7函数周周练(7-8)3页

合集下载

函数的周期性练习题

函数的周期性练习题

函数的周期性练习 班级 姓名1、函数2cos()35y x π=-的最小正周期是 ( )A5π B 52π C 2π D 5π 2、下列四个函数中,既是(0,)2π上的增函数,又是以π为周期的偶函数的是 ( ) A sin y x = B |sin |y x = C cos y x = D |cos |y x =3、函数2sin x y =的最小正周期是 ( ) (A) 2π (B) π (C)π2 (D)π4 4、在函数|sin ||,|sin x y x y ==,)32sin(π+=x y ,)322cos(π+=x y 中,最小正周期为π的函数的个数有 ( ) A .1个 B .2个 C .3个 D .4个5、由函数⎩⎨⎧++∈+∈=)22,12[1)12,2[0)(n n x n n x x f ()Z n ∈的图象,可知此函数的周期为( ) A .2k B .23k C .k D .2k (以上k 0,≠∈k Z ) 6、定义在R 上的函数()x f 满足()()2+=x f x f ,当[]5,3∈x 时,()42--=x x f ,则( ).A sin cos 66f f ππ⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭; .B ()()sin1cos1f f >; .C 22cos sin 33f f ππ⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭ .D ()()cos2sin2f f > 7、设()f x 是定义在R 上以6为周期的函数,()f x 在(0,3)内单调递减,且()y f x =的图像关于直线3x =对称,则下面正确的结论是 ( ) .A (1.5)(3.5)(6.5)f f f << .B (3.5)(1.5)(6.5)f f f << .C (6.5)(3.5)(1.5)f f f << .D (3.5)(6.5)(1.5)f f f << 8、设函数()f x (x R ∈)是以3为周期的奇函数,且()()11,2f f a >=,则( ) .A 2a > .B 2a <- .C 1a > .D 1a <-9、函数()f x 既是定义域为R 的偶函数,又是以2为周期的周期函数,若()f x 在[]1,0-上 是减函数,那么()f x 在[]2,3上是 ( ) .A 增函数 .B 减函数 .C 先增后减函数 .D 先减后增函数10、已知函数()f x 是以2为周期的周期函数,且当()0,1x ∈时,()21x f x =-,则 2(log 10)f 的值为 ( ).A 35 .B 85 .C 38- .D 53 11、定义在R 上的函数)(x f 既是偶函数又是周期函数,若)(x f 的最小正周期是π,且当]2,0[π∈x 时,x x f sin )(=,则)35(πf 的值为 ( ) .A 21- .B 21 .C 23- .D 23 12、已知定义在R 上的奇函数()f x 满足(2)()f x f x +=-,则(6)f 的值为 ( ) .A 1- .B 0 .C 1 .D 213、若函数()f x 满足(1)()f x f x -=,则函数()y f x =的一个周期是______________.14、若函数cos()(0)6y x πωω=->最小正周期为5π,则ω= . 15、已知函数)34sin()(π+=x k x f 的周期不大于2,则正整数k 的最小值是_______. 16、若存在常数0p >,使得函数()f x 满足()()2p f px f px =-()x R ∈, ()f x 的一个正周期为17、已知)(x f 是奇函数,)(1)(1)1(x f x f x f -+=+,,1)1(=-f 则)3(f =____________. 18、函数()f x 对于任意实数x 满足条件()()12f x f x +=,若()15f =-, 则()()5f f =19、设()f x 的最小正周期2T =且()f x 为偶函数,它在区间[]0,1上的图象如右图所示的线段AB ,则在区间[]1,2上, ()f x =。

初中函数练习题及答案

初中函数练习题及答案

初中函数练习题及答案一、选择题(每题2分,共20分)1. 函数y = 2x + 3的斜率是:A. 2B. 3C. 5D. 62. 如果一个函数是奇函数,那么f(-x)等于:A. f(x)B. -f(x)C. 0D. 13. 函数y = x^2 + 1的顶点坐标是:A. (0, 1)B. (1, 0)C. (-1, 0)D. (0, 0)4. 函数y = 1/x的图像在哪个象限内是递增的?A. 第一象限B. 第二象限C. 第三象限D. 第四象限5. 函数y = |x|的图像在x=0处是:A. 连续的B. 可导的C. 可微的D. 有尖点的二、填空题(每题3分,共15分)6. 函数f(x) = 3x - 2的反函数是________。

7. 函数g(x) = x^3 - 2x^2 + x的极值点是________。

8. 函数h(x) = sin(x) + cos(x)的周期是________。

9. 函数p(x) = log(x)的定义域是________。

10. 函数q(x) = √x的值域是________。

三、简答题(每题5分,共30分)11. 给定函数f(x) = x^2 - 4x + 4,求其对称轴的方程。

12. 函数y = 2x在x=3处的切线方程是什么?13. 函数y = x^2 - 6x + 9的顶点坐标是什么?14. 函数f(x) = 2x + 5在区间[1, 3]上的最大值和最小值分别是多少?15. 解不等式:|x - 3| < 2。

