1_第一章 金属材料的性能

合集下载

金属材料的力学性能

金属材料的力学性能
2、布氏硬度值 用球面压痕单位面积上所承受有平均压力 表达。 如:120HBS 500HBW 600HBS1/30/20 3、优缺陷
(1)测量值较精确,反复性好,可测组织不均匀材料(铸铁)(2) 可测旳硬度值不高(3)不测试成品与薄件(4)测量费时,效率低
4、测量范围
用于测量调质钢、铸铁、非金属材料及有色金属材料等.
6
第一章 金属旳力学性能
引言:
第二节 硬度
1、定义:指材料局部体积内抵抗弹性、塑性变形、压 痕和划痕旳能力。它是衡量材料软硬程度旳指标,其物 理含义与试验措施有关。
2、硬度旳测试措施 (1)布氏硬度 (2)洛氏硬度 (3)维氏硬度
7
§1-2 硬度
一、布氏硬度
1、布氏硬度试验(布氏硬度计)
原理:用一定直径旳球体(淬火钢球或硬质合金球)以相应旳试验力 压入待测材料表面,保持要求时间并到达稳定状态后卸除试验力,测量 材料表面压痕直径,以计算硬度旳一种压痕硬度试验措施。
布氏硬度计
返回
16
洛氏硬度计
返回
17
维氏硬度计
返回
18
布洛维氏硬度计
19
8
§1-2 硬度
二、洛氏硬度
1、洛氏硬度试验(洛氏硬度计)
原理: 用金刚石圆锥或淬火钢球,在试验力旳作用下压入试样表面, 经要求时间后卸除试验力,用测量旳残余压痕深度增量来计算硬度旳一
种压痕硬度试验。
2、洛氏硬度值 出。如:50HRC 3、优缺陷
用测量旳残余压痕深度表达。可从表盘上直接读
(1)试验简朴、以便、迅速(2)压痕小,可测成品、薄件(3)数据 不够精确,应测三点取平均值(4)不能测组织不均匀材料,如铸铁。
4、测量范围

第1章金属材料的性能与结构

第1章金属材料的性能与结构

1.晶体结构的基本知识
由于晶体原子排列呈周期性,因此, 可以从晶格中选取一个能够完全反应晶 格中原子排列特征的最小的几何单元, 来分析晶体中原子排列的规律性,这个 最小的几何单元称为晶胞 。
1.晶体结构的基本知识
晶格
晶胞
1.晶体结构的基本知识
Z c
α
β a
X a γ
b
Y
图1-9 晶胞的晶格常数和轴间夹角的表示法
()
MPa
b
s
e
b
s
e
应变(%)
图1-2 单轴拉伸曲线示意图
2、金属的力学性能的指标一般有哪些? 怎样获得这些指标? 塑性是指金属材料在外力作用下,发生 永久变形而不破坏的能力。在工程中常用 塑性指标来判断金属材料的可成形性,常 用伸长率和断面收缩率来表征。 伸长率指试样在拉伸过程中,拉断标距长 度的延长值(见图1-1)与原始标距长度的 比值,即:
1.2.1 金属
在固态金属中,吸引力与排斥力的大 小以及它们的结合能量都随原子间距离 的变化而发生改变。这样就存在一个原 子间距,此时原子间相互排斥力与吸引 力相等,原子处于稳定平衡状态,该原 子间距即为平衡距离,这时原子之间的 结合能为最低,系统此时最稳定。
1.2.2 金属的晶体结构
1.晶体结构的基本知识 2. 常见金属的晶体结构 3. 晶面指数和晶向指数
第1章 金属材料的性能与结构
§1.1 金属材料的性能 §1.2金属的晶体结构
§1.3合金的相结构
1.1 金属材料的性能
金属材料是金属元素或以金属元素为 主构成的具有金属特性的材料的统称。 金属材料一般分为:黑色金属和有色 金属,黑色金属有钢、铸铁、铬、锰; 其他的金属,如铝、镁、铜、锌等及其 合金都为有色金属。 金属材料的性能包括:力学性能、物 理化学性能、工艺性能、经济性能等。

第一章 金属材料的力学性能

第一章  金属材料的力学性能


A、C标尺为100
B标尺为130
机 械 制



§1.2 硬度
第一章 金属材料的力学性能
二、洛氏硬度
标注——用符号HR表示, A标尺HRA B标尺HRB C标尺HRC
如: 42 HRA


硬度值 A标尺




§1.2 硬度
第一章 金属材料的力学性能
三、维氏硬度 测定原理——基本上和布氏硬度相同,只是所用 压头为金刚石正四棱锥体
冲击韧度高

•冲击能量高时, --材料的冲击韧度主要取决于材料的塑性,塑性高则
韧度高
械 制



第一章 金属材料的力学性能
第一章 金属材料的力学性能
§1.1 强度和塑性
§1.2 硬度
§1.3 冲击韧度
§1.4 疲劳强度
本章小结






§1.4 疲劳强度
第一章 金属材料的力学性能
疲劳强度
Sl110000%%Sl10lS0 110100%0%
Sl 二者的值越大塑性越好 00
lS0 0
机 械 制
原始原横始截标面距积
试样拉试断样后断的裂标处距截面积
造 基

第一章 金属材料的力学性能
第一章 金属材料的力学性能
§1.1 强度和塑性
§1.2 硬度
§1.3 冲击韧度
§1.4 疲劳强度
本章小结
第一章 金属材料的力学性能
由主金要属内材容料:制成的零、部件,在工作过
程中金都属要材承料受的外力力学性(或能称指载标荷和) 测作试用方而法产,

金属材料的主要性能

金属材料的主要性能
定义: HR=k-(h1-h0)/0.002 常用标尺有:B、C、A三种
① HRA 硬、薄试件,如硬质合金、表面淬火层和渗碳层。 ② HRB 轻金属,未淬火钢,如有色金属和退火、正火钢等 ③ HRC 较硬,淬硬钢制品;如调质钢、淬火钢等。 洛氏硬度的优点:操作简便,压痕小,适用范围广。
②弹性:材料不产生塑性变形的情况下,所能承受的最 大应力。
弹性极限:σe=Fe/So 不产永久变形的最大抗力。
2)屈服强度s:材料发生微量塑性变形时的应力值。即 在拉伸试验过程中,载荷不增加,
试样仍能继续伸长时的应力。
s = Fs/So
s
条件屈服强度0.2:高碳钢等无屈服点, 国家标准规定以残余变形量为0.2%时的 应力值作为它的条件屈服强度,以0.2 来表示。
影响因素:循环应力特征、温度、材料成分和组织、夹 杂物、表面状态、残余应力等。
二、塑性 金属材料受力破坏前可承受最大塑性变形的能力。
1.延伸率
延伸率与试样尺寸有关:δ5、δ10 (L0=5d,10d)
2.断面收缩率 ψ=△S/So=(So-Sk)/So x 100%
> 时,无颈缩,为脆性材料表征; < 时,有颈缩,为塑性材料表征。
0.2
3)抗拉强度b:材料断裂前所承受的最大 应力值。(材料抵抗外力而不致断裂的极 限应力值)。
b = Fb/So
(5)灰铸铁拉伸时的力学性能 灰口铸铁是典型的脆性材料,其σ-曲线是一段微弯曲 线,如图a)所示,没有明显的直线部分,没有屈服和颈 缩现象,拉断前的应变很小,延伸率也很小。强度极限 σb是其唯一的强度指标。 铸铁等脆性材料的抗拉强度 很低,所以不宜作为受拉零 件的材料。
无论是塑性材料还是脆性材料,断裂时都不产生明显的 塑性变形,而是突然发生,具有很大的危险性,有相当多 零件的破坏属于疲劳破坏,对此必须引起足够的重视。

