全等三角形题型归类及解析
全等三角形的五大基本模型及题型归纳总结
全等三角形的基本模型一、平移模型常见的平移模型:例1:如图,在四边形ABCD中,AD∥BC且AD=BC,点E在边AB上,点F在AB的延长线上,且AE =BF.求证:∠ADE=∠BCF.例2:如图,AB∥DE,AB=DE,BE=CF.求证:AC∥DF.二、轴对称模型常见的轴对称类型:例3:如图3-ZT-5,已知∠ABC=∠BAD,添加下列条件还不能判定△ABC≌△BAD的是() A.AC=BDB.∠CAB=∠DBAC.∠C=∠DD.BC=AD例4:如图,OP平分∠MON,PE⊥OM于点E,PF⊥ON于点F,OA=OB,则图中有______ 对全等三角形.例5:如图,点D,E分别在AB,AC上,AB=AC,BD=CE.求证:BE=CD.例6:如图3-ZT-8,EB交AC于点M,交FC于点D,AB交FC于点N,∠E=∠F=90°,∠B=∠C,AE=AF. 试证明下列结论:①∠1=∠2;②BE=CF;③△ACN≌△ABM.三、旋转模型常见的旋转模型例7:如图,已知∠AOB=90°,OM是∠AOB的平分线,三角尺的直角顶点P在射线OM上滑动,两直角边分别与OA,OB交于点C,D.求证:PC=PD.两个特殊的旋转模型:(一)绕点型:(手拉手模型)(1)自旋转(2)共旋转(典型的手拉手模型)例7:在直线ABC 的同一侧作两个等边三角形△ABD 和△BCE ,连接AE 与CD ,证明: 1) △ABE ≌△DBC 2) AE=DC3) AE 与DC 的夹角为60。
4) △AGB ≌△DFB 5) △EGB ≌△CFB 6) BH 平分∠AHC 7) GF ∥AC练习:1. 如果两个等边三角形△ABD 和△BCE ,连接AE 与CD ,证明: 1) △ABE ≌△DBC 2) AE=DC3) AE 与DC 的夹角为60。
4) AE 与DC 的交点设为H,BH 平分∠AHC2. △ABD和△ACE均为等腰直角三角形,连接CD,BE交于点O①△ACD ≌△ABE;②∠BOC=90°;③OA平分∠BOC3. 已知:△ABE和△ACD为两个的等腰三角形,∠BAE=∠CAD=∠α,连接EC,BD交于点O①△ABD ≌△AEC;②∠α+∠BOC=180°;③OA平分∠BOC模型应用1. (2010·深圳改编)如图,△AOB和△COD均为等腰直角三角形,∠AOB=∠COD=90°,D在AB上.(1)求证:△AOC≌△BOD;(2)判断△CAD是什么形状的三角形,说明理由.2. 如图,△ABC与△ADE都是等腰直角三角形,连接CD,BE,CD,BE相交于点O,判断CD与BE的位置关系,并说明理由.(二)半角模型:说明:旋转半角的特征是相邻等线段所成角含一个二分之一角,通过旋转将另外两个和为二分之一的角拼接在一起,成对称全等。
全等三角形题型归类及解析
全等三角形难题题型归类及解析一、角平分线型角平分线是轴对称图形,所以我们要充分的利用它的轴对称性,常作的辅助线是:一利用截取一条线段构造全等三角形,二是经过平分线上一点作两边的垂线。
另外掌握两个常用的结论:角平分线与平行线构成等腰三角形,角平分线与垂线构成等腰三角形。
1. 如图,在ΔABC 中,D 是边BC 上一点,AD 平分∠BAC ,在AB 上截取AE=AC ,连结DE ,已知DE=2cm ,BD=3cm ,求线段BC 的长。
2. 已知:如图所示,BD 为∠ABC 的平分线,AB=BC ,点P 在BD 上,PM ⊥AD 于M ,•PN ⊥CD 于N ,判断PM 与PN 的关系.3. 已知:如图E 在△ABC 的边AC 上,且∠AEB=∠ABC 。
(1) 求证:∠ABE=∠C ;(2) 若∠BAE 的平分线AF 交BE 于F ,FD ∥BC 交AC 于D ,设AB=5,AC=8,求DC 的长。
.AB C DE PD A CBM N5、如图所示,已知∠1=∠2,EF ⊥AD 于P ,交BC 延长线于M ,求证:2∠M=(∠ACB-∠B )21PFMDBA CE6、如图,已知在△ABC 中,∠BAC 为直角,AB=AC ,D 为AC 上一点,CE ⊥BD 于E .(1) 若BD 平分∠ABC ,求证CE=12BD ;(2) 若D 为AC 上一动点,∠AED 如何变化,若变化,求它的变化范围;若不变,求出它的度数,并说明理由。
8、如图,在△ABC 中,∠ABC=60°,AD 、CE 分别平分∠BAC 、∠ACB ,求证:AC=AE+CD .二、中点型由中点应产生以下联想:ED C BA1、想到中线,倍长中线2、利用中心对称图形构造8字型全等三角形3、在直角三角形中联想直角三角形斜边上的中线4、三角形的中位线2、已知:如图,ABC △中,45ABC ∠=°,CD AB ⊥于D ,BE 平分ABC ∠,且BE A C ⊥于E ,与CD 相交于点F H ,是BC 边的中点,连结DH 与BE 相交于点G . (1)求证:BF AC =;(2)求证:12CE BF =D AE FCHGB3、如图,△ABC 中,D 是BC 的中点,DE ⊥DF ,试判断BE+CF 与EF 的大小关 系,并证明你的结论。
全等三角形—知识讲解及典型例题解析
中考总复习:全等三角形—知识讲解及典型例题解析【考纲要求】1.掌握全等三角形的概念和性质,能够准确地辨认全等三角形中的对应元素;2.探索三角形全等的判定方法,能利用三角形全等进行证明,掌握综合法证明的格式;3. 善于发现和利用隐含的等量元素,如公共角、公共边、对顶角等,灵活选择适当的方法判定两个三角形全等.【知识网络】【考点梳理】考点一、基本概念1.全等三角形的定义:能够完全重合的两个三角形叫做全等三角形.2.全等三角形的性质(1)全等三角形对应边相等;(2)全等三角形对应角相等.要点诠释:全等三角形的周长、面积相等;对应的高线,中线,角平分线相等.3.全等三角形的判定方法(1)三边对应相等的两个三角形全等(SSS);(2)两角和它们的夹边对应相等的两个三角形全等(ASA);(3)两角和其中一角的对边对应相等的两个三角形全等(AAS);(4)两边和它们的夹角对应相等的两个三角形全等(SAS);(5)斜边和一条直角边对应相等的两个直角三角形全等(HL).考点二、灵活运用定理三角形全等是证明线段相等,角相等的最基本、最常用的方法,这不仅因为全等三角形有很多重要的角相等、线段相等的特征,还在于全等三角形能把已知的线段相等、角相等与未知的结论联系起来.应用三角形全等的判别方法注意以下几点:1. 条件充足时直接应用判定定理要点诠释:在证明与线段或角相等的有关问题时,常常需要先证明线段或角所在的两个三角形全等.这种情况证明两个三角形全等的条件比较充分,只要认真观察图形,结合已知条件分析寻找两个三角形全等的条件即可证明两个三角形全等.2. 条件不足,会增加条件用判定定理要点诠释:此类问题实际是指条件开放题,即指题中没有确定的已知条件或已知条件不充分,需要补充三角形全等的条件.解这类问题的基本思路是:执果索因,逆向思维,即从求证入手,逐步分析,探索结论成立的条件,从而得出答案.3. 条件比较隐蔽时,可通过添加辅助线用判定定理要点诠释:在证明两个三角形全等时,当边或角的关系不明显时,可通过添加辅助线作为桥梁,沟通边或角的关系,使条件由隐变显,从而顺利运用全等三角形的判别方法证明两个三角形全等.常见的几种辅助线添加:①遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变换中的“对折”;②遇到三角形的中线,倍长中线,使延长线段与原中线长相等,构造全等三角形利用的思维模式是全等变换中的“旋转”;③遇到角平分线,可以自角平分线上的某一点向角的两边作垂线,利用的思维模式是三角形全等变换中的“对折”,所考知识点常常是角平分线的性质定理或逆定理;④过图形上某一点作特定的平分线,构造全等三角形,利用的思维模式是全等变换中的“平移”或“翻转折叠”;⑤截长法与补短法,具体做法是在某条线段上截取一条线段与特定线段相等,或是将某条线段延长,使之与特定线段相等,再利用三角形全等的有关性质加以说明.这种作法,适合于证明线段的和、差、倍、分之类的题目.【典型例题】类型一、全等三角形1.如图,BD、CE分别是△ABC的边AC和AB上的高,点P在BD的延长线上,BP=AC,点Q在CE 上,CQ=AB.求证:(1)AP=AQ;(2)AP⊥AQ.【思路点拨】本题主要考查了全等三角形的判定及性质问题.【答案与解析】证明:(1)∵BD、CE分别是△ABC的边AC和AB上的高,∴∠1+∠CAE=90°,∠2+∠CAE=90°.∴∠1=∠2,∵在△AQC和△PAB中,∴△AQC≌△PAB.∴ AP=AQ.(2)∵ AP=AQ,∠QAC=∠P,∵∠PAD+∠P=90°,∴∠PAD+∠QAC=90°,即∠PAQ=90°.∴AP⊥AQ.【总结升华】在确定全等条件时,注意隐含条件的寻找.举一反三:【变式】如图,在四边形ABCD中,∠A=∠BCD=90°,BC=DC.延长AD到E点,使DE=AB.(1)求证:∠ABC=∠EDC;(2)求证:△ABC≌△EDC.【答案与解析】(1)证明:在四边形ABCD中,∵∠BAD=∠BCD=90°,∴90°+∠B+90°+∠ADC=360°,∴∠B+∠ADC=180°,又∵∠CDE+∠ADC=180°,∴∠ABC=∠CDE,(2)连接AC,由(1)证得∠ABC=∠CDE,在△ABC和△EDC中,,∴△ABC≌△EDC(SAS).类型二、灵活运用定理2.如图,已知AD为△ABC的中线,且∠1=∠2,∠3=∠4,求证:BE+CF>EF.【思路点拨】将所求的线段转移到同一个或相关联的三角形中进行求解.【答案与解析】证明:延长ED至M,使DM=DE,连接 CM,MF,在△BDE和△CDM中,∴△BDE≌△CDM(SAS).∴BE=CM.又∵∠1=∠2,∠3=∠4 ,∠1+∠2+∠3+∠4=180°,∴∠3+∠2=90°,即∠EDF=90°,∴∠FDM=∠EDF =90°.在△EDF和△MDF中∴△EDF≌△MDF(SAS),∴EF=MF (全等三角形对应边相等),∵在△CMF中,CF+CM>MF(三角形两边之和大于第三边),∴BE+CF>EF.【总结升华】当涉及到有以线段中点为端点的线段时,可通过延长加倍此线段,构造全等三角形,使题中分散的条件集中.举一反三:【变式】如图所示,AD是△ABC的中线,BE交AC于E,交AD于F,且AE=EF. 求证:AC=BF.【答案】证明:延长AD到H,使得DH=AD,连结BH,∵ D为BC中点,∴ BD=DC,在△ADC和△HDB中,∴△ADC≌△HDB(SAS),∴ AC=BH, ∠H=∠HAC,∵ EA=EF,∴∠HAE=∠AFE,又∵∠BFH=∠AFE,∴ BH=BF,∴ BF=AC.3.如图,在四边形ABCD中,对角线AC平分∠BAD,AB>AD,试判断AB-AD与CD-CB的大小关系,并证明你的结论.【思路点拨】解答本题的关键是熟练运用三角形中大边对应大角的关系.【答案与解析】AB-AD>CD-CB;证明:在AB上取一点E,使得AE=AD,连结CE.∵AC平分∠BAD,∴∠1=∠2.∵在△ACE和△ACD中,∴△ACE≌△ACD.∴CD=CE.∵在△BCE中,BE>CE-CB,即AB-AE>CE-CB,∴AB-AD>CD-CB.【总结升华】本题也可以延长AD到E,使得AE=AB,连结CE.涉及几条线段的大小关系时,用“截长补短”法构造全等三角形是常用的方法.举一反三:【变式】如图所示,已知△ABC中AB>AC,AD是∠BAC的平分线,M是AD上任意一点,求证:MB-MC<AB-AC.【答案】证明:∵AB>AC,在AB上截取AE=AC,连接ME.在△MBE中,MB-ME<BE(三角形两边之差小于第三边).在△AMC和△AME中,∴△AMC≌△AME(SAS).∴MC=ME(全等三角形的对应边相等).又∵BE=AB-AE,∴BE=AB-AC,∴MB-MC<AB-AC.4.如图,在△ABC中,∠ABC=60°,AD、CE分别平分∠BAC、∠ACB,求证:AC=AE+CD.【思路点拨】在AC上取AF=AE,连接OF,即可证得△AEO≌△AFO,得∠AOE=∠AOF;再证得∠COF=∠COD,则根据全等三角形的判定方法AAS即可证△FOC≌△DOC,可得DC=FC,即可得结论.【答案与解析】在AC上取AF=AE,连接OF,∵AD平分∠BAC、∴∠EAO=∠FAO,在△AEO与△AFO中,∵AE AFEAO FAO AO AO=⎧⎪=⎨⎪=⎩∠∠∴△AEO≌△AFO(SAS),∴∠AOE=∠AOF;∵AD、CE分别平分∠BAC、∠ACB,∴∠ECA+∠DAC=12(180°-∠B)=60°则∠AOC=180°-∠ECA-∠DAC=120°;∴∠AOC=∠DOE=120°,∠AOE=∠COD=∠AOF=60°,(对顶角相等)则∠COF=60°,∴∠COD=∠COF,又∵∠FCO=∠DCO,CO=CO,∴△FOC≌△DOC(ASA),∴DC=FC,∵AC=AF+FC,∴AC=AE+CD.【总结升华】本题考查了全等三角形的判定和性质,涉及到三角形内角和定理,熟练掌握全等三角形的判定方法是解题的关键.类型三、综合运用5 .如图,△ABC是直角三角形,且∠ABC=90°,四边形BCDE是平行四边形,E为AC中点,BD平分∠ABC,点F在AB上,且BF=BC.求证:(1)DF=AE;(2)DF⊥AC.【思路点拨】(1)由等边三角形的性质可写出结论.(2)要证明以上结论,需创造一些条件,首先可从△ABC中分出一部分使得与△ACF的面积相等,则过A作AM∥FC交BC于M,连接DM、EM,就可创造出这样的条件,然后再证其它的面积也相等即可.【答案与解析】证明:(1)延长DE交AB于点G,连接AD.∵四边形BCDE是平行四边形,∴ED∥BC,ED=BC.∵点E是AC的中点,∠ABC=90°,∴AG=BG,DG⊥AB.∴AD=BD,∴∠BAD=∠ABD.∵BD平分∠ABC,∴∠ABD=∠BAD=45°,即∠BDE=∠ADE=45°.又BF=BC,∴BF=DE.∴在△AED与△DFB 中,,∴△AED≌△DFB(SAS),∴AE=DF,即DF=AE;(2)设AC与FD交于点O.∵由(1)知,△AED≌△DFB,∴∠AED=∠DFB,∴∠DEO=∠DFG.∵∠DFG+∠FDG=90°,∴∠DEO+∠EDO=90°,∴∠EOD=90°,即DF⊥AC.【总结升华】本题考查了平行四边形的性质,全等三角形的判定与性质.全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.举一反三:【变式】如图,△ABC和△ADE都是等腰直角三角形,∠BAC=∠DAE=90°,四边形ACDE是平行四边形,连结CE交AD于点F,连结BD交CE于点G,连结BE. 下列结论中:① CE=BD;②△ADC是等腰直角三角形;③∠ADB=∠AEB;④CD·AE=EF·CG;一定正确的结论有( ) .A.1个 B.2个 C.3个 D.4个B【答案】D.6.如图,已知△ABC.(1)请你在BC边上分别取两点D、E(BC的中点除外),连结AD、AE,写出使此图中只存在两对面积相等的三角形的相应条件,并表示出面积相等的三角形;(2)请你根据使(1)成立的相应条件,证明AB+AC>AD+AE.【思路点拨】考查了三角形面积的求法,全等三角形的判定以及三角形三边的关系.本题(2)中通过构建全等三角形将已知和所求条件转化到相关的三角形中是解题的关键.【答案与解析】(1)令BD=CE≠DE,有△ABD和△ACE,△ABE和△ACD面积相等.(2)取DE的中点O,连结AO并延长到F点,使得FO=AO,连结EF,CF.在△AD0和△FEO中,又∠AOD=∠FOE,DO=EO,可证△ADO≌△FEO.所以AD=FE.因为BD=CE,DO=EO,所以BO=CO.同理可证△ABD≌△FCO,所以AB=FC.延长AE交CF于G点,在△ACG中,AC+CG>AE+EG,在△EFG中,EG+FG>EF,可推得AC+CG+EG+FG>AE+EG+EF,即AC+CF>AE+EF,所以AB+AC>AD+AE.【总结升华】正确构造全等和利用三角形的任意两边之和大于第三边的结论是关键.举一反三:【变式】在△ABC中,,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E.(1)当直线MN绕点C旋转到图①的位置时,求证:DE=AD+BE;(2)当直线MN绕点C旋转到图②的位置时,求证:DE=AD-BE;(3)当直线MN绕点C旋转到图③的位置时,试问:DE、AD、BE有怎样的等量关系?请写出这个等量关系,并加以证明.【答案】(1)证明:∵∠ACD+∠BCE=90°∠DAC+∠ACD=90°,∴∠DAC=∠BCE.又AC=BC,∠ADC=∠BEC=90°,∴△ADC≌△CEB.∴CD=BE,AD=CE.∴DE=CE+CD=AD+BE.(2)证明:∵∠ACD+∠BCE=90°∠DAC+∠ACD=90°,∴∠DAC=∠BCE.又AC=BC,∠ADC=∠BEC=90°,∴△ADC≌△CEB.∴CD=BE,AD=CE.∴DE=AD-BE.(3)证明:∵∠ACD+∠BCE=90°∠DAC+∠ACD=90°,∴∠DAC=∠BCE.又AC=BC,∠ADC=∠BEC=90°,∴△ADC≌△CEB.∴CD=BE,AD=CE.∴DE=BE-AD.。
全等三角形题型归类及解析汇报
全等三角形难题题型归类及解析一、角平分线型角平分线是轴对称图形,所以我们要充分的利用它的轴对称性,常作的辅助线是:一利用截取一条线段构造全等三角形,二是经过平分线上一点作两边的垂线。
另外掌握两个常用的结论:角平分线与平行线构成等腰三角形,角平分线与垂线构成等腰三角形。
1. 如图,在ΔABC 中,D 是边BC 上一点,AD 平分∠BAC ,在AB 上截取AE=AC ,连结DE ,已知DE=2cm ,BD=3cm ,求线段BC 的长。
2. 已知:如图所示,BD 为∠ABC 的平分线,AB=BC ,点P 在BD 上,PM ⊥AD 于M ,•PN ⊥CD 于N ,判断PM 与PN 的关系.3. 已知:如图E 在△ABC 的边AC 上,且∠AEB=∠ABC 。
(1) 求证:∠ABE=∠C ;(2) 若∠BAE 的平分线AF 交BE 于F ,FD ∥BC 交AC 于D ,设AB=5,AC=8,求DC 的长。
.AB C DE PD A CBM N5、如图所示,已知∠1=∠2,EF ⊥AD 于P ,交BC 延长线于M ,求证:2∠M=(∠ACB-∠B )21PFMDBA CE6、如图,已知在△ABC 中,∠BAC 为直角,AB=AC ,D 为AC 上一点,CE ⊥BD 于E .(1) 若BD 平分∠ABC ,求证CE=12BD ;(2) 若D 为AC 上一动点,∠AED 如何变化,若变化,求它的变化范围;若不变,求出它的度数,并说明理由。
8、如图,在△ABC 中,∠ABC=60°,AD 、CE 分别平分∠BAC 、∠ACB ,求证:AC=AE+CD .二、中点型由中点应产生以下联想:ED C BA1、想到中线,倍长中线2、利用中心对称图形构造8字型全等三角形3、在直角三角形中联想直角三角形斜边上的中线4、三角形的中位线2、已知:如图,ABC △中,45ABC ∠=°,CD AB ⊥于D ,BE 平分ABC ∠,且B E A C ⊥于E ,与CD 相交于点F H ,是BC 边的中点,连结DH 与BE 相交于点G . (1)求证:BF AC =; (2)求证:12CE BF =D AE FCHGB3、如图,△ABC 中,D 是BC 的中点,DE ⊥DF ,试判断BE+CF 与EF 的大小关 系,并证明你的结论。
全等三角形压轴题及分类解析
BA OCE图8七年级下三角形综合题归类一、 双等边三角形模型1. (1)如图7,点O 是线段AD 的中点,分别以AO 和DO 为边在线段AD 的同侧作等边三角形OAB 和等边三角形OCD ,连结AC 和BD ,相交于点E ,连结BC .求∠AEB 的大小;(2)如图8,ΔOAB 固定不动,保持ΔOCD 的形状和大小不变,将ΔOCD 绕着点O 旋转(ΔOAB 和ΔOCD 不能重叠),求∠AEB 的大小.2. 已知:点C 为线段AB 上一点,△ACM,△CBN 都是等边三角形,且AN 、BM 相交于O.① 求证:AN=BM ② 求 ∠AOB 的度数。
③ 若AN 、MC 相交于点P ,BM 、NC 交于点Q ,求证:PQ ∥AB 。
