(完整版)全等三角形难题题型归类及解析
专题02 全等三角形(解析版)

专题02全等三角形思维导图核心考点聚焦1、全等图形2、全等三角形的性质3、全等三角形的判定方法4、添加条件使三角形全等5、全等三角形的应用6、全等三角形与动点问题7、角平分线的性质与判定8、倍长中线模型9、证明线段和差问题10、常见的辅助线一、全等三角形的定义和基本性质1.基本定义(1)全等形:能够完全重合的两个图形叫做全等形.(2)全等三角形:能够完全重合的两个三角形叫做全等三角形.(3)对应顶点:全等三角形中互相重合的顶点叫做对应顶点.(4)对应边:全等三角形中互相重合的边叫做对应边.(5)对应角:全等三角形中互相重合的角叫做对应角.2.寻找全等三角形对应边、对应角的三种方法:(1)图形特征法:最长边对最长边,最短边对最短边;最大角对最大角,最小角对最小角.(2)位置关系法:①公共角(对顶角)为对应角、公共边为对应边.②对应角的对边为对应边,对应边的对角为对应角.(3)字母顺序法:根据书写规范按照对应顶点确定对应边或对应角.3.全等三角形的性质及应用①全等三角形的对应边相等;②全等三角形的对应角相等;③全等三角形对应边上的高、中线、角平分线分别相等;④全等三角形的周长相等,面积相等.二、三角形全等的判定方法及思路1.全等三角形的判定方法:“边边边”定理(SSS):三边对应相等的两个三角形全等.“边角边”定理(SAS):两边和它们的夹角对应相等的两个三角形全等.“角边角”定理(ASA ):两角和它们的夹边对应相等的两个三角形全等.“角角边”定理(AAS):两个角和其中一个角的对边对应相等的两个三角形全等.“斜边、直角边”定理(HL):斜边和一条直角边对应相等的两个直角三角形全等.2.全等三角形的证明思路:SAS HL SSS AAS SAS ASA AAS ASA AAS找夹角已知两边找直角找另一边边为角的对边找任一角找夹角的另一边已知一边一角边为角的邻边找夹边的另一角找边的对角找夹边已知两角找一角的对边ì®ìïï®íïïï®îïï®®ìïï®ìïïííï®íïïïïï®îîïï®ìïí®ïîïî三、角平分线的性质1.角的平分线的性质:角的平分线上的点到角两边的距离相等.注意:三角形的三条角平分线交于一点,到三边的距离相等.2.角平分线的判定:角的内部到角两边距离相等的点在角的平分线上,通常连接角的顶点和该点就能得到角平分线.一、全等的几种模型(1) 平移型(2)对称型(3)旋转型二、常见的几种添加辅助线构造全等三角形的方法1.倍长中线法倍长中线主要用于证明全等三角形,其主要是在全等三角形的判定过程中,遇到一般三角形边上的中线或中点,考虑中线倍长.如图:已知:在三角形ABC 中,O 为BC 边中点,辅助线:延长AO 到点D 使AO =DO ,结论:△AOB ≌△DOC.证明:如图,延长AO 到点D 使AO =DO ,由中点可知,OB =OC ,在△AOB和△DOC 中,OA OD AOB DOC OB OC =ìïÐ=Ðíï=î,∴△AOB ≌△DOC .总结:由倍长中线法证明三角形全等的过程一般均是用SAS 的方法,这是由于作出延长线后出现的对顶角决定的.2.截长或补短(含有线段-关系或求证两线间关系时常用).截长补短法,是初中几何题中一种添加辅助线的方法,也是把几何题化难为易的一种策略.截长:在长线段中截取一段等于另两条中的一条,然后证明剩下部分等于另一条;补短:将一条短线段延长,延长部分等于另一条短线段,然后证明新线段等于长线段.基本图形,如下:在ABC △中,,AB AC AM >平分BACÐ(1)在AB 上截取AD AC =;(2)把AC 延长到点E ,使AB AE =.考点剖析考点一、全等图形例1.如图1,把大小为44´的正方形网格分割成了两个全等形.请在图2中,沿着虚线画出四种不同的分割方法,把44´的正方形网格分割成两个全等形.【解析】∵要求分成全等的两块,∴每块图形要包含有8个小正方形.考点二、全等三角形的性质例2.如图,A,E,C三点在同一直线上,且ABC DAE△≌△.=+;(1)求证:DE CE BC∥?并证明你的猜想.(2)猜想:当ADEV满足什么条件时DE BC【解析】(1)解:∵ABC DAE△≌△,∴BC AE=,=,AC DE∴DE AC CE AE CE BC ==+=+;(2)解:猜想,90AED Ð=°时,DE BC ∥,∵ABC DAE △≌△,∴AED BCA Ð=Ð,∵DE BC ∥,∴BCE DEC Ð=Ð,∴DEC AED Ð=Ð,又180DEC AED Ð+Ð=°,∴90AED Ð=°,∴当ADE V 是直角三角形,且90AED Ð=°时,DE BC ∥.考点三、全等三角形的判定方法例3.如图,点C ,E ,F ,B在同一直线上,点A ,D 在BC 异侧,AB CD ∥,AE DF =,A D Ð=Ð.(1)请判断AB 和CD 的数量关系,并说明理由;(2)若AB CF =,40B Ð=°,求D Ð的度数.【解析】(1)证明:∵AB CD ∥,∴B C Ð=Ð.在ABE △和DCF △中,∵A D B C AE DF Ð=ÐìïÐ=Ðíï=î,∴ABE △≌DCF △,∴AB CD =.(2)解:∵ABE △≌DCF △,∴AB CD =,BE CF =,B C Ð=Ð,∵40B Ð=°,例4.如图,已知,AB ED CD BF =∥.(1)现要从如下条件中再添加一个①AC EF =;②AB DE =;③A E Ð=Ð;④DF CB =得到ABC EDF △≌△.你添加的条件是:________.(填序号)(2)选择(1)中的一种情况进行证明.【解析】(1)解:②或③(任选一个填即可)(2)选择②证明:CD BF =Q ,CD CF BF CF \+=+,DF CB \=,∥AB ED Q ,B D \Ð=Ð,\在ABC △和EDF △中,AB DE B D DF CB =ìïÐ=Ðíï=î,()SAS ABC EDF \△≌△;选择③证明:CD BF =Q ,CD CF BF CF \+=+,DF CB \=,∥AB ED Q ,B D \Ð=Ð,\在ABC △和EDF △中,A E B D DF CB Ð=ÐìïÐ=Ðíï=î,()AAS ABC EDF \△≌△.考点五、全等三角形的应用(1)当D 点在伞柄AP 上滑动时,处于同一平面的两条伞骨BD 和CD 相等吗?请说明理由.例6.如图,已知ABC △中,B C Ð=Ð,8AB =厘米,6BC =厘米,点D 为AB 的中点,如果点P 在线段BC 上以每秒2厘米的速度由B 点向C 点运动,同时,点Q 在线段CA 上以每秒a 厘米的速度由C 点向A 点运动,设运动时间为(t 秒)(03)t £<.(1)用含t 的代数式表示(2)若点P 、Q 的运动速度相等,经过(3)若点P 、Q 的运动速度不相等,当点【解析】(1)解:由题意得:则62PC t =-;(2)解:CQP △≌(1)将三角尺的直角顶点落在OC的任意一点别为E、(F如图①),则PE(2)把三角尺绕着点P旋转(如图②想PE与PF的大小关系,并说明理由.Ð【解析】(1)解:∵OC平分AOB\=,PE PF考点八、倍长中线模型例8.(1)在ABC △中,46AB AC==,,AD 是BC 边上的中线,则中线AD 长范围为___________;(2)如图,在ABC △中,AD 是BC 边上的中线,点E F ,分别在AB AC ,上,且DE DF ^,求证:BE CF EF +>.【解析】(1)如图,延长AD 至G ,使DG AD =,连接BG ,,则2AG AD =,Q AD 是BC 边上的中线,BD CD \=,在ADC △和GDB △中,CD BD ADC GDB AD GD =ìïÐ=Ðíï=î,()SAS ≌ADC GDB \△△,6BG AC \==,BG AB AG BG AB -<<+Q ,6464AG \-<<+,即210AG <<,2210AD \<<,15AD \<<,故答案为:15AD <<;(2)证明:如图,延长ED 至H 使ED DH =,连接CH ,FH ,,在BDE △和CDH △中,CD BD BDE CDH ED HD =ìïÐ=Ðíï=î,()SAS ≌BDE CDH \△△,BE CH \=,DE DF ^Q ,=ED HD ,EF HF \=,CF CH FH +>Q ,CF BE EF \+>.考点九、证明线段和差问题例9.如图所示,在ABC △,100A Ð=°,40ABC BD Ð=°,平分ABC Ð交AC 于点D ,延长BD 至点E ,使ED AD =,连接CE .求证:BC AB CE =+.【解析】证明:如图所示,在BC 上取一点F 使得BF AB =,连接DF ,∵100A Ð=°,40ABC Ð=°,∴40ABC ACB Ð=Ð=°,∵BD 是ABC △的角平分线,∴20ABD FBD Ð=Ð=°,在ABD △和FBD △中,AB FB ABD FBD BD BD =ìïÐ=Ðíï=î,∴()SAS ≌ABD FBD △△,∴ADB FDB AD DF ==∠∠,,又∵AD ED ADB EDC ==,∠∠,∴1801002060ADB FDB CDE Ð=Ð=Ð=°-°-°=°,FD ED =,∴18060FDC ADB FDB EDC =°--=°=∠∠∠∠,在CDE △和CDF △中,ED FD CDE CDF CD CD =ìïÐ=Ðíï=î,∴()SAS CDE CDF △≌△,∴CE CF =,∴BC BF CF AB CE =+=+.考点十、常见的辅助线例10.如图,△ABC 中,AB =AC ,在AB 上取一点E ,在AC 的延长线上取一点F ,使CF =BE ,连接EF ,交BC 于点D .求证:DE =DF .【解析】证明:作FH P AB 交BC 延长线于H ,∵FH P AB ,∴∠FHC =∠B ,∠BED =∠HFD .