直线一级倒立摆建模与控制

合集下载

一级倒立摆的建模及控制分析

一级倒立摆的建模及控制分析

直线一级倒立摆的建模及控制分析摘要:本文利用牛顿—欧拉方法,建立了直线型一级倒立摆系统的数学模型。

在分析的基础上, 采用状态反馈控制中极点配置法设计了用于直线型一级倒立摆系统的控制器。

此外,用MATLAB 仿真绘制了相应的曲线并做了分析。

一、问题描述倒立摆控制系统是机器人技术、控制理论、计算机控制等多个领域和多种技术的有机结合,其被控系统本身是一个绝对不稳定、高阶次、多变量、强耦合的非线性系统,是控制理论研究中较为理想的实验对象。

它为控制理论的教学、实验和科研构建了一个良好的实验平台,促进了控制系统新理论、新思想的发展。

倒立摆系统可以采用多种理论和方法来实现其稳定控制,如PID,自适应、状态反馈、智能控制等方法都己经在倒立摆控制系统上得到实现。

由于直线一级倒立摆的力学模型较简单,又是研究其他倒立摆的基础,所以本文利用所学的矩阵论知识对此倒立摆进行建模和控制分析。

二、方法简述本文利用牛顿—欧拉方法,建立了直线型一级倒立摆系统的数学模型。

在分析的基础上, 采用状态反馈控制中极点配置法设计了用于直线型一级倒立摆系统的控制器。

此外,用MATLAB 仿真绘制了相应的曲线并做了分析。

三、模型的建立及分析3.1 微分方程的推导在忽略了空气阻力,各种摩擦之后,可将直线一级倒立摆系统抽象成小车和匀质杆组成的系统,如下图1所示。

图1 直线一级倒立摆系统假设 M 为小车质量;m 为摆杆质量;b 为小车摩擦系数;l 为摆杆转动轴心到杆质心的长度;I 为摆杆惯量;F 为加在小车上的力;x 为小车位置;φ为摆杆与垂直向上方向的夹角;θ为摆杆与垂直向下方向的夹角。

图2是系统中小车和摆杆的受力分析图。

其中,N 和P 为小车与摆杆相互作用力的水平和垂直方向的分量。

值得注意的是: 在实际倒立摆系统中检测和执行装置的正负方向已确定, 因而矢量方向定义如图2所示, 图示方向为矢量正向。

(a) (b)图2 小车和摆杆的受力分析图分析小车水平方向所受的合力,可以得到以下方程:N x b F x M --= (1)由摆杆水平方向的受力进行分析可以得到下面等式:θθθθs i n c o s 2ml ml x m N -+= (2) 把这个等式代入上式中,就得到系统的第一个运动方程:()F ml ml x b x m M =-+++θθθθsin cos 2 (3)为了推出系统的第二个运动方程,我们对摆杆垂直方向上的合力进行分析,可以得到下面方程:θθθθc o s s i n 2 ml ml mg P --=- (4) 力矩平衡方程如下:θθθI Nl Pl =--cos sin (5)合并这(4)、(5)两个方程,约去P 和N ,得到第二个运动方程:()θθθc o s s i n 2x ml mgl ml I -=++ (6) 假设φ与1(单位是弧度)相比很小,即φ《1,则可以进行近似处理:0d d s i n 1c o s 2=⎪⎭⎫ ⎝⎛-=-=t θφθθ,, (7) 用u 来代表被控对象的输入力F ,线性化后两个运动方程如下:()()⎩⎨⎧=-++=-+u ml x b x m M xml mgl ml I φφφ 2 (8) 3.2 状态空间方程方程组(8)对φ,x 解代数方程,整理后的系统状态空间方程为: ()()()()()()()()u Mm l m M I m l Mm l m M I m lI x x Mm l m M I m M m gl Mm l m M I m lbMm l m M I gl m Mm l m M I b m l I x x ⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡++++++⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡+++++-+++++-=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡222222222200001000000010φφφφ u x x x y ⎥⎦⎤⎢⎣⎡+⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡=0001000001φφφ 对于质量均匀分布的摆杆有:3/2ml I =,于是可得:()x ml mgl ml ml =-+φφ223/ 化简得:xll g 4343+=φφ设}{x u x x X ==1,,,,φφ ,则有:14301004300100000000010u l x x l g x x⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡+⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡φφφφ10001000001u x x x y ⎥⎦⎤⎢⎣⎡+⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡=φφφ 3.3 实际系统模型实际系统模型参数: M =1.096 Kg ;m =0.109 Kg ;b =0.1 N/m/s ; l =0.25 m ;I =0.0034 kg ·m ·m ;采样频率 T =0.005 s 。

电气系统综合设计实验报告--直线一级倒立摆控制系统设计

电气系统综合设计实验报告--直线一级倒立摆控制系统设计

电气控制系统设计——直线一级倒立摆控制系统设计学院轮机工程学院班级电气1111 姓名李杰学号 2011125036 姓名韩学建学号 2011125035 成绩指导老师肖龙海2014 年 12 月 25 日小组成员与分工:韩学建主要任务:二阶系统建模与性能分析,二阶控制器的设计,二阶系统的数字仿真与调试,二阶系统的实物仿真与调试。

二阶状态观测器的数字仿真与调试,二阶状态观测器的实物仿真与调试。

李杰主要任务:四阶系统建模与性能分析,四阶控制器的设计,四阶系统的数字仿真与调试,四阶系统的实物仿真与调试。

四阶状态观测器的数字仿真与调试,四阶状态观测器的实物仿真与调试。

前言倒立摆系统是非线性、强耦合、多变量和自然不稳定的系统,倒立摆是机器人技术、控制理论、计算机控制等多个领域、多种技术的有机结合,其被控系统本身又是一个绝对不稳定、高阶次、多变量、强耦合的非线性系统,可以作为一个典型的控制对象对其进行研究。