金属材料的力学性能

金属材料的力学性能

第一章金属材料的力学性能机械制造中使用的材料品种很多,为了正确使用材料,并把它加工成合格的工件,必须掌握材料的使用性能和工艺性能。

使用性能,是指为保证工件正常工作材料应具备的性能,包括力学性能、物理和化学性能等。

工艺性能,是指材料在加工过程中所表现出来的性能,包括铸造性能、锻压性能、焊接性能和切削加工性等。

所谓力学性能,是指材料在外力作用下所表现出来的性能,主要有强度、塑性、硬度、冲击韧性、疲劳强度等,是设计机械零件时选材的重要依据。

这些性能指标是通过试验测定的。

第一节刚度、强度、塑性刚度、强度和塑性是根据试验测定出来的。

将材料制成标准试样(图1-1a),然后把试样装在试验机上施加静拉力,随着拉力的增加试样逐渐变形,直到拉断为止(图1-1b)。

将试样从开始到拉断所受的力F 及所对应的伸长量ΔL绘制在F—ΔL坐标上,得出力一伸长曲线。

低碳钢的力一伸长曲线如图1—2所示。

从图1—2可知,在OE 阶段,试样的伸长量随拉力成比例增加,若去除拉力后试样恢复原状,这种变形称为弹性变形。

超过E 点后,若去除拉力试样不能完全恢复原状,尚有一部分伸长量保留下来,这部分保留下来的变形称为塑性变形。

当拉力增加到F s 时,力一伸长曲线在S 点呈现水平台阶,即表示外力不再增加而试样继续伸长,这种现象称为屈服,该水平台阶称为屈服台阶。

屈服以后,试样又随拉力增加而逐渐均匀伸长。

达到B 点,试样的某一局部开始变细,出现缩颈现象。

由于在缩颈部分试样横截面积迅速减小,因此使试样继续伸长所需的拉力也就相应减小。

当达到K 点时,试样在缩颈处断裂。

低碳钢在拉伸过程中经历了弹性变形、弹一塑性变形和断裂三个阶段。

F —ΔL 曲线与试样尺寸有关。

为了消除试样尺寸的影响,把拉力F 除以试样原始横截面积A0,得出试样横截面积上的应力,同时把伸长量ΔL 除以试样原始标距L 0,得到试样的应变LL ε∆=0F A σ=σ—ε曲线与F —ΔL 曲线形状一样,只是坐标不同。

金属工艺学第一章金属材料性能ppt课件.ppt

金属工艺学第一章金属材料性能ppt课件.ppt

拉伸试验
强度:材料在外力作用下抵抗永久变形和 断裂的能力。
塑性:材料在外力作用下产生永久变形而 不破坏的能力。
硬度
硬度:金属材料抵抗其他更硬物体压入表面的 能力,衡量材料的软硬程度。
硬度试验方法很多,机械工业普遍采用 压入法来测定硬度,压入法又分为布氏硬度、 洛氏硬度、维氏硬度等。
布氏硬度是用单位压痕面积的力作 为布氏硬度值的计量,符号HBS、HBW
洛氏硬度是用压痕深度作为洛氏 硬度值的计量即,符号HR
维氏硬度也是以单位压痕面积的力作为 硬度值计量。试验力较小,压头是锥面夹角 为136°的金刚石正四棱锥体,维氏硬度用符 号HV表示。
冲击韧性和疲劳强度
冲击韧性:冲击载荷下材料抵抗变形和断 裂的能力。
疲劳强度:金属材料在无数次重复或交变 载荷作用下而不致引起断裂的 最大应力。
使用性能:金属材料在使用过程中所表现出来 的性能。
(物理性能、化学性能、力学性能) 工艺性能:金属材料在各种加工过程中所表现
出来的性能。 (铸造性能、锻造性能、焊接性能、切削性能)
1. 金属材料的力学性能
力学性能:指金属材料在外力(载荷)作用下 所表现出的抵抗变形和破坏的能力。
强度、塑性、硬度、冲击韧度和疲劳强度等。 外力形式:拉伸、压缩、弯曲、剪切、扭转等。 载荷形式:静载荷、冲击载荷、交变载荷等。
2.金属材料物理性能和化学性能
物理性能:密度、熔点、导热性、导电 性金属材料的工艺性能(略)
工艺性能:铸造性能、锻造性能、 焊接性能、切削加工性能

工程材料 第1章-金属材料的力学性能解读

工程材料 第1章-金属材料的力学性能解读

F0 F1 100% 断面收缩率: F0
拉 伸 试 样 的 颈 缩 现 象
断裂后
第二节 硬度
材料抵抗其他更硬物质压入其表 面的能力,是表面局部变形的能力。 1、布氏硬度HB
HB 0.102 2P
D( D D 2 d 2 )
布 氏 硬 度 计
压头为钢球时,布氏硬度用符号 HBS表示,适用于布 氏硬度值在450以下的材料。 压头为硬质合金球时,用符号HBW表示,适用于布氏 硬度在650以下的材料。
体心立方金属具有韧脆转
变温度,而大多数面心立 方金属没有。
韧脆转变温度。
建造中的Titanic 号
TITANIC
TITANIC的沉没
与船体材料的质量
直接有关
Titanic 号钢板(左图)和近代船用钢板 (右图)的冲击试验结果
Titanic
近代船用钢板
第四节 疲劳强度
疲劳:材料在低于s的重复交变应力作用下发生断裂 的现象。
式中,σ—应力,单位MPa ;
F—外力,单位N; S—横截面积,单位mm2。
材料在外力的作用下将发生形状和尺寸变化,称为 变形。 外力去除后能够恢复的变形称为弹性变形。 外力去除后不能恢复的变形称为塑性变形。
五万吨水压机
第一节 强度和塑性
强度:材料在外力作用下抵
抗变形和破坏的能力。 屈服强度s:材料发生微 量塑性变形时的应力值。 单位是Mpa。
显微维氏硬度计 小 负 荷 维 氏 硬 度 计
第三节 冲击韧性
是指材料抵抗冲击载荷作 用而不破坏的能力。

指标为冲击
韧性值Ak(通
过冲击实验
测得)。
韧脆转变温度
材料的冲击韧性随温度 下降而下降。在某一温 度范围内冲击韧性值急 剧下降的现象称韧脆转 变。发生韧脆转变的温

第一章 金属材料的力学性能

第一章 金属材料的力学性能

Fb σb= S0
四、塑性的衡量(塑性指标):伸长率 δ和断面收缩率 Ψ 塑性的衡量(塑性指标):伸长率 和断面收缩率 ):
1)伸长率( δ ) )伸长率( 伸长率是指试样拉断 后标距增长量与原始 标距的百分比,即: 标距的百分比,
lk-l0 δ=
×100%
l0
lk——试样拉断后的标距 试样拉断后的标距,mm; 试样拉断后的标距 l0——试样的原始标距 。 试样的原始标距,mm。 试样的原始标距
第一章 金属材料及热处理基础知识
应用于各种工程领域中的材料,如在机械工业中,建筑及桥 应用于各种工程领域中的材料,如在机械工业中,建筑及桥 于各种工程领域中的材料 等等, 统称为工程材料。 梁中,等等,——统称为工程材料。 统称为工程材料 其中用来制造各种机电产品的材料 用来制造各种机电产品的材料, 称为机械工程材料 其中用来制造各种机电产品的材料,——称为机械工程材料 称为机械工程材料. 主要包括: 主要包括: 1)金属材料:钢,铸铁,铜及铜合金,等等。 铸铁,铜及铜合金,等等。 )金属材料: 2)非金属材料:塑料,橡胶,工业陶瓷,等等。 )非金属材料:塑料,橡胶,工业陶瓷,等等。 3)复合材料:由两种或两种以上性质不同的材料复合而成的 )复合材料: 多相材料。 多相材料。 金属材料是制造机器的最主要材料。 金属材料是制造机器的最主要材料。 是制造机器的最主要材料 1、金属材料按含金属元素数量的多少分为: 、金属材料按含金属元素数量的多少分为: 1)纯金属 一种金属 一种金属). )纯金属(一种金属 2)合金(以一种金属为基 其他金属或非金属) 其他金属或非金属) )合金(以一种金属为基+其他金属或非金属
刚度、强度、 第一节 刚度、强度、塑性
刚度、强度、弹性和塑性是根据拉伸试验测定出 塑性是根据拉伸试验 刚度、强度、弹性和塑性是根据拉伸试验测定出 来的。 来的。 一、拉伸试验与拉伸曲线 1、拉伸试样 试验前在试棒上打出标距 试验前在试棒上打出标距 按国标规定标准拉伸试样可分为: 按国标规定标准拉伸试样可分为: 板形试样: 1) 板形试样:原材料为板材或带材 圆形试样:长试样L 短试样L 2) 圆形试样:长试样L0=10d0,短试样L0=5d0 其中: 为试样标距, 其中:L0为试样标距,d0为试样直径