又∵AB =AC ,∴∠B =∠ACB .又∠ACB =∠FCH ,∴∠FHC =∠FCH .∴CF =HF .又∵BE =CF ,∴HF =BE .在△DBE 和△DHF 中,,B FHC BE HFBED HFD Ð=Ðìï=íïÐ=Ðî∴△DBE ≌△DHF (ASA ).∴DE =DF .过关检测一、选择题1.如图,工人师傅设计了一种测零件内径AB 的卡钳,卡钳交叉点O 为AA ¢、BB ¢的中点,只要量出A B¢¢的长度,就可以知道该零件内径AB 的长度.依据的数学基本事实是( )A .两角和它们的夹边分别相等的两个三角形全等B .两边和它们的夹角分别相等的两个三角形全等C .三边分别相等的两个三角形全等D .两点之间线段最短【答案】B【解析】Q 点O 为AA ¢、BB ¢的中点,OA OA \¢=,OB OB ¢=,由对顶角相等得AOB A OB ¢¢Ð=Ð,在AOB △和A OB ¢¢△中,OA OA AOB A OB OB OB ¢¢=ìïÐ=Т¢íï=î,(SAS)≌AOB A OB ¢\¢△△,AB A B ¢\=¢,即只要量出A B ¢¢的长度,就可以知道该零件内径AB 的长度,故选B .2.如图,AOB ADC △≌△,90O D Ð=Ð=°,70OAD Ð=°,当AO BC ∥时,则ABO Ð度数为( )A .35°B .40°C .45°D .55°【答案】A 【解析】∵AOB ADC △≌△,∴AB AC =,BAO CAD Ð=Ð,∴A ABC CB =Ð∠,设ABC ACB x Ð=Ð=,∵BC OA ∥,∴ABC BAO CAD x Ð=Ð=Ð=,180ACB CAO Ð+Ð=°,∴180ACB CAD OAD Ð+Ð+Ð=°,∵70OAD Ð=°,∴70180x x ++°=°,解得:55x =°,∴55BAO Ð=°,∵90AOB Ð=°,∴905535ABO Ð=°-°=°.故选A .3. 如图,点A ,C ,B ,D 在同一条直线上,已知:CE DF =,ACE BDF Ð=Ð,下列条件中不能判定△≌△ACE BDF 的是A .E FÐ=ÐB .AC BD =C .AE BF =D .∥AE BF【答案】C 【解析】A 、符合全等三角形的判定定理ASA ,能推出△≌△ACE BDF ,故本选项不符合题意;B 、符合全等三角形的判定定理SAS ,能推出△≌△ACE BDF ,故本选项不符合题意;C 、不符合全等三角形的判定定理,SSA 不能推出△≌△ACE BDF ,故本选项符合题意;D 、因为∥AE BF ,所以A FBD Ð=Ð,所以符合全等三角形的判定定理AAS ,能推出△≌△ACE BDF ,故本选项不符合题意.故选C .4.如图,在△ABC 中,AC BC =,90ACB Ð=°,AD 平分BAC Ð,BE AD ^交AC 的延长线于F ,E 为垂足,则结论:①AD BF =;②CF CD =;③AC CD AB +=;④BE CF =;⑤2BF BE =;其中正确结论的个数是( )A .1B .2C .3D .4【答案】D 【解析】,90BC AC ACB =Ð=°Q ,45CAB ABC \Ð=Ð=°,AD Q 平分BAC Ð,22.5BAE EAF \Ð=Ð=°,Q 在Rt ACD △与Rt BFC △中,90,90EAF F FBC F Ð+Ð=°Ð+Ð=°,EAF FBC \Ð=Ð,BC AC EAF FBC BCF ACD =Ð=ÐÐ=ÐQ ,,,∴Rt Rt ≌ADC BFC △△,AD BF \=,故①正确.②Q ①中Rt Rt ≌ADC BFC △△,CF CD \=,故②正确.③Q ①中Rt Rt ≌ADC BFC△△,CF CD AC CD AC CF AF \=+=+=,22.5CBF EAF Ð=Ð=°Q ,\在Rt AEF △中,9067.5F EAF Ð=°-Ð=°,45CAB Ð=°Q ,18018067.54567.5ABF F CAB \Ð=°-Ð-Ð=°-°-°=°,ABE AFE \≌△△,A .1个B .2个【答案】D 【解析】①ABC ÐQ 和ACB Ð的平分线相交于点EBO CBO \Ð=Ð,BCO FCO Ð=Ð∵EF BC ∥,Q 点O 是ABC △的内心,OD 1122AEF S AE OD AF \=×+×△1()2AE AF OD =+×【答案】135【解析】如图,连接AD 、BD由图可知,在DFB △和BEC △90DF BE DFB BEC FB EC =ìïÐ=Ð=°íï=î,【答案】AD AB =或3=Ð【解析】AC Q 平分DAB Ð12\Ð=Ð,又AC AC =Q ,【答案】7【解析】∵EF AB ^,∴90FEB Ð=°,∵BF AC ^,∴90ADB Ð=°,∴90F FBE Ð+Ð=°,A Ð+【答案】15° 6【解析】(1)Q 90AEC Ð=90BED DFC \Ð=Ð=°,在Rt BDE △和Rt CDF △中,【解析】设经过xQ厘米,点==AB AC24\=厘米,12BDQABC ACBÐ=Ð\要使BPD △与CQP V 全等,必须BD CP =或BP CP =,即12164x =-或4164x x =-,解得:1x =或2x =,1x =时,4BP CQ ==,414¸=;2x =时,12BD CQ ==,1226¸=;即点Q 的运动速度是4厘米/秒或6厘米/秒,故答案为:4或6.三、解答题11.如图,在ABC △中,AB AC =,D 为BC 上一点,DE AB ^,DF AC ^,垂足分别为E 、F ,且DE DF =.请选择一对你认为全等的三角形并加以证明.(1)你选择的是:△__________△≌__________;(2) 根据你的选择,请写出证明过程.【解析】(1)解:根据图形和已知条件,选择证明的全等三角形为AED AFD V V ≌,故答案为:AED ,AFD (答案不唯一);(2)证明:DE AB ∵⊥,DF AC ^,AED \△和AFD △是直角三角形,在Rt AED △和Rt AFD △中,AD AD DE DF =ìí=î,()Rt Rt HL ≌AED AFD \△△.12.如图,点D E 、分别在线段,AB AC 上,AE AD =,不添加新的线段和字母,从下列条件①B C Ð=Ð,②BE CD =,③AB AC =,④ADC AEB Ð=Ð中选择一个使得≌ABE ACD △△.(1)你选择的一个条件是_____________(填写序号)(2)根据你的选择,请写出证明过程.【解析】(1)解:∵AE AD =,A A Ð=Ð,可以利用SAS,AAS,ASA 三种方法证明≌ABE ACD △△;故可以选择的条件可以是:①或③或④(2)选择①:在ABE △和ACD △中,A ABC AE AD Ð=ÐìïÐ=Ðíï=î,∴()AAS ≌ABE ACD △△;选择③在ABE △和ACD △中,AB AC A A AE AD =ìïÐ=Ðíï=î,∴()SAS ≌ABE ACD △△;选择④在ABE △和ACD △中,ADC AEB AE ADA A Ð=Ðìï=íïÐ=Ðî,∴()ASA ABE ACD △≌△.13.如图,点A ,B ,C ,D 在同一条直线上,点E ,F 分别在直线AB 的两侧,且AE BF =,A B Ð=Ð,ACE BDF Ð=Ð.(1)求证:ADE BCF △△≌.(2)若8AB =,2AC =,求CD 的长.【解析】(1)证明:在ACE △和BDF V 中,A B ACE BDF AE BF Ð=ÐìïÐ=Ðíï=î,()AAS ACE BDF \≌△△.AC BD \=.AD BC \=.在ADE V 和BCF △中AE BF A B AD BC =ìïÐ=Ðíï=î,()SAS ≌ADE BCF \△△.(2)由(1)知ACE BDF V V ≌,2BD AC \==,8AB =Q ,4CD AB AC BD \=--=,故CD 的长为4.14.如图,ABC △的外角DAC Ð的平分线交BC 边的垂直平分线于P 点,PD AB ^于D ,PE AC ^于E ,连接BP ,CP .(1)求证:BD CE =;(2)若6cm AB =,10cm AC =,直接写出AD 的长为______.【解析】(1)证明:Q 点P 在BC 的垂直平分线上,BP CP \=,AP Q 是DAC Ð的平分线,DP EP \=,在Rt BDP △和Rt CEP △中,BP CP DP EP =ìí=î,(1)【探究发现】图1中AC 与BM 的数量关系是 (2)【初步应用】如图2,在ABC △中,若12AB =(3)【探究提升】如图3,AD 是ABC △的中线,过点AF AC =,延长DA 交EF 于点P ,判断线段EF 与由(1)可知,(SAS)≌MDB ADC △△,8BM AC \==,在ABM △中,AB BM AM AB BM -<<+,128128AM \-<<+,即4220AD <<,210AD \<<,即BC 边上的中线AD 的取值范围为210AD <<;(3)2EF AD =,EF AD ^,理由如下:如图3,延长AD 到M ,使得DM AD =,连接BM ,由(1)可知,(SAS)BDM CDA △≌△,BM AC \=,AC AF =Q ,BM AF \=,由(2)可知,AC BM ∥,180BAC ABM \Ð+Ð=°,AE AB ^Q 、AF AC ^,90BAE FAC \Ð=Ð=°,180BAC EAF \Ð+Ð=°,ABM EAF \Ð=Ð,在ABM △和EAF △中,AB EA ABM EAF BM AF =ìïÐ=Ðíï=î,(SAS)ABM EAF \△≌△,AM EF \=,BAM E Ð=Ð,AD DM =Q ,2AM AD \=,2EF AD \=,EAM BAM BAE E APE Ð=Ð+Ð=Ð+ÐQ ,90APE BAE \Ð=Ð=°,EF AD \^.。
