化,将主要以三角函数图像为例子,所以你要熟悉x y sin =、x y cos =和x y tan =的图像.做中国真正“一站式”教学服务品牌------------------------------------------------------------------------------------------------------------------------11在成长中快乐学习,在学习中快乐成长!。
函数的图像变换
二、图像作法步骤: (1)确定函数的定义域;(由此确定图 像的范围) (2)化简函数的表达式;(利用基本函 数图像画图) (3)研究函数的性质;(由此确定图像 特征,简化画图过程) (4)根据基本函数图像画出图像。
函数的图像变换
一、函数图像的变换: 函数图像的变换: 函数图像的基本变换--平移、 --平移 函数图像的基本变换--平移、对称与 放缩 1.平移变换(左右平移) 平移变换( 平移变换 左右平移) y=f(x+a)由y=f(x)的图像向左 的图像向左(a>0)或向右 由 的图像向左 或向右 (a<0)平移 平移 (左加右减 左加右减) 左加右减
5、图像的放缩: 伸缩变换: (1)将y=f(x)的图像上每一点纵坐 标不变,横坐标伸长(0< ω <1)或缩小
ω ( >1)到原来的
1
图像。 (2)将y=f(x)的图像上每一点横坐标不变, 纵坐标伸长(A>1)或缩小(0<A<1)到 原来的A倍,可得到y=Af(x)的图像。
ω
倍,可得到y=f( x)的 ω
4、翻折
y=|f(x)| 的图像只要将 的图像只要将y=f(x)的图像在 轴下方 的图像在x轴下方 的图像在 的部分翻折到x轴上方 其他部分不变。 轴上方, 的部分翻折到 轴上方,其他部分不变。 下翻上) (下翻上) y=f(|x|)的图像只要将 的图像只要将y=f(x)的图像在 轴右方 的图像在y轴右方 的图像只要将 的图像在 的部分翻折到y轴左方 轴左方, 轴右方部分不变 轴右方部分不变。 的部分翻折到 轴左方, y轴右方部分不变。 右翻左) (右翻左) 利用奇偶性
aห้องสมุดไป่ตู้
个单位得到。 个单位得到。
2.上下平移 上下平移 y=f(x)+b由y=f(x)的图像向上 的图像向上(b>0)或 由 的图像向上 或 向下(b<0)平移 平移 向下 (上加下减 上加下减) 上加下减
高一数学 函数图像的变换
函数图像的变换一、知识梳理1.水平平移:函数)(a x f y +=的图像是将函数)(x f y =的图像沿x 轴方向向左(a >0)或向右(a <0)平移a个单位得到.称之为函数图象的左、右平移变换. 2.竖直平移:函数a x f y +=)(的图像是将函数)(x f y =的图像沿y 轴方向向上(a >0)或向下(a <0)平移a个单位得到.称之为函数图象的上、下平移变换. 3.要作函数)(x f y =的图象,只需将函数)(x f y =的图象y 轴右侧的部分对称到y 轴左侧去,而y 轴左侧的原来图象消失.称之为关于y 轴的右到左对称变换(简称去左翻右). 4.要作函数)(x f y =的图象,只需将函数)(x f y =的图象x 轴下方的部分对折到x 轴上方即可.叫做关于x 轴的下部折上变换(简称去下翻上).5.要作)(x f y -=的图象,只需将函数)(x f y =的图象以y 轴为对折线,把y轴右侧的部分折到y 轴左侧去.同时,将y 轴左侧的部分折到y 轴右侧去.叫做关于y 轴的翻转变换.6.要作函数)(x f y -=的图象,只需将函数)(x f y =的图象以x 轴为对折线,把x 轴上方的图形折到x 轴下方去,同时又把x 轴下方的图象折到x 轴上方去即可.叫做关于x 轴的翻转变换.7.要作函数)(ax f y =(a >0)的图象,只需将函数)(x f y =图象上所有点的横坐标缩短(a >1)或伸长(0<a <1)到原来的a1倍(纵坐标不变)即可(若a <0,还得同时进行关于y 轴的翻转变换.这种变换叫做函数图象的横向伸缩变换.8.要作函数)(x Af y =(A>0)的图象,只需将函数)(x f y =图象上所有点的纵坐标伸长(A>1)或缩短(0<A<1)到原来的A倍(横坐标不变)即可.这种变换叫做函数图象的纵向伸缩变换(若A<0,还要再进行关于x 轴的翻转变换).9.要作函数)(x a f y -=的图象,只需将函数)(x f y =的图象发生关于直线x =2a的翻转变换即可. 