第一章 金属材料性能
金属材料的力学性能

(1)测量值较精确,反复性好,可测组织不均匀材料(铸铁)(2) 可测旳硬度值不高(3)不测试成品与薄件(4)测量费时,效率低
4、测量范围
用于测量调质钢、铸铁、非金属材料及有色金属材料等.
6
第一章 金属旳力学性能
引言:
第二节 硬度
1、定义:指材料局部体积内抵抗弹性、塑性变形、压 痕和划痕旳能力。它是衡量材料软硬程度旳指标,其物 理含义与试验措施有关。
2、硬度旳测试措施 (1)布氏硬度 (2)洛氏硬度 (3)维氏硬度
7
§1-2 硬度
一、布氏硬度
1、布氏硬度试验(布氏硬度计)
原理:用一定直径旳球体(淬火钢球或硬质合金球)以相应旳试验力 压入待测材料表面,保持要求时间并到达稳定状态后卸除试验力,测量 材料表面压痕直径,以计算硬度旳一种压痕硬度试验措施。
布氏硬度计
返回
16
洛氏硬度计
返回
17
维氏硬度计
返回
18
布洛维氏硬度计
19
8
§1-2 硬度
二、洛氏硬度
1、洛氏硬度试验(洛氏硬度计)
原理: 用金刚石圆锥或淬火钢球,在试验力旳作用下压入试样表面, 经要求时间后卸除试验力,用测量旳残余压痕深度增量来计算硬度旳一
种压痕硬度试验。
2、洛氏硬度值 出。如:50HRC 3、优缺陷
用测量旳残余压痕深度表达。可从表盘上直接读
(1)试验简朴、以便、迅速(2)压痕小,可测成品、薄件(3)数据 不够精确,应测三点取平均值(4)不能测组织不均匀材料,如铸铁。
4、测量范围
第1章金属材料的性能与结构

1.晶体结构的基本知识
由于晶体原子排列呈周期性,因此, 可以从晶格中选取一个能够完全反应晶 格中原子排列特征的最小的几何单元, 来分析晶体中原子排列的规律性,这个 最小的几何单元称为晶胞 。
1.晶体结构的基本知识
晶格
晶胞
1.晶体结构的基本知识
Z c
α
β a
X a γ
b
Y
图1-9 晶胞的晶格常数和轴间夹角的表示法
()
MPa
b
s
e
b
s
e
应变(%)
图1-2 单轴拉伸曲线示意图
2、金属的力学性能的指标一般有哪些? 怎样获得这些指标? 塑性是指金属材料在外力作用下,发生 永久变形而不破坏的能力。在工程中常用 塑性指标来判断金属材料的可成形性,常 用伸长率和断面收缩率来表征。 伸长率指试样在拉伸过程中,拉断标距长 度的延长值(见图1-1)与原始标距长度的 比值,即:
1.2.1 金属
在固态金属中,吸引力与排斥力的大 小以及它们的结合能量都随原子间距离 的变化而发生改变。这样就存在一个原 子间距,此时原子间相互排斥力与吸引 力相等,原子处于稳定平衡状态,该原 子间距即为平衡距离,这时原子之间的 结合能为最低,系统此时最稳定。
1.2.2 金属的晶体结构
1.晶体结构的基本知识 2. 常见金属的晶体结构 3. 晶面指数和晶向指数
第1章 金属材料的性能与结构
§1.1 金属材料的性能 §1.2金属的晶体结构
§1.3合金的相结构
1.1 金属材料的性能
金属材料是金属元素或以金属元素为 主构成的具有金属特性的材料的统称。 金属材料一般分为:黑色金属和有色 金属,黑色金属有钢、铸铁、铬、锰; 其他的金属,如铝、镁、铜、锌等及其 合金都为有色金属。 金属材料的性能包括:力学性能、物 理化学性能、工艺性能、经济性能等。
第一章2金属材料的性能特点

四、切削加工性能 用切削后的表面粗糙度 和刀具寿命来表示。
切削加工
金属材料具有适当的硬度(170 HBS~230 HBS) 和足够的脆性时切削性良好。 改变钢的化学成分(加少量铅、磷)和进行适当 的热处理(低碳钢正火,高碳钢球化退火)可提高钢 的切削加工性能。 铜有良好的切削加工性能。
五、热处理工艺性能 钢的热处理工艺性能主要考虑其淬透性, 即钢接受淬火的能力。 含Mn、Cr、Ni等合金元素的合金钢淬透 性比较好, 碳钢的淬透性较差。
断后伸长率
A
A
11.3
δ5 δ10
ψ
%
%
断面收缩率
Z