全等三角形的重难点模型(八大题型)(解析版)—八年级数学上册(浙教版)

全等三角形的重难点模型(八大题型)【题型01:平移型】【题型02:翻折型】【题型03:旋转型】【题型04:一线三等角型(三类型)】【题型05:手拉手模型(四大类型)】【题型06:半角模型】【题型07:对角互补模型】【题型08:平行+线段中点构造全等模型】【题型1 平移型】【方法技巧】【典例1】如图,点E,C在线段BF上,AB=DE,BE=CF,AC=DF.(1)求证:△ABC≌△DEF;(2)若∠B=45°,∠F=85°,求∠A的度数.【答案】(1)见解析(2)50°【分析】本题考查全等三角形的判定与性质,三角形内角和定理,解题的关键是熟练运用全等三角形的判定.(1)首先根据BE=CF可得BC=EF,即可判定△ABC≌△DEF;(2)首先根据(1)中两三角形全等,可得∠ACB=∠F=85°,在△ABC中根据三角形内角和定理即可求出∠A.【详解】(1)证明:∵BE=CF,∴BE+EC=CF+EC,即BC=EF,∴在△ABC和△DEF中,AB=DE AC=DF BC=EF,∴△ABC≌△DEF(SSS).(2)解:∵△ABC≌△DEF,∠B=45°,∠F=85°,∴∠ACB=∠F=85°,∴∠A=180°―∠ACB―∠B=50°.【变式1-1】如图、点B、E、C、F在一条直线上AB=DE,AC=DF,BE=CF.(1)求证:∠A=∠D;(2)求证:AC∥DF.【答案】(1)证明见解析(2)证明见解析【分析】本题考查三角形综合,涉及三角形全等的判定与性质、平行线的判定等知识,熟记相关几何判定与性质是解决问题的关键.(1)由题中条件,利用两个三角形全等的判定定理SSS得到△ABC≌△DEF,再由三角形全等的性质即可得证;(2)由(1)中△ABC≌△DEF得到∠ACB=∠F,再由同位角相等两直线平行即可得证.【详解】(1)证明:∵BE=CF,∴BC=FE,在△ABC 和△DEF 中,AB =DE AC =DF BE =CF∴△ABC≌△DEF (SSS),∴∠A =∠D ;(2)证明:由(1)知△ABC≌△DEF ,∴ ∠ACB =∠F ,∴ AC∥DF .【变式1-2】如图,在△ABC 和 △DEF 中,边AC ,DE 交于点H ,AB∥DE ,AB =DE ,BC =EF .(1)若∠B =55°,∠ACB =100°,求∠CHE 的度数;(2)求证:△ABC≌△DEF .【答案】(1)∠CHE =25°;(2)证明见解析.【分析】本题考查了三角形的内角和定理,平行线的性质,全等三角形的判定,熟练掌握知识点的应用是解题的关键.(1)根据三角形内角和定理求出∠A ,再根据平行线的性质得出∠CHE =∠A 即可;(2)根据平行线的性质得出∠B =∠DEF ,求出BC =EF ,再根据全等三角形的判定定理推出即可;【详解】(1)解:∵∠B =55°,∠ACB =100°,∴∠A =180°―∠B ―∠ACB =25°,∵AB∥DE ,∴∠CHE =∠A =25°;(2)证明:∵AB∥DE ,∴∠B =∠DEF ,在△ABC 和△DEF 中,AB =DE ∠B =∠DEF BC =EF∴△ABC≌△DEF (SAS).【变式1-3】如图,点B 、E 、C 、F 在同一直线上,∠A =∠D =90°,BE =CF ,AC =DF .求证:∠B =∠DEF .【答案】答案见解析【分析】本题考查了三角形全等的判定与性质,掌握三角形全等的判定定理是解题的关键即可得到答案.根据BE =CF 得到BE +EC =EC +CF 即BC =FE ,之后利用HL 证明Rt △ABC≌Rt △DFE 即可得到答案.【详解】证明:∵BE =CF ,∴BE +EC =EC +CF ,即BC =FE .∵∠A =∠D =90°,则在Rt △ABC 和Rt △DFE 中,BC =FE AC =DE ,∴Rt △ABC≌Rt △DFE(HL).∴∠B =∠DEF .【题型2 翻折型】【方法技巧】【典例2】如图,AB=AD,CB⊥AB,CD⊥AD,垂足分别为B,D.(1)求证:△ABC≌△ADC;(2)若AB=4,CD=3,求四边形ABCD的面积.【变式2-1】如图,已知∠1=∠2,∠C=∠D,求证:AC=BD【答案】证明见解析【分析】本题考查全等三角形的判定与性质,由两个三角形全等的判定定理AAS 得到△ABC≌△BAD (AAS),再由三角形全等性质即可得证,熟练掌握两个三角形全等判的定定理AAS 及性质是解决问题的关键.【详解】证明:在△ABC 与△BAD 中,∠1=∠2∠C =∠D AB =AB,∴△ABC≌△BAD (AAS),∴AC =BD .【变式2-2】如图,已知AD 平分∠BAC ,AB =AC .求证:△ABD≌△ACD .【答案】见解析【分析】本题主要考查了全等三角形的判定.根据AD 平分∠BAC ,可得∠BAD =∠CAD ,再根据边角边可证明△ABD≌△ACD .【详解】证明:∵AD 平分∠BAC,∴∠BAD =∠CAD ,在△ABD 和△ACD 中,∵AB =AC ,∠BAD =∠CAD ,AD =AD ,∴△ABD≌△ACD (SAS).【变式2-3】如图,AB =AC ,BO =CO ,求证:∠ADC =∠AEB .【答案】见解析【分析】本题考查了全等三角形的判定与性质、三角形外角的定义及性质,连接OA ,证明△AOB≌△AOC (SSS)得出∠B =∠C ,再由三角形外角的定义及性质即可得出答案,熟练掌握以上知识点并灵活运用是解此题的关键.【详解】证明:如图,连接OA ,在△AOB 和△AOC 中,AB =AC OB =OC OA =OA,∴△AOB≌△AOC (SSS),∴∠B =∠C ,∵∠DOB =∠EOC ,∴∠B +∠DOB =∠C +∠EOC ,∴∠ADC =∠AEB .【题型3旋转型】【方法技巧】【典例3】如图,在△ABC 和△AEF 中,点E 在BC 边上,∠C =∠F ,AC =AF ,∠CAF =∠BAE ,EF 与AC 交于点G .(1)试说明:△ABC ≌△AEF ;(2)若∠B =55°,∠C =20°,求∠EAC 的度数.【答案】(1)见解答;(2)35°.【解答】(1)证明:∵∠CAF=∠BAE,∴∠CAF+∠EAC=∠BAE+∠EAC,即∠BAC=∠EAF,在△ABC和△AEF中,,∴△ABC≌△AEF(ASA);(2)解:∵∠B=55°,∠C=20°,∴∠BAC=180°﹣55°﹣20°=105°,∵△ABC≌△AEF,∴AB=AE,∴∠B=∠AEB=55°,∴∠BAE=180°﹣∠B﹣∠AEB=70°,∴∠EAC=∠BAC﹣∠BAE=105°﹣70°=35°.【变式3-1】如图,点E在△ABC外部,点D在BC边上,若∠1=∠2,∠E=∠C,AE=AC,求证:AB=AD.【答案】证明见解答.【解答】证明:∵∠1=∠2,∴∠1+∠CAD=∠2+∠CAD,∴∠BAC=∠DAE,在△ABC和△ADE中,,∴△ABC≌△ADE(ASA),∴AB=AD.【变式3-2】如图,点E在△ABC边AC上,AE=BC,BC∥AD,∠BAC=∠ADE.(1)求证:△ABC≌△DEA;(2)若∠CAD=30°,求∠BCD的度数.【答案】(1)见解析;(2)∠BCD=105°.【解答】(1)证明:∵BC∥AD,∴∠ACB=∠DAE.在△ABC和△DEA中,∵,∴△ABC≌△DEA(AAS).(2)解:由(1)知△ABC≌△DEA(AAS),∴AC=AD,∠ACB=∠CAD=30°,∴,∴∠BCD=∠ACD+∠ACB=30°+75°=105°.∴∠BCD=105°.【变式3-3】如图,在△ABC中,点D是BC的中点,E是AB边上一点,过点C作CF∥AB交ED的延长线于点F.求证:△BDE≌△CDF.【答案】证明见解答过程.【解答】证明:∵CF∥AB,∴∠B=∠FCD,∠BED=∠F,∵点D是BC的中点,∴BD=CD,在△BDE与△CDF中,,∴△BDE≌△CDF(AAS).【变式3-4】如图,∠ABC=∠ADE,∠BAD=∠CAE,AC=AE,求证:△ABC≌△ADE.【答案】见解答.【解答】证明:∵∠BAD=∠CAE,∴∠BAD+∠CAD=∠CAE+∠CAD,即∠BAC=∠DAE.在△ABC和△ADE中,,∴△ABC≌△ADE(AAS).【题型4 一线三等角型】【方法技巧】模型一一线三垂直如图一,∠D=∠BCA=∠E=90°,BC=AC。
(完整word版)全等三角形难题(含答案),推荐文档

全等三角形难题(含答案)1.已知:AB=4, AC=2 D 是BC 中点,AD 是整数,求 AD解:延长AD 至U E,使AD=DE •/ D 是BC 中点 ••• BD=DC在^ ACD^n ^ BDE 中AD=DE/ BDE=Z ADCBD=DC••• AC=BE=2•••在△ ABE 中AB-BEv AE< AB+BE •/ AB=4即 4-2 v 2AD< 4+2 1v ADV 3••• AD=2延长CD 与 P,使D 为CP 中点。
连接 AP,BP •••DP=DC,DA=DB •••ACBP 为平行四边形又/ ACB=90•••平行四边形ACBP 为矩形2.已知:D 是AB 中点,/ ACB=90,求证: CD 1 -AB2••• AB=C P=1/2ABBC=DE / B=/ E ,/ C=/ D, F 是 CD 中点,求证:/ 仁/ 2证明:•/ BC=ED,CF=DF,/ BCF=/ EDF•••三角形BCF 全等于三角形 EDF (边角边)••• BF=EF, / CBF=/ DEF连接BE在三角形BEF 中,BF=EF••• / EBF=/ BEF•/ / ABC / AED••• / ABE=/ AEB •• AB=AE 。