金属材料基础知识

金属材料基础知识

金属的冷热弯曲性能也取决于材料的塑性和强度。材料承受 弯曲而不出现裂纹的能力,称为弯曲性能。一般用弯曲角度 或弯心直径与材料厚度的比值来衡量弯曲性能。
电厂锅炉管道弯头和输粉管道弯头是经过冷热弯曲成型的。
(三)焊接性能
• 金属材料采用一定的焊接工艺、焊接材料及结构形式,优质焊 接接头的能力,称为金属的焊接性。
适用范围
HRC
120°金刚石圆 锥
150
HRB Φ1.588mm钢球
100
HRA
120°金刚石圆 锥
60
一般淬火钢等硬度较大材料
退火钢和有色金属等软材料
硬而薄的硬质合金或表面淬 火钢
3.维氏硬度(HV) 维氏硬度是用一定的载荷将锥面夹角为136°的正四棱锥金刚石压头压入试 样表面,保持一定时间后卸除载荷,试样表面就留下压痕,测量压痕对角线 的长度,计算压痕表面积,载荷F除以压痕面积S所得值即为维氏硬度。维氏 硬度用符号HV表示,计算公式如下:
1.拉伸试样
2.拉伸曲线
• 拉伸曲线表示试样拉伸过程中力和变形关系,可用应力-延伸率曲线表 示,纵坐标为应力R,R=F/S0,横坐标为延伸率ε,ε=ΔL/L0。
拉伸曲线的形状与材料有关, 由图可见,在载荷小的oa阶 段,试样在载荷F的作用下 均匀伸长,伸长量与载荷的 增加成正比。如果此时卸除 载荷,试样立即回复原状, 即试样产生的变形为弹性变 形。当载荷超过b点以后, 试样会进一步产生变形,此 时若卸除载荷,试样的弹性 变形消失,而另一部分变形 则保留下来,这种不能恢复 的变形称为塑性变形。
(四)切削性能 金属材料承受切削加工的难易程度,称为切削性能。
金属的切削性能与材料及切削条件有关,如纯铁很பைடு நூலகம்易切削,但难以获得较高的光洁度; 不锈钢可在普通车床上加工,但在自动车床上,却难以断屑,属于难加工材料。通常,材 料硬度低时切削性能较好,但是对于碳钢来说,硬度如果太低时,容易出现“粘刀”现象, 光洁度也较差。一般情况下金属承受切削加工时的硬度在HB170一230之间为宜。

金属材料的性能

金属材料的性能
疲劳曲线上没有水平直线部分。如图曲线2所示
这种情况要根据零件的工作条件及使用寿命确定 一个疲劳极限的循环周次,并以此所对应的应力σN
作为疲劳极限,亦称条件疲劳极限。
一般规定:铸铁取N=107,非铁金属取N=108
金属的疲劳曲线
金属材料的性能
二、塑性
金属材料的性能
三、硬度
金属材料的性能
概念:硬度是指材料抵抗局部变形,特别是塑性变形、压痕或 划痕的能力,是衡量金属软硬的判据。
对于无明显屈服现象的金属材料可用规定残余伸长应力表示,
条件屈服强度
金属材料的性能
工业上使用的某些金属材料,如高碳钢、铸铁等,在拉伸过程中,没有明显
的屈服现象,无法确定其屈服点σs ,为此人为的专门规定,把当试样 产生的残余塑性变形量为标距长度的0.2%时所对应的应力值(σ0.2)定 为该材料的屈服强度(条件屈服强度)
度、抗弯强度、抗剪强度和抗扭强度等。
根据工作温度分为:低温强度、常温强度、高温强度;
根据力的性质分为:静力强度、疲劳强度;
(三)强度指标
(1)弹性极限σe
定义:表示材料保持弹性变形,不产生永久变形的最大应力,是弹性零件的设 计依据。
计算公式: σe=Fe/Ao Fe—— 材料产生弹性变形所承受的最大拉伸力,N; Ao——试样原始横截面积, m㎡ ;
劳和冲击等,通过这些实验可以测出相应的机械性能指标,最常见的是拉伸 实验、硬度实验和冲击实验。
金属材料的性能
• 载荷的概念及分类:
定义:金属材料在加工及使用过程中所受的外力称变或变化过程缓慢的载荷 。 • ②冲击载荷:在短时间内以较高速度作用于零件上的载荷。 • ③交变载荷 :是指大小、方向或大小和方向随时间发生周期性变

1.1材料的力学性能

1.1材料的力学性能

洛氏硬度测试示意图
洛 氏 硬 度 计
h1-h0
(2)符号及标注 符号:HR 常用三种标度符号:HRA HRB 标注方法: 数值+符号 如:52 HRC 70 HRA (3)应用

HRC
压痕小,在批量成品或半成品质量检验中广 泛应用,并可测量较薄的工件或较薄的硬化层。

HRA用于测量高硬度材料, 如
三、硬度 含义:是指材料在外力作用下抵抗局部变形, 特别是塑性变形、压痕或 划痕的能力,通俗 说材料抵抗外力压入其表面的能力。硬度是 衡量材料软硬程度的判据。 硬度判据:布氏硬度HB 洛氏硬度HR 维氏硬度HV
测量方法:硬度实验法

1、布氏硬度HB
(1)测量方法:用直径D钢球或硬质合金球, 一定载荷p ,保持一定时间卸除,由读数显微 镜测得压痕直径d,计算得到。(单位Mpa) 注:实际应用中,不需计算,根据d查布氏硬度 表即可。
2、塑性
含义:材料受力破坏前可承受最大塑性变形的能力。 指标(两个): 伸长率: 断面收缩率:
l1 l 0 100% l0
F0 F1 100% F0
断裂后
拉 伸 试 样 的 颈 缩 现 象

说明:
① 用表示塑性比伸长率更接近真实变形。 ② 与试样尺寸 有关,d0 相同时,l0,,故5> 10。只 有l0/d0 为常数时, 才有可比性。 ③ > 时,无颈缩,为脆性材料表征

Titanic 号钢板(左图)和近代船用钢板(右图) 的冲击试验结果
Titanic
近代船用钢板
五、疲劳强度
何为疲劳?材料在低于s的循环交变应力作 用下发生断裂的现象。(举例) 疲劳强度的含义:材料抵抗疲劳破坏的能力。 指标: 疲劳极限:材料在规定次数应力循环后仍不 发生断裂时的最大应力称为疲劳极限。用N 表示(对称循环交变应力-1 。) 钢铁材料规定次数为107,有色金属合金为 108。

