全等三角形练习题及解析.doc
全等三角形(含解析)
全等三角形一、填空题1、如图,正方形ABCD的边长为2,点E、F分别在边AB、CD上,∠EBF=45°则△EDF的周长等于__________。
2、如图,三角形ABC中,AC=3,BC=5,DC为中线,则CD长的取值范围为__________.3、如图,△ABC是边长为3的等边三角形,△BDC是等腰三角形,且∠BDC=120°.以D为顶点作一个60°角,使其两边分别交AB于点M,交AC于点N,连接MN,则△AMN的周长为__________二、解答题4、如图,在△ABC中,AB=15,BC=14,AC=13,(1)求BC边上的高AD;(2)若BC边上的中线的长为a,写出a的范围。
5、如图,在△ABC中,AC=BC,∠C=90°,D是AB的中点,DE⊥DF,点E,F分别在AC,BC上,求证:DE=DF.6、如图∠ACB=90°,AC=BC,BE⊥CE,AD⊥CE于D,求证:△ACD≌△CBE.7、在四边形ABCD中,AD∥BC,∠ABC=90°,AB=BC,E为AB边上一点,∠BCE=15°,且AE=AD.连接DE交对角线AC于H,连接BH.(1)求证:AC⊥ED(2)求证:△ACD≌△ACE(3)请猜测CD与DH的数量关系,并证明。
8、如图,在△ABC中,∠C=90°,AD平分∠CAB,交CB于点D,过点D作DE⊥AB于点E.(1)求证:△ACD≌△AED;(2)若∠B=30°,CD=1,求BD的长。
9、如图1,在△ABC中,AB=AC,点D,E分别在AB和AC上,且∠ADC=∠AEB=90°,则CD =BE.探究发现:如图2,在△ABC中,仍然有条件“AB=AC,点D,E分别在AB和AC上”.若∠ADC+∠AEB=180°,则CD与BE是否仍相等?若相等,请证明;若不相等,请举反例说明。
全等三角形经典题型50题[含答案解析]
全等三角形证明经典50题(含答案)1. 已知:AB=4,AC=2,D 是BC 中点,AD 是整数,求AD延长AD 到E,使DE=AD,则三角形ADC 全等于三角形EBD即BE=AC=2 在三角形ABE 中,AB-BE<AE<AB+BE 即:10-2<2AD<10+2 4<AD<6 又AD 是整数,则AD=52. 已知:D 是AB 中点,∠ACB=90°,求证:12CD AB3. 已知:BC=DE ,∠B=∠E ,∠C=∠D ,F 是CD 中点,求证:∠1=∠2ADBC证明:连接BF 和EF 。
因为BC=ED,CF=DF,∠BCF=∠EDF。
所以 三角形BCF 全等于三角形EDF(边角边)。
所以 BF=EF,∠CBF=∠DEF。
连接BE 。
在三角形BEF 中,BF=EF 。
所以 ∠EBF=∠BEF。
又因为 ∠ABC=∠AED。
所以 ∠ABE=∠AEB。
所以 AB=AE 。
在三角形ABF和三角形AEF中,AB=AE,BF=EF,∠ABF=∠ABE+∠EBF=∠AEB+∠BEF=∠AEF。
所以 三角形ABF 和三角形AEF 全等。
所以∠BAF=∠EAF (∠1=∠2)。
4. 已知:∠1=∠2,CD=DE ,EF//AB ,求证:EF=AC 证明:过E 点,作EG//AC ,交AD 延长线于G 则∠DEG=∠DCA,∠DGE=∠2又∵CD=DE ∴⊿ADC≌⊿GDE(AAS)BACDF2 1 E∴EG=AC ∵EF//AB ∴∠DFE=∠1∵∠1=∠2∴∠DFE=∠DGE ∴EF=EG ∴EF=AC5. 已知:AD 平分∠BAC ,AC=AB+BD ,求证:∠B=2∠C证明:在AC 上截取AE=AB ,连接ED ∵AD 平分∠BAC ∴∠EAD=∠BAD 又∵AE=AB ,AD=AD ∴⊿AED≌⊿ABD (SAS )∴∠AED=∠B ,DE=DB∵AC=AB+BDAC=AE+CE ∴CE=DE∴∠C=∠EDC∵∠AED=∠C+∠EDC=2∠C ∴∠B=2∠C6. 已知:AC 平分∠BAD ,CE ⊥AB ,∠B+∠D=180°,求证:AE=AD+BE 证明:在AE 上取F ,使EF =EB ,连接CF 因为CE⊥AB所以∠CEB=∠CEF=90° 因为EB =EF ,CE =CE , 所以△CEB≌△CEF所以∠B =∠CFE因为∠B +∠D =180°,∠CFE+∠CFA=180° 所以∠D=∠CFA 因为AC 平分∠BAD所以∠DAC=∠FAC又因为AC =AC所以△ADC≌△AFC(SAS ) 所以AD =AF 所以AE =AF +FE =CDB AAD +BE12. 如图,四边形ABCD 中,AB ∥DC ,BE 、CE 分别平分∠ABC 、∠BCD ,且点E 在AD 上。
(必考题)初中八年级数学上册第十二章《全等三角形》经典练习题(含答案解析)
一、选择题1.如图,△ABC ≌△ADE ,AB =AD ,AC =AE ,∠B =28︒,∠E =95︒,∠EAB =20︒,则∠BAD 等于( )A .75︒B .57︒C .55︒D .77︒2.如图O 是ABC 内的一点,且O 到三边AB 、BC 、CA 的距离==OF OD OE .若70A ∠=︒,则BOC ∠( ).A .125°B .135°C .105°D .100° 3.如图,在ABC 中,AB AC =,点D ,E 在BC 上,连接AD ,AE ,若只添加一个条件使DAB EAC ∠=∠,则添加的条件不能为( )A .BD CE =B .AD AE =C .BE CD = D .DA DE = 4.如图,在△ABC 中,∠B =∠C =50°,BD =CF ,BE =CD ,则∠EDF 的度数是( )A .40°B .50°C .60°D .30°5.如图所示,已知AB ∥CD ,BAC ∠与ACD ∠的平分线交于点O ,OE AC ⊥于点E ,且3OE cm =,则点O 到AB ,CD 的距离之和是( )A .3cmB .6cmC .9cmD .12cm 6.如图,ABC 和DEF 中,∠A=∠D ,∠C=∠F ,要使ABC DEF ≅,还需增加的条件是( )A .AB=EFB .AC=DFC .∠B=∠ED .CB=DE 7.下列判断正确的个数是( )①三角形的三条高都在三角形的内部,并且相交于一点;②两边及一角对应相等的两个三角形全等;③两角及一边对应相等的两个三角形全等;④到三角形的三边所在的直线距离相等的点有三个;⑤两边及第三边上的高对应相等的两个三角形全等.A .4B .3C .2D .18.下列命题的逆命题是假命题的是( )A .直角三角形两锐角互余B .全等三角形对应角相等C .两直线平行,同位角相等D .角平分线上的点到角两边的距离相等 9.如图所示的正方形ABCD 中,点E 在边CD 上,把ADE 绕点A 顺时针旋转得到ABF ,20FAB ∠=︒.旋转角的度数是( )A .110°B .90°C .70°D .20° 10.到ABC 的三条边距离相等的点是ABC 的( ) A .三条中线的交点B .三条边的垂直平分线的交点C .三条高的交点D .三条角平分线的交点11.如图,已知∠A=∠D , AM=DN ,根据下列条件不能够判定△ABN ≅△DCN 的是( )A .BM ∥CNB .∠M=∠NC .BM=CND .AB=CD 12.根据下列已知条件,能画出唯一的△ABC 的是( )A .AB =3,BC =4,∠C =40°B .∠A =60°,∠B =45°,AB =4C .∠C =90°,AB =6D .AB =4,BC =3,∠A =30°13.如图,在ABC 中,B C ∠=∠,E 、D 、 F 分别是AB 、BC 、AC 上的点,且BE CD =,BD CF =,若 104A ∠=︒,则EDF ∠的度数为( )A .24°B .32°C .38°D .52° 14.如图,C 是∠AOB 的平分线上一点,添加下列条件不能判定△AOC ≌△BOC 的是( )A .OA =OB B .AC =BC C .∠A =∠BD .∠1=∠2 15.根据下列条件,能画出唯一ABC 的是( )A .3AB =,4BC =,7CA =B .4AC =,6BC =,60A ∠=︒ C .45A ∠=︒,60B ∠=︒,75C ∠=︒D .5AB =,4BC =,90C ∠=︒二、填空题16.如图,△ABC 中,∠ACB =90°,点D 在边AC 上,DE ⊥AB 于点E ,DC =DE ,∠A =32°,则∠BDC 的度数为________.17.如图,D ,E 分别是AB ,AC 上的点,AD=AE ,请添加一个条件,使得ABE ≌ACD .这个条件可以为_____(只填一个条件即可).18.如图,在△ABC 中,∠C =90°,AD 是∠BAC 的角平分线,若BC =8cm ,BD =5cm ,AB=10cm,则S △ABD =______.19.如图,BD 平分ABC ∠交AC 于点D ,DE BC ⊥于点E ,若2DE =,7BC =,12ABC S =△,则AB 的长为______.20.如图所示,在ABC 中,AB AC =,AD 是ABC 的角平分线,DE AB ⊥,DF AC ⊥,垂足分别是E ,F .则下面结论中(1)DA 平分EDF ∠;(2)AE AF =,DE DF =;(3)AD 上的点到B ,C 两点的距离相等;(4)图中共有3对全等三角形.正确的有________ .21.在ABC 中,48ABC ︒∠=,点D 在BC 边上,且满足18,BAD DC AB ︒∠==,则CAD ∠=________度. 22.如图,在ABC 中,点D 是BC 上的一点,已知30DAC ∠=︒,75DAB ∠=︒,CE平分ACB ∠交AB 于点E ,连接DE ,则DEC ∠=________度.23.如图,点D ,E 分别在线段AB ,AC 上,CD 与BE 相交于点P ,已知AD =AE .若△ABE ≌△ACD ,则可添加的条件为_____.24.如图,△ABC 中,∠C=90°,AC=40cm ,BD 平分∠ABC ,DE ⊥AB 于E ,AD :DC=5:3,则D 到AB 的距离为__________cm .25.如图,在ABC 中,AD 平分BAC ∠,P 为线段AD 上的一个动点,PE AD ⊥交直线BC 于点E .若35B ∠=︒,85ACB ∠=︒,则E ∠的度数为______.26.如图,已知点(44)A -,,一个以A 为顶点的45︒角绕点A 旋转,角的两边分别交x 轴正半轴,y 轴负半轴于E 、F ,连接EF .当△AEF 直角三角形时,点E 的坐标是________.三、解答题27.(1)如图,∠MAB =30°,AB =2cm ,点C 在射线AM 上,画图说明命题“有两边和其中一边的对角分别相等的两个三角形全等”是假命题,请画出图形,并写出你所选取的BC的长约为 cm (精确到0.lcm ).(2)∠MAB 为锐角,AB =a ,点C 在射线AM 上,点B 到射线AM 的距离为d ,BC =x ,若△ABC 的形状、大小是唯一确定的,则x 的取值范围是 .28.已知:如图,BAD CAE ∠=∠,AB AD =,AC AE =.(1)求证:ABC ADE △≌△.(2)若42,86B C ∠=︒∠=︒,求DAE ∠的度数.29.已知ACE △和DBF 中,AE FD =,//AE FD ,AB DC =,请判断CE 与BF 的位置关系,并说明理由.30.已知:在△ABC 中,AC =BC ,∠ACB =90°,点D 是AB 的中点,点E 是AB 边上一点.(1)直线BF 垂直CE 于点F ,交CD 于点G (如图1),求证:AE =CG ;(2)直线AH 垂直于CE ,垂足为H ,交CD 的延长线于点M (如图2),找出图中与BE 相等的线段,并说明理由.。
(完整版)全等三角形基础练习及答案
全等三角形判断一一、选择题1.△ABC和△中,若AB=,BC=,AC=. 则()A. △ABC≌△B. △ABC≌△C. △ABC≌△D. △ABC≌△2.如图,已知 AB= CD, AD= BC,则以下结论中错误的选项是()∥DC B. ∠B=∠ D C.∠A=∠ C= BC3.以下判断正确的选项是()A.两个等边三角形全等B.三个对应角相等的两个三角形全等C.腰长对应相等的两个等腰三角形全等D.直角三角形与锐角三角形不全等4.如图,AB、CD、EF订交于O,且被O点均分,DF=CE,BF=AE,则图中全等三角形的对数共有()A. 1 对B. 2 对C. 3 对D. 4 对5.如图,将两根钢条,的中点O连在一起,使,能够绕着点O自由转动,就做成了一个测量工件,则的长等于内槽宽AB,那么判断△ OAB≌△的原由是( )A. 边角边B. 角边角C. 边边边D. 角角边6.如图,已知AB⊥BD 于 B,ED⊥BD 于 D, AB=CD, BC= ED,以下结论不正确的选项是()⊥AC= AC+AB=DB D.DC = CB二、填空题7.如图,AB=CD,AC=DB,∠ ABD=25°,∠ AOB=82°,则∠ DCB=_________.8.如图,在四边形 ABCD中,对角线 AC、BD互相均分,则图中全等三角形共有_____对 .9.如图,在△ ABC和△ EFD中,AD=FC,AB=FE,当增加条件_______时,即可得△ ABC≌△ EFD(SSS)10.如图,AC=AD,CB=DB,∠ 2=30°,∠ 3=26°,则∠ CBE=_______.11.如图,点 D在 AB上,点 E 在 AC上, CD与 BE 订交于点 O,且 AD=AE, AB=AC,若∠ B =20°,则∠C =______.12.已知,如图,AB=CD, AC=BD,则△ ABC≌______,△ ADC≌ ______.三、解答题13.已知:如图,四边形 ABCD中,对角线 AC、 BD订交于 O,∠ ADC=∠ BCD, AD=BC,求证: CO= DO.14.已知:如图, AB∥CD, AB=CD.求证: AD∥BC.解析:要证AD∥BC,只要证∠ ______=∠ ______,又需证 ______≌______.证明:∵ AB∥CD (),∴ ∠______=∠ ______ (),在△ ______和△ ______中,∴______≌Δ ______ ().∴∠______=∠ ______ ().∴______ ∥______().15.如图,已知AB=DC, AC= DB, BE= CE求证: AE= DE.答案与解析一. 选择题1.【答案】 B;【解析】注意对应极点写在相应的地址.2.【答案】 D;【解析】连接 AC或 BD证全等 .3.【答案】 D;4.【答案】 C;【解析】△ DOF≌△ COE,△ BOF≌△ AOE,△ DOB≌△ COA.5.【答案】 A;【解析】将两根钢条,的中点O连在一起,说明OA=,OB=,再由对顶角相等可证.6.【答案】 D;【解析】△ ABC≌△ EDC,∠ ECD+∠ ACB=∠ CAB+∠ ACB=90°,所以EC⊥AC, ED + AB = BC+CD = DB.二. 填空题7.【答案】 66°;【解析】可由SSS证明△ ABC≌△ DCB,∠ OBC=∠ OCB=,所以∠ DCB=∠ABC=25°+ 41°= 66°.8.【答案】 4;【解析】△ AOD≌△ COB,△ AOB≌△ COD,△ ABD≌△ CDB,△ ABC≌△ CDA.9.【答案】 BC= ED;10.【答案】 56°;【解析】∠ CBE=26°+ 30°= 56°.11.【答案】 20°;【解析】△ ABE≌△ ACD( SAS)12.【答案】△ DCB,△ DAB;【解析】注意对应极点写在相应的地址上.三. 解答题13. 【解析】证明:在△ ADC 与△ BCD中,14.【解析】3 , 4;ABD,CDB;已知;1, 2;两直线平行,内错角相等;ABD, CDB;AB, CD,已知;∠1=∠ 2,已证;BD= DB,公共边;ABD, CDB, SAS;3, 4,全等三角形对应角相等;AD, BC,内错角相等,两直线平行.15.【解析】证明:在△ ABC 和△ DCB中∴△ ABC≌△ DCB( SSS)∴∠ ABC=∠ DCB,在△ ABE和△ DCE中∴△ ABE≌△ DCE( SAS)∴AE= DE.全等三角形判断二一、选择题1.能确定△ ABC≌△ DEF的条件是()A. AB= DE, BC= EF,∠ A=∠EB. AB= DE, BC= EF,∠ C=∠EC.∠ A=∠ E, AB= EF,∠ B=∠DD.∠ A=∠ D, AB= DE,∠ B=∠E2.如图,已知△ ABC 的六个元素,则下面甲、乙、丙三个三角形中,和△ABC全等的图形是()图4- 3A.甲和乙 B .乙和丙 C .只有乙 D .只有丙3. AD是△ ABC的角均分线,作A. DE= DF B . AE= AF DE⊥AB 于 E,DF⊥AC于 C .BD= CDF,以下结论错误的选项是(D.∠ ADE=∠ ADF)4.如图,已知MB=ND,∠ MBA=∠ NDC,以下条件不能够判断△ ABM≌△ CDN的是()A.∠ M=∠N B . AB= CD C .AM= CN D .AM∥CN5.某同学把一块三角形的玻璃打碎成了3块 , 现在要到玻璃店去配一块完满相同的玻璃, 那么最省事的方法是()A. 带①去B. 带②去C. 带③去D.①②③都带去6.如图,∠ 1=∠ 2,∠ 3=∠ 4,下面结论中错误的选项是()A.△ ADC≌△ BCD B .△ ABD≌△ BACC.△ ABO≌△ CDO D .△ AOD≌△ BOC二、填空题7.如图 , ∠1=∠ 2,要使△ ABE≌△ ACE,还需增加一个条件是 _________.( 填上你认为合适的一个条件即可).8.在△ ABC和△中,∠ A=44°,∠ B=67°,∠=69°,∠=44°,且AC=,则这两个三角形 _________全等 . (填“必然”或“不用然”)9.已知,如图,AB∥CD,AF∥DE,AF= DE,且 BE= 2, BC= 10,则 EF= ________.10.如图, AB∥CD,AD∥BC, OE= OF,图中全等三角形共有 ______ 对.11.如图, 已知:∠ 1 =∠ 2 , ∠3 =∠ 4 , 要证BD =CD , 需先证△ AEB ≌△ AEC , 依照是_________ ,再证△ BDE ≌△ ______ ___,依照是_________.12.已知 : 如图,∠ B=∠ DEF, AB= DE,要说明△ ABC≌△ DEF,(1)若以“ ASA”为依照,还缺条件_________(2)若以“ AAS”为依照,还缺条件_________(3)若以“ SAS”为依照,还缺条件_________三、解答题13.阅读下题及一位同学的解答过程:如图,AB和CD订交于点O,且 OA= OB,∠A=∠ C.那么△ AOD与△COB全等吗?若全等,试写出证明过程;若不全等,请说明原由.答:△ AOD≌△ COB.证明:在△ AOD和△ COB中,∴△AOD≌△ COB( ASA).问:这位同学的回答及证明过程正确吗?为什么?14.已知如图, E、 F 在 BD上,且 AB= CD, BF= DE, AE= CF,求证: AC与 BD互相均分 .15.已知:如图, AB∥CD,OA=OD, BC 过 O点 ,点E、F在直线AOD上,且AE=DF.求证: EB∥CF.答案与解析【答案与解析】一.选择题1.【答案】 D;【解析】 A、 B 选项是 SSA,没有这种判断, C 选项字母不对应 .2.【答案】 B;【解析】乙可由 SAS证明,丙可由 ASA证明 .3.【答案】 C;【解析】可由AAS证全等,获取A、 B、 D 三个选项是正确的.4.【答案】 C;【解析】没有 SSA定理判断全等 .5.【答案】 C;【解析】由 ASA定理,能够确定△ ABC.6.【答案】 C;【解析】△ ABO 与△ CDO中,只能找出三对角相等,不能够判断全等.二、填空题7.【答案】∠ B=∠ C;【解析】可由 AAS来证明三角形全等 .8.【答案】必然;【解析】由题意,△ ABC≌△,注意对应角和对应边.9.【答案】 6;【解析】△ ABF≌△ CDE, BE=CF= 2,EF= 10-2- 2= 6.10.【答案】 5;【解析】△ ABO≌△ CDO,△ AFO≌△ CEO,△ DFO≌△ BEO,△ AOD≌△ COB,△ ABD≌△ CDB.11.【答案】 ASA, CDE, SAS;【解析】△ AEB ≌△ AEC 后可得 BE= CE.12.【答案】(1)∠ A=∠D;( 2)∠ ACB=∠F; (3) BC = EF.三、解答题13.【解析】解:这位同学的回答及证明过程不正确.因为∠D 所对的是AO,∠C所对的是OB,证明中用到了OA= OB,这不是一组对应边,所以不能够由ASA去证明全等 .14.【解析】证明:∵ BF= DE,∴B F- EF= DE-EF,即 BE= DF在△ ABE和△ CDF中,∴△ ABE≌△ CDF( SSS)∴∠ B=∠ D,在△ ABO和△ CDO中∴△ ABO≌△ CDO( AAS)∴AO= OC, BO=DO, AC与 BD互相均分 .15.【解析】证明:∵ AB∥CD,∴∠ CDO=∠ BAO在△ OAB和△ ODC中,∴△ OAB≌△ ODC( ASA)∴OC= OB又∵ AE = DF ,∴AE+ OA= DF+ OD,即 OE= OF 在△ OCF和△ OBE中∴△ OCF≌△ OBE( SAS)∴∠ F=∠ E,∴CF∥EB.。
全等三角形专项练习与答案解析
一、选择题(题型注释)1.小明想用三根木棒为边制作一个三角形,则可以选用的木棒长为()A .8cm 、15cm 、6cmB .7cm 、9cm、13cmC .10cm 、20cm 、30cmD .20cm 、40cm 、60cm【答案】B2.如图所示,已知△ABE ≌△ACD ,∠1=∠2,∠B=∠C ,下列不正确的等式是()A.AB=ACB.∠BAE=∠CADC.BE=DCD.AD=DE【答案】D3.已知:如图所示,AC=CD ,∠B=∠E=90°,AC ⊥CD ,则不正确的结论是()A 、∠A 与∠D 互为余角B 、∠A=∠2C 、△ABC≌△CEDD 、∠1=∠2【答案】D4.如图,△ABC 中,∠C=90°,AC=BC,AD 平分∠CAB,交BC 于D,DE ⊥AB 于E.AB =6cm,则△DEB 的周长为()A. 4cmB. 6cmC. 10cmD. 14cm【答案】B5.如图,OA =OC ,OB =OD ,OA ⊥OB ,OC ⊥OD ,下列结论:①△AOD ≌△COB ;②CD =AB ;③∠CDA =∠ABC ; 其中正确的结论是()A .①②B .①②③C .①③D .②③AB C DE12【答案】B【解析】试题分析:因为OA=OC,OB=OD,OA⊥OB,OC⊥OD,可得△COD≌△AOB,∠CDO=∠ABO;∠DOC+∠AOC=∠AOB+∠AOC,OA=OC,OB=OD,所以△AOD≌△COB,所以CD=AB,∠ADO=∠CBO;所以∠CDA=∠ABC.故①②③都正确.故选B考点:三角形全等的判定和性质6.如图,△ABC中,∠B=∠C,BD=CF,BE=CD,∠EDF=α,则下列结论正确的是()A.2α+∠A=180°B.α+∠A=90°C.2α+∠A=90°D.α+∠A=180°【答案】A【解析】试题分析:根据已知条件可证明△BDE≌△CFD,则∠BED=∠CDF,由∠A+∠B+∠C=180°,得∠B=,因为∠BDE+∠EDF+∠CDF=180°,所以得出a与∠A的关系2a+∠A=180°.考点:全等三角形的判定和性质,三角形的内角和定理7.如图,AD是△ABC的中线,E、F分别在AB、AC上,且DE⊥DF,则()A.BE+CF>EFB.BE+CF=EFC.BE+CF<EFD.BE+CF与EF的大小关系不能确定.【答案】A.8.如图,△ABC中边AB的垂直平分线分别交BC,AB于点D,E,AE=3cm,△ADC的周长为9cm,则△ABC的周长是()A.10cmB.12cmC.15cmD.17cm【答案】C.【解析】试题分析:∵AB的垂直平分AB,∴AE=BE,BD=AD,∵AE=3cm,△ADC的周长为9cm,∴△ABC的周长是9cm+2×3cm=15cm,故选C.考点:线段垂直平分线的性质.9.如图所示,∠A+∠B+∠C+∠D+∠E的结果为()A.90°B.180°C.360°D.无法确定【答案】【解析】试题分析:延长BE交AC于F,∵∠A+∠B=∠2,∠D+∠E=∠1,∠1+∠2+∠C=180°,∴∠A+∠B+∠C+∠D+∠E=180°,考点:1.三角形内角和定理;2.三角形的外角性质.10.若△ABC中,2(∠A+∠C)=3∠B,则∠B的外角度数为何()A、36B、72C、108D、144【答案】C【解析】∵∠A+∠B+∠C=180°,∴2(∠A+∠B+∠C)=360°,∵2(∠A+∠C)=3∠B,∴∠B=72°,11.如图,AB∥CD,∠D=∠E=35°,则∠B的度数为().A.60°B.65°C.70°D.75°【答案】C.12.如图,已知△ABC,O是△ABC内的一点,连接OB、OC,将∠ABO、∠ACO分别记为∠1、∠2,则∠1、∠2、∠A、∠O四个角之间的数量关系是()A.∠1+∠0=∠A+∠2B.∠1+∠2+∠A+∠O=180°C.∠1+∠2+∠A+∠O=360°D.∠1+∠2+∠A=∠O【答案】D.【解析】试题分析:连接AO 并延长,交BC 于点D ,∵∠BOD 是△AOB 的外角,∠COD 是△AOC 的外角,∴∠BOD=∠BAD+∠1①,∠COD=∠CAD+∠2②,①+②得,∠BOC=(∠BAD+∠CAD )+∠1+∠2,即∠BOC=∠BAC+∠1+∠2.故选D .考点:1.三角形的外角性质;2.三角形内角和定理.13.如图,BD 是∠ABC 的角平分线,DE ⊥AB 于E ,DF ⊥BC 于F ,,,,△cm 12BC cm 18AB cm 362ABC ===S 则DE 的长是()【答案】B【解析】试题分析:∵BD 是∠ABC 的角平分线,DE ⊥AB ,DF ⊥BC,由角平分线的性质可得DE=DF∴DCB S S ∆∆+=ADB ABC S △=∴所以选B.考点:角平分线的性质第II 卷(非选择题)请点击修改第II 卷的文字说明二、填空题(题型注释)14.如图,△ABC 中,∠A =90°,DE 是BC 的垂直平分线,AD=DE ,则∠C 的度数是°.【答案】30°.【解析】试题分析:∵DE 是BC 的垂直平分线,∴DE ⊥BC ,∵∠A =90°,AD=DE ,∴BD 平分∠AABC ,∴∠ABD=∠DBC ,∵DE 是BC 的垂直平分线,∴DC=BD ,∴∠C=∠DBC ,∴3∠C=90°,∴∠C=30°.故答案为:30°.考点:1.线段垂直平分线的性质;2.角平分线的性质.15.如图,在△ABC 中,∠ACB =90°,AB 的垂直平分线DE 交AB 于E ,交AC 于D ,∠DBC =30°,BD =4.6,则D 到AB 的距离为。
(必考题)初中八年级数学上册第十二章《全等三角形》经典练习题(含答案解析)