(湘潭·中考题)同类变式: 如图a ,△ABC 和△CEF 是两个大小不等的等边三角形,且有一个公共顶点C ,连接AF 和BE. (1)线段AF 和BE 有怎样的大小关系?请证明你的结论;(2)将图a 中的△CEF 绕点C 旋转一定的角度,得到图b ,(1)中的结论还成立吗?作出判断并说明理由;(3)若将图a 中的△ABC 绕点C 旋转一定的角度,请你画出一个变换后的图形c(草图即可),(1)中的结论还成立吗?作出判断不必说明理由.图c3. 如图9,若△ABC 和△ADE 为等边三角形,,M N 分别为,EB CD 的中点,易证:CD BE =,△AMN 是等边三角形.(1)当把△ADE 绕A 点旋转到图10的位置时,CD BE =是否仍然成立?若成立,请证明;若不成立,请说明理由; (2)当△ADE 绕A 点旋转到图11的位置时,△AMN 是否还是等边三角形?若是,请给出证明,若不是,请说明理由.CBO D图7AEA B CMNO PQ同类变式:已知,如图①所示,在ABC △和ADE △中,AB AC =,AD AE =,BAC DAE ∠=∠,且点B A D ,,在一条直线上,连接BE CD M N ,,,分别为BE CD ,的中点. (1)求证:①BE CD =;②AN AM =;(2)在图①的基础上,将ADE △绕点A 按顺时针方向旋转180,其他条件不变,得到图②所示的图形.请直接写出(1)中的两个结论是否仍然成立.4. 如图,四边形ABCD 和四边形AEFG 均为正方形,连接BG 与DE 相交于点H .(1)证明:△ABG ≌△ADE ;(2)试猜想∠BHD 的度数,并说明理由;(3)将图中正方形ABCD 绕点A 逆时针旋转(0°<∠BAE <180°),设△ABE 的面积 为1S ,△ADG 的面积为2S ,判断1S 与2S 的大小关系,并给予证明.CF GEDAH图9 图10 图11图①图②5.已知:如图,ABC△是等边三角形,过AB边上的点D作DG BC∥,交AC于点G,在GD的延长线上取点E,使DE DB,连接AE CD,.(1)求证:AGE DAC△≌△;(2)过点E作EF DC∥,交BC于点F,请你连接AF,并判断AEF△是怎样的三角形,试证明你的结论.CGAEDB F二、垂直模型(该模型在基础题和综合题中均为重点考察内容)考点1:利用垂直证明角相等1.如图,△ABC中,∠ACB=90°,AC=BC,AE是BC边上的中线,过C作CF⊥AE,垂足为F,过B作BD⊥BC交CF的延长线于D.求证:(1)AE=CD;(2)若AC=12 cm,求BD的长.2.(西安中考)如图(1), 已知△ABC中, ∠BAC=900, AB=AC, AE是过A的一条直线, 且B、C在A、E的异侧, BD⊥AE于D, CE⊥AE于E 。
全等三角形的九大经典模型(解析版)
全等三角形的九大经典模型【题型1平移模型】【题型2轴对称模型】【题型3旋转模型】【题型4一线三等角模型】【题型5倍长中线模型】【题型6截长补短模型】【题型7手拉手模型】【题型8角平分线模型】【题型9半角全等模型】【知识点1平移模型】【模型解读】把△ABC沿着某一条直线l平行移动,所得到△DEF与△ABC称为平移型全等三角形,图①,图②是常见的平移型全等三角线.【常见模型】【题型1平移模型】1(2023春·陕西咸阳·八年级统考期末)如图,将△ABC沿BC方向平移得到△DEF,使点B的对应点E恰好落在边BC的中点上,点C的对应点F在BC的延长线上,连接AD,AC、DE交于点O.下列结论一定正确的是()A.∠B=∠FB.AC⊥DEC.BC=DFD.AC、DE互相平分【答案】D【分析】根据平移的性质得到∠B=∠DEF,BE=CF=CE=AD,AD∥BC,DF=AC,由于只有当∠BAC=90°时,AC⊥DE;只有当BC=2AC时,DF=AC=BE,则可对A、B、C选项的进行判断;AC交DE于O点,如图,证明△AOD≌△COE得到OD=OE,OA=OC,则可对D选项进行判断.【详解】解:∵△ABC沿BC方向平移得到△DEF,使点B的对应点E恰好落在边BC的中点上,∴∠B=∠DEF,BE=CF=CE=AD,AD∥BC,DF=AC,只有当∠BAC=90°时,AC⊥DE;只有当BC=2AC时,DF=AC=BE,所以A、B、C选项的结论不一定正确;∵AD∥BC,∴∠OAD=∠OCE,∠ODA=∠OEC,而AD=CE,∴△AOD≌△COE(ASA),∴OD=OE,OA=OC即AC、DE互相平分,所以D选项的结论正确.故选:D.【点睛】本题考查了平移的性质:把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同;新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点.连接各组对应点的线段平行(或共线)且相等.1.(2023·浙江·八年级假期作业)如图,△ABC的边AC与△CDE的边CE在一条直线上,且点C为AE的中点,AB=CD,BC=DE.(1)求证:△ABC≌△CDE;(2)将△ABC沿射线AC方向平移得到△A B C ,边B C 与边CD的交点为F,连接EF,若EF将CDE 分为面积相等的两部分,且AB=4,则CF=【答案】(1)见解析(2)2【分析】(1)首先由点C为AE的中点得出AC=CE,再根据SSS证明△ABC≌△CDE即可;(2)根据平移的性质得A B =CD=AB=4,再由EF将CDE分为面积相等的两部分得CF=DF=12CD =2【解析】(1)证明:∵点C为AE的中点,∴AC=CE在△ABC和△CDE中,AB=CD BC=DE AC=CE∴△ABC≌△CDE(2)解:将△ABC沿射线AC方向平移得到ΔA B C ,且AB=4,∴A B =CD =AB =4,∵边B C 与边CD 的交点为F ,连接EF ,EF 将CDE 分为面积相等的两部分,如图∴CF =DF =12CD =2,故答案为:2【点睛】本题主要考查了全等三角形的判定以及平移的性质,根据SSS 证明△ABC ≌△CDE 是解答本题的关键.2.(2023春·重庆·八年级校考期中)如图,将△ABC 沿射线BC 方向平移得到△DCE ,连接BD 交AC于点F .(1)求证:△AFB ≌△CFD ;(2)若AB =9,BC =7,求BF 的取值范围.【答案】(1)见解析(2)1<BF <8【分析】(1)根据∠A =∠FCD ,∠AFC =∠CFD ,即可证明;(2)在△BCD 中,利用三边关系求出BD 的取值范围即可解决问题.(1)证明:∵AB ∥CD ,∴∠A =∠FCD ,在△AFB 和△CFD 中,∠A =∠FCD ∠AFB =∠CFD AB =CD∴△AFB ≌△CFD .(2)【解析】解:∵△AFB ≌△CFD ,∴BF =FD ,在△BCD 中,BC =7,CD =9,∴2<BD <16,∴2<2BF <16,∴1<BF <8.【点睛】本题考查平移变换、全等三角形的判定和性质、三角形的三边关系等知识,解题的关键是正确寻找三角形全等的条件解决问题,属于中考常考题型.3.(2023春·八年级课时练习)已知△ABC ,AB =AC ,∠ABC =∠ACB ,将△ABC 沿BC 方向平移得到△DEF .如图,连接BD 、AF ,则BD AF (填“>”“<”或“=”),并证明.【答案】【答案】BD =AF ,证明见解析【分析】由△ABC 沿BC 方向平移得到△DEF ,得到AC =DF ,∠DFB =∠ACB =∠ABF ,即可证明;【解析】【详解】解:BD =AF .证明:由△ABC 沿BC 方向平移得到△DEF ,AB =AC ,得AC =DF =AB ,,∠DFB =∠ACB =∠ABF .在△ABF 和△DFB 中,{AB =DF∠ABF =∠DFB BF =FB,∴△ABF ≌△DFB (SAS ),∴BD =AF .故答案是=.【点睛】本题主要考查了全等三角形的判定和性质,准确分析证明是解题的关键.【知识点2轴对称模型】【模型解读】将原图形沿着某一条直线折叠后,直线两边的部分能够完全重合,这两个三角形称之为轴对称型全等三角形,此类图形中要注意期隐含条件,即公共边或公共角相等.【常见模型】【题型2轴对称模型】1(2023春·河北邯郸·八年级校考期末)如图,在长方形ABCD 中,点M 为CD 中点,将△MBC 沿BM 翻折至△MBE ,若∠AME =α,∠ABE =β,则α与β之间的数量关系为()A.α+3β=180°B.β-α=20°C.α+β=80°D.3β-2α=90°【答案】D【分析】直接利用平行线的性质结合翻折变换的性质得出△ADM≌△BCM(SAS),进而利用直角三角形的性质得出答案.【详解】∵M为CD中点,∴DM=CM,在△ADM和△BCM中∵AD=BC ∠D=∠C DM=CM ,∴△ADM≌△BCM(SAS),∴∠AMD=∠BMC,AM=BM∴∠MAB=∠MBA∵将点C绕着BM翻折到点E处,∴∠EBM=∠CBM,∠BME=∠BMC=∠AMD ∴∠DME=∠AMB∴∠EBM=∠CBM=12(90°-β)∴∠MBA=12(90°-β)+β=12(90°+β)∴∠MAB=∠MBA=12(90°+β)∴∠DME=∠AMB=180°-∠MAB-∠MBA=90°-β∵长方形ABCD中,∴CD∥AB∴∠DMA=∠MAB=12(90°+β)∴∠DME+∠AME=∠ABE+∠MBE∵∠AME=α,∠ABE=β,∴90°-β+α=β+12(90°-β)∴3β-2α=90°故选D.【点睛】本题考查的知识点是平行线的性质,解题关键是利用全等三角形对应角相等即可求解.1.(2023·全国·八年级专题练习)如图,将Rt△ABC沿斜边翻折得到△ADC,点E,F分别为DC,BC边上的点,且∠EAF=12∠DAB.试猜想DE,BF,EF之间有何数量关系,并证明你的猜想.【答案】DE +BF =EF ,见解析【解析】试题分析:通过延长CF ,将DE 和BF 放在一起,便于寻找等量关系,通过两次三角形全等证明,得出结论.猜想:DE +BF =EF .证明:延长CF ,作∠4=∠1,如图:∵将Rt △ABC 沿斜边翻折得到△ADC ,点E ,F 分别为DC ,BC 边上的点,且∠EAF =∠DAB ,∴∠1+∠2=∠3+∠5,∠2+∠3=∠1+∠5,∵∠4=∠1,∴∠2+∠3=∠4+∠5,∴∠GAF =∠FAE ,在△AGB 和△AED 中,∠4=∠1AB =AD ∠ABG =∠ADE,∴△AGB ≌△AED (ASA ),∴AG =AE ,BG =DE ,在△AGF 和△AEF 中,AG =AE ∠GAF =∠EAF AF =AF,∴△AGF ≌△AEF (SAS ),∴GF =EF ,∴DE +BF =EF .2.(2023春·山东青岛·八年级统考期中)如图,在Rt ΔABC 中,∠C =90°,将ΔABC 沿AB 向下翻折后,再绕点A 按顺时针旋转α度(α<∠ABC ).得到Rt ΔADE ,其中斜边AE 交BC 于点F ,直角边DE 分别AB 、BC 于点G ,H1 请根据题意用实线补全图形;(不得用铅笔作图).2 求证:ΔAFB ≅ΔAGE【答案】(1)作图见详解;(2)证明见详解.【分析】(1)根据题意画出图形,注意折叠与旋转中的对应关系;(2)由题意易得△ABC ≌△AED ,即可得AB =AE ,∠ABC =∠E ,然后利用ASA 的判定方法,即可证得△AFB ≌△AGE .【解析】解:(1)画图,如下图;证明:由题意得:△ABC ≌△AED .∴AB =AE ,∠ABC =∠E .在△AFB 和△AGE 中,∠ABC =∠EAB =AE∠α=∠α∴△AFB ≌△AGE (ASA ).【点睛】本题考查折叠与旋转的性质以及全等三角形的判定与性质,注意掌握数形结合思想的应用以及注意折叠与旋转中的对应关系.3.(2023春·山西临汾·八年级统考期末)阅读材料,并回答下列问题如图1,以AB 为轴,把△ABC 翻折180°,可以变换到△ABD 的位置;如图2,把△ABC 沿射线AC 平移,可以变换到△DEF 的位置.像这样,其中的一个三角形是另一个三角形经翻折、平移等方法变换成的,这种只改变位置,不改变形状大小的图形变换,叫三角形的全等变换.班里学习小组针对三角形的全等变换进行了探究和讨论(1)请你写出一种全等变换的方法(除翻折、平移外),.(2)如图2,前进小组把△ABC 沿射线AC 平移到△DEF ,若平移的距离为2,且AC =5,则DC =.(3)如图3,圆梦小组展开了探索活动,把△ABC 纸片沿DE 折叠,使点A 落在四边形BCDE 内部点A ′的位置,且得出一个结论:2∠A ′=∠1+∠2.请你对这个结论给出证明.(4)如图4,奋进小组则提出,如果把△ABC 纸片沿DE 折叠,使点A 落在四边形BCDE 外部点A ′的位置,此时∠A ′与∠1、∠2之间结论还成立吗?若成立,请给出证明,若不成立,写出正确结论并证明.【答案】(1)旋转;(2)3;(3)见解析;(4)不成立,正确结论:∠2-∠1=2∠A ',见解析【分析】(1)由题意根据三种全等变换翻折、平移、旋转的定义进行判断即可;(2)根据平移的距离的定义可知AD=2,则DC=AC-AD进行求解即可;(3)根据轴对称及三角形内角和定理进行分析即可得出结论;(4)由题意根据轴对称及三角形内角和定理,进行分析即可得出结论.【解析】解:(1)除翻折、平移外全等变换的方法还有旋转;故答案为:旋转.(2)∵AD=2,AC=5,∴DC=AC-AD=5-2=3;故答案为:3.(3)∵把△ADE沿DE翻折,得到△A'DE,∴△ADE≌△A'DE,∴∠ADE=∠A'DE,∠AED=∠A'ED,在△DEA'中,∠A'=180°-(∠A'DE+∠A'ED);由平角定义知,∠2=180°-∠A'DA=180°-2∠A'DE,∠1=180°-∠A'EA=180°-2∠A'ED,∴∠1+∠2=180°-2∠A'DE+180°-2∠A'ED=2(180°-∠A'ED-∠A'DE),∴2∠A′=∠1+∠2.(4)∠2-∠1=2∠A',理由如下:∵把△ADE沿DE翻折,得到△A'DE,∴△ADE≌△A'DE,∴∠ADE=∠A'DE,∠AED=∠A'ED,在△DEA'中,∠A'=180°-(∠A'DE+∠A'ED),由平角定义知,∠2=180°-∠A'DA=180°-2∠A'DE,∠1=2∠A'ED-180°,∴∠2-∠1=(180°-2∠A'DE)-(2∠A'ED-180°)=180°-(∠A'DE+∠A'ED),∴∠2-∠1=2∠A'.【点睛】本题是三角形综合题,综合考查平移的性质,折叠的性质,三角形内角和定理,全等三角形的性质等知识,灵活运用这些性质进行推理是解答本题的关键.【知识点3旋转模型】【模型解读】将三角形绕着公共顶点旋转一定角度后,两个三角形能够完全重合,则称这两个三角形为旋转型三角形,识别旋转型三角形时,涉及对顶角相等、等角加(减)公共角的条件.【常见模型】【题型3旋转模型】1(2023春·全国·八年级期末)(1)问题引入:如图1,点F是正方形ABCD边CD上一点,连接AF,将△ADF绕点A顺时针旋转90°与△ABG重合(D与B重合,F与G重合,此时点G,B,C在一条直线上),∠GAF的平分线交BC于点E,连接EF,判断线段EF与GE之间有怎样的数量关系,并说明理由.(2)知识迁移:如图2,在四边形ABCD中,∠ADC+∠B=180°,AB=AD,E,F分别是边BC,CD延长线上的点,连接AE,AF,且∠BAD=2∠EAF,试写出线段BE,EF,DF之间的数量关系,并说明理由.(3)实践创新:如图3,在四边形ABCD中,∠ABC=90°,AC平分∠DAB,点E在AB上,连接DE,CE,且∠DAB=∠DCE=60°,若DE=a,AD=b,AE=c,求BE的长.(用含a,b,c的式子表示)【答案】(1)EF=GE,理由见详解;(2)BE-DF=EF,理由见详解;(3)BE=a+b-c2,理由见详解【分析】(1)根据SAS直接可证△GAE≌△FAE即得GE=EF;(2)在BE上取BG=DF,连接AG,由∠ADC+∠B=180°,∠ADF+∠ADC=180°,得∠B=∠ADF,从而SAS证△ABG≌△ADF,再通过SAS证△GAE≌△FAE,得GE=EF,从而解决问题;(3)作CF⊥AD,交AD的延长线于F,取FG=BE,连接CG,由(2)同理可两次全等证明出DE=GD即可.【详解】解:(1)EF=GE,理由如下:∵△ADF绕点A顺时针旋转90°与△ABG重合,∴AG=AF,∵AE平分∠GAF,∴∠GAE=∠FAE,在△GAE和△FAE中,AG=AF∠GAE=∠FAE AE=AE,∴△GAE≌△FAE(SAS),∴GE=EF;(2)BE-DF=EF,理由如下:如图2,在BE上取BG=DF,连接AG,∵∠ADC+∠B=180°,∠ADF+∠ADC=180°,∴∠B=∠ADF,在△ABG和△ADF中,BG=DF∠B=∠ADF AB=AD,∴△ABG≌△ADF(SAS),∴∠BAG=∠FAD,AG=AF,∵∠BAD=2∠EAF,∴∠GAF=2∠EAF,∴∠GAE=∠EAF,在△GAE和△FAE中,AG=AF∠GAE=∠FAE AE=AE,∴△GAE≌△FAE(SAS),∴GE=EF,∴BE-DF=EF;(3)如图,作CF⊥AD,交AD的延长线于F,取FG=BE,连接CG,∵AC平分∠BAD,CF⊥AF,CB⊥AB,∴CF=CB,∠EBC=∠GFC,∵BE=GF,∴△CBE≌△CFG(SAS),∴∠BCE=∠FCG,CG=CE,∵∠DAB=60°,∴∠FCB=120°,∵∠DCE=60°,∴∠DCF+∠BCE=60°,∴∠DCG=60°,又∵CG=CE,∴△ECD≌△GCD(SAS),∴GD=DE,∵Rt△ACF≌Rt△ACB(HL),∴AF=AB,∴b+a-BE=c+BE,∴BE=a+b-c2.【点睛】本题主要考查了全等的判定与性质,结合问题引入,构造出全等三角形是解题的关键.1.(2023春·八年级课时练习)如图,等边△ABC中,∠AOB=115°,∠BOC=125°,则以线段OA,OB,OC为边构成的三角形的各角的度数分别为.【答案】55°,60°,65°.【分析】通过旋转△AOB至△CDB,可得△BOD是等边三角形,将OA,OB,OC放在一个三角形中,进而求出各角大小。
初二全等三角形难题全等三角形难题及答案
初二全等三角形难题全等三角形难题及答案1、如图,在ABC 中,AB BC, ABC 90 。
F 为AB延长线上一点,点E在BC上,BE BF ,连接AE,EF 和CF。
求证:AE CFo 2、如图,D是ABC的边BC 上的点,且CD AB, ADB BAD,AE是ABD 的中线。
求证:AC…旋转已知,如图,三角形ABC是等腰直角三角形,/ ACB=90 , F是AB的中点,直线I经过点C,分别过点A、B作I的垂线,即AD丄CE , BE丄CE , (1)如图1,当CE 位于点F的右侧时,求证:AADC CEB ; (2)如图2,当CE位于点F的左侧时…全等三角形难题题型归类及解析一、角平分线型角平分线是轴对称图形,所以我们要充分的利用它的轴对称性,常作的辅助线是:一利用截取一条线段构造全等三角形,二是经过平分线上一点作两边的垂线。
另外掌握两个常用的结论:角平分线与平行线构成等腰三角形,角平分线与垂…1、如图,在ABC中,AB BC, ABC 90 。
F为AB 延长线上一点,点E在BC上,BE BF,连接AE,EF和CF。
求证:AE CFo 2、如图,D是ABC的边BC上的点,且CD AB,ADB BAD, AE是ABD 的中线。
求证:AC 2AE。
AB AC PB PC。
3、如图,在ABC 中,AB AC,求证:1 2,P 为AD上任意一点。
4、如图,BD、CE分别是ABC的边AC、AB上的高,F、G分别是线段DE、BC的中点求证:FG DE5、如图所示,MBC是等腰直角三角形,/ ACB = 90° AD是BC边上的中线,过C作AD的垂线,交AB于点E,交AD于点F,求证:/ ADC =Z BDE6、如图,在锐角ABC中,已知ABC 2 C,ABC的平分线BE与AD垂直,垂足为D,若BD 4cm, 求AC的长参考答案1、思路分析:可以利用全等三角形来证明这两条线段相等,关键是要找到这两个三角形。
全等三角形经典题型
全等三角形经典题型全等三角形是几何学中的一个重要概念,它指的是具有相同形状和大小的两个三角形。
在解决全等三角形的经典题型时,我们通常会利用全等三角形的性质和一些几何定理来推导和证明。
以下是一些经典的全等三角形题型以及解题思路:1. SSS(边-边-边)判定法,当两个三角形的三条边分别相等时,可以判定两个三角形全等。
例如,已知三角形ABC和三角形DEF,且AB=DE,BC=EF,AC=DF,那么可以得出三角形ABC全等于三角形DEF。
2. SAS(边-角-边)判定法,当两个三角形的两边和夹角分别相等时,可以判定两个三角形全等。
例如,已知三角形ABC和三角形DEF,且AB=DE,BC=EF,∠BAC=∠EDF,那么可以得出三角形ABC 全等于三角形DEF。
3. ASA(角-边-角)判定法,当两个三角形的两角和一边分别相等时,可以判定两个三角形全等。
例如,已知三角形ABC和三角形DEF,且∠BAC=∠EDF,∠ABC=∠DEF,AC=DF,那么可以得出三角形ABC全等于三角形DEF。
4. RHS(直角边-斜边-直角边)判定法,当两个直角三角形的一个直角边和斜边分别相等时,可以判定两个三角形全等。
例如,已知直角三角形ABC和直角三角形DEF,且∠BAC=∠EDF,AC=DF,AB=DE,那么可以得出三角形ABC全等于三角形DEF。
5. AAS(角-角-边)判定法,当两个三角形的两角和一边的对应边分别相等时,可以判定两个三角形全等。
例如,已知三角形ABC和三角形DEF,且∠BAC=∠EDF,∠ABC=∠DEF,AB=DE,那么可以得出三角形ABC全等于三角形DEF。
在解决全等三角形题型时,我们要注意使用合适的判定法,并根据题目给出的已知条件进行推导和证明。
同时,还要注意运用其他几何定理和性质,如平行线的性质、垂直线的性质、等腰三角形的性质等,来辅助解题。
以上是关于全等三角形经典题型的回答,希望对你有所帮助。
全等三角形常见题型5种
全等三角形是初中数学中的一个重要知识点,其常见题型主要有以下五种:
1. 已知两边及其夹角,求证全等:这是全等三角形最基本的题型,也是最常见的题型。
解题的关键在于理解全等三角形的定义,即两个三角形如果它们的三边分别相等,那么这两个三角形就是全等的。