实质上,这种变换是函数图象左右平移变换与关于y 轴翻转变换的复合,即先把)(x f y =图象发生左右平移得到函数)(a x f y +=的图象,再关于y 轴翻转便得到)(x a f y -=的图象. 10.要作函数)(x f h y -=的图象,只需将函数)(x f y =的图象发生关于直线y =2h的翻转变换即可.实质上,这种变换是函数图象的关于x 轴的翻转变换与上下平移变换的复合,即先把函数)(x f y =的图象发生关于x 轴的翻转变换得到)(x f y -=的图象,再把)(x f y -=的图象向上(h >0)或向下(h <0)平移|h |个单位便得到函数)(x f h y -=的图象.综合第9、第10变换,要作函数)(x a f h y --=的图象,只需做出函数)(x f y =图象的关于点(2a ,2h)的中心对称图形即可. 二、方法归纳1.作图象:以解析式表示的函数作图象的方法有两种,即列表描点法和图象变换法.作函数图象的步骤:①确定函数的定义域;②化简函数的解析式;③讨论函数的性质(即单调性、奇偶性、周期性、有界性及变化趋势(渐进性质);④描点连线,画出函数的图象.用图象变换法作函数图象,①要确定以哪一种函数的图象为基础进行变换;②是确定实施怎样的变换.2.识图象:对于给定的函数图象,能从图象的左右、上下分布范围,变化趋势、对称性等方面的观察,获取有关函数的定义域、值域、单调性、奇偶性、周期性等方面的信息.3.关注函数图像的变换对函数的性质的影响.三、典型例题精讲【例1】函数)10(1||log )(<<+=a x x f a 的图象大致为( )错解分析:错解一:由||log x a ≥0,得1||log +x a ≥1,即)(x f ≥1,故选B.错误在于误将||log x a 等同于|log |x a ,做出误判||log x a ≥0.错解二:没注意10<<a ,而默认为1>a ,故选C.解析:考虑10<<a ,当0>x 时,1log )(+=x x f a 为减函数,淘汰B 、C.当1=x 时,1)(=x f ,故选A. 又例:函数xy 3log 3=的图象大致是( )解析: 由x 3log ≥0,得x y 3log 3=≥1,故选A.【例2】函数2()1log f x x =+与1()2x g x -+=在同一直角坐标系下的图象大致是( )解析:因函数x x f 2log 1)(+=的图象是由x y 2log =的图象向上平移1个单位得到,故B 、C 、D 满足; 又函数11)21(2)(-+-==x x x g ,其图象为x y )21(=的图象向右平移1个单位得到, 故A 、C 满足.由此选C.技巧提示:本题中的错误答案均为对函数进行错误变换而得,因此只要变换正确,就能做出正确的选择.本题亦可用特殊值法得到正确的选项.由1)1(=f ,可知B 、C 、D 满足;又2)0(=g ,可知A 、C 满足.故选C.又例:函数)32(-x f 的图象,可由函数)32(+x f 的图象经过下述哪个变换得到( )A.向左平移6个单位B.向右平移6个单位C.向左平移3个单位D.向右平移3个单位解析:将函数)32(+x f 中的x 用3-x 代之,即可得到函数)32(-x f ,所以将函数)32(+x f 的图象向右平移3个单位即可得到函数)32(-x f 的图象, 故选D.【例3】函数xy 3=的图象与函数2)31(-=x y 的图象关于( )A.点(-1,0)对称B.直线x =1对称C.点(1,0)对称D.直线x =-1对称解析:若记xx f y 3)(==,则)2(3)31(22x f x x -==--, 由于)(x f y =与)2(x f y -=的图象关于直线x =1对称,∴ 选B.技巧提示:若)(x f 自身满足)2()(x a f x f -=,则)(x f y =的图象关于直线x =a 对称;若)(x f 自身满足)2()(x a f x f --=,则)(x f y =的图象关于点(a ,0)对称. 两个函数)(x f y =与)2(x a f y -=的图象关于直线x =a 对称; 两个函数)(x f y =与)2(x a f y --=的图象关于点(a ,0)对称.【例4】设22)(x x f -=,若0<<b a ,且)()(b f a f =,则ab 的取值范围是( )A.(0,2)B.(0,2]C.(0,4]D.