四、计算题(每题10分,共30分)16. 已知函数f(x) = 3x^2 + 2x - 5,求f(-1)和f(2)的值。

17. 已知函数g(x) = x^3 - 3x^2 + 2x + 1,求g'(x)和g''(x)。

18. 已知函数h(x) = 2x^3 - 5x^2 + 7x - 3,求h(1)和h'(1)的值。

五、解答题(5分)19. 讨论函数y = x^3 - 3x^2 + 2的单调性。

初中函数练习题及答案

初中函数练习题及答案

初中函数练习题及答案初中函数练习题及答案函数是初中数学中一个重要的概念,它在数学中有着广泛的应用。

通过函数的学习,可以帮助学生培养逻辑思维能力和问题解决能力。

下面,我将为大家提供一些初中函数练习题及其答案,希望能帮助大家更好地理解和掌握函数的知识。

1. 已知函数f(x) = 2x + 3,求f(4)的值。

解答:将x = 4代入函数f(x)中,得到f(4) = 2(4) + 3 = 11。

所以f(4)的值为11。

2. 已知函数g(x) = 3x^2 - 2x,求g(-1)的值。

解答:将x = -1代入函数g(x)中,得到g(-1) = 3(-1)^2 - 2(-1) = 3 + 2 = 5。

所以g(-1)的值为5。

3. 已知函数h(x) = 5x - 1,求方程h(x) = 9的解。

解答:将h(x) = 9代入函数h(x)中,得到5x - 1 = 9。

解方程得到x = 2。

所以方程h(x) = 9的解为x = 2。

4. 已知函数k(x) = x^2 + 2x,求k(3)的值。

解答:将x = 3代入函数k(x)中,得到k(3) = 3^2 + 2(3) = 9 + 6 = 15。

所以k(3)的值为15。

5. 已知函数m(x) = 2x - 5,求方程m(x) = 0的解。

解答:将m(x) = 0代入函数m(x)中,得到2x - 5 = 0。

解方程得到x = 2.5。

所以方程m(x) = 0的解为x = 2.5。

通过以上的练习题,我们可以看到函数的应用非常广泛。

在解题过程中,我们需要根据函数的定义将给定的值代入函数中,然后进行计算。

这样可以得到函数在给定点上的函数值。

除了上述的练习题外,我们还可以通过绘制函数的图像来更好地理解函数的性质。

例如,我们可以绘制函数y = x^2的图像。

通过观察图像,我们可以发现函数的增减性、最值等性质。

在学习函数的过程中,我们还需要掌握一些函数的基本性质。

例如,函数的定义域、值域、奇偶性等。

函数周期要过关就做这50道好题含详解

函数周期要过关就做这50道好题含详解

函数周期要过关就做这50道题一、多选题1.已知函数()f x 满足(3)()f x f x +=,且(1)2f =,则下列结论正确的是()A .()11f -=B .(0)0f =C .(4)2f =D .(10)2f =2.已知()f x 是定义在R 上的奇函数,且满足(4)()f x f x -=,则下列说法正确的是()A .(8)()f x f x +=B .()f x 在区间(2,2)-上单调递增C .(2019)(2020)(2021)0f f f ++=D .()cos()42f x x ππ=+是满足条件的一个函数3.已知(2)y f x =+为奇函数,且(3)(3)f x f x +=-,当[]0,1x ∈时,4()2log (1)1x f x x =++-,则()A .()f x 的图象关于(2,0)-对称B .()f x 的图象关于(2,0)对称C .4(2021)3log 3f =+D .3(2021)2f =4.已知函数()f x 是定义在R 上的偶函数,对任意的x 都有(3)()f x f x +=-,且(5)2f =-,对任意的1x ,2[0,3]x ∈,且12x x ≠时,1212()()0f x f x x x ->-恒成立,则()A .3的一个周期B .(29)2f =-C .()f x 在[810],上是减函数D .方程()20f x +=在(7,7)-上有4个实根5.已知定义在R 上的函数()f x 满足()()0f x f x --=,()()20f x f x +-=,且当[]0,1x ∈时,()()221f x x =--,若函数()()log 1a y f x x =-+在()0,∞+上至少有三个不同的零点,则下列结论正确的是()A .()f x 的图象关于直线1x =-对称B .当[]4,5x ∈时,()()225f x x =--C .当[]2,3x ∈时,()f x 单调递减D .a 的取值范围是0,2⎛⎫ ⎪ ⎪⎝⎭6.已知定义在R 上的奇函数()f x 满足(1)(1)f x f x -=+,且(0,1]x ∈时,()2f x x =-,则关于()f x 的结论正确的是()A .()f x 是周期为4的周期函数B .()f x 所有零点的集合为{}2,x x k k Z =∈C .(3,1)x ∈--时,()26f x x =+D .()y f x =的图像关于直线1x =对称7.已知()f x 是定义域为(,)-∞+∞的奇函数,(1)f x +是偶函数,且当(]0,1x ∈时,()(2)f x x x =--,则()A .()f x 是周期为2的函数B .()()201920201f f +=-C .()f x 的值域为[]1,1-D .()y f x =在[]0,2π上有4个零点二、单选题8.已知函数()y f x =是定义在R 上周期为4的奇函数,若(1)1f =,则(2)f ,(7)f 的值分别为()A .1,1B .1-,1C .0,1D .0,1-9.已知函数(4),0()3,0xf x x f x x --≥⎧=⎨<⎩则(99)f =()A .13B .9C .3D .1910.设()f x 为奇函数,对任意x ∈R 均有()()4f x f x +=,已知()13f -=则()3f -等于()A .-3B .3C .4D .-411.设()f x 是定义在R 上周期为2的奇函数,当01x <<时,()2f x x x =-,则52f ⎛⎫-= ⎪⎝⎭()A .14-B .12-C .14D .1212.设函数()f x 是定义在R 上的奇函数,且对任意x ∈R 都有()(4)f x f x =+,当(0,2)x ∈时,()2f x x =,则(2015)(2012)f f +的值为()A .2-B .1-C .12D .3213.定义在R 的奇函数()f x 满足()()4f x f x +=,且()0,2x ∈时,()()21f x x =-,则()f x 在区间[]0,2021上的零点个数为()A .1011B .1010C .2021D .202214.已知定义在R 上的函数()f x 满足:()()()2,012,0x x f x f x f x x ⎧-≤⎪=⎨--->⎪⎩,则()()20202021f f +的值等于()A .5-B .4-C .3-D .2-15.设函数()f x 为定义在R 上的奇函数且周期为4,当20x -<<时,()2axf x =-且44(1log 580)f +=,则a =()A .1-B .2-C .1.D .216.已知()f x 是定义在R 上的奇函数,x R ∀∈,恒有()(2)0f x f x ++=,且当(0x ∈,1]时,()21x f x =+,则(0)(1)(2)(2020)(2021)f f f f f +++++ =()A .1B .2C .3D .417.已知()f x 是定义在R 上的奇函数,且(1)(1)f x f x +=--.当[1,0]x ∈-时,()1x f x e =-,则()()4ln 2f e =()A .12B .12-C .1D .3-18.已知函数()f x 的定义域为R ,且满足:①对任意的1x ,()212[5,1]x x x ∈--≠,都有()()21210f x f x x x ->-;②(1)y f x =+是奇函数;③(1)=-y f x 为偶函数.则()A .(2021)(22)(3)f f f >>B .(22)(3)(2021)f f f >>C .(3)(22)(2021)f f f >>D .(22)(2021)(3)f f f >>19.已知()y f x =为奇函数,()1y f x =+为偶函数,若当[]0,1x ∈时,()()2log a f x x =+,则()2021f =()A .1-B .0C .1D .220.已知函数()f x 的定义域为R 且满足()()f x f x -=-,()(4)f x f x =+,若(1)6f =,则()()22log 128log 16f f +=()A .6B .0C .6-D .12-21.已知()f x 是定义在R 上的奇函数,()1f x +也是奇函数,当(]0,1x ∈时,()11f x x=-.若函数()()sin F x f x x π=+,则()F x 在区间[]1949,2021上的零点个数是()A .108B .109C .144D .14522.定义在R 偶函数()f x 满足()()22f x f x -=-+,对[]12,0,4x x ∀∈,12x x ≠,都有()()12120f x f x x x ->-,则有()A .()()()192120211978f f f =<B .()()()192119782021f f f <<C .()()()192120211978f f f <<D .()()()202119781921f f f <<23.定义在R 上的奇函数()f x 满足()()2f x f x -=,且在[)0,1上单调递减,若方程()1f x =-在[)0,1上有实数根,则方程()1f x =在区间[]1,11-上所有实根之和是()A .30B .14C .12D .624.设()f x 是定义在R 上的偶函数,对任意的x R ∈,都有()()22f x f x -=+,且当[]2,0x ∈-时,()122xf x ⎛⎫=- ⎪⎝⎭,若在区间(]2,6-内关于x 的方程()()log 20(01)a f x x a -+=<<恰有三个不同的实数根,则实数a 的取值范围是A .10,2⎛⎫ ⎪⎝⎭B .0,4⎛⎫ ⎪ ⎪⎝⎭C .1,42⎛⎫⎪ ⎪⎝⎭D .1,12⎛⎫⎪⎝⎭25.已知偶函数()f x 满足()()44f x f x +=-,且当(]0,4x ∈时,()()ln 2x f x x=,关于x 的不等式()()20fx af x +>在区间[]200,200-上有且只有300个整数解,则实数a 的取值范围是()A .1ln 2,ln 63⎛⎫-- ⎪⎝⎭B .1ln 2,ln 63⎛⎤-- ⎥⎝⎦C .13ln 6,ln 234⎛⎫--⎪⎝⎭D .13ln 6,ln 234⎛⎤--⎥⎝⎦26.高斯是德国著名的数学家,近代数学奠基者之一,享有“数学王子”的称号,他和阿基米德、牛顿并列为世界三大数学家,用其名字命名的“高斯函数”为:设x ∈R ,用[]x表示不超过x 的最大整数,则[]y x =称为高斯函数,例如:[ 3.5]4-=-,[2.1]2=,已知函数()[],f x x x x R =-∈,则对函数()f x 描述正确的是()A .()f x 是偶函数B .()f x 的值域为[)0,1C .()f x 是奇函数D .()f x 不是周期函数27.已知定义在R 上的偶函数()f x 满足()()()42,f x f x f +=+且[]0,2x ∈时有()sin()2sin()f x x x ππ=+,而()()7log 2a g x f x x ⎛⎫=-+ ⎪⎝⎭在区间[]3,3-上至多有10个零点,至少有8个零点,则a 的取值范围为()A .134,6⎡⎤⎢⎥⎣⎦B .134,5⎡⎤⎢⎥⎣⎦C .[]2,5D .[]5,628.已知函数()()y f x x =∈R 满足(2)()f x f x +=,且当[1,1]x ∈-时,()||f x x =,函数()()21log 2,02,0x x x g x x -⎧+<⎪=⎨≥⎪⎩,则函数()()()h x f x g x =-在区间[2,5]-上的零点的个数为()A .4B .5C .6D .729.已知定义在R 的函数()y f x =对任意的x 满足(2)()f x f x +=,当11x -≤<,3()f x x =,函数log ,0()1,0a x x g x x x ⎧>⎪=⎨-<⎪⎩,若函数()()()h x f x g x =-在[6,)-+∞上有6个零点,则实数a 的取值范围是()A .10,(7,)7⎛⎫⋃+∞ ⎪⎝⎭B .11,[7,9)97⎛⎤⋃ ⎥⎝⎦C .11,(7,9]97⎡⎫⋃⎪⎢⎣⎭D .1,1(1,9]9⎡⎫⋃⎪⎢⎣⎭30.函数()f x 是定义在R 上周期为2的偶函数,且当[]3,1x ∈--时,()()22f x x =+,则函数()11log 5x y f x -=-的零点个数为()A .6B .8C .10D .1231.已知函数()f x 是定义在R 上的奇函数,且()2f x -是偶函数,给出下列结论:①()y f x =的图象关于直线2x =对称②()y f x =的图象关于点()4,0-对称③()f x 是周期为4的函数其中正确结论的个数是()A .0B .1C .2D .332.定义在R 上的偶函数()f x 满足()()53f x f x -=+,且()224,012ln ,14x x x f x x x x ⎧-+≤<=⎨-≤≤⎩,若关于x 的不等式()()()210f x a f x a +++<在[]20,20-上有且仅有15个整数解,则实数a 的取值范围是()A .(]1,ln 22--B .[)2ln 33,2ln 22--C .(]2ln 33,2ln 22--D .[)22ln 2,32ln 3--第II 卷(非选择题)请点击修改第II 卷的文字说明三、填空题33.已知函数()f x 是周期函数,10是()f x 的一个周期,且()2f =,则(22)f =________.34.定义在R 上的奇函数()f x 满足()()2f x f x +=-,当[]1,0x ∈-时,()22f x x x =+,则()2021f =___________.35.已知定义在R 上的函数()f x 满足:()()11f x f x +=,当(]0,1x ∈时,()2xf x =,则()2log 9f 等于___________.36.在R 上函数()f x 满足()1()f x f x +=-,且2,10()3,01x a x f x x x +-≤<⎧=⎨-≤<⎩,其中a R ∈,若()()5 4.5f f -=,则a =_________.37.已知()f x 是定义在R 上的函数,且()()12()12f x f x f x +-=--,若(1)2f =+,则(2025)f =______.38.已知定义在R 上的偶函数()f x 满足:()()4f x f x +=-,对1x ∀,2[0,2]x ∈,当12x x ≠时,()()12120f x f x x x -<-,且()10f =,则不等式()0f x >在[2019,2023]上的解集为______.39.已知函数()y f x =,对任意x ∈R ,都有()()1f x f x a ⋅+=(a 为非零实数),且当[)0,1x ∈时,()2xf x =,则()2021f =___________.40.已知函数()y f x =是定义域为R 的奇函数,满足()()11f x f x -=+,若()11f =,则()()()()12350f f f f +++⋯+=__________.41.已知()f x 是定义在R 上的奇函数,满足()()11f x f x -=+.若()12f =,则()()()()1232021f f f f ++++= ________.42.设函数()f x 是定义在R 上的偶函数,且对任意的x ∈R 恒有()()11f x f x =+-,已知当[]0,1x ∈时,11()2xf x -⎛⎫= ⎪⎝⎭,则下列命题:①对任意x ∈R ,都有()()2f x f x +=;②函数()f x 在()1,2上递减,在()2,3上递增;③函数()f x 的最大值是1,最小值是0;④当()3,4x ∈时,31()2x f x -⎛⎫= ⎪⎝⎭.其中正确命题的序号有_________.43.已知数列{}n a 满足12a =-,且32n n S a n =+(其中n S 为数列{}n a 前n 项和),()f x 是定义在R 上的奇函数,且满足(2)()f x f x -=,则2021()f a =___________.44.定义在R 上函数()f x 满足()()()f x y f x f y +=+,()()2f x f x +=-且()f x 在[]1,0-上是增函数,给出下列几个命题:①()f x 是周期函数;②()f x 的图象关于1x =对称;③()f x 在[]1,2上是增函数;④()()20f f =.其中正确命题的序号是______.45.偶函数()y f x =满足()()33f x f x +=-,在[)3,0x ∈-时,()2xf x -=.若存在1x ,2x ,…n x ,满足120n x x x ≤<<<…,且()()()()()()122312019n n f x f x f x f x f x f x --+-++-=…,则n x 最小值为__________.四、双空题46.已知函数()f x 是R 上的奇函数,并且是周期为3的周期函数,若(1)2f =,则(2)f =___________;(2019)f =__________.47.定义在R 上的函数()f x 满足(6)()f x f x +=.当[)3,3x ∈-时,()()22,3113x x f x x x ⎧-+-≤<-⎪=⎨-≤<⎪⎩,,则(4)f =___________;(1)(2)(3)(2016)(2017)f f f f f +++++= __________.48.已知定义在R 上的奇函数f (x )满足f (x +π)=-f (x ),当[0,2x π∈时,()f x =则7()2f π=_________,方程(x -π)f (x )=1在区间[,3]ππ-上所有的实数解之和为________.五、解答题49.设f (x )是定义在R 上的奇函数,且对任意实数x ,恒有f (x +2)=-f (x ).当x ∈[0,2]时,()22.f x x x =-(1)求证:f (x )是周期函数;(2)当x ∈[2,4]时,求f (x )的解析式;(3)计算()()()012)20(17f f f f +++⋯+.50.已知()f x 是定义在R 上的函数,满足()1()11()f x f x f x -+=+.(1)若1122f ⎛⎫=⎪⎝⎭,求52f ⎛⎫ ⎪⎝⎭;(2)证明:2是函数()f x 的周期;(3)当[)0,1x ∈时,()f x x =,求()f x 在[)1,0x ∈-时的解析式,并写出()f x 在[)()21,21x k k k Z ∈-+∈时的解析式.答案第1页,总39页参考答案1.CD 【分析】根据函数的周期,计算求值.【详解】由条件()()3f x f x +=,可知函数的周期3T =,因为()12f =,则()()4102f f ==.故选:CD 2.ACD 【分析】由已知结合函数的周期性,奇偶性分别检验各选项即可判断.【详解】因为()f x 是定义在R 上的奇函数,所以()()f x f x -=-,又(4)()f x f x -=,所以(4)()f x f x -=--,即(4)()f x f x +=-,所以(8)()f x f x +=,故A 正确;题目无法得出()f x 在区间(2,2)-上单调递增,故B 错误;因为函数的周期为8,所以(2019)(2020)(2021)f f f ++(3)(4)(5)(1)(0)(1)0f f f f f f =++=----=,故C 正确;因为()cos()sin()424f x x x πππ=+=-,由(4)()f x f x -=可得()f x 对称轴为2x =,()sin()4f x x π=-满足对称轴为2x =()sin(())sin()()44f x x x f x ππ-=--==-,满足奇函数,故D 正确.故选:ACD .3.ABD 【分析】首先根据(2)y f x =+为奇函数,可得()f x 的图象关于(2,0)对称.再根据已知条件计算()f x 的周期,可判断选项ACD ,进而可得正确选项【详解】因为(2)f x +为奇函数,所以(2)(2)f x f x -+=-+即(2)(2)f x f x +=--,,所以()f x 的图象关于(2,0)对称.故选项B 正确,由(2)(2)f x f x +=--可得(4)()f x f x +=--,由(3)(3)f x f x +=-可得()(6)f x f x -=+,所以(4)(6)f x f x -+=+,可得(2)()f x f x +=-,所以()2(()4)f x f x f x -+=+=,所以()f x 周期为4,所以()f x 的图象关于(2,0)-对称,故选项A 正确,43(2021)(45051)(1)2log 212f f f =⨯+==+-=.故选项D 正确,选项C 不正确,故选:ABD .【点睛】关键点点睛:本题解题的关键点是根据已知条件求出()f x 的周期性和对称性,根据周期性可计算函数值.4.BD【分析】由()()3f x f x +=-,得到()()6f x f x +=,可判定A 不正确;根函数的周期性和(5)f 的值,可判定B 正确;根据函数的单调性和奇偶性、周期性,可判定C 不正确;根据题意求得()()152f f ±=±=-,进而求得方程()20f x +=的根,可判定D 正确,即可求解.【详解】由()()3f x f x +=-,可得()()6f x f x +=,所以函数()f x 是周期为6的周期函数,所以A 不正确;因为(5)2f =-,可得(29)(465)(5)2f f f =⨯+==-,所以B 正确;因为对任意的12,[03]x x ∈,,且12x x ≠时,1212()()0f x f x x x ->-恒成立,所以函数()f x 在[0,3]上为单调递增函数,又由函数()f x 为偶函数,所以[30]-,上为单调递减函数,所以函数在[6,9]上单调递增,在区间[912],上单调递减,所以函数()f x 在区间[810],先增后减,所以C 不正确;由(5)2f =-,可得(16)2f -+=-,所以()()12,52f f ±=-±=-,可得在区间(7,7)-内,方程()20f x +=,可得()2f x =-的实根为1,5x x =±=±,故D 正确.故选:BD【点睛】函数的周期性有关问题的求解策略:1、求解与函数的周期性有关问题,应根据题目特征及周期定义,求出函数的周期;2、解决函数周期性、奇偶性和单调性结合问题,通常先利用周期性中为自变量所在区间,再利用奇偶性和单调性求解.5.AB【分析】先根据题意得函数是偶函数,且是周期为2的周期函数,进而利用数形结合思想讨论各选项即可得答案.【详解】解:根据题意得:()()0f x f x --=知()f x 是偶函数,由()()20f x f x +-=知()f x 是周期为2的周期函数,因为当[]0,1x ∈时,()()221f x x =--,所以有如图的函数图象,故对于A 选项,由图可知()f x 图象关于1x =-对称,所以A 正确;对于B 选项,当[]4,5x ∈时,()()()2425f x f x x =-=--,所以B 正确;对于C 选项,当[]2,3x ∈时,由周期为2可知()f x 单调性与[]0,1x ∈时()f x 的单调性相同,易知当[]2,3x ∈时,()f x 单调递增,所以C 错误;对于D 选项,设()()log 1a g x x =+,则函数()()log 1a y f x x =-+在()0,∞+上至少有三个不同的零点,等价于函数()f x 与()g x 图象在()0,∞+上至少有三个不同的交点,结合图象可知,则有()()22g f >,即()log 212a +>-,解得03a <<,所以D 错误.故选:AB.【点睛】本题考查函数的零点,周期性,奇偶性等函数性质,考查数形结合思想和运算求解能力,解题的关键在于根据题意做出函数图象,利用数形结合思想求解,是中档题.6.ABD【分析】A.(1)(1)f x f x -=+和()f x 为奇函数即可得出结论;B.解出函数在一个周期内的零点:在[2,2]-内的零点为2,0,2-即可得出所有零点满足{}2,x x k k Z =∈;C.()f x 是周期为4的周期函数,所以(2.5)1f -=-,若(3,1)x ∈--时,()26f x x =+则(2.5)11f -=≠-即可判定解析式错误;D.由(1)(1)f x f x -=+得()y f x =的图像关于直线1x =对称成立.【详解】解:对于A.由(1)(1)f x f x -=+得()(11)(2)f x f x f x -=++=+,又()f x 为奇函数,所以(2)()()f x f x f x +=-=-,所以(4)()f x f x +=,故A 正确.对于B.由()f x 为定义在R 上的奇函数得(0)0f =,由A 可得(2)()f x f x +=-,令0,(2)(0)0x f f ==-=,又由A :()f x 是周期为4的周期函数,得(2)(2)0f f -==,所以在[2,2]-内的零点为2,0,2-,()f x 是周期为4的周期函数,所以()f x 所有零点的集合为{}2,x x k k Z =∈,故B 正确.对于C.由(1)(1)f x f x -=+得得()y f x =的图像关于直线1x =对称,结合A :()f x 是周期为4的周期函数,所以(2.5)(1.5)(10.5)(10.5)(0.5)1f f f f f -==+=-==-,若(3,1)x ∈--时,()26f x x =+则(2.5)2(2.5)611f -=⨯-+=≠-,故C 不正确.对于D.由(1)(1)f x f x -=+得()y f x =的图像关于直线1x =对称,故D 正确.故选:ABD【点睛】函数的奇偶性、对称性、周期性和单调性是函数的四大性质,在高考中常常将它们综合在一起命题,解题时,往往需要借助函数的奇偶性、对称性和周期性来确定另一区间上的单调性,即实现区间的转换,再利用单调性解决相关问题.7.BCD【分析】对于A ,由()f x 为R 上的奇函数,()1f x +为偶函数,得(4)()f x f x +=,则()f x 是周期为4的周期函数,可判断A.对于B ,由()f x 是周期为4的周期函数,则()()202000f f ==,()()()2019111f f f =-=-=-,可判断B .对于C ,当(]01x ∈,时,()()2f x x x =--,有()01f x ≤<,又由()f x 为R 上的奇函数,则[)10x ∈-,时,()10f x -≤<,可判断C .对于D ,根据函数的周期性和对称性,可以求出函数在各段上的解析式,从而求出函数的零点,可判断D .【详解】解:对于A ,()1f x +为偶函数,其图像关于x 轴对称,把()1f x +的图像向右平移1个单位得到()f x 的图像,所以()f x 图象关于1x =对称,即(1)(1)f x f x +=-,所以(2)()f x f x +=-,()f x 为R 上的奇函数,所以()()f x f x -=-,所以(2)()f x f x +=-,用2x +替换上式中的x 得,(4)(2)f x f x +=-+,所以,(4)()f x f x +=,则()f x 是周期为4的周期函数.故A 错误.对于B ,()f x 定义域为R 的奇函数,则()00f =,()f x 是周期为4的周期函数,则()()202000f f ==;当(]0,1x ∈时,()()2f x x x =--,则()()11121f =-⨯-=,则()()()()201912020111f f f f =-+=-=-=-,则()()201920201f f +=-.故B 正确.对于C ,当(]01x ∈,时,()()2f x x x =--,此时有()01f x <≤,又由()f x 为R 上的奇函数,则[)1,0x ∈-时,()10f x -≤<,(0)0f =,函数关于1x =对称,所以函数()f x 的值域[]1,1-.故C 正确.对于D ,(0)0f = ,且(]0,1x ∈时,()()2f x x x =--,[0,1]x ∴∈,()(2)f x x x =--,[1,2]x ∴∈,2[0,1]x -∈,()(2)(2)f x f x x x =-=--①[0,2]x ∴∈时,()(2)f x x x =--,此时函数的零点为0,2;()f x 是奇函数,[2,0],()(2)x f x x x ∴∈-=+,②(]2,4x ∴∈时,()f x 的周期为4,[]42,0x ∴-∈-,()()()()424f x f x x x =-=--,此时函数零点为4;③(]4,6x ∴∈时,[]40,2x ∴-∈,()()4(4)(6)f x f x x x =-=---,此时函数零点为6;④(]6,2x π∴∈时,(]42,4x ∴-∈,()()()()468f x f x x x =-=--,此时函数无零点;综合以上有,在(0,2)π上有4个零点.故D 正确;故选:BCD【点睛】关键点点睛:由(1)f x +是偶函数,通过平移得到()f x 关于1x =对称,再根据()f x 是奇函数,由此得到函数的周期,进一步把待求问题转化到函数的已知区间上,本题综合考查抽象函数的奇偶性、周期性.8.D【分析】直接利用周期性、结合奇偶性求解即可.【详解】因为函数()y f x =是定义在R 上周期为4的奇函数,且(1)1f =,所以()()()(2)2220f f f f =-=-⇒=;()()()(7)3111f f f f ==-=-=-,故选:D.9.C【分析】由题意可知,当0x ≥时,函数()f x 是周期为4的周期函数,可得(99)(4251)(1)f f f =⨯-=-,由此即可求出结果.【详解】当0x ≥时,()(4)f x f x =-,所以()(4)f x f x =+,所以当0x ≥时,函数()f x 是周期为4的周期函数,所以(99)(4251)(1)f f f =⨯-=-;又(1)=3f -,所以(99)3f =.故选:C.【点睛】本题主要考查了函数的周期性和分段函数的概念,属于基础题.10.A【分析】由题可得()()()1331f f f ==--=--.【详解】()f x 为奇函数,对任意x ∈R 均有()()4f x f x +=,()()()1133f f f ==--∴=--.故选:A.【点睛】本题考查函数奇偶性和周期性的应用,属于基础题.11.C【分析】根据函数奇偶性与周期性,得到5122f f ⎛⎫⎛⎫-=- ⎪ ⎪⎝⎭⎝⎭,再由已知区间对应的解析式,即可得出结果.【详解】因为()f x 是定义在R 上周期为2的奇函数,所以511222f f f ⎛⎫⎛⎫⎛⎫-=-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,又当01x <<时,()2f x x x =-,所以5111122424f f ⎛⎫⎛⎫⎛⎫-=-=--= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.故选:C.【点睛】本题主要考查由函数奇偶性与周期性求函数值,属于基础题型.12.A【分析】先求得()0f ,然后判断出()f x 是周期函数,由此求得所求表达式的值.【详解】依题意得函数()f x 是定义在R 上的奇函数,可知(0)0f =,由于对任意x ∈R 都有()(4)f x f x =+,所以()f x 是周期为4的周期函数,所以()()(2015)(2012)503435034(3)(0)f f f f f f +=⨯++⨯=+(34)(1)(1)2f f f =-=-=-=-.故选:A【点睛】本小题主要考查函数的奇偶性和周期性,属于基础题.13.D【分析】首先可得()f x 是以4为周期的周期函数,又()f x 为定义在R 的奇函数,所以()00f =,从而得到()0f n =,n Z ∈,即可得解;【详解】解:因为定义在R 的奇函数()f x 满足()()4f x f x +=,所以()00f =,()f x 是以4为周期的周期函数,当()0,2x ∈时,()()21f x x =-,所以()10f =,因为()()()2422f f f -+=-=-,所以()20f =,()()()14110f f f -+=-=-=,即()30f =,又()()0400f f +==,所以()00f =,()10f =,()20f =,()30f =,()40f =,……,()0f n =,n Z ∈,所以()f x 在区间[]0,2021上由2022个零点;故选:D14.D【分析】由()()()12,0f x f x f x x =--->可得函数的局部周期性,从而可求()()20202021f f +的值.【详解】因为()()()12,0f x f x f x x =--->,故()()()11f x f x f x +=--,故()()()120f x f x x +=-->,所以()()()()632f x f x f x x +=-+=>-,所以()()()()()()20206336441011f f f f f f =⨯+==-=-+-=-,()()()()202163365511f f f f =⨯+==-=-,故()()202020212f f +=-,故选:D.15.D【分析】由函数()f x 为定义在R 上的奇函数且周期为4,结合对数的运算性质可得24(1log 5f -=-,而21log (2,0)--,从而有()1log 425a --=-,进而可求出a 的值【详解】解:因为4444log 80log 16log 52log 5=+=+,所以44(1log 580)f +=可化为44(3log 55)f +=,因为函数()f x 的周期为4,所以44(1log 5)5f -+=,因为函数()f x 为定义在R 上的奇函数,所以44(1log 5)5f -=-,即24(1log 5f -=-因为21log (2,0)--,所以(1log 425a --=-,即45a=,解得2a =,故选:D16.C【分析】令2x x =+代入(2)()f x f x +=-即可得出(4)()f x f x +=;根据周期可得(0)(1)f f +(2)f +(2019)0f +⋯+=.由此可得结论.【详解】解:(2)()f x f x +=- ,(22)(2)f x f x ∴-+=--,即()(2)f x f x =--,又()(2)f x f x =-+,(2)(2)f x f x ∴+=-,()(4)f x f x ∴=+.()f x ∴的最小正周期是4.(0)0f = ,f (1)3=,f (2)0=,f (3)f =-(1)3=-.又()f x 是周期为4的周期函数,(0)(1)(2)(3)(4)(5)(6)(7)f f f f f f f f +++=+++==(2016)(2017)(2018)(2019)0f f f f +++=.∴(0)(1)(2)(2021)(2020)(2021)(0)(1)033f f f f f f f f ++++=+=+=+= ,故选:C .17.A【分析】利用函数的周期性和奇偶性求值即可.【详解】因为(1)(1)f x f x +=--,所以()(2)(4)f x f x f x =-+=+,所以()f x 是以4为周期的函数,则()()4ln 2(ln 24)(ln 2)f e f f =+=.因为12e <<,所以0ln 21<<,所以1ln 20-<-<,故()ln 211(ln 2)(ln 2)1122f f e -=--=--=-+=.故选:A18.D【分析】由已知不等式得函数的单调性,由奇偶性得函数的周期性,再利用周期性和单调性可比较函数值的大小.【详解】由对任意的1x ,()212[5,1]x x x ∈--≠,都有()()21210f x f x x x ->-,可得()f x 在[5,1]--上单调递增.由(1)y f x =+是奇函数,可得(1)(1)f x f x -+=-+,从而()(2)f x f x =--①.由(1)=-y f x 为偶函数,可得(1)(1)f x f x --=-,从而()(2)f x f x =--②.由①②得(2)(2)f x f x --=--,设2t x =-,则()(4)(8)f t f t f t =--=-,得()(8)f x f x =+,所以函数()f x 的周期为8,所以(2021)(82525)(5)(3)f f f f =⨯+==-,(3)(38)(5)f f f =-=-,(22)(832)(2)f f f =⨯-=-,因为532-<-<-,()f x 在[5,1]--上单调递增,所以(5)(3)(2)f f f -<-<-,即(3)(2021)(22)f f f <<,故选:D.【点睛】关键点点睛:求解本题的关键是,根据(1)y f x =+是奇函数,(1)=-y f x 为偶函数,得到(2)(2)f x f x --=--,进而得到()(8)f x f x =+,从而得到函数()f x 的周期为8.实际上就是函数()y f x =的图象关于点(,0)a 成中心对称,关于直线x b =(a b ¹)成轴对称,则函数为周期函数,4T a b =-是函数的一个周期.19.C 【分析】由()00f =得1a =,()1y f x =+为偶函数得()f x 关于1x =对称,故周期为4,则问题可解.【详解】()f x 为奇函数,()00f =且()f x 关于原点对称①∵[]0,1x ∈时()()2log a f x x =+,∴()2log 00a +=,∴1a =∴[]0,1x ∈时()()2log 1f x x =+,∵()1y f x =+为偶函数关于y 轴对称.则()f x 关于1x =对称②由①②可知()()()()2f x f x f x f x ⎧-=-⎪⎨=-⎪⎩∴()()()22f x f x f x =-=--,∴()()2f x f x +=-.∴()()()()()42f x f x f f x f x +=-+=--=,∴()f x 周期为4,()()220211log 21f f ===,故选:C .【点睛】关键点点睛:根据函数的对称性来求周期是本题的关键点.20.C 【分析】根据函数的周期性和奇偶性以及对数的运算性质可求得结果.【详解】因为()(4)f x f x =+,所以()f x 的周期4T=,因为函数()f x 的定义域为R 且满足()()f x f x -=-,所以(0)0f =,(1)(1)6f f -=-=-,所以()()22log 128log 16f f +=7422(log 2)(log 2)f f +(7)(4)f f =+()()870f f =-++(1)(0)f f =-+(1)(0)f f =-+60=-+6=-.故选:C 【点睛】关键点点睛:根据函数的周期性和奇偶性以及对数的运算性质求解是解题关键.21.D 【分析】由题可得()f x 是周期为2的函数,进而判断()F x 是周期为2的函数,可求得()0=0F ,102F ⎛⎫= ⎪⎝⎭,()10F =,利用周期性即可求出零点个数.【详解】()f x 是定义在R 上的奇函数,()1f x +也是奇函数,()00f ∴=,()()()111f x f x f x +=--+=-,()f x ∴是周期为2的函数,sin y x π= 的周期为2,∴()()sin F x f x x π=+是周期为2的函数,()()00sin 00=F f ∴+=,11sin 0222F f π⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭,()()11sin 0F f π=+=,则在区间[]1949,2021上,()()()111949194919501950202122F F F F F ⎛⎫⎛⎫=+==+== ⎪ ⎪⎝⎭⎝⎭ ,则()F x 在区间[]1949,2021上的零点个数是()2021194921145-⨯+=个.故选:D.【点睛】本题考查函数奇偶性和周期性的应用,解题的关键是判断出()F x 是周期为2的函数,根据函数的周期性即可判断出零点的个数.22.B 【分析】首先判断函数的周期,并利用周期和偶函数的性质化简选项中的函数值,再比较大小.【详解】()()22f x f x -=-+ ,()()4f x f x ∴+=-,即()()8f x f x +=,()f x ∴的周期8T =,由条件可知函数在区间[]0,4单调递增,()()()1921240811f f f =⨯+=,()()()()()202125285533f f f f f =⨯+==-=,()()()1978247822f f f =⨯+=,函数在区间[]0,4单调递增,()()()123f f f ∴<<,即()()()192119782021f f f <<.故选:B 【点睛】结论点睛:本题的关键是判断函数是周期函数,一般涉及周期的式子包含()()f x a f x +=,则函数的周期是a ,若函数()()f x a f x +=-,或()()1f x a f x +=,则函数的周期是2a ,或是()()f x a f x b -=+,则函数的周期是b a +.23.A 【分析】根据条件可得出()f x 的图象关于1x =对称,()f x 的周期为4,从而可考虑()f x 的一个周期,利用[]1,3-,根据()f x 在[)0,1上是减函数可得出()f x 在(]1,2上是增函数,()f x 在()1,0-上是减函数,在[)2,3上是增函数,然后根据()1f x =-在[)0,1上有实数根,可判断该实数根是唯一的,并可判断()1f x =-在一个周期[]1,3-内有两个实数根,并得这两实数根和为2,从而得出()1f x =-在区间[]1,11-这三个周期内上有6个实数根,和为30.【详解】由()()2f x f x -=知函数()f x 的图象关于直线1x =对称,∵()()2f x f x -=,()f x 是R 上的奇函数,∴()()()2f x f x f x -=+=-,∴()()4f x f x +=,∴()f x 的周期为4,考虑()f x 的一个周期,例如[]1,3-,由()f x 在[)0,1上是减函数知()f x 在(]1,2上是增函数,()f x 在(]1,0-上是减函数,()f x 在[)2,3上是增函数,对于奇函数()f x 有()00f =,()()()22200f f f =-==,故当()0,1x ∈时,()()00f x f <=,当()1,2x ∈时,()()20f x f <=,当()1,0x ∈-时,()()00f x f >=,当()2,3x ∈时,()()20f x f >=,方程()1f x =-在[)0,1上有实数根,则这实数根是唯一的,因为()f x 在()0,1上是单调函数,则由于()()2f x f x -=,故方程()1f x =-在()1,2上有唯一实数,在()1,0-和()2,3上()0f x >,则方程()1f x =-在()1,0-和()2,3上没有实数根,从而方程()1f x =-在一个周期内有且仅有两个实数根,当[]13,x ∈-,方程()1f x =-的两实数根之和为22x x +-=,当[]1,11x ∈-,方程()1f x =-的所有6个实数根之和为244282828282830x x x x x x +-++++-+++-+=+++++=.故选:A .【点睛】本题考查了由()()2f a x f x -=可判断()f x 关于x a =对称,周期函数的定义,增函数和减函数的定义,考查了计算和推理能力,属于难题.24.C 【解析】因为()f x 是定义在R 上的偶函数,所以()()f x f x =-,又()()22f x f x -=+,所以函数关于x=2轴对称,即()()4f x f x =-,()()4f x f x ∴-=-,函数的周期为4,且当[]2,0x ∈-时,()122xf x ⎛⎫=- ⎪⎝⎭,分别画出y=f(x)和g(x)=()log 2 (01)a x a +<<的图象,使其恰有三个交点,则需满足()()()()2266g f g f ⎧>⎪⎨<⎪⎩,即log 424log 824a a >-⎧⎨<-⎩,解得a ∈21,42⎛⎫ ⎪ ⎪⎝⎭,故选C.25.D 【分析】根据()f x 的周期和对称性得出不等式在(0,4]上的整数解的个数为3,计算()(1,2,3,4)f k k =的值得出a 的范围.【详解】因为偶函数()f x 满足(4)(4)f x f x +=-,所以(4)(4)(4)f x f x f x +=-=-,所以()f x 的周期为8且()f x 的图象关于直线4x =对称,由于[200,200]-上含有50个周期,且()f x 在每个周期内都是轴对称图形,所以关于x 的不等式2()()0f x af x +>在(0,4]上有3个整数解,当(0,4]x ∈时,21ln 2'()xf x x -=,由'()0f x >,得02e x <<,由'()0f x <,得42ex <<,所以函数()f x 在(0,)2e 上单调递增,在(,4)2e 上单调递减,因为(1)ln 2f =,ln83(2)(3)(4)ln 2044f f f >>==>,所以当(1,2,3,4)x k k ==时,()0f x >,所以当0a ≥时,2()()0f x af x +>在(0,4]上有4个整数解,不符合题意,所以0a <,由2()()0f x af x +>可得()0f x <或()f x a >-,显然()0f x <在(0,4]上无整数解,故而()f x a >-在(0,4]上有3个整数解,分别为1,2,3,所以3(4)ln 24a f -≥=,ln 6(3)3a f -<=,(1)ln 2a f -<=,所以ln 63ln 234a -<≤-.故选:D【点睛】本题考查了函数的周期性,考查了函数的对称性,考查了利用导数研究函数的单调性,考查了一元二次不等式,属于较难题.26.B 【分析】将()f x 表示为分段函数的形式,画出函数图像,由此判断出正确选项.【详解】由于[]2,211,100,011,122,23x x x x x x ⎧⎪--≤<-⎪⎪--≤<⎪=≤<⎨⎪≤<⎪≤<⎪⎪⎩ ,所以()[]2,211,10,011,122,23x x x x f x x x x x x x x x ⎧⎪+-≤<-⎪⎪+-≤<⎪=-=≤<⎨⎪-≤<⎪-≤<⎪⎪⎩,由此画出函数图像如下图所示,由图可知,()f x 是非奇非偶函数,是周期为1的周期函数,且值域为[)0,1.故选B.【点睛】本小题主要考查分段函数的图像与性质,考查新定义函数概念的理解和运用,属于中档题.27.D 【分析】有已知条件可得()f x 函数周期为4,由()f x 为偶函数即可得sin()2sin(),[0,2]sin()2sin(),[2)),(0x x x x x f x x ππππ+∈-⎧-=+∈⎪⎨⎪⎩,由题意知在区间[]3,3-上零点问题可转化为函数()f x 与7log (2a y x =+有交点且零点个数即为函数图象交点的个数,结合函数图像分析即可求a 的取值范围【详解】由[]0,2x ∈时有()sin()2sin()f x x x ππ=+,知:(2)0f =∴()()()42f x f x f +=+⇒(4)()f x f x +=,即()f x 的周期为4∵在R 上()f x 为偶函数,令[2,0]x ∈-,则[0,2]x -∈∴()()sin()2|sin()|f x f x x x ππ=-=-+综上,周期为4的函数sin()2sin(),[0,2]sin()2sin(),[2)),(0x x x x x f x x ππππ+∈-⎧-=+∈⎪⎨⎪⎩()()7log 2a g x f x x ⎛⎫=-+ ⎪⎝⎭在区间[]3,3-上有零点,则()0g x =有7()log ()2a f x x =+,即可转化为函数()f x 与7log ()2a y x =+有交点,因为7log ()2a y x =+图象必过5(,0)2-,在[]3,3-上至多有10个交点,至少有8个交点,即可得到如下函数图象由图知:有8个交点时,7log ()2a y x =+必过3(,1)2,即5a =由图知:有10个交点时,7log ()2a y x =+必过5(,1)2,即6a =∴56a ≤≤故选:D【点睛】本题考查了函数的零点,根据函数零点的个数,并结合函数图象分析零点最多、最少时函数图象的交点情况,即可求参数范围28.C 【分析】根据()f x 的周期性和()f x 在[]1,1-上的解析式可画出()f x 在[2,5]-上的图象,再画出()g x 在[2,5]-上的图象后可得()h x 的零点的个数.【详解】因为(2)()f x f x +=,故()f x 为周期函数,且周期为2,结合[1,1]x ∈-时()||f x x =可得()f x 在[2,5]-上的图象(如图所示),又()g x 在[2,5]-上的图象如图所示,则()(),f x g x 在[2,0]-上的图象有2个交点,在[]2,5上有3个交点,下面证明:当()1,2x ∈时,总有122x x ->-.令()122xs x x -=+-,则()12ln 21x s x -'=-+,因为()1,2x ∈,故()11,0x -∈-,故11122x--<-<-,又0ln 21<<,所以112ln 0x x --<-<,所以()0s x '>,所以()s x 在()1,2为增函数,所以()1,2x ∈时,()()10s x s >=即122x x ->-总成立.又当1x =时,()()1f x g x ==,()(),f x g x 在()0,2上的图象有1个交点所以()()0f x g x -=在[2,5]-上有6个不同的解,即()h x 在[2,5]-上有6个不同的零点.故选:C .【点睛】本题考查函数的零点的个数,对于较为复杂的函数的零点个数问题,可以转化为简单函数图象的交点个数问题,刻画简单函数图象时,注意利用周期性、奇偶性等简化图象刻画的过程,注意利用导数精准刻画图象是否有交点.29.C【分析】由(2)()f x f x +=可知周期为2,根据当11x -≤<,3()f x x =画出()f x 图象,再画出()g x 图象,由()()()h x f x g x =-在[6,)-+∞上有6个零点得到()f x 与()g x 在[6,)-+∞上要有且仅有6个交点,根据图象得到关于a 的不等式,解出a 的范围.【详解】因为函数()y f x =对任意的x 满足(2)()f x f x +=,所以()f x 周期为2,因为当11x -≤<,3()f x x =,画出()f x 的图象以及log ,0()1,0a x x g x x x ⎧>⎪=⎨-<⎪⎩的图象,因为函数()()()h x f x g x =-在[6,)-+∞上有6个零点,所以()f x 与()g x 在[6,)-+∞上要有且仅有6个交点,由图象可得,在y 轴左侧有2个交点,只要在y 轴右侧有且仅有4个交点,则log 71log 91a a ⎧<⎪⎨≥⎪⎩,由log 71a <解得7a >或107a <<,由log 91a ≥解得19a <≤或119a ≤<,所以79a <≤或1197a ≤<,∴实数a 的取值范围是11,(7,9]97⎡⎫⋃⎪⎢⎣⎭.故选:C.【点睛】本题考查分段函数的图象,函数的周期性,函数的图象的应用,函数与方程,属于综合题.30.B【分析】方程()11log 50x f x --=变形为()11log 5x f x -=,()511log 1f x x =-,得()5log 1f x x =-,()0f x ≠,10x ->且11x -≠,由此作求函数()()()()0h x f x f x =≠与()5log 1g x x =-(10x ->且11)x -≠的图象,由图象交点个数得所求零点个数.【详解】由()11log 50x y f x -=-=,得()11log 5x f x -=,由换底公式,得()511log 1f x x =-,得()5log 1f x x =-,因此,求函数()11log 5x y f x -=-的零点个数,即可以转化为求函数()()()()0h x f x f x =≠与()5log 1g x x =-(10x ->且11)x -≠的图象的交点个数.另外,由函数()f x 的周期为2,可知()2x k k ≠∈Z ;函数()5log 1g x x =-需满足10x ->且11x -≠,所以0,1,2x ≠,所以函数()h x 的定义域是{}2,x R x k k Z ∈≠∈,函数()5log 1g x x =-的定义域是{}0,1,2x R x ∈≠.为此,先在同一坐标系中作出函数()()()2y h x x k k =≠∈Z 与()()5log 10,1,2g x x x =-≠的图象(如图所示),由图象可知,函数()()()()0h x f x f x =≠与()()5log 10,1,2g x x x =-≠的图象一共有8个交点,即函数()11log 5x y f x -=-的零点个数为8.故选:B .【点睛】本题考查求函数零点个数,解题关键是是函数零点转化为方程的根,再转化这函数图象交点个数,由数形结合思想易得结论.31.C【分析】根据函数奇偶性,以及对称性,周期性等,逐项判定,即可得出结果.【详解】因为函数()f x 是定义在R 上的奇函数,所以()()22f x f x -+=--,又()2f x -是偶函数,所以()()22f x f x --=-,因此()()22f x f x -+=--,即()()22f x f x +=-;所以()y f x =的图象关于直线2x =对称,①正确;②要使函数()y f x =的图象关于点()4,0-对称,必须满足()4(4)0f x f x -++--=,即()4(4)0f x f x --+=,即()(8)f x f x =+,即函数()y f x =以8为周期;由①知()()22f x f x +=-,所以()()()4f x f x f x +=-=-,因此()()4()8x x f f f x =-=++,满足函数()y f x =以8为周期,故②正确;③由②知,()()4f x f x +=-,而()f x -与()f x 不一定相等,即函数()f x 不一定为零函数,因此()f x 的周期不一定是4,即③错误.故选:C.【点睛】本题主要考查函数基本性质的应用,熟记函数奇偶性与对称性,周期性等即可,属于常考题型.32.B【分析】由()()53f x f x -=+得函数图象关于直线4x =对称,又函数为偶函数,得函数是周期函数,且周期为8,区间[20,20]-含有5个周期,因此题中不等式在一个周期内有3个整数解,通过研究函数()f x 在[0,4]的性质,结合图象可得结论.【详解】∵()()53f x f x -=+,∴函数图象关于直线4x =对称,又函数为偶函数,∴函数是周期函数,且周期为8,区间[20,20]-含有5个周期,关于x 的不等式()()()210f x a f x a +++<在[4,4]-上有3个整数解.[0,1)x ∈时,2()24f x x x =-+是增函数,[1,4]x ∈时,()2ln f x x x =-,2()1f x x '=-,12x ≤<时,()0f x '<,()f x 递减,24x <≤时,()0f x '>,()f x 递增,2x =时,()f x 取得极小值(2)22ln 2f =-,(1)1f =,(3)32ln 31f =-<,利用偶函数性质,作出()f x 在[4,4]-上的图象,如图.由()()()210f x a f x a +++<得[()1][()]0f x f x a ++<,若0a -≤,则原不等式无解,故0a ->,1()f x a -<<-,要使得不等式1()f x a -<<-在[4,4]-上有3个整数解,则22ln 232ln 3a -<-≤-,即2ln 332ln 22a -≤<-.故选:B .【点睛】本题考查不等式的整数解问题,考查了函数的奇偶性、对称性、周期性,用导数研究函数的单调性、极值等,考查的知识点较多,对学生的分析问题解决问题的能力、转化与化归能力要求较高,属于难题.33【分析】直接利用函数的周期性可得()(22)2f f =,从而可得答案.【详解】因为10是函数()y f x =的周期,所以()(22)(1210)(12)(102)2f f f f f =+==+==..34.1【分析】依据题意可知函数的周期,然后简单计算即可.【详解】因为()f x 是奇函数,所以()()()2f x f x f x +=-=-,所以()()4f x f x +=,故()f x 是以4为周期的周期函数,则()()()()()245051202111121f f f f ⎡⎤===--=---=⎣⎦⨯+.故答案为:135.89【分析】根据题意,得出()()2f x f x +=,得到()f x 是最小正周期为2的周期函数,从而算出()229log 9log 4f f ⎛⎫= ⎪⎝⎭,由(]0,1x ∈时,()2x f x =,结合()()11f x f x +=,算出22918log 949log 8f f ⎛⎫== ⎪⎛⎫⎝⎭ ⎪⎝⎭,即可得到所求的函数值.【详解】()()11f x f x += ,()()()121f x f x f x ∴+==+,可得()f x 是最小正周期为2的周期函数,8916,21<<> ,222log 8log 9log 16∴<<,即()2log 93,4∈,因此()()2229log 9log 92log 4f f f ⎛⎫=-= ⎪⎝⎭,222911log 994log 1log 48f f f ⎛⎫== ⎪⎛⎫⎛⎫⎝⎭- ⎪ ⎪⎝⎭⎝⎭ ,而29log 8299log 288f ⎛⎫== ⎪⎝⎭,所以()222918log 9log 949log 8f f f ⎛⎫=== ⎪⎛⎫⎝⎭ ⎪⎝⎭,故答案为:89.36.4.5【分析】由()1()f x f x +=-,可知函数()f x 的周期为2,所以()()51f f -=-,()()4.50.5f f =,再根据函数表达式将(1)(0.5)f f -,计算出来,根据()()5 4.5f f -=求得 4.5a =.【详解】因为()1()f x f x +=-,所以函数()f x 的周期为2;又因为()()512f f a -=-=-,()()4.50.5 2.5f f ==,()()5 4.5f f -=,所以2 2.5a -=,即 4.5a =.故答案为:4.5.【点睛】若()()f x a f x +=-说明函数的周期为2a ,若()()f x a f x +=说明函数的周期为a ,若()()f a x f x -=说明函数图像关于直线2a x =对称,若()()f a x f x -=-说明函数图像关于点(,0)2a 对称.37.2+【分析】由1()(4)=--f x f x 得()f x 的周期为8,根据周期可得()()20251=f f 即可得结果.【详解】∵1(2)()1(2)f x f x f x +-=--∴1(4)(2)1(4)f x f x f x +--=--.代入得1(4)1211(4)()1(4)2(4)(4)11(4)f x f x f x f x f x f x f x +-+--===-+-------.∴()()8f x f x =-,即()f x 的周期为8.∴()()()20252538112f f f =⨯+==故答案为:2+【点睛】关键点点睛:本题的关键在于由1()(4)=--f x f x 得周期,再结合周期性质即可.38.(2019,2021)。