在解答这类题目时,我们通常会使用SAS(边角边)或ASA(角边角)定理。
2. 已知一边及其对角,求证全等:这类题目的解题思路与第一种类似,但是需要用到的是AAS(角角边)定理。
在解答这类题目时,我们需要先找出两个三角形的对应角和对应边,然后利用AAS定理进行证明。
3. 已知两角及其夹边,求证全等:这类题目的解题思路与前两种有所不同,需要用到的是HL(直角边边)定理。
在解答这类题目时,我们需要先找出两个三角形的对应角和对应边,然后利用HL定理进行证明。
4. 已知一边及其高,求证全等:这类题目的解题思路与前三种有所不同,需要用到的是SSS (边边边)定理。
在解答这类题目时,我们需要先找出两个三角形的对应边,然后利用SSS 定理进行证明。
5. 已知一边及其中线或高线,求证全等:这类题目的解题思路与第四种相似,但是需要用到的是RHS(旋转、平移、缩放)定理。
在解答这类题目时,我们需要先找出两个三角形的对应边和对应的中线或高线,然后利用RHS定理进行证明。
以上就是全等三角形的五种常见题型,每种题型都有其特定的解题方法和技巧。
在解答这类题目时,我们需要灵活运用全等三角形的各种定理,同时也需要注意观察和分析题目中的条件,以便找到最合适的解题方法。
全等三角形常考题型及详细解答-很全面的保你满意
一、补充条件型试题[例1] (1)(06湖北宜昌课改)如图,AB=CD,AD 、BC 相交于点O ,要使△ABO ≌△DCO 。
应添加的条件为__________(添加一个条件即可)∠A=∠B,∠A=∠C ,∠B=∠C ,∠B=∠D ,AB ∥CD¥(2)(05重庆中考题) 如图,已知∠ACB=∠DBC ,要使△ABC ≌△DCB ,只需增加的一个条件是__________。
(只需填写一个你认为合适的条件即可)BD=CA,∠ABD=∠ACD,∠ABC=∠DCB,∠A=∠D ,S △ABO=S △CDO(3)(06深圳中考题) 如图,已知,在△ABC 和△DCB 中,AC=DB,若不增加任何字母与辅助线,要使△ABC ≌△DCB ,则还需要增加的一个条件是__________ AB=CD,或∠BCA=∠CBD(4)(04四川中考)如图,D 在AB 上,E 在AC 上,且∠B=∠C ,那么补充下列一个条件后,仍然无法判断△ABE ≌△ACD 的是( ) =AE B.∠AEB=∠ADC =CD =AC 补充两个三角形中任意一组对应边相等即可,选B 二、\三、组合条件型试题[例2] (05杭州中考)如图,在△ABC 和△DEF 中,B 、E 、C 、F 在同一直线上,下面有四个条件,请你在其中选3个座位题设,余下的一个作为结论,下一个真命题,加以ABOC DA DB C| A D B C A DBADE、证明:①AB=DE ②AC=DF ③∠ABC=∠DEF ④BE=CF【解析:若所选条件中含有③∠ABC=∠DEF ,则另外两个条件可选择①AB=DE ④BE=CF ,证明全等的理由是边角边定理。
此时的真命题是:在△ABC 和△DEF 中,B,E,C,F 在同一直线上,若∠ABC=∠DEF,AB=DE,BE=CF,则AC=DF.若所选条件中不含有③∠ABC=∠DEF ,则另外三个条件也可构成一个真命题,此时证明全等的理由是边边边定理。
(完整版)全等三角形知识总结和经典例题
全等三角形复习[ 知识要点 ]一、全等三角形1.判定和性质一般三角形直角三角形边角边( SAS)、角边角( ASA)具备一般三角形的判定方法判定斜边和一条直角边对应相等( HL )角角边( AAS)、边边边( SSS)对应边相等,对应角相等性质对应中线相等,对应高相等,对应角平分线相等注:①判定两个三角形全等必须有一组边对应相等;② 全等三角形面积相等.2.证题的思路:找夹角( SAS)已知两边找直角( HL )找第三边( SSS)若边为角的对边,则找任意角( AAS)找已知角的另一边(SAS)已知一边一角边为角的邻边找已知边的对角(AAS)找夹已知边的另一角(ASA)找两角的夹边(ASA)已知两角找任意一边(AAS)性质1、全等三角形的对应角相等、对应边相等。
2、全等三角形的对应边上的高对应相等。
3、全等三角形的对应角平分线相等。
4、全等三角形的对应中线相等。
5、全等三角形面积相等。
6、全等三角形周长相等。
( 以上可以简称 : 全等三角形的对应元素相等)7、三边对应相等的两个三角形全等。
(SSS)8、两边和它们的夹角对应相等的两个三角形全等。
(SAS)9、两角和它们的夹边对应相等的两个三角形全等。
(ASA)10、两个角和其中一个角的对边对应相等的两个三角形全等。
(AAS)11、斜边和一条直角边对应相等的两个直角三角形全等。
(HL)运用1、性质中三角形全等是条件,结论是对应角、对应边相等。
而全等的判定却刚好相反。
2、利用性质和判定,学会准确地找出两个全等三角形中的对应边与对应角是关键。
在写两个三角形全等时,一定把对应的顶点,角、边的顺序写一致,为找对应边,角提供方便。
3,当图中出现两个以上等边三角形时,应首先考虑用 SAS找全等三角形。
4、用在实际中,一般我们用全等三角形测等距离。
以及等角,用于工业和军事。
有一定帮助。
5、角平分线的性质及判定性质:角平分线上的点到这个角的两边的距离相等判定:到一个角的两边距离相等的点在这个角平分线上做题技巧一般来说考试中线段和角相等需要证明全等。
三角形全等的判定“角边角与角角边”(6种题型)-2023年新八年级数学题型(人教版)(解析版)
三角形全等的判定“角边角与角角边”(6种题型)【知识梳理】一、全等三角形判定——“角边角”两角和它们的夹边对应相等的两个三角形全等(可以简写成“角边角”或“ASA ”).要点诠释:如图,如果∠A =∠'A ,AB =''A B ,∠B =∠'B ,则△ABC ≌△'''A B C .二、全等三角形判定——“角角边” 1.全等三角形判定——“角角边”两个角和其中一个角的对边对应相等的两个三角形全等(可以简写成“角角边”或“AAS ”)要点诠释:由三角形的内角和等于180°可得两个三角形的第三对角对应相等.这样就可由“角边角”判定两个三角形全等,也就是说,用角边角条件可以证明角角边条件,后者是前者的推论.2.三个角对应相等的两个三角形不一定全等.如图,在△ABC 和△ADE 中,如果DE BC ,那么∠ADE =∠B ,∠AED =∠C ,又∠A =∠A ,但△ABC 和△ADE 不全等.这说明,三个角对应相等的两个三角形不一定全等.【考点剖析】题型一:用“角边角”直接证明三角形全等例1.如图,∠A =∠B ,AE =BE ,点D 在 AC 边上,∠1=∠2,AE 和BD 相交于点O .求证:△AEC ≌△BED ;【详解】∵AE 和BD 相交于点O ,∴∠AOD=∠BOE .在△AOD 和△BOE 中,∠A=∠B ,∴∠BEO=∠2.又∵∠1=∠2,∴∠1=∠BEO ,∴∠AEC=∠BED .在△AEC 和△BED 中,A B AE BEAEC BED ∠∠⎧⎪⎨⎪∠∠⎩===∴△AEC ≌△BED (ASA ).【变式1】如图,AB =AD ,∠1,DA 平分∠BDE .求证:△ABC ≌△ADE .【解答】证明:∵∠1=∠2,∴∠1+∠DAC =∠2+∠DAC ,∴∠BAC =∠DAE ,∵AB =AD ,∴∠ADB =∠B ,∵DA 平分∠BDE .∴∠ADE =∠ADB ,∴∠ADE =∠B ,在△ABC和△ADE中,{∠ADE=∠B AB=AD∠BAC=∠DAE,∴△ABC≌△ADE(ASA).【变式2】如图,已知∠1=∠2,∠3=∠4,要证BC=CD,证明中判定两个三角形全等的依据是()A.角角角B.角边角C.边角边D.角角边【分析】已知两角对应相等,且有一公共边,利用全等三角形的判定定理进行推理即可.【解答】解:在△ABC与△ADC中,{∠1=∠2 AC=AC∠3=∠4,则△ABC≌△ADC(ASA).∴BC=CD.故选:B.【变式3】(2022•长安区一模)已知:点B、E、C、F在一条直线上,AB∥DE,AC∥DF,BE=CF.求证:△ABC≌△DEF.【解答】证明:∵AB∥DE,∴∠B=∠DEF,∵AC∥DF,∴∠ACB=∠F,∵BE=CF,∴BE+EC=CF+EC,即BC =EF ,在△ABC 和△DEF 中,{∠B =∠DEFBC =EF ∠ACB =∠F,∴△ABC ≌△DEF (ASA ). 题型二:用“角边角”间接证明三角形全等例2.如图,已知AB ∥CD ,AB =CD ,∠A =∠D .求证:AF =DE .【详解】证明:∵AB //CD ,∴∠B =∠C ,在△ABF 和△DCE 中,A D AB CD BC ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ABF ≌△DCE (ASA ),∴AF =DE .【变式1】已知:如图,E ,F 在AC 上,AD ∥CB 且AD =CB ,∠D =∠B .求证:AE =CF .【答案与解析】证明:∵AD ∥CB∴∠A =∠C在△ADF 与△CBE 中A C AD CB D B ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ADF ≌△CBE (ASA )∴AF =CE ,AF +EF =CE +EF故得:AE =CF【变式2】如图,AB =AC ,AB ⊥AC ,AD ⊥AE ,且∠ABD =∠ACE .求证:BD =CE .【详解】∵AB ⊥AC ,AD ⊥AE ,∴∠BAE +∠CAE =90°,∠BAE +∠BAD =90°,∴∠CAE =∠BAD .又AB =AC ,∠ABD =∠ACE ,∴△ABD ≌△ACE (ASA ).∴BD =CE .【变式3】如图,要测量河两岸相对两点A 、B 间的距离,在河岸BM 上截取BC =CD ,作ED ⊥BD 交AC 的延长线于点E ,垂足为点D .(DE ≠CD )(1)线段 的长度就是A 、B 两点间的距离(2)请说明(1)成立的理由.【解答】解:(1)线段DE 的长度就是A 、B 两点间的距离;故答案为:DE ;(2)∵AB ⊥BC ,DE ⊥BD∴∠ABC =∠EDC =90°又∵∠ACB =∠DCE ,BC =CD∴△ABC ≌△CDE (ASA )∴AB =DE .【变式4】如图,G 是线段AB 上一点,AC 和DG 相交于点E.请先作出∠ABC 的平分线BF ,交AC 于点F ;然后证明:当AD∥BC,AD =BC ,∠ABC=2∠ADG 时,DE =BF.【答案与解析】证明: ∵AD∥BC,∴∠DAC=∠C∵BF 平分∠ABC∴∠ABC=2∠CBF∵∠ABC=2∠ADG∴∠CBF=∠ADG在△DAE 与△BCF 中 ⎪⎩⎪⎨⎧∠=∠=∠=∠C DAC BCAD CBF ADG ∴△DAE≌△BCF(ASA )∴DE=BF【变式5】已知:如图,在△MPN 中,H 是高MQ 和NR 的交点,且MQ =NQ .求证:HN =PM.【答案】证明:∵MQ 和NR 是△MPN 的高,∴∠MQN =∠MRN =90°,又∵∠1+∠3=∠2+∠4=90°,∠3=∠4∴∠1=∠2在△MPQ 和△NHQ 中,12MQ NQ MQP NQH ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△MPQ ≌△NHQ (ASA )∴PM =HN【变式6】如图,已知224m ABC S =△,AD 平分BAC ∠,且AD BD ⊥于点D ,则ADC S =△________2m .【答案】12【详解】解:如图,延长BD 交AC 于点E ,∵AD 平分BAC ∠,AD BD ⊥,∴BAD EAD ∠=∠,90ADB ADE ∠=∠=︒.∵AD AD =,∴()ADB ADE ASA ≌.∴BD DE =.∴ABD AED S S =△△,BCD ECD S S =. ∴12ABD BCD AED ECD ABC S S S S S =++=△△△△△.即12ADC ABC S S =.∵224m ABC S =△,∴212m ADC S =△.故答案为:12.【变式7】(2022秋•苏州期中)如图,△ABC 中,AD 是BC 边上的中线,E ,F 为直线AD 上的点,连接BE ,CF ,且BE ∥CF .(1)求证:△BDE ≌△CDF ;(2)若AE =13,AF =7,试求DE 的长.【解答】(1)证明:∵AD 是BC 边上的中线,∴BD =CD ,∵BE ∥CF ,∴∠DBE =∠DCF ,在△BDE 和△CDF 中,,∴△BDE ≌△CDF (ASA );(2)解:∵AE =13,AF =7,∴EF =AE ﹣AF =13﹣7=6,∵△BDE ≌△CDF ,∴DE =DF ,∵DE +DF =EF =6,∴DE =3.题型三:用“角角边”直接证明三角形全等例3.如图,在四边形ABCD中,E是对角线AC上一点,AD∥BC,∠ADC=∠ACD,∠CED+∠B=180°.求证:△ADE≌△CAB.【解答】证明:∵∠ADC=∠ACD,∴AD=AC,∵AD∥BC,∴∠DAE=∠ACB,∵∠CED+∠B=180°,∠CED+∠AED=180°,∴∠AED=∠B,在△ADE与△CAB中,{∠DAE=∠ACB ∠AED=∠BAD=AC,∴△ADE≌△CAB(AAS).【变式】(202210块高度都是2cm的相同长方体小木块,垒了两堵与地面垂直的木墙,木墙之间刚好可以放进一个等腰直角三角板(AC=BC,∠ACB=90°),点C在DE上,点A和B 分别与木墙的顶端重合.(1)求证:△ADC≌△CEB;(2)求两堵木墙之间的距离.【解答】(1)证明:由题意得:AC=BC,∠ACB=90°,AD⊥DE,BE⊥DE,∴∠ADC=∠CEB=90°,∴∠ACD+∠BCE=90°,∠ACD+∠DAC=90°,∴∠BCE=∠DAC在△ADC 和△CEB 中,∴△ADC ≌△CEB (AAS ); (2)解:由题意得:AD =2×3=6(cm ),BE =7×2=14(cm ),∵△ADC ≌△CEB ,∴EC =AD =6cm ,DC =BE =14cm ,∴DE =DC +CE =20(cm ),答:两堵木墙之间的距离为20cm .题型四:用“角角边”间接证明三角形全等例4、已知:如图,AB ⊥AE ,AD ⊥AC ,∠E =∠B ,DE =CB .求证:AD =AC .【答案与解析】证明:∵AB ⊥AE ,AD ⊥AC ,∴∠CAD =∠BAE =90°∴∠CAD +∠DAB =∠BAE +∠DAB ,即∠BAC =∠EAD在△BAC 和△EAD 中BAC EAD B E CB=DE ∠=∠⎧⎪∠=∠⎨⎪⎩∴△BAC ≌△EAD (AAS )∴AC =AD【变式】已知:如图,90ACB ∠=︒,AC BC =,CD 是经过点C 的一条直线,过点A 、B 分别作AE CD ⊥、 BF CD ⊥,垂足为E 、F ,求证:CE BF =.【答案与解析】证明:∵ CD AE ⊥,CD BF ⊥∴︒=∠=∠90BFC AEC∴︒=∠+∠90B BCF∵,90︒=∠ACB∴︒=∠+∠90ACF BCF∴B ACF ∠=∠在BCF ∆和CAE ∆中⎪⎩⎪⎨⎧=∠=∠∠=∠BC AC B ACE BFC AEC∴BCF ∆≌CAE ∆(AAS )∴BF CE =【总结升华】要证BF CE =,只需证含有这两个线段的BCF ∆≌CAE ∆.同角的余角相等是找角等的好方法.题型五:“边角边”与“角角边”综合应用例5.如图,120CAB ABD ∠+∠=AD 、BC 分别平分CAB ∠、ABD ∠,AD 与BC 交于点O .(1)求AOB ∠的度数;(2)说明AB AC BD =+的理由.【答案】(1)120°;(2)见解析【详解】解:(1)∵AD ,BC 分别平分∠CAB 和∠ABD ,∠CAB +∠ABD =120°,∴∠OAB +∠OBA =60°,∴∠AOB =180°-60°=120°;(2)在AB 上截取AE =AC ,∵∠CAO=∠EAO,AO=AO,∴△AOC≌△AOE(SAS),∴∠C=∠AEO,∵∠C+∠D=(180°-∠CAB-∠ABC)+(180°-∠ABD-∠BAD)=180°,∴∠AEO+∠D=180°,∵∠AEO+∠BEO=180°,∴∠BEO=∠D,又∠EBO=∠DBO,BO=BO,∴△OBE≌△OBD(AAS),∴BD=BE,又AC=AE,∴AC+BD=AE+BE=A B.【变式】如图(1)在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于点D,BE⊥MN于点E.(1)求证:①△ADC≌△CEB;②DE=AD+BE.(2)当直线MN绕点C旋转到图(2)的位置时,DE、AD、BE又怎样的关系?并加以证明.【答案】(1)①证明见解析;②证明见解析;(2)DE=AD-BE,证明见解析.【详解】解:(1)①证明:∵AD⊥DE,BE⊥DE,∴∠ADC=∠BEC=90°,∵∠ACB=90°,∴∠ACD+∠BCE=90°,∠DAC+∠ACD=90°,∴∠DAC=∠BCE,在△ADC 和△CEB 中,CDA BEC DAC ECB AC BC ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ADC ≌△CEB (AAS ).②证明:由(1)知:△ADC ≌△CEB ,∴AD =CE ,CD =BE ,∵DC +CE =DE ,∴AD +BE =DE .(2)成立.证明:∵BE ⊥EC ,AD ⊥CE ,∴∠ADC =∠BEC =90°,∴∠EBC +∠ECB =90°,∵∠ACB =90°,∴∠ECB +∠ACE =90°,∴∠ACD =∠EBC ,在△ADC 和△CEB 中,ACD CBE ADC BEC AC BC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ADC ≌△CEB (AAS ),∴AD =CE ,CD =BE ,∴DE =EC -CD =AD -BE .题型六:尺规作图——利用角边角或角角边做三角形例6、已知三角形的两角及其夹边,求作这个三角形已知:∠α,∠β和线段c ,如图4-4-21所示.图4-4-21求作:△ABC ,使∠A =∠α,∠B =∠β,AB =c .作法:(1)作∠DAF =∠α;图4-4-224-4-23(2)在射线AF 上截取线段AB =c ;图4-4-24(3)以B 为顶点,以BA 为一边,在AB 的同侧作∠ABE =∠β,BE 交AD 于点C .△ABC 就是所求作的三角形.[点析] 我们这样作出的三角形是唯一的,依据是两角及其夹边分别相等的两个三角形全等. 例7.已知:角α,β和线段a ,如图4-4-29所示,求作:△ABC ,使∠A =∠α,∠B =∠β,BC =a .图4-4-29[解析] 本题所给条件是两角及其中一角的对边,可利用三角形内角和定理求出∠C ,再利用两角夹边作图. 解: 如图4-4-30所示:(1)作∠γ=180°-∠α-∠β;(2)作线段BC =a ;(3)分别以B ,C 为顶点,以BC 为一边作∠CBM =∠β,∠BCN =∠γ;(4)射线BM ,CN 交于点A .△ABC 就是所求作的三角形.图4-4-30【变式】(2022春·陕西·七年级陕西师大附中校考期中)尺规作图已知:α∠,∠β和线段a ,求作ABC ,使A α∠=∠,2B β∠=∠,AB a =.要求:不写作法,保留作图痕迹,标明字母.【详解】解:如图,△ABC即为所求..【过关检测】一、单选题A.带①去B.带②去C.带③去D.①②③都带去【答案】A【分析】根据全等三角形的判定可进行求解【详解】解:第①块不仅保留了原来三角形的两个角还保留了一边,则可以根据ASA来配一块一样的玻璃.故选:A.【点睛】此题主要考查了全等三角形的判定方法的开放性的题,要求学生将所学的知识运用于实际生活中,要认真观察图形,根据已知选择方法.≌过程中,先作2.(2023春·广东佛山·七年级校考期中)如图,在用尺规作图得到DBC ABCDBC ABC ∠=∠,再作DCB ACB ∠=∠,从而得到DBC ABC ≌,其中运用的三角形全等的判定方法是( )A .SASB .ASAC .AASD .SSS【答案】B 【分析】根据题意分析可得DBC ABC ∠=∠,DCB ACB ∠=∠,再加上公共边BC BC =,根据AAS ,即可判断DBC ABC ≌.【详解】解:∵得DBC ABC ∠=∠, BC BC =,DCB ACB ∠=∠,∴DBC ABC≌()ASA , 故选:B .【点睛】本题考查了作一个角等于已知角,全等三角形的判定,熟练掌握全等三角形的判定定理是解题的关键.3.(2023春·重庆沙坪坝·七年级重庆一中校考期末)如图,OC 平分AOB ∠,点P 是射线OC 上一点,PM OB ⊥于点M ,点N 是射线OA 上的一个动点,连接PN ,若6PM =,则PN 的长度不可能是( )【答案】D 【分析】如图所示,过点P 作PH OA ⊥于H ,证明POH POM △≌△得到6PH PM ==,由垂线段最短可知PN PH ≥,由此即可得到答案.【详解】解:如图所示,过点P 作PH OA ⊥于H ,∵PM OB ⊥,∴90PHO PMO ==︒∠∠,∵OC 平分AOB ∠,∴POH POM ∠=∠,又∵OP OP =,∴()AAS POH POM △≌△,∴6PH PM ==,由垂线段最短可知PN PH ≥,∵(264036=>,∴6,∴四个选项中,只有D 选项符合题意,故选:D .