一、选择题1.如图,△ABC ≌△ADE ,AB =AD ,AC =AE ,∠B =28︒,∠E =95︒,∠EAB =20︒,则∠BAD 等于( )A .75︒B .57︒C .55︒D .77︒D解析:D【分析】 先根据全等三角形的对应角相等得出∠B=∠D=28°,再由三角形内角和为180°,求出∠DAE=57°,然后根据∠BAD=∠DAE+∠EAB 即可得出∠BAD 的度数.【详解】解:∵△ABC ≌△ADE ,∴∠B=∠D=28°,又∵∠D+∠E+∠DAE=180°,∠E=95°,∴∠DAE=180°-28°-95°=57°,∵∠EAB=20°,∴∠BAD=∠DAE+∠EAB=77°.故选:D .【点睛】本题考查了全等三角形的性质,三角形内角和定理,比较简单.由全等三角形的对应角相等得出∠B=∠D=28°是解题的关键.2.如图,在ABC 中,8AB AC ==厘米,6BC =厘米,点D 为AB 的中点.如果点P 在线段BC 上以3厘米/秒的速度由B 点向C 点运动,同时,点Q 在线段CA 上,由C 点向A 点运动,为了使BPD CPQ △≌△,点Q 的运动速度应为( )A .1厘米/秒B .2厘米/秒C .3厘米/秒D .4厘米/秒D解析:D【分析】根据三角形全等的性质与路程、速度、时间的关系式求解.【详解】解:设△BPD ≌△CPQ 时运动时间为t ,点Q 的运动速度为v ,则由题意得:BP CP BD CQ =⎧⎨=⎩, 即3634t t vt =-⎧⎨=⎩, 解之得:14t v =⎧⎨=⎩, ∴点Q 的运动速度为4厘米/秒,故选D .【点睛】本题考查三角形全等的综合应用,熟练掌握三角形全等的判定与性质、路程、速度、时间的关系式及方程的思想方法是解题关键.3.MAB ∠为锐角,AB a ,点C 在射线AM 上,点B 到射线AM 的距离为d ,BC x =,若△ABC 的形状、大小是唯一确定的,则x 的取值范围是( )A .x d =或x a ≥B .x a ≥C .x d =D .x d =或x a > A解析:A【分析】 当x =d 时,BC ⊥AM ,C 点唯一;当x ≥a 时,能构成△ABC 的C 点唯一,可确定取值范围.【详解】解:若△ABC 的形状、大小是唯一确定的,则C 点唯一即可,当x =d 时,BC ⊥AM ,C 点唯一;当x >a 时,以B 为圆心,BC 为半径的作弧,与射线AM 只有一个交点,x =a 时,以B 为圆心,BC 为半径的作弧,与射线AM 只有两个交点,一个与A 重合, 所以,当x ≥a 时,能构成△ABC 的C 点唯一,故选为:A .【点睛】本题考查了三角形的画法,根据题意准确作图并且能够分类讨论是解题关键.4.如图,在ABC 和DEF 中,,B DEF AB DE ∠=∠=,添加下列一个条件后,仍然不能证明ABC DEF ≌,这个条件是( )A .A D ∠=∠B .BC EF = C .ACB F ∠=∠D .AC DF = D解析:D【分析】 根据全等三角形的判定,利用ASA 、SAS 、AAS 即可得答案.【详解】解:∵∠B=∠DEF ,AB=DE ,∴添加∠A=∠D ,利用ASA 可得△ABC ≌△DEF ;添加BC=EF ,利用SAS 可得△ABC ≌△DEF ;添加∠ACB=∠F ,利用AAS 可得△ABC ≌△DEF ;添加AC DF =,不符合任何一个全等判定定理,不能证明△ABC ≌△DEF ;故选:D .【点睛】本题考查了全等三角形的判定,掌握全等三角形的判定方法:SSS 、ASA 、SAS 、AAS 和HL 是解题的关键.5.如图,在△ABC 中,AB=5,AC=3,AD 是BC 边上的中线,AD 的取值范围是( )A .1<AD <6B .1<AD <4C .2<AD <8 D .2<AD <4B解析:B【分析】 先延长AD 到E ,且AD DE =,并连接BE ,由于ADC BDE ∠=∠,BD DC =,利用SAS 易证ADC EDB ≌,从而可得AC BE =,在ABE △中,再利用三角形三边的关系,可得28AE <<,从而易求14AD <<.【详解】解:延长AD 到E ,使AD DE =,连接BE ,则AE=2AD ,∵AD DE =,ADC BDE ∠=∠,BD DC =,∴ADC EDB ≌()SAS ,3BE AC ∴==,在AEB △中,AB BE AE AB BE -<<+,即53253AD -<<+,∴14AD <<.故选:B .【点睛】此题主要考查三角形三边关系:两边之和大于第三边,两边之差小于第三边. 6.如图所示,下面甲、乙、丙三个三角形和ABC 全等的图形是( )A .甲和乙B .乙和丙C .只有丙D .只有乙B解析:B【分析】 甲只有2个已知条件,缺少判定依据;乙可根据SAS 判定与△ABC 全等;丙可根据AAS 判定与△ABC 全等,可得答案.【详解】解:甲三角形只知道两条边长无法判断是否与△ABC 全等;乙三角形夹50°内角的两边分别与已知三角形对应相等,故乙与△ABC 全等;丙三角形72°内角及所对边与△ABC 对应相等且均有50°内角,可根据AAS 判定乙与△ABC 全等;则与△ABC 全等的有乙和丙,故选:B .【点睛】本题主要考查全等三角形的判定定理,熟练掌握并充分理解三角形全等的判定定理,注意对应二字的理解很重要.7.如图,AB AC =,AD AE =,55A ︒∠=,35C ︒∠=,则DOE ∠的度数是( )A .105︒B .115︒C .125︒D .130︒C解析:C【分析】 先判定△ABE ≌△ACD ,再根据全等三角形的性质,得出∠B=∠C=35︒,由三角形外角的性质即可得到答案.【详解】在△ABE 和△ACD 中,AB AC BAE CAD AE AD =⎧⎪∠=∠⎨⎪=⎩,∴△ABE ≌△ACD (SAS ),∴∠B=∠C ,∵∠C=35︒,∴∠B=35︒,∴∠OEC=∠B+∠A=355590︒+︒=︒,∴∠DOE=∠C+∠OEC=3590125︒+︒=︒,故选:C .【点睛】本题考察全等三角形的判定与性质、三角形外角的性质,熟练掌握全等三角形的判定与性质是解题关键.8.如图,AB 与CD 相交于点E ,AD=CB ,要使△ADE ≌△CBE ,需添加一个条件,则添加的条件以及相应的判定定理正确的是( )A .AE=CE ;SASB .DE=BE ;SASC .∠D=∠B ;AASD .∠A=∠C ;ASA C解析:C【分析】 根据三角形全等的判定方法结合全等的判定方法逐一进行来判断.【详解】解:A.添加AE=CE 后,根据已知两边和其中一边的对角对应相等,两个三角形不一定全等;故不符合题意;B.添加DE=BE 后,根据已知两边和其中一边的对角对应相等,两个三角形不一定全等;故不符合题意;C.添加∠D=∠B ,根据AAS 可证明△ADE ≌△CBE ,故此选项符合题意;D.添加∠A=∠C ,根据AAS 可证明△ADE ≌△CBE ,故此选项不符合题意;故选:C【点睛】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS 、SAS 、AAS 、ASA .关键在于应根据所给的条件判断应证明哪两个三角形全等.9.如图,已知∠A=∠D , AM=DN ,根据下列条件不能够判定△ABN ≅△DCN 的是( )A .BM ∥CNB .∠M=∠NC .BM=CND .AB=CD C解析:C【分析】 利用全等三角形的判断方法进行求解即可.【详解】A 、因为 BM ∥CN ,所以∠ABM=∠DCN ,又因为∠A=∠D , AM=DN ,所以△ABN ≅△DCN(AAS),故A 选项不符合题意;B 、因为∠M=∠N ,∠A=∠D , AM=DN ,所以△ABN ≅△DCN(ASA),故B 选项不符合题意;C 、BM=CN ,不能判定△ABN ≅△DCN ,故C 选项符合题意;D 、因为AB=CD ,∠A=∠D , AM=DN ,所以△ABN ≅△DCN(SAS),故D 选项不符合题意.故选:C .【点评】本题考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS 、SAS 、ASA 、AAS 、HL .注意:AAA 、SSA 不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.10.如图,在OAB 和OCD 中,OA OB =,OC OD =,OA OC >,40AOB COD ∠=∠=︒,连接AC 、BD 交于点M ,连接OM ,下列结论:①AC BD =;②40AMB ∠=︒;③OM 平分BOC ∠;④MO 平分BMC ∠,其中正确的为( )A .①②③B .①②④C .②③④D .①②③④B解析:B【分析】 由SAS 证明AOC BOD ≅得出OCA ODB ∠=∠,=AC BD ,①正确;由全等三角形的性质得出OAC OBD ∠=∠,由三角形的外角性质得:AMB OAC AOB OBD ∠+∠=∠+∠,得出40AOB COD ∠=∠=︒,②正确;作OG MC ⊥于G ,OH MB ⊥于H ,如图所示:则90OGC OHD ∠=∠=,由AAS 证明OCG ODH ≅(AAS ),得出OG=OH ,由角平分线的判定方法得出MO 平分BOC ∠,④正确;由AOB COD ∠=∠,得出当∠=∠DOM AOM 时,OM 平分BOC ∠,假设∠=∠DOM AOM ,由AOC BOD ≅得出COM BOM ,由MO 平分BMC ∠得出∠=∠CMO BMO ,推出COM BOM ≅,得出OB=OC ,OA=OB ,所以OA=OC ,而OA OC >,故③错误;即可得出结论.【详解】∵40AOB COD ∠=∠=︒,∴AOB AOD COD AOD ∠+∠=∠+∠即AOC BOD ∠=∠在AOC △和BOD 中OA OB AOC BOD OC OD =⎧⎪∠=∠⎨⎪=⎩∴AOC BOD ≅(SAS )∴OCA ODB ∠=∠,=AC BD ,①正确;∴OAC OBD ∠=∠,由三角形的外角性质得:AMB OAC AOB OBD ∠+∠=∠+∠,∴40AOB COD ∠=∠=︒,②正确;作OG MC ⊥于G ,OH MB ⊥于H ,如图所示:则90OGC OHD ∠=∠=,在OCG 和ODH 中OCA ODB OGC OHD OC OD ∠=∠⎧⎪∠=∠⎨⎪=⎩∴OCG ODH ≅(AAS ),∴OG=OH∴MO 平分BOC ∠,④正确;∴AOB COD ∠=∠∴当∠=∠DOM AOM 时,OM 平分BOC ∠,假设∠=∠DOM AOM∵AOC BOD ≅∴COM BOM ,∵MO 平分BMC ∠∴∠=∠CMO BMO ,在COM 和BOM 中 OCM BOM OM OMCMO BMO ∠=∠⎧⎪=⎨⎪∠=∠⎩∴COM BOM ≅(ASA )∴OB=OC ,∵OA=OB ,∴OA=OC ,与OA OC >矛盾,∴③错误;正确的有①②④;故选:B【点睛】 本题考查了全等三角形的判定与性质、三角形的外角性质、角平分线的判定等知识;证明三角形全等是解题的关键.二、填空题11.如图,已知//AD BC ,点E 为CD 上一点,AE ,BE 分别平分DAB ∠,CBA ∠.若3cm AE =,4cm BE =,则四边形ABCD 的面积是________.【分析】如图延长AEBC 交于点M 通过条件证明再证明可知即可求解出结果【详解】解:如图延长AEBC 交于点MAE 平分又BE 平分BE=BE 故答案为:【点睛】本题考查全等三角形的综合问题需要熟练掌握全等三角 解析:212cm【分析】如图,延长AE ,BC 交于点M ,通过条件证明()ABE MBE AAS ≅,再证明()ADE MCE ASA ≅,可知ADE MCE SS =,=2ABE ABCD S S 四边形即可求解出结果.【详解】 解:如图,延长AE ,BC 交于点M ,AE 平分DAB ∠,BAE DAE ∴∠=∠,//AD BC ,//AD BM ∴,BAE DAE CME ∴∠=∠=∠,又 BE 平分CBA ∠,ABE MBE ∴∠=∠,BAE CME ABE MBE ∠=∠∠=∠,,BE=BE ,()ABE MBE AAS ∴≅,90BEA BEM AE ME ∴∠=∠=︒=,,DAE CME AE ME ∠=∠=,,AED MEC ∠=∠,()ADE MCE ASA ∴≅,ADE MCE S S ∴=,3cm AE =,4cm BE =,21==2234122ABM ABE ABCD S S S cm ∴=⨯⨯⨯=四边形, 故答案为:212cm .【点睛】本题考查全等三角形的综合问题,需要熟练掌握全等三角形的判定定理和性质,能根据条件和图像做出合适的辅助线是解决本题的关键.12.如图,在Rt ABC △中,90C ∠=︒,以顶点A 为圆心,任意长为半径画弧,分别交AC ,AB 于点M ,N ,再分别以点M ,N 为圆心,大于12MN 的长为半径画弧,两弧交于点P ,作射线AP 交BC 于点D .若3CD =,10AB =,则ABD △的面积是______.15【分析】如图过点D 作DE ⊥AB 于E 首先证明DE=CD=3再利用三角形的面积公式计算即可【详解】解:如图过点D 作DE ⊥AB 于E 由作图可知AD 平分∠CAB ∵CD ⊥ACDE ⊥AB ∴DE=CD=3∴S △ 解析:15【分析】如图,过点D 作DE ⊥AB 于E .首先证明DE=CD=3,再利用三角形的面积公式计算即可.【详解】解:如图,过点D 作DE ⊥AB 于E .由作图可知,AD 平分∠CAB ,∵CD ⊥AC ,DE ⊥AB ,∴DE=CD=3,∴S △ABD =12•AB•DE=12×10×3=15, 故答案为15.【点睛】本题考查了作图-基本作图,角平分线的性质定理等知识,解题的关键是学会添加常用辅助线,学会用转化的思想思考问题.13.如图,在△ABC中,∠ABC的平分线与外角∠ACE的平分线交于点D,若∠D=20°,则∠A=_____.40°【分析】利用角平分线的性质可知∠ABC=2∠DBC∠ACE=2∠DCE再根据三角形外角的性质可得出∠D=∠DCE﹣∠DBE∠A=∠ACE﹣∠ABC即得出∠A=2∠D即得出答案【详解】∵∠ABC解析:40°【分析】利用角平分线的性质可知∠ABC=2∠DBC,∠ACE=2∠DCE.再根据三角形外角的性质可得出∠D=∠DCE﹣∠DBE,∠A=∠ACE﹣∠ABC.即得出∠A=2∠D,即得出答案.【详解】∵∠ABC的平分线交∠ACE的外角平分线∠ACE的平分线于点D,∴∠ABC=2∠DBC,∠ACE=2∠DCE,∵∠DCE是△BCD的外角,∴∠D=∠DCE﹣∠DBE,∵∠ACE是△ABC的外角,∠A=∠ACE﹣∠ABC=2∠DCE﹣2∠DBE=2(∠DCE﹣∠DBE),∴∠A=2∠D=40°.故答案为:40°.【点睛】本题考查角平分线和三角形外角的性质,熟练利用角平分线和三角形外角的性质来判断题中角之间的关系是解答本题的关键.≅,延长BC,分别交AD,ED于点F,G,若14.如图,ABC ADE∠=________︒.∠=︒,10B∠=︒,30EAB120CAD∠=︒,则CFD95【分析】根据全等三角形的性质得∠BAC=∠DAE 结合三角形外角的性质和三角形内角和定理即可求解【详解】解:∵∴∴∴∴故答案为:【点睛】本题主要考查全等三角形的性质三角形外角的性质和三角形内角和定解析:95【分析】根据全等三角形的性质,得∠BAC=∠DAE ,结合三角形外角的性质和三角形内角和定理,即可求解.【详解】解:∵ABC ADE ≅,∴()12010255BAC DAE ∠=∠=-÷=,∴85ACF BAC B ∠=∠+∠=,∴18085CFA ACF CAD ∠=-∠-∠=,∴1808595CFD ∠=-=.故答案为:95.【点睛】本题主要考查全等三角形的性质,三角形外角的性质和三角形内角和定理,熟练掌握上述定理和性质,是解题的关键.15.如图,90,,,ACB AC BC AD CE BE CE ∠=︒=⊥⊥,垂足分别为,D E ,若9,6AD DE ==,则BE 的长为________________________.3【分析】由AD ⊥CEBE ⊥CE 可以得到∠BEC=∠CDA=90°再根据∠ACB=90°可以得到∠BCE=∠CAD 从而求得△CEB ≌△ADC 然后利用全等三角形的性质可以求得BE 的长【详解】解:∵∠A解析:3【分析】由AD ⊥CE ,BE ⊥CE ,可以得到∠BEC=∠CDA=90°,再根据∠ACB=90°,可以得到∠BCE=∠CAD ,从而求得△CEB ≌△ADC ,然后利用全等三角形的性质可以求得BE 的长.【详解】解:∵∠ACB=90°,BE ⊥CE ,AD ⊥CE ,∴∠BCE+∠DCA=90°,∠BEC=∠CDA=90°,∴∠ACD+∠CAD=90°,∴∠BCE=∠CAD ,在△CEB 和△ADC 中,BCE CAD BEC CDA AC BC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△CEB ≌△ADC (AAS );∴BE=CD ,CE=AD=9.∵DC=CE-DE ,DE=6,∴DC=9-6=3,∴BE=3.故答案为:3【点睛】本题考查全等三角形的判定与性质,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.16.如图,在四边形ABCD 中,90A ∠=︒,3AD =,连接BD ,BD CD ⊥,ADB C ∠=∠.若P 是BC 边上一动点,则DP 长的最小值为_______.3【分析】过点D 作于点H 先证明BD 是的角平分线然后根据角平分线的性质得到当点P 运动到点H 的位置时DP 的长最小即DH 的长【详解】解:如图过点D 作于点H ∵∴∵∴∴BD 是的角平分线∵∴∵点D 是直线BC 外一解析:3【分析】过点D 作DH BC ⊥于点H ,先证明BD 是ABC ∠的角平分线,然后根据角平分线的性质得到3AD DH ==,当点P 运动到点H 的位置时,DP 的长最小,即DH 的长.【详解】解:如图,过点D 作DH BC ⊥于点H ,∵BD CD ⊥,∴90BDC ∠=︒,∵180C BDC DBC ∠+∠+∠=︒,180ADB A ABD ∠+∠+∠=︒,ADB C ∠=∠,90A ∠=︒,∴ABD CBD ∠=∠,∴BD 是ABC ∠的角平分线,∵AD AB ⊥,DH BC ⊥,∴3AD DH ==,∵点D 是直线BC 外一点,∴当点P 在BC 上运动时,点P 运动到与点H 重合时DP 最短,其长度为DH 长,即DP 长的最小值是3.故答案是:3.【点睛】本题考查角平分线的性质,解题的关键是熟练运用角平分线的性质定理.17.如图,∠1=∠2,要使△ABC ≌△ADC ,还需添加条件:_____.(填写一个你认为正确的即可)AB =AD (答案不唯一)【分析】根据题目中条件和图形可以得到∠1=∠2AC =AC 然后即可得到使得△ABC ≌△ADC 需要添加的条件本题得以解决【详解】由已知可得∠1=∠2AC =AC ∴若添加条件AB =A解析:AB =AD (答案不唯一)【分析】根据题目中条件和图形,可以得到∠1=∠2,AC =AC ,然后即可得到使得△ABC ≌△ADC 需要添加的条件,本题得以解决.【详解】由已知可得,∠1=∠2,AC =AC ,∴若添加条件AB =AD ,则△ABC ≌△ADC (SAS );若添加条件∠ACB=∠ACD,则△ABC≌△ADC(ASA);若添加条件∠ABC=∠ADC,则△ABC≌△ADC(AAS);故答案为:AB=AD(答案不唯一).【点睛】本题考查全等三角形的判定,解答本题的关键是明确题意,利用数形结合的思想解答.18.如图,AB=8cm,AC=5cm,∠A=∠B,点P在线段AB上以2cm/s的速度由点A向B 运动,同时,点Q以x cm/s的速度从点B出发在射线BD上运动,则△ACP与△BPQ全等时,x的值为_____________2或【分析】由∠A=∠B可知△ACP与△BPQ全等时CP和PQ是对应边则分AP=BQ和AP=PB两种情况进行讨论即可【详解】设动点的运动时间为t秒则AP=2tBP=AB-AP=8-2tBQ=xt∵∠解析:2或5 2【分析】由∠A=∠B,可知△ACP与△BPQ全等时,CP和PQ是对应边,则分AP=BQ和AP=PB两种情况进行讨论即可.【详解】设动点的运动时间为t秒,则AP=2t,BP=AB-AP=8-2t,BQ=xt,∵∠A=∠B,∴CP和PQ是对应边,当△ACP与△BPQ全等时,①AP=BQ,即:2t= xt,解得:x=2,②AP=PB,即:2t=8-2t,解得:t=2,此时,BQ=AC,xt=5,即:2x=5,解得:x=5 2故填:2或52.【点睛】本题考查全等三角形的性质,“分类讨论”的数学思想是关键.19.如图,△ABC的面积为1cm2,AP垂直∠ABC的平分线BP于P,则△PBC的面积为___.cm2【分析】如图延长AP 交BC 于T 利用全等三角形的性质证明AP=PT 即可解决问题【详解】解:如图延长AP 交BC 于T ∵BP ⊥AT ∴∠BPA=∠BPT=90°∵BP=BP ∠PBA=∠PBT ∴△BPA ≌ 解析:12 cm 2 【分析】如图,延长AP 交BC 于T .利用全等三角形的性质证明AP=PT 即可解决问题.【详解】解:如图,延长AP 交BC 于T .∵BP ⊥AT ,∴∠BPA=∠BPT=90°,∵BP=BP ,∠PBA=∠PBT ,∴△BPA ≌△BPT (ASA ),∴PA=PT ,∴BPA BPT CAP CPT S S S S ==,1122PBC ABC S S ∴==, 故答案为12cm 2. 【点睛】 本题考查全等三角形的判定和性质,三角形的面积,等高模型等知识,解题的关键是学会添加常用辅助线吗,构造全等三角形解决问题.20.如图,ABC ∆中,90,6,8ACB AC cm BC cm ∠=︒==,点P 从点A 出发沿A C -路径向终点C 运动.点Q 从B 点出发沿B C A --路径向终点A 运动.点P 和Q 分别以每秒1cm 和3cm 的运动速度同时开始运动,其中一点到达终点时另一点也停止运动,在某时刻,分别过P 和Q 作PE l ⊥于,E QF l ⊥于F .则点P 运动时间为_______________时,PEC ∆与QFC ∆全等.或【分析】对点P 和点Q 是否重合进行分类讨论通过证明全等即可得到结果;【详解】如图1所示:与全等解得:;如图2所示:点与点重合与全等解得:;故答案为:或【点睛】本题主要考查了全等三角形的判定与性质准确解析:1或7 2【分析】对点P和点Q是否重合进行分类讨论,通过证明全等即可得到结果;【详解】如图1所示:PEC∆与QFC∆全等,PC QC,683∴-=-t t,解得:1t=;如图2所示:点P与点Q重合,PEC与QFC∆全等,638∴-=-t t,解得:72t=;故答案为:1或72.【点睛】本题主要考查了全等三角形的判定与性质,准确分析计算是解题的关键.三、解答题21.(1)如图,∠MAB=30°,AB=2cm,点C在射线AM上,画图说明命题“有两边和其中一边的对角分别相等的两个三角形全等”是假命题,请画出图形,并写出你所选取的BC 的长约为 cm (精确到0.lcm ).(2)∠MAB 为锐角,AB =a ,点C 在射线AM 上,点B 到射线AM 的距离为d ,BC =x ,若△ABC 的形状、大小是唯一确定的,则x 的取值范围是 .解析:(1)见解析,1.2;(2)x=d 或x≥a【分析】(1)可以取BC =1.2cm (1cm <BC <2cm ),画出图形即可; (2)当x =d 或x≥a 时,三角形是唯一确定的.【详解】(1)如图,选取的BC 的长约为1.2cm ,故答案是:1.2;(2)若△ABC 的形状、大小是唯一确定的,则x 的取值范围是x =d 或x≥a ,故答案为:x=d 或x≥a .【点睛】本题考查全等三角形的判定,解题的关键是理解题意,掌握“有两边和其中一边的对角分别相等的两个三角形不一定全等”,属于中考常考题型.22.如图,点D 在边AC 上,BC 与DE 交于点P ,AB DB =,C E ∠=∠,CDE ABD ∠=∠.(1)求证:ABC DBE ≌;(2)已知162ABE ∠=︒,30DBC ∠=︒,求CDE ∠的度数.解析:(1)见解析;(2)66°【分析】(1)根据三角形内角和定理说明∠CDE=∠CBE ,再证明∠ABC=∠DBE ,根据AAS 可证明△ABC ≌△DBE ;(2)根据∠ABE 和∠DBC 的度数可以算出∠CBE 和∠ABD 的度数,从而得到∠CDE .【详解】解:(1)∵∠C=∠E ,∠CPD=∠EPB ,∴∠CDE=∠CBE ,∵∠CDE=∠ABD ,∴∠CBE=∠ABD ,∴∠CBE+∠CBD=∠ABD+∠CBD ,即∠ABC=∠DBE ,又∠C=∠E ,AB=DB ,∴△ABC ≌△DBE (AAS );(2)∵162ABE ∠=︒,30DBC ∠=︒,∴∠ABD=∠CBE=(162°-30°)÷2=66°,∴∠CDE=∠CBE=66°.【点睛】本题考查了全等三角形的判定和性质,三角形内角和定理的应用,寻找三角形全等的条件是解题的关键.23.如图,△ABC 中,AB=AC ,∠BAC=90°,CD 平分∠ACB ,BE ⊥CD ,垂足E 在CD 的延长线上.求证:CD=2BE .解析:见解析【分析】根据等角的余角相等求出∠ACD=∠ABF ,再利用“角边角”证明△AFB ≌△ADC 可得CD=BF ,利用“角边角”证明△BCE 和△FCE 全等,根据全等三角形对应边相等BE=EF ,整理即可得证.【详解】证明:∵BE ⊥CD ,∠BAC=90°,∴∠ACD+∠F=180°-90°=90°,∠ABF+∠F=180°-90°=90°,∴∠ACD=∠ABF ,在△AFB 和△ADC 中,90ACD ABF AB ACCAD BAF ∠∠⎧⎪⎨⎪∠∠︒⎩====, ∴△AFB ≌△ADC (ASA );∴CD=BF ,∵CD 平分∠ACB ,∴∠BCE=∠FCE ,在△BCE 和△FCE 中,90BCE FCE CE CEBEC FEC ∠∠⎧⎪⎨⎪∠∠︒⎩====, ∴△BCE ≌△FCE (ASA ),∴BE=EF ,∴BF=2BE∴CD=2BE .【点睛】本题考查了全等三角形的判定与性质,熟练掌握三角形全等的证明方法并准确识图是解题的关键.24.小敏在学习了几何知识后,对角的知识产生了兴趣,进行了如下探究:(1)如图1,∠AOB =90°,在图中动手画图(不用写画法).在∠AOB 内部任意画一条射线OC ;画∠AOC 的平分线OM ,画∠BOC 的平分线ON ;用量角器量得∠MON =______. (2)如图2,∠AOB =90°,将OC 向下旋转,使∠BOC =30°,仍然分别作∠AOC ,∠BOC 的平分线OM ,ON ,能否求出∠MON 的度数,若能,求出其值,若不能,试说明理由.解析:(1)作图见解析,45;(2)能,45【分析】(1)以点O 为圆心,任意长为半径,画圆弧,并分别交OA 、OC 于点H 、点G ;再分别以点H 、点G 为圆心,以大于12HG 的长度为半径画圆弧并相较于点P ,过点P 作射线OM 即为∠AOC 的平分线;同理得∠BOC 的平分线ON ;通过量角器测量即可得到∠MON ;(2)根据题意,得114522COM AOC BOC ∠=∠=+∠,12CON BOC ∠=∠,结合MON COM CON ∠=∠-∠,经计算即可得到答案.【详解】(1)作图如下用量角器量得:∠MON =45故答案为:45;(2)∵∠AOC ,∠BOC 的平分线OM ,ON ,且∠AOB =90°∴()11145222COM AOC AOB BOC BOC ∠=∠=∠+∠=+∠ 12CON BOC ∠=∠ ∴11454522MON COM CON BOC BOC ∠=∠-∠=+∠-∠=. 【点睛】本题考查了角平分线、射线的知识;解题的关键是熟练掌握角平分线、角的运算的性质,从而完成求解.25.如图,在△ABC 中,AD 是∠BAC 的角平分线,DE ⊥AB ,DF ⊥AC ,D 是BC 的中点,证明:∠B =∠C .解析:见解析【分析】通过角平分线上点的性质、D 为BC 中点、DE ⊥AB 、DF ⊥AC 证明出BDE CDF ≌,从而证明∠B =∠C .【详解】∵AD 是AD 是∠BAC 的角平分线,DE ⊥AB ,DF ⊥AC ,∴DE =DF ,∵D 是BC 的中点,∴BD =CD∵△BDE 与△CDF 是直角三角形∴BDE CDF ≌∴∠B =∠C .【点睛】 本题考查了全等三角形的判定和性质以及角平分线上点的性质,正确证明全等三角形并得出各角之间的关系是本题的关键.26.如图,E 、A 、C 三点共线,//AB CD ,B E ∠=∠,AC CD =.求证:BC ED =.解析:证明见解析【分析】利用AAS 证明△ABC ≌△CED 即可得到结论.【详解】证明:∵//AB CD ,∴BAC ECD ∠=∠,在ABC 和CED 中BAC ECD B EAC CD ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴()ABC CED AAS △≌△,∴BC ED =.【点睛】此题考查全等三角形的判定及性质,熟记三角形全等的判定定理及根据已知题意确定两个三角形对应相等的条件是解题的关键.27.如图,在平面直角坐标系中,已知点()1,A a a b -+,(),0B a ,且()2320a b a b +-+-=,C 为x 轴上点B 右侧的动点,以AC 为腰作等腰三角形ACD ,使AD AC =,CAD OAB ∠=∠,直线DB 交y 轴于点P .(1)求证:AO AB =;(2)求证:AOC ABD ∆∆≌;(3)当点C 运动时,点P 在y 轴上的位置是否发生改变,为什么?解析:(1)证明见解析;(2)证明见解析;(3)不变,理由见解析.【分析】(1)先根据非负数的性质求出a 、b 的值,作AE ⊥OB 于点E ,由SAS 定理得出△AEO ≌△AEB ,根据全等三角形的性质即可得出结论;(2)先根据∠CAD=∠OAB ,得出∠OAC=∠BAD ,再由SAS 定理即可得出结论; (3)设∠AOB=∠ABO=α,由全等三角形的性质可得出∠ABD=∠AOB=α,故∠OBP=180°-∠ABO-∠ABD=180°-2α为定值,再由OB=2,∠POB=90°可知OP 的长度不变,故可得出结论.【详解】(1)证明:∵()2320a b a b +-+-=,∴30,20,a b a b +-=⎧⎨-=⎩解得2,1.a b =⎧⎨=⎩∴()1,3A ,()2,0B .作AE OB ⊥于点E ,∵()1,3A ,()2,0B ,∴1OE =,211BE =-=,在AEO ∆与AEB ∆中,∵,90,,AE AE AEO AEB OE BE =⎧⎪∠=∠=︒⎨⎪=⎩∴AEO AEB ∆∆≌,∴OA AB =.(2)证明:∵CAD OAB ∠=∠,∴CAD BAC OAB BAC ∠+=∠+∠∠,即OAC BAD ∠=∠.在AOC ∆与ABD ∆中,∵,,,OA AB OAC BAD AC AD =⎧⎪∠=∠⎨⎪=⎩∴AOC ABD ∆∆≌.(3)解:点P 在y 轴上的位置不发生改变.理由:设AOB α∠=.∵OA AB =,∴AOB ABO α∠=∠=.由(2)知,AOC ABD ∆∆≌,∴ABD AOB α∠=∠=.∵2OB =,1801802OBP ABO ABD α∠=︒-∠-∠=︒-为定值,90POB ∠=︒,易知POB ∆形状、大小确定,∴OP 长度不变,∴点P 在y 轴上的位置不发生改变.【点睛】本题考查了全等三角形的判定与性质,熟知全等三角形的判定定理是解题的关键. 28.已知:如图,AOB ∠.求作: A O B '''∠,使A O B AOB '''∠=∠.作法:①以点O 为圆心,任意长为半径画弧,分别交OA ,OB 于点C ,D ;②画一条射线O A '',以点O '为圆心,OC 长为半径画弧,交O A ''于点C ';③以点C '为圆心,CD 长为半径画弧,与②中所画的弧相交于点D ;④过点D 画射线O B '',则A O B AOB '''∠=∠;A OB '''∠就是所求作的角.(1)使用直尺和圆规,依作法补全图形(保留作图痕迹);(2)完成下面的证明证明:连接C D ''.由作法可知OC O C ''=,,,∴COD C O D '''≅.( )(填推理依据).∴A O B AOB '''∠=∠.∴A O B '''∠就是所求作的角.解析:(1)补全图形见解析;(2)OD O D ''=,CD C D ''=,SSS .【分析】(1)根据题意要求作图即可;(2)根据题意利用SSS 证明COD C O D '''≅即可.【详解】(1)作图:(2)连接C D '',∵OC O C ''=,OD O D ''= ,CD C D ''=,∴COD C O D '''≅(SSS ),∴A O B AOB '''∠=∠.∴A O B '''∠就是所求作的角故答案为:OD O D ''=,CD C D ''=,SSS ..【点睛】此题考查作图能力—作一个角等于已知角,全等三角形的判定及性质,根据题意画出图形并确定对应相等的条件证明三角形全等是解题的关键.。
全等三角形练习题含答案.docx