初中函数测试题及答案

初中函数测试题及答案

初中函数测试题及答案一、选择题(每题3分,共30分)1. 函数y=2x+3中,当x=1时,y的值为()A. 5B. 4C. 3D. 22. 下列哪个函数的图像是一条直线?()A. y=x^2B. y=2x+1C. y=x/(x-1)D. y=√x3. 函数y=-2x+1的斜率是多少?()A. 2B. -2C. 1D. -14. 函数y=3x-5与y轴的交点坐标是()A. (0, -5)B. (0, 3)C. (5, 0)D. (-5, 0)5. 如果函数y=kx+b的图像经过点(2, 6)和(3, 9),那么k的值是()A. 3B. 2C. 1D. 06. 函数y=4x+5的图像与x轴的交点坐标是()A. (-5/4, 0)B. (5/4, 0)C. (0, 5)D. (0, -5)7. 函数y=x^2-4x+3的顶点坐标是()A. (2, -1)B. (2, 1)C. (-2, 1)D. (-2, -1)8. 函数y=1/x的图像在哪个象限?()A. 第一象限和第三象限B. 第二象限和第四象限C. 第一象限和第二象限D. 第三象限和第四象限9. 函数y=|x|的图像关于哪个轴对称?()A. x轴B. y轴C. 原点D. 都不是10. 下列哪个函数是奇函数?()A. y=x^2B. y=x^3C. y=x+1D. y=x-1二、填空题(每题4分,共20分)11. 函数y=2x-1的图像与x轴的交点坐标是______。