金属材料的力学性能

金属材料的力学性能

• •
ae =1/2×ζ e× ε e 弹簧是典型的弹性零件,要求有较大 的弹性比功。弹簧在实际工作中起缓冲和 存储能量作用。 • 实际设计时通过提高弹性极限ζ e ,提 高弹簧的弹性比功。
• 三、强度 • 强度是金属材料在外力的作用下,抵
抗变形和断裂的能力。根据零件的工作状 态不同分为:抗拉强度、抗压强度、抗弯强 度和抗剪强度等。 • 1、屈服强度和条件屈服强度 • 拉伸试样产生屈服现象(塑变)时的 应力。 ζ s=Fs/A0 • 对于许多没有明显屈服现象的金属材 料,工程中常以产生0.2%塑性变形时的应 力,作为该材料的条件屈服强度,用ζ 表示。
• §1—4 断裂韧度 • 机械零件的传统设计一般为强度设计、
刚度校核。强度设计标准为屈服强度。 • 零件在许用应力的条件下工作,不会发 生塑性变形和断裂。 • 实际工作情况往往不同。某些零件在远 远低于屈服强度条件下工作时会发生脆性 断裂,这种情况非常危险,称为低应力脆 断。 • 研究表明低应力脆断是由宏观裂纹扩展 引起的。
• 一、裂纹扩展的基本形式 • 裂纹扩展一般分为张开型、滑开型、撕
开性三种。其中以张开型最为危险。 • 二、应力场强度因子KI • 零件表面是凹凸不平的,在凸点和凹点 最容易引起应力集中,形成应力场。裂纹 的扩展与应力场有直接的关系。衡量应力 场的大小用应力场强度因子KI。
• 三、断裂韧度KIC及其应用 • KI随着和a的增大而增大。达到一定值
• §1—1 强度、刚度、弹性及塑性 • 金属材料的强度、刚度、弹性及塑性用
拉伸试验来测量。 • 一、拉伸曲线与 应力-应变曲线 • 1、拉伸曲线 • 拉伸过程分为 弹性变形、塑性变形和 断裂三个阶段。
• 几点说明:(书中图1-2) • 试件总伸长of,其中gf为弹性变形,og

金属材料的力学性能

金属材料的力学性能

金属材料的力学性能(总6页) -CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除复习旧课1、材料的发展历史2、工程材料的分类讲授新课第一章金属材料的力学性能材料的性能有使用性能和工艺性能两类使用性能是保证工件的正常工作应具备的性能,主要包括力学性能、物理性能、化学性能等。

工艺性能是材料在被加工过程中适应各种冷热加工的性能,包括铸造性能、锻压性能、焊接性能、热处理性能、切削加工性能等。

力学性能是指金属在外力作用下所显示的性能能。

金属力学性能指标有:强度、刚度、塑性、硬度、韧性和疲劳强度等。

第一节刚度、强度与塑性一、拉伸试验及力—伸长曲线L 0——原始标距长度;L1——拉断后试样标距长度d 0——原始直径。

d1——拉断后试样断口直径国际上常用的是L0=5 d0(短试样),L0=10 d0(长试样)[拉伸曲线]:拉伸试验中记录的拉伸力F与伸长量ΔL(某一拉伸力时试样的长度与原始长度的差ΔL=Lu-L0)的F—ΔL曲线称为拉伸曲线图。

Oe段:为纯弹性变形阶段,卸去载荷时,试样能恢复原状Es段:屈服阶段Sb段:强化阶段,试样产生均匀的塑性变形,并出现了强化Bk段:局部塑性变形阶段二、刚度刚度:金属材料抵抗弹变的能力指标:弹性模量 E E= σ / ε (Gpa )弹性范围内. 应力与应变的比值(或线形关系,正比)E↑刚度↑一定应力作用下弹性变形↓三、强度指标σ= F/S o强度:强度是指材料抵抗塑性变形和断裂的能力。