倒立摆系统作为控制理论研究中的一种比较理想的实验手段,为自动控制理论的教学、实验和科研构建一个良好的实验平台,以用来检验某种控制理论或方法的典型方案,促进了控制系统新理论、新思想的发展。

本报告通过设计二阶、四阶两种倒立摆控制器来加深对实际系统进行建模方法的了解和掌握随动控制系统设计的一般步骤及方法。

熟悉倒立摆系统的组成及基本结构并利用MATLAB对系统模型进行仿真,利用学习的控制理论对系统进行控制器的设计,并对系统进行实际控制实验,对实验结果进行观察和分析,研究调节器参数对系统动态性能的影响,非常直观的了解控制器的控制作用。

目录第一章设计的目的、任务及要求1.1 倒立摆系统的基本结构 (4)1.2 设计的目的 (4)1.3 设计的基本任务 (4)1.4 设计的要求 (4)1.5 设计的步骤 (5)第二章一级倒立摆建模及性能分析2.1 微分方程的推导 (5)2.2 系统的稳定性和能控能观性分析 (11)2.3 二阶的能观性、能控性分析 (13)2.4 四阶的能观性、能控性分析 (18)第三章倒立摆系统二阶控制器、状态观测器的设计与调试3.1 设计的要求 (22)3.2 极点配置 (22)3.3 控制器仿真设计与调试 (23)3.4 状态观测器仿真设计与调试 (28)第四章倒立摆系统四阶控制器、状态观测器的设计与调试4.1 设计的要求 (26)4.2 极点配置 (26)4.3 控制器仿真设计与调试 (27)4.4 状态观测器仿真设计与调试 (28)心得体会 (31)参考文献 (31)第一章设计的目的、任务及要求1.1 倒立摆系统的基本结构与工作原理图1.1 倒立摆系统硬件框图图1.2 倒立摆系统工作原理框图倒立摆系统通过计算机、I/O卡、伺服系统、倒立摆本体和光电码盘反馈测量元件组成一个闭环系统。

直线一级倒立摆的建模及性能分析

直线一级倒立摆的建模及性能分析

直线一级倒立摆的建模及性能分析1 直线一级倒立摆数学模型的建立 (1)2 直线一级倒立摆系统的实际模型 (5)3 直线一级倒立摆系统的性能分析 (6)相关理论的介绍 (6)倒立摆系统的性能分析 (7)1 直线一级倒立摆数学模型的建立所谓系统的数学模型,是指利用数学结构来反映实际系统内部之间、系统内部与外部某些主要相关因素之间的精确的定量表示。

数学模型是分析、设计、预测以及控制一个系统的理论基础。

因此,对于实际系统的数学模型的建立就显得尤为重要。

系统数学模型的构建可以分为两种:实验建模和机理建模。

实验建模就是通过在研究对象上加上一系列的研究者事先确定的输入信号,激励研究对像并通过传感器检测其可观测的输出,应用数学手段建立起系统的输入-输出关系。

机理建模就是在了解研究对象的运动规律的基础上,通过物理、化学的知识和数学手段建立起系统内部的输入-状态关系。

对于倒立摆系统,由于其本身是不稳定的系统,无法通过测量频率特性的方法获取其数学模型,实验建模存在一定的困难。

但是经过小心的假设忽略掉一些次要的因素后,倒立摆系统是一个典型的机电一体化系统,其机械部分遵守牛顿运动定律,其电子部分遵守电磁学的基本定律,因此可以通过机理建模得到系统较为精确的数学模型。

为了简单起见,在建模时忽略系统中的一些次要的难以建模的因素,例如空气阻力、伺服电机由于安装而产生的静摩擦力、系统连接处的松弛程度、摆杆连接处质量分布不均匀、传动皮带的弹性、传动齿轮的间隙等。

将小车抽象为质点,摆杆抽象为匀质刚体,摆杆绕转轴转动,这样就可以通过力学原理建立较为精确的数学模型。

我们可以应用牛顿力学的分析方法或者欧拉-拉格朗日原理建立系统的动力学模型。

对于直线一级倒立摆这样比较简单的系统,我们采用通俗易懂的牛顿力学分析法建模。

为了建立直线一级倒立摆的数学模型,采用如下的坐标系:图1直线一级倒立摆的物理模型其中,F 为加在小车上的力,M 为小车质量,m 为摆杆质量,I 为摆杆惯量, l 为摆杆转动轴心到杆质心的长度,x 为小车位移,φ为摆杆与垂直向上方向的夹角,b 为小车在滑轨上所受的摩擦力,N 和P 为摆杆相互作用力的水平和垂直方向的分量。

一级倒立摆的建模与控制分析

一级倒立摆的建模与控制分析

一级倒立摆的建模与控制分析直线一级倒立摆建模、分析及控制器的设计一状态空间模型的建立1.1直线一级倒立摆的数学模型图1.1 直线一级倒立摆系统本文中倒立摆系统描述中涉及的符号、物理意义及相关数值如表1.1所示。

图1.2是系统中小车的受力分析图。

其中,N和P为小车与摆杆相互作用力的水平和垂直方向的分量。

图1.2 系统中小车的受力分析图图1.3是系统中摆杆的受力分析图。

F s 是摆杆受到的水平方向的干扰力, F h 是摆杆受到的垂直方向的干扰力,合力是垂直方向夹角为α的干扰力F g 。

图1.3 摆杆受力分析图分析小车水平方向所受的合力,可以得到以下方程:()11-设摆杆受到与垂直方向夹角为α 的干扰力Fg ,可分解为水平方向、垂直方向的干扰力,所产生的力矩可以等效为在摆杆顶端的水平干扰力FS 、垂直干扰力Fh 产生的力矩。