12. 函数y=-3x+4的斜率是______。

13. 函数y=x^2-6x+8的顶点坐标是______。

14. 函数y=1/x的图像在第一象限的斜率是______。

15. 函数y=|x-2|的图像与y轴的交点坐标是______。

三、解答题(每题10分,共50分)16. 已知函数y=5x-2,求当x=-1时,y的值。

17. 已知函数y=-4x+7,求该函数与y轴的交点坐标。

18. 已知函数y=2x^2-3x+1,求该函数的顶点坐标。

函数的周期性(基础+复习+习题+练习)

函数的周期性(基础+复习+习题+练习)

课题:函数的周期性考纲要求:了解函数周期性、最小正周期的含义,会判断、应用简单函数的周期性.教材复习()1 周期函数:对于函数()y f x =,如果存在非零常数T ,使得当x 取定义域内的任何值时,都有 ,那么就称函数()y f x =为周期函数,称T 为这个函数的一个周期.()2最小正周期:如果在周期函数()f x 的所有周期中 的正数,那么这个最小正数就叫作()f x 的最小正周期.基本知识方法1.周期函数的定义:对于()f x 定义域内的每一个x ,都存在非零常数T ,使得 ()()f x T f x +=恒成立,则称函数()f x 具有周期性,T 叫做()f x 的一个周期,则kT (,0k Z k ∈≠)也是()f x 的周期,所有周期中的最小正数叫()f x 的最小正周期. 2.几种特殊的抽象函数:具有周期性的抽象函数:函数()y f x =满足对定义域内任一实数x (其中a 为常数),① ()()f x f x a =+,则()y f x =是以T a =为周期的周期函数; ②()()f x a f x +=-,则()x f 是以2T a =为周期的周期函数;③()()1f x a f x +=±,则()x f 是以2T a =为周期的周期函数; ④()()f x a f x a +=-,则()x f 是以2T a =为周期的周期函数;⑤1()()1()f x f x a f x -+=+,则()x f 是以2T a =为周期的周期函数.⑥1()()1()f x f x a f x -+=-+,则()x f 是以4T a =为周期的周期函数.⑦1()()1()f x f x a f x ++=-,则()x f 是以4T a =为周期的周期函数.⑧函数()y f x =满足()()f a x f a x +=-(0a >),若()f x 为奇函数,则其周期为4T a =,若()f x 为偶函数,则其周期为2T a =.⑨函数()y f x =()x R ∈的图象关于直线x a =和x b =()a b <都对称,则函数()f x 是以()2b a -为周期的周期函数;⑩函数()y f x =()x R ∈的图象关于两点()0,A a y 、()0,B b y ()a b <都对称,则函数()f x 是以()2b a -为周期的周期函数;⑾函数()y f x =()x R ∈的图象关于()0,A a y 和直线x b =()a b <都对称,则函数()f x 是以()4b a -为周期的周期函数;3.判断一个函数是否是周期函数要抓住两点:一是对定义域中任意的x 恒有()()f x T f x +=; 二是能找到适合这一等式的非零常数T ,一般来说,周期函数的定义域均为无限集.4.解决周期函数问题时,要注意灵活运用以上结论,同时要重视数形结合思想方法的运用,还要注意根据所要解决的问题的特征来进行赋值.问题1.(06山东)已知定义在R 上的奇函数()f x 满足(2)()f x f x +=-,则(6)f 的值为 .A 1- .B 0 .C 1 .D 2问题2.()1(00上海) 设()f x 的最小正周期2T =且()f x它在区间[]0,1上的图象如右图所示的线段AB ,则在区间[]1,2上,()f x =()2已知函数()f x 是周期为2的函数,当11x -<<时,2()1f x x =+,当1921x << 时,()f x 的解析式是()3 ()x f 是定义在R 上的以2为周期的函数,对k Z ∈,用k I 表示区间(]21,21k k -+,已知当0x I ∈时,()2f x x =,求()x f 在k I 上的解析式。

函数练习题(含答案解析)

函数练习题(含答案解析)

函数练习题(含答案解析) 1.若01x y <<<,则( )A .33y x <B .log 3log 3x y <C .44log log x y <D .11()()44x y <2. 设12log 3a =,0.213b ⎛⎫= ⎪⎝⎭,132c =,则( )A .a b c <<B .c b a <<C .c a b <<D .b a c <<3. 函数y=1212x -+x(x <0)的反函数是( )A.y=log 211-+x x (x<-1) B.y =log 211-+x x (x>1) C.y=log 211+-x x (x<-1) D.y =log 211+-x x (x>1)4.函数2441()431x x f x x x x -⎧=⎨-+>⎩, ≤,,的图象和函数2()log g x x =的图象的交点个数是( )A .4B .3C .2D .15.设2lg ,(lg ),lg a e b e c === )(A )a b c >> (B )a c b >> (C )c a b >> (D )c b a >> 6. 已知函数()f x 满足:x ≥4,则()f x =1()2x;当x <4时()f x =(1)f x +,则2(2l o g 3)f +=( ) (A )124(B )112(C )18(D )387. 若函数()y f x =是函数1xy a a a =>≠(0,且)的反函数,且(2)1f =,则()f x = A .x 2logB .x21 C .x 21logD .22-x8. 函数y=1+ln(x-1)(x>1)的反函数是 (A )y=1x e+-1(x>0) (B) y=1x e-+1(x>0) (C) y=1x e+-1(x ∈R) (D )y=1x e-+1 (x ∈R)9. 设25abm ==,且112a b+=,则m =(A(B )10 (C )20 (D )100 10. 函数()412xx f x +=的图象A. 关于原点对称B. 关于直线y=x 对称C. 关于x 轴对称D. 关于y 轴对称 11. 已知函数()|lg |f x x =.若a b ≠且,()()f a f b =,则a b +的取值范围是 (A)(1,)+∞ (B)[1,)+∞(C) (2,)+∞ (D) [2,)+∞ 12. 函数y =log 2x 的图象大致是答案解析: 1. C2.解析:本题考查对数函数的增减性,由1>lge>0,知a>b,又c=21lge, 作商比较知c>b,选B 。

八年级函数练习题

八年级函数练习题

八年级函数练习题八年级函数练习题函数是数学中的重要概念,它在数学和实际生活中都有着广泛的应用。

八年级的学生在学习函数时,通常会遇到一些练习题,下面我们来看一些典型的八年级函数练习题。

1. 已知函数 f(x) = 2x + 3,求 f(5) 的值。

解析:将 x 替换为 5,得到 f(5) = 2(5) + 3 = 13。

因此,f(5) 的值为 13。

2. 已知函数 g(x) = x^2 + 2x - 1,求 g(-3) 的值。

解析:将 x 替换为 -3,得到 g(-3) = (-3)^2 + 2(-3) - 1 = 9 - 6 - 1 = 2。

因此,g(-3) 的值为 2。

3. 已知函数 h(x) = 3x - 4,求 h(a + 1) 的值。

解析:将 x 替换为 a + 1,得到 h(a + 1) = 3(a + 1) - 4 = 3a + 3 - 4 = 3a - 1。

因此,h(a + 1) 的值为 3a - 1。

4. 已知函数 k(x) = 2x^2 + 3x,求 k(2a) 的值。

解析:将 x 替换为 2a,得到 k(2a) = 2(2a)^2 + 3(2a) = 8a^2 + 6a。

因此,k(2a) 的值为 8a^2 + 6a。

5. 如果函数 p(x) 的值域是 {1, 2, 3, 4, 5},那么 p(x) 的定义域可能是什么?解析:根据题意,函数 p(x) 的值域是 {1, 2, 3, 4, 5},即函数 p(x) 的输出值只能是这五个数。

因此,p(x) 的定义域可能是任意包含这五个数的集合,例如整数集合 {1, 2, 3, 4, 5} 或实数集合。

6. 已知函数 q(x) 的定义域是 {1, 2, 3, 4, 5},那么 q(x) 的值域可能是什么?解析:根据题意,函数 q(x) 的定义域是 {1, 2, 3, 4, 5},即函数 q(x) 的输入值只能是这五个数。

因此,q(x) 的值域可能是任意包含这五个数的集合,例如整数集合 {1, 2, 3, 4, 5} 或实数集合。

高三数学上学期周周练试卷-函数3(附答案)

高三数学上学期周周练试卷-函数3(附答案)

高三数学练习卷——函数(3)一、填空题(每小题5分,满分70分) 1. 函数xx f -=11)(的定义域为M ,)1ln()(x x g +=的定义域为N ,则=N M ▲ . 2.命题“若12<x ,则11<<-x ”的逆否命题是 ▲ . 3.已知集合)0,(-∞=A ,],2[a B -=,若A B A =,则实数a 的取值范围是 ▲ .4.若不等式102x m x m -+<-成立的一个充分非必要条件是1132x <<,则实数m 的取值范围是 ▲ . 5.方程02391=+-+x x的两根之和是 ▲ .6. 已知函数b ax ax x g ++-=12)(2(0>a )在区间]3,2[上有最大值4和最小值1,则b a +的值为▲ .7.已知72p =,75q =,则lg2用,p q 表示为 ▲ .8.已知2123()(2,)n n f x x n k k Z -++==∈的图像在[0,)+∞上单调递增,则不等式2()(3)f x x f x ->+的解集为▲ .9.已知函数f(x)= 22,0,3,0x ax x bx x x ⎧+≥⎪⎨-<⎪⎩为奇函数,则不等式f(x)<4的解集为 ▲ . 10.已知函数b a x a b x x f ++--+=)2()(22是偶函数,则此函数图象与y 轴交点的纵坐标的最大值是▲ .11. 设实数1≥a ,使得不等式a ax x ≥+-23,对任意的实数[]2,1∈x 恒成立,则满足条件的实数a 的范围是 ▲ .12. 定义在R 上的函数f (x )的图象关于点(43-,0)对称,且满足f (x )= -f (x +23),f (1)=1,f (0)=-2,则f (1)+f (2)+f (3)+…+f (2015)的值为 ▲ .13.函数22()(1)(1)x axf x x x +=+-是奇函数的充要条件是a = ▲ .14. 已知函数()()(1,1)1xf x x x=∈--,下列结论中正确结论的序号为 ▲ . (1)(1,1)x ∀∈-,等式()()0f x f x -+=恒成立; (2)[)0,m ∀∈+∞,方程()f x m =有两个不等实数根; (3)()12,1,1x x ∀∈-,若12x x ≠,则一定有12()()f x f x ≠;(4)存在无数多个实数k ,使得函数()()g x f x kx =-在(1,1)-上有三个零点高三数学练习卷——函数(3)答卷班级 姓名 学号 成绩一、填空题(每小题5分,满分70分)1. 2. 3. 4. 5. 6. 7. 8. 9. 10.11.12.13.14.二、解答题(本大题共6小题,共计90分,解答时应写出文字说明、证明或演算步骤) 15.(本小题满分14分)已知函数()sin()4f x A x π=+,x ∈R ,且53()122f π=.(1)求A 的值; (2)若3()()2f f θθ+-=,θ∈⎝ ⎛⎭⎪⎫0,π2,求3()4f πθ-.16. (本小题满分14分)已知函数f (x )=sin(x +θ)+a cos(x +2θ),其中a ∈R ,θ∈⎝⎛⎭⎫-π2,π2. (1)当a =2,θ=π4时,求f (x )在区间[0,π]上的最大值与最小值;(2)若f ⎝⎛⎭⎫π2=0,f (π)=1,求a ,θ的值.17. (本小题满分14分) 某实验室一天的温度(单位:℃)随时间t (单位:h)的变化近似满足函数关系:f (t )=10-3cos π12t -sin π12t ,t ∈[0,24).(1)求实验室这一天的最大温差.(2)若要求实验室温度不高于11℃,则在哪段时间实验室需要降温?18. (本小题满分16分) 已知函数1)(2-=x x f ,|1|)(-=x a x g .(1)若R x ∈时,不等式)()(x g x f ≥恒成立,求实数a 的取值范围; (2)求函数()()()h x f x g x =+在区间[-2,2]上的最大值.19. (本小题满分16分) 已知函数22()(,,)xx f x aebe cx a b c R -=--∈的导函数()f x '为偶函数,且曲线()y f x =在点(0,f (0))处的切线的斜率为4-c .(1)确定,a b 的值;(2)若c =3,判断f (x )的单调性; (3)若f (x )有极值,求c 的取值范围.20. (本小题满分16分) 设函数()(,,)nn f x x bx cn N b c R +=++∈∈(1)设2n ≥,1,1b c ==-,证明:()n f x 在区间1,12⎛⎫⎪⎝⎭内存在唯一的零点;(2)设2n =,若对任意12,x x [1,1]∈-,有2122|()()|4f x f x -≤,求b 的取值范围; (3)在(1)的条件下,设n x 是()n f x 在1,12⎛⎫⎪⎝⎭内的零点,判断数列23,,,nx x x 的增减性.高三数学练习卷——函数(3)一、填空题(每小题5分,满分70分) 1. 函数xx f -=11)(的定义域为M ,)1ln()(x x g +=的定义域为N ,则=N M ▲ . 2.命题“若12<x ,则11<<-x ”的逆否命题是 ▲ . 3.已知集合)0,(-∞=A ,],2[a B -=,若A B A =,则实数a 的取值范围是 ▲ .4.若不等式102x m x m -+<-成立的一个充分非必要条件是1132x <<,则实数m 的取值范围是 ▲ . 5.方程02391=+-+x x的两根之和是 ▲ .6. 已知函数b ax ax x g ++-=12)(2(0>a )在区间]3,2[上有最大值4和最小值1,则b a +的值为▲ .7.已知72p =,75q =,则lg2用,p q 表示为 ▲ .8.已知2123()(2,)n n f x x n k k Z -++==∈的图像在[0,)+∞上单调递增,则不等式2()(3)f x x f x ->+的解集为▲ .9.已知函数f(x)= 22,0,3,0x ax x bx x x ⎧+≥⎪⎨-<⎪⎩为奇函数,则不等式f(x)<4的解集为 ▲ . 10.已知函数b a x a b x x f ++--+=)2()(22是偶函数,则此函数图象与y 轴交点的纵坐标的最大值是▲ .11. 设实数1≥a ,使得不等式a ax x ≥+-23,对任意的实数[]2,1∈x 恒成立,则满足条件的实数a 的范围是 ▲ .12. 定义在R 上的函数f (x )的图象关于点(43-,0)对称,且满足f (x )= -f (x +23),f (1)=1,f (0)=-2,则f (1)+f (2)+f (3)+…+f (2015)的值为 ▲ .13.函数22()(1)(1)x axf x x x +=+-是奇函数的充要条件是a = ▲ . 14. 已知函数()()(1,1)1xf x x x=∈--,下列结论中正确结论的序号为 ▲ . (1)(1,1)x ∀∈-,等式()()0f x f x -+=恒成立; (2)[)0,m ∀∈+∞,方程()f x m =有两个不等实数根; (3)()12,1,1x x ∀∈-,若12x x ≠,则一定有12()()f x f x ≠;(4)存在无数多个实数k ,使得函数()()g x f x kx =-在(1,1)-上有三个零点数学练习卷——函数(3)答卷班级 姓名 学号 成绩一、填空题(每小题5分,满分70分)1. 2. 3. 4. 5. 6. 7. 8. 9. 10.11.12.13.14.二、解答题(本大题共6小题,共计90分,解答时应写出文字说明、证明或演算步骤)15.(本小题满分14分)已知函数f (x )=A sin ⎝ ⎛⎭⎪⎫x +π4,x ∈R ,且f ⎝ ⎛⎭⎪⎫5π12=32.(1)求A 的值; (2)若f (θ)+f (-θ)=32,θ∈⎝ ⎛⎭⎪⎫0,π2,求f ⎝ ⎛⎭⎪⎫3π4-θ.16. (本小题满分14分)已知函数f (x )=sin(x +θ)+a cos(x +2θ),其中a ∈R ,θ∈⎝ ⎛⎭⎪⎫-π2,π2. (1)当a =2,θ=π4时,求f (x )在区间[0,π]上的最大值与最小值;(2)若f ⎝ ⎛⎭⎪⎫π2=0,f (π)=1,求a ,θ的值.17. (本小题满分14分) 某实验室一天的温度(单位:℃)随时间t (单位:h)的变化近似满足函数关系:f (t )=10-3cos π12t -sin π12t ,t ∈[0,24).(1)求实验室这一天的最大温差.(2)若要求实验室温度不高于11℃,则在哪段时间实验室需要降温?18. (本小题满分16分) 已知函数1)(2-=x x f ,|1|)(-=x a x g .(1)若R x ∈时,不等式)()(x g x f ≥恒成立,求实数a 的取值范围; (2)求函数()()()h x f x g x =+在区间[-2,2]上的最大值.19. (本小题满分16分) 已知函数22()(,,)xx f x aebe cx a b c R -=--∈的导函数()f x '为偶函数,且曲线()y f x =在点(0,f (0))处的切线的斜率为4-c .(1)确定,a b 的值;(2)若c =3,判断f (x )的单调性; (3)若f (x )有极值,求c 的取值范围.20. (本小题满分16分) 设函数()(,,)nn f x x bx cn N b c R +=++∈∈(1)设2n ≥,1,1b c ==-,证明:()n f x 在区间1,12⎛⎫⎪⎝⎭内存在唯一的零点;(2)设2n =,若对任意12,x x [1,1]∈-,有2122|()()|4f x f x -≤,求b 的取值范围; (3)在(1)的条件下,设n x 是()n f x 在1,12⎛⎫⎪⎝⎭内的零点,判断数列23,,,nx x x 的增减性.参考答案一、填空题1.(1,1)-.2..若 21,1,1x x x ≤-≥≥或则3.(2,0)-.4..3441≤≤m5.3log 2.6. 17. p p q +8..()()+∞-∞-,31,9.-4∞(,) 10. 2 11. ),25[]23,1[+∞⋃ 12. 2 13.-1 14. 1,3,4二、 解答题15.16. [2014·江西卷]解:(1)f (x )=sin ⎝ ⎛⎭⎪⎫x +π4+2cos ⎝⎛⎭⎪⎫x +π2= 22(sin x +cos x )-2sin x =22cos x -22sin x =sin ⎝ ⎛⎭⎪⎫π4-x . 因为x ∈[0,π],所以π4-x ∈⎣⎢⎡⎦⎥⎤-3π4,π4, 故f (x )在区间[0,π]上的最大值为22,最小值为-1. (2)由⎩⎪⎨⎪⎧f ⎝ ⎛⎭⎪⎫π2=0,f (π)=1,得⎩⎪⎨⎪⎧cos θ(1-2a sin θ)=0,2a sin 2θ-sin θ-a =1. 又θ∈⎝ ⎛⎭⎪⎫-π2,π2,知cos θ≠0, 所以⎩⎪⎨⎪⎧1-2a sin θ=0,(2a sin θ-1)sin θ-a =1, 解得⎩⎪⎨⎪⎧a =-1,θ=-π6. 17解:(1)因为f (t )=10-2⎝ ⎛⎭⎪⎫32cos π12t +12sin π12t =10-2sin ⎝ ⎛⎭⎪⎫π12t +π3, 又0≤t <24,所以π3≤π12t +π3<7π3,-1≤sin ⎝ ⎛⎭⎪⎫π12t +π3≤1. 当t =2时,sin ⎝ ⎛⎭⎪⎫π12t +π3=1; 当t =14时,sin ⎝ ⎛⎭⎪⎫π12t +π3=-1. 于是f (t )在[0,24)上取得的最大值是12,最小值是8.故实验室这一天的最高温度为12 ℃,最低温度为8 ℃,最大温差为4 ℃.(2)依题意,当f (t )>11时,实验室需要降温.由(1)得f (t )=10-2sin ⎝ ⎛⎭⎪⎫π12t +π3, 故有10-2sin ⎝ ⎛⎭⎪⎫π12t +π3>11, 即sin ⎝ ⎛⎭⎪⎫π12t +π3<-12. 又0≤t <24,因此7π6<π12t +π3<11π6, 即10<t <18.故在10时至18时实验室需要降温.18. (1)不等式()()f x g x ≥对x ∈R 恒成立,即2(1)|1|x a x --≥(*)对x ∈R 恒成立,①当1x =时,(*)显然成立,此时a ∈R ;②当1x ≠时,(*)可变形为21|1|x a x -≤-,令21,(1),1()(1),(1).|1|x x x x x x x ϕ+>⎧-==⎨-+<-⎩ 因为当1x >时,()2x ϕ>,当1x <时,()2x ϕ>-,所以()2x ϕ>-,故此时2a -≤.综合①②,得所求实数a 的取值范围是2a -≤. …………………6分(2)当3a <-时,()h x 在[2,2]-上的最大值为0;当30a -<≤时,()h x 在[2,2]-上的最大值为3a +;当0a ≥时,()h x 在[2,2]-上的最大值为33a +。