三、硬度 硬度:材料抵抗另一硬物体压入其内的能力。 即材料受压时抵抗局部塑性变形的能力。 1、布氏硬度 一定直径的硬质合金球(或钢球)在一定载 荷作用下压入试样表面。测量压痕直径, 计算硬 度值。 用钢球压头时硬度 用HBS表示 用硬质合金球时硬 度用HBW表示
布氏硬度计
布氏硬度计的使用
2、洛氏硬度 采用金刚石压头(或硬质合金球压头), 加预载荷F0 ,压入深度h0 。再加主载荷F1 。 卸去主载荷F1,测量其残余压入深度h。 用h与h0之差△h来计算洛氏硬度值。 硬度直接从硬度计表盘上读得。 根据压头的种类和 总载荷的大小洛氏硬度常 用表示方式有: HRA、HRB、HRC
金属材料的强度与其化学成分和工艺有 密切关系。 纯金属的抗拉强度较低; 合金的抗拉强度较高。 纯铜抗拉强度: 60MPa 铜合金抗拉强度:600MPa~700MPa 纯铝抗拉强度: 40MPa 铝合金抗拉强度:400MPa~600MPa
退火状态的三种铁碳合金: 碳质量分数0.2%,抗拉强度为350MPa 碳质量分数0.4%,抗拉强度为500MPa 碳质量分数0.6%,抗拉强度为700MPa
工程材料习题册-打印-答案

第一章 金属的性能一、填空(将正确答案填在横线上。
下同)1、金属材料的性能一般分为两类。
一类是使用性能,它包括物理性能、化学性能和力学性能等。
另一类是工艺性能,它包括铸造性能、锻造性能、焊接性能和切削加工性能等。
2、大小不变或变化很慢的载荷称为静载荷,在短时间内以较高速度作用于零件上的载荷称为冲击载荷,大小和方向随时间发生周期变化的载荷称为交变载荷。
3、变形一般分为弹性变形和塑性变形两种。
不能随载荷的去除而消失的变形称为塑性变形。
4、强度是指金属材料在静载荷作用下,抵抗塑性变形或断裂的能力。
5、强度的常用衡量指标有抗拉强度和屈服强度,分别用符号σb 和σs 表示。
6、如果零件工作时所受的应力低于材料的σb 或σ0.2,则不会产生过量的塑性变形。
7、有一钢试样其截面积为100mm 2,已知钢试样的M P a S 314=σM P ab 530=σ 。
拉伸试验时,当受到拉力为—————— 试样出现屈服现象,当受到拉力为—————— 时,试样出现缩颈。
8、断裂前金属材料产生永久变形的能力称为塑性。
金属材料的延伸率和断面收缩率的数值越大,表示材料的塑性越好。
9、一拉伸试样的原标距长度为50mm,直径为10mm 拉断后试样的标距长度为79mm ,缩颈处的最小直径为4.9 mm ,此材料的伸长率为—————,断面收缩率为——————。
10.金属材料抵抗冲击载荷作用而不破坏能力。
称为冲击韧性。
11.填出下列力学性能指标的符号:屈服点σs ,抗拉强度σb ,洛氏硬度C 标尺HRC ,伸长率δ,断面收缩率ψ,冲击韧度αk ,疲劳极限σ-1。
二、判断(正确打√,错误打×。
下同)1、弹性变形能随载荷的去除而消失。
(√ )2、所有金属材料在拉伸试验时都会出现显著的屈服现象。
(× )3、材料的屈服点越低,则允许的工作应力越高。
(× )4、洛氏硬度值无单位。
(√ )5、做布氏硬度试验时,当试验条件相同时,其压痕直径越小,材料的硬度越低。
第一章 金属材料的力学性能

度
A、C标尺为100
B标尺为130
机 械 制
造
基
础
§1.2 硬度
第一章 金属材料的力学性能
二、洛氏硬度
标注——用符号HR表示, A标尺HRA B标尺HRB C标尺HRC
如: 42 HRA
机
械
硬度值 A标尺
制
造
基
础
§1.2 硬度
第一章 金属材料的力学性能
三、维氏硬度 测定原理——基本上和布氏硬度相同,只是所用 压头为金刚石正四棱锥体
冲击韧度高
机
•冲击能量高时, --材料的冲击韧度主要取决于材料的塑性,塑性高则
韧度高
械 制
造
基
础
第一章 金属材料的力学性能
第一章 金属材料的力学性能
§1.1 强度和塑性
§1.2 硬度
§1.3 冲击韧度
§1.4 疲劳强度
本章小结
机
械
制
造
基
础