七年级全等测试一•选择题(共3小题)1. 如图,EB交AC于M ,交FC于D, AB交FC于N,∠ E=∠ F=90° ∠ B=∠ C, AE=AF给出下列结论:①∠ 1 = ∠2;②BE=CF③厶ACN^△ ABM:④CD=DN 其中正确的结论有()£A. 4个B. 3个C. 2个D. 1个2. 如图,△ ABC为等边三角形,D、E分别是AC、BC上的点,且AD=CE AE与BD相交于点P,BF⊥AE于点F.若BP=4则PF的长()A. 2B. 3C. 1D. 2 二3. 如图,OA=OC OB=OD且OA⊥OB, OC丄OD,下列结论:①△ AOD^△ COB②CD=AB③∠ CDA=Z ABC; 其中正确的结论是()A.①②B.①②③C.①③D.②③.解答题(共11小题)4. 如图,四边形ABCD中,对角线AC BD交于点O, AB=AC点E是BD上点,且AE=AD ∠ EAD=Z BAC(1 求证:∠ ABD=Z ACD(2)若Z ACB=65,求Z BDC的度数.5. (1)如图①,在四边形ABCD中,AB// DC, E是BC的中点,若AE是Z BAD 的平分线,试探究AB, AD,DC之间的等量关系,证明你的结论;(2)如图②,在四边形ABCD中,AB// DC, AF与DC的延长线交于点F, E是BC的中点,若AE是Z BAF的平分线,试探究AB, AF, CF之间的等量关系,证明你的结论.6 .已知:在△ ABC中,AB=AC D为AC的中点,DE⊥ AB, DF⊥ BC,垂足分别为求证:△ ABC是等边三角形.7. 已知,在△ ABC中,Z A=90°, AB=AC点D为BC的中点.(1)如图①,若点E、F分别为AB、AC上的点,且DE⊥DF,求证:BE=AF(2)若点E、F分别为AB、CA延长线上的点,且DE⊥ DF,那么BE=AF吗?请利用图②说明理由.图①8.如图,在Rt A ABC,∠ ACB=90, AC=BC分别过A、B作直线I的垂线,垂足分别为M、N.(1)求证:△ AMC^A CNB(2)若AM=3, BN=5,求AB的长.9. 已知,如图,在等腰直角三角形中,∠ C=90o, D是AB的中点,DE⊥ DF,点E F 在AC BC上,求证:DE=DF10. 如图,OC是∠ MON内的一条射线,P为OC上一点,PAlOM,PB丄ON,垂足分别为A,B,PA=PB连接AB, AB与OP交于点E.(1)求证:△ OPA^A OPB11. 如图,△ ABC和厶ADE分别是以BC, DE为底边且顶角相等的等腰三角形, 点D 在线段BC上,AF平分DE交BC于点F,连接BE, EF.B(1)CD与BE 相等?若相等,请证明;若不相等,请说明理由;(2) 若∠ BAC=90,求证:BF2+CD^=FC2∙12. 如图,OC是∠ AoB的角平分线,P是OC上一点,PD丄0A, PEI0B,垂足分别为D,E. F是OC上另一点,连接DF,EF.13. 如图,OP平分∠ A0B, PEXOA于E,PF⊥OB于F,点M在OA上,点N在OB 上,且PM=PN.求证:EM=FN14. 如图,△ ABC中,D为BC边上一点,BE⊥AD的延长线于E, CF⊥AD于F, BE=CF求证:D为BC的中点.答案B•选择题(共3小题)1. 如图,EB交AC于M ,交FC于D, AB交FC于N,∠ E=∠ F=90° ∠ B=∠ C, AE=AF给出下列结论:①∠ 1 = ∠2;②BE=CF③厶ACN^△ ABM:④CD=DN 其中正确的结论有()A. 4个B. 3个C 2个D. 1个【解答】解:τ∠E=∠ F=90o, ∠ B=∠ C, AE=AF •••△ ABE^△ ACF∙∙∙ BE=CF∠ BAE=/ CAF∠ BAE-∠ BAC=Z CAF-∠ BAC∙∙∙∠ 1=∠ 2△ABE^△ ACF∙∙∙∠ B=∠ C, AB=AC又∠ BAC=/ CAB△ACN^△ ABM.④CD=DN不能证明成立,3个结论对.故选:B.2. 如图,△ ABC为等边三角形,D、E分别是AC、BC上的点,且AD=CE AE与BD相交于点P, BF⊥AE于点F.若BP=4则PF的长()A. 2B. 3 C 1 D. 2 二【解答】解:•••△ ABC是等边三角形,∙∙∙ AB=AC∙∙∙∠ BAC=/ C.在厶ABD和厶CAE中,f AB=AC* ZBAD=ZC,AD=CEI•••△ ABD^△ CAE (SAS .∙∙∙∠ABD=∠ CAE∙∙∙∠APD=Z ABP+∠ PABN BAC=60.∙∙∙∠ BPF=Z APD=60.∙∙∙∠ BFP=90, ∠BPF=60, ∙∙∙∠ PBF=30.∙∙∙ PF= K丄」-故选:A.3. 如图,OA=OC OB=OD且OA⊥OB, OC丄OD,下列结论:①△ AOD^△ COB②CD=AB③∠ CDA=Z ABC; 其中正确的结论是()A.①②B.①②③C.①③D.②③【解答】解:I OA⊥ OB, OC⊥ OD,∙∠AOB=Z COD=9O.∙∠AOB∏∠ AOC=Z COc+∠ AOC即∠COB Z AOD.在厶AOB和厶COD中,'AO=COZAoB-ZCO D,BO^DOL•••△ AoB^△ COD ( SAS,∙∙∙ AB=CD ∠ ABO=∠ CDO.在厶AOD和厶COB中r AO=CO* ZACD=ZCOB,HO 二BO•••△ AOD^△ COB ( SAS∙∙∙∠ CBO=Z ADO,∙∙∙∠ ABO-∠ CBO=Z CDO-∠ ADO,即∠ ABC=/ CDA综上所述,①②③都是正确的.故选:B.二.解答题(共11小题)4. 如图,四边形ABCD中,对角线AC BD交于点O, AB=AC点E是BD上点,且AE=AD ∠ EAD=Z BAC(1)求证:∠ ABD=∠ ACD(2)若∠ ACB=65 ,求∠ BDC的度数.【解答】证明:(1)v∠ BAC=/ EAD∙∙∙∠BAC-∠ EAC∠ EAD-∠ EAC 即:∠ BAE=/ CADf AB=AC在厶ABE和厶ACD中* ZBAE=ZCADAE=ADI(2)τ∠ BOC是厶ABO和ADCO的外角∙∙∙∠BOC=/ ABD+∠ BAC, ∠ BOC=Z ACD+∠ BDC∙∙∙∠ ABcH-∠ BAC=Z ACcH-∠ BDCτ∠ ABD=∠ ACD∙∙∙∠ BAC=/ BDC∙∙∙∠ ACB=65, AB=AC∙∙∙∠ ABC=/ ACB=65∙∙∙∠BAC=180-∠ ABC-∠ ACB=180-65° - 65°=50°∙∙∙∠ BDC=/ BAC=50.5. (1)如图①,在四边形ABCD中,AB// DC, E是BC的中点,若AE是∠ BAD 的平分线,试探究AB, AD, DC之间的等量关系,证明你的结论;(2)如图②,在四边形ABCD中,AB// DC, AF与DC的延长线交于点F, E是BC的中点,若AE是∠ BAF的平分线,试探究AB, AF, CF之间的等量关系,证明你的结论.V E是BC的中点, ∙∙∙ CE=BEV AB// DC,【解答】解: (1)证明:延长AE交DC的延长线于点F,Br ZBAE=ZF在厶AEB和厶FEC中,ZMB二ZFEC,BE=CEI•••△ AEB^△ FEC∙∙∙ AB=FCV AE是∠ BAD的平分线,∙∙∙∠ BAE=/ EAD,V AB// CD,∙∙∙∠ BAE=/ F,∙∙∙∠ EAD=Z F,∙∙∙ AD=DF.∙. AD=DF=DCCF=D(+AB ,(2)如图②,延长AE交DF的延长线于点G , V E是BC的中点,.CE=BEV AB// DC,.∠ BAE=/ G,在厶AEB和厶GEC中,* Z规B=ZGEC,BE=CEI•••△ AEB^△ GEC.AB=GCV AE是∠ BAF的平分线,.∠ BAG=Z FAGV AB// CD,.∠ BAG=Z G ,图① 圏②∙∙∙∠ FAG=∠ G ,∙∙∙ FA=FG∙∙∙ AB=CG=A+CF,6 .已知:在△ ABC 中,AB=AC D 为AC 的中点,DE ⊥ AB, DF ⊥ BC,垂足分别为 点E , F ,且DE=DF 求证:△ ABC 是等边三角形.【解答】证明:T DEXAB, DF ⊥ BC,垂足分别为点E , F ,∙∙∙∠ AED=Z CFD=90,V D 为AC 的中点,∙∙∙ AD=DC在 Rt A ADE 和 Rt A CDF 中,fAD=DCIDE=DF∙∙∙ Rt A ADE ^ Rt A CDF∙∙∙∠ A=∠ C,∙∙∙ BA=BC V AB=AC∙∙∙ AB=BC=AC•••△ ABC 是等边三角形.7. 已知,在厶ABC 中,∠ A=90o ° AB=AC 点D 为BC 的中点.(1) 如图①,若点E 、F 分别为AB 、AC 上的点,且DE ⊥DF ,求证:BE=AF(2) 若点E 、F 分别为AB 、CA 延长线上的点,且 DE ⊥ DF ,那么BE=AF 吗?请【解答】(1)证明:连接AD ,如图①所示.∙∙∙∠ A=90, AB=AC•••△ ABC为等腰直角三角形,∠ EBD=45.•••点D为BC的中点,∙∙∙ ADh BC=BD ∠ FAD=45.2∙∙∙∠BDE∏∠ EDA=90 , ∠ EDA+∠ ADF=90 ,∙∙∙∠ BDE=/ ADF.r ZEBD=ZFAD在△BDE和△ ADF 中,BD=AD ,ZBDE=ZADFL•••△ BDE^△ ADF (ASA ,∙∙∙ BE=AF(2) BE=AF证明如下:连接AD,如图②所示.∙∙∙∠ ABD=∠ BAD=45,∙∙∙∠ EBD=/ FAD=135.∙∙∙∠EDB∏∠ BDF=90, ∠ BDF+∠ FDA=90,∙∙∙∠ EDB=/ FDAr ZEBD=ZFAD在△ EDB和△ FDA 中,BD=AD ,ZEDB=ZFDAI•••△ EDB^△ FDA (ASA),B C图①8. 如图,在Rt A ABC,∠ ACB=90, AC=BC分别过A、B作直线I的垂线,垂足分别为M、N.(1)求证:△ AMC^A CNB(2)若AM=3, BN=5,求AB的长.【解答】解:(1)v AM丄I, BN丄l,∠ ACB=90,∙∙∙∠AMC=∠ ACB=Z BNC=90,∙∙∙∠MAC+∠MCA=90 ,∠MCA+∠NCB=180 - 90°=90°,∙∙∙∠MAC=∠ NCB,在厶AMC和厶CNB中,'Z AJIC=Z BNCZMAC=ZNCB,AC=BCL•••△ AMC^A CNB (AAS;(2)v^ AMC^A CNB,.∙. CM=BN=5∙∙∙Rt△ACM中,AC= 「=,_「=「;:,V Rt A ABC, ∠ACB=90, AC=BC=三,∙AB=I;'= 11 ;=2 ■'.B C9. 已知,如图,在等腰直角三角形中,∠ C=90o, D是AB的中点,DE⊥ DF,点E F 在AC BC上,求证:DE=DF【解答】证明:连接CD.T在等腰直角三角形ABC中,D是AB的中点.∙∙∙ CD为等腰直角三角形ABC斜边BC上的中线.∙∙∙ CD丄AB,∠ ACD=Z BCD=45, CD=BD=AD又V DEX DF∙∙∙∠ EDC∠ FDB在厶ECD^n△ FBD中'Z EDC=Z FDB,CD=BDZECD=ZFBD=45flL•••△ ECD^△ FDB (ASA10. 如图,OC是∠ MON内的一条射线,P为OC上一点,PAlOM, PB丄ON, 垂足分别为A,B,PA=PB连接AB, AB与OP交于点E.(1)求证:△ OPA^A OPB(2)若AB=6,求AE的长.【解答】解:(1)∙∙∙ PA⊥ OM, PB丄0N,∙∙∙∠PAO=∠ PBO=90,又V PA=PB PO=PO∙∙∙ Rt A AOP^ Rt A BoP(2)V A OPA^A OPB∙∙∙∠APE=/ BPE又V PA=PB∙∙∙ AE=BE∙∙∙ AE= AB=3.211. 如图,△ ABC和厶ADE分别是以BC, DE为底边且顶角相等的等腰三角形, 点D 在线段BC上,AF平分DE交BC于点F ,连接BE, EF.(1)CD与BE相等?若相等,请证明;若不相等,请说明理由;(2)若∠ BAC=90 ,求证:Bh+CD2=FD2∙【解答】解:(1)CD=BE理由如下:VA ABC和厶ADE为等腰三角形,∙∙∙ AB=AC AD=AEV∠ EAD=Z BAC∙∙∙∠EAD-∠ BAD=/ BAC-∠ BAD,即∠ EAB=∠ CAD,r AE=AD在厶EAB与厶CAD 中ZEAB=ZCAD,AB=ACI•••△ EAB^△ CAD,∙∙∙ BE=CD(2)τ∠BAC=90,•••△ ABC和厶ADE都是等腰直角三角形,∙∙∙∠ABF=Z C=45,•••△ EAB^△ CAD,∙∙∙∠EBA=/ C ,∙∙∙∠EBA=45 ,∙∙∙∠EBF=90,在Rt A BFE中,BF2+BE Z=ElF ,V AF平分DE ,∙∙∙ AF垂直平分DE,∙∙∙ EF=FD由(1)可知,BE=CD∙∙∙ BF2+CD2=FD212. 如图,OC是∠ AOB的角平分线,P是OC上一点,PD丄OA, PElOB,垂足分别为D , E. F是OC上另一点,连接DF, EF.求证:DF=EF【解答】证明:V OC是∠ AOB的角平分线,P是OC上一点,PD丄OA, PEl OB , ∙∙∙∠DOP=Z EOP PD=PE在 Rt A PoD 和 Rt A PoE 中,严二PE ,L OP=OP∙∙∙ Rt A POD ^ Rt A POE ( HL ),∙∙∙ OD=OEOD-OE在A ODF 和A OEF 中,ZmF=ZEOF ,L OF=OF•••△ ODF ^ A OEF (SAS ,∙∙∙ DF=EF13. 如图,OP 平分∠ AOB, PEXOA 于E , PF ⊥OB 于F ,点M 在OA 上,点N 在 OB 上,且 PM=PN .求证:EM=FN 【解答】证明: B•••点P 在∠ AOB 的平分线上,PE 丄0A 于E , PF 丄OB 于F ,∙∙∙ PF=PE在 Rt A PEM 和 Rt A PEN 中r PH-PN,(PE-PF ∙∙∙ Rt A PEM B Rt A PEN ( HL ), ∙∙∙ EM=FN14. 如图,△ ABC 中,D 为BC 边上一点,BE ⊥AD 的延长线于E, CF ⊥AD 于F , BE=CF 求证:D 为BC 的中点.【解答】 证明:TBEIAD 的延长线于E , CFL AD 于F ,∙∙∙∠ CFD=∠ BED=90,r ZCFD=Z BED= 90β 在△BED和△ CFD中,ZCDF=ZBDEHE 二CF•••△ CDF^△ BDE (AAS∙∙∙ CD=BD∙∙∙ D为BC的中点.。
全等三角形经典例题(含答案)
三角形全等典型例题集锦(含答案)一、选择题(本大题共13小题,共39.0分)1.如图,在△ABC中,∠C=90°,AD平分∠BAC交BC于点D,DE⊥AB于点E,如果BC=27,BD:CD=2:1,则DE的长是()A. 2B. 9C. 18D. 27【答案】B由“AAS”可证△ACD≌△AED,可得CD=DE=9.本题考查了全等三角形的判定和性质,角平分线的性质,证明△ACD≌△AED是本题的关键.解:∵BC=27,BD:CD=2:1,∴BD=18,CD=9,∵AD平分∠BAC,∴∠DAC=∠DAE,且AD=AD,∠DCA=∠DEA= 90°,∴△ACD≌△AED(AAS)∴CD=DE=9,故选B.2.如图,已知∠ABC=∠DCB,添加下列条件,不能使△ABC≌△DCB的是()A. AC=DBB. AB=DCC. ∠A=∠DD. ∠1=∠2【答案】A【解析】A.当添加AC=DB时,不能判定△ABC≌△DCB,故本选项符合题意;B.当添加AB=DC时,能判定△ABC≌△DCB,故本选项不符合题意;C.当添加∠A=∠D时,能判定△ABC≌△DCB,故本选项不符合题意;D.当添加∠2=∠1时,能判定△ABC≌△DCB,故本选项不符合题意,故选A.如图,下列三角形中,与△ABC全等的是()A. B. C. D.【答案】C3.如图,已知△ABC三条边、三个角,则甲、乙两个三角形中,与△ABC全等的图形是()A. 甲B. 乙C. 甲和乙D. 都不是【答案】C4.如图,∠ACB=90∘,AC=BC,BE⊥CE于E点,AD⊥CE于D点,AD=2.5cm,DE=1.7cm,则BE的长为()A. 0.8cmB. 1cmC. 1.5cmD. 4.2cm【答案】A【解析】∵BE⊥CE,AD⊥CE,∴∠E=∠ADC=90∘,∴∠EBC+∠BCE=90∘.∵∠BCE+∠DCA=∠ACB=90∘,∴∠EBC=∠DCA.在△CEB和△ADC中,{∠E=∠ADC,∠EBC=∠DCA, BC=CA,∴△CEB≌△ADC(AAS),∴BE=DC,CE=AD=2.5cm.∵DC=CE−DE,DE=1.7cm,∴DC=2.5−1.7=0.8cm,∴BE=0.8cm,故选A.5.两组邻边分别相等的四边形叫做“筝形”,如图,四边形ABCD是一个筝形,其中AD=CD,AB=CB,在探究筝形的性质时,得到如下结论:①△ABD≌△CBD;②AC⊥BD;③四边形ABCD的面积为12AC⋅BD.其中正确的结论有()A. 0个B. 1个C. 2个D. 3个【答案】D如图,已知AB=AC,AD=AE,欲说明△ABD≌△ACE,需补充的条件是()A. ∠B=∠CB. ∠D=∠EC. ∠1=∠2D. ∠CAD=∠2【答案】C6.下列三角形中全等的两个是()A. ①②B. ②③C. ③④D. ①④【答案】A如图,D是AB上一点,DF交AC于点E,DE=FE,FC//AB.若AB=4,CF=3,则BD的长是()A. 0.5B. 1C. 1.5D. 2【答案】B7.如图,在△AOB和△COD中,OA=OB,OC=OD,OA<OC,∠AOB=∠COD=36°.连接AC,BD交于点M,连接OM.下列结论:①∠AMB=36°,②AC=BD,③OM 平分∠AOD,④MO平分∠AMD.其中正确的结论个数有()个.A. 4B. 3C. 2D. 1【答案】B【解析】解:∵∠AOB=∠COD=36°,∴∠AOB+∠BOC=∠COD+∠BOC,即∠AOC=∠BOD,在△AOC和△BOD中, {OA=OB∠AOC=∠BOD OC=OD∴△AOC≌△BOD(SAS),∴∠OCA=∠ODB,AC=BD,故②正确;∵∠OCA=∠ODB,由三角形的外角性质得:∠CMD+∠OCA=∠COD+∠ODB,得出∠CMD=∠COD=36°,∠AMB=∠CMD=36°,故①正确;作OG⊥AM于G,OH⊥DM于H,如图所示则∠OGA=∠OHB=90°,在△OGA和△OHB中,∵{∠OGA=∠OHB=90°∠OAG=∠OBHOA=OB,∴△OGA≌△OHB(AAS)∴OG=OH,∴OM平分∠AMD,故④正确;假设OM平分∠AOD,则∠DOM=∠AOM,在△AMO与△DMO中,{∠AOM=∠DOMOM=OM∠AMD=∠DMO∴△AMO≌△OMD(ASA),∴AO=OD,∵OC=OD,∴OA=OC,而OA<OC,故③错误;正确的个数有3个;故选:B.由SAS证明△AOC≌△BOD得出∠OCA=∠ODB,AC=BD,②正确;由全等三角形的性质得出∠OCA=∠ODB,由三角形的外角性质得:∠CMD+∠OCA=∠COD+∠ODB,得出∠CMD=∠COD=36°,∠AMB=∠CMD=36°,①正确;作OG⊥AM于G,OH⊥DM于H,如图所示:则∠OGA=∠OHB=90°,由AAS证明△OGA≌△OHB(AAS),得出OG=OH,由角平分线的判定方法得出OM平分∠AMD,④正确;假设OM平分∠AOD,则∠DOM=∠AOM,由全等三角形的判定定理可得△AMO≌△OMD,得AO=OD,而OC=OD,所以OA=OC,而OA< OC,故③错误;即可得出结论.本题考查了全等三角形的判定与性质、三角形的外角性质、角平分线的判定等知识;证明三角形全等是解题的关键.8.尺规作图作角的平分线,作法步骤如下:9.①以点O为圆心,任意长为半径画弧,交OA、OB于C、D两点;②分别以C、D为圆心,大于12CD长为半径画弧,两弧交于点P;③过点P作射线OP,射线OP即为所求.则上述作法的依据是().A. SSSB. SASC. AASD. ASA【答案】A本题考查了全等三角形的判定与性质、角平分线的尺规作图方法与作图原理,解题的关键是要理解作图过程中每一步的效果,即:OC=OD,CP=DP,OP=OP.连接CP、DP,由作图可证△OCP≌△ODP,则∠COP=∠DOP,而证明△OCP≌△ODP的条件就是作图的依据.【解答】解:如下图④所示:连接CP、DP在△OCP与△ODP中,由作图可知:{OC=ODCP=DPOP=OP∴△OCP≌△ODP(SSS),∴∠COP=∠DOP,即OP是∠AOB的平分线.因此题中作法的依据是SSS.故选A.10.图中的小正方形边长都相等,若△MNP≌△MFQ,则点Q可能是图中的()A. 点DB. 点CC. 点BD. 点A【答案】A【解析】解:观察图象可知△MNP≌△MFD.故选:A.根据全等三角形的判定即可解决问题.本题考查全等三角形的判定,解题的关键是熟练掌握基本知识,属于中考常考题型.11.如图,AD//BC,点E是线段AB的中点,DE平分∠ADC,BC=AD+2,CD=7,则BC2−AD2的值等于()A. 14B. 9C. 8D. 5【答案】A延长CB和DE交于点F,∵AD//BC∴∠DAE=∠FBE∵点E是线段AB的中点,∴AE=BE∠AED=∠BEF∴△ADE≌△BFE(ASA∴∠ADE=∠BFE,AD =BF ∵DE 平分∠ADC ,∴∠ADE =∠CDE ∴∠CDE =∠BFE ∴CD =CF ∴BC +BF =BC +AD =CD =7∵BC =AD +2,∴解得BC =92,AD =52∴BC 2−AD 2=(92)2−(52)2=14.或者:∵BC +AD =7BC −AD =2∴BC 2−AD 2=(BC +AD)(BC −AD)=7×2=14.故选:A .可以延长CB 和DE 交于点F ,证明△ADE≌△BFE(ASA)得∠ADE =∠BFE ,AD =BF ,再根据已知条件DE 平分∠ADC ,得∠ADE =∠CDE ,∠CDE =∠BFE ,得CD =CF ,进而得BC +BF =BC +AD =CD =7BC =AD +2,即可求解.本题考查了全等三角形的判定和性质,解决本题的关键是构造适当的辅助线.二、填空题(本大题共7小题,共21.0分)12. 如图,∠AOB 是任意一个角,在OA ,OB 边上分别取OM =ON ,移动角尺,使角尺两边相同的刻度分别与M ,N 重合,过角尺顶点C 的射线OC 便是∠AOB 平分线,此作法用的判定三角形全等的方法是 .(用字母表示即可)【答案】SSS【解析】略 13. 如图,在△ABC 中,AD ⊥BC ,CE ⊥AB ,垂足分别为D ,E ,AD ,CE 交于点H ,已知EH =EB =3,AE =4,则CH 的长是 .14.【答案】1【解析】略15. 如图为6个边长相等的正方形的组合图形,则∠1−∠2+∠3= .16.【答案】45°【解析】略17. 如图,△ABC 三个内角的平分线交于点O ,点D 在CA 的延长线上,且DC =BC.若∠D =20°,则∠ABC 的度数为 .18.【答案】40°【解析】略19. 已知等边三角形的三条边,三个内角都相等.如图,△ABC 为等边三角形,点D ,E ,F 分别在边BC ,CA ,AB 上,且AE =CD =BF ,则△DEF 的形状按边分类为 三角形. 20.【答案】等边【解析】略21. 如图,△ABC ,∠ABC =45°,∠ACB =30°,点D 在BC 上,点E 在△ABC 外,且AD =AE =CE ,AD ⊥AE ,则AB BD =______.【答案】√6+√22【解析】解:作DF ⊥AB 于点F ,作DG ⊥AC 于点G ,作EH ⊥AC 于点H ,∵∠ACB =30°,DG ⊥AC ,∴CD =2DG ,∵AE =CE ,EH ⊥AC ,∴AH =CH ,∴AC =2AH ,∵AD ⊥AE ,DG ⊥AC ,EH ⊥AC ,∴∠DAE =90°,∠DGA =∠AHE =90°,∴∠DAG +∠EAH =90°,∠EAH +∠AEH =90°,∴∠DAG =∠AEH ,在△DAG 和△AEH 中{∠DGA =∠AHE ∠DAG =∠AEH DA =AE∴△DAG≌△AEH(AAS)∴DG =AH ,∴AC =2DG ,∴AC =CD ,∴∠CAD =∠CDA ,∵∠ACB =30°,∵∠ABC=45°,∠ACB=30°,∴∠BAC=180°−∠ABC−∠ACB=105°,∴∠DAE=∠BAC−∠CAD=105°−75°=30°,∵DF⊥AB,∴∠DFA=∠DFB=90°,又∵∠B=45°,∠BAD=30°,∴AD=2DF,BF=DF,∴AF=√AD2−DF2=√3DF,BD=√BF2+DF2=√2DF,∴AB=AF+BF=√3DF+DF,∴ABBD =√3DF+DF√2DF=√6+√22,故答案为:√6+√22.作DF⊥AB于点F,作DG⊥AC于点G,作EH⊥AC于点H,然后根据直角三角形的性质和全等三角形的判定,利用勾股定理可以求得AB和BD与DF的关系,然后即可求得ABBD的值.本题考查全等三角形的判定与性质、等腰三角形的性质、勾股定理,解答本题的关键是明确题意,利用数形结合的思想解答.22.如图,AB=6cm,AC=BD=4cm,∠CAB=∠DAB=60°,点P在线段AB上以1cm/s的速度由点A向点B运动,同时,点Q在线段BD上由点B向点D运动。
全等三角形经典题型50题(含答案解析)
全等三角形证明经典50题(含答案)1. 已知:AB=4,AC=2,D 是BC 中点,AD 是整数,求AD延长AD 到E,使DE=AD,则三角形ADC 全等于三角形EBD即BE=AC=2 在三角形ABE 中,AB-BE<AE<AB+BE 即:10-2<2AD<10+2 4<AD<6 又AD 是整数,则AD=52. 已知:D 是AB 中点,∠ACB=90°,求证:12CD AB3. 已知:BC=DE ,∠B=∠E ,∠C=∠D ,F 是CD 中点,求证:∠1=∠2证明:连接BF 和EF 。
因为 BC=ED,CF=DF,∠BCF=∠EDF 。
所以 三角形BCF 全等于三角形EDF(边角边)。
所以 BF=EF,∠CBF=∠DEF 。
连接BE 。
在三角形BEF 中,BF=EF 。
所以 ∠EBF=∠BEF 。
又因为 ∠ABC=∠AED 。
所以 ∠ABE=∠AEB 。
所以 AB=AE 。
在三角形ABF 和三角形AEF 中,AB=AE,BF=EF,∠ABF=∠ABE+∠EBF=∠AEB+∠BEF=∠AEF 。
所以 三角形ABF和三ADBC角形AEF 全等。
所以 ∠BAF=∠EAF (∠1=∠2)。
4. 已知:∠1=∠2,CD=DE ,EF//AB ,求证:EF=AC证明:过E 点,作EG//AC ,交AD 延长线于G 则∠DEG=∠DCA ,∠DGE=∠2又∵CD=DE ∴⊿ADC ≌⊿GDE (AAS )∴EG=AC ∵EF//AB ∴∠DFE=∠1∵∠1=∠2∴∠DFE=∠DG E ∴EF=EG ∴EF=AC5. 已知:AD 平分∠BAC ,AC=AB+BD ,求证:∠B=2∠C证明:在AC 上截取AE=AB ,连接ED ∵AD 平分∠BAC ∴∠EAD=∠BAD 又∵AE=AB ,AD=AD ∴⊿AED ≌⊿ABD (SAS )∴∠AED=∠B ,DE=DB ∵AC=AB+BDAC=AE+CE ∴CE=DE ∴∠C=∠E DC ∵∠AED=∠C+∠EDC=2∠C ∴∠B=2∠C6. 已知:AC 平分∠BAD ,CE ⊥AB ,∠B+∠D=180°,求证:AE=AD+BE证明: 在AE 上取F ,使EF =EB ,连接CF 因为CE ⊥AB 所以∠CEB =∠CEF =90° 因为EB =EF ,CE =CE , 所以△CEB ≌△CEF 所以∠B =∠CFE 因为∠B +∠D =180°,∠CFE +∠CFA =180° 所以∠D =∠CFA 因为AC 平分∠BAD 所以∠DAC =∠FAC 又因为AC =AC 所以△ADC ≌△AFC (SAS ) 所以AD =AF 所以AE =AF +FE =AD +BE12. 如图,四边形ABCD 中,AB ∥DC ,BE 、CE 分别平分∠ABC 、∠BCD ,且点E 在AD 上。
全等三角形判定基础练习(有答案)