在三角形ABF 和三角形AEF 中AB=AE,BF=EF,/ ABF=/ ABE+/ EBF=/ AEB+Z BEF=/ AEF•••三角形ABF 和三角形AEF 全等。
••• / BAF=/ EAF ( / 1 = / 2)。
4.已知:/ 仁/ 2, CD=DE EF//AB ,求证:EF=AC过C 作CG/ EF 交AD 的延长线于点GCG/ EF ,可得,/ EFD= CGDDE= DC/ FDE =/ GDC (对顶角)3.已知: 连接BF 和EFEF= CG/ CGD=/ EFD又,EF// AB•••/ CGD=/ 2 :.△ AGC为等腰三角形,AG= CG又EF = CG ••• EF= AC5.已知:AD平分/ BAC AC=AB+BD 求证:/ B=2/ C证明:延长AB取点E,使AE= AC连接DE•/ AD平分Z BAC• / EAD=/ CAD•AE= AC, AD= AD.△ A ED^A ACD (SAS• / E=/ C•AC= AB+BD• AE= AB+BD•AE= AB+BE• BD= BE• / BDE=/ E-/ ABC=/ E+Z BDE• / ABC= 2/ E• Z ABC= 2/ C6.已知:AC平分/ BAD CE丄AB, / B+Z D=180°,求证:AE=AD+BE证明:在AE上取F,使EF= EB,连接CF• CE 丄AB• / CEB=/ CEF= 90°•EB= EF, CE= CE,.△ CEB^A CEF• / B=/ CFE•/ B+/ »180°,/ CFE+/ CFA= 180• / CFAAC平分/ BAD./ DAC=/ FAC•AC= AC• △ ADC^A AFC( SAS• A» AF• AE= AF+ FE= AD+ BE12.如图,四边形ABCD中, AB// DC BE、CE分别平分/ ABC / BCD且点E在AD上。
全等三角形题型归类及解析汇报

全等三角形难题题型归类及解析一、角平分线型角平分线是轴对称图形,所以我们要充分的利用它的轴对称性,常作的辅助线是:一利用截取一条线段构造全等三角形,二是经过平分线上一点作两边的垂线。
另外掌握两个常用的结论:角平分线与平行线构成等腰三角形,角平分线与垂线构成等腰三角形。
1. 如图,在ΔABC 中,D 是边BC 上一点,AD 平分∠BAC ,在AB 上截取AE=AC ,连结DE ,已知DE=2cm ,BD=3cm ,求线段BC 的长。
2. 已知:如图所示,BD 为∠ABC 的平分线,AB=BC ,点P 在BD 上,PM ⊥AD 于M ,•PN ⊥CD 于N ,判断PM 与PN 的关系.3. 已知:如图E 在△ABC 的边AC 上,且∠AEB=∠ABC 。
(1) 求证:∠ABE=∠C ;(2) 若∠BAE 的平分线AF 交BE 于F ,FD ∥BC 交AC 于D ,设AB=5,AC=8,求DC 的长。
.AB C DE PD A CBM N5、如图所示,已知∠1=∠2,EF ⊥AD 于P ,交BC 延长线于M ,求证:2∠M=(∠ACB-∠B )21PFMDBA CE6、如图,已知在△ABC 中,∠BAC 为直角,AB=AC ,D 为AC 上一点,CE ⊥BD 于E .(1) 若BD 平分∠ABC ,求证CE=12BD ;(2) 若D 为AC 上一动点,∠AED 如何变化,若变化,求它的变化范围;若不变,求出它的度数,并说明理由。
8、如图,在△ABC 中,∠ABC=60°,AD 、CE 分别平分∠BAC 、∠ACB ,求证:AC=AE+CD .二、中点型由中点应产生以下联想:ED C BA1、想到中线,倍长中线2、利用中心对称图形构造8字型全等三角形3、在直角三角形中联想直角三角形斜边上的中线4、三角形的中位线2、已知:如图,ABC △中,45ABC ∠=°,CD AB ⊥于D ,BE 平分ABC ∠,且B E A C ⊥于E ,与CD 相交于点F H ,是BC 边的中点,连结DH 与BE 相交于点G . (1)求证:BF AC =; (2)求证:12CE BF =D AE FCHGB3、如图,△ABC 中,D 是BC 的中点,DE ⊥DF ,试判断BE+CF 与EF 的大小关 系,并证明你的结论。
专题12.1全等三角形-重难点题型(教师版含解析)2022年八年级数学上册举一反三系列(人教版)

专题12.1全等三角形-重难点题型【人教版】【知识点1全等三角形的性质】全等三角形的对应边相等,对应角相等.(另外全等三角形的周长、面积相等,对应边上的中线、角平分线、高线均相等)【题型1全等三角形的对应元素判断】【例1】(2020秋•潍城区期中)如图,△ABC≌△DEF,点E、C、F、B在同一条直线上.下列结论正确的是()A.∠B=∠D B.∠ACB=∠DEF C.AC=EF D.BF=CE【分析】根据全等三角形的对应边相等、对应角相等解答.【解答】解:∵△ABC≌△DEF,∴∠B=∠E,但∠B与∠D不一定相等,A选项结论错误,不符合题意;∵△ABC≌△DEF,∴∠ACB=∠EFD,当∠ACB与∠DEF不一定相等,B选项结论错误,不符合题意;∵△ABC≌△DEF,∴AC=DF,当AC与EF不一定相等,C选项结论错误,不符合题意;∵△ABC≌△DEF,∴BC=EF,∴BC﹣CF=EF﹣CF,即BF=CE,D选项结论正确,符合题意;故选:D.【点评】本题考查的是全等三角形的性质,掌握全等三角形的对应边相等、对应角相等是解题的关键.【变式1-1】(2020秋•合江县月考)如图,已知△ABC≌△CDA,下面四个结论中,不正确的是()A.△ABC和△CDA的面积相等B.△ABC和△CDA的周长相等C.∠B+∠ACB=∠D+∠ACD D.AD∥BC,且AD=CB=S△CDA,△ABC和△CDA的周长相等,AD=CB,∠B=∠D,【分析】由全等三角形的性质可得S△ABC∠ACB=∠DAC,进而可得AD∥BC,即可求解.【解答】解:∵△ABC≌△CDA,=S△CDA,△ABC和△CDA的周长相等,AD=CB,∠B=∠D,∠ACB=∠DAC,∴S△ABC∴AD∥BC,故选项A、B、D都不符合题意,∵∠ACB不一定等于∠ACD,∴∠B+∠ACB不一定等于∠D+∠ACD,故选项C符合题意,故选:C.【点评】本题考查了全等三角形的性质,掌握全等三角形的性质是本题的关键.【变式1-2】(2020秋•海珠区校级期中)如图,△ABC≌△AEF,AB=AE,∠B=∠E,则对于下列结论:①AC=AF;②∠FAB=∠EAB;③EF=BC;④∠EAB=∠FAC.其中正确结论的个数是()A.1个B.2个C.3个D.4个【分析】利用全等三角形的性质可得答案.【解答】解:∵△ABC≌△AEF,∴AF=AC,EF=CB,∠FAE=∠BAC,∴∠FAE﹣∠FAB=∠BAC﹣∠BAF,即∠BAE=∠FAC,∴正确的结论是①③④,共3个,故选:C.【点评】此题主要考查了全等三角形的性质,关键是掌握全等三角形,对应边相等,对应角相等.【变式1-3】(2020秋•北碚区期中)如图所示,△ADB≌△EDB,△BDE≌△CDE,B,E,C在一条直线上.下列结论:①BD是∠ABE的平分线;②AB⊥AC;③∠C=30°;④线段DE是△BDC的中线;⑤AD+BD=AC其中正确的有()个.A.2B.3C.4D.5【分析】根据全等三角形的对应角相等得出∠ABD=∠EBD,即可判断①;先由全等三角形的对应边相等得出BD=CD,BE=CE,再根据等腰三角形三线合一的性质得出DE⊥BC,则∠BED=90°,再根据全等三角形的对应角相等得出∠A=∠BED=90°,即可判断②;根据全等三角形的对应角相等得出∠ABD=∠EBD,∠EBD=∠C,从而可判断∠C,即可判断③;根据全等三角形的对应边相等得出BE=CE,再根据三角形中线的定义即可判断④;根据全等三角形的对应边相等得出BD=CD,但A、D、C 可能不在同一直线上,所以AD+CD可能不等于AC.【解答】解:①∵△ADB≌△EDB,∴∠ABD=∠EBD,∴BD是∠ABE的平分线,故①正确;②∵△BDE≌△CDE,∴BD=CD,BE=CE,∴DE⊥BC,∴∠BED=90°,∵△ADB≌△EDB,∴∠A=∠BED=90°,∴AB⊥AD,∵A、D、C可能不在同一直线上∴AB可能不垂直于AC,故②不正确;③∵△ADB≌△EDB,△BDE≌△CDE,∴∠ABD=∠EBD,∠EBD=∠C,∵∠A=90°若A、D、C不在同一直线上,则∠ABD+∠EBD+∠C≠90°,∴∠C≠30°,故③不正确;④∵△BDE≌△CDE,∴BE=CE,∴线段DE是△BDC的中线,故④正确;⑤∵△BDE≌△CDE,∴BD=CD,若A、D、C不在同一直线上,则AD+CD>AC,∴AD+BD>AC,故⑤不正确.故选:A.【点评】本题考查了全等三角形的性质:全等三角形的对应边相等,全等三角形的对应角相等.也考查了等腰三角形三线合一的性质,直角三角形两锐角互余的性质,难度适中.【题型2利用全等三角形的性质求角度】【例2】(2020秋•兰山区期末)如图,已知△ABC≌△DEF,CD平分∠BCA,若∠A=30°,∠CGF=88°,则∠E的度数是()A.30°B.50°C.44°D.34°【分析】根据角平分线的性质得到∠ACD=∠BCD=12∠BCA,根据全等三角形的性质得到∠D=∠A=30°,根据三角形的外角性质、全等三角形的性质解答即可.【解答】解:∵CD平分∠BCA,∴∠ACD=∠BCD=12∠BCA,∵△ABC≌△DEF,∴∠D=∠A=30°,∵∠CGF=∠D+∠BCD,∴∠BCD=∠CGF﹣∠D=58°,∴∠BCA=116°,∴∠B=180°﹣30°﹣116°=34°,∵△ABC≌△DEF,∴∠E=∠B=34°,故选:D.【点评】本题考查的是全等三角形的性质、三角形内角和定理,掌握全等三角形的对应角相等是解题的关键.