(0,解析:保留函数22x y -=在x 轴上方的图象,将其在x 轴下方的图像翻折到x 轴上方区即可得到函数22)(x x f -=的图象.通过观察图像,可知)(x f 在区间]2,(--∞上是减函数,在区间]0,2[-上是增函数, 由0<<b a ,且)()(b f a f =.可知02<<-<b a , 所以2)(2-=a a f ,22)(b b f -=, 从而2222b a -=-,即422=+b a ,又ab ab b a b a 242)(222-=-+=->0,所以20<<ab .故选A.技巧提示:本题考查函数图象的翻折变换,体现了数学由简到繁的原则,通过研究函数22x y -=的图象和性质,进而得到22)(x x f -=的图像和性质.由0<<b a ,且)()(b f a f =,得到422=+b a 才使得问题变得容易.又例:直线1=y 与曲线a x x y +-=2有四个交点,则a 的取值范围是 .解析:因为函数a x xy +-=2是偶函数,所以曲线a x x y +-=2关于y 轴对称.当x ≥0时,a x x y +-=2=41)21(2-+-a x , 其图象如下:由直线1=y 与曲线有四个交点,得⎪⎩⎪⎨⎧<->1411a a ,解得451<<a .故a 的取值范围是)45,1(.再例:已知定义在R 上的奇函数)(x f ,满足)()4(x f x f -=-,且在区间[0,2]上是增函数,若方程m x f =)( (m >0)在区间[]8,8-上有四个不同的根1234,,,x x x x ,1234_________.x x x x +++=解析:因为定义在R 上的奇函数,满足)()4(x f x f -=-,所以)()4(x f x f =-,函数图象关于直线2x =对称,且(0)0f =,再由(4)()f x f x -=-知(8)()f x f x -=,所以函数是以8为周期的周期函数, 又因为)(x f 在区间[0,2]上是增函数,所以)(x f 在区间[-2,0]上也是增函数. 如图所示,那么方程m x f =)( (m >0)在区间[]8,8-上有四个不同的根1234,,,x x x x , 不妨设1234x x x x <<<,由对称性知1212x x +=-344x x +=所以12341248x x x x +++=-+=-.【例5】定义在R 函数)(x f =mx xm +-2)2(的图象如下图所示,则m 的取值范围是( ) A.(-∞,-1) B.(-1,2) C.(0,2) D.(1,2)解析:方法一(排除法):若m ≤0,则函数mx xm x f +-=2)2()(的定义域不为R ,与图象信息定义域为R 不符,故排除掉A 、B. 取m =1,)(x f =12+x x,此函数当x =±1时,)(x f 取得极值, 与所给图形不符,排除C.选D.方法二:显然)(x f 为奇函数,又)1(f >0,)1(-f <0,即mm +-12<0,解得-1<m <2. 又)(x f 取得最大值时,x =m >1, ∴ m >1,∴ 1<m <2.故选D.技巧提示:根据已给图形确定解析式,需要全面扑捉图象信息.m 对奇偶性影响不大,但对定义域、极值点影响明显.又例:当参数21,λλ=λ时,连续函数xx y λ+=1)0(≥x 的图像分别对应曲线1C 和2C ,则( ) A.210λ<λ< B.120λ<λ< C.021<λ<λ D.012<λ<λ 解析:由条件中的函数是分式无理型函数,先由函数在(0,)+∞是连续的,可知参数0,021>λ>λ,即排除C ,D 项, 又取1x =,知对应函数值1111λ+=y ,2211λ+=y ,由图可知12,y y <所以12λλ>,即选B 项.【例6】定义区间)](,[2121x x x x <的长度为12x x -,已知函数|log |)(21x x f =的定义域为],[b a ,值域为]2,0[,则区间],[b a 的长度的最大值与最小值的差为 .OxyCC错解分析:函数|log |)(21x x f =的图象如图.令2|log |)(21==x x f ,得41=x 或4=x . ∴2)4()41(==f f ,又0)1(=f ,∴],[b a 长度的最大值为314=-;最小值为43411=-. 故所求最大值与最小值的差为49433=-. 解析:函数|log |)(21x x f =的图象如上图.令2|log |)(21==x x f ,得41=x 或4=x . ∴],[b a 长度的最大值为415414=-;最小值为43411=-. 