函数的周期性练习题

函数的周期性练习题

函数的周期性练习 班级 姓名1、函数2cos()35y x π=-的最小正周期是 ( )A5π B 52π C 2π D 5π 2、下列四个函数中,既是(0,)2π上的增函数,又是以π为周期的偶函数的是 ( )A sin y x =B |sin |y x =C cos y x =D |cos |y x =3、函数2sin xy =的最小正周期是 ( )(A) 2π(B) π (C)π2 (D)π44、在函数|sin ||,|sin x y x y ==,)32sin(π+=x y ,)322cos(π+=x y 中,最小正周期为π的函数的个数有( )A .1个B .2个C .3个D .4个 5、由函数⎩⎨⎧++∈+∈=)22,12[1)12,2[0)(n n x n n x x f ()Z n ∈的图象,可知此函数的周期为( )A .2kB .23kC .kD .2k (以上k 0,≠∈k Z )6、定义在R 上的函数()x f 满足()()2+=x f x f ,当[]5,3∈x 时,()42--=x x f ,则( ).A sincos 66f f ππ⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭; .B ()()sin1cos1f f >; .C 22cos sin 33f f ππ⎛⎫⎛⎫< ⎪ ⎪⎝⎭⎝⎭ .D ()()cos2sin 2f f >7、设()f x 是定义在R 上以6为周期的函数,()f x 在(0,3)内单调递减,且()y f x =的图像关于直线3x =对称,则下面正确的结论是 ( ) .A (1.5)(3.5)(6.5)f f f << .B (3.5)(1.5)(6.5)f f f << .C (6.5)(3.5)(1.5)f f f << .D (3.5)(6.5)(1.5)f f f <<8、设函数()f x (x R ∈)是以3为周期的奇函数,且()()11,2f f a >=,则( ) .A 2a > .B 2a <- .C 1a > .D 1a <-9、函数()f x 既是定义域为R 的偶函数,又是以2为周期的周期函数,若()f x 在[]1,0-上是减函数,那么()f x 在[]2,3上是( ).A 增函数 .B 减函数 .C 先增后减函数 .D 先减后增函数10、已知函数()f x 是以2为周期的周期函数,且当()0,1x ∈时,()21x f x =-,则2(log 10)f 的值为 ( ).A 35 .B 85 .C 38- .D 5311、定义在R 上的函数)(x f 既是偶函数又是周期函数,若)(x f 的最小正周期是π,且当]2,0[π∈x 时,x x f sin )(=,则)35(πf 的值为 ( ) .A 21- .B 21 .C 23- .D 2312、已知定义在R 上的奇函数()f x 满足(2)()f x f x +=-,则(6)f 的值为 ( ) .A 1- .B 0 .C 1 .D 213、若函数()f x 满足(1)()f x f x -=,则函数()y f x =的一个周期是______________.14、若函数cos()(0)6y x πωω=->最小正周期为5π,则ω= .15、已知函数)34sin()(π+=x k x f 的周期不大于2,则正整数k 的最小值是_______.16、若存在常数0p >,使得函数()f x 满足()()2pf px f px =-()x R ∈,()f x 的一个正周期为17、已知)(x f 是奇函数,)(1)(1)1(x f x f x f -+=+,,1)1(=-f 则)3(f =____________.18、函数()f x 对于任意实数x 满足条件()()12f x f x +=,若()15f =-,则()()5ff =19、设()f x 的最小正周期2T =且()f x 为偶函数,它在区间[]0,1上的图象如右图所示的线段AB ,则在区间[]1,2上, ()f x =附件1河南省基础教育教学研究项目立项申报书课题名称中学数学研究性学习理论与实践学科分类高中数学主持人姓名赵伟所在单位民权第一高级中学填表日期2014年5月河南省教育厅制填表说明一、申报书各项内容用黑色签字笔如实填写或电脑打印,要求语言严谨,字迹清晰。

函数周期性练习题及答案详解(拔尖)

函数周期性练习题及答案详解(拔尖)

函数周期性(拔尖)肖老师提醒:请同学们根据自己能力、时间合理安排好一、单选题1.已知函数()f x 的定义域为D ,值域为A , 函数()f x 具有下列性质:(1)若,x y D ∈,则()()f x A f y ∈;(2)若,x y D ∈,则()()f x f y A +∈.下列结论正确是( )①函数()f x 可能是奇函数; ②函数()f x 可能是周期函数; ③存在x D ∈,使得()20212020f x =; ④对任意x D ∈,都有()2f x A ∈.A .①③④B .②③④C .②④D .②③2.函数()f x 是定义在R 上的奇函数,且()1f x -为偶函数,当[]01x ∈,时,()12f x x =,若函数()()g x f x x b =--恰有一个零点,则实数b 的取值集合是( ) A .112244k k k z ⎛⎫-+∈ ⎪⎝⎭,, B .152222k k k z ⎛⎫++∈ ⎪⎝⎭,, C .114444k k k z ⎛⎫-+∈ ⎪⎝⎭,, D .1154444k k k z ⎛⎫++∈ ⎪⎝⎭,, 3.已知函数()()f x x R ∈是以4为周期的奇函数,当(0,2)x ∈时,()2()ln f x x x b =-+,若数()f x 在区间[2,2]-上有5个零点,则实数b 的取值范围是( ) A .11b -<≤B .1544b ≤≤ C .11b -<≤或54b =D .114b <≤或54b =4.定义在R 上的函数()y f x =的图象关于点3,04⎛⎫- ⎪⎝⎭成中心对称,对任意的实数x 都有()f x = 32f x ⎛⎫-+ ⎪⎝⎭,且()11f -=,()01f =-,则()()()()1232019f f f f ++++的值为( ) A .0B .1C .-673D .6735.给出定义:若11(,]22x m m ∈-+(其中m 为整数),则m 叫做与实数x ”亲密的整数”记作{x }=m ,在此基础上给出下列关于函数()|{}|f x x x =-的四个说法: ①函数()y f x =在(0,1)是增函数; ②函数()y f x =的图象关于直线()2kx k Z =∈对称; ③函数()y f x =在1(,)()2k k k Z +∈上单调递增④当(0,2)x ∈时,函数21()()22g x f x x =--有两个零点,其中说法正确的序号是( ) A .①②③B .②③④C .①②④D .①③④6.已知()f x 是在R 上的奇函数,满足()()2f x f x =-,且[]0,1x ∈时,函数()21xf x =-,函数()()log (1)a g x f x x a =->恰有3个零点,则a 的取值范围是( ) A .10,9⎛⎫ ⎪⎝⎭B .11,95⎛⎫ ⎪⎝⎭C .()1,5D .()5,97.已知函数()f x 满足(1)1()f x x R +=∈,则()()12020f f +的最大值是( )A .2B .2C .2D .48.已知函数f (x )是R 上的奇函数,且满足f (x+2)=﹣f (x ),当x ∈[0,1]时,f (x )=x ,则方程f (x )=281x x -+在(0,+∞)解的个数是( ) A .3B .4C .5D .69.已知定义在R 上的奇函数()f x 满足(4)()f x f x -=-,且[]0,2x ∈时2()log (1)f x x =+,甲,乙,丙,丁四位同学有下列结论: 甲:(3)1f =;乙:函数()f x 在[]6,2--上是增函数; 丙:函数()f x 关于直线4x =对称;丁:若(0,1)m ∈,则关于x 的方程()0f x m -=在[]8,8-上所有根之和为8-其中正确的是. A .甲,乙,丁B .乙,丙C .甲,乙,丙D .甲,丁10.已知()f x 是定义在R 上的偶函数,对任意x ∈R ,都有(2)()f x f x +=-,且当[0,1]x ∈时,2()1f x x =-+.若2[()]()30a f x bf x -+=在[1,5]-上有5个根(1,2,3,4,5)i x i =,则12345x x x x x ++++的值是A .10B .9C .8D .7二、多选题11.已知函数f (x )满足:当-<3≤0x 时,|2|()32x f x +=-,下列命题正确的是( ) A .若f (x )是偶函数,则当03x <≤时,|2|()32x f x +=-B .若(3)(3)f x f x --=-,则()()1g x f x =-在(6,0)x ∈-上有3个零点C .若f (x )是奇函数,则()()1212,[3,3],14x x f x f x ∀∈--<D .若(3)()f x f x +=,方程2[()](2)()20f x k f x k -++=在[3,3]x ∈-上有6个不同的根,则k 的范围为11k -<<三、填空题12.已知在R 上的函数()f x 满足如下条件:①函数()f x 的图象关于y 轴对称;②对于任意R x ∈,()()220f x f x +--=;③当[]0,2x ∈时,()f x x =;④函数()()()12n n f x f x -=⋅,*n N ∈,若过点()1,0-的直线l 与函数(5)()f x 的图象在[]0,2x ∈上恰有16个交点,在直线l 斜率k 的取值范围是______13.已知定义域为(0,)+∞的函数()f x 满足:对任何(0,)+∞,都有(3)3()f x f x =,且当(1,3]x ∈时,()3f x x =-,在下列结论中,正确命题的序号是________① 对任何m ∈Z ,都有(3)0m f =; ② 函数()f x 的值域是[0,)+∞;③ 存在n ∈Z ,使得(31)17n f +=;④ “函数()f x 在区间(,)a b 上单调递减”的充要条 件是“存在k ∈Z ,使得1(,)(3,3)k k a b +⊆”;14.定义在()0,+∞上的函数()f x 满足:对()0,x ∀∈+∞,都有()()22f x f x =,当(]1,2x ∈时,()2f x x =-,给出如下结论,其中所有正确结论的序号是: ____.①对m Z ∀∈,有()20mf =;②函数()f x 的值域为[)0,+∞;③存在n Z ∈,使得()219nf +=;15.已知偶函数()f x 是定义域为R 且最小正周期为2的周期函数.当[]2,3x ∈时,()()23f x x =-.若函数()()()()log 11a F x x f x a =+->在R 上恰有6个零点,则实数a的取值范围是________.16.函数()f x 的定义域为[)1,1-,其图象如图所示.函数()g x 是定义域为R 的偶函数,满足()()2g x g x +=,且当[]1,0x ∈-时,()()g x f x =.给出下列三个结论:①()112g =; ②不等式()0g x >的解集为R ;③函数()g x 的单调递增区间为[]2,21k k +,k ∈Z . 其中所有正确结论的序号是______.17.设函数()f x 是定义在R 上的偶函数,且对任意的x ∈R 恒有()()11f x f x =+-,已知当[]0,1x ∈时,11()2xf x -⎛⎫= ⎪⎝⎭,则下列命题:①对任意x ∈R ,都有()()2f x f x +=; ②函数()f x 在()1,2上递减,在()2,3上递增; ③函数()f x 的最大值是1,最小值是0;④当()3,4x ∈时,31()2x f x -⎛⎫= ⎪⎝⎭.其中正确命题的序号有_________. 18.给出定义:若1122M x M -<≤+(其中M 为整数),则M 叫做离实数x 最近的整数,记作{}x M =.在此基础上给出下列关于函数(){}f x x x =-的四个结论: ①函数() y f x =的定义域为R ,值域为10,2⎡⎤⎢⎥⎣⎦;②函数() y f x =的图象关于直线()2kx k Z =∈对称;③函数() y f x =在11,22⎡⎤-⎢⎥⎣⎦上是增函数;④函数() y f x =是偶函数;其中正确结论的是________.(把正确的序号填在横线上).19.偶函数()y f x =满足()()33f x f x +=-,在[)3,0x ∈-时,()2xf x -=.若存在1x ,2x ,…n x ,满足120n x x x ≤<<<…,且()()()()()()122312019n n f x f x f x f x f x f x --+-++-=…,则n x 最小值为__________. 20.已知函数12019()ln 112019x x a x f x a x-+=+-+-,若定义在R 上的奇函数()g x 满足()()11g x g x -=+,且()2(1)log 25g f f ⎛=+ ⎝,则()2019g =___________.21.n ∈*N ,(){[()]}n n ff x f f f x =⋅⋅⋅⋅⋅⋅个,若2(1),01()1,12x x f x x x -≤≤⎧=⎨-<≤⎩,则20198()9f =________.四、解答题22.已知函数2()log ()f x x a =+; (1)当1a =时,若10(12)()2f x f x <--<,求x 的取值范围; (2)若定义在R 上的奇函数()g x 满足(2)()g x g x +=-,且当01x ≤≤,()()g x f x =,求()g x 在[1,0]-上的解析式;(3)对于(2)中的()g x ,若关于x 的不等式2321log 382x x t g +⎛⎫-≥- ⎪+⎝⎭在R 上恒成立,求实数t 的取值范围.23.定义在R 上的函数()f x 满足:对任意的实数x ,存在非零常数t ,都有()()f x t tf x +=-成立.(1)若函数()3f x kx =+,求实数k 和t 的值;(2)当2t =时,若[]0,2x ∈, ()()2f x x x =-,求函数()f x 在闭区间[]2,6-上的值域; (3)设函数()f x 的值域为[],a a -,证明:函数()f x 为周期函数. 24.设函数()f x 在R 上满足()()33f x f x +=-,()()88f x f x +=-,且 在闭区间[]0,8上只有()()()1570f f f ===.(1)求证函数()f x 是周期函数;(2)求函数()f x 在闭区间[]10,0-上的所有零点;(3)求函数()f x 在闭区间[]2012,2012-上的零点个数及所有零点的和.25.函数()f x 的定义域关于原点对称,但不包括数0,对定义域中的任意实数x ,在定义域中存在12,x x 使()()1212,x x x f x f x =-≠,且满足以下3个条件. (1)12,x x 是()f x 定义域中的数,()()12f x f x ≠,则()()()()()1212211f x f x f x x f x f x +-=-;(2)()1,(f a a =是一个正的常数); (3)当02x a <<时,()0f x >. 证明:(I )()f x 是奇函数;(II )()f x 是周期函数,并求出其周期; (III )()f x 在()0,4a 内为减函数.26.1已知函数()0)f x ax x =+≥,()g x =,,a b ∈R ,且(0)2g =,2f =(1)求()f x 、()g x 的解析式;(2)()h x 为定义在R 上的奇函数,且满足下列性质:①(2)()h x h x +=-对一切实数x 恒成立;②当01x ≤≤时[]21()()log ()2h x f x g x =-+. (ⅰ)求当13x -≤<时,函数()h x 的解析式; (ⅱ)求方程1()2h x =-在区间[0,2012]上的解的个数.参考答案1.B 【分析】利用函数奇偶性、周期性的定义以及函数()f x 所满足的两个性质对①②③④逐一分析可解. 【详解】解:对①:若()f x 为奇函数,则()()0f x f x +-=.令y x =-,由(2)知0A ∈, 而与(1)()0f x ≠矛盾,所以①错误. 对②:若()f x 为周期函数,则f x Tf x (其中T 为非零常数),当()f x (比如()tan f x x =)值域()(),00,A =-∞⋃+∞时,令y x T =+,则(1)()()1f x A f y =∈成立;(2)()()()2f x f y f x A +=∈也成立,故②正确.对③:由②可知,存在x D ∈,使()f x 为任意非零常数,所以可使()20212020f x =,故③正确. 对④:令y x =,则由(1)知1A ∈,从而()1A f x ∈,所以()()()21f x f x A f x =∈, 所以④正确. 故选:B. 【点睛】关键点点睛:牢牢抓住()f x 所满足的两个性质以及函数的奇偶性、周期性的定义进行分析判断. 2.D 【分析】根据条件判断函数周期为4,求出函数在一个周期内的解析式,将函数的零点转化为()f x 与直线y x b =+只有一个交点,结合函数图像,即可求解. 【详解】函数()f x 是定义在R 上的奇函数,且()1f x -为偶函数, ()(),(1)(1)f x f x f x f x -=---=-,(2)((1)1)()()f x f x f x f x -=--=-=-,即(2)(),(4)(2)()f x f x f x f x f x +=-∴+=-+=, ()f x ∴的周期为4.[]01x ∈,时,()12f x x =[]12,[0,1],()()1,0()x f x x x f x -∈-=-=-∈-,()f x ∴=(1)(1),()(2)f x f x f x f x --=-∴=--,()f x 周期为4,()(2)(2)f x f x f x ∴=--=-+,当[1,2],2[0,1],()(2)x x f x f x ∈-+∈=-+=当[2,3],2[1,0],()(2)x x f x f x ∈-+∈-=-+= 做出函数()f x 图像,如下图所示: 令()()0g x f x x b =--=,当[1,0]x ∈-,()()0g x f x x b x b =--=-=,x b --=22(21)0x b x b +++=,221(21)4410,4b b b b ∆=+-=+==-,此时直线与()f x 在[1,0]x ∈-函数图像相切,与函数有两个交点, 同理154b =-,直线与()f x 在[4,5]x ∈函数图像相切,与函数有两个交点, 则要使函数()f x 在[1,4]内与直线y x b =+只有一个交点, 则b 满足15144b -<<-,()f x 周期为4, b 范围也表示为11544b <<, 所以所有b 的取值范围是11544,44k b k k Z +<<+∈. 故选:D.【点睛】本题考查函数零点的应用,根据函数的性质求出函数的周期性和对称性,利用数形结合思想是解决问题的关键,综合性较强,属于难题. 3.D 【分析】由奇函数的性质和函数的周期性,可得0、±2是函数()f x 的零点,将函数()f x 在区间[2,2]-上的零点个数为5,转化为当(0,2)x ∈时,20x x b -+>恒成立,且21x x b -+=在(0,2)有一解,由此构造关于b 的不等式组,解不等式组可得实数b 的取值范围. 【详解】解:由题意知,()f x 是定义在R 上的奇函数, 所以(0)0f =,即0是函数()f x 的零点,因为()f x 是定义在R 上且以4为周期的周期函数,所以(2)(2)f f -=,且(2)(2)f f -=-,则(2)(2)0f f -==, 即2±也是函数()f x 的零点,因为函数()f x 在区间[2,2]-上的零点个数为5,且当(0,2)x ∈时,()2()ln f x x x b =-+,所以当(0,2)x ∈时,20x x b -+>恒成立,且21x x b -+=在(0,2)有一解,即214(1)=011122b b ∆=--⎧⎪⎨⎛⎫-+= ⎪⎪⎝⎭⎩或2214(1)000102210b b b ∆=-->⎧⎪-+-≤⎨⎪-+->⎩, 解得114b <≤或54b =.故选:D. 【点睛】本题考查奇函数的性质,函数的周期性,对数函数的性质,函数的零点的综合应用,二次函数根的分布问题,难度比较大. 4.D 【分析】由()32f x f x ⎛⎫=-+ ⎪⎝⎭,我们容易得出函数的最小正周期为3,进而由()()1101f f -==-,,我们求出一个周期内的函数值,进而利用分组求和法,得答案. 【详解】∵()32f x f x ⎛⎫=-+ ⎪⎝⎭可知,∴()32f x f x ⎛⎫-=+ ⎪⎝⎭,∴()()33322f x f x f x ⎛⎫+=++= ⎪⎝⎭所以,()f x 是周期为3的周期函数,则()()()21311f f f =-+=-=同理()()()30301f f f =+==-,∵3,04⎛⎫- ⎪⎝⎭是()f x 的对称中心,∴有()32f x f x ⎛⎫=--- ⎪⎝⎭∴()51122f f f ⎛⎫⎛⎫=--=- ⎪ ⎪⎝⎭⎝⎭,∵()32f x f x ⎛⎫=-+ ⎪⎝⎭,∴()1212f f ⎛⎫-== ⎪⎝⎭,∴()11f =综上,()11f =,()21f =,()31f =-,()()()1231f f f ++= ∴()()()201912201916733f f f +++=⨯= 故选:D 【点睛】本题考查函数值的求法,是基础题,解题时要注意函数性质的合理运用 5.B 【分析】由{}()||f x x x =-,可证(1)()f x f x +=,()f x 是周期为1的函数,求出11(,]22x ∈-的解析式,做出11(,]22x ∈-函数图像,利用周期性做出函数()f x 的图像,以及函数21|2|2y x =-图像,即可判断①②③④真假,得出结论.【详解】{}{}|(1)|)1||(111f f x x x x x x =-=+=+-++-,()f x ∴的周期为1,当0m =时,11(,]22x ∈-,102()102x x f x x x x ⎧--<≤⎪⎪==⎨⎪<≤⎪⎩,先做出11(,]22x ∈-函数()f x 图像,利用周期做出()f x 图像如下图所示:()f x 在(0,1)不具有单调性,①错误;函数()y f x =的图象关于直线()2kx k Z =∈对称,②正确; 函数()y f x =在1(,),2k k k Z +∈上单调递增,③正确;当1(0,]2x ∈时,21(),()22f x xg x x x ==+-,令21()0,202g x x x =+-=,解得x =或x =, 当1(,1]2x ∈时,23()1,()22f x x g x x x =-+=--+,令23()0,202g x x x =+-=,解得xx =, (1,2]x ∈时,()g x 无零点,当(0,2)x ∈时,函数21()()22g x f x x =--有两个零点,④正确. 故答案为:B.【点睛】,本题考查新定义函数的性质,涉及到周期、单调性、对称性、零点,考查数形结合思想,属于较难题. 6.D 【分析】根据题意可知()f x 是在R 上的奇函数且关于x=1对称,函数()()log a g x f x x =-恰有3个零点,等价于()f x 和log a x 有3个交点,当[]0,1x ∈时,函数()f x 的解析式已知,用数形结合的方法可求得a 的取值范围。