【变式2-1】(2020春•沙坪坝区校级期末)如图,△ABC≌△ADE,且AE∥BD,∠BAD=130°,则∠BAC 度数的值为.【分析】根据全等三角形的性质,可以得到AB=AD,∠BAC=∠DAE,从而可以得到∠ABD=∠ADB,再根据AE∥BD,∠BAD=130°,即可得到∠DAE的度数,从而可以得到∠BAC的度数.【解答】解:∵△ABC≌△ADE,∴AB=AD,∠BAC=∠DAE,∴∠ABD=∠ADB,∵∠BAD=130°,∴∠ABD=∠ADB=25°,∵AE∥BD,∴∠DAE=∠ADB,∴∠DAE=25°,∴∠BAC=25°,故答案为:25°.【点评】本题考查全等三角形的性质,解答本题的关键是明确题意,利用数形结合的思想解答.【变式2-2】(2020秋•覃塘区期中)如图,已知△AEF≌△ABC,点E在BC边上,EF与AC交于点D.若∠B=64°,∠C=30°,求∠CDF的度数.【分析】根据全等三角形的性质和三角形外角性质解答即可.【解答】解:∵△AEF≌△ABC,∴AE=AB,∠AEF=∠B=64°,∵点E在BC边上,∴∠AEB=∠B=64°,∴∠DEC=180°﹣∠AEB﹣∠AEF=180°﹣64°﹣64°=52°,又∵∠C=30°,且∠CDF是△CDE的外角,∴∠CDF=∠DEC+∠C=52°+30°=82°.【点评】此题考查全等三角形的性质,关键是根据全等三角形的对应角相等解答.【变式2-3】(2020秋•西湖区校级月考)如图,△ABC≌△ADE,BC的延长线分别交AD,DE于点F,G,且∠DAC=10°,∠B=∠D=25°,∠EAB=120°,求∠DFB和∠DGB的度数.【分析】先根据全等三角形的性质得∠BAC=∠DAE,由于∠DAE+∠CAD+∠BAC=120°,则可计算出∠BAC=55°,所以∠BAF=∠BAC+∠CAD=65°,根据三角形外角性质可得∠DFB=∠BAF+∠B=90°,∠DGB=65°.【解答】解:∵△ABC≌△ADE,∴∠BAC=∠DAE,∵∠EAB=120°,∴∠DAE+∠CAD+∠BAC=120°,∵∠CAD=10°,∴∠BAC=12(120°﹣10°)=55°,∴∠BAF=∠BAC+∠CAD=65°,∴∠DFB=∠BAF+∠B=65°+25°=90°;∵∠DFB=∠D+∠DGB,∴∠DGB=90°﹣25°=65°.【点评】本题考查了全等三角形的性质:全等三角形的性质是证明线段和角相等的理论依据,应用时要会找对应角和对应边.【题型3利用全等三角形的性质求线段长度】【例3】(2020秋•永吉县期中)如图,△EFG≌△NMH,E,H,G,N在同一条直线上,EF和NM,FG 和MH是对应边,若EH=1.1cm,NH=3.3cm.求线段HG的长.【分析】由△EFG≌△NMH,EF和NM,FG和MH是对应边,得到EG和NH是对应边,根据全等三角形的性质得到EG=NH,根据线段的和差计算即可得到结果.【解答】解:∵△EFG≌△NMH,EF和NM,FG和MH是对应边,∴EG和NH是对应边,∴EG=NH,∴EH+HG=HG+NG,∴EH=NG,∵EH=1.1,∴NG=1.1∵NH=3.3cm,∴HG=NH﹣NG=3.3﹣1.1=2.2(cm).【点评】本题主要考查了全等三角形全等的性质,熟练找出两个全等三角形的对应边是解此题的关键.【变式3-1】(2020秋•永定区期中)如图,△ADE≌△BCF,AD=8cm,CD=6cm,则BD的长为cm.【分析】根据全等三角形的性质得出AD=BC=8cm,进而即可求得BD=BC﹣CD=2cm.【解答】解:∵△ADE≌△BCF,∴AD=BC=8cm,∵BD=BC﹣CD,CD=6cm,∴BD=8﹣6=2(cm).故答案为:2.【点评】本题考查了全等三角形的性质,熟记性质是解题的关键.【变式3-2】(2020秋•东莞市校级月考)如图,在△ABC中,AD⊥BC,CE⊥AB,垂足分别为D、E,AD、CE交于点H,已知△AEH≌△CEB,EB=5,AE=7,则CH的长是.【分析】根据全等三角形的性质分别求出EC、EH,结合图形计算,得到答案.【解答】解:∵△AEH≌△CEB,∴EC=AE=7,EH=EB=5,∴CH=EC﹣EH=7﹣5=2,故答案为:2.【点评】本题考查的是全等三角形的性质,掌握全等三角形的对应边相等是解题的关键.【变式3-3】(2020秋•中山市期中)一个三角形的三条边的长分别是3,5,7,另一个三角形的三条边的长分别是3,3x﹣2y,x+2y,若这两个三角形全等,则x+y的值是.【分析】根据全等三角形的性质可得方程组3−2=53−2=7,解方程组可得答案.+2=7,或+2=5【解答】解:由题意得3−2=53−2=7,+2=7,或+2=5解得:=3=2或=3=1,x+y=5或x+y=4,故答案为:5或4【点评】此题主要考查了全等三角形的性质,关键是掌握全等三角形对应边相等.【题型4与全等三角形性质有关的证明】【例4】(2020秋•安徽月考)如图,△ABC≌△ADE,点E在边BC上,求证:∠BED=∠BAD.【分析】根据全等三角形的性质和三角形的外角的性质即可得到结论.【解答】证明:∵△ABC≌△ADE,∴∠C=∠AED,∠BAC=∠DAE,∴∠BAC﹣∠BAE=∠DAE﹣∠BAE,即∠CAE=∠BAD,∵∠AEB=∠AED+∠DEB=∠CAE+∠C,∴∠CAE=∠BED,∴∠BED=∠BAD.【点评】本题考查了三角形全等的性质,三角形的外角的性质,关键是熟练掌握全等三角形的性质.【变式4-1】(2020秋•大安市校级期中)已知△ABF≌△DCE,E与F是对应顶点.证明AF∥DE.【分析】根据全等三角形的性质得出∠B=∠C,∠BAF=∠CDE,根据三角形外角性质求出∠AFE=∠DEF,根据平行线的判定得出即可.【解答】证明:∵△ABF≌△DCE,∴∠B=∠C,∠BAF=∠CDE,∴∠B+∠BAF=∠C+∠CDE,∴∠AFE=∠DEF,∴AF∥DE.【点评】本题考查了全等三角形的性质,三角形外角性质,平行线的判定等知识点,能灵活运用定理机芯推理是解此题的关键.【变式4-2】(2020春•成都期中)如图,△ABC中,点E是AB边上一点,△BCE≌△ACE,ED∥AC,DF ⊥AB.(1)判断CE与AB是否垂直,并说明理由;(2)证明:∠EDF=∠BDF.【分析】(1)根据全等三角形的性质即可得到结论;(2)根据全等三角形的性质和平行线的判定和性质即可得到结论.【解答】解:(1)CE⊥AB,理由:∵△BCE≌△ACE,∴BEC=∠AEC=12×180°=90°,∴CE⊥AB;(2)∵ED∥AC,∴∠DEC=∠ACE,∵△BCE≌△ACE,∴∠BCE=∠ACE,∴∠CED=∠DCE,∵DF⊥AB,∴DF∥CE,∴∠BDF=∠DCE,∠EDF=∠CED,∴∠EDF=∠BDF.【点评】本题考查了全等三角形的性质,平行线的性质,正确的识别图形是解题的关键.【变式4-3】(2020秋•定远县月考)如图所示,A,C,E三点在同一直线上,且△ABC≌△DAE.(1)求证:BC=DE+CE;(2)当△ABC满足什么条件时,BC∥DE?【分析】(1)根据全等三角形的性质得出AE=BC,AC=DE,再求出答案即可;(2)根据平行线的性质得出∠BCE=∠E,根据全等三角形的性质得出∠ACB=∠E,求出∠ACB=∠BCE,再求出答案即可.【解答】(1)证明:∵△ABC≌△DAE,∴AE=BC,AC=DE,又∵AE=AC+CE,∴BC=DE+CE;(2)解:∵BC∥DE,∴∠BCE=∠E,又∵△ABC≌△DAE,∴∠ACB=∠E,∴∠ACB=∠BCE,又∵∠ACB+∠BCE=180°,∴∠ACB=90°,即当△ABC满足∠ACB为直角时,BC∥DE.【点评】本题考查了全等三角形的判定定理和平行线的性质和判定,能灵活运用定理进行推理是解此题的关键,注意:全等三角形的对应边相等,对应角相等.【题型5与全等三角形性质有关的综合】【例5】(2020秋•朔州月考)如图,△ACF≌△DBE,其中点A、B、C、D在同一条直线上.(1)若BE⊥AD,∠F=63°,求∠A的大小.(2)若AD=11cm,BC=5cm,求AB的长.【分析】(1)根据全等三角形的性质得到∠FCA=∠EBD=90°,根据直角三角形的性质计算即可;(2)根据全等三角形的性质得到CA=BD,结合图形得到AB=CD,计算即可.【解答】解:(1)∵BE⊥AD,∴∠EBD=90°,∵△ACF≌△DBE,∴∠FCA=∠EBD=90°,∴∠A=90°﹣∠F=27°;(2)∵△ACF≌△DBE,∴CA=BD,∴CA﹣CB=BD﹣BC,即AB=CD,∵AD=11cm,BC=5cm,∴AB+CD=11﹣5=6cm,∴AB=3cm.【点评】本题考查的是全等三角形的性质,掌握全等三角形的对应边相等、对应角相等是解题的关键.【变式5-1】(2020秋•新罗区校级月考)如图,点A、B、C在同一直线上,点E在BD上,且△ABD≌△EBC,AB=2cm,BC=3cm.(1)求DE的长;(2)判断AC与BD的位置关系,并说明理由.(3)判断直线AD与直线CE的位置关系,并说明理由.【分析】(1)根据全等三角形的对应边相等得到BD=BC=5cm,BE=AB=2cm,计算即可;(2)根据全等三角形的对应角相等和平角的定义解答;(3)根据全等三角形的对应角相等和三角形内角和定理进行解答.【解答】解:(1)∵△ABD≌△EBC,∴BD=BC=3cm,BE=AB=2cm,∴DE=BD﹣BE=1cm;(2)DB与AC垂直,理由:∵△ABD≌△EBC,∴∠ABD=∠EBC,又A、B、C在一条直线上,∴∠EBC=90°,∴DB与AC垂直.(3)直线AD与直线CE垂直.理由:如图,延长CE交AD于F,∵△ABD≌△EBC,∴∠D=∠C,∵Rt△ABD中,∠A+∠D=90°,∴∠A+∠C=90°,∴∠AFC=90°,即CE⊥AD.【点评】本题考查的是全等三角形的性质,掌握全等三角形的对应边相等、全等三角形的对应角相等是解题的关键.