【点睛】本题主要考查了全等三角形的性质与判定,垂线段最短,实数比较大小,正确作出辅助线构造全等三角形是解题的关键. 4.(2023春·陕西咸阳·七年级统考期末)如图,AD BC ∥,ABC ∠的平分线BP 与BAD ∠的平分线AP 相交于点P ,作PE AB ⊥于点E ,若4PE =,则点P 到AD 与BC 的距离之和为( )A .4B .6C .8D .10【答案】C【分析】如图所示,过点P 作FG AD ⊥与F ,延长FP 交BC 于G ,先证明AD FG ⊥,由角平分线的定义得到EBP GBP =∠∠,进而证明EBP GBP △≌△得到4PG PE ==,同理可得4PF PE ==,则8FG PF PG =+=,由此即可得到答案.【详解】解:如图所示,过点P 作FG AD ⊥与F ,延长FP 交BC 于G ,∵AD BC ∥,∴AD FG ⊥,∵PE AB ⊥,∴90PFA PEA PEB PGB ====︒∠∠∠∠,∵BP 平分ABC ∠,∴EBP GBP =∠∠,又∵BP BP =,∴()AAS EBP GBP △≌△,∴4PG PE ==,同理可得4PF PE ==,∴8FG PF PG =+=,∴点P 到AD 与BC 的距离之和为8,故选C .【点睛】本题主要考查了平行线的性质,全等三角形的性质与判定,角平分线的定义,平行线间的距离等等,正确作出辅助线构造全等三角形是解题的关键. 5.(2023春·福建福州·七年级福建省福州第十六中学校考期末)如图,90C ∠=︒,点M 是BC 的中点,DM 平分ADC ∠,且8CB =,则点M 到线段AD 的最小距离为( )A .2B .3C .4D .5【答案】C 【分析】如图所示,过点M 作ME AD ⊥于E ,证明MDE MDC △≌△,得到ME MC =,再根据线段中点的定义得到142ME MC BC ===,根据垂线段最短可知点M 到线段AD 的最小距离为4.【详解】解:如图所示,过点M 作ME AD ⊥于E ,∴90MED C ==︒∠∠,∵DM 平分ADC ∠,∴MDE MDC =∠∠,又∵MD MD =,∴()AAS MDE MDC △≌△,∴ME MC =,∵点M 是BC 的中点,8CB =,∴142ME MC BC ===,∴点M 到线段AD 的最小距离为4,故选:C .【点睛】本题主要考查了全等三角形的性质与判定,角平分线的定义,垂线段最短等等,正确作出辅助线构造全等三角形是解题的关键.6.(2023·全国·八年级假期作业)如图,点E 在ABC 外部,点D 在ABC 的BC 边上,DE 交AC 于F ,若123∠=∠=∠,AE AC =,则( ).A .ABD AFE △≌△B .AFE ADC ≌△△ C .AFE DFC ≌△△D .ABC ADE △≌△ 【答案】D 【分析】首先根据题意得到BAC DAE ∠=∠,E C ∠=∠,然后根据ASA 证明ABC ADE △≌△.【详解】解:∵12∠=∠,∴12DAC DAC ∠+∠=∠+∠,∴BAC DAE ∠=∠,∵23∠∠=,AFE DFC ∠=∠,∴E C ∠=∠,∴在ABC 和ADE V 中,BAC DAE AC AEC E ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴()ASA ABC ADE ≌△△, 故选:D .【点睛】此题主要考查全等三角形的判定,解题的关键是熟知全等三角形的判定定理.7.(2023·浙江·八年级假期作业)小明不慎将一块三角形的玻璃摔碎成如图所示的四块(即图中标有1、2、3、4的四块)你认为将其中的哪一块带去,就能配一块与原来一样大小的三角形?应该带( )A .带①去B .带②去C .带③去D .①②③都带去【答案】B 【分析】本题应先假定选择哪块,再对应三角形全等判定的条件进行验证.【详解】解:①、③、④块玻璃不同时具备包括一完整边在内的三个证明全等的要素,所以不能带它们去, 只有第②块有完整的两角及夹边,符合ASA ,满足题目要求的条件,是符合题意的.故选:B .【点睛】本题主要考查三角形全等的判定,看这4块玻璃中哪个包含的条件符合某个判定.判定两个三角形全等的一般方法有:SSS 、SAS 、ASA 、AAS . 8.(2023春·浙江宁波·七年级校考期末)如图,ABC 的两条高AD 和BF 相交于点E ,8AD BD ==,10AC =,2AE =,则BF 的长为( )A .11.2B .11.5C .12.5D .13【答案】A 【分析】先证明BDE ADC △≌△,可得 6DE DC ==,14BC =,而10AC =,再由等面积法可得答案.【详解】解:∵ABC 的两条高AD 和BF 相交于点E ,∴90ADB ADC BFA ∠=∠=︒=∠,∵AEF BED ∠=∠,∴DBE DAC ∠=∠,∵8AD BD ==,2AE =,∴BDE ADC △≌△,6DE =,∴6DE DC ==,∴14BC =,而10AC =,由等面积法可得:111481022BF ⨯⨯=⨯⨯,解得:11.2BF =;故选A【点睛】本题考查的是三角形的内角和定理的应用,全等三角形的判定与性质,等面积法的应用,证明BDE ADC △≌△是解本题的关键. 9.(2023春·辽宁沈阳·七年级沈阳市第一二六中学校考阶段练习)如图,抗日战争期间,为了炸毁敌人的碉堡,需要测出我军阵地与敌人碉堡的距离.我军战士想到一个办法,他先面向碉堡的方向站好,然后调整帽子,使视线通过帽檐正好落在碉堡的底部点B ;然后转过身保持刚才的姿势,这时视线落在了我军阵地的点E 上;最后,他用步测的办法量出自己与E 点的距离,从而推算出我军阵地与敌人碉堡的距离,这里判定ABC DEF ≌△△的理由可以是( )A . SSSB . SASC . ASAD . AAA【答案】C 【分析】根据垂直的定义和全等三角形的判定定理即可得到结论.【详解】解:∵士兵的视线通过帽檐正好落在碉堡的底部点B ,然后转过身保持刚才的姿势,这时视线落在了我军阵地的点E 上,∴A D ∠=∠,∵AC BC ⊥,DF EF ^,∴90ACB DFE ∠=∠=︒,∵AC DF =,∴判定ABC DEF ≌△△的理由是ASA . 故选C .【点睛】本题主要考查了全等三角形的应用,分析题意找到相等的角和边判定三角形的全等是解题的关键.10.(2023春·四川达州·八年级统考期末)如图,已知BP 是ABC ∠的平分线,AP BP ⊥,若212cm BPC S =△,则ABC 的面积( )A .224cmB .230cmC .236cmD .不能确定【答案】A【分析】延长AP 交BC 于点C ,根据题意,易证()ASA ABP DBP ≌,因为APC △和DPC △同高等底,所以面积相等,根据等量代换便可得出2224cm ABC BPC S S ==.【详解】如图所示,延长AP ,交BC 于点D ,,∵AP BP ⊥,∴90APB DPB ∠=∠=︒,∵BP 是ABC ∠的角平分线,∴ABP DBP ∠=∠,在ABP 和DBP 中,ABP DBP BP BP APB DPB ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴()ASA ABP DBP ≌,∴AP DP =,∴ABP DBP S S =△△,∵APC △和DPC △同底等高,∴APC DPC S S =△,∴PBC DPB DPC ABP APC S S S S S =+=+△△△△,∴2224ABC BPC S S cm ==,故选:C .【点睛】本题考查了三角形的角平分线和全等三角形的判定,解题的关键是熟练运用三角形的角平分线和全等三角形的判定.二、填空题 11.(2023·浙江·八年级假期作业)如图,D 在AB 上,E 在AC 上,且B C ∠=∠,补充一个条件______后,可用“AAS ”判断ABE ACD ≌.【答案】BE CD =或AE AD =【分析】由于两个三角形已经具备B C ∠=∠,A A ∠=∠,故要找边的条件,只要不是这两对角的夹边即可.【详解】解:∵B C ∠=∠,A A ∠=∠,∴若用“AAS ”判断ABE ACD ≌,可补充的条件是BE CD =或AE AD =;故答案为:BE CD =或AE AD =.【点睛】本题考查了全等三角形的判定,熟知掌握判定三角形全等的条件是解题的关键.七年级期末)如图,在ABC 中, 【答案】ASA【分析】由AD BC ⊥、AD 平分BAC ∠、AD AD =可得出两个三角形对应的两个角及其夹边相等,于是可以利用ASA 判定这两个三角形全等.【详解】∵AD BC ⊥,∴90BDA CDA ︒=∠=∠.∵AD 平分BAC ∠,∴BAD ∠CAD =∠.在ABD △与ACD 中,BDA CDA AD AD BAD CAD ∠=∠⎧⎪=⎨⎪∠=∠⎩ ∴()ASA ABD ACD ≌.故答案为:ASA【点睛】本题考查了三角形全等的判定条件,解题的关键是找到两个三角形对应的边角相等. 13.(2023春·陕西榆林·七年级统考期末)如图,AB CD ⊥,且AB CD =,连接AD ,CE AD ⊥于点E ,BF AD ⊥于点F .若8CE =,5BF =,4EF =,则AD 的长为________.【答案】9【分析】只要证明(AAS)ABF CDE ≌,可得8AF CE ==,5BF DE ==,推出AD AF DF =+即可得出答案.【详解】解:∵AB CD ⊥,CE AD ⊥,BF AD ⊥,∴90AFB CED ∠=∠=︒,90A D ∠+∠=︒,90C D ∠=∠=︒,∴A C ∠=∠,∵AB CD =,∴(AAS)ABF CDE ≌,∴8AF CE ==,5BF DE ==,∵4EF =,∴()8549AD AF DF =+=+−=,故答案为:9.【点睛】本题考查全等三角形的判定与性质,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型. 14.(2023春·山东枣庄·七年级统考期末)如图,A ,B 两个建筑物分别位于河的两岸,为了测量它们之间的距离,可以沿河岸作射线BF ,且使BF AB ⊥,在BF 上截取BC CD =,过D 点作DE BF ⊥,使E C A ,,在一条直线上,测得16DE =米,则A ,B 之间的距离为______米.【答案】16【分析】根据已知条件可得ABC EDC △≌△,从而得到DE AB =,从而得解.【详解】∵BF AB DE BF ⊥⊥,,∴90B EDC ∠=∠=°,∵90B EDC ∠=∠=,BC CD BCA DCE =∠=∠,,∴()ASA ABC EDC ≌△△,∴DE AB =.又∵16DE =米,∴16AB =米,即A B ,之间的距离为16米.【点睛】此题主要考查全等三角形的应用,解题的关键是熟知全等三角形的判定方法.15.(2023·广东茂名·统考一模)如图,点A 、D 、C 、F 在同一直线上,AB DE ∥,AD CF =,添加一个条件,使ABC DEF ≌△△,这个条件可以是______.(只需写一种情况)【答案】BC EF ∥或B E ∠=∠或BCA EFD ∠=∠或AB DE =(答案不唯一)【分析】先证明A EDF ∠=∠及AC DF =,然后利用全等三角形的判定定理分析即可得解.【详解】解∶BC EF ∥或B E ∠=∠或BCA EFD ∠=∠或AB DE =,理由是∶∵AB DE ∥,∴A EDF ∠=∠,∵AD CF =,∴AD CD CF CD +=+即AC DF =,当BC EF ∥时,有BCA EFD ∠=∠,则() ASA ABC DEF ≌, 当BCA EFD ∠=∠时,则() ASA ABC DEF ≌, 当B E ∠=∠时,则() AAS ABC DEF ≌, 当AB DE =时,则() SAS ABC DEF ≌,故答案为∶BC EF ∥或B E ∠=∠或BCA EFD ∠=∠或AB DE =.【点睛】本题考查了对全等三角形的判定定理的应用,掌握全等三角形的判定定理有SAS , ASA , AAS , SSS 是解题的关键. 16.(2023春·上海虹口·七年级上外附中校考期末)如图,有一种简易的测距工具,为了测量地面上的点M 与点O 的距离(两点之间有障碍无法直接测量),在点O 处立竖杆PO ,并将顶端的活动杆PQ 对准点M ,固定活动杆与竖杆的角度后,转动工具至空旷处,标记活动杆的延长线与地面的交点N ,测量点N 与点O 的距离,该距离即为点M 与点O 的距离.此种工具用到了全等三角形的判定,其判定理由是______.【答案】两个角及其夹边对应相等的两个三角形全等【分析】根据全等三角形的判定方法进行分析,即可得到答案.【详解】解:在POM 和PON △中,90OP OPPOM PON ⎪=⎨⎪∠=∠=︒⎩, ()ASA POM PON ∴≌,∴判定理由是两个角及其夹边对应相等的两个三角形全等,故答案为:两个角及其夹边对应相等的两个三角形全等.【点睛】本题考查了全等三角形的判定,熟练掌握全等三角形的判定方法是解题关键.【答案】 = 180BCA α∠+∠=︒【分析】①求出90BEC AFC ∠=∠=︒,CBE ACF ∠=∠,根据AAS 证BCE CAF ≌△△,推出BE CF =,CE AF =即可得出结果;②求出CBE ACF ∠=∠,由AAS 证BCE CAF ≌△△,推出BE CF =,CE AF =即可得出结果.【详解】解:①90BCA ∠=︒,90α∠=︒,90BCE CBE ∴∠+∠=︒,90BCE ACF ∠+∠=︒,CBE ACF ∴∠=∠,在BCE 和CAF V 中,BEC CFACB CA ⎪∠=∠⎨⎪=⎩,(AAS)BCE CAF ∴△≌△,BE CF ∴=,CE AF =,||||EF CF CE BE AF ∴=−=−,②α∠与BCA ∠应满足180BCA α∠+∠=︒,在BCE 中,180180CBE BCE BEC α∠+∠=︒−∠=︒−∠,180BCA α∠=︒−∠,BCA CBE BCE ∴∠=∠+∠,ACF BCE BCA ∠+∠=∠,CBE ACF ∴∠=∠,在BCE 和CAF V 中,CBE ACF BEC CFACB CA ∠=∠⎧⎪∠=∠⎨⎪=⎩,(AAS)BCE CAF ∴△≌△, BE CF ∴=,CE AF =,||||EF CF CE BE AF ∴=−=−,故答案为:=,180BCA α∠+∠=︒.【点睛】本题是三角形综合题,主要考查了全等三角形的判定与性质、三角形的面积计算、三角形的外角性质等知识;解题的关键是判断出BCE CAF ≌△△. ABC 的角平分线,过点【答案】4【分析】延长CE 与BA 的延长线相交于点F ,利用ASA 证明ABD △和ACF △全等,进而利用全等三角形的性质解答即可.【详解】解:如图,延长CE 与BA 的延长线相交于点F ,90EBF F ∠+∠=︒,90ACF F ∠+∠=︒,EBF ACF ∴∠=∠,在ABD △和ACF △中,EBF ACF AB ACBAC CAF ∠=∠⎧⎪=⎨⎪∠=∠⎩,()ASA ABD ACF ∴≌, BD CF ∴=,BD Q 是ABC ∠的平分线,EBC EBF ∴∠=∠.在BCE 和BFE △中,BE BECEB FEB ⎪=⎨⎪∠=∠⎩,()ASA BCE BFE ∴≌, CE EF ∴=,2CF CE ∴=,24BD CF CE ∴===.故答案为:4.【点睛】本题主要考查了全等三角形的性质和判定,理解题意、灵活运用全等三角形的判定与性质是解题的关键.三、解答题【答案】(1)见解析(2)5【分析】(1)首先根据垂直判定AB EF ∥,得到ABC F ∠=∠,再利用AAS 证明即可;(2)根据全等三角形的性质可得9AB CF ==,4BC EF ==,再利用线段的和差计算即可.【详解】(1)解:∵CD AB ⊥,EF CE ⊥,∴AB EF ∥,∴ABC F ∠=∠,在ABC 和CFE 中,ACB EAC CE ⎪∠=∠⎨⎪=⎩, ∴()AAS ABC CFE △△≌; (2)∵ABC CFE △△≌, ∴9AB CF ==,4BC EF ==,∴5BF CF BC =−=.【点睛】本题考查了全等三角形的判定和性质,平行线的判定和性质,解题的关键是找准条件,证明三角形全等. 20.(2023春·陕西西安·七年级西安市铁一中学校考期末)如图,A ,C ,D 三点共线,ABC 和CDE 落在AD 的同侧,AB CE ∥,BC DE =,B D ∠=∠.求证:AB CE AD +=.【答案】见解析【分析】证明()AAS ABC CDE ≌,得出AB CD =,BC CE =,即可证明结论.【详解】解:∵AB CE ∥,∴A DCE ∠=∠,∵B D ∠=∠,BC DE =,∴()AAS ABC CDE ≌,∴AB CD =,BC CE =,∴AB CE CD AC AD +=+=.【点睛】本题主要考查了平行线的性质,三角形全等的判定和性质,解题的关键是熟练掌握三角形全等的判定方法证明ABC CDE △≌△.21.(2022秋·八年级课时练习)已知αβ∠∠,和线段a (下图),用直尺和圆规作ABC ,使A B AB a αβ∠=∠∠=∠=,,.【答案】见解析 【分析】先作出线段AB a =,再根据作与已知角相等的角的尺规作图方法作DAB EBA αβ∠=∠∠=∠,即可得到答案.【详解】解:作法如下图.1.作一条线段AB a =.2.分别以A ,B 为顶点,在AB 的同侧作DAB EBA αβ∠=∠∠=∠,,DA 与EB 相交于点C .ABC 就是所求作的三角形.【点睛】本题主要考查了三角形的尺规作图,熟知相关作图方法是解题的关键.22.(2023春·全国·七年级专题练习)如图,已知ABC ,请根据“ASA”作出DEF ,使DEF ABC ≌.【答案】见解析【分析】先作MEN B ∠=∠,再在EM 上截取ED BA =,在EN 上截取EF BC =,从而得到DEF ABC ≌.【详解】解:如图,DEF 为所作.【点睛】本题考查了作图-复杂作图:解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了全等三角形的判定. 23.(2023春·山西太原·七年级校考阶段练习)如图,点B 、F 、C 、E 在同一条直线上,已知FB CE =,AB DE ∥,ACB DFE ∠=∠,试说明:AC DF =.【答案】见解析【分析】利用ASA 定理证明三角形全等,然后利用全等三角形的性质分析求解.【详解】解:∵FB CE =,∴FB FC CE FC +=+,即BC EF =,∵AB DE ∥,∴B E ∠=∠,在ABC 和DEF 中B E BC EF ACB DFE ∠=∠⎧⎪=⎨⎪∠=∠⎩∴ABC DEF ≌△△, ∴AC DF =.【点睛】此题主要考查了全等三角形的判定,关键是掌握判定两个三角形全等的一般方法:SSS 、SAS 、ASA 、AAS 、HL .三角形全等的判定是中考的热点,一般以考查三角形全等的方法为主,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.24.(2020秋·广东广州·八年级海珠外国语实验中学校考阶段练习)如图,已知:EC AC =,BCE DCA ∠=∠,A E ∠=∠.求证:AB ED =.【答案】见解析【分析】先求出ACB ECD ∠=∠,再利用“角边角”证明ABC 和EDC △全等,然后根据全等三角形对应边相等证明即可.【详解】证明:∵BCE DCA ∠=∠,∴BCE ACE DCA ACE ∠+∠=∠+∠,即ACB ECD ∠=∠.在ABC 和EDC △中,∵ACB ECD AC ECA E ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴()ASA ABC EDC ≌△△.∴AB ED =.【点睛】本题考查了全等三角形的判定和性质,熟练掌握全等三角形的判定定理是解题的关键.25.(2023春·福建宁德·七年级校考阶段练习)如图,点B ,F ,C ,E 在直线l 上(F ,C 之间不能直接测量),点A ,D 在l 异侧,测得AB DE =,AB DE ∥,A D ∠=∠.(1)求证:ABC DEF ≌△△; (2)若10BE =,3BF =,求FC 的长度.【答案】(1)见解析(2)4【分析】(1)由AB DE ∥,得ABC DEF ∠=∠,而AB DE =,A D ∠=∠,即可根据全等三角形的判定定理“ASA ”证明ABC DEF ≌△△; (2)根据全等三角形的性质得BC EF =,则3BF CE ==,即可求得FC 的长度.【详解】(1)解:证明:∵AB DE ∥,∴ABC DEF ∠=∠,在ABC 和DEF 中,A D AB DE ABC DEF ∠=∠⎧⎪=⎨⎪∠=∠⎩ ∴()ASA ABC DEF ≌△△; (2)解:由(1)知()ASA ABC DEF ≌△△,∴BC EF =, ∴BF FC CE FC +=+,∴3BF CE ==,∵10BE =,∴10334FC BE BF CE =−−=−−=,∴FC 的长度是4.【点睛】此题重点考查全等三角形的判定与性质、平行线的性质等知识,根据平行线的性质证明ABC DEF ∠=∠是解题的关键. 26.(2023·浙江·八年级假期作业)如图,ABC 中,BD CD =,连接BE ,CF ,且BE CF ∥.(1)求证:BDE CDF ≌;(2)若15AE =,8AF =,试求DE 的长.