全等三角形判定基础练习(有答案)一.选择题(共3小题)1.如图,已知AD=AE,添加下列条件仍无法证明△ABE≌△ACD的是()A.AB=AC B.∠ADC=∠AEB C.∠B=∠C D.BE=CD2.判定两个三角形全等,给出如下四组条件:①两边和一角对应相等;②两角和一边对应相等;③两个直角三角形中斜边和一条直角边对应相等;④三个角对应相等;其中能判定这两个三角形全等的条件是()A.①和②B.①和④C.②和③D.③和④3.如图,下列各组条件中,不能得到△ABC≌△BAD的是()A.BC=AD,∠ABC=∠BAD B.BC=AD,AC=BDC.AC=BD,∠CAB=∠DBA D.BC=AD,∠CAB=∠DBA二.解答题(共6小题)4.如图,AB=CB,BE=BF,∠1=∠2,证明:△ABE≌△CBF.5.如图所示,有两个直角三角形△ABC和△QPA按如图位置摆放C,P,A在同一条直线上,并且BC=PA.当QP与AB垂直时,△ABC能和△QPA全等吗,请说明理由.6.如图,BE⊥AC于E,CF⊥AB于F,CF、BE相交于点D,且BD=CD.求证:AD平分∠BAC.7.如图,在直角三角形ABC中,∠ABC=90°,点D在BC的延长线上,且BD=AB,过B作BE⊥AC,与BD的垂线DE交于点E.求证:△ABC≌△BDE.8.如图,在△ABC中,AB=AC,点D、E在BC上,且BD=CE.求证:△ABE≌△ACD.9.如图,已知点D在AB上,点E在AC上,BE和CD相交于点O,AB=AC,∠B=∠C.求证:△ABE≌△ACD.全等三角形判定(孙雨欣)初中数学组卷参考答案与试题解析一.选择题(共3小题)1.如图,已知AD=AE,添加下列条件仍无法证明△ABE≌△ACD的是()A.AB=AC B.∠ADC=∠AEB C.∠B=∠C D.BE=CD【分析】全等三角形的判定定理有SAS,ASA,AAS,SSS,看看条件是否符合判定定理即可.【解答】解:A、∵在△ABE和△ACD中,,∴△ABE≌△ACD(SAS),正确,故本选项错误;B、∵在△ABE和△ACD中,,∴△ABE≌△ACD(ASA),正确,故本选项错误;C、∵在△ABE和△ACD中,,∴△ABE≌△ACD(AAS),正确,故本选项错误;D、根据AE=AD,BE=CD和∠A=∠A不能推出△ABE和△ACD全等,错误,故本选项正确;故选D.【点评】本题考查了对全等三角形的判定定理的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS.2.判定两个三角形全等,给出如下四组条件:①两边和一角对应相等;②两角和一边对应相等;③两个直角三角形中斜边和一条直角边对应相等;④三个角对应相等;其中能判定这两个三角形全等的条件是()A.①和②B.①和④C.②和③D.③和④【分析】认真分析各选项提供的已知条件,结合全等三角形判定方法对选项提供的已知条件逐一判断.【解答】解:①两边和一角对应相等不正确,应该是两边的夹角,故本选项错误,②两角和一边对应相等,符合AAS,故本选项正确,③两个直角三角形中斜边和一条直角边对应相等,符合SAS,故本选项正确,④三个角对应相等,可以相似不全等,故本选项错误,故选C.【点评】本题主要考查了对全等三角形的判定方法的理解及运用.常用的判定方法有AAS,SSS,SAS 等,难度适中.3.如图,下列各组条件中,不能得到△ABC≌△BAD的是()A.BC=AD,∠ABC=∠BAD B.BC=AD,AC=BDC.AC=BD,∠CAB=∠DBA D.BC=AD,∠CAB=∠DBA【分析】根据图形可得公共边AB=AB,再加上选项所给条件,利用判定定理SSS、SAS、ASA、AAS分别进行分析即可.【解答】解:根据图形可得公共边:AB=AB,A、BC=AD,∠ABC=∠BAD可利用SAS证明△ABC≌△BAD,故此选项不合题意;B、BC=AD,AC=BD可利用SSS证明△ABC≌△BAD,故此选项不合题意;C、AC=BD,∠CAB=∠DBA可利用SAS证明△ABC≌△BAD,故此选项不合题意;D、BC=AD,∠CAB=∠DBA不能证明△ABC≌△BAD,故此选项符合题意;故选:D.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.二.解答题(共7小题)4.如图,AB=CB,BE=BF,∠1=∠2,证明:△ABE≌△CBF.【分析】利用∠1=∠2,即可得出∠ABE=∠CBF,再利用全等三角形的判定SAS得出即可.【解答】证明:∵∠1=∠2,∴∠1+∠FBE=∠2+∠FBE,即∠ABE=∠CBF,在△ABE与△CBF中,,∴△ABE≌△CBF(SAS).【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.5.如图所示,有两个直角三角形△ABC和△QPA按如图位置摆放C,P,A在同一条直线上,并且BC=PA.当QP与AB垂直时,△ABC能和△QPA全等吗,请说明理由.【分析】首先根据∠QAP=90°,AB⊥PQ可证出∠PQA=∠BAC,在加上条件BC=AP,∠C=∠QAP=90°,可利用AAS定理证明△ABC和△QPA全等.【解答】△ABC能和△QPA全等;证明:∵∠QAP=90°,∴∠PQA+∠QPA=90°,∵QP⊥AB,∴∠BAC+∠APQ=90°,∴∠PQA=∠BAC,在△ABC和△QPA中,,∴△ABC≌△QPA(AAS).【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.6.如图,BE⊥AC于E,CF⊥AB于F,CF、BE相交于点D,且BD=CD.求证:AD平分∠BAC.【分析】要证AD平分∠BAC,只需证DF=DE.可通过证△BDF≌△CDE(AAS)来实现.根据已知条件,利用AAS可直接证明△BDF≌△CDE,从而可得出AD平分∠BAC.【解答】证明:∵BE⊥AC,CF⊥AB,∴∠BFD=∠CED=90°.在△BDF与△CDE中,,∴Rt△BDF≌Rt△CDE(AAS).∴DF=DE,∴AD是∠BAC的平分线.【点评】本题考查了全等三角形的判定和性质,以及到角两边距离相等的点在角平分线上等知识.发现并利用△BDF≌△CDE是正确解答本题的关键.7.如图AB,CD相交于点O,AD=CB,AB⊥DA,CD⊥CB,求证:△ABD≌△CDB.【分析】首先根据AB⊥DA,CD⊥CB,可得∠A=∠C=90°,再利用HL定理证明Rt△ABD≌Rt△CBD即可.【解答】证明:∵AB⊥DA,CD⊥CB,∴∠A=∠C=90°,在Rt△ABD和Rt△CBD中,∴Rt△ABD≌Rt△CBD(HL).【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.8.如图,在△ABC中,AB=AC,点D、E在BC上,且BD=CE.求证:△ABE≌△ACD.【分析】由AB=AC可得∠B=∠C,然后根据BD=CE可证BE=CD,根据SAS即可判定三角形的全等.【解答】证明∵AB=AC,∴∠B=∠C,∵BD=EC,∴BE=CD,在△ABE与△ACD中,,∴△ABE≌△ACD(SAS).【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.9.如图,已知点D在AB上,点E在AC上,BE和CD相交于点O,AB=AC,∠B=∠C.求证:△ABE≌△ACD.【分析】根据全等三角形的判定定理ASA推出即可.【解答】证明:∵在△ABE和△ACD中,∴△ABE≌△ACD(ASA).【点评】本题考查了全等三角形的判定定理的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS.10.如图,在直角三角形ABC中,∠ABC=90°,点D在BC的延长线上,且BD=AB,过B作BE⊥AC,与BD的垂线DE交于点E.求证:△ABC≌△BDE.【分析】利用已知得出∠A=∠DBE,进而利用ASA得出△ABC≌△BDE即可.【解答】证明:在Rt△ABC中,∵∠ABC=90°,∴∠ABE+∠DBE=90°,∵BE⊥AC,∴∠ABE+∠A=90°,∴∠A=∠DBE,∵DE是BD的垂线,∴∠D=90°,在△ABC和△BDE中,∵,∴△ABC≌△BDE(ASA).【点评】此题主要考查了全等三角形的判定,三角形内角和定理的应用,正确发现图形中等量关系∠A=∠DBE是解题关键.。
全等三角形章末练习卷(Word版 含解析)
全等三角形章末练习卷(Word版含解析)一、八年级数学轴对称三角形填空题(难)1.如图,已知△ABC和△ADE都是正三角形,连接CE、BD、AF,BF=4,CF=7,求AF的长_________ .【答案】3【解析】【分析】过点A作AF⊥CE交于I,AG⊥BD交于J,证明CAE≅BAD,再证明CAI≅BAJ,求出°7830∠=∠=,然后求出12IF FJ AF==,,通过设FJ x=求出x,即可求出AF的长.【详解】解:过点A作AF⊥CE交于I,AG⊥BD交于J在CAE和BAD中AC ABCAE BADAE AD=⎧⎪∠=∠⎨⎪=⎩∴CAE≅BAD∴ICA ABJ∠=∠∴BFE CAB∠=∠(8字形)∴°120CFD∠=在CAI和BAJ中°90ICA ABJ CAI BJA CA BA ∠=∠⎧⎪∠=∠=⎨⎪=⎩∴CAI ≅BAJ,AI AJ CI BJ ==∴°60CFA AFJ ∠=∠=∴°30FAI FAE ∠=∠=在RtAIF 和RtAJF 中°30FAI FAE ∠=∠=∴12IF FJ AF ==设FJ x = 7,4CF BF ==则47x x +=-32x ∴=2AF FJ =AF ∴=3【点睛】此题主要考查了通过做辅助线证明三角形全等,得出相关的边相等,学会合理添加辅助线求解是解决本题的重点.2.如图,线段AB ,DE 的垂直平分线交于点C ,且72ABC EDC ∠=∠=︒,92AEB ∠=︒,则EBD ∠的度数为 ________ .【答案】128︒【解析】【分析】连接CE ,由线段AB ,DE 的垂直平分线交于点C ,得CA=CB ,CE=CD ,ACB=∠ECD=36°,进而得∠ACE=∠BCD ,易证∆ACE ≅∆BCD ,设∠AEC=∠BDC=x ,得则∠BDE=72°-x ,∠CEB=92°-x ,BDE 中,∠EBD=128°,根据三角形内角和定理,即可得到答案.【详解】连接CE ,∵线段AB ,DE 的垂直平分线交于点C ,∴CA=CB ,CE=CD ,∵72ABC EDC ∠=∠=︒=∠DEC ,∴∠ACB=∠ECD=36°,∴∠ACE=∠BCD ,在∆ACE 与∆BCD 中,∵CA CB ACE BCD CE CD =⎧⎪∠=∠⎨⎪=⎩,∴∆ACE ≅∆BCD (SAS ), ∴∠AEC=∠BDC ,设∠AEC=∠BDC=x ,则∠BDE=72°-x ,∠CEB=92°-x ,∴∠BED=∠DEC-∠CEB=72°-(92°-x )=x-20°,∴在∆BDE 中,∠EBD=180°-(72°-x )-(x-20°)=128°.故答案是:128︒.【点睛】本题主要考查中垂线的性质,三角形全等的判定和性质定理以及三角形内角和定理,添加辅助线,构造全等三角形,是解题的关键.3.等腰三角形顶角为30°,腰长是4cm ,则三角形的面积为__________【答案】4【解析】如图,根据30°角所对直角边等于斜边的一半的性质,可由等腰三角形的顶角为30°,腰长是4cm ,可求得BD=12AB =4×12=2,因此此三角形的面积为:S=12AC•BD=12×4×2=8×12=4(cm 2).故答案是:4.4.如图,在四边形ABCD 中,AB AD =,BC DC =,60A ∠=︒,点E 为AD 边上一点,连接BD .CE ,CE 与BD 交于点F ,且CE AB ∥,若8AB =,6CE =,则BC 的长为_______________.【答案】27【解析】【分析】由AB AD =,BC DC =知点A,C 都在BD 的垂直平分线上,因此,可连接AC 交BD 于点O ,易证ABD △是等边三角形,EDF 是等边三角形,根据等边三角形的性质对三角形中的线段进行等量转换即可求出OB,OC 的长度,应用勾股定理可求解.【详解】解:如图,连接AC 交BD 于点O∵AB AD =,BC DC =,60A ∠=︒,∴AC 垂直平分BD ,ABD △是等边三角形∴30BAO DAO ∠=∠=︒,8AB AD BD ===,4BO OD ==∵CE AB ∥∴30BAO ACE ∠=∠=︒,60CED BAD ∠=∠=︒∴30DAO ACE ∠=∠=︒∴6AE CE ==∴2DE AD AE =-=∵60CED ADB ∠=∠=︒∴EDF 是等边三角形∴2DE EF DF ===∴4CF CE EF =-=,2OF OD DF =-=∴2223OC CF OF =-=∴2227BC BO OC +=【点睛】本题主要考查了等边三角形的判定与性质、勾股定理,综合运用等边三角形的判定与性质进行线段间等量关系的转换是解题的关键.5.如图,在△ABC 中,AB=AC ,∠BAC=120°,D 为BC 上一点,DA ⊥AC ,AD=24 cm ,则BC的长________cm.【答案】72【解析】【分析】按照等腰三角形的性质、角的和差以及含30°直角三角形的性质进行解答即可.【详解】解:∵AB=AC,∠BAC=120°∴∠B=∠C=30°∵DA⊥AC,AD=24 cm∴DC=2AD=48cm,∵∠BAC=120°,DA⊥AC∴∠BAD=∠BAC-90°=30°∴∠B=∠BAD∴BD=AD=24cm∴BC=BD+DC=72cm故答案为72.【点睛】本题考查了腰三角形的性质、角的和差以及含30°直角三角形的性质,其中灵活运用含30°直角三角形的性质是解答本题的关键.6.在△ABC 中,∠ACB=90º,D、E 分别在 AC、AB 边上,把△ADE 沿 DE 翻折得到△FDE,点 F 恰好落在 BC 边上,若△CFD 与△BFE 都是等腰三角形,则∠BAC 的度数为_________.【答案】45°或60°【解析】【分析】根据题意画出图形,设∠BAC的度数为x,则∠B=90°-x,∠EFB =135°-x,∠BEF=2x-45°,当△BFE 都是等腰三角形,分三种情况讨论,即可求解.【详解】∵∠ACB=90º,△CFD是等腰三角形,∴∠CDF=∠CFD=45°,设∠BAC的度数为x,∴∠B=90°-x,∵△ADE 沿 DE 翻折得到△FDE,点 F 恰好落在 BC 边上,∴∠DFE=∠BAC=x,∴∠EFB=180°-45°-x=135°-x,∵∠ADE=∠FDE,∴∠ADE=(180°-45°)÷2=67.5°,∴∠AED=180°-∠ADE-∠BAC=180°-67.5° -x=112.5°-x,∴∠DEF=∠AED=112.5°-x,∴∠BEF=180°-∠AED-∠DEF=180°-(112.5°-x)-(112.5°-x)=2x-45°,∵△BFE 都是等腰三角形,分三种情况讨论:①当FE=FB时,如图1,则∠BEF=∠B,∴90-x=2x-45,解得:x=45;②当BF=BE时,则∠EFB=∠BEF,∴135-x=2x-45,解得:x=60,③当EB=EF时,如图2,则∠B=∠EFB,∴135-x=90-x,无解,∴这种情况不存在.综上所述:∠BAC 的度数为:45°或60°.故答案是:45°或60°.图1 图2【点睛】本题主要考查等腰三角形的性质定理,用代数式表示角度,并进行分类讨论,是解题的关键.7.如图,已知AB=A 1B ,A 1B 1=A 1A 2,A 2B 2=A 2A 3,A 3B 3=A 3A 4,…若∠A=70°,则锐角∠A n 的度数为______.【答案】1702n -︒ 【解析】【分析】根据等腰三角形的性质以及三角形的内角和定理和外角的性质即可得出答案.【详解】在△1ABA 中,AB=A 1B ,∠A=70°可得:∠1BAA =∠1BA A =70°在△112B A A 中,A 1B 1=A 1A 2可得:∠112A B A =∠121A A B根据外角和定理可得:∠1BA A =∠112A B A +∠121A A B∴∠112A B A =∠121A A B =702︒ 同理可得:∠232A A B =2702︒ ∠343A A B =3702︒ …….以此类推:∠A n =1702n -︒ 故答案为:1702n -︒. 【点睛】本题主要考查等腰三角形、三角形的基本概念以及规律的探索,准确识图,熟练掌握和灵活运用相关知识是解题的关键..8.如图,在△ABC 中,AB =BC =8,AO =BO ,点M 是射线CO 上的一个动点,∠AOC =60°,则当△ABM 为直角三角形时,AM 的长为______.【答案】7或34【解析】【分析】分三种情况讨论:①当M在AB下方且∠AMB=90°时,②当M在AB上方且∠AMB=90°时,③当∠ABM=90°时,分别根据含30°直角三角形的性质、直角三角形斜边的中线的性质或勾股定理,进行计算求解即可.【详解】如图1,当∠AMB=90°时,∵O是AB的中点,AB=8,∴OM=OB=4,又∵∠AOC=∠BOM=60°,∴△BOM是等边三角形,∴BM=BO=4,∴Rt△ABM中,AM22-3AB BM如图2,当∠AMB=90°时,∵O是AB的中点,AB=8,∴OM=OA=4,又∵∠AOC=60°,∴△AOM是等边三角形,∴AM=AO=4;如图3,当∠ABM=90°时,∵∠BOM=∠AOC=60°,∴∠BMO=30°,∴MO=2BO=2×4=8,∴Rt△BOM中,BM22-=43MO OB∴Rt△ABM中,AM22AB BM+47综上所述,当△ABM为直角三角形时,AM的长为3474.故答案为43 7或4.9.如图,ABC ∆中,AB AC =,点D 是ABC ∆内部一点,DB DC =,点E 是边AB 上一点,若CD 平分ACE ∠,100AEC =∠,则BDC ∠=______°【答案】80【解析】【分析】根据角平分线得到∠ACE=2∠ACD ,再根据角的和差关系得到∠ECB =∠ACB -2∠ACD ,然后利用外角定理得到∠ABC+∠ECB=100°,代换化简得出∠ACB -∠ACD=50°,即∠DCB=50°,从而求出∠BDC 即可.【详解】∵CD 平分∠ACE ,∴∠ACE=2∠ACD=2∠ECD ,∴∠ECB=∠ACB -∠ACE=∠ACB -2∠ACD ,∵∠AEC=100°,∴∠ABC+∠ECB=100°,∴∠ABC+∠ACB -2∠ACD=100°,∵AB=AC,∴∠ABC=∠ACB,∴2∠ACB-2∠ACD=100°,∴∠ACB-∠ACD=50°,即∠DCB=50°,∵DB=DC,∴∠DBC=∠DCB,∴∠BDC=180°-2∠DCB=180°-2×50°=80°.【点睛】本题考查了角平分线,三角形内角和,外角定理,及等边对等角的性质等知识,熟练掌握基本知识,找出角与角之间的关系是解题的关键.10.如图,在四边形ABCD中,∠A+∠C=180°,E、F分别在BC、CD上,且AB=BE,AD =DF,M为EF的中点,DM=3,BM=4,则五边形ABEFD的面积是_____.【答案】12【解析】【分析】延长BM至G,使MG=BM,连接FG、DG,证明△BME≌△GMF(SAS),得出FG=BE,∠MBE=∠MGF,证出AB=FG,证明△DAB≌△DFG(SAS),得出DB=DG,由等腰三角形的性质即可得DM⊥BM,由五边形ABEFD的面积=△DBG的面积,可求解.【详解】延长BM至G,使MG=BM=4,连接FG、DG,如图所示:∵M为EF中点,∴ME=MF,在△BME和△GMF中,BM MG BME GMFME MF =⎧⎪∠=∠⎨⎪=⎩, ∴△BME ≌△GMF (SAS ),∴FG =BE ,∠MBE =∠MGF ,S △BEM =S △GFM ,∴FG ∥BE ,∴∠C =∠GFC ,∵∠A +∠C =180°,∠DFG +∠GFC =180°,∴∠A =∠DFG ,∵AB =BE ,∴AB =FG ,在△DAB 和△DFG 中,AB FG A DFGAD DF =⎧⎪∠=∠⎨⎪=⎩, ∴△DAB ≌△DFG (SAS ),∴DB =DG ,S △DAB =S △DFG ,∵MG =BM ,∴DM ⊥BM ,∴五边形ABEFD 的面积=△DBG 的面积=12×BG ×DM =12×8×3=12, 故答案为:12.【点睛】本题考查了全等三角形的判定与性质、平行线的性质、等腰三角形的判定与性质等知识;熟练掌握等腰三角形的判定由性质,证明三角形全等是解题的关键.二、八年级数学轴对称三角形选择题(难)11.已知点M(2,2),且,在坐标轴上求作一点P ,使△OMP 为等腰三角形,则点P 的坐标不可能是( )A .B .(0,4)C .(4,0)D .)【答案】D【解析】【分析】分类讨论:OM=OP ;MO=MP ;PM=PO ,分别计算出相应的P 点,从而得出答案.【详解】∵M(2,2),且,且点P 在坐标轴上当22OM OP == 时P 点坐标为:()()22,0,0,22±± ,A 满足;当22MO MP ==时:P 点坐标为:()()4,0,0,4,B 满足;当PM PO =时:P 点坐标为:()()2,0,0,2,C 满足故答案选:D【点睛】本题考查动点问题构成等腰三角形,利用等腰三角形的性质分类讨论是解题关键.12.如图,ABC ,分别以AB 、AC 为边作等边三角形ABD 与等边三角形ACE ,连接BE 、CD ,BE 的延长线与CD 交于点F ,连接AF ,有以下四个结论:①BE CD =;②FA 平分EFC ∠;③FE FD =;④FE FC FA +=.其中一定正确的结论有( )A .1B .2C .3D .4【答案】C【解析】【分析】 根据等边三角形的性质证出△BAE ≌△DAC ,可得BE =CD ,从而得出①正确;过A 作AM ⊥BF 于M ,过A 作AN ⊥DC 于N ,由△BAE ≌△DAC 得出∠BEA =∠ACD ,由等角的补角相等得出∠AEM =∠CAN ,由AAS 可证△AME ≌△ANC ,得到AM =AN ,由角平分线的判定定理得到FA 平分∠EFC ,从而得出②正确;在FA 上截取FG ,使FG =FE ,根据全等三角形的判定与性质得出△AGE ≌△CFE ,可得AG =CF ,即可求得AF =CF +EF ,从而得出④正确;根据CF +EF =AF ,CF +DF =CD ,得出CD ≠AF ,从而得出FE ≠FD ,即可得出③错误.【详解】∵△ABD 和△ACE 是等边三角形,∴∠BAD =∠EAC =60°,AE =AC =EC .∵∠BAE +∠DAE =60°,∠CAD +∠DAE =60°,∴∠BAE =∠DAC ,在△BAE 和△DAC 中,∵AB ADBAE DACAE AC=⎧⎪∠=∠⎨⎪=⎩,∴△BAE≌△DAC(SAS),∴BE=CD,①正确;过A作AM⊥BF于M,过A作AN⊥DC于N,如图1.∵△BAE≌△DAC,∴∠BEA=∠ACD,∴∠AEM=∠ACN.∵AM⊥BF,AN⊥DC,∴∠AME=∠ANC.在△AME和△ANC中,∵∠AEM=∠CAN,∠AME=∠ANC,AE=AC,∴△AME≌△ANC,∴AM=AN.∵AM⊥BF,AN⊥DC,AM=AN,FA平分∠EFC,②正确;在FA上截取FG,使FG=FE,如图2.∵∠BEA=∠ACD,∠BEA+∠AEF=180°,∴∠AEF+∠ACD=180°,∴∠EAC+∠EFC=180°.∵∠EAC=60°,∴∠EFC=120°.∵FA平分∠EFC,∴∠EFA=∠CFA=60°.∵EF=FG,∠EFA=60°,∴△EFG是等边三角形,∴EF=EG.∵∠AEG+∠CEG=60°,∠CEG+∠CEF=60°,∴∠AEG=∠CEF,在△AGE和△CFE中,∵AE ACAEG CEFEG EF=⎧⎪∠=∠⎨⎪=⎩,∴△AGE≌△CFE(SAS),∴AG=CF.∵AF=AG+FG,∴AF=CF+EF,④正确;∵CF+EF=AF,CF+DF=CD,CD≠AF,∴FE≠FD,③错误,∴正确的结论有3个.故选C.【点睛】本题考查了等边三角形的判定与性质以及全等三角形的判定与性质,正确作辅助线是解答本题的关键.13.如图,已知一条线段的长度为a,作边长为a的等边三角形的方法是:①画射线AM;②连结AC、BC;③分别以A、B为圆心,以a的长为半径作圆弧,两弧交于点C;④在射线AM上截取AB=a;以上画法正确的顺序是()A.①②③④B.①④③②C.①④②③D.②①④③【答案】B【解析】【分析】根据尺规作等边三角形的过程逐项判断即可解答.【详解】解:已知一条线段的长度为a,作边长为a的等边三角形的方法是:①画射线AM;②在射线AM上截取AB=a;③分别以A、B为圆心,以a的长为半径作圆弧,两弧交于点C;④连结AC、BC.△ABC即为所求作的三角形.故选答案为B.本题考查了尺规作图和等边三角形的性质,解决本题的关键是理解等边三角形的作图过程.的正方形网格中,A,B是如图所示的两个格点,如果C也是格点,且14.在一个33ABC是等腰三角形,则符合条件的C点的个数是()A.6B.7C.8D.9【答案】C【解析】【分析】根据题意、结合图形,画出图形即可确定答案.【详解】解:根据题意,画出图形如图:共8个.故答案为C.【点睛】本题主要考查了等腰三角形的判定,根据题意、画出符合实际条件的图形是解答本题的关键.15.如图,已知点B、C、D在同一条直线上,△ABC和△CDE都是等边三角形.BE交AC 于F,AD交CE于G.则下列结论中错误的是( )A.AD=BE B.BE⊥ACC.△CFG为等边三角形D.FG∥BC【答案】B试题解析:A.ABC 和CDE △均为等边三角形,60AC BC EC DC ACB ECD ∴==∠=∠=︒,,,在ACD 与BCE 中,{AC BCACD BCE CD CF =∠=∠=,ACD BCE ∴≌,AD BE ∴=,正确.B .据已知不能推出F 是AC 中点,即AC 和BF 不垂直,所以AC BE ⊥错误,故本选项符合题意.C.CFG 是等边三角形,理由如下:180606060ACG BCA ∠=︒-︒-︒=︒=∠,ACD BCE ≌,CBE CAD ∴∠=∠,在ACG 和BCF 中,{CAG CBFAC BCBCF ACG ∠=∠=∠=∠,ACG BCF ∴≌,CG CH ∴=,又∵∠ACG=60° CFG ∴是等边三角形,正确.D.CFG 是等边三角形,60CFG ACB ∴∠︒=∠﹦,.FG BC ∴ 正确.故选B.16.如图,已知AD 为ABC ∆的高线,AD BC =,以AB 为底边作等腰Rt ABE ∆,连接ED ,EC ,延长CE 交AD 于F 点,下列结论:①DAE CBE ∠=∠;②CE DE ⊥;③BD AF =;④AED ∆为等腰三角形;⑤BDE ACE S S ∆∆=,其中正确的有( )A .①③B .①②④C .①③④D .①②③⑤【答案】D【解析】【分析】 ①根据等腰直角三角形的性质即可证明∠CBE =∠DAE ,再得到△ADE ≌△BCE ; ②根据①结论可得∠AEC =∠DEB ,即可求得∠AED =∠BEG ,即可解题;③证明△AEF ≌△BED 即可;④根据△AEF ≌△BED 得到DE=EF, 又DE ⊥CF ,故可判断;⑤易证△FDC 是等腰直角三角形,则CE =EF ,S △AEF =S △ACE ,由△AEF ≌△BED ,可知S △BDE =S △ACE ,所以S △BDE =S △ACE .【详解】①∵AD 为△ABC 的高线,∴CBE +∠ABE +∠BAD =90°,∵Rt △ABE 是等腰直角三角形,∴∠ABE =∠BAE =∠BAD +∠DAE =45°,AE =BE ,∴∠CBE +∠BAD =45°,∴∠DAE =∠CBE ,故①正确;在△DAE 和△CBE 中,AE BE DAE CBE AD BC ⎧⎪∠∠⎨⎪⎩===,∴△ADE ≌△BCE (SAS );②∵△ADE ≌△BCE ,∴∠EDA =∠ECB ,∵∠ADE +∠EDC =90°,∴∠EDC +∠ECB =90°,∴∠DEC =90°,∴CE ⊥DE ;故②正确;③∵∠BDE =∠ADB +∠ADE ,∠AFE =∠ADC +∠ECD ,∴∠BDE =∠AFE ,∵∠BED +∠BEF =∠AEF +∠BEF =90°,∴∠BED =∠AEF ,在△AEF 和△BED 中,BDE AFE BED AEF AE BE ∠∠⎧⎪∠∠⎨⎪⎩===,∴△AEF ≌△BED (AAS ),∴BD=AF故③正确;∵△AEF≌△BED∴DE=EF, 又DE⊥CF,∴△DEF为等腰直角三角形,故④错误;④∵AD=BC,BD=AF,∴CD=DF,∵AD⊥BC,∴△FDC是等腰直角三角形,∵DE⊥CE,∴EF=CE,∴S△AEF=S△ACE,∵△AEF≌△BED,∴S△AEF=S△BED,∴S△BDE=S△ACE.故④正确;故选:D.【点睛】本题考查了全等三角形的判定,考查了全等三角形对应边相等的性质,本题中求证△BFE≌△CDE是解题的关键.17.如图,已知等边△ABC的边长为4,面积为43,点D为AC的中点,点E为BC的中点,点P为BD上一动点,则PE+PC的最小值为()A.3 B.2C.3D.3【答案】C【解析】【分析】由题意可知点A、点C关于BD对称,连接AE交BD于点P,由对称的性质可得,PA=PC,故PE+PC=AE,由两点之间线段最短可知,AE即为PE+PC的最小值.【详解】解:∵△ABC是等边三角形,点D为AC的中点,点E为BC的中点,∴BD⊥AC,EC=2,连接AE,线段AE的长即为PE+PC最小值,∵点E是边BC的中点,∴AE⊥BC,∴PE+PC的最小值是22-=.4223-=22AC E C故选C.【点睛】本题考查的是轴对称-最短路线问题,熟知等边三角形的性质是解答此题的关键.18.如图所示,在四边ABCD中,∠BAD=120°,∠B=∠D=90°,若在BC和CD上分别找一点M,使得△AMN的周长最小,则此时∠AMN+∠ANM的度数为()A.110°B.120°C.140°D.150°【答案】B【解析】【分析】根据要使△AMN的周长最小,即利用点的对称,让三角形的三边在同一直线上,作出A关于BC和CD的对称点A′,A″,即可得出∠AA′M+∠A″=60°,进而得出∠AMN+∠ANM=2(∠AA′M+∠A″)即可得出答案.【详解】作A关于BC和CD的对称点A′,A″,连接A′A″,交BC于M,交CD于N,则A′A″即为△AMN的周长最小值.∵∠DAB=120°,∴∠AA′M+∠A″=180°-120°=60°,∵∠MA′A=∠MAA′,∠NAD=∠A″,且∠MA′A+∠MAA′=∠AMN,∠NAD+∠A″=∠ANM,∴∠AMN+∠ANM=∠MA′A+∠MAA′+∠NAD+∠A″=2(∠AA′M+∠A″)=2×60°=120°,故选B.【点睛】此题主要考查了平面内最短路线问题求法,以及三角形的外角的性质和垂直平分线的性质等知识的综合应用,根据轴对称的性质,得出M,N的位置是解题的关键.19.如图,O是正三角形ABC内一点,OA=3,OB=4,OC=5,将线段BO以点B为旋转中心逆时针旋转60°得到线段BO′,下列结论:①△BO′A可以由△BOC绕点B逆时针旋转60°得到;②点O与O′的距离为4;③∠AOB=150°;④S四边形AOBO′=6+33;⑤S△AOC+S△AOB=6+934.其中正确的结论是()A.①②③⑤B.①③④C.②③④⑤D.①②⑤【答案】A【解析】试题解析:由题意可知,∠1+∠2=∠3+∠2=60°,∴∠1=∠3,又∵OB=O′B,AB=BC,∴△BO′A≌△BOC,又∵∠OBO′=60°,∴△BO′A可以由△BOC绕点B逆时针旋转60°得到,故结论①正确;如图①,连接OO′,∵OB=O′B,且∠OBO′=60°,∴△OBO′是等边三角形,∴OO′=OB=4.故结论②正确;∵△BO′A≌△BOC,∴O′A=5.在△AOO′中,三边长为3,4,5,这是一组勾股数,∴△AOO′是直角三角形,∠AOO′=90°,∴∠AOB=∠AOO′+∠BOO′=90°+60°=150°,故结论③正确; S 四边形AOBO ′=S △AOO′+S △OBO′=12×3×4+3×42=6+43, 故结论④错误; 如图②所示,将△AOB 绕点A 逆时针旋转60°,使得AB 与AC 重合,点O 旋转至O″点.易知△AOO″是边长为3的等边三角形,△COO″是边长为3、4、5的直角三角形, 则S △AOC +S △AOB =S 四边形AOCO″=S △COO″+S △AOO″=123293, 故结论⑤正确.综上所述,正确的结论为:①②③⑤.故选A .20.如图,ABC △中,60BAC ∠=︒,ABC ∠、ACB ∠的平分线交于E ,D 是AE 延长线上一点,且120BDC ∠=︒.下列结论:①120BEC ∠=︒;②DB DE =;③2BDE BCE ∠=∠.其中所有正确结论的序号有( ).A .①②B .①③C .②③D .①②③【答案】D【解析】 分析:根据三角形内角和等于180°求出∠ABC+∠ACB ,再根据角平分线的定义求出∠EBC+∠ECB ,然后求出∠BEC=120°,判断①正确;过点D 作DF ⊥AB 于F ,DG ⊥AC 的延长线于G ,根据角平分线上的点到角的两边的距离相等可得DF=DG ,再求出∠BDF=∠CDG ,然后利用“角边角”证明△BDF 和△CDG 全等,根据全等三角形对应边相等可得BD=CD ,再根据等边对等角求出∠DBC=30°,然后根据三角形的一个外角等于与它不相邻的两个内角的和以及角平分线的定义求出∠DBE=∠DEB ,根据等角对等边可得BD=DE ,判断②正确,再求出B ,C ,E 三点在以D 为圆心,以BD 为半径的圆上,根据同弧所对的圆周角等于圆心角的一半可得∠BDE=2∠BCE ,判断③正确.详解:∵60BAC ∠=︒,∴18060120ABC ACB ∠+∠=︒-︒=︒,∵BE 、CE 分别为ABC ∠、ACB ∠的平分线,∴12EBC ABC ∠=∠,12ECB ACB ∠=∠, ∴11()1206022EBC ECB ABC ACB ∠+∠=∠+∠=⨯︒=︒, ∴180()18060120BEC EBC ECB ∠=︒-∠+∠=︒-︒=︒, 故①正确.如图,过点D 作DF AB ⊥于F ,DG AC ⊥的延长线于G ,∵BE 、CE 分别为ABC ∠、ACB ∠的平分线,∴AD 为BAC ∠的平分线,∴DF DG =,∴36090260120FDG ∠=︒-︒⨯-︒=︒,又∵120BDC ∠=︒,∴120BDF CDF ∠+∠=︒,120CDG CDF ∠+∠=︒.∴BDF CDG ∠=∠,∵在BDF 和CDG △中,90BFD CGD DF DGBDF CDG ∠=∠=︒⎧⎪=⎨⎪∠=∠⎩, ∴BDF ≌()CDG ASA ,∴DB CD =, ∴1(180120)302DBC ∠=︒-︒=︒, ∴30DBC DBC CBE CBE ∠=∠+∠=︒+∠,∵BE 平分ABC ∠,AE 平分BAC ∠,∴ABE CBE ∠=∠,1302BAE BAC ∠=∠=︒, 根据三角形的外角性质, 30DEB ABE BAE ABE ∠=∠+∠=∠+︒,∴DEB DBE ∠=∠,∴DB DE =,故②正确.∵DB DE DC ==,∴B 、C 、E 三点在以D 为圆心,以BD 为半径的圆上,∴2BDE BCE ∠=∠,故③正确,综上所述,正确结论有①②③,故选:D .点睛:本题考查了角平分线的性质,全等三角形的判定与性质,等角对等边的性质,圆内接四边形的判定,同弧所对的圆周角等于圆心角的一半性质,综合性较强,难度较大,特别是③的证明.。