§1.4 疲劳强度
第一章 金属材料的力学性能
疲劳强度
Sl110000%%Sl10lS0 110100%0%
Sl 二者的值越大塑性越好 00
lS0 0
机 械 制
原始原横始截标面距积
试样拉试断样后断的裂标处距截面积
造 基
础
第一章 金属材料的力学性能
第一章 金属材料的力学性能
§1.1 强度和塑性
§1.2 硬度
§1.3 冲击韧度
§1.4 疲劳强度
本章小结
第一章 金属材料的力学性能
由主金要属内材容料:制成的零、部件,在工作过
程中金都属要材承料受的外力力学性(或能称指载标荷和) 测作试用方而法产,
金属材料的主要性能

① HRA 硬、薄试件,如硬质合金、表面淬火层和渗碳层。 ② HRB 轻金属,未淬火钢,如有色金属和退火、正火钢等 ③ HRC 较硬,淬硬钢制品;如调质钢、淬火钢等。 洛氏硬度的优点:操作简便,压痕小,适用范围广。
②弹性:材料不产生塑性变形的情况下,所能承受的最 大应力。
弹性极限:σe=Fe/So 不产永久变形的最大抗力。
2)屈服强度s:材料发生微量塑性变形时的应力值。即 在拉伸试验过程中,载荷不增加,
试样仍能继续伸长时的应力。
s = Fs/So
s
条件屈服强度0.2:高碳钢等无屈服点, 国家标准规定以残余变形量为0.2%时的 应力值作为它的条件屈服强度,以0.2 来表示。
影响因素:循环应力特征、温度、材料成分和组织、夹 杂物、表面状态、残余应力等。
二、塑性 金属材料受力破坏前可承受最大塑性变形的能力。
1.延伸率
延伸率与试样尺寸有关:δ5、δ10 (L0=5d,10d)
2.断面收缩率 ψ=△S/So=(So-Sk)/So x 100%
> 时,无颈缩,为脆性材料表征; < 时,有颈缩,为塑性材料表征。
0.2
3)抗拉强度b:材料断裂前所承受的最大 应力值。(材料抵抗外力而不致断裂的极 限应力值)。
b = Fb/So
(5)灰铸铁拉伸时的力学性能 灰口铸铁是典型的脆性材料,其σ-曲线是一段微弯曲 线,如图a)所示,没有明显的直线部分,没有屈服和颈 缩现象,拉断前的应变很小,延伸率也很小。强度极限 σb是其唯一的强度指标。 铸铁等脆性材料的抗拉强度 很低,所以不宜作为受拉零 件的材料。
无论是塑性材料还是脆性材料,断裂时都不产生明显的 塑性变形,而是突然发生,具有很大的危险性,有相当多 零件的破坏属于疲劳破坏,对此必须引起足够的重视。
金属材料力学性能第一章材料的拉伸性能

e
We = e ε e / 2 = e2 / (2E)
0
εe
ε
制造弹簧的材料要求高的弹性比功:( e
大 ,E 小)
四 弹性不完整性
1、滞弹性 (弹性滞后)
----在弹性范围内 快速加载或卸载后, 随时间延长产生附 加弹永生应变的现 象。
加载和卸载时的应力应变曲线不重合形成
一封闭回线 ------ 弹性滞后环
s = Fs / A0
对于拉伸曲线上没有屈服平台的材料,塑性 变形硬化过程是连续的,此时将屈服强度定义 为产生0.2% 残余伸长时的应力,记为σ0.2
s = σ0.2 = F0.2 / A0
抗拉强度b:
定义为试件断裂前所能承受的最大工程 应力,以前称为强度极限。取拉伸图上的最大 载荷,即对应于b点的载荷除以试件的原始截 面积,即得抗拉强度之值,记为σb
无机玻璃、陶瓷以及一些处于低温下的 脆性金属材料,在拉伸断裂前只发生弹性变形, 而不发生塑性变形,其拉伸曲线如图1-3(a)所 示。
➢ 在拉伸时,试件发生轴向伸长,也 同时发生横向收缩。将纵向应变el 与 横(径)向应变er之负比值表示为υ,即 υra=t-ioe)r/,e它l ,也是υ 称材料为的波弹桑性常比数(P。oisson’s
外力作用下,产生变形,这种变形在外力去除时随即消失 而恢复原状。 2. 特性: 1) 可逆性:外力去除时,变形消失,恢复原状。 2) 单值线性关系:应力与应变呈单值线性关系。(OE段) 3) 弹性变形量比较小,一般小于1%。 3. 实质: 金属材料弹性变形是其晶格中原子自平衡位置产生可逆位移 的反映。