故所求最大值与最小值的差为343415=-. 技巧提示:准确作出函数的图象,正确理解区间长度的意义是解决此类问题的关键.又例:已知函数)12(log )(-+=b x f xa )1,0(≠>a a 的图象如图所示,则ab ,满足的关系是( )A.101a b -<<< B.101b a -<<< C.101ba -<<<-D.1101ab --<<<解析:由图易得1>a ,∴101<<-a取特殊点0=x ,0log )0(1<=<-b f a . 即1log log 1log 1a a ab a<<=-, x∴101<<<-b a .故选A.【例7】若不等式2)2(92-+≤-x k x 的解集为区间[]b a ,,且b -a =2,则k = .分析:本题主要考查解不等式、直线过定点问题,我们可以在同一坐标系下作出219x y -=,2)2(2-+=x k y 的图像,根据图像确定k 的值。
函数 图像的平移变换与伸缩变换
函数()y f x =图像的平移变换与伸缩变换在学习高中数学必修4的三角函数这部分内容的过程中,我们增加了三角函数的图像的变换这部分内容,主要要学习函数y=Asin(x+)+m(A 0, 0)w j w 构的图像是由sin y x =的图像怎样变换得来的,这要涉及的变换有平移变换与伸缩变换。
而我们在后来复习函数时,也要增加函数()y f x =的图像变换的内容。
三角函数也属于函数,因此一般函数()y f x =的图像变换法则和方法对三角函数同样适用。
所以为了使平移变换与伸缩变换这部分内容更具有一般性,我想站在一般函数的高度来研究函数图像的平移变换与伸缩变换。
多年的教学生涯让我对这两种变换有了深刻的认识,能够高度概括这两种变换。
现在我想把自己对这两种变换的认识写成论文,供大家借鉴使用,提出建设性意见。
大家知道,sin y x =的图像向上(下)平移10个单位,可得到10sin y x -=(10sin y x +=),即s i n 10y x =+(sin 10y x =-)的图像;sin y x =的图像向右(左)平移10π,可得到sin()10y x p =-(sin()10y x p =+)的图像;sin y x =的图像横向伸长至原来的2倍(横向缩至原来的12),可得到1sin 2y x =(sin 2y x =)的图像;sin y x =的图像纵向伸长至原来的3倍(纵向缩短至原来的13),可得到1sin 3y x =(3sin y x =),即3s i n y x =(1sin 3y x =)的图像;我们可用表格把上述小题的变换内容与解析式的相应变化反左加右减,下加上减;横向变换变x ,纵向变换变y ;各种变换均在x 、y 头上直接变;x 、y 的变化总与我们的感觉相反。
例如,向左或向右平移、横向伸长或横向缩短时变化的均为x ;向上平移或向下平移、纵向伸长或纵向缩短时变化的均为y ;从这可以看出横向变换变x ,纵向变换变y 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018年必修一-函数图象的平移和翻折一、图象的平移变换①)(a x f y -=( 0>a )的图象可由)(x f y =的图象沿x 轴向右平移a 个单位得到;)(a x f y +=( 0>a )的图象可由)(x f y =的图象沿x 轴向左平移a 个单位得到②h x f y ±=)()0(>h 的图象可由)(x f y =的图象沿y 轴向上或向下平移h 个单位得到 注意:(1)可以将平移变换化简成口诀:左加右减,上加下减(2)谁向谁变换是)()(a x f y x f y -=→=还是)()(x f y a x f y =→-=二、图象的对称变换①)(x f y =与)(x f y -=的图象关于y 轴对称 ②)(x f y =与)(x f y -=的图象关于x 轴对称 ③)(x f y =与)(x f y --=的图象关于原点对称④)(x f y =的图象是保留)(x f y =的图象中位于上半平面内的部分,及与x 轴的交点,将的)(x f y =图象中位于下半平面内的部分以x 轴为对称翻折到上半面中去而得到。
⑤)(x f y =图象是保留中位于右半面内的部分及与y 轴的交点,去掉左半平面内的部分,而利用偶函数的性质,将右半平面内的部分以y 轴为对称轴翻转到左半平面中去而得到。