全等三角形练习题及解析
. .. .全等三角形练习题一.选择题〔共3小题〕1.〔2021•〕如图,AE是△ABC的角平分线,AD⊥BC于点D,假设∠BAC=128°,∠C=36°,那么∠DAE的度数是〔〕A.10°B.12°C.15°D.18°2.〔2021•随州〕如图,在△ABC中E是BC上的一点,EC=2BE,点D是AC的中点,设△ABC,△ADF,△BEF 的面积分别为S△ABC,S△ADF,S△BEF,且S△ABC=12,那么S△ADF﹣S△BEF=〔〕A.1B.2C.3D.43.〔2021•江〕如图,小从O点出发,前进5米后向右转20°,再前进5米后又向右转20°,…,这样一直走下去,他第一次回到出发点O时一共走了〔〕A.60米B.100米C.90米D.120米二.填空题〔共4小题〕4.〔2021•黔东南州〕如图,某村有一块三角形的空地〔即△ABC〕,其中A点处靠近水源,现村长准备将它分给甲、乙两农户耕种,分配方案规定,按每户人口数量来平均分配,且甲、乙两农户所分土地都要靠近水源〔即A点〕,甲农户有1人,乙农户有3人,请你把它分出来.〔要求:尺规作图,保存作图痕迹,不写作法,不要求证明〕._________ .5.〔2007•资阳〕如图,对面积为1的△ABC逐次进展以下操作:第一次操作,分别延长AB,BC,CA至点A1,B1,C1,使得A1B=2AB,B1C=2BC,C1A=2CA,顺次连接A1,B1,C1,得到△A1B1C1,记其面积为S1;第二次操作,分别延长A1B1,B1C1,C1A1至点A2,B2,C2,使得A2B1=2A1B1,B2C1=2B1C1,C2A1=2C1A1,顺次连接A2,B2,C2,得到△A2B2C2,记其面积为S2;…;按此规律继续下去,可得到△A5B5C5,那么其面积S5= _________ .6.〔2021•〕如图,△ABC的三边AB、BC、CA长分别为40、50、60.其三条角平分线交于点O,那么S△ABO:S△BCO:S△CAO= _________ .7.〔2021•〕如图,梯形ABCD中,AD∥BC,DC⊥BC,将梯形沿对角线BD折叠,点A恰好落在DC边上的点A′处,假设∠A′BC=15°,那么∠A′BD的度数为_________ .三.解答题〔共5小题〕11.〔2021•〕如图①,△ABC中.AB=AC,P为底边BC上一点,PE⊥AB,PF⊥AC,CH⊥AB,垂足分别为E、F、H.易证PE+PF=CH.证明过程如下:如图①,连接AP.∵PE⊥AB,PF⊥AC,CH⊥AB,∴S△ABP=AB•PE,S△ACP=AC•PF,S△ABC=AB•CH.又∵S△ABP+S△ACP=S△ABC,∴AB•PE+AC•PF=AB•CH.∵AB=AC,∴PE+PF=CH.〔1〕如图②,P为BC延长线上的点时,其它条件不变,PE、PF、CH又有怎样的数量关系?请写出你的猜测,并加以证明:〔2〕填空:假设∠A=30°,△ABC的面积为49,点P在直线BC上,且P到直线AC的距离为PF,当PF=3时,那么AB边上的高CH= _________ .点P到AB边的距离PE= _________ .12.〔2021•〕如图,在△ABC中,∠C=90°,点D是AB边上的一点,DM⊥AB,且DM=AC,过点M作ME∥BC 交AB于点E.求证:△ABC≌△MED.全等三角形练习题参考答案与试题解析一.选择题〔共3小题〕1.〔2021•〕如图,AE是△ABC的角平分线,AD⊥BC于点D,假设∠BAC=128°,∠C=36°,那么∠DAE的度数是〔〕A.10°B.12°C.15°D.18°考点:三角形角和定理;三角形的角平分线、中线和高.分析:根据直角三角形两锐角互余求出∠CAD,再根据角平分线定义求出∠CAE,然后根据∠DAE=∠CAE﹣∠CAD,代入数据进展计算即可得解.解答:解:∵AD⊥BC,∠C=36°,∴∠CAD=90°﹣36°=54°,∵AE是△ABC的角平分线,∠BAC=128°,∴∠CAE=∠BAC=×128°=64°,∴∠DAE=∠CAE﹣∠CAD=64°﹣54°=10°.应选A.点评:此题考察了三角形的角和定理,三角形的角平分线,高线的定义,准确识图,找出各角度之间的关系并求出度数是解题的关键.2.〔2021•随州〕如图,在△ABC中E是BC上的一点,EC=2BE,点D是AC的中点,设△ABC,△ADF,△BEF 的面积分别为S△ABC,S△ADF,S△BEF,且S△ABC=12,那么S△ADF﹣S△BEF=〔〕A.1B.2C.3D.4考点:三角形的面积.分析:此题需先分别求出S△ABD,S△ABE再根据S△ADF﹣S△BEF=S△ABD﹣S△ABE即可求出结果.解答:解:∵S△ABC=12,EC=2BE,点D是AC的中点,∴S△ABE==4,S△ABD==6,∴S△ABD﹣S△ABE,=S△ADF﹣S△BEF,=6﹣4,=2.应选B.点评:此题主要考察了三角形的面积计算,在解题时要能根据条件求出三角形的面积并对要求的两个三角形的面积之差进展变化是此题的关键.3.〔2021•江〕如图,小从O点出发,前进5米后向右转20°,再前进5米后又向右转20°,…,这样一直走下去,他第一次回到出发点O时一共走了〔〕A.60米B.100米C.90米D.120米考点:多边形角与外角.专题:应用题.分析:利用多边形外角和等于360度即可求出答案.解答:解:∵小从O点出发当他第一次回到出发点O时正好走了一个正多边形,∴多边形的边数为360°÷20=18,∴他第一次回到出发点O时一共走了18×5=90米.应选C.点评:主要考察了多边形的外角和定理.任何一个多边形的外角和都是360°.二.填空题〔共4小题〕4.〔2021•黔东南州〕如图,某村有一块三角形的空地〔即△ABC〕,其中A点处靠近水源,现村长准备将它分给甲、乙两农户耕种,分配方案规定,按每户人口数量来平均分配,且甲、乙两农户所分土地都要靠近水源〔即A点〕,甲农户有1人,乙农户有3人,请你把它分出来.〔要求:尺规作图,保存作图痕迹,不写作法,不要求证明〕.答案如图.考点:三角形的面积.专题:作图题.分析:因为按每户人口数量来平均分配,且甲、乙两农户所分土地都要靠近水源〔即A点〕,甲农户有1人,乙农户有3人,所以需要把三角形的面积平均分为4份,甲占1份,其余的是乙的,由此把BC四等分即可.解答:解:如下图:点评:此题需仔细分析题意,结合图形利用等分点即可解决问题.5.〔2007•资阳〕如图,对面积为1的△ABC逐次进展以下操作:第一次操作,分别延长AB,BC,CA至点A1,B1,C1,使得A1B=2AB,B1C=2BC,C1A=2CA,顺次连接A1,B1,C1,得到△A1B1C1,记其面积为S1;第二次操作,分别延长A1B1,B1C1,C1A1至点A2,B2,C2,使得A2B1=2A1B1,B2C1=2B1C1,C2A1=2C1A1,顺次连接A2,B2,C2,得到△A2B2C2,记其面积为S2;…;按此规律继续下去,可得到△A5B5C5,那么其面积S5= 195.考点:三角形的面积.专题:操作型.分析:根据高的比等于面积比推理出△A1B1C的面积是△A1BC面积的2倍,那么△A1B1B的面积是△A1BC面积的3倍…,以此类推,得出△A2B2C2的面积.解答:解:连接A1C,根据A1B=2AB,得到:AB:A1A=1:3,因而假设过点B,A1作△ABC与△AA1C的AC边上的高,那么高线的比是1:3,因而面积的比是1:3,那么△A1BC的面积是△ABC的面积的2倍,设△ABC的面积是a,那么△A1BC的面积是2a,同理可以得到△A1B1C的面积是△A1BC面积的2倍,是4a,那么△A1B1B的面积是6a,同理△B1C1C和△A1C1A的面积都是6a,△A1B1C1的面积是19a,即△A1B1C1的面积是△ABC的面积的19倍,同理△A2B2C2的面积是△A1B1C1的面积的19倍,即△A1B1C1的面积是19,△A2B2C2的面积192,依此类推,△A5B5C5的面积是S5=195=2476099.点评:正确判断相邻的两个三角形面积之间的关系是解决此题的关键,此题的难度较大.6.〔2021•〕如图,△ABC的三边AB、BC、CA长分别为40、50、60.其三条角平分线交于点O,那么S△ABO:S△BCO:S△CAO= 4:5:6 .考点:角平分线的性质.分析:首先过点O作OD⊥AB于点D,作OE⊥AC于点E,作OF⊥BC于点F,由OA,OB,OC是△ABC的三条角平分线,根据角平分线的性质,可得OD=OE=OF,又由△ABC的三边AB、BC、CA长分别为40、50、60,即可求得S△ABO:S△BCO:S△CAO的值.解答:解:过点O作OD⊥AB于点D,作OE⊥AC于点E,作OF⊥BC于点F,∵OA,OB,OC是△ABC的三条角平分线,∴OD=OE=OF,∵△ABC的三边AB、BC、CA长分别为40、50、60,∴S△ABO:S△BCO:S△CAO=〔AB•OD〕:〔BC•OF〕:〔AC•OE〕=AB:BC:AC=40:50:60=4:5:6.故答案为:4:5:6.点评:此题考察了角平分线的性质.此题难度不大,注意掌握辅助线的作法,注意数形结合思想的应用.7.〔2021•〕如图,梯形ABCD中,AD∥BC,DC⊥BC,将梯形沿对角线BD折叠,点A恰好落在DC边上的点A′处,假设∠A′BC=15°,那么∠A′BD的度数为30°.考点:翻折变换〔折叠问题〕.分析:由梯形ABCD中,AD∥BC,DC⊥BC,∠A′BC=15°,利用三角形外角的性质,可求得∠DA′B的度数,由折叠的性质,可得:∠A=∠DA′B=105°,∠ABD=∠A′BD,继而求得∠A′BD的度数.解答:解:∵梯形ABCD中,AD∥BC,DC⊥BC,∴∠C=90°,∵∠A′BC=15°,∴∠DA′B=∠A′BC+∠C=15°+90°=105°,由折叠的性质可得:∠A=∠DA′B=105°,∠ABD=∠A′BD,∵AD∥BC,∴∠ABC=180°﹣∠A=75°,∴∠A′BD==30°.故答案为:30°.点评:此题考察了折叠的性质、梯形的性质以及三角形的外角的性质.此题难度不大,注意掌握折叠前后图形的对应关系,注意数形结合思想的应用.11.〔2021•〕如图①,△ABC中.AB=AC,P为底边BC上一点,PE⊥AB,PF⊥AC,CH⊥AB,垂足分别为E、F、H.易证PE+PF=CH.证明过程如下:如图①,连接AP.∵PE⊥AB,PF⊥AC,CH⊥AB,∴S△ABP=AB•PE,S△ACP=AC•PF,S△ABC=AB•CH.又∵S△ABP+S△ACP=S△ABC,∴AB•PE+AC•PF=AB•CH.∵AB=AC,∴PE+PF=CH.〔1〕如图②,P为BC延长线上的点时,其它条件不变,PE、PF、CH又有怎样的数量关系?请写出你的猜测,并加以证明:〔2〕填空:假设∠A=30°,△ABC的面积为49,点P在直线BC上,且P到直线AC的距离为PF,当PF=3时,那么AB边上的高CH= 7 .点P到AB边的距离PE= 4或10 .考点:等腰三角形的性质;三角形的面积.专题:几何综合题.分析:〔1〕连接AP.先根据三角形的面积公式分别表示出S△ABP,S△ACP,S△ABC,再由S△ABP=S△ACP+S△ABC即可得出PE=PF+PH;〔2〕先根据直角三角形的性质得出AC=2CH,再由△ABC的面积为49,求出CH=7,由于CH>PF,那么可分两种情况进展讨论:①P为底边BC上一点,运用结论PE+PF=CH;②P为BC延长线上的点时,运用结论PE=PF+CH.解答:解:〔1〕如图②,PE=PF+CH.证明如下:∵PE⊥AB,PF⊥AC,CH⊥AB,∴S△ABP=AB•PE,S△ACP=AC•PF,S△ABC=AB•CH,∵S△ABP=S△ACP+S△ABC,∴AB•PE=AC•PF+AB•CH,又∵AB=AC,∴PE=PF+CH;〔2〕∵在△ACH中,∠A=30°,∴AC=2CH.∵S△ABC=AB•CH,AB=AC,∴×2CH•CH=49,∴CH=7.分两种情况:①P为底边BC上一点,如图①.∵PE+PF=CH,∴PE=CH﹣PF=7﹣3=4;②P为BC延长线上的点时,如图②.∵PE=PF+CH,∴PE=3+7=10.故答案为7;4或10.点评:此题考察了等腰三角形的性质与三角形的面积,难度适中,运用面积证明可使问题简便,〔2〕中分情况讨论是解题的关键.12.〔2021•〕如图,在△ABC中,∠C=90°,点D是AB边上的一点,DM⊥AB,且DM=AC,过点M作ME∥BC 交AB于点E.求证:△ABC≌△MED.考点:全等三角形的判定.专题:证明题.分析:根据平行线的性质可得出∠B=∠MED,结合全等三角形的判定定理可判断△ABC≌△MED.解答:证明:∵MD⊥AB,∴∠MDE=∠C=90°,∵ME∥BC,∴∠B=∠MED,在△ABC与△MED中,,∴△ABC≌△MED〔AAS〕.点评:此题考察了全等三角形的判定,要求掌握三角形全等的判定定理,难度一般.。
人教新版八年级数学上册 第十二章 全等三角形 单元练习试题 (解析版).doc
第十二章全等三角形一.选择题(共10小题)1.下列说法正确的是()A.形状相同的两个三角形全等B.面积相等的两个三角形全等C.完全重合的两个三角形全等D.所有的等边三角形全等2.下列说法正确的是()A.所有的等边三角形都是全等三角形B.全等三角形是指面积相等的三角形C.周长相等的三角形是全等三角形D.全等三角形是指形状相同大小相等的三角形3.如图是两个全等三角形,图中的字母表示三角形的边长,则∠1的度数是()A.76°B.62°C.42°D.76°、62°或42°都可以4.如图,△ABC≌△DEF,点A与D,B与E分别是对应顶点,且测得BC=5cm,BF=7cm,则EC长为()A.1cm B.2cm C.3cm D.4cm5.如图,AE∥DF,AE=DF,要使△EAC≌△FDB,需要添加下列选项中的()A.∠A=∠D B.EC=BF C.AB=CD D.AB=BC6.如图,AB∥FC,E是DF的中点,若AB=20,CF=12,则BD等于()A.12 B.8 C.6 D.107.如图,红红书上的三角形被墨迹污染了一部分,她根据所学的知识很快就画了一个与书上完全一样的三角形,那么红红画图的依据是()A.SSS B.SAS C.ASA D.AAS8.在正方形网格中,∠AOB的位置如图所示,到∠AOB两边距离相等的点应是()A.M点B.N点C.P点D.Q点9.如图,△ABC中,AD⊥BC,D为BC的中点,以下结论:(1)△ABD≌△ACD;(2)AB=AC;(3)∠B=∠C;(4)AD是△ABC的一条角平分线.其中正确的有()A.1个B.2个C.3个D.4个10.如图,在△ABC中,P、Q分别是BC、AC上的点,作PR⊥AB,PS⊥AC,垂足分别为R、S,若AQ=PQ,PR=PS,则这四个结论中正确的有()①PA平分∠BAC;②AS=AR;③QP∥AR;④△BRP≌△CSP.A.4个B.3个C.2个D.1个二.填空题(共6小题)11.如图,已知△ABC≌△A′BC′,AA′∥BC,∠ABC=70°,则∠CBC′=.12.如图,AB=AC,点D,E分别在AB,AC上,CD,BE交于点F,只添加一个条件使△ABE ≌△ACD,添加的条件是:.13.如图,在△ABC中,∠A=90°,AB=AC,∠ABC的平分线BD交AC于点D,CE⊥BD,交BD的延长线于点E,若BD=8,则CE=.14.如图,若AB=AC,BD=CD,∠B=20°,∠BDC=120°,则∠A等于度.15.如图,BE,CD是△ABC的高,且BD=EC,判定△BCD≌△CBE的依据是“”.16.如图,CA⊥AB,垂足为点A,AB=24,AC=12,射线BM⊥AB,垂足为点B,一动点E从A点出发以3厘米/秒沿射线AN运动,点D为射线BM上一动点,随着E点运动而运动,且始终保持ED=CB,当点E经过秒时,△DEB与△BCA全等.三.解答题(共6小题)17.如图,已知△ACF≌△DBE,且点A,B,C,D在同一条直线上,∠A=50°,∠F=40°.(1)求△DBE各内角的度数;(2)若AD=16,BC=10,求AB的长.18.如图,已知△ABC≌△DEB,点E在AB上,DE与AC相交于点F,(1)当DE=8,BC=5时,线段AE的长为;(2)已知∠D=35°,∠C=60°,①求∠DBC的度数;②求∠AFD的度数.19.已知:如图,点B,E,C,F在同一直线上,AB∥DE,且AB=DE,BE=CF.求证:△ABC≌△DEF.20.把两个含有45°角的大小不同的直角三角板如图放置,点D在BC上,连接BE,AD,AD 的延长线交BE于点F.说明:AF⊥BE.21.如图,在△ABC中,AB=AC,DE是过点A的直线,BD⊥DE于D,CE⊥DE于点E;(1)若B、C在DE的同侧(如图所示)且AD=CE.求证:AB⊥AC;(2)若B、C在DE的两侧(如图所示),且AD=CE,其他条件不变,AB与AC仍垂直吗?若是请给出证明;若不是,请说明理由.22.如图,已知△ABC中,AB=AC=10cm,BC=8cm,点D为AB的中点.如果点P在线段BC 上以3cm/s的速度由点B向C点运动,同时,点Q在线段CA上由点C向A点运动.(1)若点Q的运动速度与点P的运动速度相等,经过1秒后,△BPD与△CQP是否全等,请说明理由.(2)若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP全等?参考答案一.选择题(共10小题)1.解:A、形状相同的两个三角形全等,说法错误,应该是形状相同且大小也相同的两个三角形全等;B、面积相等的两个三角形全等,说法错误;C、完全重合的两个三角形全等,说法正确;D、所有的等边三角形全等,说法错误;故选:C.2.解:A、所有的等边三角形都是全等三角形,错误;B、全等三角形是指面积相等的三角形,错误;C、周长相等的三角形是全等三角形,错误;D、全等三角形是指形状相同大小相等的三角形,正确.故选:D.3.解:∵两个三角形全等,∴∠1=62°,故选:B.4.解:∵△ABC≌△DEF,∴EF=BC=5cm,∵BF=7cm,BC=5cm,∴CF=7cm﹣5cm=2cm,∴EC=EF﹣CF=3cm,故选:C.5.解:∵AE∥DF,∴∠A=∠D,∵AE=DF,∴要使△EAC≌△FDB,还需要AC=BD,∴当AB=CD时,可得AB+BC=BC+CD,即AC=BD,故选:C.6.解:∵AB∥FC∴∠ADE=∠EFC∵E是DF的中点∴DE=EF∵∠AED=∠CEF∴△ADE≌△CFE∴AD=CF∵AB=20,CF=12∴BD=AB﹣AD=20﹣12=8.故选:B.7.解:根据题意,三角形的两角和它们的夹边是完整的,所以可以利用“角边角”定理作出完全一样的三角形.故选:C.8.解:从图上可以看出点M在∠AOB的平分线上,其它三点不在∠AOB的平分线上.所以点M到∠AOB两边的距离相等.故选A.9.解:∵AD=AD、∠ADB=∠ADC、BD=CD∴(1)△ABD≌△ACD正确;∴(2)AB=AC正确;(3)∠B=∠C正确;∠BAD=∠CAD∴(4)AD是△ABC的角平分线.故选:D.10.解:(1)PA平分∠BAC.∵PR⊥AB,PS⊥AC,PR=PS,AP=AP,∴△APR≌△APS,∴∠PAR=∠PAS,∴PA平分∠BAC;(2)由(1)中的全等也可得AS=AR;(3)∵AQ=PR,∴∠1=∠APQ,∴∠PQS=∠1+∠APQ=2∠1,又∵PA平分∠BAC,∴∠BAC=2∠1,∴∠PQS=∠BAC,∴PQ∥AR;(4)∵PR⊥AB,PS⊥AC,∴∠BRP=∠CSP,∵PR=PS,∴△BRP不一定全等与△CSP(只具备一角一边的两三角形不一定全等).故选:B.二.填空题(共6小题)11.解:∵AA′∥BC,∴∠A′AB=∠ABC=70°,∵△ABC≌△A′BC′,∴BA=BA′,∠A′BC=∠ABC=70°,∴∠A′AB=∠AA′B=70°,∴∠A′BA=40°,∴∠ABC′=30°,∴∠CBC′=40°,故答案为:40°.12.解:∠B=∠C,理由是:∵在△ABE和△ACD中∴△ABE≌△ACD(ASA),故答案为:∠B=∠C.13.解:如图,延长BA、CE相交于点F,∵BD平分∠ABC,∴∠ABD=∠CBD,在△BCE和△BFE中,,∴△BCE≌△BFE(ASA),∴CE=EF,∵∠BAC=90°,CE⊥BD,∴∠ACF+∠F=90°,∠ABD+∠F=90°,∴∠ABD=∠ACF,在△ABD和△ACF中,,∴△ABD≌△ACF(ASA),∴BD=CF,∵CF=CE+EF=2CE,∴BD=2CE=8,∴CE=4.故答案为:4.14.解:过D作射线AF,在△BAD和△CAD中,,∴△BAD≌△CAD(SSS),∴∠BAD=∠CAD,∠B=∠C=20°,∵∠BDF=∠B+∠BAD,∠CDF=∠C+∠CAD,∴∠BDF+∠CDF=∠B+∠BAD+∠C+∠CAD,∴∠BDC=∠B+∠C+∠BAC,∵∠C=∠B=20°,∠BDC=120°,∴∠BAC=80°.故答案为:80.15.解:∵BE、CD是△ABC的高,∴∠CDB=∠BEC=90°,在Rt△BCD和Rt△CBE中,BD=EC,BC=CB,∴Rt△BCD≌Rt△CBE(HL),故答案为:HL.16.解:设点E经过t秒时,△DEB≌△BCA;此时AE=3t 分情况讨论:(1)当点E在点B的左侧时,BE=24﹣3t=12,∴t=4;(2)当点E在点B的右侧时,①BE=AC时,3t=24+12,∴t=12;②BE=AB时,3t=24+24,∴t=16.(3)当点E与A重合时,AE=0,t=0;综上所述,故答案为:0,4,12,16.三.解答题(共6小题)17.解:(1)∵△ACF≌△DBE,∠A=50°,∠F=40°,∴∠D=∠A=50°,∠E=∠F=40°,∴∠EBD=180°﹣∠D﹣∠E=90°;(2)∵△ACF≌△DBE,∴AC=BD,∴AC﹣BC=DB﹣BC,∴AB=CD,∵AD=16,BC=10,∴AB=CD=(AD﹣BC)=3.18.解:(1)∵△ABC≌△DEB,DE=8,BC=5,∴AB=DE=8,BE=BC=5,∴AE=AB﹣BE=8﹣5=3,故答案为:3;(2)①∵△ABC≌△DEB∴∠A=∠D=35°,∠DBE=∠C=60°,∵∠A+∠ABC+∠C=180°,∴∠ABC=180°﹣∠A﹣∠C=85°,∴∠DBC=∠ABC﹣∠DBE=85°﹣60°=25°;②∵∠AEF是△DBE的外角,∴∠AEF=∠D+∠DBE=35°+60°=95°,∵∠AFD是△AEF的外角,∴∠AFD=∠A+∠AEF=35°+95°=130°.19.证明:∵AB∥DE,∴∠B=∠DEF∵BE=FC,∴BC=EF,在△ABC和△DEF中,∴△ABC≌△DEF(SAS).20.证明:AF⊥BE,理由如下:由题意可知∠DEC=∠EDC=45°,∠CBA=∠CAB=45°,∴EC=DC,BC=AC,又∠DCE=∠DCA=90°,∴△ECD和△BCA都是等腰直角三角形,∴EC=DC,BC=AC,∠ECD=∠ACB=90°.在△BEC和△ADC中EC=DC,∠ECB=∠DCA,BC=AC,∴△BEC≌△ADC(SAS).∴∠EBC=∠DAC.∵∠DAC+∠CDA=90°,∠FDB=∠CDA,∴∠EBC+∠FDB=90°.∴∠BFD=90°,即AF⊥BE.21.(1)证明:∵BD⊥DE,CE⊥DE,∴∠ADB=∠AEC=90°,在Rt△ABD和Rt△ACE中,∵,∴Rt△ABD≌Rt△CAE.∴∠DAB=∠ECA,∠DBA=∠ACE.∵∠DAB+∠DBA=90°,∠EAC+∠ACE=90°,∴∠BAD+∠CAE=90°.∠BAC=180°﹣(∠BAD+∠CAE)=90°.∴AB⊥AC.(2)AB⊥AC.理由如下:同(1)一样可证得Rt△ABD≌Rt△ACE.∴∠DAB=∠ECA,∠DBA=∠EAC,∵∠CAE+∠ECA=90°,∴∠CAE+∠BAD=90°,即∠BAC=90°,∴AB⊥AC.22.解:(1)经过1秒后,PB=3cm,PC=5cm,CQ=3cm,∵△ABC中,AB=AC,∴在△BPD和△CQP中,,∴△BPD≌△CQP(SAS).(2)设点Q的运动速度为x(x≠3)cm/s,经过ts△BPD与△CQP全等;则可知PB=3tcm,PC=8﹣3tcm,CQ=xtcm,∵AB=AC,∴∠B=∠C,根据全等三角形的判定定理SAS可知,有两种情况:①当BD=PC,BP=CQ时,②当BD =CQ,BP=PC时,两三角形全等;①当BD=PC且BP=CQ时,8﹣3t=5且3t=xt,解得x=3,∵x≠3,∴舍去此情况;②BD=CQ,BP=PC时,5=xt且3t=8﹣3t,解得:x=;故若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为cm/s时,能够使△BPD与△CQP全等.。
专题 全等三角形压轴题(30题)(解析版)
八年级上册数学《第十二章全等三角形》专题全等三角形压轴题训练(30题)1.(2022秋•忠县期末)在△ABC中,点D、E分别在AB、AC边上,设BE与CD相交于点F.(1)如图①,设∠A=60°,BE、CD分别平分∠ABC、∠ACB,证明:DF=EF.(2)如图②,设BE⊥AC,CD⊥AB,点G在CD的延长线上,连接AG、AF;若∠G=∠6,BD=CD,证明:GD=DF.【分析】(1)在BC上截取BM=BD,连接FM,证明△BFD≌△BFM,△ECF≌△MCF,进而可以解决问题;(2)根据已知条件证明△BDF≌△CDA,进而可以解决问题.【解答】证明:(1)如图,在BC上截取BM=BD,连接FM,∵∠A=60,∴∠BFC=90°+60°÷2=120°,∴∠BFD=60°,∵BE平分∠ABC,∴∠1=∠2,在△BFD和△BFM中,BD=BM∠1=∠2,BF=BF∴△BFD≌△BFM(SAS),∴∠BFM=∠BFD=60°,DF=MF,∴∠CFM=120°﹣60°=60°,∵∠CFE=∠BFD=60°,∴∠CFM=∠CFE,∵CD平分∠ACB,∴∠3=∠4,又CF=CF,在△ECF和△MCF中,∠CFE=∠CFMFC=FC,∠3=∠4∴△ECF≌△MCF(ASA),∴EF=MF,∴DF=EF;(2)∵BE⊥AC,CD⊥AB,∴∠BDF=∠CDA=90°,∴∠1+∠BFD=90°,∠3+∠CFE=90°,∠BFD=∠CFE,∴∠1=∠3,∵BD=CD,在△BDF和△CDA中,∠BDF=∠CDABD=CD,∠1=∠3∴△BDF≌△CDA(ASA),∴DF=DA,∵∠ADF=90°,∴∠6=45°,∵∠G=∠6,∴∠5=45°∴∠G=∠5,∴GD=DA,∴GD=DF.【点评】本题属于三角形的综合题,考查了全等三角形的判定与性质,角平分线的性质,解决本题的关键是掌握全等三角形的判定与性质.2.如图,△ABC中,AB=AC,D为AC边上一点,E为AB延长线上一点,且CD=BE,DE与BC相交于点F.(1)求证:DF=EF.=5,求EG的长.(2)过点F作FG⊥DE,交线段CE于点G,若CE⊥AC,CD=4,S△EFG【分析】(1)过点D作DH∥AB交BC于点H,根据等腰三角形的性质及平行线的性质得到∠BEF=∠HDF,∠DHC=∠DCH,则DH=CD,结合∠BFE=∠HFD,即可利用AAS判定△BEF≌△HDF,根据全等三角形的性质即可得解;(2)根据三角形的面积公式求解即可.【解答】(1)过点D作DH∥AB交BC于点H,∵AB=AC,∴∠ABC=∠ACB,∵DH∥AB,∴∠DHC=∠ABC,∴∠DHC=∠ACB=∠DCH,∴DH=CD,∵CD=BE,∴DH=BE,∵DH∥AB,∴∠BEF=∠HDF,在△BEF和△HDF中,∠BFE=∠HFD∠BEF=∠HDFBE=DH,∴△BEF≌△HDF(AAS),∴DF=EF;(2)连接DG,∵DF=EF,FG⊥DE,∴S△DFG =S△EFG=5,∴S△DEG=10,∵CE⊥AC,CD=4,∴S△DEG =12EG•CD=12EG×4,∴12EG×4=10,∴EG=5.【点评】此题考查了全等三角形的判定与性质,利用AAS判定△BEF≌△HDF是解题的关键.3.如图1,在等腰直角三角形ABC中,AB=AC,∠BAC=90°,点P为BC边上的一个动点,连接AP,以AP为直角边,A为直角顶点,在AP右侧作等腰直角三角形PAD,连接CD.(1)当点P在线段BC上时(不与点B重合),求证:△BAP≌△CAD;(2)当点P在线段BC的延长线上时(如图2),试猜想线段BP和CD的数量关系与位置关系分别是什么?请给予证明.【分析】(1)证得∠BAP=∠CAD,根据SAS可证明△BAP≌△CAD;(2)可得∠BAP=∠CAD,由SAS可证明△BAP≌△CAD,可得BP=CD,∠B=∠ACD,则结论得证.【解答】(1)证明:∵∠BAC=∠PAD=90°,∴∠BAC﹣∠PAC=∠PAD﹣∠PAC,即:∠BAP=∠CAD,在△BAP和△CAD中AB=AC∠BAP=∠CAD,PA=DA∴△BAP≌△CAD(SAS);(2)猜想:BP=CD,BP⊥CD.证明:∵∠BAC=∠PAD=90°,∴∠BAC+∠PAC=∠PAD+∠PAC,即:∠BAP=∠CAD,在△BAP和△CAD中AB=AC∠BAP=∠CAD,PA=DA∴△BAP≌△CAD(SAS),∴BP=CD(全等三角形的对应边相等),∠B=∠ACD(全等三角形的对应角相等),∵∠B+∠ACB=90°,∴∠ACD+∠ACB=90°,即:BP⊥CD.【点评】本题考查了全等三角形的判定与性质,等腰直角三角形的性质,根据同角的余角相等求出两边的夹角相等是证明三角形全等的关键.4.在△ABC中,∠ABC=90°.点G在直线BC上,点E在直线AB上,且AG与CE相交于点F,过点A 作边AB的垂线AD,且CD∥AG,EB=AD,AE=BC.(1)如图①,当点E在△ABC的边AB上时,求∠DCE的度数;(2)如图②,当点E在线段BA的延长线上时,求证:AB=BG.【分析】(1)如图①,连接ED,根据已知条件得到△ADE≌△BEC(SAS),根据全等三角形的性质得到∠AED=∠BCE,ED=CE,于是得到结论;(2)如图②,连接DE,根据已知条件得到△ADE≌△BEC(SAS),根据全等三角形的性质得到∠AED =∠BCE,ED=CE,根据等腰三角形的性质得到∠EDC=∠ECD,推出AF平分∠DAE,于是得到结论.