1
2´
30.1
24.0
0
4
8.5
ε
17.8
金属工艺学第一章金属材料性能ppt课件.ppt

拉伸试验
强度:材料在外力作用下抵抗永久变形和 断裂的能力。
塑性:材料在外力作用下产生永久变形而 不破坏的能力。
硬度
硬度:金属材料抵抗其他更硬物体压入表面的 能力,衡量材料的软硬程度。
硬度试验方法很多,机械工业普遍采用 压入法来测定硬度,压入法又分为布氏硬度、 洛氏硬度、维氏硬度等。
布氏硬度是用单位压痕面积的力作 为布氏硬度值的计量,符号HBS、HBW
洛氏硬度是用压痕深度作为洛氏 硬度值的计量即,符号HR
维氏硬度也是以单位压痕面积的力作为 硬度值计量。试验力较小,压头是锥面夹角 为136°的金刚石正四棱锥体,维氏硬度用符 号HV表示。
冲击韧性和疲劳强度
冲击韧性:冲击载荷下材料抵抗变形和断 裂的能力。
疲劳强度:金属材料在无数次重复或交变 载荷作用下而不致引起断裂的 最大应力。
使用性能:金属材料在使用过程中所表现出来 的性能。
(物理性能、化学性能、力学性能) 工艺性能:金属材料在各种加工过程中所表现
出来的性能。 (铸造性能、锻造性能、焊接性能、切削性能)
1. 金属材料的力学性能
力学性能:指金属材料在外力(载荷)作用下 所表现出的抵抗变形和破坏的能力。
强度、塑性、硬度、冲击韧度和疲劳强度等。 外力形式:拉伸、压缩、弯曲、剪切、扭转等。 载荷形式:静载荷、冲击载荷、交变载荷等。
2.金属材料物理性能和化学性能
物理性能:密度、熔点、导热性、导电 性金属材料的工艺性能(略)
工艺性能:铸造性能、锻造性能、 焊接性能、切削加工性能
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
点,无法确定屈服极限,
一般工程上以0.2%塑性
变形时的应力值为该材
料的规定塑性延伸强度,
以 Rp0.2表示。
特别注意:屈服强度反映材料 抵抗永久变形的能力,是最重
要的零件设计指标。
-
•
•
抗试样拉拉强断度前R最m大:载R荷m 所 决FSm0定
的应力值,即试样所能承受
的最大载荷除以试样原始横
截面积,单位为MPa
l0/d0 为常数时,塑性值才有可比性。 当l0=5d0 时,伸长率用A表示; 当l0=10d0 时,伸长率用A11.3表示。显然 A11.3 > A
-
三、硬度
• 材料抵抗表面局部塑性变形 的能力。
• 布氏硬度HBW
HBW
2F
gD(D D2d2)
布 氏 硬 度 计
-
布氏硬度的单位为N/mm2,但习惯上只写数值 而不标出单位,硬度值越高,表明材料越硬。
拉伸试样
-
机拉 伸 试 验
刚度:材料受力时抵抗弹性变形的能力。指标为弹
性模量E(单位为MPa)。 E R e
弹性模量E:表征材料产生弹性变形的难易程度。弹 性模量在工程上称为材料的刚度。显然,在零件的结 构、尺寸已确定的前提下,其刚度取决于材料的弹性 模量,可以通过增加横截面积或改变截面形状来提高 零件的刚度。 弹性模量主要取决于材料内部原子间的作用力,如晶 体材料的晶格类型、原子间距等,除随温度升高而逐 渐降低外,材料的其他强化手段如热处理、冷热加工、 合金化等对弹性模量的影响较小。
布氏硬度的表示方法:硬度值写在符号HBW之 前,符号之后按下列顺序用数值表示试验条件:①球 体直径(mm);②试验力(Kgf);③力保持时间 (s),如600HBW 1/30/20。
布氏硬度压痕
-
• 布氏硬度的优点:测量误差小,数据稳定。 • 缺点:压痕大,不能用于太薄件、成品件及比压头
还硬的材料。 • 适于测量退火、正火、调质钢, 铸铁及有色金属的
标尺为A、B、C。
洛氏硬度测试示意图
洛 氏 硬 度 计
h1-h0
-
• 符号HR前面的数字为硬度值,后面为使用的标尺。 HRA用于测量高硬度材料, 如 钢球压头与
硬质合金、表淬层和渗碳层。 金刚石压头 HRB用于测量低硬度材料, 如