⑥奇函数的图象关于原点成中心对称图形,偶函数的图象关于y 轴成轴对称图形课堂练习1、把函数y =11+x 的图像沿x 轴向右移动1个单位后所得图像记为C ,则图像C 的表 达式为( ) A. y=x -21 B. y=-x 1 C. y=x 1 D. y=21-x 2、函数y=|x|-1的图像是( )A. B. C. D. 3、函数y=|21(x-1)2-3|的单调递增区间是4、某人骑自行车沿直线旅行,先前进了a km,休息了一阵,又沿原路返回b km(b<a)再前进c km,则此人离起点的距离S 与时间t 的关系示意图为( )A B C D5、向高为H 的瓶中注水,注满为止,如果注水量V 与水深h 的函数关系如图所示,那么水6、某学生离家去学校,由于怕迟到,所以一开始就跑步,等跑累了,再走余下的路,下图中y 轴表示离学校的距离,x 轴表示出发后的时间,则适合题意的图形是()7、函数bx a x f -=)(的图象如图,其中a 、b 为常数,则下列结论正确的是( )A .0,1<>b aB .0,1>>b aC .0,10><<b aD .0,10<<<b a8.函数y=-lg(x+1)的图象大致是9. ()()()10,1xf x a b a a =-+>≠的图象不经过第二象限,则必有( )。
(A )01,0a b <<> (B )01,0a b <<< (C )1,1a b >< (D )1,0a b >≥10.设函数()()0,1xf x aa a -=>≠,()24f =,则( )。
(A )()()21f f ->- (B )()()12f f ->- (C )()()12f f > (D )()()22f f -> 11. 为了得到函数3lg 10x y +=的图像,只需把函数lg y x =的图像上所有的点 ( )A .向左平移3个单位长度,再向上平移1个单位长度B .向右平移3个单位长度,再向上平移1个单位长C .向左平移3个单位长度,再向下平移1个单位长度D .向右平移3个单位长度,再向下平移1个单位12. 若10<<a 且函数()x x f a log =则下列各式中成立的是( )(A )()⎪⎭⎫ ⎝⎛>⎪⎭⎫ ⎝⎛>41312f f f (B )()⎪⎭⎫ ⎝⎛>>⎪⎭⎫ ⎝⎛31241f f f(C )()11234f f f ⎛⎫⎛⎫>> ⎪ ⎪⎝⎭⎝⎭(D )()11243f f f ⎛⎫⎛⎫>> ⎪ ⎪⎝⎭⎝⎭13. 下列函数的大致图像:(1)y=log 2|x| (2)y=|log 2(x-1)| (3)y=12+-x x(4)y=|x-2|(x+1)三角函数图象的平移和伸缩函数sin()y A x k ωϕ=++的图象与函数sin y x =的图象之间可以通过变化A k ωϕ,,,来相互转化.A ω,影响图象的形状,k ϕ,影响图象与x 轴交点的位置.由A 引起的变换称振幅变换,由ω引起的变换称周期变换,它们都是伸缩变换;由ϕ引起的变换称相位变换,由k 引起的变换称上下平移变换,它们都是平移变换.既可以将三角函数的图象先平移后伸缩也可以将其先伸缩后平移. 变换方法如下:先平移后伸缩sin y x =的图象ϕϕϕ<−−−−−−−→向左(>0)或向右(0)平移个单位长度得sin()y x ϕ=+的图象()ωωω−−−−−−−−−→横坐标伸长(0<<1)或缩短(>1)1到原来的纵坐标不变 得sin()y x ωϕ=+的图象()A A A >−−−−−−−−−→纵坐标伸长(1)或缩短(0<<1)为原来的倍横坐标不变 得sin()y A x ωϕ=+的图象(0)(0)k k k ><−−−−−−−→向上或向下平移个单位长度得sin()y A x k ϕ=++的图象. 先伸缩后平移sin y x =的图象(1)(01)A A A ><<−−−−−−−−−→纵坐标伸长或缩短为原来的倍(横坐标不变)得sin y A x =的图象(01)(1)1()ωωω<<>−−−−−−−−−→横坐标伸长或缩短到原来的纵坐标不变 得sin()y A x ω=的图象(0)(0)ϕϕϕω><−−−−−−−→向左或向右平移个单位得sin ()y A x x ωϕ=+的图象(0)(0)k k k ><−−−−−−−→向上或向下平移个单位长度得sin()y A x k ωϕ=++的图象. 例1 将sin y x =的图象怎样变换得到函数π2sin 214y x ⎛⎫=++ ⎪⎝⎭的图象.