【解答】解:(1)如图①连接ED,∵AD⊥AB,∴∠DAE=90°,∵∠ABC=90°,∵AD=EB,AE=BC,∴△ADE≌△BEC(SAS),∴∠AED=∠BCE,ED=CE,∴∠AED+∠BEC=∠BCE+∠BEC;∴∠AED+∠CEB=90°,∴∠DEC=90°,∴∠DCE=45°;(2)如图②,连接DE,∵AD⊥AB,∴∠DAE=90°,∵∠ABC=90°,∴∠DAE=∠ABC,∵AD=EB,AE=BC,∴△ADE≌△BEC(SAS),∴∠ADE=∠BEC,ED=CE,∵ED=CE,∴∠EDC=∠ECD,即∠ADE+∠ADC=∠ECD,∴∠BEC+∠DAF=∠AFC,∵∠BEC+∠EAF=∠AFC,∴∠DAF=∠EAF,∴AF平分∠DAE,∵∠DAE=90°,∴∠EAF=45°,∵∠EAF=∠BAG,∴∠BAG=45°,∵∠ABC=90°,∴∠ABG=90°,∴∠BGA=∠BAG,∴AB=BG.【点评】本题考查了平行线的性质,全等三角形的判定和性质,角平分线的定义,等腰直角三角形的判定和性质,正确的识别图形是解题的关键.5.在Rt△ABC中,∠ABC=90°,点D是CB延长线上一点,点E是线段AB上一点,连接DE.AC=DE,BC=BE.(1)求证:AB=BD;(2)BF平分∠ABC交AC于点F,点G是线段FB延长线上一点,连接DG,点H是线段DG上一点,连接AH交BD于点K,连接KG.当KB平分∠AKG时,求证:AK=DG+KG.【分析】(1)证明Rt△ACB≌Rt△DEB即可解决问题;(2)作BM平分∠ABD交AK于点M,证明△BMK≌△BGK,△ABM≌△DBG,即可解决问题.【解答】证明:(1)在Rt△ACB和Rt△DEB中,AC=DEBC=BE,∴Rt△ACB≌Rt△DEB(HL),∴AB=BD,(2)如图:作BM平分∠ABD交AK于点M,∵BM平分∠ABD,KB平分∠AKG,∴∠ABM=∠MBD=45°,∠AKB=∠BKG,∵∠ABF=∠DBG=45°∴∠MBD=∠GBD,在△BMK和△BGK中,∠MBD=∠GBDBK=BK,∠AKB=∠BKG∴△BMK≌△BGK(ASA),∴BM=BG,MK=KG,在△ABM和△DBG中,AB=BD∠ABM=∠DBG,BM=BG∴△ABM≌△DBG(SAS),∴AM=DG,∵AK=AM+MK,∴AK=DG+KG.【点评】本题考查了全等三角形的判定与性质,解决本题的关键是得到△BMK≌△BGK.6.(2023春•市南区期末)如图,在△ABC中,AB=AC,AD⊥BC于点D,E为AC边上一点,连接BE与AD交于点F,G为△ABC外一点,满足∠ACG=∠ABE,∠FAG=∠BAC,连接EG.(1)求证:△ABF≌△ACG;(2)求证:BE=CG+EG.【分析】(1)根据已知条件可得∠BAD=∠CAG,然后利用ASA即可证明△ABF≌△ACG;(2)结合(1)的结论,再证明△AEF≌△AEG,即可解决问题.【解答】(1)证明:∵∠BAC=∠FAG,∴∠BAC﹣∠CAD=∠FAG﹣∠CAD,∴∠BAD=∠CAG,在△ABF和△ACG中,∠BAD=∠CAGAB=AC,∠ABF=∠ACG∴△ABF≌△ACG(ASA);(2)证明:∵△ABF≌△ACG,∴AF=AG,BF=CG,∵AB=AC,AD⊥BC,∴∠BAD=∠CAD,∵∠BAD=∠CAG,∴∠CAD=∠CAG,在△AEF和△AEG中,AF=AG∠FAE=∠GAE,AE=AE∴△AEF≌△AEG(SAS).∴EF=EG,∴BE=BF+FE=CG+EG.【点评】本题考查了全等三角形的判定与性质,解决本题的关键是得到△AEF≌△AEG.7.(2022秋•新市区校级期中)已知:如图,BD为△ABC的角平分线,且BD=BC,E为BD延长线上的一点,BE=BA,过E作EF⊥AB,F为垂足.求证:(1)AD=AE=EC.(2)BA+BC=2BF.【分析】(1)由△BCD和△BEA为等腰三角形,∠ABD=∠EBC,得出∠BCD=∠BEA,由△ABD≌△EBC可得∠BCE=∠BDA,由∠BCE=∠BCD+∠DCE,∠BDA=∠DAE+∠BEA得出∠BCD+∠DCE=∠DAE+∠BEA,进而得出∠DCE=∠DAE,即可证明AE=EC;(2)过点E作EG⊥BC交BC的延长线于点G,由“HL”得出Rt△BFE≌Rt△BGE和Rt△BFE≌Rt△BGE,从而得出BF=BG,FA=CG,再通过等量代换即可得出结论.【解答】(1)证明:∵BD为△ABC的角平分线,∴∠ABD=∠EBC,在△ABD与△EBC中,AB=EB∠ABD=∠EBD,BD=BC∴△ABD≌△EBC(SAS),∴∠BCE=∠BDA,∵∠BCE=∠BCD+∠DCE,∠BDA=∠DAE+∠BEA,∴∠BCD+∠DCE=∠DAE+∠BEA,∵BD=BC,BE=BA,∴△BCD和△BEA为等腰三角形,∵∠ABD=∠EBC,∴∠BCD=∠BEA,∴∠DCE=∠DAE,∴AE=EC,∵△ABD≌△EBC,∴AD=EC,∴AD=EC=AE;(2)证明:如图,过点E作EG⊥BC交BC的延长线于点G,∵BE平分∠ABC,EF⊥AB,EG⊥BG,∴EF=EG,在Rt△BFE与Rt△BGE中,EF=EGBE=BE,∴Rt△BFE≌Rt△BGE(HL),∴BF=BG,在Rt△AFE与Rt△CGE中,EF=EGEA=EC,∴Rt△AFE≌Rt△CGE(HL),∴FA=CG,∴BA+BC=BF+FA+BG﹣CG=BF+BG=2BF.【点评】本题考查了全等三角形的判定与性质,掌握三角形全等的判定方法是解决问题的关键.8.(2023春•余江区期末)如图,大小不同的两块三角板△ABC和△DEC直角顶点重合在点C处,AC=BC,DC=EC,连接AE、BD,点A恰好在线段BD上.(1)找出图中的全等三角形,并说明理由;(2)当AD=AB=4cm,则AE的长度为 cm.(3)猜想AE与BD的位置关系,并说明理由.【分析】(1)根据SAS证明△CBD≌△CAE即可;(2)根据全等三角形的性质解答即可;(3)根据全等三角形的性质和垂直的定义解答即可.【解答】解:(1)△CBD≌△CAE,理由如下:∵∠ACB=∠DCE=90°,∴∠ACB+∠ACD=∠DCE+∠ACD,即∠BCD=∠ACE,在△CBD与△CAE中,BC=AC∠BCD=∠ACE,DC=EC∴△CBD≌△CAE(SAS);(2)∵△CBD≌△CAE,∴BD=AE=AD+AB=4+4=8(cm),故答案为:8;(3)AE⊥BD,理由如下:AE与CD相交于点O,在△AOD与△COE中,∵△CBD≌△CAE,∴∠ADO=∠CEO,∵∠AOD=∠COE,∴∠OAD=∠OCE=90°,∴AE⊥BD.【点评】此题考查全等三角形的判定和性质,关键是根据SAS得出△CBD与△CAE全等解答.9.已知,△ABC中,∠ACB=90°,AC=BC,点E是BC上一点,连接AE(1)如图1,当AE平分∠BAC时,EH⊥AB于H,△EHB的周长为10m,求AB的长;(2)如图2,延长BC至D,使DC=BC,将线段AE绕点A顺时针旋转90°得线段AF,连接DF,过点B作BG⊥BC,交FC的延长线于点G,求证:BG=BE.【分析】(1)根据等腰三角形的性质得到∠B=45°,根据角平分线的性质得到CE=EH=BH,根据全等三角形的性质得到AH=AC,于是得到结论;(2)先连接AD,依据AAS判定△ADF≌△ABE,得到DF=BE,再判定△BCG≌△DCF,得出DF=BG,进而得到BG=BE.【解答】解:(1)∵∠ACB=90°,AC=BC,∴∠B=45°,∵AE平分∠BAC时,EH⊥AB于H,∴CE=EH=BH,在Rt△ACE与Rt△AHE中,CE=EH AE=AE,∴Rt△ACE与Rt△AHE(HL),∴AH=AC,∴AH=BC,∵△EHB的周长为10m,∴AB=AH+BH=BC+BH=10m;(2)如图所示,连接AD,线段AE绕点A顺时针旋转90°得线段AF,则AE=AF,∠EAF=90°,∵AC⊥BD,DC=BC,∴AD=AB,∠ABE=∠ADC=45°,∴∠BAD=90°=∠EAF,∴∠BAE=∠DAF,∴△ABE≌△ADF(SAS),∴DF=BE,∠ADF=∠ABE=45°,∴∠FDC=90°,∵BG⊥BC,∴∠CBG=∠CDF=90°,又∵BC=DC,∠BCG=∠DCF,∴△BCG≌△DCF(ASA),∴DF=BG,∴BG=BE.【点评】本题主要考查了旋转的性质,等腰直角三角形的性质以及全等三角形的判定与性质的综合运用,解决问题的关键是作辅助线构造全等三角形,依据全等三角形的对应边相等得出结论.10.在△ABC中,∠ABC=45°,AM⊥MB,垂足为M,点C是BM延长线上一点,连接AC.(1)如图①,点D在线段AM上,且DM=CM.求证:△BDM≌△ACM;(2)如图②,在(1)的条件下,点E是△ABC外一点,且满足EC=AC,连接ED并延长交BC于点F,且F为线段BC的中点,求证:∠BDF=∠CEF.【分析】(1)利用SAS即可证明△BMD≌△AMC.(2)延长EF到点G,使得FG=EF,证△BMD≌△AMC得AC=BD,再证△BFG≌△CFE可得BG=CE,∠G=∠E,从而得BD=BG=CE,即可得∠BDG=∠G=∠CEF.【解答】(1)证明:∵∠ABM=45°,AM⊥BM,在△BMD和△AMC中,DM=CM∠BMD=∠AMC BM=AM,∴△BMD≌△AMC(SAS);(2)证明:延长EF到点G,使得FG=EF,连接BG.如图所示:∵△BMD≌△AMC∴BD=AC,又∵CE=AC,∴BD=CE,在△BFG和△CFE中,BF=FC∠BFG=∠EFC FG=FE,∴△BFG≌△CFE(SAS),∴BG=CE,∠G=∠CEF,∴BD=CE=BG,∴∠BDF=∠G=∠CEF.∴∠BDF=∠CEF.【点评】本题主要考查全等三角形的判定与性质,等腰直角三角形的性质等知识点,熟练掌握全等三角形的判定与性质是解题的关键.11.如图1,在△ABC中,∠A=120°,∠C=20°,BD平分∠ABC,交AC于点D.(1)求证:BD=CD.(2)如图2,若∠BAC的角平分线AE交BC于点E,求证:AB+BE=AC.(3)如图3,若∠BAC的外角平分线AE交CB的延长线于点E,则(2)中的结论是否成立?若成立,给出证明,若不成立,写出正确的结论.【分析】(1)根据∠A=120°,∠C=20°,可得∠ABC的度数,再根据BD平分∠ABC,可得∠DBC=∠C=20°,进而可得结论;(2)如图2,过点E作EF∥BD交AC于点F,证明△ABE≌△AFE,可得BE=EF=FC,进而可得AB+BE =AC;(3)如图3,过点A作AF∥BD交BE于点F,结合(1)和AE是∠BAC的外角平分线,可得FE=AF=AC,进而可得结论BE﹣AB=AC.【解答】(1)证明:∵∠A=120°,∠C=20°,∴∠ABC=180°﹣120°﹣20°=40°,∵BD平分∠ABC,∴∠ABD=∠DBC=12∠ABC=20°,∴∠DBC=∠C=20°,∴BD=CD;(2)证明:如图2,过点E作EF∥BD交AC于点F,∴∠FEC=∠DBC=20°,∴∠FEC=∠C=20°,∴∠AFE=40°,FE=FC,∴∠AFE=∠ABC,∵AE是∠BAC的平分线,∴∠BAE=∠FAE,在△ABE和△AFE中,∠BAE=∠FAE∠ABE=∠AFE,AE=AE∴△ABE≌△AFE(AAS),∴BE=EF,∴BE=EF=FC,∴AB+BE=AF+FC=AC;(3)(2)中的结论不成立,正确的结论是BE﹣AB=AC.理由如下:如图3,过点A作AF∥BD交BE于点F,∴∠AFC=∠DBC=20°,∴∠AFC=∠C=20°,∴AF=AC,∵AE是∠BAC的外角平分线,∴∠EAB=12(180°﹣∠ABC)=30°,∵∠ABC=40°,∴∠E=∠ABC﹣∠EAB=10°,∴∠E=∠FAE=10°,∴FE=AF,∴FE=AF=AC,∴BE﹣AB=BE﹣BF=EF=AC.【点评】本题考查了全等三角形的判定与性质,解决本题的关键是掌握全等三角形的判定与性质.12.(2022秋•渝北区校级期末)已在等腰Rt△ABC中,∠ABC=90°,AB=CB,D为直线AB上一点,连接CD,过点C作CE⊥CD,且CE=CD,连接DE,交AC于点F.(1)如图1,当点D在线段AB上,且∠DCB=30°时,请探究DF,EF,CF之间的数量关系,并说明理由;(2)如图2,在(1)的条件下,在FC上任取一点G,连接DG,作射线GP使∠DGP=60°,交∠DFG 的平分线于点Q,求证:FD+FG=FQ.【分析】(1)在EF上找到G点使得FG=CF,易证△CFG是等边三角形,可得CG=CF=GF,即可求得∠ECG=∠ACD,即可证明△ECG≌△CDF,可得DF=EG,即可解题;(2)在FP上找到H点,使得FH=FG,易证△FGH是等边三角形,可得∠GHF=∠FGH=60°,GH =FG=FH,即可求得∠FGD=∠QGH,即可证明△DFG≌△QHG,可得DF=QH,即可解题.【解答】(1)解:EF=DF+CF;在EF上找到G点使得FG=CF,如图2,∵∠BCD=30°,∠ACB=45°,∴∠ACD=15°,∴∠CFG=∠CDE+∠ACD=60°,∵FG=CF,∴△CFG是等边三角形,∴CG=CF=GF,∠FCG=60°,∴∠GCE=90°﹣15°﹣60°=15°,在△ECG和△CDF中,CG=CF∠ECG=∠ACD,CE=CD∴△ECG≌△CDF,(SAS)∴DF=EG,∵EF=EG+GF,∴EF=DF+CF;(2)证明:在FQ上找到H点,使得FH=FG,如图3,∵FQ平分∠DFG,∴∠QFG=60°,∵FG=FH,∴△FGH是等边三角形,∴∠GHF=∠FGH=60°,GH=FG=FH,∵∠AFD=∠CDE+∠ACD=60°,∴∠GHQ=∠DFG=120°,∵∠FGD+∠DGH=60°,∠DGH+∠QGH=60°,∠QGH=∠DGF,∴∠FGD=∠QGH,在△DFG和△QHG中,∠DFG=∠QHG=120°FG=HG,∠FGD=∠QGH∴△DFG≌△QHG,(ASA)∴DF=QH,∵FQ=FH+QH,∴FQ=FG+FD.【点评】本题考查了全等三角形的判定,考查了全等三角形对应边相等的性质,本题中求证△ECG≌△CDF和△DFG≌△QHG是解题的关键.13.(2022春•运城期末)综合与探究如图,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE,CE的延长线交BD于点F.(1)求证:△ACE≌△ABD.(2)若∠BAC=∠DAE=50°,请直接写出∠BFC的度数.(3)过点A作AH⊥BD于点H,求证:EF+DH=HF.【分析】(1)可利用SAS证明结论;(2)由全等三角形的性质可得∠AEC=∠ADB,结合平角的定义可得∠DAE+∠DFE=180°,根据∠BFC+∠DFE=180°,可求得∠BFC=∠DAE,即可求解;(3)连接AF,过点A作AJ⊥CF于点J.结合全等三角形的性质利用HL证明Rt△AFJ≌Rt△AFH,Rt△AJE≌Rt△AHD可得FJ=FH,EJ=DH,进而可证明结论.【解答】(1)证明:∵∠BAC=∠DAE.∴∠CAE=∠BAD.在△ACE和△ABD中,AC=AB∠CAE=∠BAD,AE=AD∴△ACE ≌△ABD (SAS );(2)解:∵△ACE ≌△ABD ,∴∠AEC =∠ADB ,∴∠AEF +∠AEC =∠AEF +∠ADB =180°.∴∠DAE +∠DFE =180°,∵∠BFC +∠DFE =180°,∴∠BFC =∠DAE =∠BAC =50°;(3)证明:如图,连接AF ,过点A 作AJ ⊥CF 于点J .∵△ACE ≌△ABD ,∴S △ACE =S △ABD ,CE =BD ,∵AJ ⊥CE ,AH ⊥BD .∴12CE ⋅AJ =12BD ⋅AH ,∴AJ =AH .在Rt △AFJ 和Rt △AFH 中,AF =AF AJ =AH ,∴Rt △AFJ ≌Rt △AFH (HL ),∴FJ =FH .在Rt △AJE 和Rt △AHD 中,AE =AD AJ =AH ,∴Rt △AJE ≌Rt △AHD (HL ),∴EJ =DH ,∴EF +DH =EF +EJ =FJ =FH .【点评】本题主要考查全等三角形的判定与性质,掌握全等三角形的判定条件是解题的关键.14.(2022春•沙坪坝区校级期中)如图,在△ABC 中,∠ABC 、∠ACB 的平分线交于点D ,延长BD 交AC 于E ,G 、F 分别在BD 、BC 上,连接DF 、GF ,其中∠A =2∠BDF ,GD =DE .(1)当∠A =80°时,求∠EDC 的度数;(2)求证:CF =FG +CE .【分析】(1)方法一:先求∠ABC 和∠ACB 的和为100°,再根据角平分线求∠DBC +∠DCB =50°,再根据外角即可解决问题;方法二:在BC 上取点M ,使CM =CE ,证明△CDE ≌△CDM (SAS ),可得DE =DM ,∠DEC =∠DMC ,∠EDC =∠MDC ,证明∠BDM =180°−12∠ABC ﹣∠DMB =180°−12∠ABC ﹣∠AEB =∠A =80°,进而可以解决问题.(2)结合(1)然后证明△DGF ≌△DMF (SAS ),可得GF =MF ,进而可以解决问题.【解答】(1)解:方法一:∵∠A =80°,∴∠ABC +∠ACB =100°,∵BE 平分∠ABC 、CD 平分∠ACB ,∴∠DBC +∠DCB =50°,∴∠EDC =∠DBC +∠DCB =50°;方法二:如图,在BC 上取点M ,使CM =CE ,∵CD 平分∠ACB ,∴∠ACD=∠BCD,在△CDE和△CDM中,CE=CM∠ECD=∠MCDCD=CD,∴△CDE≌△CDM(SAS),∴DE=DM,∠DEC=∠DMC,∠EDC=∠MDC,∵GD=DE,∴GD=MD,∵∠DEC+∠AEB=180°,∠DMC+∠DMF=180°,∴∠AEB=∠DMF,∵BE平分∠ABC,∴∠ABE=∠CBE=12∠ABC,∴∠BDM=180°−12∠ABC﹣∠DMB=180°−12∠ABC﹣∠AEB=∠A=80°,∴∠EDM=100°,∴∠EDC=50°;(2)证明:∵∠A=2∠BDF,∴∠BDM=2∠BDF,∴∠FDM=∠BDF,在△DGF和△DMF中,DG=DM∠GDF=∠MDFDF=DF,∴△DGF≌△DMF(SAS),∴GF=MF,∴CF=CM+FM=CE+GF.∴CF=FG+CE.【点评】本题考查了全等三角形的判定与性质,角平分线的定义,解决本题的关键是根据题意准确作出辅助线得到△DGF≌△DMF.15.如图,在△ABC中,∠C=90°,AD是∠BAC的角平分线交BC于点D,过D作DE⊥BA于点E,点F在AC上,且BD=DF.(1)求证:AC=AE;(2)求证:∠BAC+∠FDB=180°;(3)若AB=9.5,AF=1.5,求线段BE的长.【分析】(1)证△ACD≌△AED(AAS),即可得出结论;(2)设∠DAC=∠DAE=α,在AB上截取AM=AF,连接MD,证△FAD≌△MAD(SAS),得FD=MD,∠ADF=∠ADM,再证Rt△MDE≌Rt△BDE(HL),得∠DME=∠B,然后证∠FDB=90°+90°﹣2α=180°﹣2α,即可得出结论;(3)求出MB=AB﹣AM=8,由全等三角形的性质得ME=BE,即可求解.【解答】(1)证明:∵AD平分∠BAC,∴∠DAC=∠DAE,∵DE⊥BA,∴∠DEA=∠DEB=90°,∵∠C=90°,∴∠C=∠DEA=90°,在△ACD和△AED中,∠C=∠DEA∠DAC=∠DAE,AD=AD∴△ACD≌△AED(AAS),∴AC=AE;(2)证明:设∠DAC=∠DAE=α,∵∠C=∠DEA=90°,∴∠ADC=90°﹣α,∠ADE=90°﹣α,则∠FDB=∠FCD+∠DFC=90°+∠DFC,在AB上截取AM=AF,连接MD,如图所示:在△FAD和△MAD中,AF=AM∠DAF=∠DAM,AD=AD∴△FAD≌△MAD(SAS),∴FD=MD,∠ADF=∠ADM,∵BD=DF,∴BD=MD,在Rt△MDE和Rt△BDE中,MD=BDDE=DE∴Rt△MDE≌Rt△BDE(HL),∴∠DME=∠B,∵∠DAC=∠DAE=α,∴∠DAC+∠ADF=∠ADM+∠ADM,在△FAD中,∠DAC+∠ADF=∠DFC,在△AMD中,∠DAE+∠ADM=∠DME,∴∠DFC=∠DME,∴∠DFC=∠B,∵∠C=90°,在△ABC中,∠B=90°﹣2α,∴∠DFC=90°﹣2α,∴∠FDB=90°+90°﹣2α=180°﹣2α,∵∠BAC=∠DAC+∠DAE=2α,∴∠FDB+∠BAC=180°﹣2α+2α=180°;(3)解:∵AF=AM,且AF=1.5,∴AM=1.5,∵AB=9.5,∴MB=AB﹣AM=9.5﹣1.5=8,由(2)得:Rt△MDE≌Rt△BDE,∴ME=BE,∴BE=12BM=4,即BM的长为4.【点评】本题考查了全等三角形的判定与性质、角平分线定义、直角三角形的性质、三角形的外角性质等知识;证明△FAD≌△MAD和Rt△MDE≌Rt△BDE是解题的关键.16.在△ABC中,AB=AC,D是直线BC上一点,以AD为一条边在AD的右侧作△ADE,使AE=AD,∠DAE=∠BAC,连接DE,CE.(1)如图,当点D在BC延长线上移动时,求证:BD=CE.(2)设∠BAC=α,∠DCE=β.①当点D在线段BC的延长线上移动时,α与β之间有什么数量关系?请说明理由.②当点D分别在线段BC上、线段BC的反向延长线上移动时,α与β之间有什么数量关系?请说明理由.【分析】(1)根据SAS证△BAD≌△CAE,可得结论;(2)①由△BAD≌△CAE,推出∠B=∠ACE,根据三角形外角性质求出即可;②α+β=180°或α=β,根据三角形外角性质求出即可.【解答】(1)证明:∵∠DAE=∠BAC,∴∠DAE+∠CAD=∠BAC+∠CAD,∴∠BAD=∠CAE,在△BAD和△CAE中,AB=AC∠BAD=∠CAE,AD=AE∴△BAD≌△CAE(SAS),(2)解:①当点D在线段BC的延长线上移动时,α与β之间的数量关系是α=β,理由是:由(1)知△BAD≌△CAE,∴∠B=∠ACE,∵∠ACD=∠B+∠BAC=∠ACE+∠DCE,∴∠BAC=∠DCE,∵∠BAC=α,∠DCE=β,∴α=β;②分三种情况:i)当D在线段BC上时,如图2,α+β=180°,理由是:同理可证明:△ABD≌△ACE(SAS),∴∠ADB=∠AEC,∠ABC=∠ACE,∵∠ADC+∠ADB=180°,∴∠ADC+∠AEC=180°,∴∠DAE+∠DCE=180°,∵∠BAC=∠DAE=α,∠DCE=β,∴α+β=180°,ii)当点D在线段BC反向延长线上时,如图3,α=β.如图3,同理可证明:△ABD≌△ACE(SAS),∴∠ABD=∠ACE,∵∠ACE=∠ACD+∠DCE,∠ABD=∠ACD+∠BAC,∴∠ACD+∠DCE=∠ACD+∠BAC,∴∠BAC=∠DCE,∵∠BAC=α,∠DCE=β,∴α=β;ii)当点D在线段BC的延长线上时,如图1,α=β.综上,当点D在BC上移动时,α=β或α+β=180°.【点评】本题是三角形的综合题,考查了全等三角形的性质和判定,三角形的外角性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.17.(2022春•南海区校级月考)如图,在△ABC中,∠ACB为锐角,点D为射线BC上一动点,连接AD.以AD为直角边且在AD的上方作等腰直角三角形ADF.(1)若AB=AC,∠BAC=90°.①当点D在线段BC上时(与点B不重合),试探讨CF与BD的数量关系和位置关系;②当点D在线段BC的延长线上时,①中的结论是否仍然成立,请在图②中画出相应的图形并说明理由;(2)如图③,若AB≠AC,∠BAC≠90°,∠BCA=45°,点D在线段BC上运动,试探究CF与BD 的位置关系.【分析】(1)①根据同角的余角相等求出∠CAF=∠BAD,然后利用“边角边”证明△ACF和△ABD全等,根据全等三角形的性质及等腰直角三角形的性质求解即可;②先求出∠CAF=∠BAD,然后与①的思路相同求解即可;(2)过点A作AE⊥AC交BC于E,可得△ACE是等腰直角三角形,根据等腰直角三角形的性质可得AC=AE,∠AED=45°,再根据同角的余角相等求出∠CAF=∠EAD,然后利用“边角边”证明△ACF 和△AED全等,根据全等三角形对应角相等可得∠ACF=∠AED,然后求出∠BCF=90°,从而得到CF ⊥BD.【解答】解:(1)①CF=BD,CF⊥BD,理由如下:∵∠BAC=90°,△ADF是等腰直角三角形,AB=AC,∴∠CAF+∠CAD=90°,∠BAD+∠CAD=90°,∠B=∠ACB=45°,∴∠CAF=∠BAD,在△ACF和△ABD中,AC=AB∠CAF=∠BAD,AF=AD∴△ACF≌△ABD(SAS),∴CF=BD,∠ACF=∠B=45°,∵∠ACB=45°,∴∠FCB=45°+45°=90°,∴CF⊥BD;②①中的结论成立,理由如下:如图②:∵∠BAC=90°,△ADF是等腰直角三角形,AB=AC,∴∠BAC=∠DAF=90°,∠B=∠ACB=45°,∴∠BAC+∠CAD=∠DAF+∠CAD,即∠CAF=∠BAD,在△ACF和△ABD中,AC=AB∠CAF=∠BAD,AF=AD∴△ACF≌△ABD(SAS),∴CF=BD,∠ACF=∠B,∴∠BCF=∠ACF+∠ACB=45°+45°=90°,∴CF⊥BD;(3)如图③,过点A作AE⊥AC交BC于E,∵∠BCA=45°,∴△ACE是等腰直角三角形,∴AC=AE,∠AED=45°,∵∠CAF+∠CAD=90°,∠EAD+∠CAD=90°,∴∠CAF=∠EAD,在△ACF和△AED中,AC=AE∠CAF=∠EAD,AF=AD∴△ACF≌△AED(SAS),∴∠ACF=∠AED=45°,∴∠BCF=∠ACF+∠BCA=45°+45°=90°,∴CF⊥BC.【点评】此题是三角形综合题,主要考查了全等三角形的判定与性质,等腰直角三角形的性质,作出合理的辅助线根据同角的余角相等求出两边的夹角相等是证明三角形全等的关键.18.如图,∠BAD=∠CAE=90°,AB=AD,AE=AC,AF⊥CB,垂足为F.(1)△ABC≌△ADE吗?为什么?(2)求∠FAE的度数;(3)延长BF到G,使得FG=FB,试说明CD=2BF+DE.【分析】(1)由“SAS”可证△ABC≌△ADE;(2)由等腰直角三角形的性质可得∠AEC=∠ACE=45°,由全等三角形的性质可得∠ACB=∠AED=45°,即可求解;(3)由全等三角形的性质可得∠ABC=∠ADE,BC=DE,由线段垂直平分线的性质和等腰三角形的性质可得AB=AG=AD,∠ABG=∠AGB=∠ADC,由“AAS”可证△ACD≌△ACG,可得CD=CG,可得结论.【解答】证明:(1)△ABC≌△ADE,理由如下:∵∠BAD=∠CAE=90°,∴∠EAD=∠CAB,在△ABC和△ADE中,AB=AD∠BAC=∠DAE,AC=AE∴△ABC≌△ADE(SAS);(2)∵∠CAE=90°,AC=AE,∴∠AEC=∠ACE=45°,∵△ABC≌△ADE,∴∠ACB=∠AED=45°,∵AF⊥CB,∴∠FAC=45°,∴∠FAE=135°;(3)∵△ABC≌△ADE,∴∠ABC=∠ADE,BC=DE,∴∠ADC=∠ABG,∵AF⊥BF,BF=FG,∴AB=AG,∴AG=AD,∠ABG=∠AGB=∠ADC,又∵∠ACG=∠ACD=45°,∴△ACD≌△ACG(AAS),∴CD=CG,∴CD=BG+CB=2BF+DE.【点评】本题是三角形综合题,考查了全等三角形的判定和性质,等腰三角形的判定和性质,线段垂直平分线的性质等知识,证明△ACD≌△ACG是解题的关键.19.Rt△ABC中,∠C=90°,点D在直线AC上,点E在直线AB上,∠ADE=∠ABC.(1)如图1,当点D、E分别在边AC、AB上时,求证:DE⊥AB;(2)如图2,当点D在CA延长线上,点E在BA延长线上时,DE、BC延长线交于点F,作∠EAC的角平分线AG交DF于点G,求证:∠D+2∠DGA=90°;(3)如图3,在(2)的条件下,连接BG交CD于点H,若∠DGH=∠DHG,∠AGB=3∠CBH,求∠DGA的度数.【分析】(1)根据直角三角形的两锐角互余得到∠ABC+∠A=90°,等量代换得出∠ADE+∠A=90°,进而得出∠AED=90°,根据垂直的定义即可得解;(2)过点G作GN∥FB交CD于点N,根据平行线的性质及垂直的定义推出∠AEG=∠ANG=90°,根据角平分线定义得出∠EAG=∠NAG,利用AAS证明△EAG≌△NAG,根据全等三角形的性质及直角三角形的性质即可得解;(3)根据直角三角形的性质及对顶角相等得出∠DGH=90°−13∠AGB,根据等腰三角形的性质推出∠DGH=90°−12∠D,则90°−13∠AGB=90°−12∠D,进而推出∠AGB=32∠D,则∠DGA+32∠D=90°−12∠D,结合(2)求解即可.【解答】(1)证明:∵∠C=90°,∴∠ABC+∠A=90°,∵∠ADE=∠ABC,∴∠ADE+∠A=90°,∴∠AED=90°,∴DE⊥AB;(2)证明:如图2,过点G作GN∥FB交CD于点N,则∠GNC=∠ACB=90°,∴GN⊥CD,∵∠ACB=90°,∴∠ABC+∠BAC=90°,∵∠ADE=∠ABC,∠BAC=∠DAE,∴∠ADE+∠DAE=90°,∴∠DEA=90°,∴BE⊥DF,∴∠AEG=∠ANG=90°,∵AG平分∠EAC,∴∠EAG=∠NAG,在△EAG和△NAG中,∠AEG=∠ANG∠EAG=∠NAGAG=AG,∴△EAG≌△NAG(AAS),∴∠DGA=∠NGA,∴∠DGN=2∠DGA,∵∠D+∠DGN=90°,∴∠D+2∠DGA=90°;(3)解:∵∠AGB=3∠CBH,∴∠CBH=13∠AGB,∵∠DHG=∠CHB=90°﹣∠CBH,∴∠DGH=90°−13∠AGB,∵∠DGH=∠DHG,∴∠DGH=12(180°﹣∠D)=90°−12∠D,∴90°−13∠AGB=90°−12∠D,∴∠AGB=32∠D,∵∠DGH=∠DGA+∠AGB,∴∠DGA+∠AGB=90°−12∠D,∴∠DGA+32∠D=90°−12∠D,∴2∠D+∠DGA=90°,由(2)知,∠D+2∠DGA=90°,∴∠D=∠DGA,∴3∠DGA=90°,∴∠DGA=30°.【点评】此题是三角形综合题,考查了直角三角形的判定与性质、全等三角形的判定与性质、等腰三角形的性质、平行线的性质等知识,熟练掌握直角三角形的判定与性质、全等三角形的判定与性质、等腰三角形的性质并作出合理的辅助线是解题的关键.20.(2023春•新市区期末)在△ABC中,∠ACB=90°,AC=BC,D是直线AB上一点(点D不与点A、B重合),连接DC并延长到E,使得CE=CD,过点E作EF⊥直线BC,交直线BC于点F.