有色金属和退火、正火钢等。 HRC用于测量中等硬度材料,
如调质钢、淬火钢等。 洛氏硬度的优点:操作简便,
力。
Alu l0 10% 0
l0
现拉
断后延伸率 A:
象伸
断面收缩率 Z: ZS0 Su 10% 0
试 样
S0
的
颈
缩
断裂后
-
• 说明: • ① 用断面缩率表示塑性比断后伸长率更
接近真实变形。 • ② A>Z 时,无颈缩,为脆性材料
A<Z 时,有颈缩,为塑性材料 • ③ 表征直径d0 相同时,l0,A。只有当
称为疲劳极限。用R-1表示。 • 钢铁材料规定次数为107,有色金属合金为108。
-
金属的疲劳极限受到很多 因素的影响,主要有工作 条件、表面状态、材质、 残余内应力等。改善零件 的结构形状,避免应力集 中,降低零件表面粗糙度 值以及采取各种表面强化 的方法,都能提高零件的 疲劳极限 。
1-疲劳源、2-疲劳裂纹 扩展区和3-瞬时断裂区 疲劳断口示意图
-
金属材料的力学性能:指金属材料在外力作用时表 现出来的性能。外力(载荷)形式主要有:拉伸、 压缩、弯曲、剪切、扭转等;常用的力学性能指标 有:强度、塑性、硬度、韧性和疲劳强度等
-
一、弹性和刚度
图1-2 退火低碳钢的拉伸曲线 弹性:指标为弹性极限Re ,即材料承受最大弹性变 形时的应力。
-
低碳钢的应力-应变曲线
压痕小,适用范围广。 缺点:测量结果分散度大。
洛氏硬度压痕
-
维氏硬度
维氏硬度试验原理
维氏硬度压痕
-
维氏硬度计
• 维氏硬度用符号HV表示,符号前的数字为硬度值,后 面的数字按顺序分别表示载荷值及载荷保持时间。
• 根据载荷范围不同,规定了三种测定方法—维氏硬度 试验 、小负荷维氏硬度试验、显微维氏硬度试验。
第一章 金属材料性能
• 第一节 金属材料的力学性能 • 第二节 材料的物理、化学性能和工艺
性能
-
• 金第属材一料具节有良金好的属各材项性料能。的为了力合学理地性使用能和加工
金属材料,必须了解其使用性能和工艺性能。 • 使用性能:指各个零件或构件在正常工作时金属材料应
具备的性能,他决定了金属材料的应用范围,使用的可 靠性和寿命。包括力学(机械)性能、物理性能、化学 性能。 • 工艺性能:指金属材料在冷、热加工过程中应具备的性 能,它决定了金属材料的加工方法。包括铸造性能、锻 造性能、焊接性能、切削加工性能和热处理性能。
硬度。 • 材料的Rm与HB之间的经验关系:
对于低碳钢: Rm(MPa)≈3.6HB 对于高碳钢: Rm(MPa)≈3.4HB 对于铸铁: Rm(MPa)≈1HB或 Rm(MPa)≈ 0.6(HB40)
-
洛氏硬度 • 洛氏硬度用符号HR表示,HR=k-(h1-h0)/0.002 • 根据压头类型和主载荷不同,分为九个标尺,常用的
• 维氏硬度保留了布氏硬度和 洛氏硬度的优点。
显微维氏硬度计
度小 计负
荷 维 氏 硬
-
四、冲击韧性 是指材料抵抗冲击载荷 作用而不破坏的能力。
指标为冲击吸 收能量AKU或 AKV(通过冲击 实验测得)。
-
五、疲劳和断裂韧性
• 材料在低于Re的重复交变应力作用下发生断裂的现象。 • 材料在规定次数应力循环后仍不发生断裂时的最大应力
-
疲劳断口
轴的疲劳断口
疲劳辉纹(扫描电镜照片)
-
二、强度与塑性
1 强度:材料在外力作用下抵抗变形和破坏的能力。
屈服强度Re:材料发生微量塑性变形时的应力值。
Re
FS S0
S点附近,发生 塑性变形增加 而应力不增加, 这种现象叫做 屈服。S点对应 的应由于有很多材料的拉伸
Rp
Fp S0
曲线上没有明显的屈服
• sm段均匀塑性变形阶段, 应力随着应变增加而增加,
• 产生应变强化。超过m点后,试样开始发生局部塑性 变形,即出现颈缩,随应变增加应力明显下降,并在E
点迅速断裂。m点所对应的应力为抗拉强度Rm
抗拉强度反映材料抵抗断裂破坏的能力,也是零件设
计的材料评价的重要指标。
-
2 塑性:材料受力破坏前可承受最大塑性变形的能