()21-对摆杆水平方向的受力进行分析可以得到下面等式:N x f F x M --=()θsin 22l x dtd m F N S +=- ()31-即:αθθθθsin sin cos 2fF ml ml xm N +-+= ()41-对图1.3摆杆垂直方向上的合力进行分析,可以得到下面方程:()θcos 22l l dtd m F mg P h -=++-()51-即 θθθθαcos sin cos 2 ml ml F mg P g+=++- ()61-力矩平衡方程如下:0cos sin sin cos cos sin =++++θθθθαθα I Nl Pl l F l F g g ()71-代入P 和N ,得到方程:()0cos 2sin sin 2cos sin cos 2cos sin 2222=+-++++θθθθθθθαθαxml ml mgl ml I l F l F g g ()81-设φπθ+=,(φ是摆杆杆与垂直向上方向之间的夹角,单位是弧度),代入上式。

ppt直线一级倒立摆

ppt直线一级倒立摆
倒立摆系统的动力学行为非常复杂, 具有非线性、强耦合和强不稳定的特 性,因此被广泛应用于控制理论、系 统稳定性、机器人学等领域。
倒立摆系统的应用领域
01
02
03
控制理论
倒立摆系统是控制理论中 常用的实验平台,用于研 究控制算法和系统稳定性 问题。
系统稳定性
倒立摆系统可以用来研究 系统的稳定性问题,例如 如何设计控制器使系统保 持稳定。
PPT直线一级倒立摆
目录
• 倒立摆系统简介 • PPT直线一级倒立摆系统模型 • PPT直线一级倒立摆系统的控制
策略 • PPT直线一级倒立摆系统的实验
研究 • PPT直线一级倒立摆系统的应用
前景和发展趋势
01
倒立摆系统简介
倒立摆系统的定义
倒立摆系统是一种具有不稳定平衡状 态的物理系统,其特点是具有一个自 由度的直线运动和一个绕垂直轴的旋 转运动。
建模与仿真
建立倒立摆系统的数学模型,通过仿真验证控制策略的有效性。
硬件实现
将控制算法嵌入到倒立摆系统的硬件中,进行实时控制。
软件实现
通过编写程序实现控制算法,通过上位机与倒立摆系统进行通信 和控制。
04
PPT直线一级倒立摆系统的 实验研究
实验目的和实验设备
实验目的
通过实验研究PPT直线一级倒立摆系 统的动态特性,分析系统的稳定性、 响应速度和抗干扰能力。
PPT直线一级倒立摆系统的原理
当摆杆受到外力作用时,会绕着摆杆的固定点进行摆动。由于上、下质量块之间 的相互作用力,使得摆杆在摆动过程中同时进行倒立摆动。
通过控制电路的控制,驱动机构可以按照指令信号进行摆动,从而实现倒立摆的 稳定控制。
PPT直线一级倒立摆系统的特点

一级倒立摆的可视化建模与稳定控制设计

一级倒立摆的可视化建模与稳定控制设计

1966年
1976年
1995年
倒立摆的应用
倒立摆的分类
直线倒立摆 一级倒立摆
基座运动
环形倒立摆
摆杆
二级倒立摆
平面倒立摆
多级倒立摆
另外根据材料分类:刚体摆杆倒立摆系统和柔性摆杆倒立摆系统 „„
根据不同的分类方法,我们可以将倒立摆进行不同的分类。
倒立摆的特点
特性:非线性、多变量、强耦合、不稳定性
倒立摆系统拥有低投入、简易的结构、直观 的形象、方便仿真等特点。
设计演示界面
保存文件,命名为 fangzhenjieguo.fig ,同时会自动生成一 个fangzhenjieguo.m 文件
将摆角、小车位 移和时间参量, 导入到工作区中 ,供GUI编程使 用。
打开之前保存演示界面是生成的fangzhenjieguo.m文件,找到 “仿真开始”按钮所对应的回调函数,在函数下方加入程序: sim('daolibaimoxing');%运行仿真模型
初始条件设为[0.1rad,0.5rad/s,0,0],仿真曲线如 图所示,上面图线为摆角,下面为小车位移。
右图为未加控制器前的系统 阶跃响应曲线,可以看出, 摆角和小车位移的曲线都是 发散的。通过与仿真结果比 较,可以看出,加了BP神经 网络控制器的倒立摆系统, 摆角和小车位移曲线趋于稳 定,说明所设计的BP神经网 络控制器能够起到有效的控 制作用。验证了控制器设计 的正确性和可行性。
四、GUI设计
图形用户界面(Graphical User Interface, 简称 GUI,又称图形用户接口)是指采用图形 方式显示的计算机操作用户界面。
GUI具有下面几个方面的基本要求:轻型、 占用资源少、高性能、高可靠性、便于移 植、可配置等特点。

一级直线型倒立摆的模糊控制控制

一级直线型倒立摆的模糊控制控制

一级直线型倒立摆的模糊控制一、问题的描述在忽略了空气流动之后, 可将倒立摆系统抽象成小车和匀质杆组成的系统, 如图1所示. 记小车质量为M, 摆杆质量为m, 摆杆转动图1 倒立摆系统中心到杆质心的距离为l, 作用在系统上的外力为F , 重力加速度为g, θ为摆杆偏角, 即摆杆与竖直向上方向的夹角,取顺时针方向为正方向, x 为小车水平方向位移, 取导轨中点为零点, 水平向右为正方向, 水平向左为负方向.图2为隔离体受力图。

摆杆围绕中心A 点转动方程为22d J V l sin H l cos dtθθθ=-。

式中,J 为摆杆围绕重心A 的转动惯量。

摆杆重心A 沿x 轴方向运动方程为2A 2d x m Hdt=,即22dm(x lsin )H dtθ+=。

摆杆重心A 沿y 轴方向运动方程为2A 2d y mV m gdt=-,即22dm(l c o s )V m g dtθ=-。

小车沿x 轴方向运动方程式为22=-d x M F Hdt。

以上方程为车载倒立摆系统运动方程组。

因为还有sin θ和cos θ项,所以为非线性微分方程组。

图2 隔离体受力图中间变量不易相消。

把J 的表达式代入,联合几个方程式得到如下的非线性方程组:'2''2'2''''sin cos *(sin )*(43*cos ()*(sin cos )θθθθθθθθθθ+--=-++-=+g F m l l m m M F m l x M m设,''1234[(),(),(),()][,,,]θθ==X t t x t x t x x x x则有如下非线性状态方程组:'122'1121221'342''21214sin cos *(sin )*(43*cos ()*(sin cos )=+--=-+=+-=+x x g x x F m lx x x l m x m M x x F m l x x x x x M m二,控制系统的matlab 实现 实现的步骤为: 1.划分模糊空间2.用上述的每个离散状态空间点X1, X2,…,Xn 来线性化线性车棒模型,选择合适的LQR 控制参数Q ,R ,N ,设计出线性最优控制器K1, K2,…,Kn 。