(1)如图1,当点D为线段AB上的任意一点时,用等式表示线段EF、CF、AC的数量关系,并证明;(2)如图2,当点D为线段BA的延长线上一点时,依题意补全图2,猜想线段EF、CF、AC的数量关系是否发生改变,并证明;(3)如图3,当点D在线段AB的延长线上时,直接写出线段EF、CF、AC之间的数量关系.【分析】(1)过D作DH⊥CB于H,由“AAS”可证△FEC≌△HDC,可得CH=FC,DH=EF,可得结论;(2)过D作DH⊥CB于H,由“AAS”可证△FEC≌△HDC,可得CH=FC,DH=EF,可得结论.(3)过D作DH⊥CB交CB的延长线于H,由“AAS”可证△FEC≌△HDC,可得CH=FC,DH=EF,可得结论.【解答】解:(1)结论:AC=EF+FC.理由如下:过D作DH⊥CB于H,∴∠DHC=∠DHB=90°,∵EF⊥CF,∴∠EFC=∠DHC=90°,在△FEC和△HDC中,∠EFC=∠DHC=90°∠FCE=∠DCH,EC=DC∴△FEC≌△HDC(AAS),∴CH=FC,DH=EF,∵∠ACB=90°,AC=BC,∴∠B=45°,∵∠DHB=90°,∴∠B=∠HDB=45°,∴DH=HB=EF,∵BC=CB+HB,∴AC=FC+EF;(2)依题意补全图形,结论:AC=EF﹣CF,理由如下:过D作DH⊥CB交BC的延长线于H,∵EF⊥CF,∴∠EFC=∠DHC=90°,在△FEC和△HDC中,∠FCE=∠DCH∠EFC=∠DHC=90°,EC=DC∴△FEC≌△HDC(AAS),∴CH=FC,DH=EF,∵∠DHB=90°,∴∠B=∠HDB=45°,∴DH=HB=EF,∵BC=HB﹣CH,∴AC=EF﹣CF;(3)AC=CF﹣EF.如图3,过D作DH⊥CB交CB的延长线于H,同理可证△FEC≌△HDC(AAS),∴CH=FC,DH=EF,∵∠DHB=90°,∴∠B=∠HDB=45°,∴DH=HB=EF,∵BC=CH﹣BH,∴AC=CF﹣EF.【点评】本题是三角形综合题,考查了全等三角形的判定和性质,添加恰当辅助线构造全等三角形是本题的关键.21.如图1,在△ABC中,∠ACB为锐角,点D为射线BC上一点,连接AD,以AD为一边且在AD的右侧作正方形ADEF.(1)如果AB=AC,∠BAC=90°,①当点D在线段BC上时(与点B不重合),如图2,线段CF、BD所在直线的位置关系为 ,线段CF、BD的数量关系为 ;②当点D在线段BC的延长线上时,如图3,①中的结论是否仍然成立,并说明理由;(2)如果AB≠AC,∠BAC是锐角,点D在线段BC上,当∠ACB满足什么条件时,CF⊥BC(点C、F 不重合),并说明理由.【分析】(1)当点D在BC的延长线上时①的结论仍成立.由正方形ADEF的性质可推出△DAB≌△FAC,所以CF=BD,∠ACF=∠ABD.结合∠BAC=90°,AB=AC,得到∠BCF=∠ACB+∠ACF=90°.即CF⊥BD.(2)当∠ACB=45°时,过点A作AG⊥AC交CB的延长线于点G,则∠GAC=90°,可推出∠ACB=∠AGC,所以AC=AG,由(1)①可知CF⊥BD.【解答】证明:(1)①正方形ADEF中,AD=AF,∵∠BAC=∠DAF=90°,∴∠BAD=∠CAF,又∵AB=AC,∴△DAB≌△FAC,∴CF=BD,∠B=∠ACF,∴∠ACB+∠ACF=90°,即CF⊥BD.②当点D在BC的延长线上时①的结论仍成立.由正方形ADEF得AD=AF,∠DAF=90度.∵∠BAC=90°,∴∠DAF=∠BAC,∴∠DAB=∠FAC,又∵AB=AC,∴△DAB≌△FAC,∴CF=BD,∠ACF=∠ABD.∵∠BAC=90°,AB=AC,∴∠ABC=45°,∴∠ACF=45°,∴∠BCF=∠ACB+∠ACF=90度.即CF⊥BD.(2)当∠ACB=45°时,CF⊥BD(如图).理由:过点A作AG⊥AC交CB的延长线于点G,则∠GAC=90°,∵∠ACB=45°,∠AGC=90°﹣∠ACB,∴∠AGC=90°﹣45°=45°,∴∠ACB=∠AGC=45°,∴AC=AG,∵∠DAG=∠FAC(同角的余角相等),AD=AF,∴△GAD≌△CAF,∴∠ACF=∠AGC=45°,∠BCF=∠ACB+∠ACF=45°+45°=90°,即CF⊥BC.【点评】本题考查三角形全等的判定和直角三角形的判定,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.22.(1)如图1,∠B=∠D=90°,E是BD的中点,AE平分∠BAC,求证:CE平分∠ACD.(2)如图2,AM∥CN,∠BAC和∠ACD的平分线并于点E,过点E作BD⊥AM,分别交AM、CN于B、D,请猜想AB、CD、AC三者之间的数量关系,请直接写出结论,不要求证明.(3)如图3,AM∥CN,∠BAC和∠ACD的平分线交于点E,过点E作不垂直于AM的线段BD,分别交AM、CN于B、D点,且B、D两点都在AC的同侧,(2)中的结论还成立吗?若成立,请加以证明;若不成立,请说明理由.【分析】(1)过点E作EF⊥AC于F,根据角平分线上的点到角的两边的距离相等可得OB=OE,从而求出OE=OD,然后根据到角的两边距离相等的点在角的平分线上证明;(2)如图2,过E作EF⊥AC于F,根据平行线的性质得到BD⊥CD,由角平分线的性质得到BE=EF,证得Rt△AEF≌Rt△ABE,根据全等三角形到现在得到AF=AB,同理CF=CD,等量代换得到结论;(3)成立,如图3,在AC上截取AF=AB,根据角平分线的定义得到∠BAE=∠FAE,推出△ABE≌△AFE,根据全等三角形的性质得到∠AFE=∠ABE,根据角平行线的性质得到∠ABE+∠CDE=180°,求得∠CFE=∠CDE,证得△CEF≌△CDE,根据全等三角形的性质即可得到结论.【解答】解:(1)如图1,过E作EF⊥AC于F,∵∠B=90°,AE平分∠BAC,∴EF=BE,∵E是BD的中点,∴BE=DE,∴EF=DE,∵∠D=90°,∴CE平分∠ACD;(2)如图2,过E作EF⊥AC于F,∵AM∥CN,BD⊥AM,∴BD⊥CD,∵AE平分∠BAC,∴BE=EF,在Rt△AEF与Rt△ABE中,BE=EF AE=AE,∴Rt△AEF≌Rt△ABE,∴AF=AB,同理CF=CD,∵AC=AF+CF,∴AC=AB+CD;(3)成立,如图3,在AC上截取AF=AB,∵AE平分∠BAC,∴∠BAE=∠FAE,在△ABE与△AFE中,AB=AF∠BAE=∠FAEAE=AE,∴△ABE≌△AFE,∴∠AFE=∠ABE,∵AM∥CN,∴∠ABE+∠CDE=180°,∵∠AFE+∠EFC=180°,∴∠CFE=∠CDE,∵CE平分∠ACD,∴∠FCE=∠DCE,在△CEF与△CDE中,∠CFE=∠CDE ∠FCE=∠DCE CE=CE,∴△CEF≌△CDE,∴CF=CD,∵AC=AF+CF,∴AC=AB+CD.【点评】本题考查了全等三角形的判定和性质,角平分线的性质,角平分线的定义,平行线的性质,正确的作出辅助线构造全等三角形是解题的关键.23.将两个全等的直角三角形ABC和DBE按图①方式摆放,其中∠ACB=∠DEB=90°,∠A=∠D=30°,点E落在AB上,DE所在直线交AC所在直线于点F.(1)求证:AF+EF=DE;(2)若将图①中的△DBE绕点B按顺时针方向旋转角α,且0°<α<60°,其它条件不变,请在图②中画出变换后的图形,并直接写出你在(1)中猜想的结论是否仍然成立;(3)若将图①中的△DBE绕点B按顺时针方向旋转角β,且60°<β<180°,其它条件不变,如图③.你认为(1)中猜想的结论还成立吗?若成立,写出证明过程;若不成立,请写出AF、EF与DE之间的关系,并说明理由.【分析】(1)我们已知了三角形BED和CAB全等,那么DE=AF+CF,因此只要求出EF=CF就能得出本题所求的结论,可通过全等三角形来实现,连接BF,那么证明三角形BEF和BCF全等就是解题的关键,这两三角形中已知的条件有BE=BC,一条公共边,根据斜边直角边定理,这两个直角三角形就全等了,也就得出EF=CF,也就能证得本题的结论了;(2)解题思路和辅助线的作法与(1)完全一样;(3)结论不成立.结论:AF=DE+EF.同(1)得CF=EF,由△ABC≌△DBE,可得AC=DE,AF=AC+FC=DE+EF.【解答】(1)证明:连接BF(如图①),∵△ABC≌△DBE(已知),∴BC=BE,AC=DE.∵∠ACB=∠DEB=90°,∴∠BCF=∠BEF=90°.在Rt△BFC和Rt△BFE中,BF=BFBC=BE∴Rt△BFC≌Rt△BFE(HL).∴CF=EF.又∵AF+CF=AC,∴AF+EF=DE.(2)解:画出正确图形如图②∴(1)中的结论AF+EF=DE仍然成立;(3)不成立.结论:AF=DE+EF.。
全等三角形专项训练及答案.解析
初中数学专项训练:全等三角形题一、选择1.如图,四边形ABCD中,AC垂直平分BD,垂足为E,下列结论不一定成立的是A.AB=ADB.AC平分∠BCDC.AB=BDD.△BEC≌△DEC2.如图,在△ABC和△DEB中,已知AB=DE,还需添加两个条件才能使△ABC ≌△DEC,不能添加的一组条件是A.BC=EC,∠B=∠EB.BC=EC,AC=DCC.BC=D,C∠A=∠DD.∠B=∠E,∠A=∠D3.如图,已知OP平分∠AOB,∠AOB=60,CP2,CP∥OA,PD⊥OA于点D,PE⊥OB于点E.如果点M是OP的中点,则DM的长是A.2B.2C.3D.234.如图,在四边形ABCD中,对角线A B=AD,CB=CD,若连接A C、BD相交于【】点O,则图中全等三角形共有A.1 对B.2对C.3对D.4对5.如图,在△ABC中,AB=AC,点D、E在BC上,连接A D、AE,如果只添加()一个条件使∠DAB=∠EAC,则添加的条件不能为A.BD=CEB.AD=AEC.DA=DED.BE=CD6.如图,已知AE=CF,∠AFD=∠CEB,那么添加下列一个条件后,仍无法判定△ADF≌△CBE的是()A.∠A=∠CB.AD=CBC.BE=DFD.AD∥BC7.如图,已知△ABC中,∠ABC=9°0,AB=BC,三角形的顶点在相互平行的三l1,l2,l3上,且l1,l2之间的距离为1 , l2,l3之间的距离为2 ,条直线则AC的长是()A.26B.25C.42D.7二、填空题8.如图,已知∠C=∠D,∠ABC=∠BAD,AC与BD相交于点O,请写出图中一组相等的线段.9.如图,在Rt△ABC中,∠A=Rt∠,∠ABC的平分线B D交AC于点D,AD=3,BC=10,则△BDC的面积是。
10.如图,已知B C=EC,∠BCE=∠ACD,要使△ABC≌△DEC,则应添加的一个.(答案不唯一,只需填一个)条件为11.如图,在Rt△ABC中,∠ACB=9°0,AB的垂直平分线DE交AC于E,交BC的延长线于F,若∠F=30°,DE=1,则BE的长是.12.如图,△ABC中,AD是中线,AE是角平分线,CF⊥AE于F,AB=5,AC=2,.则DF的长为13.如图,在△ABC和△DEF中,点B、F、C、E在同一直线上,BF = CE,AC∥DF,请添加一个条件,使△ABC≌△DEF,这个添加的条件可以是.(只需写一个,不添加辅助线)14.如图,点O是△ABC的两条角平分线的交点,若∠BOC=118°,则∠A的大小是。
人教版初中八年级数学上册第十二章《全等三角形》经典练习题(含答案解析)
一、选择题1.如图已知ABC ∆中,12AB AC cm ==,B C ∠=∠,8BC cm =,点D 为AB 的中点.如果点P 在线段BC 上以2/cm s 的速度由B 点向C 点运动,同时,点Q 在线段CA 上由C 点向A 点运动.若点Q 的运动速度为v ,则当BPD ∆与CQP ∆全等时,v 的值为( )A .1B .3C .1或3D .2或3D解析:D【分析】 设运动时间为t 秒,由题目条件求出BD=12AB=6,由题意得BP=2t ,则CP=8-2t ,CQ=vt ,然后结合全等三角形的判定方法,分两种情况列方程求解.【详解】解:设运动时间为t 秒,∵12AB AC cm ==,点D 为AB 的中点.∴BD=12AB=6, 由题意得BP=2t ,则CP=8-2t ,CQ=vt ,又∵∠B=∠C∴①当BP=CQ ,BD=CP 时,BPD ∆≌CQP ∆∴2t=vt ,解得:v=2②当BP=CP ,BD=CQ 时,BPD ∆≌CPQ ∆∴8-2t=2t ,解得:t=2将t=2代入vt=6,解得:v=3综上,当v=2或3时,BPD ∆与CQP ∆全等故选:D【点睛】本题主要考查了全等三角形全等的判定、熟练掌握全等三角形的判定方法是解题的关键,学会用分类讨论的思想思考问题,属于中考常考题型.2.如图,点O 在ABC 内,且到三边的距离相等.若110BOC ∠=°,则A ∠的度数为( )A .40︒B .45︒C .50︒D .55︒A解析:A【分析】 由条件可知BO 、CO 平分∠ABC 和∠ACB ,利用三角形内角和可求得∠A .【详解】解:∵点O 到ABC 三边的距离相等,∴BO 平分ABC ∠,CO 平分ACB ∠,∴ ()180A ABC ACB ∠=︒-∠+∠()1802OBC OCB =︒-∠+∠()1802180BOC =︒-⨯︒-∠()1802180110︒=︒-⨯-︒40=︒.故选A .【点睛】本题主要考查角平分线的性质,掌握角平分线的交点到三角形三边的距离相等是解题的关键.3.已知如图,AC ⊥BC ,DE ⊥AB ,AD 平分∠BAC ,下面结论错误的是( )A .BD +ED =BCB .DE 平分∠ADBC .AD 平分∠EDC D .ED +AC >AD B解析:B【分析】 根据角平分线上的点到角的两边的距离相等可得DE =DC ,然后利用AAS 证明△ACD ≌△AED ,再对各选项分析判断后利用排除法.【详解】解:∵AC ⊥BC ,DE ⊥AB ,AD 平分∠BAC ,∴DE =DC ,A 、BD +ED =BD +DC =BC ,故本选项正确;在△ACD 与△AED 中,90DAC DAE ACD AED AD AD ︒∠=∠⎧⎪∠=∠=⎨⎪=⎩,∴△ACD ≌△AED (AAS ),∴∠ADC =∠ADE ,∴AD 平分∠EDC ,故C 选项正确;但∠ADE 与∠BDE 不一定相等,故B 选项错误;D 、∵△ACD ≌△AED ,∴AE =AC ,∴ED +AC =ED +AE >AD (三角形任意两边之和大于第三边),故本选项正确.故选:B .【点睛】本题考查了角平分线的性质,角平分线上的点到角的两边的距离相等,证明ACD AED △≌△是解题的关键.4.到ABC 的三条边距离相等的点是ABC 的( )A .三条中线的交点B .三条边的垂直平分线的交点C .三条高的交点D .三条角平分线的交点D 解析:D【分析】由于角平分线上的点到角的两边的距离相等,而已知一点到ABC 的三条边距离相等,那么这样的点在这个三角形的三条角平分线上,由此即可作出选择.【详解】解:∵到ABC 的三条边距离相等,角平分线上的点到角的两边的距离相等,∴这点在这个三角形三条角平分线上,即这点是三条角平分线的交点,故选:D.【点睛】此题主要考查了三角形的角平分线的性质:三条角平分线交于一点,并且这一点到三边的距离相等.5.如图,AB BC ⊥,CD BC ⊥,AC BD =,则能证明ABC DCB ≅的判定法是( )A .SASB .AASC .SSSD .HL D解析:D【分析】直接证明全等三角形,即可确定判断方法.【详解】解:∵AB BC ⊥,CD BC ⊥,∴ABC 与△DCB 均为直角三角形,又AC DB =,BC CB =,∴()ABC DCB HL ≅,故选:D.【点睛】本题考查全等三角形的判定定理,属于基础题.6.如图,已知∠A=∠D , AM=DN ,根据下列条件不能够判定△ABN ≅△DCN 的是()A .BM ∥CNB .∠M=∠NC .BM=CND .AB=CD C 解析:C【分析】利用全等三角形的判断方法进行求解即可.【详解】A 、因为 BM ∥CN ,所以∠ABM=∠DCN ,又因为∠A=∠D , AM=DN ,所以△ABN ≅△DCN(AAS),故A 选项不符合题意;B 、因为∠M=∠N ,∠A=∠D , AM=DN ,所以△ABN ≅△DCN(ASA),故B 选项不符合题意;C 、BM=CN ,不能判定△ABN ≅△DCN ,故C 选项符合题意;D 、因为AB=CD ,∠A=∠D , AM=DN ,所以△ABN ≅△DCN(SAS),故D 选项不符合题意.故选:C .【点评】本题考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS 、SAS 、ASA 、AAS 、HL .注意:AAA 、SSA 不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.7.如图,在OAB 和OCD 中,OA OB =,OC OD =,OA OC >,40AOB COD ∠=∠=︒,连接AC 、BD 交于点M ,连接OM ,下列结论:①AC BD =;②40AMB ∠=︒;③OM 平分BOC ∠;④MO 平分BMC ∠,其中正确的为( )A .①②③B .①②④C .②③④D .①②③④B解析:B【分析】 由SAS 证明AOC BOD ≅得出OCA ODB ∠=∠,=AC BD ,①正确;由全等三角形的性质得出OAC OBD ∠=∠,由三角形的外角性质得:AMB OAC AOB OBD ∠+∠=∠+∠,得出40AOB COD ∠=∠=︒,②正确;作OG MC ⊥于G ,OH MB ⊥于H ,如图所示:则90OGC OHD ∠=∠=,由AAS 证明OCG ODH ≅(AAS ),得出OG=OH ,由角平分线的判定方法得出MO 平分BOC ∠,④正确;由AOB COD ∠=∠,得出当∠=∠DOM AOM 时,OM 平分BOC ∠,假设∠=∠DOM AOM ,由AOC BOD ≅得出COM BOM ,由MO 平分BMC ∠得出∠=∠CMO BMO ,推出COM BOM ≅,得出OB=OC ,OA=OB ,所以OA=OC ,而OA OC >,故③错误;即可得出结论.【详解】∵40AOB COD ∠=∠=︒,∴AOB AOD COD AOD ∠+∠=∠+∠即AOC BOD ∠=∠在AOC △和BOD 中OA OB AOC BOD OC OD =⎧⎪∠=∠⎨⎪=⎩∴AOC BOD ≅(SAS )∴OCA ODB ∠=∠,=AC BD ,①正确;∴OAC OBD ∠=∠,由三角形的外角性质得:AMB OAC AOB OBD ∠+∠=∠+∠,∴40AOB COD ∠=∠=︒,②正确;作OG MC ⊥于G ,OH MB ⊥于H ,如图所示:则90OGC OHD ∠=∠=,在OCG 和ODH 中OCA ODB OGC OHD OC OD ∠=∠⎧⎪∠=∠⎨⎪=⎩∴OCG ODH ≅(AAS ),∴OG=OH∴MO 平分BOC ∠,④正确;∴AOB COD ∠=∠∴当∠=∠DOM AOM 时,OM 平分BOC ∠,假设∠=∠DOM AOM∵AOC BOD ≅∴COM BOM ,∵MO 平分BMC ∠∴∠=∠CMO BMO ,在COM 和BOM 中 OCM BOM OM OMCMO BMO ∠=∠⎧⎪=⎨⎪∠=∠⎩∴COM BOM ≅(ASA )∴OB=OC ,∵OA=OB ,∴OA=OC ,与OA OC >矛盾,∴③错误;正确的有①②④;故选:B【点睛】本题考查了全等三角形的判定与性质、三角形的外角性质、角平分线的判定等知识;证明三角形全等是解题的关键.8.如图,AD 是ABC 的高,AD BD 8==,E 是AD 上的一点,BE AC 10==,AE 2=,BE 的延长线交AC 于点F ,则EF 的长为( )A .1.2B .1.5C .2.5D .3A 解析:A【分析】先证明Rt ACD ≌()Rt BED HL ,得CD ED AD AE 6==-=,CAD EBD ∠∠=,再证BE AC ⊥,然后由三角形面积关系求出BF 11.2=,则EF BF BE 1.2=-=.【详解】解:AD 是ABC 的高,AD BC ∴⊥,ADC BDE 90∠∠∴==︒,在Rt ACD 和Rt BED 中,AC BE AD BD =⎧⎨=⎩, Rt ACD ∴≌()Rt BED HL ,CD ED AD AE 826∴==-=-=,CAD EBD ∠∠=,C CAD 90∠∠+=︒,C EBD 90∠∠∴+=︒,BFC 90∠∴=︒,BE AC ∴⊥, ABC 的面积ABD =的面积ACD +的面积,111AC BF AD BD CD AD222∴⨯=⨯+⨯,AC BF AD BD CD AD∴⨯=⨯+⨯,即10BF8886112=⨯+⨯=,BF11.2∴=,EF BF BE11.210 1.2∴=-=-=,故选:A.【点睛】本题考查了全等三角形的判定和性质、直角三角形的性质以及三角形面积等知识;证明三角形全等是解题的关键.9.在尺规作图作一个角的平分线时的两个三角形全等的依据是()A.SAS B.AAS C.SSS D.HL C解析:C【分析】根据作图过程可知用到的三角形全等的判定方法是SSS.【详解】解:尺规作图-作一个角的角平分线的作法如下:①以O为圆心,任意长为半径画弧,交AO、BO于点F、E,②再分别以F、E为圆心,大于12EF长为半径画弧,两弧交于点M,③画射线OM,射线OM即为所求.由作图过程可得用到的三角形全等的判定方法是SSS.故选:C.【点睛】本题主要考查了基本作图以及全等三角形的判定,关键是掌握作一个角的平分线的基本作图方法.10.已知,如图,OC是∠AOB内部的一条射线,P是射线OC上任意点,PD⊥OA,PE⊥OB,下列条件中:①∠AOC=∠BOC,②PD=PE,③OD=OE,④∠DPO=∠EPO,能判定OC是∠AOB的角平分线的有()A .1个B .2个C .3个D .4个D解析:D【分析】 根据角平分线的性质、全等三角形的判定定理和性质定理判断即可.【详解】解:∵∠AOC =∠BOC ,∴OC 是∠AOB 的角平分线,① 符合题意;∵PD ⊥OA ,PE ⊥OB ,PD =PE ,∴OC 是∠AOB 的角平分线,② 符合题意;在Rt △POD 和Rt △POE 中,OD DE OP OP=⎧⎨=⎩ , ∴Rt △POD ≌Rt △POE ,∴∠AOC =∠BOC ,∴OC 是∠AOB 的角平分线,③ 符合题意;∵∠DPO=∠EPO ,PD ⊥OA ,PE ⊥OB∴在△POD 和△POE 中,DPO EPO PDO PEO OP OP =⎧⎪=⎨⎪=⎩∠∠∠∠∴△POD ≌△POE (AAS ),∴∠AOC =∠BOC ,∴OC 是∠AOB 的角平分线,④ 符合题意,故选:D .【点睛】本题考查的是角平分线的性质、全等三角形的判定与性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键;二、填空题11.如图,在Rt ABC △中,90C ∠=︒,AD 平分BAC ∠交BC 于点D .若3BC =,且:5:4BD DC =,5AB =,则ABD △的面积是______.【分析】过点D 作DE ⊥AB 利用角平分线的性质可得CD =DE 再利用线段的比求得线段DC 的长度进而即可求解【详解】过点D 作DE ⊥AB ∵AD 平分∠BACDE ⊥ABDC ⊥AC ∴CD =DE 又∵且BD :DC =5 解析:103 【分析】过点D 作DE ⊥AB ,利用角平分线的性质可得CD =DE ,再利用线段的比求得线段DC 的长度,进而即可求解.【详解】过点D 作DE ⊥AB ,∵AD 平分∠BAC ,DE ⊥AB ,DC ⊥AC∴CD =DE又∵3BC =,且BD :DC =5:4,∴DE =DC =3÷(5+4)×4=43. ∵5AB =,∴ABD △的面积=43×5÷2=103 故答案是:103【点睛】本题考查了角平分线的性质,添加辅助线,是解题的关键.12.如图,△ABC ≌△DEF ,由图中提供的信息,可得∠D =__________°. 【分析】先根据三角形的内角和定理求出∠A 的度数再利用全等三角形的性质求出答案即可【详解】∵∠A+∠B+∠C=∴∠A=-∠B-∠C=∵△ABC ≌△DEF ∴∠D=∠A=故答案为:【点睛】此题考查全等三角 解析:70︒【分析】先根据三角形的内角和定理求出∠A 的度数,再利用全等三角形的性质求出答案即可【详解】∵∠A+∠B+∠C=180︒,∴∠A=180︒-∠B-∠C=180506070︒-︒-︒=︒,∵△ABC ≌△DEF ,∴∠D=∠A=70︒,故答案为:70︒【点睛】此题考查全等三角形的性质:全等三角形的对应角相等,对应边相等,以及三角形的内角和定理.13.如图,两根旗杆间相距22米,某人从点B 沿BA 走向点A ,一段时间后他到达点M ,此时他分别仰望旗杆的顶点C 和D ,两次视线的夹角为90°,且CM DM =.已知旗杆BD 的高为12米,该人的运动速度为2米/秒,则这个人运动到点M 所用时间是________秒.5【分析】根据题意证明利用证明根据全等三角形的性质得到米再利用时间=路程÷速度计算即可【详解】解:∵∴又∵∴∴在和中∴∴米(米)∵该人的运动速度他到达点M 时运动时间为s 故答案为5【点睛】本题考查了全解析:5【分析】根据题意证明C DMB ∠=∠,利用AAS 证明ACM BMD ≌,根据全等三角形的性质得到12BD AM ==米,再利用时间=路程÷速度计算即可.【详解】解:∵90CMD ∠=︒,∴90CMA DMB +=︒∠∠,又∵90CAM ∠=︒,∴90CMA C ︒∠+∠=,∴C DMB ∠=∠,在 Rt ACM △和Rt BMD △中, A B C DMB CM MD ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴()Rt ACM Rt BMD AAS ≌,∴12BD AM ==米,221210BM =-=(米),∵该人的运动速度2m/s ,他到达点M 时,运动时间为5210=÷s .故答案为5.【点睛】本题考查了全等三角形的应用;解答本题的关键是利用互余关系找三角形全等的条件,对应角相等,并巧妙地借助两个三角形全等,寻找所求线段与已知线段之间的等量关系.本题的关键是求得Rt ACM Rt BMD ≌.14.如图,在Rt ABC △中,90C ∠=︒,10AC =,5BC =,线段PQ AB =,P ,Q 两点分别在线段AC 和过点A 且垂直于AC 的射线AD 上运动,当AQ =______时,ABC 和PQA △全等.5或10【分析】分两种情况:当AQ=5时当AQ=10时利用全等三角形的判定及性质定理得到结论【详解】分两种情况:当AQ=5时∵∴AQ=BC ∵AD ⊥AC ∴∠QAP=∠ACB=∵AB=PQ ∴≌△PQA (解析:5或10【分析】分两种情况:当AQ=5时,当AQ=10时,利用全等三角形的判定及性质定理得到结论.【详解】分两种情况:当AQ=5时,∵5BC =,∴AQ=BC ,∵AD ⊥AC ,∴∠QAP=∠ACB=90︒,∵AB=PQ ,∴ABC ≌△PQA (HL );当AQ=10时,∵10AC =,∴AQ=AC ,∵AD ⊥AC ,∴∠QAP=∠ACB=90︒,∵AB=PQ ,∴△ABC ≌△QPA ,故答案为:5或10.【点睛】此题考查全等三角形的判定及性质定理,运用分类思想,动点问题,熟记三角形的判定定理及性质定理是解题的关键.15.已知点A 、E 、F 、C 在同一条直线l 上,点B 、D 在直线l 的异侧,若AB=CD ,AE=CF ,BF=DE ,则AB 与CD 的位置关系是_______.AB//CD 【分析】先利用SSS 证明△ABF ≌△CDE 然后根据全等三角形的性质得到∠DCE=∠BAF 最后根据内错角相等两直线平行即可解答【详解】解:∵AE=CF ∴AE+EF=CF+EF 即AF=EC 在解析:AB//CD【分析】先利用SSS 证明△ABF ≌△CDE ,然后根据全等三角形的性质得到∠DCE=∠BAF ,最后根据内错角相等、两直线平行即可解答.【详解】解:∵AE=CF ,∴AE+EF=CF+EF,即AF=EC在△ABF 和△CDE 中,,,,AB CD AF EC BF DE =⎧⎪=⎨⎪=⎩∴△ABF ≌△CDE (SSS ),∴∠DCE=∠BAF .∴AB//CD .故答案为:AB//CD .【点睛】本题主要考查了全等三角形的判定与性质以及平行线的判定,运用全等三角形的知识得到∠DCE=∠BAF 成为解答本题的关键.16.如图,在△ABC 中,AD 是∠BAC 的平分线,AB =8 cm ,AC =6 cm ,S △ABD ∶S △ACD =________.4:3【分析】利用角平分线的性质可得出△ABD 的边AB 上的高与△ACD 的边AC 的高相等根据三角形的面积公式即可得出△ABD 与△ACD 的面积之比等于对应边之比;【详解】∵AD 是△ABC 的角平分线∴设△解析:4:3【分析】利用角平分线的性质,可得出△ABD 的边AB 上的高与△ACD 的边AC 的高相等,根据三角形的面积公式,即可得出△ABD 与△ACD 的面积之比等于对应边之比;【详解】∵ AD 是△ABC 的角平分线,∴ 设△ABD 的边AB 上的高与△ACD 的边AC 的高分别为1h ,2h ,∴ 1h =2h ,∴△ABD 与△ACD 的面积之比=AB :AC=8:6=4:3,故答案为:4:3.【点睛】本题考查了角平分线的性质,以及三角形的面积公式,熟练掌握三角形角平分线的性质是解题的关键;17.如图,AB ⊥BC ,DC ⊥BC ,垂足分别为B 、C ,垂足为B 、C ,AC 与BD 相交于点E ,AC=BD 且∠A=50°,则∠BEA=___________.80°【分析】先证明△ABC ≌△DCB 得∠DBC=∠ACB进一步得∠ACB=40°根据三角形外角的性质可求出∠BEA 【详解】解:∵AB ⊥BCDC ⊥BC ∴∠ABC=∠DCB=90°在Rt △ABC 和Rt解析:80°【分析】先证明△ABC ≌△DCB 得∠DBC=∠ACB ,进一步得∠ACB=40°,根据三角形外角的性质可求出∠BEA .【详解】解:∵AB ⊥BC ,DC ⊥BC ,∴∠ABC=∠DCB=90°,在Rt △ABC 和Rt △DCB 中,AC BD BC CB ⎧⎨⎩==, ∴Rt △ABC ≌Rt △DCB (HL );∴∠DBC=∠ACB ,∵∠A=50°,∴∠ACB=∠DCB=40°∵∠AEB=∠DBC+∠ABC∴∠AEB=40°+40°=80°,故答案为:80°.【点睛】此题主要考查了直角三角形全等的判定以及三角形外角的性质,熟练掌握直角三角形全等的判定定理是解答此题的关键.18.如图,ABC 中,90C ∠=,AD 平分BAC ∠,若2DC =,则点D 到线段AB 的距离等于________.