高一数学(函数)周末练习 试题

高一数学(函数)周末练习 试题

心尺引州丑巴孔市中潭学校罗源县第一高一数学<函数>周末练习5.设()x af x=〔a>0,a≠1〕,对于任意的正实数x,y,都有( )A.()()()f xy f x f y=B.()()()f xy f x f y=+C.()()()f x y f x f y+=D.()()()f x y f x f y+=+17.〔每题6分,共12分〕计算题:〔1〕2113432212)12(])2[(])73(2[)25.0(--+-⨯⨯---〔2〕2(lg5)lg2lg50+⨯18.(此题总分值12分)1.对任意实数x,以下等式恒成立的是〔〕.A.211332()x x=B.211332()x x=C.311535()x x=D.131355()x x--=12.函数()log1af x x=-在(0,1)上递减,那么()f x在(1,)+∞上〔〕.A.递增且无最大值 B.递减且无最小值C.递增且有最大值 D.递减且有最小值_________17.〔本小题总分值10分〕17.解:原式2lg5(3lg23)2)lg0.01 =+++20.〔本小题总分值12分〕12、3log42<≤-x,那么实数x的取值范围为 13、3log2<x,那么实数x的取值范围为12.函数y=)12(log21-x的定义域为〔〕A.〔21,+∞〕 B.[1,+∞)C.〔21,1]D.〔-∞,1〕11、函数⎪⎩⎪⎨⎧≤+>=)0)(2()0(log )(41x x f x x x f ,那么)8(-f =________5、函数212()log (25)f x x x =-+的值域是〔 〕. A .[2,)-+∞ B .(,2]-∞- C .(0,1) D .(,2]-∞6、设全集U=R ,A=(2){|21},{|ln(1)}x x x B x y x -<==-,那么右上图中阴影局部表示的集合为 A .{|1}x x ≥ B .{|12}x x ≤< C .{|01}x x <≤ D .{|1}x x ≤6、设函数⎪⎩⎪⎨⎧<-≥-=,2,1)21(,2),1(log )(2x x x x f x 假设1)(0>x f ,那么0x 的取值范围是( ) A.(-∞,0)∪(2,+∞) B.(0,2) C.(-∞,-1)∪(3,+∞) D.(-1,3) 函数)1ln()(2++=x x x f ,证明)(x f 为奇函数2562≤x 且21log 2≥x ,求函数2log 2log )(22x x x f ⋅=的最大值和最小值. 函数()log (1)a f x x =+,()log (1)a g x x =-,其中(01)a a >≠且,设()()()h x f x g x =-.(1)判断()h x 的奇偶性,并说明理由; (2)假设(3)2f =,求使()0h x >成立的x 的集合.20.解:由2256x ≤得8x ≤,2log 3x ≤,即21log 32x ≤≤,222231()(log 1)(log 2)(log )24f x x x x =-⋅-=--. 当23log ,2x =min 1()4f x =-, 当2log 3,x =max ()2f x =.18.解:(1)由对数的意义,分别得1+x>0,1-x>0,即x>-1,x<1.∴函数f(x)的定义域为(-1,+∞),函数g(x)的定义域为(-∞,1),∴函数h(x)的定义域为(-1,1).……3分∵对任意的x∈(-1,1),-x∈(-1,1),h(-x)=f(-x)-g(-x)=loga(1-x)-loga(1+x)=g(x)-f(x)=-h(x),∴h(x)是奇函数.……3分(2)由f(3)=2,得a=2.此时h(x)=log2(1+x)-log2(1-x),由h(x)>0即log2(1+x)-log2(1-x)>0,∴log2(1+x)>log2(1-x).由1+x>1-x>0,解得0<x<1.故使h(x)>0成立的x的集合是{x|0<x<1}.……12分。

函数的周期性练习题兼答案(供参考)

函数的周期性练习题兼答案(供参考)

函数周期性分类解析一.定义:若T 为非零常数,对于定义域内的任一x ,使)()(x f T x f =+恒成立则f (x )叫做周期函数,T 叫做这个函数的一个周期。

二.重要结论1、()()f x f x a =+,则()y f x =是以T a =为周期的周期函数;2、 若函数y=f(x)满足f(x+a)=-f(x)(a>0),则f(x)为周期函数且2a 是它的一个周期。

3、 若函数()()f x a f x a +=-,则()x f 是以2T a =为周期的周期函数4、 y=f(x)满足f(x+a)=()x f 1 (a>0),则f(x)为周期函数且2a 是它的一个周期。

5、若函数y=f(x)满足f(x+a)= ()x f 1-(a>0),则f(x)为周期函数且2a 是它的一个周期。

6、1()()1()f x f x a f x -+=+,则()x f 是以2T a =为周期的周期函数. 7、1()()1()f x f x a f x -+=-+,则()x f 是以4T a =为周期的周期函数. 8、 若函数y=f(x)满足f(x+a)=)(1)(1x f x f -+(x ∈R ,a>0),则f(x)为周期函数且4a 是它的一个周期。

9、 若函数y=f(x)的图像关于直线x=a,x=b(b>a)都对称,则f(x)为周期函数且2(b-a )是它的一个周期。

10、函数()y f x =()x R ∈的图象关于两点()0,A a y 、()0,B b y ()a b <都对称,则函数()f x 是以()2b a -为周期的周期函数;11、函数()y f x =()x R ∈的图象关于()0,A a y 和直线x b =()a b <都对称,则函数()f x 是以()4b a -为周期的周期函数;12、 若偶函数y=f(x)的图像关于直线x=a 对称,则f(x)为周期函数且2a 是它的一个周期。