【变式5-2】(2018春•德化县期末)如图,已知△ABC≌△DEB,点E在AB上,DE与AC相交于点F,(1)当DE=8,BC=5时,线段AE的长为;(2)已知∠D=35°,∠C=60°,①求∠DBC的度数;②求∠AFD的度数.【分析】(1)根据全等三角形的性质得出AB=DE=8,BE=BC=5,即可求出答案;(2)①根据全等三角形的性质得出∠A=∠D=35°,∠DBE=∠C=60°,根据三角形内角和定理求出∠ABC,即可得出答案;②根据三角形外角性质求出∠AEF,根据三角形外角性质求出∠AFD即可.【解答】解:(1)∵△ABC≌△DEB,DE=8,BC=5,∴AB=DE=8,BE=BC=5,∴AE=AB﹣BE=8﹣5=3,故答案为:3;(2)①∵△ABC≌△DEB∴∠A=∠D=35°,∠DBE=∠C=60°,∵∠A+∠ABC+∠C=180°,∴∠ABC=180°﹣∠A﹣∠C=85°,∴∠DBC=∠ABC﹣∠DBE=85°﹣60°=25°;②∵∠AEF是△DBE的外角,∴∠AEF=∠D+∠DBE=35°+60°=95°,∵∠AFD是△AEF的外角,∴∠AFD=∠A+∠AEF=35°+95°=130°.【点评】本题考查了全等三角形的性质,三角形内角和定理,三角形外角性质的应用,能熟记全等三角形的性质是解此题的关键,注意:全等三角形的对应边相等,对应角相等.【变式5-3】(2020春•铁西区期中)如图,点A、B、C、D在同一条直线上,点E、F是直线.AD上方的点,连接AE、CE、BF、DF,若△ACE≌△FDB,FD=3,AD=8.(1)判断直线CE与DF是否平行?并说明理由;(2)求CD的长;(3)若∠E=26°,∠F=53°,求∠ACE的度数.【分析】(1)根据全等三角形的性质和平行线的判定定理即可得到结论;(2)根据全等三角形的性质即可得到结论;(3)根据全等三角形的性质和三角形的内角和即可得到结论.【解答】解:(1)CE∥DF,理由:∵△ACE≌△FDB,∴∠ACE=∠D,∴CE∥DF;(2)∵△ACE≌△FDB,∴AC=DF=3,∵AD=8,∴CD=AD﹣AC=8﹣3=5;(3)∵△ACE≌△FDB,∴∠DBF=∠E=26°,∵CE∥DF,∴∠1=∠F=53°,∴∠ACE=180°﹣26°﹣53°=101°.【点评】本题考查了全等三角形的性质,平行线的判定,三角形的内角和,正确的识别图形是解题的关键.【题型6与全等三角形性质有关的动点问题】【例6】(2020秋•丹徒区校级月考)如图,已知AB=3,AC=2,点D、E分别为线段BA、CA延长线上的动点,如果△ABC与△ADE全等,则AD为.【分析】分△ABC≌△ADE和△ABC≌△ADE两种情况,根据全等三角形的性质解答即可.【解答】解:当△ABC≌△ADE时,AD=AB=3,当△ABC≌△AED时,AD=AC=2,故答案为:2或3.【点评】本题考查的是全等三角形的性质,掌握全等三角形的对应边相等是解题的关键.【变式6-1】(2020秋•滨湖区期中)如图,已知长方形ABCD的边长AB=20cm,BC=16cm,点E在边AB上,AE=6cm,如果点P从点B出发在线段BC上以2cm/s的速度向点C向运动,同时,点Q在线段CD上从点C到点D运动.则当△BPE与△CQP全等时,时间t为s.【分析】由条件分两种情况,当△BPE≌△CQP时,则有BE=PC,由条件可得到关于t的方程,当△BPE≌△CPQ,则有BP=PC,同样可得出t的方程,可求出t的值.【解答】解:∵AB=20cm,AE=6cm,BC=16cm,∴BE=14cm,BP=2tcm,PC=(16﹣2t)cm,当△BPE≌△CQP时,则有BE=PC,即14=16﹣2t,解得t=1,当△BPE≌△CPQ时,则有BP=PC,即2t=16﹣2t,解得t=4,故答案为:1或4.【点评】本题主要考查全等三角形的性质,由条件分两种情况得到关于t的方程是解题的关键.【变式6-2】如图,∠C=∠CAM=90°,AC=8cm,BC=4cm,点P在线段AC上,以2cm/s速度从点A 出发向点C运动,到点C停止运动.点Q在射线AM上运动,且PQ=AB.若△ABC与△PQA全等,则点P运动的时间为()A.4s B.2s C.2s或3s或4s D.2s或4s【分析】分△ABC≌△PQA和△ABC≌△QPA两种情况,根据全等三角形的性质解答即可.【解答】解:当△ABC≌△PQA时,AP=AC=8,∵点P的速度为2cm/s,∴8÷2=4(s);当△ABC≌△QPA时,当AP=BC=4,∵点P的速度为2cm/s,∴4÷2=2(s)故选:D.【点评】此题考查的是全等三角形的性质,掌握全等三角形的对应边相等,全等三角形的对应角相等是解题的关键,注意分情况讨论思想的应用.【变式6-3】(2020春•广饶县期末)如图①,在Rt△ABC中,∠C=90°,BC=9cm,AC=12cm,AB=15cm,现有一动点P,从点A出发,沿着三角形的边AC→CB→BA运动,回到点A停止,速度为3cm/s,设运动时间为ts.(1)如图(1),当t=时,△APC的面积等于△ABC面积的一半;(2)如图(2),在△DEF中,∠E=90°,DE=4cm,DF=5cm,∠D=∠A.在△ABC的边上,若另外有一个动点Q,与点P同时从点A出发,沿着边AB→BC→CA运动,回到点A停止.在两点运动过程中的某一时刻,恰好△APQ≌△DEF,求点Q的运动速度.【分析】(1)分两种情况进行解答,①当点P在BC上时,②当点P在BA上时,分别画出图形,利用三角形的面积之间的关系,求出点P移动的距离,从而求出时间即可;(2)由△APQ≌△DEF,可得对应顶点为A与D,P与E,Q与F;于是分两种情况进行解答,①当点P在AC上,AP=4,AQ=5,②当点P在AB上,AP=4,AQ=5,分别求出P移动的距离和时间,进而求出Q的移动速度.【解答】解:(1)①当点P在BC上时,如图①﹣1,若△APC的面积等于△ABC面积的一半;则CP=12BC=92cm,此时,点P移动的距离为AC+CP=12+92=332,移动的时间为:332÷3=112秒,②当点P在BA上时,如图①﹣2若△APC的面积等于△ABC面积的一半;则PD=12BC,即点P为BA中点,此时,点P移动的距离为AC+CB+BP=12+9+152=572cm,移动的时间为:572÷3=192秒,故答案为:11或19;(2)△APQ≌△DEF,即,对应顶点为A与D,P与E,Q与F;①当点P在AC上,如图②﹣1所示:此时,AP=4,AQ=5,∴点Q移动的速度为5÷(4÷3)=154cm/s,②当点P在AB上,如图②﹣2所示:此时,AP=4,AQ=5,即,点P移动的距离为9+12+15﹣4=32cm,点Q移动的距离为9+12+15﹣5=31cm,∴点Q移动的速度为31÷(32÷3)=9332cm/s,综上所述,两点运动过程中的某一时刻,恰好△APQ≌△DEF,点Q的运动速为154cm/s或9332cm/s.【点评】考查直角三角形的性质,全等三角形的判定,画出相应图形,求出各点移动的距离是正确解答的关键.。
完整版)全等三角形难题题型归类及解析

完整版)全等三角形难题题型归类及解析1.在三角形ABC中,AD是角BAC的平分线,AE=AC,DE=2cm,BD=3cm,求BC的长度。
为了解决这个问题,我们可以利用角平分线的轴对称性,构造全等三角形ADE和ABC。
因为AE=AC,所以三角形ADE和三角形ABC的两边分别相等,因此它们是全等的。
根据全等三角形的性质,∠DAE=∠CAB,∠AED=∠ACB。
又因为AD是角BAC的平分线,所以∠DAE=∠EAC,因此∠CAB=2∠EAC。
设BC=x,则根据正弦定理可得:3/x=sin(2EAC)/sin(EAC),化简后得到x=6.2.在三角形ABC中,BD是角ABC的平分线,AB=BC,P在BD上,PM⊥AD于M,PN⊥CD于N,求解PM与PN 的关系。
首先,我们可以利用角平分线的性质,构造等腰三角形ABD和CBD。
因为AB=BC,所以三角形ABD和三角形CBD的两边分别相等,因此它们是全等的。
根据全等三角形的性质,∠BDA=∠BDC,∠ADB=∠CDB。
又因为BD是角ABC的平分线,所以∠ADB=∠BDC,因此∠BDA=∠CDB。
因此,三角形APM和三角形CPN是全等的。
因为全等三角形的对应边相等,所以PM=PN。
3.在三角形OAB中,P是角OAB的平分线上的一点,PC⊥OA于C,∠OAP+∠OBP=180°,OC=4cm,求解AO+BO的值。
我们可以利用角平分线的轴对称性,构造全等三角形OAC和OBC。
因为∠OAP+∠OBP=180°,所以∠AOP=∠BOP=90°。
因此,三角形OAP和三角形OBP是直角三角形。
设AO=x,BO=y,则根据勾股定理可得:x^2+PC^2=OP^2,y^2+PC^2=OP^2.又因为OC=4cm,所以PC=2cm。
将PC代入上面的两个式子中,得到x^2+y^2=OP^2-4.又因为三角形OAC和三角形OBC是全等的,所以x=y,因此2x^2=OP^2-4,即OP^2=2x^2+4.因此,AO+BO=2x=2√((OP^2-4)/2)=2√(2x^2)=2√(2y^2)=2√(2x^2+4)/2=2√(OP^2)/2=OP√2=2√6.4.在三角形ABC中,E在边AC上,且∠XXX∠ABC。
专题13 全等三角形重难点模型(五大模型)(解析版)

专题13全等三角形重难点模型(五大模型)模型一:一线三等角型模型二:手拉手模型模型三:半角模型模型四:对角互补模型模型五:平行+线段中点构造全等模型【典例分析】【模型一:一线三等角型】如图一,∠D=∠BCA=∠E=90°,BC=AC。
结论:Rt△BDC≌Rt△CEA模型二一线三等角全等模型如图二,∠D=∠BCA=∠E,BC=AC。