【分析】过D 作DE ⊥AB 于E 根据角平分线的性质得出DE=DC 即可求出答案【详解】解:过D 作DE ⊥AB 于E ∵∠C=90°AD 平分∠BACDC=2∴DE=DC=2即点D 到线段AB 的距离等于2故答案为:2 解析:【分析】过D 作DE ⊥AB 于E ,根据角平分线的性质得出DE=DC ,即可求出答案.【详解】解:过D 作DE ⊥AB 于E ,∵∠C=90°,AD 平分∠BAC ,DC=2,∴DE=DC=2,即点D 到线段AB 的距离等于2,故答案为:2.【点睛】本题考查了考查了角平分线的性质,能根据角平分线的性质得出DE=DC 是解此题的关键. 19.如图,12∠=∠,要用“SAS ”判定ADC BDC ≌△△,则可加上条件__________.AD=BD【分析】要判定△BCD≌△ACD已知∠1=∠2CD是公共边具备了一边一角对应相等注意SAS的条件;两边及夹角对相等只能选AD=BD【详解】解:由图可知只能是AD=BD才能组成SAS故答案为解析:AD=BD【分析】要判定△BCD≌△ACD,已知∠1=∠2,CD是公共边,具备了一边一角对应相等,注意“SAS”的条件;两边及夹角对相等,只能选AD=BD.【详解】解:由图可知,只能是AD=BD,才能组成“SAS”,故答案为:AD=BD.【点睛】本题考查了全等的判定,掌握“SAS”的条件是两边及夹角对相等是解题的关键.20.如图,在△ABC和△DBC中,∠ACB=∠DBC=90°,E是BC的中点,DE⊥AB,垂足为F,AB=DE.若BD=8cm,则AC的长为_________.4cm【分析】由DE⊥AB可得∠BFE=90°由直角三角形两锐角互余可得∠ABC+∠DEB=90°由∠ACB=90°由直角三角形两锐角互余可得∠ABC+∠A=90°根据同角的余角相等可得∠A=∠DE解析:4cm.【分析】由DE⊥AB,可得∠BFE=90°,由直角三角形两锐角互余,可得∠ABC+∠DEB=90°,由∠ACB=90°,由直角三角形两锐角互余,可得∠ABC+∠A=90°,根据同角的余角相等,可得∠A=∠DEB,然后根据AAS判断△ABC≌△EDB,根据全等三角形的对应边相等即可得到BD=BC,AC=BE,由E是BC的中点,得到BE=12BC=12BD=4.【详解】解:∵DE⊥AB,可得∠BFE=90°,∴∠ABC+∠DEB=90°,∵∠ACB=90°,∴∠ABC+∠A=90°,∴∠A=∠DEB ,在△ABC 和△EDB 中,ACB DBC A DEBAB DE ∠∠⎧⎪∠∠⎨⎪⎩===, ∴△ABC ≌△EDB (AAS ),∴BD=BC ,AC=BE ,∵E 是BC 的中点,BD=8cm ,∴BE=12BC=12BD=4cm , ∴AC=4cm .故答案为:4cm .【点睛】此题考查了全等三角形的判定与性质,普通两个三角形全等共有四个定理,即AAS 、ASA 、SAS 、SSS ,直角三角形可用HL 定理,但AAA 、SSA ,无法证明三角形全等,本题是一道较为简单的题目,找准全等的三角形是解决本题的关键.三、解答题21.如图,在Rt ABC △和Rt DEF △中,90C F ∠=∠=︒,点A 、E 、B 、D 在同一直线上,BC 、EF 交于点M ,AC DF =,AB DE =.求证:(1)CBA FED ∠=∠;(2)AM DM =.解析:(1)见解析;(2)见解析【分析】(1)根据HL 定理可得Rt △ABC ≌ Rt △DEF ,从而得到∠CBA=∠FED ;(2)由(1)所得结论和已知条件可以证得△AEM ≌△DBM ,从而可得AM=DM .【详解】证明:(1)在Rt ABC △和Rt DEF △中,90C F ∠=∠=︒AC DF AB DE =⎧⎨=⎩∴()Rt Rt HL ABC DEF ≌△△∴CBA FED ∠=∠.(2)∵CBA FED ∠=∠∴ME MB =,且AEMDBM ∠=∠ 又∵AB DE =∴AB EB DE EB -=-即AE DB =在AEM △和DBM △中AE DB AEM DBM ME MB =⎧⎪∠=∠⎨⎪=⎩∴()AEM DBM SAS △≌△∴AM DM =.【点睛】本题考查三角形全等的判定和性质,熟练掌握三角形全等的判定定理HL 、SAS 及三角形全等的性质是解题关键.22.已知:如图,BAD CAE ∠=∠,AB AD =,AC AE =.(1)求证:ABC ADE △≌△.(2)若42,86B C ∠=︒∠=︒,求DAE ∠的度数.解析:(1)详见解析;(2)52︒【分析】(1)先证明∠BAC=∠DAE ,即可根据SAS 证得结论;(2)根据三角形内角和定理求出∠BAC 的度数,再根据全等三角形的性质得到答案.【详解】(1)∵∠BAD=∠CAE ,∴∠BAD+∠DAC=∠CAE+∠DAC .即∠BAC=∠DAE .在△ABC 和△ADE 中AB AD BAC DAE AC AE =⎧⎪∠=∠⎨⎪=⎩,∴ABC ADE △≌△;(2)∵42,86B C ∠=︒∠=︒,∴18052BAC B C ∠=︒-∠-∠=︒.∵ABC ADE △≌△,∴52DAE BAC ∠=∠=︒.【点睛】此题考查全等三角形的判定及性质,三角形内角和定理,熟记三角形全等的判定定理是解题的关键.23.已知:D ,A ,E 三点都在直线m 上,在直线m 的同一侧作ABC ,使AB AC =,连接BD ,CE .(1)如图①,若90BAC ∠=︒,BD m ⊥,CE m ⊥,求证ABD ACE ≅;(2)如图②,若BDA AEC BAC ∠=∠=∠,请判断BD ,CE ,DE 三条线段之间的数量关系,并说明理由.解析:(1)见详解;(2)DE =BD +CE .理由见详解【分析】(1)根据BD ⊥直线m ,CE ⊥直线m 得∠BDA =∠CEA =90°,而∠BAC =90°,根据等角的余角相等,得∠CAE =∠ABD ,然后根据“AAS”可判断△ABD ≌△CAE ;(2)由∠BDA =∠AEC =∠BAC ,就可以求出∠BAD =∠ACE ,进而由ASA 就可以得出△ABD ≌△CAE ,就可以得出BD =AE ,DA =CE ,即可得出结论.【详解】(1)证明:如图①,∵D ,A ,E 三点都在直线m 上,∠BAC =90°,∴∠BAD +∠CAE =90°,∵BD ⊥m ,CE ⊥m ,∴∠ADB =∠CEA =90°,∴∠BAD +∠ABD =90°,∴∠ABD =∠CAE ,在△ABD 和△CAE 中,ADB AEC ABD CAE AB AC ∠∠⎧⎪∠∠⎨⎪⎩===,∴△ABD ≌△CAE (AAS );(2)DE =BD +CE .理由如下:如图②,∵∠BDA =∠AEC =∠BAC ,∴由三角形内角和及平角性质,得:∠BAD +∠ABD =∠BAD +∠CAE =∠CAE +∠ACE ,∴∠ABD =∠CAE ,∠BAD =∠ACE ,在△ABD 和△CAE 中,ABD CAE AB ACBAD ACE ∠∠⎧⎪⎨⎪∠∠⎩===, ∴△ABD ≌△CAE (ASA ),∴BD =AE ,AD =CE ,∴DE =AD +AE =BD +CE .【点睛】本题考查了全等三角形的判定与性质以及三角形内角和定理的综合应用,解题的关键是熟练掌握全等三角形的判定方法,灵活运用所学知识解决问题.24.如图,已知ABC 是等边三角形,点D 、E 分别在AC ,BC 上,且CD BE =.(1)从图中找出一对全等三角形,并说明理由;(2)求AFD ∠的度数.解析:(1)ABE BCD △≌△或,理由见解析;(2)60°.【分析】(1)根据等边三角形的性质得出AB=BC ,∠BAC=∠C=∠ABE=60︒,根据SAS 推出△ABE ≌△BCD ;(2)根据△ABE ≌△BCD ,推出∠BAE=∠CBD ,根据三角形的外角性质求出∠AFD 即可.【详解】解:(1)()BC ABE A D S S ≌,理由如下:∵△ABC 是等边三角形,∴AB=BC ,∠C=∠ABE=60︒在△ABE 和△BCD 中,AB BC ABE C BE CD =⎧⎪∠=∠⎨⎪=⎩,∴△ABE ≌△BCD(SAS);(2)∵△ABE ≌△BCD ,∴∠BAE=∠CBD ,∵∠AFD=∠ABF+∠BAE ,∴AFD ABF CBD ABC=60∠=∠+∠=∠︒.【点睛】本题考查全等三角形的性质和判定、三角形的外角性质,解题的关键是求出△ABE ≌△BCD .25.如图,在△ABC 中,90ACB ∠=︒,AC =BC ,BE ⊥CE 于E ,AD ⊥CE 于D . (1)求证:AD =CE(2)AD =6cm ,DE =4cm ,求BE 的长度解析:(1)证明见解析;(2)2cm .【分析】(1)先根据垂直的定义可得90ADC E ∠=∠=︒,再根据直角三角形的两锐角互余、等量代换可得CAD BCE ∠=∠,然后根据三角形全等的判定定理与性质即可得证;(2)先结合(1)的结论可得6CE cm =,再根据线段的和差可得2CD cm =,然后根据全等三角形的性质即可得.【详解】(1),AD CE BE CE ⊥⊥,90ADC E ∠=∠=∴︒,90CAD ACD ∴∠+∠=︒,90ACB ∠=︒,90BCE ACD ∴∠+∠=︒,CAD BCE ∴∠=∠,在ACD △和CBE △中,ADC E CAD BCE AC CB ∠=∠⎧⎪∠=∠⎨⎪=⎩,()ACD CBE AAS ∴≅,AD CE ∴=;(2)由(1)已证:AD CE =,6AD cm =,6CE cm ∴=,4DE cm =,2CD CE DE cm ∴=-=,又由(1)已证:ACD CBE ≅,2BE CD cm ∴==.【点睛】本题考查了直角三角形的两锐角互余、三角形全等的判定定理与性质等知识点,熟练掌握三角形全等的判定定理与性质是解题关键.26.已知:AB BD ⊥,ED BD ⊥,AC CE =,BC DE =.(1)试猜想线段AC 与CE 的位置关系,并证明你的结论.(2)若将CD 沿CB 方向平移至图2情形,其余条件不变,结论12AC C E ⊥还成立吗?请说明理由.(3)若将CD 沿CB 方向平移至图3情形,其余条件不变,结论12AC C E ⊥还成立吗?请说明理由.解析:(1)AC CE ⊥,见解析;(2)成立,理由见解析;(3)成立,理由见解析【分析】(1)先用HL 判断出Rt Rt ABC CDE ≌△△,得出A DCE ∠=∠,进而判断出90DCE ACB ∠+∠=︒,即可得出结论;(2)同(1)的方法,即可得出结论;(3)同(1)的方法,即可得出结论.【详解】解:(1)AC CE ⊥理由如下:∵AB BD ⊥,ED BD ⊥,∴90B D ∠=∠=︒在Rt ABC △和Rt CDE △中AC CE BC DE =⎧⎨=⎩∴()Rt Rt HL ABC CDE △△≌, ∴A DCE ∠=∠∵90B ∠=︒,∴90A ACB ∠+∠=︒,∴()18090ACE DCE ACB ∠=︒-∠+∠=︒,∴AC CE ⊥;(2)成立,理由如下:∵AB BD ⊥,ED BD ⊥,∴90B D ∠=∠=︒,在1Rt ABC 和2Rt C DE △中121AC C E BC DE =⎧⎨=⎩, ∴()12Rt Rt HL ABC C DE ≌△△,∴2A C E D ∠=∠,∵90B ∠=︒,∴190B A AC ∠+∠=︒,∴2190DC E AC B ∠+∠=︒,在12C FC 中,()122118090C FC DC E AC B ∠=︒-∠+∠=︒,∴12AC C E ⊥;(3)成立,理由如下:∵AB BD ⊥,ED BD ⊥,∴190ABC D ∠=∠=︒在1Rt ABC 和2Rt C DE △中121AC C E BC DE =⎧⎨=⎩, ∴()12Rt Rt HL ABC C DE ≌△△,∴2A C E D ∠=∠,∵190ABC ∠=︒,∴190B A AC ∠+∠=︒,在12C FC 中,()2112180=90C FC DC E AC B ∠=︒-∠+∠︒,∴12AC C E ⊥.【点睛】此题是几何变换综合题,主要考查了全等三角形的判定和性质,直角三角形的性质,判断出12Rt Rt ABC C DE ≌△△是解本题的关键.27.如图,已知Rt ABC △中,90ACB ︒∠=,CA CB =,D 是AC 上一点,E 在BC 的延长线上,且CE CD =,BD 的延长线与AE 交于点F .求证:BF AE ⊥.解析:证明见解析【分析】根据题意可以得到△ACE ≌△BCD ,然后根据全等三角形的性质和垂直的定义可以证明结论成立.【详解】证明:∵90ACB ︒∠=∴90ACE BCD ︒∠=∠=在ACE △和BCD △中,CA CB ACE BCD CE CD =⎧⎪∠=∠⎨⎪=⎩∴()ACE BCD SAS =∴CAE CBD ∠=∠∵Rt ACE △中,90CAE E ︒∠+∠=,∴90CBD E ︒∠+∠=,∴90BFE ︒∠=∴BF AE ⊥【点睛】本题考查了全等三角形的判定与性质、垂直的定义,解题的关键是明确题意,利用全等三角形的判定和性质、数形结合的思想作答.28.如图,在平面直角坐标系中,已知点()1,A a a b -+,(),0B a ,且()2320a b a b +-+-=,C 为x 轴上点B 右侧的动点,以AC 为腰作等腰三角形ACD ,使AD AC =,CAD OAB ∠=∠,直线DB 交y 轴于点P .(1)求证:AO AB =;(2)求证:AOC ABD ∆∆≌;(3)当点C 运动时,点P 在y 轴上的位置是否发生改变,为什么?解析:(1)证明见解析;(2)证明见解析;(3)不变,理由见解析.【分析】(1)先根据非负数的性质求出a 、b 的值,作AE ⊥OB 于点E ,由SAS 定理得出△AEO ≌△AEB ,根据全等三角形的性质即可得出结论;(2)先根据∠CAD=∠OAB ,得出∠OAC=∠BAD ,再由SAS 定理即可得出结论; (3)设∠AOB=∠ABO=α,由全等三角形的性质可得出∠ABD=∠AOB=α,故∠OBP=180°-∠ABO-∠ABD=180°-2α为定值,再由OB=2,∠POB=90°可知OP 的长度不变,故可得出结论.【详解】(1)证明:∵()2320a b a b +-+-=, ∴30,20,a b a b +-=⎧⎨-=⎩解得2,1.a b =⎧⎨=⎩∴()1,3A ,()2,0B .作AE OB ⊥于点E ,∵()1,3A ,()2,0B ,∴1OE =,211BE =-=,在AEO ∆与AEB ∆中,∵,90,,AE AE AEO AEB OE BE =⎧⎪∠=∠=︒⎨⎪=⎩∴AEO AEB ∆∆≌,∴OA AB =.(2)证明:∵CAD OAB ∠=∠,∴CAD BAC OAB BAC ∠+=∠+∠∠,即OAC BAD ∠=∠.在AOC ∆与ABD ∆中,∵,,,OA AB OAC BAD AC AD =⎧⎪∠=∠⎨⎪=⎩∴AOC ABD ∆∆≌.(3)解:点P 在y 轴上的位置不发生改变.理由:设AOB α∠=. ∵OA AB =,∴AOB ABO α∠=∠=.由(2)知,AOC ABD ∆∆≌,∴ABD AOB α∠=∠=.∵2OB =,1801802OBP ABO ABD α∠=︒-∠-∠=︒-为定值,90POB ∠=︒,易知POB ∆形状、大小确定,∴OP 长度不变,∴点P 在y 轴上的位置不发生改变.【点睛】本题考查了全等三角形的判定与性质,熟知全等三角形的判定定理是解题的关键.。
八年级全等三角形专题练习(word版
【答案】60°
【解析】
【分析】
此题需分三步:第一步是作出△CEF的周长最小时E、F的位置(用对称即可);第二步是证明此时的△CEF的周长最小(利用两点之间线段最短);第三步是利用对称性求此时∠ECF的值.
【详解】
分别作出C关于AD、AB的对称点分别为C1、C2,连接C1C2,分别交AD,AB于点E、F再连接CE、CF此时△CEF的周长最小,理由如下:
6.已知如图,每个小正方形的边长都是 都在格点上, 都是斜边在 轴上,且斜边长分别为 .的等腰直角三角形.若 的三个顶点坐标为 ,则依图中规律,则 的坐标为___________
【答案】
【解析】
【分析】
根据相邻的两个三角形有一个公共点,列出与三角形的个数与顶点的个数的关系式,再求出A19所在的三角形,并求出斜边长.然后根据第奇数个三角形,关于直线x=1对称,第偶数个三角形关于直线x=2对称,求出OA19,写出坐标即可.
【详解】
如图1,当∠AMB=90°时,
∵O是AB的中点,AB=8,
∴OM=OB=4,
又∵∠AOC=∠BOM=60°,
∴△BOM是等边三角形,
∴BM=BO=4,
∴Rt△ABM中,AM= = ;
如图2,当∠AMB=90°时,
∵O是AB的中点,AB=8,
∴OM=OA=4,
又∵∠AOC=60°,
∴△AOM是等边三角形,
【答案】D
【解析】
【分析】
根据周角的定义先求出∠BPC的度数,再根据对称性得到△BPC为等腰三角形,∠PBC即可求出;根据题意:有△APD是等腰直角三角形;△PBC是等腰三角形;结合轴对称图形的定义与判定,可得四边形ABCD是轴对称图形,进而可得②③④正确.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
全等三角形练习题一.选择题(共 3 小题)AD⊥BC 于点D,若∠ BAC=128°,∠C=36°,则∠ DAE的度数是()1.(2012?梧州)如图,AE是△ ABC的角平分线,A. 10°B.12°C. 15°D.18°2.( 2011?随州)如图,在△ ABC 中 E 是 BC上的一点, EC=2BE,点 D是 AC的中点,设△ ABC,△ ADF,△ BEF 的面积分别为 S△ABC, S△ADF, S△BEF,且S△ABC=12,则 S△ADF﹣ S△BEF=()A. 1 B.2 C. 3 D.43.( 2009?内江)如图,小陈从O点出发,前进 5 米后向右转20°,再前进 5 米后又向右转20°,,这样一直走下去,他第一次回到出发点O时一共走了()A.60米B. 100米C.90米D. 120米二.填空题(共 4 小题)4.( 2009?黔东南州)如图,某村有一块三角形的空地(即△ABC),其中 A 点处靠近水源,现村长准备将它分给甲、乙两农户耕种,分配方案规定,按每户人口数量来平均分配,且甲、乙两农户所分土地都要靠近水源(即A点),已知甲农户有 1 人,乙农户有 3 人,请你把它分出来.(要求:尺规作图,保留作图痕迹,不写作法,不要求证明)._________ .5.( 2007?资阳)如图,对面积为 1 的△ ABC逐次进行以下操作:第一次操作,分别延长AB, BC, CA至点 A1,B1,C ,使得 A B=2AB, B C=2BC, C A=2CA,顺次连接 A ,B , C ,得到△A B C ,记其面积为S ;第二次操作,分别延长1111111 1 1 1 1A1B1, B1C1,C1A1至点 A2,B2, C2,使得 A2B1=2A1B1, B2C1=2B1C1,C2A1=2C1A1,顺次连接A2, B2, C2,得到△A2B2C2,记其面积为S2;;按此规律继续下去,可得到△A5B5C5,则其面积S5= _________ .6.( 2012?通辽)如图,△S= _________.△CAO ABC 的三边AB、BC、CA长分别为40、50、60.其三条角平分线交于点O,则S△ABO:S△BCO:7.( 2012?通辽)如图,梯形 ABCD中, AD∥BC, DC⊥BC,将梯形沿对角线处,若∠ A′BC=15°,则∠ A′BD的度数为_________.BD折叠,点A 恰好落在DC边上的点A′三.解答题(共 5 小题)11.(2012?牡丹江)如图①,△ ABCH.易证 PE+PF=CH.证明过程如下:中. AB=AC, P 为底边BC上一点, PE⊥AB,PF⊥AC,CH⊥AB,垂足分别为E、F、如图①,连接AP.∵PE⊥AB,PF⊥AC,CH⊥AB,∴S△ABP=AB?PE,S△ACP=AC?PF,S△ABC=AB?CH.又∵S△ABP+S△ACP=S△ABC,∴AB?PE+AC?PF=AB?CH.∵AB=AC,∴PE+PF=CH.( 1)如图②, P 为 BC延长线上的点时,其它条件不变,PE、PF、 CH又有怎样的数量关系?请写出你的猜想,并加以证明:( 2)填空:若∠ A=30°,△ ABC 的面积为49,点 P 在直线 BC上,且 P 到直线 AC的距离为PF,当 PF=3时,则边上的高CH= _________.点P到AB边的距离PE= _________.AB12.( 2012?云南)如图,在△ ABC 中,∠ C=90°,点 D 是 AB边上的一点, DM⊥AB,且 DM=AC,过点 M作 ME∥BC交AB于点 E.求证:△ ABC≌△ MED.全等三角形练习题参考答案与试题解析一.选择题(共 3 小题)1.(2012?梧州)如图,AE是△ ABC的角平分线, AD⊥BC 于点 D,若∠ BAC=128°,∠C=36°,则∠ DAE的度数是()A. 10°B. 12°C. 15°D. 18°考点:三角形内角和定理;三角形的角平分线、中线和高.分析:根据直角三角形两锐角互余求出∠CAD,再根据角平分线定义求出∠CAE,然后根据∠ DAE=∠CAE﹣∠ CAD,代入数据进行计算即可得解.解答:解:∵ AD⊥BC,∠ C=36°,∴∠ CAD=90°﹣ 36°=54°,∵AE 是△ ABC的角平分线,∠ BAC=128°,∴∠ CAE=∠BAC=×128°=64°,∴∠ DAE=∠CAE﹣∠ CAD=64°﹣ 54°=10°.故选 A.点评:本题考查了三角形的内角和定理,三角形的角平分线,高线的定义,准确识图,找出各角度之间的关系并求出度数是解题的关键.2.( 2011?随州)如图,在△ ABC 中 E 是 BC上的一点, EC=2BE,点 D是 AC的中点,设△ ABC,△ ADF,△ BEF 的面积分别为S△ABC, S△ADF, S△BEF,且 S△ABC=12,则 S△ADF﹣ S△BEF=()A. 1 B. 2 C. 3 D. 4考点:三角形的面积.分析:本题需先分别求出S△ABD, S△ABE再根据 S△ADF﹣ S△BEF=S△ABD﹣ S△ABE即可求出结果.解答:解:∵S △ABC=12,EC=2BE,点 D 是 AC的中点,∴S△ABE==4,S△ABD==6,∴S△ABD﹣S△ABE,=S△ADF﹣ S△BEF,=6﹣ 4,=2.故选 B.点评:本题主要考查了三角形的面积计算,在解题时要能根据已知条件求出三角形的面积并对要求的两个三角形的面积之差进行变化是本题的关键.3.( 2009?内江)如图,小陈从O点出发,前进 5 米后向右转20°,再前进 5 米后又向右转20°,,这样一直走下去,他第一次回到出发点O时一共走了()A.60米B. 100米C.90米D. 120米考点:多边形内角与外角.专题:应用题.分析:利用多边形外角和等于360 度即可求出答案.解答:解:∵小陈从O点出发当他第一次回到出发点O时正好走了一个正多边形,∴多边形的边数为360°÷ 20=18,∴他第一次回到出发点O时一共走了18×5=90 米.故选 C.点评:主要考查了多边形的外角和定理.任何一个多边形的外角和都是360°.二.填空题(共 4 小题)4.( 2009?黔东南州)如图,某村有一块三角形的空地(即△ABC),其中 A 点处靠近水源,现村长准备将它分给甲、乙两农户耕种,分配方案规定,按每户人口数量来平均分配,且甲、乙两农户所分土地都要靠近水源(即A点),已知甲农户有 1 人,乙农户有 3 人,请你把它分出来.(要求:尺规作图,保留作图痕迹,不写作法,不要求证明).答案如图.考点:三角形的面积.专题:作图题.分析:因为按每户人口数量来平均分配,且甲、乙两农户所分土地都要靠近水源(即 A 点),已知甲农户有 1 人,乙农户有 3 人,所以需要把三角形的面积平均分为 4 份,甲占 1 份,其余的是乙的,由此把 BC四等分即可.解答:解:如图所示:点评:本题需仔细分析题意,结合图形利用等分点即可解决问题.5.( 2007?资阳)如图,对面积为 1 的△ ABC逐次进行以下操作:第一次操作,分别延长AB, BC, CA至点 A1,B1,C1,使得 A1B=2AB, B1 C=2BC, C1A=2CA,顺次连接 A1,B1, C1,得到△A1B1C1,记其面积为S1;第二次操作,分别延长A1B1, B1C1,C1A1至点 A2,B2, C2,使得 A2B1=2A1B1, B2C1=2B1C1,C2A1=2C1A1,顺次连接 A2, B2, C2,得到△A2B2C2,记其面积为 S2;;按此规律继续下去,可得到△A55B5C5,则其面积S5=19 .考点:三角形的面积.专题:操作型.分析:根据高的比等于面积比推理出△A 1 1 1 BC面积的21 1 1倍,B C的面积是△A倍,则△A B B 的面积是△A BC面积的 3以此类推,得出△A2B2C2 的面积.解答:解:连接 A1C,根据 A1B=2AB,得到: AB:A1A=1: 3,因而若过点 B, A1作△ ABC与△ AA1C 的 AC边上的高,则高线的比是1:3,因而面积的比是 1:3,则△A1BC的面积是△ ABC 的面积的 2 倍,设△ ABC 的面积是 a,则△A1BC的面积是2a,同理可以得到△A 1B1C的面积是△A 1 BC面积的2倍,是4a,则△A1 B1 B 的面积是6a,同理△B1C1 C和△A1C1 A的面积都是6a,△A B C 的面积是 19a,1 1 1即△A1 B1 C1 的面积是△ABC的面积的19 倍,同理△A2B2 C2 的面积是△A 1B1C1 的面积的19 倍,即△A1 B1 C1的面积是19,△A2B2 C2的面积 192,5依此类推,△A 5B5C5 的面积是S5=19 =2476099.点评:正确判断相邻的两个三角形面积之间的关系是解决本题的关键,本题的难度较大.6.( 2012?通辽)如图,△ ABC 的三边 AB、BC、CA长分别为40、50、60.其三条角平分线交于点O,则 S△ABO:S△BCO:S△CAO= 4: 5: 6.考点:角平分线的性质.分析:首先过点O作 OD⊥AB 于点 D,作 OE⊥AC 于点 E,作 OF⊥BC 于点 F,由 OA,OB, OC是△ ABC的三条角平分线,根据角平分线的性质,可得OD=OE=OF,又由△ ABC 的三边 AB、BC、CA长分别为40、50、60,即可求得S△ABO: S△BCO: S△CAO的值.解答:解:过点O作 OD⊥AB 于点 D,作 OE⊥AC 于点 E,作 OF⊥BC 于点 F,∵OA, OB,OC是△ ABC的三条角平分线,∴OD=OE=OF,∵△ ABC 的三边 AB、BC、 CA长分别为40、 50、60,∴S△ABO:S△BCO:S△CAO=(AB?OD):(BC?OF):(AC?OE)=AB:BC:AC=40:50:60=4:5:6.故答案为: 4: 5: 6.点评:此题考查了角平分线的性质.此题难度不大,注意掌握辅助线的作法,注意数形结合思想的应用.7.( 2012?通辽)如图,梯形ABCD中, AD∥BC,DC⊥BC,将梯形沿对角线处,若∠ A′BC=15°,则∠ A′BD的度数为30°.BD折叠,点A 恰好落在DC边上的点A′考点:翻折变换(折叠问题).分析:由梯形ABCD中,AD∥BC,DC⊥BC,∠ A′BC=15°,利用三角形外角的性质,可求得∠DA′B叠的性质,可得:∠ A=∠DA′B=105°,∠ ABD=∠A′BD,继而求得∠ A′BD的度数.的度数,由折解答:解:∵梯形ABCD中, AD∥BC,DC⊥BC,∴∠ C=90°,∵∠ A′BC=15°,∴∠ DA′B=∠A′BC+∠C=15°+90°=105°,由折叠的性质可得:∠ A=∠DA′B=105°,∠ ABD=∠A′BD,∵AD∥BC,∴∠ ABC=180°﹣∠ A=75°,∴∠ A′BD==30°.故答案为: 30°.点评:此题考查了折叠的性质、梯形的性质以及三角形的外角的性质.此题难度不大,注意掌握折叠前后图形的对应关系,注意数形结合思想的应用.11.(2012?牡丹江)如图①,△ ABC 中. AB=AC, P 为底边BC上一点, PE⊥AB,PF⊥AC,CH⊥AB,垂足分别为E、F、H.易证 PE+PF=CH.证明过程如下:如图①,连接AP.∵PE⊥AB,PF⊥AC,CH⊥AB,∴S△ABP=AB?PE,S△ACP=AC?PF,S△ABC=AB?CH.又∵S△ABP+S△ACP=S△ABC,∴AB?PE+AC?PF=AB?CH.∵AB=AC,∴PE+PF=CH.( 1)如图②, P 为 BC延长线上的点时,其它条件不变,以证明:PE、PF、 CH又有怎样的数量关系?请写出你的猜想,并加( 2)填空:若∠ A=30°,△ ABC 的面积为 49,点 P 在直线 BC上,且 P 到直线 AC的距离为 PF,当 PF=3时,则 AB 边上的高 CH= 7 .点 P 到 AB边的距离 PE= 4 或 10 .考点:等腰三角形的性质;三角形的面积.专题:几何综合题.分析:( 1)连接 AP.先根据三角形的面积公式分别表示出△ABP△ACP△ABC △ABP △ACP △ABCS , S ,S ,再由 S =S +S 即可得出(2)先根据直角三角形的性质得出AC=2CH,再由△ ABC的面积为 49,求出 CH=7,由于 CH> PF,则可分两种情况进行讨论:①P为底边 BC上一点,运用结论 PE+PF=CH;②P为 BC延长线上的点时,运用结论 PE=PF+CH.解答:解:(1)如图②,PE=PF+CH.证明如下:∵PE⊥AB,PF⊥AC,CH⊥AB,∴S△ABP=AB?PE,S△ACP=AC?PF,S△ABC=AB?CH,∵S△ABP=S△ACP+S△ABC,∴AB?PE=AC?PF+AB?CH,又∵A B=AC,∴PE=PF+CH;( 2)∵在△ ACH 中,∠ A=30°,∴AC=2CH.∵S△ABC=AB?CH,AB=AC,∴× 2CH?CH=49,∴CH=7.分两种情况:①P为底边 BC上一点,如图①.∵PE+PF=CH,∴PE=CH﹣ PF=7﹣ 3=4;②P为 BC延长线上的点时,如图②.∵PE=PF+CH,∴PE=3+7=10.故答案为7; 4 或 10.点评:本题考查了等腰三角形的性质与三角形的面积,难度适中,运用面积证明可使问题简便,论是解题的关键.( 2)中分情况讨12.( 2012?云南)如图,在△ABC 中,∠ C=90°,点 D 是AB边上的一点,DM⊥AB,且DM=AC,过点M作ME∥BC 交AB于点 E.求证:△ ABC≌△ MED.考点:全等三角形的判定.专题:证明题.分析:根据平行线的性质可得出∠B=∠MED,结合全等三角形的判定定理可判断△ABC≌△ MED.解答:证明:∵ MD⊥AB,∴∠ MDE=∠C=90°,∵ME∥BC,∴∠ B=∠MED,在△ ABC 与△ MED中,,∴△ ABC≌△ MED( AAS).点评:此题考查了全等三角形的判定,要求掌握三角形全等的判定定理,难度一般.。