强度表示:强度一般用拉伸曲线上所对应某点的应力来表示。

单位采用N/mm2(或MPa 兆帕)σ= F/Aoσ——应力(MPa);F——拉力(N);S o——截面积(mm2)。

常用的强度判据主要有屈服点、条件屈服强度(也称为规定残余伸长应力)和抗拉强度等。

1、屈服点与条件屈服强度[屈服强度]σs 产生屈服时的应力(屈服点),亦表示材料发生明显塑性变形时的最低应力值。

工程材料习题册打印答案

工程材料习题册打印答案

第一章 金属的性能一、填空将正确答案填在横线上;下同1、金属材料的性能一般分为两类;一类是使用性能,它包括物理性能、化学性能和力学性能等;另一类是工艺性能,它包括铸造性能、锻造性能、焊接性能和切削加工性能等;2、大小不变或变化很慢的载荷称为静载荷,在短时间内以较高速度作用于零件上的载荷称为冲击载荷,大小和方向随时间发生周期变化的载荷称为交变载荷;3、变形一般分为弹性变形和塑性变形两种;不能随载荷的去除而消失的变形称为塑性变形;4、强度是指金属材料在静载荷作用下,抵抗塑性变形或断裂的能力;5、强度的常用衡量指标有抗拉强度和屈服强度,分别用符号σb 和σs 表示;6、如果零件工作时所受的应力低于材料的σb 或σ,则不会产生过量的塑性变形;7、有一钢试样其截面积为100mm 2,已知钢试样的MPa S 314=σ MPa b 530=σ ;拉伸试验时,当受到拉力为—————— 试样出现屈服现象,当受到拉力为—————— 时,试样出现缩颈;8、断裂前金属材料产生永久变形的能力称为塑性;金属材料的延伸率和断面收缩率的数值越大,表示材料的塑性越好;9、一拉伸试样的原标距长度为50mm,直径为10mm 拉断后试样的标距长度为79mm,缩颈处的最小直径为 mm,此材料的伸长率为—————,断面收缩率为——————;10.金属材料抵抗冲击载荷作用而不破坏能力;称为冲击韧性;11.填出下列力学性能指标的符号:屈服点σs,抗拉强度σb ,洛氏硬度C 标尺HRC,伸长率δ,断面收缩率ψ,冲击韧度αk,疲劳极限σ-1;二、判断正确打√,错误打×;下同1、弹性变形能随载荷的去除而消失;√2、所有金属材料在拉伸试验时都会出现显着的屈服现象;×3、材料的屈服点越低,则允许的工作应力越高;×4、洛氏硬度值无单位;√5、做布氏硬度试验时,当试验条件相同时,其压痕直径越小,材料的硬度越低;×6、材料对小能量多次冲击抗力的大小主要取决于材料的强度和塑性; ×7、布氏硬度测量法不宜于测量成品及较薄零件; √8、洛氏硬度值是根据压头压入被测定材料的压痕深度得出的;√9、铸铁的铸造性能比钢好,故常用来铸造形状复杂的工件;√三.选择把正确答案填入括号内;下同1、拉伸试验时,试样拉断前所能承受的最大应力称为材料的B ;A.屈服点B.抗拉强度C.弹性极限2、做疲劳试验时,试样承受的载荷为CA.静载荷B.冲击载荷 C 交变载荷3、洛氏硬度C 标尺所用的压头是 BA..淬硬钢球B.金刚石圆锥体C.硬质合金球4.金属材料抵抗塑性变形或断裂的能力称为CA..塑性B.硬度C.强度5.用拉伸试验可测定材料的A 性能指标;A..强度B.硬度C.韧性四.名词解释1.弹性变形与塑性变形2.疲劳极限与抗拉强度五.简述1.画出低碳钢力—伸长曲线,并简述拉伸变形的几个阶段;2.什么是塑性塑性对材料的使用有什么实用意义第二章金属的结构与结晶一、填空1.原子呈无序堆积状况的物体叫非晶体;原子呈有序有规则排列的物体称为晶体;一般固态金属都属于晶体;2.在晶体中由一系列原子组成的平面,称为晶面;通过两个或两个以上原子中心的直线,可代表晶格空间排列的一定晶向的直线,称为晶向;3.常见的金属晶格类型有体心立方、面心立方和密排六方三种;铬属于体心立方晶格,铜属于面心立方晶格,锌属于密排六方晶格;4.金属晶体结构的缺陷主要有点缺陷、线缺陷、面缺陷;晶体缺陷的存在都会造成晶格畸变,使塑性变形抗力增大,从而使金属的强度提高;提高;7.理论结晶温度与实际结晶温度之差称为过冷度;过冷度的大小与冷却速度有关,冷却速度越快,金属的实际结晶温度越低,过冷度也就越大;8.金属的结晶过程是由晶核的形成和长大两个基本过程组成的;9.金属在固态下,随温度的改变,由一种晶格转变为另一种晶格的现象称为同素异构转变;二、判断正确打√,错误打×;下同2.非晶体具有各向同性的特点;√3.体心立方晶格的原子位于立方体的八个顶角及立方体六个平面的中心;×4.金属的实际结晶温度均低于理论结晶温度;√5.金属结晶时过冷度越大;结晶后晶粒越粗; ×6.一般说,晶粒越细小,金属材料的力学性能越好;√8.单晶体具有各向异性的特点; √9.在任何情况下,铁及其合金都是体心立方晶格;×10.同素异构转变过程也遵循晶核形成与晶核长大的规律;√11.金属发生同素异构转变时要放出热量,转变是在恒温下进行的;√三、选择1.α—Fe是具有 A晶格的铁;A.体心立方 B. 面心立方 C.密排六方2.纯铁在1450℃时为 A晶格,在1000℃时为B 晶格,在600℃时为A 晶格;A.体心立方 B.面心立方 C.密排六方3.纯铁在700℃时称为A ,在1000℃时称为B ,在1500℃时称为 C;A.α—Fe B.γ—Fe C.δ—Fe五.简述3.如果其他条件相同,试比较下列铸造条件下铸铁晶粒的大小;1金属模浇注与砂型浇注金属模浇注晶粒小2铸成薄件与铸成厚件铸成薄件晶粒小3浇注时采用振动与不采用振动浇注时采用振动晶粒小4.写出纯铁的同素异构转变式;第三章金属的塑性变形与再结晶一、填空1.金属材料经压力加工变形后,不仅改变了外形尺寸,而且改变了内部组织和性能;2.弹性变形的本质是外力克服原子间的作用力,使原子间距发生发生改变;3.多晶体内晶界对塑性变形有较大的阻碍作用,这是因为晶界处原子排列比较紊乱,阻碍了为错的移动,所以晶界越多,多晶体的变形抗力越大;4.实践证明,再结晶温度与金属变形的程度有关,金属的变形程度越大,再结晶温度越 ;5.从金属学观点来说,凡在再结晶温度以下进行的加工称为冷加工在再结晶温度以上进行的加工称为热加工;二、判断正确打√,错误打×;下同1.一般来说,晶体内滑移面和滑移方向越多,则金属的塑性越好;√2.实际上滑移是借助于位错的移动来实现的,故晶界处滑移阻力最小;×3.塑性变形只改变金属的力学性能; ×4.回复时,金属的显微组织没有明显变化; √5.金属铸件可以用再结晶退火来细化晶粒;×6.为保持冷变形金属的强度和硬度,应采用再结晶退火; ×7.在高温状态下进行的变形加工称加工×8.热加工过程实际上是加工硬化和再结晶这两个过程的交替进行;√三、选择1.钨的再结晶温度为1200℃,对钨来说在1100℃的高温下进行的加工属于A A.冷加工 B. 热加工2.冷热加工的区别在于加工后是否存在AA.加工硬化 B. 晶格改变 C. 纤维组织3.钢在热加工后形成纤维组织,使钢的性能发生变化,即沿纤维的方向具有较高的A 沿垂直于纤维的方向具有较高的C ;A.抗拉强度 B. 抗弯强度 C. 抗剪强度四、简述1.为什么晶粒越细,金属的强度越高,塑性,韧性就越好1.什么是加工硬化现象试举生产或生活中的实例来说明加工硬化现象的利弊;2.什么是再结晶退火再结晶退火的温度与再结晶温度有何关系3.热加工对金属的组织和性能有何影响第四章铁碳合金一、填空1.合金是一种金属元素与其他金属元素或非金属元素通过熔炼或其他方法结合而成的具有金属特性的物质;2.合金中成分、结构及性能相同的组成部分称为相;3.根据合金中各组元之间的相互作用不同,合金的组织可分为固溶体、金属化合物和机械混合物三种类型;4.根据溶质原子在溶剂晶格中所处的位置不同,固溶体可分为间隙固溶体和置换固溶体两种; 5.合金组元之间发生相互作用而形成的一种具有金属特性的物质称为金属化合物;其性能特点是熔点高,硬度高,脆性大 ;奥氏体、渗碳体、珠光体、莱氏体;6.铁碳合金的基本组织有五种,它们是铁素体、奥氏体、和渗碳体;7.铁碳合金的基本相是铁素体、8.在铁碳合金基本组织中属于固溶体的有铁素体和奥氏体;9.碳在奥氏体中溶解度随温度的不同而变化,在1148℃时碳的溶解度可达%在727℃时碳的溶解度为%;10.铁碳合金相图是表示在缓慢冷却或加热条件下,不同成分的铁碳合金的状态或组织随温度变化的图形;11.分别填出下列铁碳合金组织的符号:;奥氏体A、γ,铁素体F、α,渗碳体Fe3C,珠光体P,高温莱氏体Ld,低温莱氏体Ld’;的铁碳合金称为钢;根据室温组织不同,钢又分为三类:亚共析钢,其室温组织为P 12.含碳量%%、和F共析钢钢,其室温组织为P、过共析钢钢钢,其室温组织为P和Fe3C;、13.铁素体的性能特点是具有良好的塑性和韧性,而强度和硬度很低.14.共析钢冷却到S点时,会发生共析转变,从奥氏体中同时析出铁素体和渗碳体的混合物,称为珠光体;15..莱氏体是奥氏体和渗碳体的混合物.当温度低于727℃时,莱氏体中的奥氏体转变为珠光体,所以室温下的莱氏体是由珠光体和渗碳体组成,又称为低温莱氏体Ld’;二.判断正确打√,错误打×;下同1.固溶体的晶格类型与溶剂的晶体类型相同;√2.金属化合物的晶格类型完全不同于任一组元的晶格类型. √3.金属化合物一般具有复杂的晶体结构;√4.碳在γ—Fe中的溶解度比在α—Fe中的溶解度小; ×5.奥氏体的强度、硬度不高,但具有良好的塑性; √6.渗碳体是铁与碳的混合物; ×7.过共晶白口铸铁的室温组织是低温莱氏体加一次渗碳体. √8.碳在奥氏体中的溶解度随温度的升高而减小; ×9.渗碳体的性能特点是硬度高、脆性大; √10.奥氏体向铁素体的转变是铁发生同素异构转变的结果;√11.含碳量为%和%的钢属于亚共析钢,在室温下的组织均由珠光体和铁素体组成,所以它们的力学性能相同;×12.莱氏体的平均含碳量为%;×三.选择1.组成合金的最基本的独立物质称为 BA.