结论:△BEC≌△CDA图一图二应用:①通过证明全等实现边角关系的转化,便于解决对应的几何问题;②与函数综合应用中有利于点的坐标的求解。
【典例1】如图,平面直角坐标系中有点A(﹣1,0)和y轴上一动点B(0,a),其中a>0,以B点为直角顶点在第二象限内作等腰直角△ABC,设点C的坐标为(c,d).(1)当a=2时,则C点的坐标为;(2)动点B在运动的过程中,试判断c+d的值是否发生变化?若不变,请求出其值;若发生变化,请说明理由.【解答】解:(1)如图1中,过点C作CE⊥y轴于E,则∠CEB=∠AOB.∵△ABC是等腰直角三角形,∴BC=BA,∠ABC=90°,∴∠BCE+∠CBE=90°=∠BAO+∠CBE,∴∠BCE=∠ABO,在△BCE和△BAO中,,∴△CBE≌△BAO(AAS),∵A(﹣1,0),B(0,2),∴AO=BE=1,OB=CE=2,∴OE=1+2=3,∴C(﹣2,3),故答案为:(﹣2,3);(2)动点A在运动的过程中,c+d的值不变.理由:过点C作CE⊥y轴于E,则∠CEA=∠AOB,∵△ABC是等腰直角三角形,∴BC=BA,∠ABC=90°,∴∠BCE+∠CBE=90°=∠ABO+∠CBE,∴∠BCE=∠ABO,在△BCE和△BAO中,,∴△CBE≌△BAO(AAS),∵B(﹣1,0),A(0,a),∴BO=AE=1,AO=CE=a,∴OE=1+a,∴C(﹣a,1+a),又∵点C的坐标为(c,d),∴c+d=﹣a+1+a=1,即c+d的值不变.【变式1】点A的坐标为(4,0),点B为y轴负半轴上的一个动点,分别以OB、AB为直角边在第三象限和第四象限作等腰Rt△OBC和等腰Rt△ABD.(1)如图一,若点B坐标为(0,﹣3),连接AC、OD.①求证:AC=OD;②求D点坐标.(2)如图二,连接CD,与y轴交于点E,试求BE长度.【解答】(1)①证明:∵△OBC和△ABD是等腰直角三角形,∴OB=CB,BD=AB,∠ABD=∠OBC=90°,∴∠ABD+ABO=∠OBC+∠A∠O,∴∠OBD=∠CBA,∴△OBD≌△CBA(SAS),∴AC=OD;②如图一、∵A(4,0),B(0,﹣3),∴OA=4,OB=3,过点D作DF⊥y轴于F,∴∠BOA=∠DFB=90°,∴∠ABO+∠OAB=90°,∵∠ABD=90°,∴∠ABO+∠FBD=90°,∴∠OAB=∠FBD,∵AB=BD,∴△AOB≌△BFD(AAS),∴DF=OB=3,BF=OA=4,∴OF=OB+BF=7,∴D(3,﹣7);(2)如图二、过点D作DF⊥y轴于F,则∠DFB=90°=∠CBF,同(1)②的方法得,△AOB≌△BFD(AAS),∴DF=OB,BF=OA=4,∵OB=BC,∴BC=DF,∵∠DEF=∠CEB,∴△DEF≌△CEB(AAS),∴BE=EF,∴BF=BE+EF=2BE=4,∴BE=2.【典例2】(1)猜想:如图1,已知:在△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m,CE⊥直线m,垂足分别为点D、E.试猜想DE、BD、CE有怎样的数量关系,请直接写出;(2)探究:如果三个角不是直角,那结论是否会成立呢?如图2,将(1)中的条件改为:在△ABC中,AB=AC,D,A、E三点都在直线m上,并且有∠BDA=∠AEC=∠BAC=α(其中α为任意锐角或钝角)如果成立,请你给出证明;若不成立,请说明理由;(3)解决问题:如图3,F是角平分线上的一点,且△ABF和△ACF均为等边三角形,D、E分别是直线m上A点左右两侧的动点,D、E、A互不重合,在运动过程中线段DE的长度始终为n,连接BD、CE,若∠BDA=∠AEC=∠BAC,试判断△DEF的形状,并说明理由.【解答】解:(1)DE=BD+CE,理由如下:∵∠BAC=90°,∴∠BAD+∠CAE=90°,∵BD⊥m,CE⊥m,∴∠ADB=∠CEA=90°,∴∠BAD+∠ABD=90°,∴∠ABD=∠CAE,在△ADB和△CEA中,,∴△ADB≌△CEA(AAS),∴BD=AE,AD=CE,∴DE=AD+AE=BD+CE;(2)结论DE=BD+CE成立,理由如下:∵∠BAD+∠CAE=180°﹣∠BAC,∠BAD+∠ABD=180°﹣∠ADB,∠ADB=∠BAC,∴∠ABD=∠CAE,在△BAD和△ACE中,,∴△BAD≌△ACE(AAS),∴BD=AE,AD=CE,∴DE=DA+AE=BD+CE;(3)△DFE为等边三角形,理由如下:由(2)得,△BAD≌△ACE,∴BD=AE,∠ABD=∠CAE,∴∠ABD+∠FBA=∠CAE+FAC,即∠FBD=∠FAE,在△FBD和△FAE中,,∴△FBD≌△FAE(SAS),∴FD=FE,∠BFD=∠AFE,∴∠DFE=∠DFA+∠AFE=∠DFA+∠BFD=60°,∴△DFE为等边三角形.【变式2】已知,在△ABC中,AB=AC,D,A,E三点都在直线m上,且DE =9cm,∠BDA=∠AEC=∠BAC(1)如图①,若AB⊥AC,则BD与AE的数量关系为,CE与AD 的数量关系为;(2)如图②,判断并说明线段BD,CE与DE的数量关系;(3)如图③,若只保持∠BDA=∠AEC,BD=EF=7cm,点A在线段DE上以2cm/s的速度由点D向点E运动,同时,点C在线段EF上以xcm/s的速度由点E向点F运动,它们运动的时间为t(s).是否存在x,使得△ABD与△EAC全等?若存在,求出相应的t的值;若不存在,请说明理由.【解答】解:(1)∵∠BDA=∠AEC=∠BAC,∴∠BAD+∠CAE=∠BAD+∠ABD,∴∠CAE=∠ABD,∵∠BDA=∠AEC,BA=CA,∴△ABD≌△CAE(AAS),∴BD=AE,CE=AD,故答案为:BD=AE,CE=AD;(2)DE=BD+CE,由(1)同理可得△ABD≌△CAE(AAS),∴BD=AE,CE=AD,∴DE=BD+CE;(3)存在,当△DAB≌△ECA时,∴AD=CE=2cm,BD=AE=7cm,∴t=1,此时x=2;当△DAB≌△EAC时,∴AD=AE=4.5cm,DB=EC=7cm,∴t=,x=7÷=,综上:t=1,x=2或t=,x=.【模型二:手拉手模型】应用:①利用手拉手模型证明三角形全等,便于解决对应的几何问题;②作辅助线构造手拉手模型,难度比较大。
全等三角形难题含答案

全等三角形难题(含答案)1.已知:AB=4,AC=2,D是BC中点,AD是整数,求AD解:延长AD到E,使AD=DE∵D是BC中点∴BD=DC在△ACD与△BDE中AD=DE∠BDE=∠ADCBD=DC∴△ACD≌△BDE∴AC=BE=2∵在△ABE中AB-BE<AE<AB+BE∵AB=4即4-2<2AD<4+21<AD<3∴AD=22.已知:D是AB中点,∠ACB=90°,求证:12 CD ABADB C延长CD与P,使D为CP中点。
连接AP,BP∵DP=DC,DA=DB∴ACBP为平行四边形又∠ACB=90∴平行四边形ACBP为矩形∴AB=CP=1/2AB3.已知:BC=DE,∠B=∠E,∠C=∠D,F是CD中点,求证:∠1=∠2证明:连接BF与EF∵BC=ED,CF=DF,∠BCF=∠EDF∴三角形BCF全等于三角形EDF(边角边)∴BF=EF,∠CBF=∠DEF连接BE在三角形BEF 中,BF=EF∴ ∠EBF=∠BEF 。
∵ ∠ABC=∠AED 。
∴ ∠ABE=∠AEB 。
∴ AB=AE 。
在三角形ABF 与三角形AEF 中AB=AE,BF=EF,∠ABF=∠ABE+∠EBF=∠AEB+∠BEF=∠AEF∴ 三角形ABF 与三角形AEF 全等。
∴ ∠BAF=∠EAF (∠1=∠2)。
4. 已知:∠1=∠2,CD=DE ,EF//AB ,求证:EF=AC过C 作CG∥EF 交AD 的延长线于点GCG ∥EF,可得,∠EFD=CGDDE =DC∠FDE=∠GDC(对顶角)∴△EFD≌△CGDEF =CGBA C D F21 E∠CGD=∠EFD又,EF∥AB∴,∠EFD=∠1∠1=∠2∴∠CGD=∠2∴△AGC为等腰三角形,AC=CG又EF=CG∴EF=AC5.已知:AD平分∠BAC,AC=AB+BD,求证:∠B=2∠CA证明:延长AB取点E,使AE=AC,连接DE∵AD平分∠BAC∴∠EAD=∠CAD∵AE=AC,AD=AD∴△AED≌△ACD (SAS)∴∠E=∠C∵AC=AB+BD∴AE=AB+BD∵AE=AB+BE∴BD=BE∴∠BDE=∠E∵∠ABC=∠E+∠BDE∴∠ABC=2∠E∴∠ABC=2∠C6.已知:AC平分∠BAD,CE⊥AB,∠B+∠D=180°,求证:AE=AD+BE证明:在AE上取F,使EF=EB,连接CF∵CE⊥AB∴∠CEB=∠CEF=90°∵EB=EF,CE=CE,∴△CEB≌△CEF∴∠B=∠CFE∵∠B+∠D=180°,∠CFE+∠CFA=180°∴∠D=∠CFA∵AC平分∠BAD∴∠DAC=∠FAC∵AC=AC∴△ADC≌△AFC(SAS)∴AD=AF∴AE=AF+FE=AD+BE12. 如图,四边形ABCD中,AB∥DC,BE、CE分别平分∠ABC、∠BCD,且点E在AD上。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
全等三角形难题题型归类及解析
一、角平分线型角平分线是轴对称图形,所以我们要充分的利用它的轴
对称性,常作的辅助线是:一利用截取一条线段构造全等三角形,二是
经过平分线上一点作两边的垂线。
另外掌握两个常用的结论:角平分
线与平行线构成等腰三角形,角平分线与垂线构成等腰三角形。
1. 如图,在Δ ABC中,D是边BC上一点,AD平分∠BAC,在AB上截取
AE=AC,
连结DE,已知DE=2cm,BD=3cm,求线段BC的长。
已知:如图所示,BD为∠ ABC的平
分线,?PN⊥CD于N,判断PM与
PN的关系.