【答案】(1)证明见解析(2)72【分析】(1)根据平行线的性质可得BED CFD Ð=Ð,根据全等三角形的判定即可证明;(2)根据全等三角形的性质可得DE DF =,即可求得.【详解】(1)证明:∵BE CF ∥,∴BED CFD Ð=Ð,∵BDE CDF ∠=∠,BD CD =,∴()AAS BDE CDF ≌;(2)由(1)结论可得DE DF =,∵1587EF AE AF =−=−=,∴72DE =.【点睛】全等三角形的判定和性质,熟练掌握平行线的性质,全等三角形的判定和性质是解题的关键. 27.(2023春·江西鹰潭·七年级校考阶段练习)将两个三角形纸板ABC 和DBE 按如图所示的方式摆放,连接DC .已知DBA CBE ∠=∠,BDE BAC ∠=∠,AC DE DC ==.(1)试说明ABC DBE ≌△△.(2)若72ACD ∠=︒,求BED ∠的度数.【答案】(1)见解析(2)36BED ∠=︒【分析】(1)利用AAS 证明三角形全等即可;(2)全等三角形的性质,得到BED BCA ∠=∠,证明()SSS DBC ABC ≌,得到1362BCD BCA ACD ∠=∠=∠=︒,即可得解.【详解】(1)解:因为DBA CBE ∠=∠,所以DBA ABE CBE ABE ∠+∠=∠+∠,即DBE ABC ∠=∠.在ABC 和DBE 中,ABC DBE BAC BDEAC DE ∠=∠⎧⎪∠=∠⎨⎪=⎩, 所以()AAS ABC DBE ≌. (2)因为ABC DBE ≌△△, 所以BD BA =,BCA BED ∠=∠.在DBC △和ABC 中,DC AC CB CBBD BA =⎧⎪=⎨⎪=⎩, 所以()SSS DBC ABC ≌, 所以1362BCD BCA ACD ∠=∠=∠=︒,所以36BED BCA ∠=∠=︒.【点睛】本题考查全等三角形的判定和性质.解题的关键是证明三角形全等. 28.(2023春·河南驻马店·七年级统考期末)如图,线段AD 是ABC 的中线,分别过点B 、C 作AD 所在直线的垂线,垂足分别为E 、F .(1)请问BDE 与CDF 全等吗?说明理由;(2)若ACF △的面积为10,CDF 的面积为6,求ABE 的面积.【答案】(1)BDE CDF ≌△△,见解析 (2)22【分析】(1)利用AAS 证明三角形全等即可.(2)根据中线性质,得到,ABD ACD ACF CDF CDF ==+=△△△△△BDE △S S S S S S ,结合ABEABD BDE S S S =+△△△计算即可. 【详解】(1)BDE CDF ≌△△,理由如下: ∵AD 是ABC 的中线,∴BD CD =,∵BE AE ⊥,CF AE ⊥,∴90BED CFD ∠=∠=︒,在BDE 和CDF 中,BED CFD BDE CDFBD CD ∠=∠⎧⎪∠=∠⎨⎪=⎩∴()AAS BDE CDF ≌.(2)∵10ACF S =△,6CDF S =△,BDE CDF ≌,∴10616ACD ACF CDF S S S =+=+=△△△,6BDE CDF S S ==,∵BD CD =∴ABD △和ACD 是等底同高的三角形∴16ABD ACD S S ==△△∴16622ABE ABD BDE S S S =+=+=△△△.【点睛】本题考查了三角形全等的判定和性质,中线的性质,三角形面积的计算,熟练掌握三角形全等的判定和性质,中线的性质是解题的关键. 29.(2019·七年级单元测试)(1)求证:等边三角形内的任意一点到两腰的距离之和等于定长.(提示:添加辅助线证明)(2)如图所示,在三角形ABC 中,点D 是三角形内一点,连接DA 、DB 、DC ,若,=∠=∠AB AC ADB ADC ,求证:AD 平分BAC ∠.【答案】(1)详见解析;(2)详见解析.【分析】(1)已知点P 是等边三角形ABC 内的任意一点,过点P 分别作三边的垂线,分别交三边于点D 、点E 、点F .求证PD PE PF ++为定长,即可完成证明;(2)(面积法)过点A 作AE BD ⊥交BD 延长线于点E ,再过点A 作AF CD ⊥交CD 延长线于点F.因为ADB ADC ∠=∠,所以ADE ADF ∠=∠,因此(AAS)ADF ADE ≅,得到AF AE =.进而AFC AEB ≅,得到ABD ACD ∠=∠,因此BAD CAD ∠=∠,即AD 平分BAC ∠.【详解】(1) 已知:等边如图三角形ABC ,P 为三角形ABC 内任意一点,PD ⊥AB, PF ⊥AC, PE ⊥BC, 求证:PD+PE+PF 为定值.证明:如图:过点A 作AG BC ⊥,垂足为点G ,分别连接AP 、BP 、CP .∵ABC ABP BCP CAP S S S S =++, ∴11112222BC AG BC PE AC PF AB PD =++又∵BC=AB=AC∴AG=PE+PF+PD,即PD PE PF AG ++=定长.∴等边三角形内的任意一点到两腰的距离之和等于定长.(2)过点A 作AE BD ⊥交BD 延长线于点E ,再过点A 作AF CD ⊥交CD 延长线于点F.∵ADB ADC ∠=∠,∴ADE ADF ∠=∠,又∵AD=AD∴(AAS)ADF ADE ≅,∴AF AE =∴AFC AEB ≅,∴ABD ACD ∠=∠,∴BAD CAD ∠=∠,即AD 平分BAC ∠.【点睛】本题考查了等边三角形的性质和全等三角形的性质和判定,其中做出辅助线是解答本题的关键.。
全等三角形题型归纳(经典完整)
一,證明邊或角相等方法:證明兩條線段相等或角相等,如果這兩條線段或角在兩個三角形內,就證明這兩個三角形全等;如果這兩條線段或角在同一個三角形內,就證明這個三角形是等腰三角形;如果看圖時兩條線段既不在同一個三角形內,也不在兩個全等三角形內,那麼就利用輔助線進行等量代換,同樣如果角不在同一個三角形內,也不在兩個全等三角形內,也是用等量代換(方法是:(1)同角(等角)の餘角相等(2)同角(等角)の補角相等,此類型問題一般不單獨作一大題,往往是通過得出角相等後用來證明三角形全等,而且一般是在雙垂直の圖形中)1.已知,如圖,AB ⊥AC ,AB =AC ,AD ⊥AE ,AD =AE 。
求證:BE =CD 。
2.如圖,在四邊形ABCD 中,E 是AC 上の一點,∠1=∠2,∠3=∠4,求證: ∠5=∠6.3.已知:如圖△ABC 中,AB=AC ,BD ⊥AC ,CE ⊥AB ,BD 、CE 交於H 。
求證:HB=HC 。
2、如圖, 已知:AB ⊥BC 於B , EF ⊥AC 於G , DF ⊥BC 於D , BC=DF .求證:AC=EF .A ED C B654321E DCBAFGE D CBAFBC AMNE 1234EDC BA 二.證明線段和差問題 (形如:AB+BC=CD,AB=AD - CD)證明兩條線段和等於另一條線段,常常使用截長補短法。
①截長法即為在這三條最長の線段截取一段使它等於較短線段中の一條,然後證明剩下の一段等於另一條較短の線段。
②補短法即為在較短の一條線段上延長一段,使它們等於最長の線段,然後證明延長の這一線段等於另一條較短の線段。
證明兩條線段差等於另一條線段,只需把差化成和來解決即可。
1.如圖,已知AD ∥BC ,∠PAB の平分線與∠CBA の平分線相交於E ,CE の連線交AP 於D .求證:AD +BC =AB .2、如圖,已知:△ABC 中,∠BAC =90, AB =AC ,AE 是過A 一直線,且點B 、C 在AE の異側,BD ⊥AE 於D ,CE ⊥AE 於E . 求證:BD =DE +CE ;3、如圖,AB ∥CD ,DE 平分∠ADC ,AE 平分∠BAD ,求證:AB=AD - CDP E D CB A三.證明線段の2倍或21關系 ( AB CE =2, MN BN =12) 1. 利用含30角の直角三角形の性質證明例1. 已知,如圖1,∆ABC 是等邊三角形,在AC 、BC 上分別取點D 、E ,且AD =CE ,連結AE 、BD 交於點N ,過B 作BM AE ⊥,垂足為M ,求證:MN BN =12(提示:先證∠=BNE 60)2. 利用等線段代換(充分利用中點)例1.如圖,△ABC 中,∠BAC =90度,AB =AC ,BD 是∠ABC の平分線,BD の延長線垂直於過C 點の直線於E ,直線CE 交BA の延長線於F . 求證:BD =2CE .3.轉化為線段和問題,利用截長補短法例5. 已知:如圖5,四邊形ABCD 中,∠=D 90,對角線AC 平分∠BAD ,AC BC =,FE DCB A求證:AD AB12四.證明二倍角關系利用三角形外角和定理和等量代換如圖,△ABC 中,AD 是∠CAB の平分線,且AB =AC +CD ,求證:∠C =2∠BD C BA。
三角形全等的判定“边角边”(7种题型)-2023年新八年级数学常见题型(人教版)(解析版)
三角形全等的判定“边角边”(7种题型)【知识梳理】全等三角形判定——“边角边”1. 全等三角形判定——“边角边”两边和它们的夹角对应相等的两个三角形全等(可以简写成“边角边”或“SAS ”).要点诠释:如图,如果AB = ''A B ,∠A =∠'A ,AC = ''A C ,则△ABC ≌△'''A B C . 注意:这里的角,指的是两组对应边的夹角.2. 有两边和其中一边的对角对应相等,两个三角形不一定全等.如图,△ABC 与△ABD 中,AB =AB ,AC =AD ,∠B =∠B ,但△ABC 与△ABD 不完全重合,故不全等,也就是有两边和其中一边的对角对应相等,两个三角形不一定全等.【考点剖析】题型一:用“边角边”直接证明三角形全等例1.已知:如图,点C 为AB 中点,CD=BE ,CD ∥BE.求证:△ACD ≌△CBE.【解析】证明:∵CD ∥BE ,∴∠ACD=∠B..∵点C 为AB 中点,∴AC=CB.又∵CD=BE ,∴△ACD ≌△CBE (SAS )【变式1】如图,AC DF =,12∠=∠,如果根据“SAS ”判定ABC DEF △≌△,那么需要补充的条件是( )A .A D ∠=∠B .AB DE =C .B E ∠=∠D .BF CE =【答案】D 【详解】解:需要补充的条件是BF=CE ,∴BF+FC=CE+CF ,即BC=EF ,在△ABC 和△DEF 中,12AC DF BC EF =⎧⎪∠=∠⎨⎪=⎩,∴△ABC ≌△DEF (SAS ).故选:D .【变式1】如图,点B ,E ,C ,F 在同一条直线上,AB =DE ,BE =CF ,∠B =∠DEF .求证:△ABC ≌△DEF .【解答】证明:∵BE =CF ,∴BE+CE =CF+EC .∴BC =EF .在△ABC 和△DEF 中,{AB =DE∠B =∠DEF BC =EF,∴△ABC≌△DEF(SAS).【变式3】如图,CA=CD,∠BCE=∠ACD,BC=EC.求证:△ABC≌△DEC.【解答】证明:∵∠BCE=∠ACD,∴∠BCE+∠ACE=∠ACD+∠ACE,∴∠ACB=∠DCE,在△ABC和△DEC中,{AC=DC∠ACB=∠DCE BC=EC,∴△ABC≌△DEC(SAS).【变式4】如图,D、C、F、B四点在一条直线上,AC=EF,AC⊥BD,EF⊥BD,垂足分别为点C、点F,BF=CD.试说明:△ABC≌△EDF.【解答】解:∵AC⊥BD,EF⊥BD,∴∠ACB=∠EFD=90°,∵BF=CD,∴BF+CF=CD+CF,即BC=DF,在△ABC和△EDF中,{BC=DF∠ACB=∠EFD AC=EF,∴△ABC≌△EDF(SAS).【变式5】如图,△ABC 中,AB=AC ,点E ,F 在边BC 上,BE=CF ,点D 在AF 的延长线上,AD=AC ,(1)求证:△ABE ≌△ACF ;(2)若∠BAE=30°,则∠ADC= °.【答案】(1)证明见解析;(2)75.【详解】(1)∵AB=AC ,∴∠B=∠ACF ,在△ABE 和△ACF 中,AB AC B ACFBE CF =⎧⎪∠=∠⎨⎪=⎩,∴△ABE ≌△ACF (SAS );(2)∵△ABE ≌△ACF ,∠BAE=30°,∴∠CAF=∠BAE=30°,∵AD=AC ,∴∠ADC=∠ACD ,∴∠ADC=280013︒−︒=75°,故答案为75. 【变式6】(2023春·江苏·七年级统考期末)如图,在ABC 和ADE V 中,AB AC =,AD AE =,90BAC DAE ∠=∠=︒,连接BD CE 、.(1)求证:ABD ACE ≌△△. (2)图中BD 和CE 有怎样的关系?试证明你的结论.【详解】(1)解:90BAC DAE ∠=∠=︒∴BAC CAD DAE CAD ∠+∠=∠+∠∴BAD EAC ∠=∠AB AC =,AD AE =∴ABD ACE ≌△△. (2)解:如图,设BD 和CE 交点为FABD ACE ≌△△∴ACE ABD ∠=∠90BAC ∠=︒∴90ABD DBC ACB ∠+∠+∠=︒∴90ACE DBC ACB ∠+∠+∠=︒即90ECB DBC ∠+∠=︒∴()18090BFC ECB DBC ∠=︒−∠+∠=︒∴BD CE ⊥.题型二:用“边角边”间接证明三角形全等例2、已知:如图,AB =AD ,AC =AE ,∠1=∠2.求证:BC =DE .【答案与解析】证明: ∵∠1=∠2∴∠1+∠CAD =∠2+∠CAD ,即∠BAC =∠DAE在△ABC 和△ADE 中AB AD BAC DAE AC AE =⎧⎪∠=∠⎨⎪=⎩∴△ABC ≌△ADE (SAS )∴BC =DE (全等三角形对应边相等)【变式1】如图所示,点O 为AC 的中点,也是BD 的中点,那么AB 与CD 的关系是________.【答案】平行且相等【详解】解:∵点O 为AC 的中点,也是BD 的中点,∴AO=OC ,BO=OD ,又∵∠AOB=∠DOC ,∴△AOB ≌△COD (SAS )∴AB=CD ,∠A=∠C ,∴AB//CD,即AB 与CD 的关系是平行且相等,故答案为:平行且相等.【变式2】如图,已知AB ∥CD ,AB =CD ,∠A =∠D .求证:AF =DE .【详解】证明:∵AB//CD ,∴∠B =∠C ,在△ABF 和△DCE 中,A D AB CDB C ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ABF ≌△DCE (ASA ),∴AF =DE .【变式3】如图,点E 、F 分别是矩形ABCD 的边 AB 、CD 上的一点,且DF =BE .求证:AF=CE .【分析】由SAS 证明△ADF ≌△CBE ,即可得出AF =CE .【详解】证明:∵四边形ABCD 是矩形,∴∠D =∠B =90°,AD =BC ,在△ADF 和△CBE 中,AD BC D B DF BE ⎧⎪∠∠⎨⎪⎩===,∴△ADF ≌△CBE (SAS ),∴AF =CE .【变式4】已知ABN 和ACM △位置如图所示,AB AC =,AD AE =,12∠=∠.(1)试说明:BD CE =;(2)试说明:M N ∠=∠.【详解】解:(1)在△ADB 和△AEC 中,12AB AC AD AE =⎧⎪∠=∠⎨⎪=⎩∴△ADB ≌△AEC (SAS ),∴BD=CE ;(2)∵12∠=∠,∴BAN CAM ∠=∠,∵△ADB ≌△AEC ,∴B C ∠=∠,∴180180B BAN C CAM ︒−∠−∠=︒−∠−∠,即M N ∠=∠.【变式5】如图,将两个一大、一小的等腰直角三角尺拼接 (A 、B 、D 三点共线,AB =CB ,EB =DB ,∠ABC =∠EBD =90°),连接AE 、CD ,试确定AE 与CD 的位置与数量关系,并证明你的结论.【答案】AE =CD ,并且AE ⊥CD证明:延长AE 交CD 于F ,∵△ABC 和△DBE 是等腰直角三角形∴AB =BC ,BD =BE在△ABE 和△CBD 中90AB BC ABE CBD BE BD =⎧⎪∠=∠=︒⎨⎪=⎩∴△ABE ≌△CBD (SAS )∴AE =CD ,∠1=∠2又∵∠1+∠3=90°,∠3=∠4(对顶角相等)∴∠2+∠4=90°,即∠AFC =90°∴AE ⊥CD题型三:边角边与倍长中线例3、如图,AD 是△ABC 的中线,求证:AB +AC >2AD .【答案与解析】 证明:如图,延长AD 到点E ,使AD =DE ,连接CE .在△ABD 和△ECD 中,∴△ABD ≌△ECD (SAS ).∴AB =CE .∵AC +CE >AE ,∴AC +AB >AE =2AD .即AC +AB >2AD .14.如图所示,AD 是△ABC 中BC 边上的中线,若AB =2,AC =6,则AD 的取值范围是__________AD DE ADB EDC BD CD ⎧⎪∠∠⎨⎪⎩===.【答案】2<AD <4【分析】此题要倍长中线,再连接,构造全等三角形.根据三角形的三边关系:任意两边之和大于第三边,任意两边之差小于第三边.即可求解.【详解】解:延长AD 到E ,使AD =DE ,连接BE ,∵AD 是△ABC 的中线,∴BD =CD ,在△ADC 与△EDB 中,BD CD ADC BDE AD DE =⎧⎪∠=∠⎨⎪=⎩∴△ADC ≌△EDB (SAS ),∴EB =AC ,根据三角形的三边关系定理:6-2<6+2,∴2<AD <4,故AD 的取值范围为2<AD <4.【点睛】本题主要考查对全等三角形的性质和判定,三角形的三边关系定理等知识点的理解和掌握,能推出6-2<AE <6+2是解此题的关键.题型四:边角边与截长补短例4、已知,如图:在△ABC 中,∠B =2∠C ,AD ⊥BC ,求证:AB =CD -BD .【答案与解析】 证明:在DC 上取一点E ,使BD =DE∵ AD ⊥BC ,∴∠ADB =∠ADE在△ABD 和△AED 中,∴△ABD ≌△AED (SAS ). ∴AB =AE ,∠B=∠AED .又∵∠B =2∠C =∠AED =∠C +∠EAC .∴∠C =∠EAC .∴AE =EC .∴AB =AE =EC =CD —DE =CD —BD .【变式】已知,如图,在四边形ABCD 中,AC 平分∠BAD ,CE ⊥AB 于E ,并且AE =(AB +AD ), 求证:∠B +∠D =180°.【答案】证明:在线段AE 上,截取EF =EB ,连接FC ,BD DE ADB=ADE AD AD ⎧⎪⎨⎪⎩=∠∠=12A EDC B∵CE ⊥AB ,∴∠CEB =∠CEF =90°在△CBE 和△CFE 中,∴△CBE 和△CFE (SAS )∴∠B =∠CFE∵AE =(AB +AD ),∴2AE = AB +AD∴AD =2AE -AB∵AE =AF +EF ,∴AD =2(AF +EF )-AB =2AF +2EF -AB =AF +AF +EF +EB -AB =AF +AB -AB ,即AD =AF在△AFC 和△ADC 中∴△AFC ≌△ADC (SAS )∴∠AFC =∠D∵∠AFC +∠CFE =180°,∠B =∠CFE.∴∠AFC +∠B =180°,∠B +∠D =180°.题型五:边边角不能判定两个三角形全等例5.如图,已知AC =BD ,添加下列一个条件后,仍无法判定△ABC ≌△BAD 的是()A .∠ABC =∠BADB .∠C =∠D =90° C .∠CAB =∠DBA D .CB =DA【答案】A CEB CEFEC =EC EB EF=⎧⎪∠=∠⎨⎪⎩12(AF ADFAC DAC AC AC =⎧⎪∠=∠⎨⎪=⎩角平分线定义)【分析】根据全等三角形的判定方法即可一一判断;【详解】在△ABC 与△BAD 中,AC =BD ,AB =BA ,A 、SSA 无法判断三角形全等,故本选项符合题意;B 、根据HL 即可判断三角形全等,故本选项不符合题意;C 、根据SAS 即可判断三角形全等,故本选项不符合题意;D 、根据SSS 即可判断三角形全等,故本选项不符合题意;故选:A . 题型六:尺规作图——利用边角边做三角形例6.(2023春·广东揭阳·七年级统考期末)已知:线段a ,c ,α∠.求作:ABC .使BC a =,AB c =,ABC α∠=∠.(要求:尺规作图,不写作法,保留作图痕迹)【详解】解:如图所示:【变式1】(2023春·陕西宝鸡·七年级校考阶段练习)尺规作图:已知:线段m ,n ,∠β.求作:ABC ,使AB m =,BC n =,ABC β∠=∠(保留作图痕迹,不写作法).【详解】解:如图所示:ABC ∴即为所作.题型七:边边边与边角边综合 八年级假期作业)如图,在ABC 中,(1)图中有___________对全等三角形;(2)请选一对加以证明.【详解】(1)图中有3对全等三角形:ABD ACD ≌△△,ABE ACE ≌△△,BDE CDE ≌V V . 故答案为3;(2)∵D 是BC 的中点,∴BD CD =.在ABD △和ACD 中,AB AC BD CDAD AD =⎧⎪=⎨⎪=⎩, ∴()SSS ABD ACD ≌V V ;∴BAE CAE ∠=∠.在ABE 和ACE △中,AB AC BAE CAEAE AE =⎧⎪∠=∠⎨⎪=⎩, ∴()SAS ABE ACE △△≌; ∴BE CE =.在BDE △和CDE 中,BE CE BD CDDE DE =⎧⎪=⎨⎪=⎩, ∴()SSS BDE CDE ≌V V . 【过关检测】一、单选题A .SSSB .SASC .ASAD .AAS【答案】B 【分析】由题意可知根据“边角边”可证OAB OCD VV ≌即可选择.