相B.组元C.组织2.合金固溶强化的主要原因是CA.晶格类型发生了变化B.晶粒细化C.晶格发生了畸变3.铁素体为B 晶格,奥氏体为A 晶格.A.面必立方B.体心立方C.密排六方4.渗碳体的含碳量为C %5.珠光体的平均含碳量为A %6.共晶白口铁的含碳量为B %7.铁碳合金共晶转变的温度是B ℃8.含碳量为%的铁碳合金,在室温下的组织为CA.珠光体B.珠光体加铁素体C.. 珠光体加二次渗碳体9.铁碳合金相图上的ES线,其代号用C 表示..PSK线用代号A 表示,GS线用代号 B.表示A,A110.铁碳合金相图上的共析线是C .A..ECF11.从奥氏体中析出的渗碳体称为 B,从液体中结晶出的渗碳体称为A ;A.一次渗碳体 B.二次渗碳体 C.三次渗碳体12.将含碳量为%的铁碳合金加热到650℃时,其组织为C ,加热到1100℃时其组织为B. ;A珠光体 B.奥氏体 C.珠光体加渗碳体 D.奥氏体加渗碳体13.亚共析钢冷却到GS线时要从奥氏体中析出A ;A.铁素体 B.渗碳体 C.珠光体15.亚共析钢冷却到PSK线时,要发生共析转变,奥氏体转变成B ;A.珠光体加铁素体 B.珠光体 C.铁素体四、名词解释1.钢与白口铸铁2.铁素体与奥氏体3.珠光体与莱氏体4.共晶转变与共析转变5.固溶强化与加工硬化五、简述C相图.1.绘出简化后的Fe—Fe33.简述含碳量为%,%的铁碳合金从液态冷至室温时的组织转变过程,并画出室温组织示意图.4.根据Fe—FeC合金相图,说明下列现象的原因.3(1)含碳量为1%的铁碳合金比含碳量%的铁碳合金的硬度高.(2)一般要把钢材加热到1000~1250℃高温下进行锻轧加工.(3)靠近共晶成分的铁碳合金的铸造性能好.第五章碳素钢一.填空1.碳素钢是含碳量小于%的铁碳合金;2.碳素钢中除铁、碳外还常有Si,Mn,S,P,等元素;其中Si,Mn是有益元素,是S,P有害元素; 3.含碳量小于%的钢为低碳钢,含碳量为%~%的钢为中碳钢,含碳量大于%的钢为高碳钢;4.45钢按用途分类属于碳素结构钢,按质量分类属于钢,按含碳量分类属于亚共析钢;5.T12A钢按用途分类属于碳素工具钢,按含碳量分类属于高碳钢,按质量分类属于高级优质碳素钢;二,判断正确打√,错误打×;下同1.T10钢的含碳量为10%; ×2.锰、硅在碳钢中都是有益元素,适当地增加其含量,能提高钢的强度;√3.硫是钢中的有益元素,它能使钢的脆性下降;×4.碳素工具钢都是优质或高级优质钢; √5.碳素工具钢的含碳量一般都大于%√6.铸钢可用于铸造形状复杂而力学性能要求较高的零件;√7.碳素弹簧钢的含碳量一般在%以下; ×三、选择1.08F钢中的平均含碳量为AA.0.08% %2.普通、优质和高级优质钢是按钢的B 进行划分;A.力学性能的高低 ,P含量的多少 ,Si含量的多少3.在下列牌号中属于优质碳素结构钢的有BA.T8A —A·F4.在下列牌号中属于工具钢的有CA.20 Mn5.选择制造下列零件的材料:冷冲压件 A;齿轮 B;小弹簧C ;A.08F C. 65Mn6.选择制造下列工具所采用的材料:錾子A ;锉刀C ;手工锯条B ;A.T8 B. T10四、名词解释1.08F2.453.65Mn4.T12A5.ZG340—6406.Q235—A·F五、简述1.硫、磷元素的含量为什么在碳钢中要严格控制,而在易切削钢中又要适当提高2.碳素工具钢的含碳量对力学性能有何影响如何选用第六章钢的热处理一、填空1.根据工艺的不同,钢的热处理方法可分为退火、正火、淬火、回火、及表面热处理五种2.共析钢的等温转娈曲线中,在A1—550℃温度范围内转变产物为珠光体、索氏体和屈氏体、;在550℃~Ms温度范围内,转变产物为上贝氏体和下贝氏体;3.常用的退火方法有完全退火、球化退火和去应力退火等;4.工厂里常用的淬火方法有单液淬火、双液淬火、分级淬火和等温淬火等;5.感应加热表面淬火法,按电流频率不同可分为高频、中频和工频三种;6.化学热处理是通过分解、吸收和扩散三个基本过程完成的;7.要求表面具有高的硬度而心部需要足够的韧性的零件应进行表面热处理;8.根据回火温度的不同,回火可分为低温回火、中温回火和高温回火三类,回火后得到的组织分别是M回、T回和S回;二、判断正确打√,错误打×;下同1.实际加热时的临界点总是低于相图上的临界点;×2.珠光体向奥氏体转变也是通过形核及晶核长大的过程进行的;√3.珠光体、索氏体、屈氏体都是片层状的铁素体和渗碳体混合物,所以它们的力学性能相同;×5.钢在实际加热条件下的临界点分别用Ar1, Ar3,Arcm表示;×8.在去应力退火过程中,钢的组织不发生变化;√9.由于正火较退火冷却速度快,过冷度大,转变温度较低,获得组织较细,因此同一种钢,正火要比退火的强度和硬度高;√10.钢的最高淬火硬度,主要取决于钢中奥氏体的含碳量;×11.淬透性好的钢,淬火后硬度一定很高;×16.同类钢在相同加热条件下,水淬比油淬的淬透性好;×三、选择8.调质处理的组织是B ;A.回火马氏体 B.回火索氏体 C.回火屈氏体10.化学热处理与其他热处理方法的主要区别是C.A.加热温度 B.组织变化 C.改变表面化学成分11.零件渗碳后一般须经A 处理,才能达到表面硬而耐磨的目的;A.淬火+低温回火 B.正火 C.调质12.用15钢制造的齿轮,要求齿轮表面硬度高而心部具有良好的韧性,应采用 C热处理;若改用45钢制造这一齿轮,则采用B 热处理;A.淬火+低温回火 B.表面淬火+低温回火 C.渗碳淬火+低温回火14.用65Mn钢做弹簧,淬火后应进行B ;用T10A钢做锯片,淬火后应进行C ;A.高温回火 B.中温回火 C.低温回火四、名词解释4.淬透性与淬硬性五.简述3.什么是退火退火的目的有哪些5.什么是正火正火有哪些应用6.什么是淬火淬火的主要目的是什么9.什么是临界冷却速度它与钢的淬透性有何关系第七章合金钢一、填空1..合金元素在钢中的主要作用有强化铁素体、形成合金化合物、细化晶粒—和提高钢的淬透性和提高回火稳定性;2.合金钢按主要用途分类,可分为合金结构钢、合金工具钢、及特殊性能钢三大类;3.常用的不锈钢有马氏体型和奥氏体型两种二、判断正确打√,错误打×;下同2.大部分合金钢的淬透性都比碳钢好;√8.合金工具钢都是高碳钢;×10.GCr15钢是滚动轴承钢,但又可制造量具、刀具和冷冲模具等;√12.Cr12W8V是不锈钢;×三、选择1.GCr15钢的平均含铬量为B %A.2.将下列合金钢牌号归类:合金结构钢有A、B、C ;合金工具负钢有D、E ;特殊性能有F ;合金调质钢有A ;合金弹簧钢有B、C ;合金模具钢有D、E ;不锈钢有F ;A.40Cr3.正确选用下列零件材料:机床主轴 B;板弹簧 E;坦克履带F ;轴承流动体;贮酸槽A ;汽车、拖拉机变速齿轮 D;B. 40Cr E. 60Si2Mn4.合金调质钢的含碳量一般是B ;A.<% C.>%四.名词解释20CrMnTi50CrVA9SiCrCrWMnW18Cr4V1Cr134Cr14Ni14W2MoZGMn13第八章铸铁一填空1.铸铁是含碳量大于%的铁碳合金,根据铸铁中石墨的存在形状不同,铸铁可分为灰铸铁、可锻铸铁、球墨铸铁和蠕墨铸铁等;2.铸铁成分中含碳硅锰硫磷等元素,其中C和Si元素的含量越高,越有利于石墨化进行,而Mn和S 元素是强烈阻碍石墨化的元素;3.灰铸铁中,由于石墨的存在降低了铸铁的力学性能,但使铸铁获得了良好的铸造性能、切削性能、耐磨性、减振性能及低的缺口敏感性;4.可锻铸铁是由白口铸铁通过石墨化退火处理,使白口铸铁中渗碳体分解为团絮状状石墨的铸铁.5.灰铸铁经孕育处理后,可使石墨片及基体组织得到细化,使其塑性、韧性有很大的提高.6.球墨铸铁是在浇注前往铁水中加入适量的球化剂和孕育剂,浇注后获球状石墨的铸铁;7.白口铸铁中的碳主要以渗碳体形式存在,而灰口铸铁中的碳主要以片状石墨形式存在;二、判断正确打√,错误打×;下同2.可锻铸铁比灰铸铁的塑性好,因此可以进行锻压加工. ×3.厚铸铁件的表面硬度总比内部高. √5.灰铸铁的强度、塑性和韧性远不如钢. √8.灰铸铁是目前应用最广泛的一种铸铁. √9.白口铸铁的硬度适中,易于切削加工. ×10.铸铁中的石墨数量越多,尺寸越大,铸件的强度就越高,塑性,韧性就越好. ×三、选择1.为提高灰铸铁的表面硬度和耐磨性,采用A 热处理效果较好.A.渗碳后淬火+低温回火B.电加热表面淬火等温淬火3.选择下列零件的材料:机床床身A ;汽车后桥外壳B;柴油机曲轴C .—10 —054.铸铁中的碳以石墨形态析出的过程称为A .A.石墨化B.变质处理C.球化处理四、名词解释HT250KTH350—10KTZ500—04QT600—02五、简述1.简述影响石墨化的主要因素.第九章有色金属及硬质合金一、填空2.普通黄铜是由Cu、Zn组成的二元合金,在普通黄铜中加入其他合金元素时称特殊黄铜.4.工业纯铝具有密度小、导电性好、抗腐蚀能力强、强度低、塑性好等特点.5.变形铝合金根据其主要性能特点不同可分为:LF铝、LY铝、LC铝和LD铝等.6.铸造铝合金包括Al-Si、Al-Cu、Al-Mg、Al-Zn等系列合金.二、判断正确打√,错误打×;下同5.工业纯铝中具有较高的强度,常用作工程结构材料. ×6.变形铝合金都不能用热处理强化. ×三.选择,它是 B..1.某一材料的牌号为T4A.含碳量为%的碳素工具钢号工业纯铜 C. 4号工业纯钛2.将相应的牌号填在括号里:普通黄铜A ;铸造黄铜 D;锡青铜B ;铍青铜C .—33.将相应的牌号填在括号里:硬铝B ;防锈铝A ;超硬铝D ;铸造铝C 合金;锻铝. E按工艺特点来分属于B 铝合金,它是热处理C 的铝合金.A.铸造B.变形C.不能强化D.强化四、名词解释T2H68HPb59—1L4LC4。