AB=BC,点P在BD上,PM⊥AD于
M,
3. 如图所示,P为∠ AOB的平分线上一
点,若OC=4cm,求AO+BO的值.
BD
2.
PC⊥OA于C,?∠OAP+∠OBP=18°0 ,
4. 已知:
如
图 E 在△ ABC 的边 AC 上,且∠ AEB=∠ABC 。
ABE=∠C ; (2) 若∠BAE 的平分线 AF 交 BE 于 F ,FD ∥BC 交 AC 于 D ,设 AB=5, AC=8,求 DC 的长。
5、如图所示,已知∠ 1=∠2,EF ⊥AD 于 P ,交 BC 延长线于 M ,求证: 2∠M= (∠ ACB-
∠B )
6、如图,已知在△ ABC 中,∠ BAC 为直角, AB=AC ,D 为 AC 上一点,
CE ⊥BD 于 E .
1
(1) 若 BD 平分∠ ABC ,求证 CE=2BD ;
(2) 若 D 为 AC 上一动点,∠AED 如何变化,
若变化,求它的变化范
围; 若不变,求出它的度数,并说明理由。
7、如图:四边形ABCD中,AD∥BC ,AB=AD+BC ,E是CD的中点,求证:AE⊥ BE 。
AD
8、如图,在△ ABC 中,∠ ABC=60°,AD 、CE分别平分∠ BAC 、∠ ACB ,
二、中点型
由中点应产生以下联想:
1、想到中线,倍长中线
2、利用中心对称图形构造8 字型全等三角形
3、在直角三角形中联想直角三角形斜边上的中线
4、三角形的中位线
1、△ ABC 中,∠ A=90 °,AB=AC ,D 为BC 中点,E 、F 分别在 AC 、AB 上,且 DE ⊥DF ,
试判断 DE 、DF 的数量关系,并说明理由.
2、已知:如图,△ ABC 中, ABC 45°,CD AB 于 D ,BE 平分 ABC ,且 BE AC 于
E ,与 CD 相交于点
F ,H 是 BC 边的中点,连结 DH 与 BE 相交于点
G . (1)求证: BF AC ;
1
(2)求证: CE BF
2
3、如图,△ ABC 中, D 是BC 的中点, DE ⊥DF ,试判断 BE+CF 与EF 的大小关 系,并证明
你的结论。
4、如图,已知在△ ABC 中,AD 是BC 边上的中线, E 是AD 上的一点,且BE=AC ,延长BE 交AC 于F,求证:AF=EF
三、多个直角型
在多个直角的问题中很容易找的条件是直角相等以及边相等,而
最难找的是锐角相等,所以“同角的余角相等” 这个定理就显得非常重要,它是证明多个直角问题中锐角相等的有利工具。
1、如图,已知: AD 是BC上的中线, 且DF=DE.求证:BE∥CF.
2、如图, 已知:AB ⊥BC 于B , EF ⊥AC 于G, DF ⊥BC 于D , BC=DF .求证:AC=EF .
3、如图,∠ABC=90°,AB=BC ,BP 为一条射线, AD ⊥BP ,CE ⊥ PB ,若 AD=4,EC=2. 求 DE 的长。
4、如图,Δ ABC 的两条高 AD 、BE 相交于 H ,且 AD=BD ,试说明下列结论成
立的 理由。
( 1)∠ DBH=∠DAC ; (2)ΔBDH ≌ΔADC。
C
5. 如图∠ ACB=9°0 ,AC=BC,BE⊥CE,AD⊥CE于D,AD=2、5cm,DE=1.7cm,
求BE 的长
6. 如图①,E、F分别为线段AC上的两个动点,且DE⊥AC于E,BF⊥AC
于F,若AB=CD,AF=CE,BD交AC于点M.
(1)求证:MB=MD,ME=MF
(2)当E、F两点移动到如图②的位置时,其余条件不变,上述结论能否成立?若成立请给予证明;若不成立请说明理由.
7.
(1) 如图(1),
C在A、E的异侧, BD ⊥AE于D, CE⊥AE于
E 试说明: BD=DE+CE.
已知△ ABC中, ∠BAC=900, AB=AC, AE 是过A的一条直线, 且B、
(2) 若直线AE绕A点旋转到图(2) 位置时(BD<CE), 其余条件不变, 问BD与DE、
CE的关系如何? 为什么?
(3)若直线AE绕A点旋转到图(3) 位置时(BD>CE), 其余
条件不变, 问BD与DE、
CE的关系如何? 请直接写出结果, 不需说明.
(4)归纳前二个问得出BD、DE、CE 关系。
用简洁的
语言加以说明。
四、等边三角形型
由于等边三角形是轴对称图形,所以很多时候利用其轴对称性进行构造全等三角形,另外等边三角形又具有60 度和120 度的旋转对称性,所以经常利用旋转全等的知识进行解答,同时等边三角形具有丰富的边角相等的性质,因此当我们看到有60 度的角的时候经常构造等边三角形解题。
1、如图,已知ABC为等边三角形,D、E、F 分别在边BC、CA、AB上,且DEF 也是等边三角形.
(2) 除已知相等的边以外,请你猜想还有哪些相等线段,并证明你的猜
想是正确的;
(3)你所证明相等的线段,可以通过怎样的变化相互得到?写出变化
过程.A
E
DC
2、已知等边三角形ABC中,BD=CE,AD与BE相交于点P,求∠APE的大小。
4、已知,△ ABC 和△ ECD 都是等边三角形,且点B,C, D 在一条直线上.求证:BE=AD
边向上作等边△ EDC,连接AE,找出图中的一组全等三角形,并说明
理由.
为
5、 已知 P 是等边△ ABC 内的一点, PA 5,PB 4,PC 3,则 BPC 的度数为 多少?
6、 已知 P 是正方形 ABCD 内的一点, PA ∶PB ∶PC=1∶2∶3,则 APB 的度 性进行构造全等三角形,另外等腰三角形又具有旋转对称
性,所以经常利用旋转全等的知识进行解答
1、如图所示,已知 AE ⊥ AB ,AF ⊥AC ,AE=AB , AF=AC 。
求证:(1)EC=BF ;(2)EC ⊥BF
五、等腰三角形型
由于等腰三角形是轴对称图形,
所以很多时候利用其轴对称
数为多少?
F
2. 在△ABC 中,,AB=AC ,在 AB 边上取点 D ,在AC 延长线上取点 E ,使
CE=BD , 连接 DE 交 BC 于点 F ,求证 DF=EF .
3. 如图所示,已知 D 是等腰△ ABC 底边 BC 上的一点,它到两腰 AB 、AC 的距离
分 别为 DE 、DF,CM ⊥ AB,垂足为 M,请你探索一下线段 DE 、DF 、CM 三者之间的数 量关系 , 并给予证明
.
折叠型
23、如图①,将边长为4cm的正方形纸片ABCD沿EF折叠(点E、F分别在边AB、CD上),使点B落在AD边上的点M处,点C落在点N处,MN与CD交于点P,连接EP.
(1) 如图②,若M 为AD 边的中点,
①,△AEM的周长= __ cm;
②求证:EP=AE+D;P
(2) 随着落点M在AD边上取遍所有的位置( 点M不与A、D重合) ,△ PDM 的周长是否发生变化?请说明理由.。