【详解】解:∵在OAB 和OCD 中,OC OA COD AOB OD OB =⎧⎪∠=∠⎨⎪=⎩, ∴()OAB OCD SAS ≌△△.故判定这两个三角形全等的依据是“SAS ”.故选B .【点睛】本题考查三角形全等的判定.熟练掌握判定三角形全等的条件是解题关键. 2.(2023春·江西景德镇·七年级统考期末)如图,AB AC =,点D 、E 分别在AC 和AB 边上,且AD AE =,则可得到ABD ACE △△≌,判定依据是( )A .ASAB .AASC .SASD .SSS【答案】C 【分析】根据SAS 证明ABD ACE △△≌,即可求解. 【详解】解:在ABD △与ACE △中,AB AC BAD CAEAD AE =⎧⎪∠=∠⎨⎪=⎩∴ABD ACE △△≌()SAS ,故选:C . 【点睛】本题考查了全等三角形的判定,熟练掌握全等三角形的判定定理是解题的关键.3.(2023春·四川成都·七年级统考期末)如图,在ABF △和DCE △中,点E 、F 在BC 上,AF DE =,AFB DEC ∠=∠,添加下列一个条件后能用“SAS ”判定ABF DCE ≌△△的是( )A .BE CF =B .BC ∠=∠ C .AD ∠=∠ D .AB DC =【答案】A 【分析】先根据BE CF =得到BF CE =,再根据全等三角形的判定定理进行分析即可.【详解】解:∵BE CF =,∴BE EF CF EF +=+,即BF CE =,A 选项,因为BE CF =,AFB DEC ∠=∠,BF CE =,满足“SAS ”判定ABF DCE ≌△△,符合题意; B 选项,因为B C ∠=∠,AFB DEC ∠=∠,BF CE =,是用“AAS ”判定ABF DCE ≌△△,不符合题意; C 选项,因为A D ∠=∠,AF DE =,AFB DEC ∠=∠,是用“ASA ”判定ABF DCE ≌△△,不符合题意; D 选项,因为AB DC =,AF DE =,AFB DEC ∠=∠,不能判定ABF DCE ≌△△,不符合题意; 故选:A .【点睛】本题考查了全等三角形的判定定理,能熟记全等三角形的判定定理是解此题的关键.4.(2023春·四川达州·七年级统考期末)如图,在2×3的正方形方格中,每个正方形方格的边长都为1,则1∠和2∠的关系是( )A .221∠=∠B .2190∠−∠=︒C .1290∠+∠=︒D .12180∠+∠=︒【答案】C 【分析】先证明ABC CDE △△≌,再利用全等三角形的性质和等量代换求解即可. 【详解】解:如图,在ABC 和CDE 中,2901AC CE ACB CED BC DE ==⎧⎪∠=∠=︒⎨⎪==⎩,∴ABC CDE △△≌()SAS ,∴1DCE ∠=∠, ∵290DCE ∠+∠=︒,∴1290∠+∠=︒,故选:C .【点睛】本题考查了全等三角形的判定与性质,利用网格证明三角形全等是解题的关键.A .20cmB .45cmC .25cmD .65cm【答案】D 【分析】根据题意可得:OF OG =,OC OD =,利用已知条件判断出OFC OGD ≌,得到CF DG =,即可求出答案.【详解】解:如图:∵O 是FG 和CD 的中点,∴OF OG =,OC OD =,在OFC △和OGD 中,OF OG FOC GODOC OD =⎧⎪∠=∠⎨⎪=⎩,∴()SAS OFC OGD ≌,∴CF DG =,又20cm DG =,∴20cm CF DG ==,∴小明离地面的高度=支点到地面的高度452065cm CF +=+=,故D 正确.故选:D .【点睛】本题主要考查了三角形全等知识的应用,用数学方法解决生活中有关的实际问题,把实际问题转换成数学问题,用数学方法加以论证,最后进行求解,是一种十分重要的方法. 七年级统考期末)如图,已知在ABC 和BAD 中,直接判定ABC BAD ≌的依据是( A .SSSB .AASC .ASAD .SAS【答案】D 【分析】找出两个三角形中已知相等的对应边和对应角,然后根据判定方法即可判断.【详解】解:在ABC 和ABD △中,BC AD ABC BAD AB BA =⎧⎪∠=∠⎨⎪=⎩, ∴()ABC BAD SAS ≌.故选:D .【点睛】此题主要考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS 、SAS 、ASA 、AAS 、HL .注意:判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角. 7.(2023春·上海浦东新·七年级校考阶段练习)如图,AD 平分BAC ∠,AB AC =,连接BD 、CD ,并延长交AC 、AB 于F 、E 点,则图中全等的三角形有( )对.A .3对B .4对C .5对D .6对【答案】B 【分析】认真观察图形,确定已知条件在图形上的位置,结合全等三角形的判定方法,仔细寻找.【详解】解:AD 平分BAC ∠,BAD CAD ∴∠=∠,在ABD 与ACD 中,AB AC BAD CADAD AD ⎧⎪∠∠⎨⎪⎩===,()SAS ABD ACD ∴≌,BD CD ∴=,B C ∠=∠,ADB ADC ∠=∠,又EDB FDC ∠=∠,ADE ADF ∴∠=∠,AED AFD ∴≌,BDE CDF ≌,ABF ACE ≌.AED AFD ∴≌,ABD ACD ≌,BDE CDF ≌,ABF ACE ≌,共4对.故选:B .【点睛】本题考查三角形全等的判定方法和全等三角形的性质.注意:AAA 、SSA 不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.8.(2023春·河北保定·七年级校考阶段练习)如图,在AOB 和COD △中,OA OB =,OC OD =,AOB COD ∠=∠,AC ,BD 交于点M ,关于结论Ⅰ,Ⅱ,下列判断正确的是( )结论Ⅰ:AC BD =;结论Ⅱ:CMD COD ∠>∠A .Ⅰ对,Ⅱ错B .Ⅰ错,Ⅱ对C .Ⅰ,Ⅱ都对D .Ⅰ,Ⅱ都错【答案】A 【分析】根据已知条件可知三角形的全等,根据全等三角形的性质可知边相等,再根据三角形的内角和即可求出角的大小.【详解】AOB COD ∠=∠,AOB AOD COD AOD ∴∠+∠=∠+∠,AOC BOD ∴∠=∠,∴在AOC 和BOD 中,∴OA OB AOC BODOC OD =⎧⎪∠=∠⎨⎪=⎩,()AOC BOD SAS ∴≌, AC BD ∴=,故Ⅰ正确;AOC BOD ≌,OCA BDO ∴∠=∠,MDC MDO ODC ∴∠=∠+∠,OCD OCA MCD ∴∠=∠+∠,180()COD OCD ODC ∠=︒−∠+∠,180()CMD MDC MCD ∠=︒−∠+∠,180()CMD MDO ODC MCD ∴∠=︒−∠+∠+∠,180()COD OCA MCD ODC ∠=︒−∠+∠+∠,CMD COD ∴∠=∠,故Ⅱ错误;故选:A .【点睛】本题考查了全等三角形的性质,熟记对应性质和判定定理是解题的关键. 9.(2023春·江苏·七年级统考期末)如图,在四边形ABCD 中,对角线AC 平分BAD ∠,AD AB >,下列结论正确的是( )A .AD AB CD BC −=−B .AD AB CD BC −>− C .AD AB CD BC −<−D .AD AB −与CD BC −的大小关系无法确定【答案】B 【分析】在AD 上截取AE AB =,BAC EAC ≌,由DE CD CE >−即可求解.【详解】解:如图,在AD 上截取AE AB =,AC 平分BAD ∠,BAC EAC ∴∠=∠,在BAC 和EAC 中AB AE BAC EACAC AC =⎧⎪∠=∠⎨⎪=⎩,∴BAC EAC ≌(SAS ),BC EC ∴=,在CDE 中:DE CD CE >−,AD AB AD AE CD BC −=−>−.故选:B .【点睛】本题考查了三角形中三边的关系,三角形全等的判定及性质,掌握性质,并根据题意作出辅助线是解题的关键. 10.(2022秋·云南昭通·八年级统考期末)如图,AD 是ABC 的中线,E ,F 分别是AD 和AD 延长线上的点,且CE BF ,连接BF CE ,,下列说法: ①DE DF =;②ABD 和ACD 面积相等;③CE BF =;④BDF CDE ≌;⑤CEF F ∠∠=. 其中正确的有( )【答案】B 【分析】根据三角形中线的定义可得BD CD =,然后利用“边角边”证明BDF 和CDE 全等,根据全等三角形对应边相等可得CE BF =,全等三角形对应角相等可得F CED ∠∠=,再根据内错角相等,两直线平行可得BF CE ,最后根据等底等高的三角形的面积相等判断出②正确.【详解】解:∵AD 是ABC 的中线,∴BD CD =,在BDF 和CDE 中,BD CD BDF CDEDF DE =⎧⎪∠=∠⎨⎪=⎩,∴()SAS BDF CDE ≌,故④正确∴CE BF F CED ∠∠==,,故①正确,∵CEF CED ∠∠=,∴CEF F ∠∠=,故⑤正确,∴BF CE ,故③正确,∵BD CD =,点A 到BD CD 、的距离相等,∴ABD 和ACD 面积相等,故②正确,综上所述,正确的有5个,故选:B .【点睛】本题考查全等三角形的判定与性质,熟练掌握全等三角形的判定方法并准确识图是解题的关键.二、填空题【答案】120°【分析】先证明,DAG BAC ≌得到GDA CBA ∠=∠,再利用60BAD ∠=︒以及三角形的内角和定理、邻补角的性质可得答案.【详解】解:60,DAE GAC ∠=∠=︒,DAG BAC ∴∠=∠,,AD AB AC AG ==在DAG 与BAC 中,,AD AB DAG BACAG AC =⎧⎪∠=∠⎨⎪=⎩,DAG BAC ∴≌,GDA CBA ∴∠=∠,BEO AED ∠=∠,BOE BAD ∴∠=∠60,BAD ∴∠=︒60,BOE ∴∠=︒120.DOC ∴∠=︒故答案为:120.︒【点睛】本题考查的是三角形全等的判定与性质,等边三角形的判定与性质,邻补角的性质,三角形的内角和定理,掌握以上知识是解题的关键. 七年级统考期末)如图,在锐角ABC 中,24ABC S = 【分析】先根据三角形全等的判定定理与性质可得ME MN =,再根据两点之间线段最短可得BM MN +的最小值为BE ,然后根据垂线段最短可得当BE AC ⊥时,BE 取得最小值,最后利用三角形的面积公式即可得.【详解】如图,在AC 上取一点E ,使AE AN =,连接ME ,AD 是BAC ∠的平分线,EAM NAM ∴∠=∠,在AEM △和ANM 中,AE AN EAM NAMAM AM =⎧⎪∠=∠⎨⎪=⎩,()SAS AEM ANM ∴≌, ME MN ∴=,BM MN BM ME ∴+=+,由两点之间线段最短得:当点,,B M E 共线时,BM ME +取最小值,最小值为BE ,又由垂线段最短得:当BE AC ⊥时,BE 取得最小值,248,ABC S AC ==,1182422AC BE BE ∴⋅=⨯⋅=,解得6BE =,即BM MN +的最小值为6,故答案为:6.【点睛】本题考查了角平分线的定义、三角形全等的判定定理与性质、两点之间线段最短、垂线段最短等知识点,正确找出BM MN +取得最小值时BE 的位置是解题关键. 13.(2023春·广东云浮·八年级校考期中)如图,小明与小红玩跷跷板游戏,已知跷跷板的支点O (即跷跷板的中点)至地面的距离是48cm ,当小红从水平位置CD 下降28cm 时,这时小明离地面的高度是___________cm .【答案】76【分析】根据题意可得:OF OG =,OC OD =,利用已知条件判断出OFC OGD ≌V V ,得到CF DG =,即可【详解】解:如图:∵O 是FG 和CD 的中点,∴OF OG =,OC OD =,在OFC △和OGD 中,OF OG FOC GODOC OD =⎧⎪∠=∠⎨⎪=⎩,∴(SAS)OFC OGD ≌V V ,∴CF DG =,又28cm DG =,∴28cm CF DG ==,∴小明离地面的高度=支点到地面的高度482876cm CF +=+=,故答案为:76.【点睛】本题主要考查了三角形全等知识的应用,用数学方法解决生活中有关的实际问题,把实际问题转换成数学问题,用数学方法加以论证,最后进行求解,是一种十分重要的方法. 14.(2023春·广东佛山·七年级校考期中)在测量一个小口圆形容器的壁厚(厚度均匀)时,小明用“X 型转动钳”按如图方法进行测量,其中OA OD =,OB OC =,测得3cm AB =,5cm EF =,圆形容器的壁厚是______cm .【分析】由题证明AOB DOC ≌,由全等三角形的性质可得,AB CD =,即可解决问题.【详解】在AOB 和DOC △中,OA OD AOB DOCBO OC =⎧⎪∠=∠⎨⎪=⎩,(SAS)AOB DOC ∴≌,3cm AB CD ∴==,cm 5EF =Q ,∴圆柱形容器的壁厚是1(53)1(cm)2⨯−=,故答案为:1.【点睛】本题考查了全等三角形的应用,解题的关键是利用全等三角形的性质解决实际问题.【答案】25米/25m【分析】根据SAS 可证明ACB DCE ≌△△,再根据全等三角形的性质可得AB DE =,进而得到答案. 【详解】解:∵点C 是AD 的中点,也是BE 的中点,∴AC DC =,BC EC =,∵在ACB △和DCE △中,AC DC ACB DCEBC EC =⎧⎪∠=∠⎨⎪=⎩, ∴()SAS ACB DCE ≌,∵25DE =米,∴25AB =米,故答案为:25米.【点睛】此题考查了全等三角形的应用,关键掌握全等三角形的判定定理和性质定理. 16.(2022秋·陕西宝鸡·八年级统考期末)如图,E 是ABC ∆外一点,D 是AE 上一点,AC BC BE ==,DA DB =,EBD CBD ∠=∠,70C ∠=︒,则BED ∠的度数为___________.【答案】35︒/35度【分析】连接DC ,则DC 垂直平分AB ,可得35ADC DCB ∠=∠=︒,再证明BED BCD ∆≅∆,即可得到35BED DCB ∠=∠=︒.【详解】连接DC ,DA DB =,CA CB =,DC ∴是AB 的垂直平分线,1352DCB ACB ∴∠=∠=︒,在BED 和BCD △中BD BD EBD CBDBE BC =⎧⎪∠=∠⎨⎪=⎩(SAS)BED BCD ∴≌,35BED DCB ∴∠=∠=︒,故答案为:35︒.【点睛】本题主要考查等腰三角形的性质,由条件得到DC 是AB 的垂直平分线再想到证明BED BCD △≌△是解题的关键. 17.(2023·全国·八年级假期作业)如图,AB 与CD 相交于点O ,且O 是AB CD ,的中点,则AOC 与BOD 全等的理由是________.【答案】SAS /边角边【分析】根据全等三角形的判定定理求解即可.【详解】解:∵O 是AB CD ,的中点,∴,,OA OB OC OD ==在AOC 和DOB 中,OA OB AOC BOD OC OD =⎧⎪∠=∠⎨⎪=⎩ ∴()SAS AOC DOB ≌, 故答案为:SAS .【点睛】此题考查了全等三角形的判定,熟记全等三角形的判定定理是解题的关键.18.(2022秋·山东聊城·八年级统考期末)如图,在ABC ∆中,已知 AB AC =,BD CF = ,BE CD =.若40A ∠=︒,则EDF ∠的度数为__________.【答案】70°【分析】(1)证△BED ≌△CDF ;(2)利用AB=AC 得到∠B 与∠C(3)利用整体法求得∠EDF【详解】∵AB=AC ,∴∠B=∠C∵BD=CF ,BE=CD∴△BED ≌△CDF ,∴∠FDC=∠BED∵∠A=40°∴∠B=∠C=70°∴在△BED 中,∠BED+∠BDE=110°∴∠EDB+∠FDC=110°∴∠EDF=70°【点睛】求角度,常见的方法有:(1)方程思想;(2)整体思想;(3)转化思想本题就是利用全等,结合整体思想求解的角度三、解答题 19.(2023秋·广东广州·八年级统考期末)已知:如图,12BC DC =∠=∠,,求证:ABC ≌ADC △.【答案】见解析【分析】先证明ACB ACD ∠=∠,再结合AC AC =,BC DC =,即可得到结论.【详解】.证明:12∠=∠,ACB ACD ∴∠=∠,AC AC BC DC ==,,ABC ∴≌ADC △.【点睛】本题考查的是全等三角形的判定,掌握“利用SAS 证明两个三角形全等”是解本题的关键. 20.(2021秋·广东广州·八年级广州市第八十九中学校考期中)如图,点E 、F 在BC 上,BF EC =,AB DC =,B C ∠=∠.求证:A D ∠=∠.【答案】证明见解析【分析】证明()SAS ABF DCE ≌△△,然后根据全等三角形的性质即可得出结论.【详解】证明:在ABF △和DCE △中,AB DC B CBF CE =⎧⎪∠=∠⎨⎪=⎩, ∴()SAS ABF DCE ≌△△, ∵A D ∠=∠.【点睛】本题考查全等三角形的判定和性质.掌握全等三角形的判定是解题的关键.21.(2023春·陕西西安·七年级校考阶段练习)已知:如右图ABCD ,AB CD =.求证:ADC CBA ≌.【答案】见解析【分析】由AB CD ,得ACD CAB ∠=∠,再利用SAS 即可证得结论.【详解】证明:∵ABCD ,∴ACD CAB ∠=∠,在ADC △与CBA △中:AB CD ACD CAB AC CA =⎧⎪∠=∠⎨⎪=⎩, ∴()SAS ADC CBA ≌.【点睛】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS 、SAS 、ASA 、AAS 、HL . 22.(2023春·陕西咸阳·七年级统考期末)如图,点D 在线段BE 上,AB CD ,AB DE =,BD CD =.ABD △和EDC △全等吗?为什么?【答案】ADB ECD △≌△,理由见解析【分析】先根据平行线的性质得到ABD EDC =∠∠,再利用SAS 证明ADB ECD △≌△即可得到结论.【详解】解:ADB ECD △≌△,理由如下:∵AB CD ,∴ABD EDC =∠∠,∵AB ED =,BD DC =,∴()SAS ADB ECD △≌△.【点睛】本题主要考查了全等三角形的判定,平行线的性质,熟知边角边证明三角形全等是解题的关键.(1)求证:AEC DFB △△≌; (2)若6AEC S ∆=,求三角形BEC 的面积.【答案】(1)见解析(2)92BEC S =△【分析】(1)根据AE DF ∥得A D ∠=∠,根据AB CD =得AB BC CD BC +=+,即AC DB =,根据ASA 即可证明AEC DFB △△≌; (2)在AEC △中,以AC 为底作EH 为高,则12AEC S EH AC ∆=⋅,12BCE S EH BC ∆=⋅,根据13AB CD BC ==得43AC BC =,6AEC S ∆=,即可得.【详解】(1)证明:∵AE DF ∥,A D ∴∠=∠, ∵AB CD =,AB BC CD BC ∴+=+AC DB ∴=,在AEC △和DFB △中,AE DF A DAC DB =⎧⎪∠=∠⎨⎪=⎩,SAS AEC DFB ∴≌()△△;(2)解:如图所示,在AEC △中,以AC 为底作EH 为高,12AEC S EH AC ∆∴=⋅,12BCE S EH BC ∆=⋅,∵13AB CD BC ==,43AC BC ∴=,6AEC S ∆=, ΔΔ3 4.54BEC AEC S S ∴==.【点睛】本题考查了三角形的判定与性质,三角形的面积,解题的关键是理解题意,掌握这些知识点. 24.(2023春·福建福州·七年级福州华伦中学校考期末)已知:如图,点,F C 在线段BE 上,AB DE =,B E ∠=∠,BF EC =.求证:A D ∠=∠.【答案】见解析【分析】先根据线段的和差得出BC EF =,进而证明ABC DEF ≌△△,根据全等三角形的性质即可得证. 【详解】证明:∵BF EC =,∴BF FC FC CE +=+,即BC EF =,在,ABC DEF 中,AB DE B EBC EF =⎧⎪∠=∠⎨⎪=⎩,∴ABC DEF ≌△△, ∴A D ∠=∠.【点睛】本题考查了全等三角形的性质与判定,熟练掌握全等三角形的性质与判定是解题的关键.25.(2023·全国·八年级假期作业)如图,在△ABC 中,已知AB AC =,2BAC DAE ∠=∠,且DAE FAE ∆≅∆.求证:ABD ACF ∆≅∆.【答案】见解析【分析】先根据全等三角形的性质以及已知2BAC DAE ∠=∠得出BAD CAF ∠=∠,再利用SAS 即可证出ABD ACF ∆≅∆.【详解】证明:∵DAE FAE ∆≅∆,∴,AD AF DAE FAE =∠=∠.∵2BAC DAE ∠=∠,∴BAD EAC DAE FAE ∠+∠=∠=∠,∵FAC EAC FAE ∠+∠=∠∴BAD CAF ∠=∠.在ABD ∆和ACF ∆中,AB AC BAD CAFAD AF =⎧⎪∠=∠⎨⎪=⎩∴ABD ACF ∆≅∆.【点睛】本题考查了全等三角形的判定和性质,灵活运用这些性质解决问题是本题的关键. 