工程材料第一章--金属材料的力学性能

工程材料第一章--金属材料的力学性能
即,裂纹产生扩展的临界状态时其尖端的应力场大小
数值越大,表明材料的断裂韧性越好!
压痕法
试样表面抛光成镜面,在显微硬度仪上,以10Kg负 载在抛光表面用硬度计的锥形金刚石压头产生一压 痕,这样在压痕的四个顶点就产生了预制裂纹。根 据压痕载荷P和压痕裂纹扩展长度C计算出断裂韧性 数值(KIC)。
第一章 金属材料的力学性能
机械零部件在使用过程中一般不允许发生塑性变形,所以 屈服强度是零件设计时的主要依据,也是评定材料强度的 重要指标之一
(三)抗拉强度
表明试样被拉断前所能承载的最大应力
σb= Fb / A0
Fb :试样在破断前所承受的最大载荷
➢ 表示塑性材料抵抗大量均匀塑性变形的能力,也 表示材料抵抗断裂的强度,即断裂强度。
若F 确定,硬度值只与压痕投影的两对角线的平均长 度d有关,d越大,HV越小。
维氏硬度值一般只写数值。 硬度值+硬度符号+试验力大小(kgf)及试验力保持时 间(10-15s不标注)
提问
640HV30的具体意义?
表示在30kgf的试验载荷作用下,保持10-15s时 测得的维氏硬度值为640。
640HV30/20的具体意义?
布氏硬度值单位为N/mm2,但一般只写数值。 硬度值+硬度符号+球体直径+试验力大小及试验力保持 时间(10-15s不标注)
提问
170HBW10/1000/30的具体意义?
表示用直径10mm的硬质合金球,在9807 N(1000 kgf) 的试验载荷作用下,保持30s时测得的布氏硬度值为170。
530HBW5/750的具体意义?
➢ 抗拉强度是零件设计时的重要依据,也是评定金 属材料的强度重要指标之一。

金属材料的结构与性能

金属材料的结构与性能

第一章材料的性能第一节材料的机械性能一、强度、塑性及其测定1、强度是指在静载荷作用下,材料抵抗变形和断裂的才能。

材料的强度越大,材料所能承受的外力就越大。

常见的强度指标有屈服强度和抗拉强度,它们是重要的力学性能指标,是设计,选材和评定材料的重要性能指标之一。

2、塑性是指材料在外力作用下产生塑性变形而不断裂的才能。

塑性指标用伸长率δ和断面收缩率ф表示。

二、硬度及其测定硬度是衡量材料软硬程度的指标。

目前,消费中测量硬度常用的方法是压入法,并根据压入的程度来测定硬度值。

此时硬度可定义为材料抵抗外表局部塑性变形的才能。

因此硬度是一个综合的物理量,它与强度指标和塑性指标均有一定的关系。

硬度试验简单易行,有可直接在零件上试验而不破坏零件。

此外,材料的硬度值又与其他的力学性能及工艺能有亲密联络。

三、疲劳机械零件在交变载荷作用下发生的断裂的现象称为疲劳。

疲劳强度是指被测材料抵抗交变载荷的才能。

四、冲击韧性及其测定材料在冲击载荷作用下抵抗破坏的才能被称为冲击韧性。

为评定材料的性能,需在规定条件下进展一次冲击试验。

其中应用最普遍的是一次冲击弯曲试验,或称一次摆锤冲击试验。

五、断裂韧性材料抵抗裂纹失稳扩展断裂的才能称为断裂韧性。

它是材料本身的特性。

六、磨损由于相对摩擦,摩擦外表逐渐有微小颗粒别离出来形成磨屑,使接触外表不断发生尺寸变化与重量损失,称为磨损。

引起磨损的原因既有力学作用,也有物理、化学作用,因此磨损使一个复杂的过程。

按磨损的机理和条件的不同,通常将磨损分为粘着磨损、磨料磨损、接触疲劳磨损和腐蚀磨损四大根本类型。

第二节材料的物理化学性能1、物理性能:材料的物理性能主要是密度、熔点、热膨胀性、导电性和导热性。

不同用途的机械零件对物理性能的要求也各不一样。

2、化学性能:材料的化学性能主要是指它们在室温或高温时抵抗各种介质的化学侵蚀才能。

第三节材料的工艺性能一、铸造性能:铸造性能主要是指液态金属的流动性和凝固过程中的收缩和偏析的倾向。

第01章 金属材料的基础知识-

第01章 金属材料的基础知识-
晶体
非晶体
按一定的几何规律作周 期性排列而形成的聚集 状态; 非晶体 :当原子 ( 或分 子)为无规则地堆积在一 起形成的一种无序的聚 集状态;
结构上:长程有序,短程有序; 性能上:有无固定熔点;各项同性/异性。
1.2.1 金属键与晶体结构——晶体的基本概念
刚球模型;
空间点阵;
阵点/结点;
晶格;
1.2.1 金属键与晶体结构——晶体的基本概念
Z
c
a
X b Y
晶格: 将空间点阵
用一系列相互平行的 直线连接起来形成的 空间格架。