直线型一级倒立摆系统的控制器设计

直线型一级倒立摆系统的控制器设计

直线型一级倒立摆系统的控制器设计引言1. 设计目的(1)熟悉直线型一级倒立摆系统(2)掌握极点配置算法(3)掌握MATLAB/simulink动态仿真技术2. 设计要求基于极点配置算法完成对于直线型一级倒立摆系统的控制器设计3. 系统说明倒立摆控制系统是一个复杂的、不稳定的、非线性系统,对倒立摆系统的研究能有效的反映控制中的许多典型问题:如非线性问题、鲁棒性问题、镇定问题、随动问题以及跟踪问题等。

通过对倒立摆的控制,用来检验新的控制方法是否有较强的处理非线性和不稳定性问题的能力。

同时,其控制方法在军工、航天、机器人和一般工业过程领域中都有着广泛的用途,如机器人行走过程中的平衡控制、火箭发射中的垂直度控制和卫星飞行中的姿态控制等。

4. 设计任务(1)建立直线型一级倒立摆系统的状态空间表达式。

(2)对该系统的稳定性、能观性、能控性进行分析。

(3)应用极点配置法对该直线型一级倒立摆系统进行控制器设计。

(4)使用MATLAB/simulink软件验证设计结果目录设计目的........................................................................................... 2-4设计要求:. (4)系统说明:....................................................................................... 4-5设计任务........................................................................................... 5-8运行结果......................................................................................... 8-11收获与体会.. (10)参考文献 (12)1. 设计目的(1)熟悉直线型一级倒立摆系统倒立摆控制系统是一个复杂的、不稳定的、非线性系统,对倒立摆系统的研究能有效的反映控制中的许多典型问题:如非线性问题、鲁棒性问题、镇定问题、随动问题以及跟踪问题等。

单级倒立摆系统建模与控制器设计

单级倒立摆系统建模与控制器设计

得:
状态空间表达式
单级倒立摆系统的模型分析 根据小车质量,摆杆质量,摆杆转动轴心到杆质心的长度和 摆杆质量的具体数值,用Matlab 求出系统的状态空间方程 各矩阵。
程序1.M = 0.5; m = 0.2; I= 0.006; g = 9.8; l = 0.3; A=[0 1 0 0 0 0 3*M*g/(4*M+m) 0 00 0 1 0 0 3*(M+m)*g/((4*M+m)*l) 0]; C=[1 0 0 0 B=[0 0 0 1 0]; 4/(4*M+m) D=[0 0 0]; 3/((4*M+m)*l)];
摆杆不受外力干扰但是摆杆有一个小的初始偏角 程序2
系统开环初值响应曲线
由系统的开环初值响应曲线可知,系统是不稳定 的,这与我们的经验是相符合的。
摆杆初始位置在竖直状态,但是小车收到一个脉 冲干扰的情况。MATLAB程序如下:
系统开环脉冲响应曲线
由系统的开环脉冲干扰响应曲线可知, 系统是不稳定的,这与我们的经验也 是相符合的。
显然,因为系统有一个特征值为正实数5.5841, 故系统是不稳定的。
单级倒立摆系统的极点配置控制器设计
单级倒立摆系统控制器设计的目标 单级倒立摆系统控制器设计的目标是:通过对小 车的左右移动使得摆杆保持在竖直的位置。且对 于小车所给的阶跃输入信号,满足如下设计指标:
1、小车位置x和摆杆角度θ的稳定时间小于5秒; 2、位置x的上升时间小于0.5秒; 3、摆杆角度的超调量小于20度(0.35弧度)。
总结与收获
通过对单级倒立摆的建模与仿真学到了一 下知识
1、首先要将现实中系统转化相应的物理结构 2、充分掌握建立状态空间方程的过程 3、了解配置极点控制器以及PID控制器的方法 4、对MATLAB软件有了一个初步功能的了解

直线一级倒立摆控制方法设计

直线一级倒立摆控制方法设计

直线一级倒立摆控制方法设计倒立摆的数学模型设计倒立摆系统是一个典型的非线性、强耦合、多变量和不稳定系统,作为控制系统的被控对象,许多抽象的控制概念都可以通过倒立摆直观地表现出来。

本设计是以一阶倒立摆为被控对象来进行设计的。

状态空间法:状态空间法可以进行单输入多输出系统设计,因此在这个实验中,我们将尝试同时对摆杆角度和小车位置进行控制。

根据设计要求,给小车加一个阶跃输入信号。

此次用Matlab 求出系统的状态空间方程各矩阵,并仿真系统的开环阶跃响应。

在这里给出一个state.m 文件,执行这个文件,Matlab 将会给出系统状态空间方程的A,B,C 和D 矩阵,并绘出在给定输入为一个0.2m 的阶跃信号时系统的响应曲线。