八年级假期作业)如图,在ABC 和V(1)求证:ABD ACE △△≌(2)若35BDA ∠=︒,则【答案】(1)见解析(2)70【分析】(1)根据等式的性质,可得=BAD CAE ∠∠,根据SAS 可得两个三角形全等;(2)根据全等三角形的性质,可得对应角相等,根据等腰三角形的性质,可得ADC AEC ∠∠=,根据等量代换,可得证明结论.【详解】(1)证明:=BAC DAE ∠∠,BAC DAC DAE DAC ∴∠−∠=∠−∠,即=BAD CAE ∠∠.在ABD △和ACE △中,AB AC BAD EACAD AE =⎧⎪∠=∠⎨⎪=⎩,SAS ABD ACE ∴≌();(2)证明:ABD ACE ≌△△, ADB AEC ∴∠=∠,AD AE =ADC AEC ∴∠=∠35BDA ADC ∴∠=∠=︒∴223570BDC BDA ∠∠==⨯︒=︒.故答案为:70.【点睛】本题考查了全等三角形的判定与性质,利用SAS 证明三角形全等,利用全等三角形的性质,证明对应角相等,再利用等量代换得出证明结论. 27.(2023春·全国·七年级专题练习)如图,已知点B ,E ,C ,F 在一条直线上,AB DE =,BF CE =,B E ∠=∠.求证:ABC DEF ≌△△【答案】见解析【分析】用边角边定理进行证明即可.【详解】解:∵BF CE =∴BF FC CE FC +=+即:BC EF =在ABC 和DEF 中AB DE B EBC EF =⎧⎪∠=∠⎨⎪=⎩∴()SAS ABC DEF ≌. 【点睛】本题考查边角边定理证明三角形全等,根据题意找到相应的条件是解题关键. 求证:DE BF =.证明:AD BC (已知)∴∠_______=∠_______(两直线平行,内错角相等)AF CE =∴ADE CBF ∴≌( 【答案】A ;C ;AF EF CE EF −=−;AD BC =;A C ∠=∠;AE CF =;SAS ;全等三角形对应边相等.【分析】根据平行线的性质得到∠A =∠C ,根据等式的性质得到AE CF =,然后证明ADE CBF V V ≌即可得到结论.【详解】证明:AD BC (已知)∴∠A =∠C (两直线平行,内错角相等)AF CE =(已知)∴AF EF CE EF −=−(等式的基本性质)即AE CF =在ADE V 和CBF V 中AD BC A CAE CF =⎧⎪∠=∠⎨⎪=⎩,ADE CBF ∴≌(SAS )DE BF ∴=(全等三角形对应边相等)故答案为:A ;C ;AF EF CE EF −=−;AD BC =;A C ∠=∠;AE CF =;SAS ;全等三角形对应边相等.【点睛】本题考查全等三角形的判定和性质,掌握全等三角形的判定定理是解题的关键.【答案】见解析【分析】根据BE CF =可得BC EF =,根据AC DF ∥可得ACB DFE ∠=∠,即可根据SAS 进行求证.【详解】证明:∵BE CF =,∴BE CE CF CE −=−,即BC EF =,∵AC DF ∥,∴ACB DFE ∠=∠,在ABC 和DEF 中,AC DF ACB DFEBC EF =⎧⎪∠=∠⎨⎪=⎩, ∴()SAS ABC DEF △△≌. 【点睛】本题主要考查了全等三角形的判定,解题的关键是根据题目所给条件,得出相应的边和角度相等,熟练掌握三角形全等的判定定理. 求证:(1)AE CF =;(2)AE CF ∥;(3)∠=∠AFE CEF .【答案】(1)见解析(2)见解析(3)见解析【分析】(1)根据“边角边”证明ABE CDF △≌△,即可证得结论;(2)根据全等三角形的性质可得AEB CFD ∠=∠,进而可得结论;(3)由全等三角形的性质可得AE CF =,根据“边角边”证明AEF CFE △≌△,即可证得结论.【详解】(1)证明:在ABE 和CDF 中,∵AB CD =, B D ∠=∠,BE DF =,∴ABE CDF△≌△()SAS ,∴AE CF =; (2)证明:∵ABE CDF △≌△,∴AEB CFD ∠=∠,∴AE CF ∥;(3)证明:∵ABE CDF △≌△,∴AE CF =,又∵AEB CFD ∠=∠,EF FE =,∴AEF CFE △≌△,∴∠=∠AFE CEF .【点睛】本题考查了全等三角形的判定和性质以及平行线的判定,熟练掌握全等三角形的判定和性质是解题的关键. 求作:ABC ,使 【答案】见解析【分析】先作CAB α∠=∠,再在角的两边上分别截取AC b =,AB c =,从而可得答案.【详解】解:ABC 即为所求.【点睛】本题考查的是作三角形,掌握作一个角等于已知角是解本题的关键. 32.(2023·全国·八年级假期作业)“倍长中线法”是解决几何问题的重要方法.所谓倍长中线法,就是将三角形的中线延长一倍,以便构造出全等三角形,具体做法是:如图,AD 是ABC 的中线,延长AD 到E ,使DE AD =,连接BE ,构造出BED 和CAD .求证:BED CAD △≌△.【答案】见解析【分析】由AD 是ABC 的中线,可得DE AD =,再由EDB ADC ∠=∠,DB DC =,即可证明BED CAD △≌△.【详解】证明:如图所示:,AD 是ABC 的中线,DB DC ∴=,在BED 和CAD 中,ED AD EDB ADCDB DC =⎧⎪∠=∠⎨⎪=⎩,(SAS)BED CAD ∴≌.【点睛】本题主要考查了三角形全等的判定,倍长中线,熟练掌握三角形全等的判定,添加适当的辅助线是解题的关键. 33.(2023春·全国·七年级期末)如图,在ABC 中,D 是BC 延长线上一点,满足CD BA =,过点C 作CE AB ∥,且CE BC =,连接DE 并延长,分别交AC ,AB 于点F ,G .(1)求证:ABC DCE ≅;(2)若12BD =,2AB CE =,求BC 的长度.【答案】(1)见解析(2)4【分析】(1)根据SAS 证明≌ABC DCE 即可;(2)根据全等三角形的性质解答即可.【详解】(1)∵CE AB ∥,∴B ECD ∠=∠,在ABC 与DCE △中,AB CD B ECDBC CE =⎧⎪∠=∠⎨⎪=⎩, ∴()SAS ABC DCE ≌;(2)∵≌ABC DCE ,∴,AB CD BC CE ==,∵2AB CE =,∴2CD BC =,∵12BD =,∴312BD CD BC BC =+==∴4BC =.【点睛】此题考查全等三角形的判定和性质,关键是掌握全等三角形的判定和性质.。
(完整版)全等三角形题型归纳(经典完整)
1一,证明边或角相等方法:证明两条线段相等或角相等,如果这两条线段或角在两个三角形内,就证明这两个三角形全等;如果这两条线段或角在同一个三角形内,就证明这个三角形是等腰三角形;如果看图时两条线段既不在同一个三角形内,也不在两个全等三角形内,那么就利用辅助线进行等量代换,同样如果角不在同一个三角形内,也不在两个全等三角形内,也是用等量代换(方法是:(1)同角(等角)的余角相等(2)同角(等角)的补角相等,此类型问题一般不单独作一大题,往往是通过得出角相等后用来证明三角形全等,而且一般是在双垂直的图形中)1.已知,如图,AB ⊥AC ,AB =AC ,AD ⊥AE ,AD =AE 。
求证:BE =CD 。
2.如图,在四边形ABCD 中,E 是AC 上的一点,∠1=∠2,∠3=∠4,求证: ∠5=∠6.3.已知:如图△ABC 中,AB=AC ,BD ⊥AC ,CE ⊥AB ,BD 、CE 交于H 。
求证:HB=HC 。
2、如图, 已知:AB ⊥BC 于B , EF ⊥AC 于G , DF ⊥BC 于D , BC=DF .求证:AC=EF .A ED C B654321E DCBAFGE D CBAFMNE 1234134****70432EDC BA 二.证明线段和差问题 (形如:AB+BC=CD,AB=AD - CD)证明两条线段和等于另一条线段,常常使用截长补短法。
①截长法即为在这三条最长的线段截取一段使它等于较短线段中的一条,然后证明剩下的一段等于另一条较短的线段。
②补短法即为在较短的一条线段上延长一段,使它们等于最长的线段,然后证明延长的这一线段等于另一条较短的线段。
证明两条线段差等于另一条线段,只需把差化成和来解决即可。
1.如图,已知AD ∥BC ,∠PAB 的平分线与∠CBA 的平分线相交于E ,CE 的连线交AP 于D .求证:AD +BC =AB .2、如图,已知:△ABC 中,∠BAC =90, AB =AC ,AE 是过A 一直线,且点B 、C 在AE 的异侧,BD ⊥AE 于D ,CE ⊥AE 于E . 求证:BD =DE +CE ;3、如图,AB ∥CD ,DE 平分∠ADC ,AE 平分∠BAD ,求证:AB=AD - CD三.证明线段的2倍或21关系 ( AB CE =2, MN BN =12) P E D CB A134****704331. 利用含30角的直角三角形的性质证明例1. 已知,如图1,∆ABC 是等边三角形,在AC 、BC 上分别取点D 、E ,且AD =CE ,连结AE 、BD 交于点N ,过B 作BM AE ⊥,垂足为M ,求证:MN BN =12(提示:先证∠=BNE 60)2. 利用等线段代换(充分利用中点)例1.如图,△ABC 中,∠BAC =90度,AB =AC ,BD 是∠ABC 的平分线,BD 的延长线垂直于过C 点的直线于E ,直线CE 交BA 的延长线于F . 求证:BD =2CE .3.转化为线段和问题,利用截长补短法例5. 已知:如图5,四边形ABCD 中,∠=D 90,对角线AC 平分∠BAD ,AC BC =,求证:AD AB =12四.证明二倍角关系利用三角形外角和定理和等量代换如图,△ABC 中,AD 是∠CAB 的平分线,且AB =AC +CD ,求证:∠C =2∠B FE DCB ADCBA134****7043 4。
(完整版)全等三角形题型总结
全等三角形的判定题型类型一、全等三角形的判定1——“边边边”例题、已知:如图,AD =BC ,AC =BD.试证明:∠CAD =∠DBC.(答案)证明:连接DC , 在△ACD 与△BDC 中()AD BC AC BDCD DC ⎧=⎪=⎨⎪=⎩公共边∴△ACD ≌△BDC (SSS )∴∠CAD =∠DBC (全等三角形对应角相等)类型二、全等三角形的判定2——“边角边”例题、已知,如图,在四边形ABCD 中,AC 平分∠BAD ,CE ⊥AB 于E ,并且AE =12(AB +AD ),求证:∠B +∠D =180°.(答案)证明:在线段AE 上,截取EF =EB ,连接FC ,∵CE ⊥AB ,∴∠CEB =∠CEF =90°在△CBE 和△CFE 中,CEB CEF EC =EC EB EF =⎧⎪∠=∠⎨⎪⎩∴△CBE 和△CFE (SAS )∴∠B =∠CFE ∵AE =12(AB +AD ),∴2AE = AB +AD ∴AD =2AE -AB ∵AE =AF +EF ,∴AD =2(AF +EF )-AB =2AF +2EF -AB =AF +AF +EF +EB -AB =AF +AB -AB ,即AD =AF在△AFC 和△ADC 中(AF AD FAC DAC AC AC =⎧⎪∠=∠⎨⎪=⎩角平分线定义)∴△AFC ≌△ADC (SAS )∴∠AFC =∠D∵∠AFC +∠CFE =180°,∠B =∠CFE.∴∠AFC +∠B =180°,∠B +∠D =180°. 类型三、全等三角形的判定3——“角边角”例题、已知:如图,在△MPN 中,H 是高MQ 和NR 的交点,且MQ =NQ .求证:HN =PM.证明:∵MQ 和NR 是△MPN 的高, ∴∠MQN =∠MRN =90°, 又∵∠1+∠3=∠2+∠4=90°,∠3=∠4 ∴∠1=∠2在△MPQ 和△NHQ 中,12MQ NQ MQP NQH ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△MPQ ≌△NHQ (ASA ) ∴PM =HN类型四、全等三角形的判定4——“角角边”例题、已知Rt △ABC 中,AC =BC ,∠C =90°,D 为AB 边的中点,∠EDF =90°,∠EDF 绕D 点旋转,它的两边分别交AC 、CB 于E 、F .当∠EDF 绕D 点旋转到DE ⊥AC 于E 时(如图1),易证12DEF CEF ABC S S S +=△△△;当∠EDF 绕D 点旋转到DE 和AC 不垂直时,在图2情况下,上述结论是否成立?若成立,请给予证明;若不成立,请写出你的猜想,不需证明.解:图2成立; 证明图2:过点D 作DM AC DN BC ⊥⊥,则90DME DNF MDN ∠=∠=∠=°在△AMD 和△DNB 中,AMD=DNB=90A B AD BD ∠∠︒⎧⎪∠=∠⎨⎪=⎩∴△AMD ≌△DNB (AAS )∴DM =DN∵∠MDE +∠EDN =∠NDF +∠EDN =90°,∴∠ MDE =∠NDF在△DME 与△DNF 中,90EMD FDN DM DN MDE NDF ∠=∠=︒⎧⎪=⎨⎪∠=∠⎩∴△DME ≌△DNF (ASA )∴DME DNF S S =△△∴DEF CEF DMCN DECF S =S =S S .+△△四边形四边形可知ABC DMCN 1S =S 2△四边形,∴12DEF CEF ABC S S S +=△△△类型五、直角三角形全等的判定——“HL ”下列说法中,正确的画“√”;错误的画“×”,并举出反例画出图形.(1)一条直角边和斜边上的高对应相等的两个直角三角形全等.( ) (2)有两边和其中一边上的高对应相等的两个三角形全等.( ) (3)有两边和第三边上的高对应相等的两个三角形全等.( )(答案)(1)√;(2)×;在△ABC 和△DBC 中,AB =DB ,AE 和DF 是其中一边上的高,AE =DF(3)×. 在△ABC 和△ABD 中,AB =AB ,AD =AC ,AH 为第三边上的高,如下图:1、已知:如图,DE ⊥AC ,BF ⊥AC ,AD =BC ,DE =BF.求证:AB ∥DC.(答案与解析)证明:∵DE ⊥AC ,BF ⊥AC ,∴在Rt △ADE 与Rt △CBF 中.AD BC DE BF ⎧⎨⎩=,=∴Rt △ADE ≌Rt △CBF (HL ) ∴AE =CF ,DE =BF∴AE +EF =CF +EF ,即AF =CE在Rt △CDE 与Rt △ABF 中,DE BFDEC BFA EC FA =⎧⎪∠=∠⎨⎪=⎩∴Rt △CDE ≌Rt △ABF (SAS )∴∠DCE =∠BAF ∴AB ∥DC. (点评)从已知条件只能先证出Rt △ADE ≌Rt △CBF ,从结论又需证Rt△CDE ≌Rt △ABF.我们可以从已知和结论向中间推进,证出题目.2、如图,△ABC 中,∠ACB =90°,AC =BC ,AE 是BC 边上的中线, 过C 作CF ⊥AE ,垂足为F ,过B 作BD ⊥BC 交CF 的延长线于D. (1)求证:AE =CD ;(2)若AC =12cm ,求BD 的长.(答案与解析)(1)证明:∵DB ⊥BC ,CF ⊥AE ,∴∠DCB +∠D =∠DCB +∠AEC =90°.∴∠D =∠AEC .又∵∠DBC =∠ECA =90°,且BC =CA ,∴△DBC ≌△ECA (AAS ).∴AE =CD . (2)解:由(1)得AE =CD ,AC =BC ,∴△CDB ≌△AEC (HL ) ∴BD =EC =12BC =12AC ,且AC =12. ∴BD =6cm .(点评)三角形全等的判定是中考的热点,一般以考查三角形全等的方法为主,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件三角形角平分线的性质三角形三条角平分线交于三角形内部一点,此点叫做三角形的内心且这一点到三角形三边的距离相等.三角形的一内角平分线和另外两顶点处的外角平分线交于一点.这点叫做三角形的旁心.三角形有三个旁心.所以到三角形三边所在直线距离相等的点共有4个.如图所示:△ABC 的内心为1P ,旁心为234,,P P P ,这四个点到△ABC 三边所在直线距离相等.角的平分线的性质及判定1、如图,AD 是∠BAC 的平分线,DE ⊥AB ,交AB 的延长线于点E ,DF ⊥AC 于点F ,且DB =DC.求证:BE =CF.(答案)证明:∵DE ⊥AE ,DF ⊥AC ,AD 是∠BAC 的平分线, ∴DE =DF ,∠BED =∠DFC =90°在Rt △BDE 与Rt △CDF 中,DB DCDE DF =⎧⎨=⎩,∴Rt △BDE ≌Rt △CDF (HL ) ∴BE =CF2、如图,AC=DB ,△PAC 与△PBD 的面积相等.求证:OP 平分∠AOB .(答案与解析)证明:作PM ⊥OA 于M ,PN ⊥OB 于N12PAC S AC PM =△∵,12PBD S BD PN =△,且PAC S =△PBD S △ ∴ 12AC PM 12BD PN =又∵AC =BD ∴PM =PN又∵PM⊥OA,PN⊥OB ∴OP平分∠AOB(点评)观察已知条件中提到的三角形△PAC与△PBD,显然与全等无关,而面积相等、底边相等,于是自然想到可得两三角形的高线相等,联系到角平分线判定定理可得.跟三角形的高结合的题目,有时候用面积会取得意想不到的效果.3、如图,DC∥AB,∠BAD和∠ADC的平分线相交于E,过E的直线分别交DC、AB于C、B两点. 求证:AD=AB+DC.(答案)证明:在线段AD上取AF=AB,连接EF,∵AE是∠BAD的角平分线,∴∠1=∠2,∵AF=AB AE=AE,∴△ABE≌△AFE,∴∠B=∠AFE由CD∥AB又可得∠C+∠B=180°,∴∠AFE+∠C=180°,又∵∠DFE+∠AFE=180°,∴∠C=∠DFE,∵DE是∠ADC的平分线,∴∠3=∠4,又∵DE=DE,∴△CDE≌△FDE,∴DF=DC,∵AD=DF+AF,∴AD=AB+DC.类型一、全等三角形的性质和判定如图,已知:AE⊥AB,AD⊥AC,AB=AC,∠B=∠C,求证:BD=CE.(答案)证明:∵AE⊥AB,AD⊥AC,∴∠EAB=∠DAC=90°∴∠EAB+∠DAE=∠DAC+∠DAE ,即∠DAB=∠EAC.在△DAB与△EAC中,DAB EACAB ACB C∠=∠⎧⎪=⎨⎪∠=∠⎩∴△DAB≌△EAC (SAS)∴BD=CE.类型二、巧引辅助线构造全等三角形(1).作公共边可构造全等三角形:1、在ΔABC中,AB=AC.求证:∠B=∠C(答案)证明:过点A作AD⊥BC在Rt△ABD与Rt△ACD中AB AC AD AD=⎧⎨=⎩∴Rt△ABD≌Rt△ACD(HL)∴∠B=∠C.(2).倍长中线法:1、已知:如图所示,CE、CB分别是△ABC与△ADC的中线,且∠ACB=∠ABC.求证:CD=2CE.(答案)证明:延长CE至F使EF=CE,连接BF.∵EC为中线,∴AE=BE.在△AEC与△BEF中,,,,AE BEAEC BEFCE EF=⎧⎪∠=∠⎨⎪=⎩∴△AEC≌△BEF(SAS).∴AC=BF,∠A=∠FBE.(全等三角形对应边、角相等)又∵∠ACB=∠ABC,∠DBC=∠ACB+∠A,∠FBC=∠ABC+∠A.∴AC=AB,∠DBC=∠FBC.∴AB=BF.又∵BC为△ADC的中线,∴AB=BD.即BF=BD.在△FCB与△DCB中,,,,BF BDFBC DBC BC BC=⎧⎪∠=∠⎨⎪=⎩∴△FCB≌△DCB(SAS).∴CF=CD.即CD=2CE.2、若三角形的两边长分别为5和7, 则第三边的中线长x的取值范围是( )A.1 <x<6B.5 <x<7C.2 <x<12D.无法确定(答案)A ;提示:倍长中线构造全等三角形,7-5<2x<7+5,所以选A选项.(3).作以角平分线为对称轴的翻折变换构造全等三角形:如图,AD 是ABC ∆的角平分线,H ,G 分别在AC ,AB 上,且HD =BD. (1)求证:∠B 与∠AHD 互补;(2)若∠B +2∠DGA =180°,请探究线段AG 与线段AH 、HD 之间满足的等量关系,并加以证明.(答案)证明:(1)在AB 上取一点M, 使得AM =AH, 连接DM.∵ ∠CAD =∠BAD, AD =AD, ∴ △AHD ≌△AMD. ∴ HD =MD, ∠AHD =∠AMD. ∵ HD =DB, ∴ DB = MD. ∴ ∠DMB =∠B.∵ ∠AMD +∠DMB =180︒,∴ ∠AHD +∠B =180︒. 即 ∠B 与∠AHD 互补. (2)由(1)∠AHD =∠AMD, HD =MD, ∠AHD +∠B =180︒.∵ ∠B +2∠DGA =180︒,∴ ∠AHD =2∠DGA. ∴ ∠AMD =2∠DGM.∵ ∠AMD =∠DGM +∠GDM. ∴ 2∠DGM =∠DGM +∠GDM. ∴ ∠DGM =∠GDM. ∴ MD =MG.∴ HD = MG.∵ AG = AM +MG, ∴ AG = AH +HD. (3).利用截长(或补短)法作构造全等三角形:1、如图,AD 是△ABC 的角平分线,AB >AC,求证:AB -AC >BD -DC (答案)证明:在AB 上截取AE =AC,连结DE∵AD 是△ABC 的角平分线,∴∠BAD =∠CAD在△AED 与△ACD 中⎪⎩⎪⎨⎧=∠=∠=AD AD CAD BAD ACAE∴△AED ≌△ADC (SAS )∴DE =DC 在△BED 中,BE >BD -DC即AB -AE >BD -DC ∴AB -AC >BD -DCM G HDCBAEDC BA2、如图所示,已知△ABC中AB>AC,AD是∠BAC的平分线,M是AD上任意一点,求证:MB-MC<AB-AC.