a ,b ,c 晶格常数
晶胞 :是组成晶格的
最基本的几何单元。
1.2.1 金属键与晶体结构——晶体的基本概念
7种晶系、14中布拉菲点阵
立方
1.1.2 力学性能——硬度——布氏硬度
布氏硬度值是外力除以压痕球冠表 面积;
在实际操作中,不需计算,用刻度 放大镜测出压坑直径 d ,然后查表。
1.1.2 力学性能——硬度——布氏硬度
布 氏 硬 度 压 痕
淬火钢球: 用 以 测 定 硬 度
<450的金属材料,硬度值用HBS表 示;
硬质合金球: 用以测定硬
坏了原子的平衡状态使晶格发生扭曲; 性能变化——电阻增大,密度减小,强度和硬 度提高,塑性和韧性下降。
1.2.4 晶体的缺陷
线缺陷
晶体中的线缺陷是各种类型的位错;
位错 :晶体中的一列或数列原子发
生有规律的错排现象;
刃型位错,螺型位错。
1.2.4 晶体的缺陷
线缺陷——刃型位错
当一个完整晶体某晶面以上的某处多出半个原子面,
第一章 金属材料的基础知识

金属材料的力学性能

金属材料的力学性能

(a)试样 (b)伸长 (c)产生缩颈 (d)断裂
拉 伸 试 样 的 颈 缩 现 象
(一)强度
1. 定义:强度是指金属材料抵抗塑性变形和断 裂的能力,是工程技术上重要的力学性能指 标。由于材料承受载荷的方式不同,其变形 形式也不同,分为抗拉、抗扭、抗压、抗弯、 抗剪等的强度。

最常用的强度是抗拉强度或强度极限σb。

1.变动载荷和循环应力
金属疲劳产生的原因

1.变动载荷

——引起疲劳破坏的外力,指载荷大小、甚至方
向均随时间变化的载荷,其在单位面积上的平均
值即为变动应力。

变动应力可分为规则周期变动应力(也称循环应力) 和无规则随机变动应力两种。
GB/T 228-2002新标准 名称 屈服强度① 符号 -
GB/T 228-1987旧标准 名称 屈服点 符号 σs
上屈服强度
下屈服强度 规定残余延伸 强度 抗拉强度 断后伸长率
ReH
ReL Rr Rm A或A11.3
上屈服点
下屈服点
σsU
σsL
规定残余延伸 σr 应力 抗拉强度 断后伸长率 σb δ5或δ10
第一章 金属材料的力学性能
概 述

使用性能:材料在使用过程中所表现的性能。包括力学性能、
物理性能和化学性能。

工艺性能:材料在加工过程中所表现的性能。包括铸造、锻 压、焊接、热处理和切削性能等。

金属材料的力学性能是指在承受各种外加载荷(拉伸、压缩、 弯曲、扭转、冲击、交变应力等)时,对变形与断裂的抵抗

冲击试样
原理

冲击韧性可以通过一次摆锤冲击试验来测定,试验 时将带有U型或V型缺口的冲击试样放在试验机架 的支座上,将摆锤升至高度H1,使其具有势能 mgH1;然后使摆锤由此高度自由下落将试样冲断, 并向另一方向升高至H2,这时摆锤的势能为mgH2。 所以,摆锤用于冲断试样的能量
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二节 金属材料的物理和化学性能
10.下列说法是否正确?如不正确请更正: (1)机械在运行中各零件都承受外加载荷,材料强度高的不会变形, 材料强度低的一定会变形。 (2)材料的强度高,其硬度就高,所以刚度就大。 (3)强度高的材料,塑性都低。 (4)弹性极限高的材料,所产生的弹性变形大。 11.下列零件图样标注的硬度是否正确?如有错误,请改正。 (1)HBW600~650 (2)HRC70~75 (3)HRB90N/mm2 (4)HB200~300MN/m2
第一章 金属材料的性能
(1)使用性能 即为了保证零件、工程构件或工具等的正常工作, 材料所应具备的性能。 (2)工艺性能 即反映材料在被制成各种零件、构件和工具的过
程中,适应各种冷、热加工的性能。
第一节 金属材料的力学性能 第二节 金属材料的物理和化学性能
第一节 金属材料的力学性能
一、强度指标
图1-1 钢的标准拉伸试样 a)拉伸前 b)拉伸后
第一节 金属材料的力学性能
图1-2 退火低碳、中碳和高碳钢的 拉伸曲线(外力F-变形量Δl曲线与应力 σ-应变ε曲线形状相似,只是坐标不同)
1.弹性极限(σe)
第一节 金属材料的力学性能
2.屈服点(σs) 3.抗拉强度(σb) 4.疲劳强度(σ-1)
பைடு நூலகம்
图1-3 疲劳断口的特征 a)汽车后轴的断口 b)断口的示意图
2.断裂韧度(KIC)
第一节 金属材料的力学性能
五、硬度指标 1.布氏硬度(HBW)
图1-6 布氏硬度测量示意图
第一节 金属材料的力学性能
图1-7 用读数显微镜测量压痕直径
第一节 金属材料的力学性能
表1-2 布氏硬度试验规范
2.洛氏硬度(HR)
第一节 金属材料的力学性能
图1-8 洛氏硬度试验原理
第一节 金属材料的力学性能
图1-4 疲劳曲线图
二、刚度指标
第一节 金属材料的力学性能
表1-1 常用金属的弹性模量
三、塑性指标 1.伸长率(δ) 2.断面收缩率(ψ) 四、韧性指标 1.冲击韧度(αk)
第一节 金属材料的力学性能
图1-5 冲击试验原理图 1—摆锤 2—试样 3—机架 4—指针 5—刻度盘
第二节 金属材料的物理和化学性能
3.设计刚度好的零件,应根据何种指标选择材料?采用何种材料为 宜?材料的E越大,其塑性越差。 4.拉伸试样的原标距长度为50mm,直径为10mm,拉断后对接试 样的标距长度为79mm,缩颈区的最小直径为4.9mm,求其伸长率 和断面收缩率。 5.标距不相同的伸长率能否进行比较?为什么? 6.常用的硬度试验方法有几种? 7.反映材料受冲击载荷的性能指标是什么?不同条件下测得的这种 指标能否比较?怎样应用这种性能指标? 8.疲劳破坏是怎样形成的?提高零件疲劳寿命的方法有哪些? 9.断裂韧度是表明材料何种性能的指标?为什么要求在设计零件时 考虑这种指标?
第二节 金属材料的物理和化学性能
12.下列各种工件或钢材可用哪些硬度试验法测定其硬度值?(写出 硬度符号) (1)钢车刀、锉刀 (2)材料库中的原材料 (3)渗碳钢工件 (4)铝合金半成品
第一节 金属材料的力学性能
表1-3 常用的三种洛氏硬度的试验条件及应用范围
3.维氏硬度(HV)
第一节 金属材料的力学性能
图1-9 维氏硬度试验原理及压痕示意图
第二节 金属材料的物理和化学性能
一、金属材料的物理性能 1.密度 2.熔点 3.导电性 4.导热性 5.热膨胀性 6.磁性 二、金属材料的化学性能 1.耐蚀性 2.热稳定性 1.说明以下符号的意义和单位: 2.在设计机械零件时多用哪两种强度指标?为什么?
相关文档
最新文档