直线一级倒立摆系统数学建模 在忽略了空气阻力、各种摩擦之后,可将直线一级倒立摆系统抽象成小车和匀质杆组成的系统。

如图所示:系统状态方程为:XAX Bu Y CX Du=+=+假设系统内部各相关参数为:M 小车质量 0.5kg m 摆杆质量 0.2kgb 小车摩擦系数 0.1N/m/sec l 摆杆转动轴心到杆质心的长度 0.3mI 摆杆惯量 0.006kg*m*m T 采样时间 0.005s x 小车位置φ 摆杆与垂直向上方向的夹角θ 摆杆与垂直向下方向的夹角(考虑到摆杆初始位置为竖直向下) 应用牛顿-欧拉方法,可得到系统状态空间方程为:222222201()0()()0()0()()x I ml b m gl x I M m Mml I M m Mml lb mgl M m I M m Mml I M m Mml φφ⎡⎤⎢⎥⎡⎤-+⎢⎥⎢⎥⎢⎥++++⎢⎥=⎢⎢⎥⎢⎢⎥⎢-+⎢⎥⎣⎦⎢++++⎣⎦ 0 0 0 0 0 0m 0 2220()0()x I ml x I M m Mml u ml I M m Mml φφ⎡⎤⎢⎥⎡⎤+⎢⎥⎢⎥⎢⎥++⎢⎥+⎥⎢⎥⎢⎥⎥⎢⎥⎢⎥⎥⎢⎥⎢⎥⎣⎦⎥⎢⎥++⎣⎦1000000100x x x Y u φφφ⎡⎤⎢⎥⎡⎤⎡⎤⎡⎤⎢⎥==+⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎢⎥⎢⎥⎣⎦ 以上就是一阶倒车摆系统的状态空间表达式。

一阶倒立摆控制设计与实现

一阶倒立摆控制设计与实现

一阶倒立摆控制设计与实现一阶倒立摆是一种常见的控制系统模型,它由一个垂直的支柱和一个质量为m 的物体组成,物体通过支柱与地面相连。

在控制系统中,我们需要设计一个控制器来控制物体的位置和速度,使其保持在垂直位置上。

本文将介绍一阶倒立摆控制设计与实现的相关内容。

一、一阶倒立摆模型一阶倒立摆模型可以用以下方程描述:m*d^2y/dt^2 = -mg*sin(y) + u其中,y是物体的位置,u是控制器的输出,m是物体的质量,g是重力加速度,t是时间。

该方程可以通过拉普拉斯变换转换为传递函数:G(s) = Y(s)/U(s) = 1/(ms^2 + mg)二、控制器设计为了控制一阶倒立摆,我们需要设计一个控制器来产生控制信号u。

常见的控制器包括比例控制器、积分控制器和微分控制器,它们可以组合成PID控制器。

在本文中,我们将使用比例控制器来控制一阶倒立摆。

比例控制器的输出与误差成正比,误差越大,输出越大。

比例控制器的传递函数为:Gc(s) = Kp其中,Kp是比例增益。

三、闭环控制系统将控制器和一阶倒立摆模型组合起来,得到闭环控制系统的传递函数:G(s) = Y(s)/R(s) = Kp/(ms^2 + mg + Kp)其中,R(s)是参考信号,表示我们期望物体保持的位置。