高中数学_函数的周期性练习题含答案

高中数学_函数的周期性练习题含答案

高中数学 函数的周期性练习题含答案学校:__________ 班级:__________ 姓名:__________ 考号:__________1. 定义在R 上的偶函数f(x)满足f(1−x)=f(1+x),f(0)=2,则f(10)=( ) A.−4 B.−2 C.2 D.42. 若f(x)是R 上周期为3的偶函数,且当0<x ≤32时,f(x)=log 4x ,则f(−132)=( ) A.−2 B.2 C.−12D.123. 已知函数f (x )满足f (1+x )=f (1−x ),且f (−x )=f (x ),当1≤x ≤2时,f (x )=2x −1,则f (2021)的值为( ) A.2 B.1 C.0 D.−14. 已知函数f(x)满足f(1+x)+f(1−x)=0,且f(−x)=f(x),当1≤x ≤2时,f(x)=2x −1,求f(2017)=( ) A.−1 B.0 C.1 D.25. 定义在R 上的偶函数f(x)满足f(1+x)=f(1−x),当x ∈[0, 1]时,f(x)=−x +1,设函数g(x)=e −|x−1|(−1<x <3),则f(x)与g(x)的图象所有交点的横坐标之和为( ) A.3 B.4 C.5 D.66. 已知函数y =f (x )对任意x ∈R 都有f (x +2)=f (−x )且f (4−x )+f (x )=0成立,若f (0)=1,则f (2019)+f (2020)+f (2021)的值为( ) A.1 B.2 C.0 D.−27. 定义在R 上的偶函数f (x )满足f (1−x )=f (1+x ),当x ∈(−1,0]时,f (x )=tan πx 3,则f (194)=( )A.−1B.−2C.0D.18. 已知f (x )是R 上的偶函数且满足f (x +3)=−f (x ),若f (1)>7,f (2021)=4+3a ,则实数a 的取值范围为( ) A.(0,+∞)B.(1,+∞)C.(−∞,0)D.(−∞,1)9. 已知函数f (x )满足:对任意x ∈R ,f (−x )=−f (x ),f (2−x )=f (2+x ),且在区间[0,2]上,f (x )=x 22+cos x −1 ,m =f(√3),n =f (7),t =f (10),则( )A.m <n <tB.n <m <tC.m <t <nD.n <t <m10. 定义在R 上的偶函数f (x )满足f (2−x )=f (2+x ),且当x ∈[0,2]时,f (x )={e x −1,0≤x ≤1,x 2−4x +4,1<x ≤2. 若关于x 的不等式m|x|≤f (x )的整数解有且仅有9个,则实数m 的取值范围为( ) A.(e−17,e−15] B.[e−17,e−15] C.(e−19,e−17] D.[e−19,e−17]11. 定义在R 上的函数f (x )满足f (x )=f (x +5),当x ∈[−2,0)时,f (x )=−(x +2)2,当x ∈[0,3)时,f (x )=x ,则f (1)+f (2)+⋯+f (2021)=( ) A.809 B.811 C.1011 D.101312. 设f(x)是周期为4的奇函数,当0≤x ≤1时,f(x)=x ⋅(1+x),则f(−92)=________.13. 已知f (x )是定义在R 上的奇函数,且对任意实数x ,恒有f (x +2)=−f (x ),则f (2016)=________.14. 已知函数f(x)的定义域为R ,且f(x)=−f(x +2),若当x ∈[0, 2)时,f(x)=3x ,则f(2019)=________15. 已知定义在R 上的函数f (x ),对任意实数x 均有f (x +4)=−f (x )+2√2,若函数f (x −2)的图象关于直线x =2对称,则f (2018)=________.16. 已知函数f (x )为R 上的奇函数,且f (−x )=f (2+x ),当x ∈[0,1]时,f (x )=2x +a 2x,则f (101)+f (105)的值为________.17. 定义在R 上的函数f (x )满足f (x +6)=f (x ).当x ∈[−3,3)时,f (x )={−(x +2)2,−3≤x <−1,x,−1≤x <3,则f (4)=________;f (1)+f (2)+f (3)+⋯+f (2016)+f (2017)=________.18. 定义在R上的奇函数f(x)满足f(x+2)=f(−x),当x∈[−1,0]时,f(x)=x2+2x,则f(2021)=________.19. 已知函数f(x)满足f(2−x)=f(2+x),当x≤2时,f(x)=−x2+kx+2.(1)求f(x)的解析式;(2)求f(x)在[2,4]上的最大值..20. 已知定义在R上的奇函数f(x)有最小正周期4,且x∈(0, 2)时,f(x)=e xx(1)求f(x)在[−2, 2]上的解析式;(2)若|f(x)|≥λ对任意x∈R恒成立,求实数λ的取值范围.21. 已知函数f(x)在R上满足f(2−x)=f(2+x),f(7−x)=f(7+x)且在闭区间[0,7]上,只有f(1)=f(3)=0.试判断函数y=f(x)的奇偶性;试求方程f(x)=0在闭区间[−2011,2011]上根的个数,并证明你的结论.22. 设f(x)是定义在R上的奇函数,且对任意实数x,恒有f(x+2)=−f(x).当x∈[0,2]时,f(x)=2x−x2.求证:f(x)是周期函数;当x∈[2,4]时,求f(x)的解析式;计算f(0)+f(1)+f(2)+⋯+f(2013).23. 已知定义在实数集R上的奇函数f(x)有最小正周期2,且当x∈(0, 1)时,f(x)=2x.4x+1(1)证明f(x)在(0, 1)上为减函数;(2)求函数f(x)在[−1, 1]上的解析式;(3)当λ取何值时,方程f(x)=λ在R上有实数解.参考答案与试题解析高中数学 函数的周期性练习题含答案一、 选择题 (本题共计 11 小题 ,每题 3 分 ,共计33分 ) 1.【答案】 C【考点】 函数的求值函数奇偶性的性质 函数的周期性【解析】根据题意,分析可得f(x)是周期为2的周期函数,则有f(10)=f(0),即可得答案. 【解答】解:根据题意,函数f(x)满足f(1−x)=f(1+x), 又由f(x)为偶函数,则有f(−x)=f(x), 即f(x −1)=f(1−x)=f(1+x), 所以f(x)=f(2+x),则函数f(x)是周期为2的周期函数, 故f(10)=f(0)=2. 故选C . 2.【答案】 C【考点】 函数的周期性 偶函数 【解析】根据题意,由函数的奇偶性与周期性可得f(−132)=f(−12)=f(12),结合函数的解析式分析可得答案. 【解答】解:由题意得f(x)是R 上周期为3的偶函数, 则f(−132)=f(−12)=f(12).因为当0<x ≤32时,f(x)=log 4x ,所以f(12)=log 412=−12, 所以f(−132)=−12. 故选C .3. 【答案】 B【考点】函数的周期性函数的求值【解析】由已知得f(1+x)=−f(1−x)=−f(x−1).从而得到|f(x+4)=f(x),再由当1≤x≤2时,f(x)=2x−1,能求出f(2021)的值.【解答】解:∵f(1+x)=f(1−x),且f(−x)=f(x),则f[1+(1+x)]=f[1−(1+x)],即f(2+x)=f(−x)=f(x).∵ f(x)是以2为周期的周期函数,当1≤x≤2时,f(x)=2x−1∴f(2021)=f(2×1010+1)=f(1)=21−1=1.故选B.4.【答案】C【考点】函数的周期性函数的求值【解析】由已知得f(1+x)=−f(1−x)=−f(x−1),从而得到f(x+4)=f(x),再由当1≤x≤2时,f(x)=2x−1,能求出f(2017)的值.【解答】解:∵f(1+x)+f(1−x)=0,且f(−x)=f(x),∴f(1+x)=−f(1−x)=−f(x−1).令x−1=t,得f(t+2)=−f(t),∴f(x+4)=−f(x+2)=f(x),∴f(x)以4为周期的周期函数.∵当1≤x≤2时,f(x)=2x−1,∴f(2017)=f(4×504+1)=f(1)=21−1=1.故选C.5.【答案】B【考点】函数的周期性函数奇偶性的性质【解析】此题暂无解析【解答】解:因为f(1+x)=f(1−x),且f(x)为定义在R上的偶函数,所以有f(1+x)=f(1−x)=f(x−1),即f(x+2)=f(x),函数f(x)为周期为2的偶函数,且关于x=1对称.又因为g(x)=e−|x−1|(−1<x<3)关于x=1对称,所以f(x)与g(x)的图象一共有四个交点,交点的横坐标之和为2+2=4.故选B.6.【答案】A【考点】函数的求值函数的周期性【解析】由题意,根据f(x+2)=f(−x)以及f(4−x)=−f(x)可推导y=f(x)是周期为4的周期函数,可得f(2019)=f(3),f(2021)=f(1),代入f(4−x)=−f(x)可计算结果,又f(2020)=f(0)=0,代入计算即可.【解答】解:已知f(x+2)=f(−x),则f(2−x)=f(x).又f(4−x)=−f(x),可得f(4−x)+f(2−x)=0,所以f(x+2)=−f(x),即f(x+4)=f[(x+2)+2]=−f(x+2)=f(x),可得函数y=f(x)是周期为4的周期函数,则f(2019)=f(3),f(2020)=f(0),f(2021)=f(1).因为f(4−x)+f(x)=0,所以f(4−1)+f(1)=0,即f(3)+f(1)=0,可得f(2019)+f(2020)+f(2021)=0+1=1.故选A.7.【答案】A【考点】函数奇偶性的性质函数的周期性函数的求值【解析】此题暂无解析【解答】解:根据题意,函数f(x)满足f(1−x)=f(1+x),则f(−x)=f(2+x),又由f(x)为偶函数,则有f(−x)=f(x),则f(x+2)=f(x),函数f(x)是周期为2的偶函数,故f(194)=f(34)=f(−34)=tan[π3×(−34)]=−1.故选A.8.【答案】B函数奇偶性的性质函数的周期性【解析】【解答】解:因为f(x+3)=−f(x),所以f(x+6)=−f(x+3)=f(x),所以f(x)是周期为6的周期函数,所以f(2021)=f(6×337−1)=f(−1)=f(1).因为f(1)>7,所以f(2021)=4+3a>7,解得a>1.故选B.9.【答案】B【考点】函数的周期性利用导数研究函数的单调性奇偶性与单调性的综合【解析】由f(−x)=−f(x),f(2−x)=f(2+x)判断出该函数的奇偶性及对称性、周期性.再将自变量转变到同一周期内利用单调性进行比大小.【解答】解:∵f(−x)=−f(x),f(2−x)=f(2+x),∴f(x)为奇函数,∴f[2−(x+2)]=f(2+x+2),即f(−x)=f(x+4)=−f(x),∴f(x+8)=−f(x+4)=f(x),即f(x)的最小正周期为8,∴f(7)=f(8−1)=f(−1)=−f(1),f(10)=f(8+2)=f(2),当x∈[0,2]时,f(x)=x 22+cos x−1,f′(x)=x−sin x,f′′(x)=1−cos x≥0,∴f′(x)=x−sin x为单调递增函数,f′(x)≥f′(0)=0,∴f(x)=x22+cos x−1为单调递增函数,即当x∈[0,2]时,f(x)≥f(0)=0,∴−f(1)<0,0<f(1)<f(√3)<f(2),∴f(7)<f(√3)<f(10),即n<m<t.故选B.10.C【考点】 函数的周期性 函数奇偶性的性质 分段函数的应用根的存在性及根的个数判断【解析】本题考查函数的图象与性质及不等式与函数的结合. 【解答】解:∵ f (−x )=f (x ),f (2−x )=f (2+x ),∴ f(2+x)=f(−x −2)=f(−x +2),∴ f (x +4)=f (x ),即f (x )是以4为周期的函数,作出函数f (x )的图象如图所示.令g (x )=m|x|,将g (x )的图象绕坐标原点旋转可得 {7m ≤e −1,9m >e −1,即{m ≤e−17,m >e−19 则实数m 的取值范围为(e−19,e−17].故选C . 11.【答案】 A【考点】 函数的周期性 函数的求值【解析】【解答】解:由f (x )=f (x +5)可知f (x )周期为5, 因为当x ∈[−2,0)时,f (x )=−(x +2)2; 当x ∈[0,3)时,f (x )=x ,所以f (−2)+f (−1)+f (0)+f (1)+f (2)=2. 又因为f (x )周期为5,所以f (x )+f (x +1)+f (x +2)+f (x +3)+f (x +4)=2, 因此f (1)+f (2)+⋯+f (2021)=f (1)+[f (2)+f (3)+f (4)+f (5)+f (6)]+⋯+f (2021) =f (1)+2×404 =809. 故选A .二、 填空题 (本题共计 7 小题 ,每题 3 分 ,共计21分 ) 12.−34【考点】 函数的周期性 函数奇偶性的性质 函数的求值 【解析】由奇函数的性质可得,f(−92)=−f(92),由周期性可得f(92)=f(92−4)=f(12),进而得解. 【解答】解:由题意可得,f(−92)=−f(92)=−f(92−4)=−f(12)=−12×(1+12)=−12×32=−34. 故答案为:−34. 13.【答案】 0【考点】 函数的求值 函数的周期性 函数奇偶性的性质【解析】由f (x +2)=−f (x )可得f (x )是周期为4的函数,把f (2016)转化成f (0))求解即可. 【解答】解:对任意实数x ,恒有f (x +2)=−f (x ),则f(x +4)=f(x +2+2)=−f(x +2)=f(x), 所以f (x )是周期为4的函数, 所以f (2016)=f (0),又f (x )是定义在R 上的奇函数, 所以f (0)=0, 所以f (2016)=0. 故答案为:0. 14.【答案】 −3【考点】 求函数的值 函数的周期性 函数的求值【解析】推导出f(x+4)=−f(x+2)=f(x),当x∈[0, 2)时,f(x)=3x,从而f(2019)=f(3)=−f(1),由此能求出结果.【解答】∵函数f(x)的定义域为R,且f(x)=−f(x+2),∴f(x+4)=−f(x+2)=f(x),当x∈[0, 2)时,f(x)=3x,∴f(2019)=f(3)=−f(1)=−(3)故答案为:−(3)15.【答案】√2【考点】函数奇偶性的性质函数的周期性【解析】由已知条件推导出f(−x)=f(x),故f(x)为偶函数.由f(x+4)=−f(x)+2√2,得f(x+4+4)=−f(x+4)+2√2=f(x),所以f(x)是周期为8的偶函数,所以f(2018)=f(2+252×8)=f(2),由此能求出结果.【解答】解:由函数f(x−2)的图象关于直线x=2对称可知,函数f(x)的图象关于y轴对称,故f(x)为偶函数.由f(x+4)=−f(x)+2√2,得f(x+4+4)=−f(x+4)+2√2=f(x),所以f(x)是周期为8的偶函数,所以f(2018)=f(2+252×8)=f(2),又f(2)=−f(−2)+2√2,f(−2)=f(2),所以f(2)=√2.故答案为:√2.16.【答案】3【考点】函数奇偶性的性质函数的周期性函数的求值【解析】暂无【解答】解:因为f(x)为R上的奇函数,所以f(0)=1+a=0,所以a=−1,(0≤x≤1),所以f(x)=2x−12x.则f(1)=32又因为f (x )为奇函数,所以f (−x )=f (2+x )=−f (x ),则f (x +4)=f (x ),所以f (x )的周期为4,所以f (101)+f (105)=2f (1)=32×2=3. 故答案为:3.17.【答案】0,337【考点】函数的求值函数的周期性【解析】先由f (x +6)=f (x )判断周期为6,直接计算f (4);然后计算2017=6×36+1,把f (1)+f (2)+f (3)+⋯+f (2016)+f (2017)转化为=336×[f (1)+f (2)+f (3)+⋯+f (6)]+f (2017) ,即可求解.【解答】解:因为f (x +6)=f (x ),所以函数f (x )的周期为6的周期函数,当x ∈[−3,3)时,f (x )={−(x +2)2,−3≤x <−1,x,x −1≤x <3,所以f (4)=f (−2)=−(−2+2)2=0,因为2017=6×336+1,f (1)=1,f (2)=2,f (3)=f (−3)=−(−3+2)2=−1, f (4)=0,f (5)=f (−1)=−1,f (6)=f (0)=0,所以f (1)+f (2)+f (3)+⋯+f (2016)+f (2017)=336×[f (1)+f (2)+f (3)+⋯+f (6)]+f (2017)=36×(1+2−1+0−1+0)+1=337.故答案为:0;337.18.【答案】1【考点】函数奇偶性的性质函数的周期性【解析】无【解答】解:因为f (x )是奇函数,所以f (x +2)=f (−x )=−f (x ),所以f (x +4)=f(x +2+2)=−f(x +2)=f (x ),所以f (x )的周期为4.所以f (x +4)=f (x ),故f (x )是以4为周期的周期函数,则f (2021)=f (4×505+1)=f (1)=−f (−1)=−[(−1)2−2]=1.故答案为:1.三、 解答题 (本题共计 5 小题 ,每题 10 分 ,共计50分 )19.【答案】解:(1)因为f (2−x )=f (2+x ),所以f (x )=f (4−x ),当x >2时,4−x <2,则f (x )=f (4−x )=−(4−x )2+k (4−x )+2=−x 2+(8−k )x +4k −14,故f (x )的解析式为f (x )={−x 2+kx +2, x ≤2,−x 2+(8−k )x +4k −14,x >2.(2)当x ∈[2,4]时,f (x )=−x 2+(8−k )x +4k −14=−(x −8−k 2)2+k 2+84. 当8−k 2≥4,即k ≤0时,f (x )在[2,4]上单调递增,则f (x )max =f (4)=2;当8−k 2≤2,即k ≥4时,f (x )在[2,4]上单调递减,则f (x )max =f (2)=2k −2;当2<8−k 2<4,即0<k <4时,f (x )max =f (8−k 2)=k 2+84. 综上所述,f (x )max ={ 2,k ≤0,k 2+84,0<k <4,2k −2,k ≥4.【考点】函数的周期性二次函数在闭区间上的最值分段函数的应用函数解析式的求解及常用方法【解析】【解答】解:(1)因为f (2−x )=f (2+x ),所以f (x )=f (4−x ),当x >2时,4−x <2,则f (x )=f (4−x )=−(4−x )2+k (4−x )+2=−x 2+(8−k )x +4k −14,故f (x )的解析式为f (x )={−x 2+kx +2, x ≤2,−x 2+(8−k )x +4k −14,x >2.(2)当x ∈[2,4]时,f (x )=−x 2+(8−k )x +4k −14=−(x −8−k 2)2+k 2+84. 当8−k 2≥4,即k ≤0时,f (x )在[2,4]上单调递增,则f(x)max=f(4)=2;当8−k2≤2,即k≥4时,f(x)在[2,4]上单调递减,则f(x)max=f(2)=2k−2;当2<8−k2<4,即0<k<4时,f(x)max=f(8−k2)=k2+84.综上所述,f(x)max={2,k≤0,k2+84,0<k<4,2k−2,k≥4.20.【答案】解:(1)当x∈(−2, 0)时,−x∈(0, 2),∴f(−x)=e−x−x =−1xe x,又f(x)为奇函数,∴f(−x)=−f(x),∴f(x)=1xe x.当x=0时,由f(−0)=−f(0)可知,f(0)=0. 又∵ f(x+4)=f(x),∴f(−2)=f(−2+4)=f(2),即−f(2)=f(2),∴ f(2)=0,∴f(−2)=f(2)=0.综上,f(x)={1xe x (−2<x<0), 0(x=0,±2), e xx(0<x<2).(2)|f(x)|≥λ对任意x∈R恒成立,等价于|f(x)|min≥λ.∵f(x)的最小正周期为4,∴只需求x∈[−2, 2]时的|f(x)|min,由(1)可知,x∈[−2, 2]时,|f(x)|min=0,此时,x=0或±2,∴λ≤0.【考点】函数恒成立问题函数的周期性奇函数【解析】(1)由f(x)是x∈R上的奇函数,得f(0)=0.再由最小正周期为4,得到②和f(−2)的值.然后求(−2, 0)上的解析式,通过在(−2, 0)上取变量,转化到(0, 2)上,即可得到结论.(2)|f(x)|≥λ等价于|f(x)|min≥λ,由f(x)的最小正周期为4得,问题转化为求x∈[−2, 2]时的|f(x)|min,由(1)易求;【解答】解:(1)当x∈(−2, 0)时,−x∈(0, 2),∴f(−x)=e−x−x =−1xe x,又f(x)为奇函数,∴f(−x)=−f(x),∴f(x)=1xe x.当x=0时,由f(−0)=−f(0)可知,f(0)=0. 又∵ f(x+4)=f(x),∴f(−2)=f(−2+4)=f(2),即−f(2)=f(2),∴ f(2)=0,∴f(−2)=f(2)=0.综上,f(x)={1xe x (−2<x<0), 0(x=0,±2), e xx(0<x<2).(2)|f(x)|≥λ对任意x∈R恒成立,等价于|f(x)|min≥λ.∵f(x)的最小正周期为4,∴只需求x∈[−2, 2]时的|f(x)|min,由(1)可知,x∈[−2, 2]时,|f(x)|min=0,此时,x=0或±2,∴λ≤0.21.【答案】函数f(x)既不是奇函数也不是偶函数.∵f(x)=f[2+(x−2)]=f[2−(x−2)]=f(4−x),f(x)=f[7+(x−7)]=f(7−(x−7))=f(14−x),∴f(14−x)=f(4−x),即f[10+(4−x)]=f(4−x),∴f(x+10)=f(x),即函数f(x)的周期为10.又∵f(1)=f(3)=0,∴f(1)=f(1+10n)=0(n∈Z),f(3)=f(3+10n)=0(n∈Z),即x=1+10n和x=3+10n(n∈Z)均是方程f(x)=0的根.由−2011≤1+10n≤2011及n∈Z可得n=0,±1,±2,±3,⋯,±201,共403个;由−2011≤3+10n≤2011及n∈Z可得n=0,±1,±2,±3,⋯,±200,−201,共402个;所以方程f(x)=0在闭区间[−2011,2011]上的根共有805个.【考点】函数的周期性抽象函数及其应用函数的图象与图象变化【解析】此题暂无解析【解答】若y=f(x)为偶函数,则f(−x)=f(2−(x+2))=f(2+(x+2))=f(4+x)=f(x),∴f(7)=f(3)=0,这与f(x)在闭区间[0,7]上,只有f(1)=f(3)=0矛盾;因此f(x)不是偶函数.若y=f(x)为奇函数,则f(0)=f(−0)=−f(0),∴f(0)=0,这与f(x)在闭区间[0,7]上,只有f(1)=f(3)=0矛盾;因此f(x)不是奇函数.综上可知:函数f(x)既不是奇函数也不是偶函数.略22.【答案】证明∵f(x+2)=−f(x),∴f(x+4)=−f(x+2)=f(x).∴f(x)是周期为4的周期函数.f(x)=x2−6x+8,x∈[2,4].1【考点】函数的周期性奇偶性与单调性的综合【解析】此题暂无解析【解答】思维启迪:只需证明f(x+T)=f(x),即可说明f(x)是周期函数;探究提高判断函数的周期只需证明f(x+T)=f(x)(T≠0)便可证明函数是周期函数,且周期为T,函数的周期性常与函数的其他性质综合命题,是高考考查的重点问题.解∵x∈[2,4],∴−x∈[−4,−2],∴4−x∈[0,2],∴f(4−x)=2(4−x)−(4−x)2=−x2+6x−8,又f(4−x)=f(−x)=−f(x),∴−f(x)=−x2+6x−8,即f(x)=x2−6x+8,x∈[2,4].思维启迪:由f(x)在[0,2]上的解析式求得f(x)在[−2,0]上的解析式,进而求f(x)在[2,4]上的解析式;探究提高判断函数的周期只需证明f(x+T)=f(x)(T≠0)便可证明函数是周期函数,且周期为T,函数的周期性常与函数的其他性质综合命题,是高考考查的重点问题.解∵f(0)=0,f(2)=0,f(1)=1,f(3)=−1.又f(x)是周期为4的周期函数,∴f(0)+f(1)+f(2)+f(3)=f(4)+f(5)+f(6)+f(7)=⋯=f(2008)+f(2009)+f(2010)+f(2011)=0.∴f(0)+f(1)+f(2)+⋯+f(2013)=f(0)+f(1)=1.思维启迪:由周期性求和.探究提高判断函数的周期只需证明f(x+T)=f(x)(T≠0)便可证明函数是周期函数,且周期为T,函数的周期性常与函数的其他性质综合命题,是高考考查的重点问题.23.【答案】证明:设x1,x2∈(0,1)x1<x2,=(4x1+1)(4x2+1)⋯∵0<x1<x2<1,∴2x2>2x1,2x1+x2>1∴f(x1)−f(x2)>0,即f(x1)>f(x2),∴f(x)在(0, 1)上为减函数.若x∈(−1, 0),∴−x∈(0, 1),∴f(−x)=2−x4−x+1,又∵f(x)为奇函数,∴f(−x)=2−x4−x+1=−f(x),∴f(x)=−2−x4−x+1⋯又∵f(−1)=f(1),且f(−1)=−f(1),∴f(1)=f(−1)=0∴f(x)={2x4x+1,x∈(0,1) 0,x=0x=±1−2x4x+1,x∈(−1,0)⋯若x∈(0, 1),∴f(x)=2x4x+1=12x+12x又∵2x+12x ∈(2,52),∴f(x)∈(25,12 ),若x∈(−1, 0),∴f(x)=−2x4x+1=−12x+12x,∴f(x)∈(−12,−25),∴λ的取值范围是{λ|λ=0,−12<λ<−25,25<λ<12}.…12分【考点】函数的周期性函数奇偶性的性质与判断【解析】(1)利用函数单调性的定义证明.(2)利用函数的周期性和奇偶性求对应的解析式.(3)利用函数的性质求函数f(x)的值域即可.【解答】证明:设x1,x2∈(0,1)x1<x2,=(4x1+1)(4x2+1)⋯∵0<x1<x2<1,∴2x2>2x1,2x1+x2>1∴f(x1)−f(x2)>0,即f(x1)>f(x2),∴f(x)在(0, 1)上为减函数.若x∈(−1, 0),∴−x∈(0, 1),∴f(−x)=2−x4−x+1,又∵f(x)为奇函数,∴f(−x)=2−x4−x+1=−f(x),∴f(x)=−2−x4−x+1⋯又∵f(−1)=f(1),且f(−1)=−f(1),∴f(1)=f(−1)=0∴f(x)={2x4x+1,x∈(0,1) 0,x=0x=±1−2x4x+1,x∈(−1,0)⋯若x∈(0, 1),∴f(x)=2x4x+1=12x+12x又∵2x+12x ∈(2,52),∴f(x)∈(25,12 ),若x∈(−1, 0),∴f(x)=−2x4x+1=−12x+12x,∴f(x)∈(−12,−25),∴λ的取值范围是{λ|λ=0,−12<λ<−25,25<λ<12}.…12分。