解:(方法一)①把sin y x =的图象沿x 轴向左平移π4个单位长度,得πsin 4y x ⎛⎫=+ ⎪⎝⎭的图象;②将所得图象的横坐标缩小到原来的12,得πsin 24y x ⎛⎫=+ ⎪⎝⎭的图象;③将所得图象的纵坐标伸长到原来的2倍,得π2sin 24y x ⎛⎫=+ ⎪⎝⎭的图象;④最后把所得图象沿y 轴向上平移1个单位长度得到π2sin 214y x ⎛⎫=++ ⎪⎝⎭的图象.(方法二)①把sin y x =的图象的纵坐标伸长到原来的2倍,得2sin y x =的图象;②将所得图象的横坐标缩小到原来的12,得2sin 2y x =的图象;③将所得图象沿x 轴向左平移π8个单位长度得π2sin 28y x ⎛⎫=+ ⎪⎝⎭的图象;④最后把图象沿y 轴向上平移1个单位长度得到π2sin 214y x ⎛⎫=++ ⎪⎝⎭的图象.说明:无论哪种变换都是针对字母x 而言的.由sin 2y x =的图象向左平移π8个单位长度得到的函数图象的解析式是πsin 28y x ⎛⎫=+ ⎪⎝⎭而不是πsin 28y x ⎛⎫=+ ⎪⎝⎭,把πsin 4y x ⎛⎫=+ ⎪⎝⎭的图象的横坐标缩小到原来的12,得到的函数图象的解析式是πsin 24y x ⎛⎫=+ ⎪⎝⎭而不是πsin 24y x ⎛⎫=+ ⎪⎝⎭.课堂练习1、要得到函数y=cos()24x π-的图象,只需将y=sin 2x的图象( ) A .向左平移2π个单位 B.同右平移2π个单位C .向左平移4π个单位 D.向右平移4π个单位2、若函数y=f(x)的图象上每一点的纵坐标保持不变,横坐标伸长到原来的2倍,再将整个图象沿x 轴向左平移2π个单位,沿y 轴向下平移1个单位,得到函数1y= sin x 2的图象则y=f(x)是( )A . 1y=sin(2)122x π++ B. 1y=sin(2)122x π-+ C. 1y=sin(2)124x π++ D. 1sin(2)124y x π=-+3.为得到函数πcos 23y x ⎛⎫=+ ⎪⎝⎭的图像,只需将函数sin 2y x =的图像( ) A .向左平移5π12个长度单位B .向右平移5π12个长度单位 C .向左平移5π6个长度单位D .向右平移5π6个长度单位4.要得到函数sin y x =的图象,只需将函数cos y x π⎛⎫=-⎪3⎝⎭的图象( ) A .向右平移π6个单位 B .向右平移π3个单位 C .向左平移π3个单位D .向左平移π6个单位5.为了得到函数)62sin(π-=x y 的图象,可以将函数x y 2cos =的图象( )(A)向右平移6π个单位长度 (B)向右平移3π个单位长度 (C)向左平移6π个单位长度 (D)向左平移3π个单位长度6.已知函数()sin()(,0)4f x x x R πϖϖ=+∈>的最小正周期为π,为了得到函数()cos g x x ϖ=的图象,只要将()y f x =的图象( )A 向左平移8π个单位长度 B 向右平移8π个单位长度 C 向左平移4π个单位长度 D 向右平移4π个单位长度课后练习题1.作出函数211x y x +=-的图象 2.作出函数||1()2x y =-的图象。
3.将函数y=f(-x)的图象向右平移1个单位,再关于原点对称后,得到的函数解析式为 。
4.若函数y=f(x+2)是偶函数,则函数f(x)( )(A)以x=2为对称轴 (B)以x=-2为对称轴 (C)以y 轴为对称轴 (D)不具有对称性5.函数y =图像向 平移 个单位得到函数y =.6.将曲线y=lgx 向左平移1个单位,再向下平移2个单位得到曲线C 。
如果曲线C '与C 关于原点对称,则曲线C '所对应的函数式 是______。
7.将函数y=f(2x+1)向______平移______个单位,得到函数y= f(2x-5)的图象。
8.将函数3y x a=+的图像向左平移2个单位得到曲线C,若曲线C 关于原点对称,则实数a 的值为( )(A ) 1- (B) 2- (C) 1 (D) 2 9.若把函数()y f x =的图像作平移,可以使图像上的点()1,0P 变换成点(2,2)Q ,则平移后所得图像的函数解析式是( )(A )()12y f x =-+ (B )()12y f x =-- (C )()12y f x =+- (D )()12y f x =++答案1.解:将函数解析式变形,得y===2+于是把函数y=的图象向右平移1个单位,得到函数y=的 图象,再把y=的图象向上平移2个单位,便可得到函数y=+2 的图象。