四、控制系统实现在实现控制系统之前,我们需要对一阶倒立摆进行建模和仿真。

我们可以使用MATLAB等工具进行建模和仿真。

在MATLAB中,我们可以使用Simulink模块来建立一阶倒立摆模型和控制器模型。

在建立模型之后,我们可以进行仿真,观察系统的响应和稳定性。

在实现控制系统时,我们需要选择合适的硬件平台和控制器。

常见的硬件平台包括Arduino和Raspberry Pi等,常见的控制器包括PID控制器和模糊控制器等。

在实现控制系统之后,我们需要进行调试和优化,以达到最佳控制效果。

五、总结本文介绍了一阶倒立摆控制设计与实现的相关内容,包括一阶倒立摆模型、控制器设计、闭环控制系统和控制系统实现。

一阶倒立摆控制设计与实现

一阶倒立摆控制设计与实现

一阶倒立摆控制设计与实现以一阶倒立摆控制设计与实现为题,本文将介绍倒立摆控制系统的设计原理和实现过程。

倒立摆是一种经典的控制系统问题,它涉及到动力学建模、控制算法设计和实时控制等多个方面。

本文将从这些方面逐步展开,为读者介绍一阶倒立摆控制的基本知识。

1. 动力学建模倒立摆是一个复杂的动力学系统,它由一个可以旋转的杆和一个连接在杆末端的质点组成。

杆的旋转可以由一个电机控制,质点则受到重力和杆的作用力。

为了建立倒立摆的动力学模型,我们需要考虑杆的旋转角度和质点的位置。

2. 控制算法设计一阶倒立摆的控制目标是使杆保持竖直位置,即旋转角度为零,并且使质点保持在某个给定的位置上。

为了实现这个目标,我们可以设计一个控制器来控制杆的旋转角度和质点的位置。

常用的控制算法有PID控制算法、模糊控制算法和神经网络控制算法等。

PID控制算法是一种经典的控制算法,它通过调节比例、积分和微分三个参数来实现控制效果。

模糊控制算法则利用模糊逻辑的思想,将输入和输出之间的关系用模糊集合表示。

神经网络控制算法则利用神经网络的学习能力,通过训练网络来实现控制效果。

3. 实时控制倒立摆的控制需要实时采集传感器数据,并根据这些数据计算控制信号。

在实际应用中,我们可以使用编码器来测量杆的旋转角度,使用加速度计来测量质点的加速度,然后通过控制器来计算电机的控制信号。

为了实现实时控制,我们可以使用嵌入式系统来实现。

嵌入式系统是一种专门设计用于控制和处理实时数据的计算机系统,它通常由微处理器、存储器和输入输出设备组成。

通过将控制算法和传感器接口集成到嵌入式系统中,我们可以实现倒立摆的实时控制。

总结本文介绍了一阶倒立摆控制的基本原理和实现方法。

倒立摆是一个复杂的动力学系统,控制它需要建立动力学模型,并设计合适的控制算法。

通过实时采集传感器数据并计算控制信号,我们可以实现倒立摆的控制。

希望本文对读者理解一阶倒立摆控制有所帮助,同时也希望读者能够进一步探索和研究这个有趣的控制问题。

直线一级倒立摆建模

直线一级倒立摆建模

一、直线一级倒立摆建模根据自控原理实验书上相关资料,直线一级倒立摆在建模时,一般忽略掉系统中的一些次要因素.例如空气阻力、伺服电机的静摩擦力、系统连接处的松弛程度等,之后可将直线一级倒立摆系统抽象成小车和匀质杆组成的系统,如下图所示:倒立摆系统是典型的机电一体化系统,其机械部分遵循牛顿的力学定律,其电气部分遵守电磁学的基本定理.因此,可以通过机理建模方法得到较为准确的系统数学模型,通过实际测量和实验来获取系统模型参数.无论哪种类型的倒立摆系统,都具有3个特性,即:不确定性、耦合性、开环不稳定性. 直线型倒立摆系统,是由沿直线导轨运动的小车以及一端固定于小车上的匀质长杆组成的系统. 小车可以通过传动装置由交流伺服电机驱动. 小车导轨一般有固定的行程,因而小车的运动范围是受到限制的。

虽然倒立摆的形式和结构各异,但所有的倒立摆都具有以下的特性:1) 非线性倒立摆是一个典型的非线性复杂系统,实际中可以通过线性化得到系统的近似模型,线性化处理后再进行控制。

也可以利用非线性控制理论对其进行控制。

倒立摆的非线性控制正成为一个研究的热点。

2) 不确定性主要是模型误差以及机械传动间隙,各种阻力等,实际控制中一般通过减少各种误差来降低不确定性,如通过施加预紧力减少皮带或齿轮的传动误差,利用滚珠轴承减少摩擦阻力等不确定因素。

3) 耦合性倒立摆的各级摆杆之间,以及和运动模块之间都有很强的耦合关系,在倒立摆的控制中一般都在平衡点附近进行解耦计算,忽略一些次要的耦合量。

4) 开环不稳定性倒立摆的平衡状态只有两个,即在垂直向上的状态和垂直向下的状态,其中垂直向上为绝对不稳定的平衡点,垂直向下为稳定的平衡点。

由于机构的限制,如运动模块行程限制,电机力矩限制等。

为了制造方便和降低成本,倒立摆的结构尺寸和电机功率都尽量要求最小,行程限制对倒立摆的摆起影响尤为突出,容易出现小车的撞边现象。

由此,约束限制直线型一级倒立摆系统的实际控制要求可归结为3点:(1)倒立摆小车控制过程的最大位移量不能超过小车轨道的长度;(2)为保证倒立摆能顺利起立,要求初始偏角小于20°;(3)为保证倒立摆保持倒立的平衡态,要求控制系统响应速度足够快。

直线一级倒立摆控制详细报告

直线一级倒立摆控制详细报告

直线一级倒立摆控制一、课程设计目的学习直线一级倒立摆的数学建模方法,运用所学知识设计PID控制器,并应用MATLAB进行仿真。

通过本次课程设计,建立理论知识与实体对象之间的联系,加深和巩固所学的控制理论知识,增加工程实践能力。

二、课程设计要求1. 应用动力学知识建立直线一级倒立摆的数学模型(微分方程形式),并建立系统的开环传递函数模型。

2. 运用经典控制理论知识,按设计要求设计控制器。

3. 应用MATLAB的Simulink建立控制系统的仿真模型,得出仿真结果。

4. 控制要求:※小车的位置x和摆杆角度的稳定时间小于10秒;※阶跃响应摆杆角度的摆幅小于2°;※θ有≤8°扰动时,摆杆的稳定时间小于三秒。

对比仿真结果与控制要求,修正设计值,使之满足设计要求。

三、控制系统建模过程1、控制对象示意图图1.控制对象示意图图中对象参数:M 小车质量 1.32kg l 摆杆转动中心到杆质心的距离0.27mm 摆杆质量0.132kg F 作用在系统上的外力X 小车位移θ 摆杆与竖直方向的夹角,以垂直向上为起始位置,取逆时针方向为正方向。

b 小车摩擦阻尼系数 m/sec 2. 控制系统模拟结构图:图2.系统的模拟结构图其中G1(s )表示关于摆角θ的开环传递函数,D(S)表示PID 控制器的传递函数,G2(s )表示小车位移x 的传递函数。

由于摆角与垂直向上方向夹角为0时为平衡状态,故摆角的理想输出值应为R (S )=0。

3. 建模过程:T图3.小车及摆杆的受力分析图如图3所示,对小车及摆杆进行受力分析,得到以下平衡方程:对小车有: 22..................................(1)dx d xF F b N M dt dt=--=∑小车对摆杆有:2222(cos ) (2)(cos ).............................(3)d F N m x l dt d Fmg P m l l dtθθ==-=-=-∑∑水平竖直转矩:2222sin cos ...................................(4)1 (5)23ll d T I Pl Nl dt mr I dr ml l θθθ-==+==∑⎰为使摆杆直立,需使θ≪1,则有sin ,cos 1θθθ≈≈, 线性化(2)(3)(4)方程得:2222() (6)0.......................................................................(7)..............................d N m x l dtmg P d I Pl Nl dtθθθ=--==+................................(8) 由(1)(5)(6)(7)(8)式联立解得:222222222() (9)4 (10)3d x d dxF M m ml b dt dt dtd d xmgl ml ml dt dtθθθ=+-+=- 对(9)(10)两式进行拉式变换,得:22222()()()()()4()()()3F S M m s X s Mls s bsX s mgl s ml s s mls X s θθθ=+-+=- 传递函数:13222432()3()()(4)43()3()43()()(4)43()3s sG s F s Ml ml s bls M m gs gbX s ls gG s F s Ml ml s bls M m gs gbsθ==++-+--==++-+-将数值带入后得到系统的传递函数:132224323() 1.461240.10842.6888 2.941.0829.4() 1.461240.10842.6888 2.94sG s s s s s G s s s s s =+---=+--四、应用Simulink建立仿真模型进行实验1.控制系统的simulink仿真结构图及仿真结果其中PID控制器的传递函数参数的初步范围可以由劳斯判据确定,具体过程如下:设PID控制器的传递函数为1()P I DD s K K K ss=++,则以θ为输出量的系统特征方程为111()()0P ID K K K s G s s+++= 整理得321.46124(30.108)(342.6888)(3 2.94)0D P I s K s K s K +++-+-=通过劳斯判据可以确定,若使系统稳定,则有0.48708(3 2.94)0.98,0,14.22960.1083I I D P DK K K K K ->>>++通过模拟系统反复实验,根据PID 各个参数的作用进行数值调整,得到使系统满足要求的PID 控制器的传递函数为:1()90092650D s s s=++2. 系统响应曲线在单位阶跃输入下,θ(t )的响应曲线为:从该响应曲线可以看出,此时系统的稳定时间小于10s ,且摆杆的摆幅小于2度,满足控制要求。