(word完整版)八年级函数练习题

(word完整版)八年级函数练习题

八年级函数概念周练1班级:___________姓名:___________得分:__________一.选择填空题(每小题6分,30分)1.已知函数y =212+-x x ,当x =a 时的函数值为1,则a 的值为( ) A.3 B.-1 C.-3 D.12.某人从A 地向B 地打长途电话6分钟,按通话时间收费,3分钟内收2.4元,每加一分钟加收1元.则表示电话费y (元)与通话时间x (分)之间的函数关系正确的是( )3.甲、乙两地相距S 千米,某人行完全程所用的时间t (时)与他的速度v (千米/时)满足vt=S ,在这个变化过程中,下列判断中错误的是( ).A.S 是变量B.t 是变量C.v 是变量D.S 是常量4.已知油箱中有油25升,每小时耗油5升,则剩油量P(升)与耗油时间t(小时)之间的函数关系式为( ).A.P=25+5t (t>0)B.P=25-5t(t ≥0)C.P=t525 (t>0) D.P=25-5t (0≤t ≤5) 5.写出下列函数关系式:①速度60千米的匀速运动中,路程S 与时间t 的关系___________ .②等腰三角形顶角y 与底角x 之间的关系 ______________ .③汽车油箱中原有油100升,汽车每行驶50千米耗油10升,油箱剩余油量y(升)与汽车行驶路程x(千米)之间的关系______.④矩形周长30,则面积y与一条边长x之间的关系__________ .二、解答题(每小题14分,70分)1.下列各题中分别有几个变量?你能将其中某个变量看成另一个变量的函数吗?①②图1 图2 ③通话时间t/0<t≤3 3<t≤4 4<t≤5 5<t≤6 6<t≤7 …分话费y/元0.4 0.8 1.2 1.6 2.0 …2.下列各题中,哪些是函数关系,哪些不是函数关系:(1)在一定的时间内,匀速运动所走的路程和速度.(2)在平静的湖面上,投入一粒石子,泛起的波纹的周长与半径.(3)x+3与x.(4)三角形的面积一定,它的一边和这边上的高.(5)正方形的面积和梯形的面积.(6)水管中水流的速度和水管的长度.(7)圆的面积和它的周长.(8)底是定长的等腰三角形的周长与底边上的高.3.父亲告诉小明:“距离地面越远,温度越低,”并给小明出示了下面的表格.根据上表,父亲还给小明出了下面几个问题,你和小明一起回答.(1)上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)如果用h表示距离地面的高度,用t表示温度,那么随着h的变化,t是怎么变化的?(3)你知道距离地面5千米的高空温度是多少吗?(4)你能猜出距离地面6千米的高空温度是多少吗?4.张爷爷晚饭以后外出散步,碰到老邻居,交谈了一会儿,返回途中在读报栏前看了一会儿报,如图是据此情境画出的图象,请你回答下面的问题:(1)张爷爷是在什么地方碰到老邻居的,交谈了多长时间?(2)读报栏大约离家多远?(3)图中反映了哪些变量之间的关系?其中哪个是自变量?哪个是因变量?5.弹簧挂上物体后会伸长,已知一弹簧的长度(cm)与所挂物体的质量(kg)之间的关系如下表:物体的质量(kg)0 1 2 3 4 5弹簧的长度(cm)12 12.5 13 13.5 14 14.5(1)上表反映了哪些变量之间的关系?哪个是自变量?哪个是因变量?(2)当物体的质量为3kg时,弹簧的长度怎样变化?(3)当物体的质量逐渐增加时,弹簧的长度怎样变化?(4)如果物体的质量为xkg,弹簧的长度为ycm,根据上表写出y与x的关系式;(5)当物体的质量为2.5kg时,根据(4)的关系式,求弹簧的长度.参考答案一.选择题1.A 【解析】3a 12a 1a 2==+-2.C【解析】注意三分钟到四分钟之间并不随时间的增长而增长,只要超过三分钟就加收一元,以此类推。

2020高考数学单元滚动精准课时练07 函数的值域和最值

2020高考数学单元滚动精准课时练07 函数的值域和最值

课时07 函数的值域和最值模拟训练(分值:60分 建议用时:30分钟)1.下列函数中,在区间(0,+∞)上不是增函数的是( ) A .y =2x +1 B .y =3x 2+1 C .y =2xD .y =|x |【答案】C【解析】由函数单调性定义知选C. 2.函数y =2x -1的定义域是(-∞,1)∪[2,5),则其值域是( ) A .(-∞,0)∪(12,2] B .(-∞,2] C .(-∞,12)∪[2,+∞) D .(0,+∞)【答案】A【解析】∵x ∈(-∞,1)∪[2,5),则x -1∈(-∞,0)∪[1,4). ∴2x -1∈(-∞,0)∪(12,2]. 3.已知函数)(x f y =是定义在R 上的增函数,则0)(=x f 的根 ( ) A.有且只有一个 B.有2个 C.至多有一个 D.以上均不对 【答案】C4.若定义在R 上的二次函数在区间[0,2]上是增函数,且,则实数m 的取值范围是( )A.40≤≤mB.20≤≤mC.0≤mD.0≤m 或4≥m【答案】A【解析】二次函数的对称轴是2=x ,又因为二次函数在区间[0,2]上是增函数,则0<a ,开口向下.若,则40≤≤m .5. 已知函数,则使)(x f 为减 函数的区间是 ( )A.(3,6)B.(-1,0)C.(1,2)D.(-3,-1)【答案】D 【解析】由,得1-<x 或3>x ,结合二次函数的对称轴直线x=1知,在对称轴左边函数y=x2-2x-3是减函数,所以在区间(-∞,-1)上是减函数,由此可得D 项符合.【失分点分析】函数的单调区间是指函数在定义域内的某个区间上 单调递增或单调递减.单调区间要分开写,即使在两 个区间上的单调性相同,也不能用并集表示.6.已知f (x )是R 上增函数,若令F (x )=f (1-x )-f (1+x ),则F (x )是R 上的( ) A .增函数 B .减函数 C .先减后增的函数 D .先增后减的函数【答案】B【解析】不妨取f (x )=x ,则F (x )=(1-x )-(1+x )=-2x ,为减函数.一般法:复合函数f (1-x ),-f (1+x )分别为减函数,故F (x )=f (1-x )-f (1+x )为减函数.【知识拓展】两函数f(x)、g(x)在x ∈(a,b)上都是增(减)函数,则 f(x)+g(x)也为增(减)函数,但f(x)·g(x),)(1x f 等的单调性与其正负有关,切不可盲目类比. 7.f (x )=⎩⎪⎨⎪⎧a x(x >1)⎝ ⎛⎭⎪⎫4-a 2x +2 (x ≤1)是R 上的单调递增函数,则实数a 的取值范围为( )A .(1,+∞)B .[4,8)C .(4,8)D .(1,8)【答案】B【规律总结】分段函数是一类重要的函数模型.解决分段函数问题,关键要抓住在不同的段内研究问题.8.函数f (x )=a x+log a (x +1)在[0,1]上的最大值与最小值的和为a ,则a =________. 【答案】12【解析】先判断函数的单调性,然后利用单调性可得最值.由于a 是底数,要注意分情况讨论. 若a >1,则f (x )为增函数,所以f (x )max =a +log a 2,f (x )min =1,依题意得a +log a 2+1=a , 即log a 2=-1,解得a =12(舍去).若0<a <1,则f (x )为减函数,所以f (x )min =a +log a 2,f (x )max =1,依题意得a +log a 2+1=a ,于是a =12,故填12. 9.已知函数f (x )=x 2+4ax +2a +6.(1)若函数f (x )的值域为[0,+∞),求a 的值;(2)若函数f (x )的函数值均为非负数,求g (a )=2-a |a +3|的值域. 【解析】(1)∵函数的值域为[0,+∞),10.已知函数f (x )对于任意x ,y ∈R ,总有f (x )+f (y )=f (x +y ),且当x >0时,f (x )<0,f (1)=-23.(1)求证:f (x )在R 上是减函数;(2)求f (x )在[-3,3]上的最大值和最小值.【解析】(1)解法一:∵函数f (x )对于任意x ,y ∈R 总有f (x )+f (y )=f (x +y ), ∴令x =y =0,得f (0)=0. 再令y =-x ,得f (-x )=-f (x ). 在R 上任取x 1>x 2,则x 1-x 2>0,f (x 1)-f (x 2)=f (x 1)+f (-x 2)=f (x 1-x 2).又∵x >0时,f (x )<0,而x 1-x 2>0, ∴f (x 1-x 2)<0, 即f (x 1)<f (x 2).因此f (x )在R 上是减函数. 解法二:设x 1>x 2, 则f (x 1)-f (x 2) =f (x 1-x 2+x 2)-f (x 2) =f (x 1-x 2)+f (x 2)-f (x 2) =f (x 1-x 2).又∵x >0时,f (x )<0,而x 1-x 2>0, ∴f (x 1-x 2)<0, 即f (x 1)<f (x 2), ∴f (x )在R 上为减函数.(2)∵f (x )在R 上是减函数, ∴f (x )在[-3,3]上也是减函数,∴f (x )在[-3,3]上的最大值和最小值分别为f (-3)与f (3). 而f (3)=3f (1)=-2,f (-3)=-f (3)=2. ∴f (x )在[-3,3]上的最大值为2,最小值为-2. [新题训练] (分值:10 建议用时:10分钟)11.(5分)已知函数y =1-x +x +3的最大值为M ,最小值为m ,则mM的值为( ) A.14 B.12 C.22 D.32 【答案】C12. (5分)函数f (x )=x 2-2ax +a 在区间(-∞,1)上有最小值,则函数g (x )=f xx在区间(1,+∞)上一定( )A .有最小值B .有最大值C .是减函数D .是增函数【答案】D【解析】由题设知,二次函数f (x )=x 2-2ax +a 的对称轴x =a 在区间(-∞,1)内,即a <1,则函数g (x )=f x x =x +a x-2a 在区间(1,+∞)上一定是增函数.事实上,若a =0,则g (x )=x 在区间(1,+∞)上一定是增函数;若0<a <1,因为分式函数y =x +ax 在区间(a ,+∞)上是增函数,这里a <1,故函数g (x )=f xx在区间(1,+∞)上一定是增函数;若a <0,由于y =a x 在区间(1,+∞)上是增函数,故函数g (x )=f xx=x +a x-2a 在区间(1,+∞)上是增函数.综合得,当a <1时,函数g (x )=f x x =x +ax-2a 在区间(1,+∞)上是增函数.故应选D.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学复习(7)
(一次函数)
班级: 姓名: 1.【2009湖南】 在平面直角坐标系中,函数1y x =-+的图象经过 【 】 A .一、二、三象限 B .二、三、四象限 C .一、三、四象限 D .一、二、四象限 2.【2009 陕西】若正比例函数的图像经过点 ( -1,2),则这个图像必经过点 【 】 A.(1,2) B.(-1,-2) C.(2,-1) D.(1,-2) 3.【2009 十堰市】 一次函数y =2x -2的图象不经..过.
的象限是 【 】 A .第一象限 B .第二象限 C .第三象限 D .第四象限 4.【2009 株洲】 一次函数2y x =+的图象不.
经过 【 】
A .第一象限
B .第二象限
C .第三象限
D .第四象限
5.【2009 漳州】 已知一次函数21y x =+,则y 随
x 的增大而_______________(填“增大”或“减
小”).
6.【2009 钦州】 一次函数的图象过点(0,2),且函数y 的值随自变量x 的增大而增大,请写出一个符合条件的函数解析式: _.
7. 已知关于x 、y 的一次函数()12y m x =--的图象经过平面直角坐标系中的第一、三、四象限,那么m 的取值范围是 。

8.【2009 湘西】 一次函数3y x b =+的图像过坐标原点,则b 的值为 .
9.【2009 天津】 已知一次函数的图象过点()35,与
()49--,
,则该函数的图象与y 轴交点的坐标为__________ _.
10.【2009成都】某航空公司规定,旅客乘机所携带行李的质量x (kg)与其运费y (元)由如图所示的一次函数图象确定,那么旅客可携带的免费行李的最大质量为 【 】
A.20kg
B.25kg
C.28kg
D.30kg
11.【 2009 宜昌】 由于干旱,某水库的蓄水量随
时间的增加而直线下降.若该水库的蓄水量
V (万米3)与干旱的时间t (天)的关系如图所示,则下列说法正确的是 【 】. A .干旱开始后,蓄水量每天减少20万米3 B .干旱开始后,蓄水量每天增加20万米3 C .干旱开始时,蓄水量为200万米3
D .干旱第50天时,蓄水量为1 200万米3
12.【2009 江津】 已知一次函数32-=x y 的大 致图像为 【 】
13.【2009年安徽】 8.已知函数y kx b =+的图象
如图,则2y kx b =+的图象可能是 【 】
14.【2009 河北】如图所示的计算程序中,y 与x 之间的函数关系所对应的图象应为 【 】
15.【2009年遂宁】 已知整数x 满足-5≤x ≤5,y 1=x+1,y 2=-2x+4对任意一个x ,m 都取y 1,y 2中的较小值,则m 的最大值是
A.1
B.2
C.24
D.-9
16.【2009 安徽】 已知函数y kx b =+的图象如图,则2y kx b =+的图象可能是 【 】
17.【2009 桂林】 如图,是一个正比例函数的图像,把该图像向左平移1个单位长度,求所得到的函数图像的解析式。

解:
18.【 2009 济宁】 阅读下面的材料:
在平面几何中,我们学过两条直线平行的定义.下面就两个一次函数的图象所确定的两条直线,给出它们平行的定义:设一次函数111(0)y k x b k =+≠的图象为直线1l ,一次函数
222(0)y k x b k =+≠的图象为直线2l ,若
12k k =,
且12b b ≠,我们就称直线1l 与直线2l 互相平行.
解答下面的问题:
(1) 求过点(1,4)P 且与已知直线21
y x =--平行的直线l 的函数表达式,并画出直线l 的图象;
解:
(2)设直线l 分别与y 轴、x 轴交于点A 、B ,
如果直线m :(0)y kx t t =+>与直线l 平行且交x 轴于点C ,求出△ABC 的面积S 关于t
的函数表达式.
数学复习(8)
班级: 姓名: 一、选择题
1.下列函数中,是一次函数的有 ( ) ①y=2x+3; ②)4(4
3
-=
x y ; ③x x y 432+=; ④y=ax (a ≠0); ⑤y=3+22. A.2个 B.3个 C.4个 D.5个 2.下列说法正确的是 ( ) A .一次函数是正比例函数; B.正比例函数是一次函数;
C .正比例函数中自变量越大,函数值越大; D.不是正比例函数就不是一次函数。

3.直线y=x+4和直线y=-x+4与x 轴围成的三角形 的面积是 ( ) A .32; B.64; C.16; D.8. 4.将直线y=5
2
x -
向下平移4个单位后得到的直线的解析式为 ( ) A.);4(25--=x y B.);4(25
+-=x y
C. ;425+-=x y
D..42
5
--=x y
5.直线y=-2x+5的图像经过 ( )
A .第一、二、三象限; B.第一、二、四象限; C .第一、三、四象限; D.第二、三、四象限。

6.若将直线y=3x-2向上平移4个单位,则直线不 经过 ( ) A .第一象限; B.第二象限; C .第三象限; D.第四象限。

7.如图所示,函数y=-x-2的图像大致是 ( )
8.点(-5,0)在 ( ). A.x 轴上 B.y 轴上C.第三象限内D.第四象限内 9.若点P (2m-1,-3)在第三象限,则m 的取值范 围是 ( ). A .m >
21 B.m <21 C.m ≥-21 D.m ≤2
1 10.如果点A (-3,2a )与点B (3,8)关于y 轴对称,那么a 的值为 ( )
A .3
B .-3
C .4
D .-4 二、填空题。

1.(1)将直线y=3x 向下平移3个单位,得到直线________________;
(2)将直线y=-2x-5向上平移5个单位,得到直线_________________.
2.一次函数y =kx +b 有下列性质:
(1) 当k >0时,y 随x 的增大而_____,这时函数的图象从左到右_____;
(2) 当k <0时,y 随x 的增大而_____,这时函数的图象从左到右_____.
3.(1)直线y =2.5x -3过点(___,0)、(0,___); (2)直线23
2
+-
=x y 过点(___,0)
、(0,___). 4、点P (-2,3)到x 轴的距离是 ;到y 轴的距离是 .
5.已知函数34+-=x y ,当x =_________时,函数y 的值为0;
三、学校有一批复印任务,原来由甲复印社承接,按每100页40元计费.现乙复印社表示:若学校先按月付给一定数额的承包费,则可按每100页15元收费.两复印社每月收费情况如图18.5.1所示.
图18.5.1
根据图象回答:
(1)乙复印社的每月承包费是多少?
(2)当每月复印多少页时,两复印社实际收费相同?
(3)如果每月复印页数在1200页左右,那么应选择哪个复印社?。

相关文档
最新文档