直线一级倒立摆的数学建模和根轨迹控制

直线一级倒立摆的数学建模和根轨迹控制

直线一级倒立摆的数学建模和根轨迹控制直线一级倒立摆是一种基于控制理论的研究对象,它可以通过数学建模来进行分析和控制。

数学建模的过程中,需要将倒立摆的动力学方程、控制器以及传感器等元器件进行建模。

根据建模结果可以分析系统的稳定性、响应速度等特征,并为设计控制策略提供参考。

根轨迹控制是一种常用于控制系统设计的方法,它通过分析控制系统的传递函数,绘制根轨迹图来评估控制系统的稳定性和性能。

对于直线一级倒立摆,可以根据其数学模型进行传递函数分析,得出控制系统的传递函数,并绘制根轨迹图。

在根轨迹图上,可以根据根轨迹的位置来判断系统的稳定性和响应速度,从而确定控制策略并调整控制参数,以实现目标控制效果。

因此,直线一级倒立摆的数学建模和根轨迹控制在控制理论研究和工程应用中具有重要意义,可以为控制系统设计提供有效的方法和手段。

直线一级倒立摆系统建模

直线一级倒立摆系统建模

内蒙古科技大学本科生课程设计论文题目:直线一级倒立摆系统建模仿真实验学生姓名:赵永明学号:1067112225专业:测控技术与仪器班级:10-2班指导教师:梁丽2013年12 月 5 日摘要本文主要研究的是一级倒立摆的PID控制问题,并对其PID的参数进行了优化,优化算法是遗传算法。

倒立摆是典型的快速、多变量、非线性、强耦合、自然不稳定系统。

由于在实际中有很多这样的系统,因此对它的研究在理论上和方法论上均有深远的意义。

本文首先简单的介绍了一下倒立摆以及倒立摆的控制方法,并对其参数优化算法做了分类介绍。

然后,介绍了本文选用的优化参数的算法遗传算法的基本理论和操作方法。

接着建立了一级倒立摆的数学模型,并求出其状态空间描述。

本文着重讲述的是利用遗传算法来对PID的参数进行优化的实现方法。

最后,用Simulink 对系统进行了仿真,得出遗传算法在实际控制中是一种较为理想的PID参数优化方法的结论。

关键词:PID控制器;一级倒立摆;仿真目录摘要................................................................................................ 错误!未定义书签。

第一章前言.................................................................................. 错误!未定义书签。

1.1 设计背景.......................................................................... 错误!未定义书签。

1.2 设计意义.......................................................................... 错误!未定义书签。

第二章被控对象的分析与建模. (1)第三章设计理论及仿真过程...................................................... 错误!未定义书签。

直线一级倒立摆控制[garlic]

直线一级倒立摆控制[garlic]

直线一级倒立摆控制
直线一级倒立摆系统输入为小车的加速度,输出为倒立摆系统摆杆的角度,被控对象的传递函数为:2()0.02725()0.01021250.26705
s V s s Φ=- 给系统施加脉冲扰动,输出量为摆杆的角度时,系统框图如下:
图 3-4 直线一级倒立摆闭环系统图(脉动干扰)
1) 绘制直线一级倒立摆开环根轨迹图、Bode 图和奈奎斯特图,并判断稳定性。

2)用根轨迹法设计控制器,使得校正后系统的要求如下:
调整时间t (2%) s = 0.5s ;最大超调量 M p ≤ 10%
绘制校正后系统的根轨迹图,并给出阶跃响应曲线。

3)通过改变控制器的极点和零点,得到不同的控制效果
4)用频域响应法设计超前校正控制器G c (s ) ,使得系统的静态位置误差常数为10,相位裕量为50o ,增益裕量等于或大于10 分贝。

给出阶跃响应曲线。

5)设计PID 控制器,并给出控制效果。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
clear all; clc; num = [1 1]; den = [1 2 1 3]; G = tf(num, den);
b、在SISO界面中使用“File|Import”命令导入被控对象模型,如下图。
SISO设计平台使用简介(实例)
c、使用SISO界面的“Analysis”选项框中的命令即可对被控对象进行响 应曲线分析。添加控制器前对象的闭环单位响应曲线如下图(只需显示 闭环输出曲线,屏蔽误差曲线)。
状态空间极点配置实物控制
双击“LQR Controller”,在界面中输入通过仿真测试的4个闭环极点对 应的反馈增益。进行实物控制,记录并分析控制效果。
参考闭环极点:-10,-10,-2+5j,-2-5j。
倒立摆系统状态空间模型
以小车加速度为输入,摆杆角度、小车位移为输出,选取状 态变量
X x, x, ,



I ml mgl mlx
2
得出系统的状态空间模型(参考):
0 x x 0 X 0 0
1 0 0 0
x 1 0 y 0 0
0 0 x 1 0 0 x 0 1 0 u 3g 3 0 4l 4l x 0 0 0 x u 1 0 0 0
mg

xV

xH

摆杆受力和力矩分析
V
H
正方向
mg

xV

xH

(1) 摆杆水平方向受力 H (2) 摆杆竖直方向受力 (3) 摆杆力矩平衡
V
代入
V、H ,得摆杆运动方程。 0 时, cos 1 、sin
Hl cos Vl sin I
以小车加速度为输入、摆杆角度为输出时,倒立摆系统的传递函数模 型(参考): 0.02725
G s 0.0102125s 2 0.26705
以小车加速度为输入,摆杆角度、小车位移为输出时,倒立摆系统的 状态空间模型模型(参考):
x 0 x 0 X 0 0 1 0 0 0 0 x 0 x 1 0 u 0 1 0 29.4 0 3 x 0 0 0 x u 1 0 0 0 0
双击“Controller1”,输入选取的4个闭环极点对应的增益,运行仿真后双击 “Scope1”观测响应曲线,其中小车位置应该很好的收敛到0.01,小车速度、摆杆角
度和角速度应该收敛到0。若响应曲线效果不好则需重新选取闭环极点。
状态空间极点配置实物控制
选取了合适的4个闭环极点并通过了仿真测试后即可进行倒立摆系统实物控制。 进入 MATLAB Simulink 实时控制工具箱“Googol Education Products”打 开 “Inverted Pendulum\Linear Inverted Pendulum\Linear 1-Stage IP Swing-Up Control”中的“Swing-Up Control Demo,如下图。
SISO设计平台使用简介(实例)
d、使用SISO界面的 PID形式。 添加零、极点,使补偿器C为
KD s2 KP s KI 1 CPID s K P K I K D s s s 通过拖拽SISO界面添加的零极点,同时观察单位阶跃输入时的闭环 响应曲线,寻找合适的P、I、D参数。设合适的补偿器和响应曲线如下图。
状态空间极点配置仿真控制
参考上述实例,选取倒立摆系统的4个闭环极点,进入 MATLAB Simulink 实时 控制工具箱“Googol Education Products”打开“Inverted Pendulum\Linear Inverted Pendulum\Linear 1-Stage IP Experiment\ Poles Placement Experiments”中的“Poles Control Simulink”,如下图。
x 1 0 y 0 0
2、基于SISO设计平台的PID控制器设计与调节
PID整定说明: (1)比例(P作用)增大,系统响应快,对提高稳态精度有益,但过大 易引起过度的振荡,降低相对稳定性。 (2)微分(D作用)对改善动态性能和抑制超调有利,但过强,即校正 装置的零点靠近原点或者使开环的截止频率增大,不仅不能改善动态性 能,反而易引入噪声干扰。 (3)积分(I作用)主要是消除或减弱稳态误差,但会延长调整时间, 参数调整不当会容易振荡。
,线性化运动方程。
倒立摆系统单输入-单输出传递函数模型
线性化后运动方程(参考):
I ml mgl mlx
2
以小车加速度为输入、摆杆角度为输出,令
ax
拉普拉斯变换后系统传递函数模型(参考):
s ml G s A s I ml 2 s 2 mgl
状态空间极点配置控制实例 第一步: rank b Ab 2 ,受控系统状态完全能控。 第二步:受控系统中引入状态反馈向量K。
K k1 , k2
引入状态反馈向量后系统特征多项式为
f K s sI A bK s 20 20 k1 1 k2 s
正确选择这三种作用的方法简单地可归纳成:单靠提高P作用不能满 足动态指标时,可考虑加入D作用。加入D作用后应适当减小P作用,两者 相互配合,在SISO Design Tool上极容易观察到这个调整过程所产生的 效果。一般来讲,应先满足动态性能,在此基础上,如达不到稳态指标, 才考虑加入I作用。
SISO设计平台使用简介
直线一级倒立摆建模与控制
一、实验目的 1. 掌握从机理建立系统模型的方法。 2. 掌握PID控制器设计与调节的方法。 3. 掌握状态空间极点配置控制方法。
二、实验内容
1、直线一级倒立摆建模 针对直线一级倒立摆,在实际的模型建立过程中,可忽 略空气流动阻力和其它次要的摩擦阻力,则倒立摆系统抽象 成小车和匀质刚性杆组成的系统,如图所示。
倒立摆系统PID控制
获得适合的P、I、D参数后参考“倒立摆PID实物控制”pdf文档,进 行倒立摆PID控制,记录并分析控制效果。
3、状态空间极点配置控制(参考教材:《现代控制理论》) 实例 设受控系统状态空间模型:
x Ax bu y cx
其中
x1 x1 20 20 0 x , x , A , b , c 1 0 1 0 1 x2 x2
各参数定义

m, l , I
M :小车Байду номын сангаас量; m :摆杆质量
:小车摩擦系数

F
M

x
:摆杆转动轴心到杆质心的长度 :摆杆惯量 :加在小车上的力; :小车位置; :摆杆与垂直向上方向的夹角 :摆杆与垂直向下方向的夹角
l I F x
小车、摆杆受力矢量定义
H
V
V
正方向
x
Mg
F
x
x x
H
正方向
倒立摆系统参数值
参数值: M = 1.096; m = 0.109; = 0.1; g = 9.8; l = 0.25; I = 0.0034; % % % % % % 小车质量,Kg 摆杆质量,Kg 小车摩擦系数 重力加速度,m/s^2 摆杆转动轴心到杆质心的长度,m 摆杆转动惯量,Kg/m^2
期望特征多项式为
s 2 k2 20 s 20 k1 k2 1
* 由设计者选取,考虑“引入状态反馈向量后系统特 1*、2
* f * s s 1* s 2 =s2 (1* 2* )s 1*2*
征多项式”和“期望特征多项式”的系数相等即可求出状态反 馈向量。
在MATLAB中,提供了单输入单输出系统仿真的图形工具SISO Design Tool,可方便的获得系统的根轨迹图和伯德图,以及添加零极点改善系 统的性能。 在MATLAB命令窗口中输入“SISOTOOL”即可打开设计界面,如下图。
SISO设计平台使用简介(实例)
a、在MATLAB命令窗口中输入被控对象的模型,如:
相关文档
最新文档