(答案与解析)证明:∵AB>AC,则在AB上截取AE=AC,连接ME.在△MBE中,MB-ME<BE(三角形两边之差小于第三边).在△AMC和△AME中,()()()AC AECAM EAMAM AM=⎧⎪∠=∠⎨⎪=⎩所作,角平分线的定义,公共边,∴△AMC≌△AME(SAS).∴MC=ME(全等三角形的对应边相等).又∵BE=AB-AE,∴BE=AB-AC,∴MB-MC<AB-AC.(点评)因为AB>AC,所以可在AB上截取线段AE=AC,这时BE=AB-AC,如果连接EM,在△BME中,显然有MB-ME<BE.这表明只要证明ME=MC,则结论成立.充分利用角平分线的对称性,截长补短是关键.(4).在角的平分线上取一点向角的两边作垂线段.1、如图所示,已知E为正方形ABCD的边CD的中点,点F在BC上,且∠DAE=∠FAE.求证:AF=AD+CF.(答案与解析)证明:作ME⊥AF于M,连接EF.∵四边形ABCD为正方形,∴∠C=∠D=∠EMA=90°.又∵∠DAE=∠FAE,∴AE为∠FAD的平分线,∴ME=DE.在Rt△AME与Rt△ADE中,()()AE AEDE ME=⎧⎨=⎩公用边,已证,∴Rt△AME≌Rt△ADE(HL).∴AD=AM(全等三角形对应边相等).又∵E为CD中点,∴DE=EC.∴ME=EC.在Rt△EMF与Rt△ECF中,()(ME CEEF EF=⎧⎨=⎩已证,公用边),∴Rt△EMF≌Rt△ECF(HL).∴MF=FC(全等三角形对应边相等).由图可知:AF=AM+MF,∴AF=AD+FC(等量代换).(点评)与角平分线有关的辅助线:在角两边截取相等的线段,构造全等三角形;在角的平分线上取一点向角的两边作垂线段. 四边形ABCD为正方形,则∠D=90°.而∠DAE=∠FAE说明AE为∠FAD的平分线,按常规过角平分线上的点作出到角两边的距离,而E到AD的距离已有,只需作E到AF的距离EM即可,由角平分线性质可知ME=DE.AE=AE.Rt△AME与Rt△ADE全等有AD=AM.而题中要证AF=AD+CF.根据图知AF=AM+MF.故只需证MF=FC即可.从而把证AF=AD+CF转化为证两条线段相等的问题.2、如图所示,在△ABC中,AC=BC,∠ACB=90°,D是AC上一点,且AE垂直BD的延长线于E,12AE BD=,求证:BD是∠ABC的平分线.(答案与解析)证明:延长AE和BC,交于点F,∵AC⊥BC,BE⊥AE,∠ADE=∠BDC(对顶角相等),∴∠EAD+∠ADE=∠CBD+∠BDC.即∠EAD=∠CBD.在Rt△ACF和Rt△BCD中.所以Rt△ACF≌Rt△BCD(ASA).则AF=BD(全等三角形对应边相等).∵AE=BD,∴AE=AF,即AE=EF.在Rt△BEA和Rt△BEF中,则Rt△BEA≌Rt△BEF(SAS).所以∠ABE=∠FBE(全等三角形对应角相等),即BD是∠ABC的平分线.(点评)如果由题目已知无法直接得到三角形全等,不妨试着添加辅助线构造出三角形全等的条件,使问题得以解决.平时练习中多积累一些辅助线的添加方法.类型三、全等三角形动态型问题解决动态几何问题时要善于抓住以下几点:(1)变化前的结论及说理过程对变化后的结论及说理过程起着至关重要的作用;(2)图形在变化过程中,哪些关系发生了变化,哪些关系没有发生变化;原来的线段之间、角之间的位置与数量关系是否还存在是解题的关键;(3)几种变化图形之间,证明思路存在内在联系,都可模仿与借鉴原有的结论与过程,其结论有时变化,有时不发生变化1、已知:在△ABC中,∠BAC=90°,AB=AC,点D为射线BC上一动点,连结AD,以AD 为一边且在AD的右侧作正方形ADEF.(1)当点D在线段BC上时(与点B不重合),如图1,求证:CF=BD(2)当点D 运动到线段BC 的延长线上时,如图2,第(1)问中的结论是否仍然成立,并说明理由.(答案)证明:(1)∵正方形ADEF ∴AD =AF ,∠DAF =90°∴∠DAF -∠DAC =∠BAC -∠DAC ,即∠BAD =∠CAF在△ABD 和△ACF 中,AB AC BAD CAF AD AF =⎧⎪∠=∠⎨⎪=⎩∴△ABD ≌△ACF (SAS ) ∴BD =CF(2)当点D 运动到线段BC 的延长线上时,仍有BD =CF此时∠DAF +∠DAC =∠BAC +∠DAC ,即∠BAD =∠CAF在△ABD 和△ACF 中,AB AC BAD CAF AD AF =⎧⎪∠=∠⎨⎪=⎩∴△ABD ≌△ACF (SAS ) ∴BD =CF2、如图(1),△ABC 中,BC =AC ,△CDE 中,CE =CD ,现把两个三角形的C 点重合,且使∠BCA =∠ECD ,连接BE ,AD .求证:BE =AD .若将△DEC 绕点C 旋转至图(2),(3)所示的情况时,其余条件不变,BE 与AD 还相等吗?为什么?(答案)证明:∵∠BCA =∠ECD , ∴∠BCA -∠ECA =∠ECD -∠ECA ,即∠BCE =∠ACD在△ADC 与△BEC 中ACD=BCE AC BC CD CE =⎧⎪∠∠⎨⎪=⎩∴△ADC ≌△BEC(SAS) ∴BE =AD .若将△DEC 绕点C 旋转至图(2),(3)所示的情况时,其余条件不变,BE 与AD 还相等,因为还是可以通过SAS 证明△ADC ≌△BEC.。
全等三角形经典题型汇总
全等三角形经典题型汇总全等三角形知识网络题型一已知两边,找夹角SAS1.如图,△ABC中,AB = AC,点E,F 在边BC 上,BE = CF,点D 在AF 的延长线上,AD = AC,(1)求证:△ABE ≌△ACF;(2)若∠BAE = 30°,则∠ADC = °.【解析】(1)∵AB = AC,∴∠B = ∠ACF,在△ABE 和△ACF 中,AB = AC , ∠B = ∠ACF,BE = CF,∴△ABE ≌△ACF(SAS);(2)∵△ABE ≌△ACF,∠BAE = 30°,∴∠CAF = ∠BAE = 30°,∵AD = AC,∴∠ADC = ∠ACD,∴∠ADC = 1/2(180°- 30°)= 75°.2.如图,点E、F 在BC 上,BE = CF,AB = DC,∠B = ∠C,AF 与DE 交于点G,求证:GE = GF.【解析】∵BE = CF,∴BE + EF = CF + EF,∴BF = CE,在△ABF 和△DCE 中,AB = DC , ∠B = ∠C,BF = CE ,∴△ABF ≌△DCE(SAS),∴∠GEF = ∠GFE,∴EG = FG.3.已知,点P 是等边三角形△ABC 中一点,线段AP 绕点A 逆时针旋转60°到AQ,连接PQ、QC.(1)求证:PB=QC;(2)若PA=3,PB=4,∠APB=150°,求PC 的长度.【解析】(1)证明:∵线段AP 绕点A 逆时针旋转60°到AQ,∴AP = AQ,∠PAQ = 60°,∴△APQ 是等边三角形,∠PAC + ∠CAQ = 60°,∵△ABC 是等边三角形,∴∠BAP + ∠PAC = 60°,AB = AC,∴∠BAP = ∠CAQ,在△BAP 和△CAQ 中,BA = CA , ∠BAP = ∠CAQ,AP = AQ ,∴△BAP ≌△CAQ(SAS),∴PB = QC;(2)解:∵由(1)得△APQ 是等边三角形,∴AP = PQ = 3,∠AQP = 60°,∵∠APB = 150°,∴∠PQC = 150°﹣60°= 90°,∵PB = QC,∴QC = 4,∴△PQC 是直角三角形,题型二已知两边,找直角HL1.如图,BD = CF,FD⊥BC 于点D,DE⊥AB 于点E,BE = CD,若∠AFD = 145°,则∠EDF 的度数为()A.45°B.55°C.35°D.65°【解析】∵∠DFC + ∠AFD = 180°,∠AFD = 145°,∴∠DFC = 35°,∵DE⊥AB,DF⊥BC,∴∠BED = ∠CDF = 90°.∵在Rt△BDE 与Rt△CFD 中BE = CD,BD = CF,∴Rt△BDE ≌△Rt△CFD,∴∠BDE = ∠CFD = 35°.∵∠EDF + ∠BDE = 90°,∴∠EDF = 55°.故选B.2.如图,∠B = ∠D = 90°,BC = CD,∠1 = 40°,则∠2 = ().A.40°B.50°C.60°D.75°【解析】∵∠B = ∠D = 90°,在Rt△ABC 和Rt△ADC 中,BC = CD , AC = AC ,∴Rt△ABC ≌Rt△ADC(HL)∴∠2 = ∠ACB = 90°- ∠1 = 50°.故选:B.3.如图,直线l 上有三个正方形a,b,c,若a,c 的面积分别为5 和11,则b 的面积为().【解析】∵∠ACB+∠ECD=90°,∠DEC+∠ECD=90°,∴∠ACB=∠DEC,∵∠ABC=∠CDE,AC=CE,∴△ABC ≌△CDE,∴BC=DE.∴(如上图),根据勾股定理的几何意义,b 的面积=a 的面积+c 的面积,∴b 的面积=a 的面积+c 的面积=5+11=16.故选C.题型三已知两边,找第三边SSS1.如图,五边形ABCDE 中有一正三角形ACD,若AB = DE,BC = AE,∠E = 115°,则∠BAE 的度数为何?()A.115B.120C.125D.130【解析】∵三角形ACD 为正三角形,∴AC = AD,∠ACD = ∠ADC = ∠CAD = 60°,∵AB = DE,BC = AE,∴△ABC ≌△DEA,∴∠B = ∠E = 115°,∠ACB = ∠EAD,∠BAC = ∠ADE,∴∠ACB + ∠BAC = ∠BAC + ∠DAE = 180°﹣115°= 65°,∴∠BAE = ∠BAC + ∠DAE + ∠CAD = 65°+ 60°= 125°,故选:C.2.在边长为1 的正方形网格中标有A、B、C、D、E、F 六个格点,根据图中标示的各点位置,与△ABC 全等的是()A.△ACFB.△ACEC.△ABDD.△CEF【解析】在△ABC 中,A、在△ACF 中,则△ACF 与△ABC 不全等,故不符合题意;B、在△ACE 中,则△ACE 与△ABC 不全等,故不符合题意;C、在△ABD 中,则由SSS 可证明△ACE 与△ABC 全等,故符合题意;D、在△CEF 中,则△CEF 与△ABC 不全等,故不符合题意,故选C.3.如图,OA=OB,OC=OD,AD=BC,则图中全等三角形的对数有( ).A.1 对B.2 对C.3 对D.4 对【解析】∵OA = OB,OC = OD,AD=BC,∴△DOA ≌△COB(SSS);∵OA = OB,OC = OD,∴AC = BD,∵AB = AB,AD=BC,∴△ABD ≌△BAC(SSS);∵AD = BC,AC = BD,DC = CD,∴△ADC ≌△BCD(SSS).故选:C.4.如图,点B、C、E 三点在同一直线上,且AB = AD , AC = AE , BC = DE ;若∠1 + ∠2 + ∠3 = 94°,则∠3 的度数为().A.49°B.47°C.45°D.43°【解析】在△ABC 和△ADE 中,AB = AD , AC = AE , BC = DE ,∴△ABC ≌△ADE (SSS),∴∠ABC = ∠1,∠BAC = ∠2,在△ABC 中,由三角形的外角性质得,∠3 = ∠ABC + ∠BAC = ∠1 + ∠2,∵∠1 + ∠2 + ∠3 = 94°,∴2∠3 = 94°,∴∠3 = 47°.故选B.题型四已知一边一角(若边为角的对边,找任意角AAS )1.如图,正方形ABCD 中,AB = 1,点P 是BC 边上的任意一点(异于端点B、C ),连接AP,过B、D 两点作BE⊥AP 于点E,DF⊥AP 于点F.(1)求证:EF = DF﹣BE;(2)若△ADF 的周长为7/3 ,求EF 的长.【解析】(1)证明:∵BE⊥AP,DF⊥AP,∴∠DFA = ∠AEB = 90°,∠ABE + ∠BAE = 90°,∵四边形ABCD 为正方形,∴AD = AB,∠DAB = 90°= ∠DAF + ∠BAE,∴∠DAF = ∠ABE,在△ADF 和△BAE 中,∠DAF = ∠ABE,∠DFA = ∠AEB,AD = AB,∴△ADF ≌△BAE(AAS),∴AF = BE,DF = AE,∴EF = AE﹣AF = DF﹣BE;(2)解:设DF = a,AF = b,EF = DF﹣AF = a﹣b >0,∵△ADF 的周长为7/3,AD = 1,∴DF + AF = 4/3,即a + b = 4/3,由勾股定理得:DF2 + AF2 = AD2,即a2 + b2 = 1,∴(a - b)2 = 2(a2 + b2)- (a + b)2 = 2 - 16/9 = 2/9 ,∴a - b = √2/3 , 即EF = √2/3 .题型五已知一边一角(边为角的邻边(找已知角的另一边SAS ))1.如图,线段AD、BE 相交与点C , 且△ABC ≌△DEC,点M、N 分别为线段AC、CD 的中点.求证:(1)ME = BN;(2)ME∥BN.【解析】(1)∵△ABC ≌△DEC,∴AC = DC , BC = CE.∵点M、N 分别为线段AC、CD 的中点,∴CM = CN.在△BCN 和△ECM 中,AC = DC, ∠BCN = ∠ECM , BC = CE,∴△BCN ≌△ECM(SAS),∴ME = BN.(2)∵△BCN ≌△ECM,∴∠CBN = ∠CEM,∴ME∥BN.2.已知:△ABC 是等边三角形,点D、E 分别是边BC、CA 上的点且BD = CE,AD、BE相交于点O.(1)求证:△ACD ≌△BAE;(2)求∠AOB 的度数.【解析】(1)∵△ABC 是等边三角形,∴∠BAC = ∠C = 60°,BC = AC,∵BD = CE,∴BC - BD = AC - CE,∴AE = CD,在△ACD 和△BAE 中,AE = CD , ∠BAE = ∠C = 60°,AB = AC ,∴△ACD ≌△BAE(SAS);(2)∵△ACD ≌△BAE,∴∠CAD = ∠ABE,∴∠AOE = ∠BAD + ∠ABE = ∠BAD + ∠CAD = ∠BAC = 60°,∴∠AOB = 180°- 60°= 120°.题型六已知一边一角(边为角的邻边(找已知边的对角AAS))1.如图,在▱ABCD 中,E 是BC 的中点,连接AE 并延长交DC 的延长线于点F.(1)求证:AB = CF;(2)连接DE,若AD = 2AB,求证:DE⊥AF.【解析】(1)∵四边形ABCD 是平行四边形,∴AB∥DF,∴∠BAE = ∠F,∵E 是BC 的中点,∴BE = CE,在△AEB 和△FEC 中,∠BAE = ∠F,∠AEB = ∠FEC,BE = EC,∴△AEB ≌△FEC(AAS),∴AB = CF;(2)∵四边形ABCD 是平行四边形,∴AB = CD,∵AB = CF,DF = DC + CF ,∴DF = 2CF,∴DF = 2AB,∵AD = 2AB,∴AD = DF,∵△AEB ≌△FEC,∴AE = EF,∴ED⊥AF .题型七已知一边一角(边为角的邻边(找已知边的另一角ASA ))1.如图,∠A=∠B,AE=BE,点D 在AC 边上,∠1=∠2,AE 和BD 相交于点O.求证:△AEC ≌△BED;【解析】∵AE 和BD 相交于点O,∴∠AOD = ∠BOE.在△AOD 和△BOE 中,∠A=∠B,∴∠BEO = ∠2.又∵∠1 = ∠2,∴∠1 = ∠BEO,∴∠AEC = ∠BED.在△AEC 和△BED 中,∠A = ∠B,AE = BE , ∠AEC = ∠BED,∴△AEC ≌△BED(ASA).题型八已知两角,找两角的夹边ASA1.如图,在△DAE 和△ABC 中,D 是AC 上一点,AD = AB,DE∥AB,∠E = ∠C.求证:AE = BC.【解析】证明:∵DE∥AB,∴∠ADE = ∠BAC.在△ADE 和△BAC 中,∠E = ∠C ,∠ADE = BAC,AD = AB,∴△ADE ≌△BAC(AAS),∴AE = BC.题型九已知两角,找任意一边AAS1.如图AF//DE,点B、C 在线段AD 上,连接FC、EB,且∠E = ∠F,延长EB 交AF 于点G.(1)求证:BE//CF(2)若CF = BE,求证:AB = CD .【解析】(1)∵AF//DE,∴∠AGB = ∠E,又∵∠E = ∠F,∴∠AGB = ∠F,∴BE//CF(2)∵BE//CF,∴∠DBE = ∠ACF,∵∠E = ∠F , CF = BE,∴ΔACF ≌ΔDBE,∴AC = BD,∴AB = CD.。
【全等三角形】常考题型+解题思路整理!
【高整理】【全等三角形】常考题型+解题思路整理!全等三角形的性质对应角相等,对应边相等,对应边上的中线相等,对应边上的高相等,对应角的角平分线相等,面积相等。
寻找对应边和对应角,常用到以下方法:(1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边。
(2)全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角。
(3)有公共边的,公共边常是对应边。
(4)有公共角的,公共角常是对应角。
(5)有对顶角的,对顶角常是对应角。
(6)两个全等的不等边三角形中一对最长边(或最大角)是对应边(或对应角),一对最短边(或最小角)是对应边(或对应角)。
【解题关键】要想正确地表示两个三角形全等,找出对应的元素是关键。
全等三角形的判定方法(1)边角边定理(SA S):两边和它们的夹角对应相等的两个三角形全等。
(2)角边角定理(A S A):两角和它们的夹边对应相等的两个三角形全等。
(3)边边边定理(SS S):三边对应相等的两个三角形全等。
(4)角角边定理(A A S):两个角和其中一个角的对边对应相等的两个三角形全等。
(5)斜边、直角边定理(H L):斜边和一条直角边对应相等的两个直角三角形全等。
全等三形的应用运用三角形全等可以证明线段相等、角相等、两直线垂直等问题,在证明的过程中,注意有时会添加辅助线。
【拓展】通过判定两个三角形全等,可证明两条线段间的位置关系和大小关系。
而证明两条线段或两个角的和、差、倍、分相等是几何证明的基础。
找全等三角形的方法(1)可以从结论出发,寻找要证明的相等的两条线段(或两个角)分别在哪两个可能全等的三角形中;(2)可以从已知条件出发,看已知条件可以确定哪两个三角形全等;(3)可从条件和结论综合考虑,看它们能确定哪两个三角形全等;(4)若上述方法均不可行,可考虑添加辅助线,构造全等三角形。
三角形中常见辅助线的作法①延长中线构造全等三角形;②利用翻折,构造全等三角形;③引平行线构造全等三角形;④作连线构造等腰三角形。
全等三角形专题复习(含练习讲评)
一、全等三角形注: ① 判定两个三角形全等必须有一组边对应相等;② 全等三角形面积相等. 2. 证题的思路:⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎨⎧⎩⎨⎧⎪⎪⎩⎪⎪⎨⎧⎪⎩⎪⎨⎧⎪⎩⎪⎨⎧)找任意一边()找两角的夹边(已知两角)找夹已知边的另一角()找已知边的对角()找已知角的另一边(边为角的邻边)任意角(若边为角的对边,则找已知一边一角)找第三边()找直角()找夹角(已知两边AAS ASA ASA AAS SAS AAS SSS HL SAS例1: 如图, 在△ABE 中, AB =AE,AD =AC,∠BAD =∠EAC, BC.DE 交于点O.求证: (1) △ABC ≌△AED ; (2) OB =OE .例2: 如图所示, 已知正方形ABCD 的边BC.CD 上分别有点E 、点F, 且BE +DF =EF, 试求∠EAF 的度数.AD F例3.在△ABC中, ∠ACB=90°,AC=BC, AE是BC的中线, 过点C作CF⊥AE于F,过B作BD⊥CB 交CF的延长线于点D。
(1)求证:AE=CD, (2)若BD=5㎝,求AC的长。
例4:如图, △ABE和△ADC是△ABC分别沿着AB.AC边翻折180°形成的, 若∠1: ∠2: ∠3=28: 5: 3, 则∠a的度数为例5: 如图: 在△ABC中, ∠ACB=90°, AC=BC, D是AB上一点, AE⊥CD于E, BF⊥CD交CD的延长线于F.求证: AE=EF+BF。
练习:1.已知: 如图5—129, △ABC 的∠B.∠C 的平分线相交于点D, 过D 作MN ∥BC 交AB.AC 分别于点M 、N, 求证:BM +CN =MN2.如图(13):已知AB ⊥BD, ED ⊥BD, AB=CD , BC=DE ,请你判断AC 垂直于CE 吗? 并说明理由。
3.如图(14),已知AB=DC , DE=BF, ∠B=∠D , 试说明(1)DE ∥BF (2)AE=CFFDCABE(14)4.如图: 在△ABC中, ∠BAC=90°,∠ABD= ∠ABC, DF⊥BC, 垂足为F, AF交BD于E。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
全等三角形题型归类及解析
全等三角形难题题型归类及解析
一、角平分线型
角平分线是轴对称图形,所以我们要充分的利用它的轴对称性,常作的辅助线是:一利用截取一条线段构造全等三角形,二是经过平分线上一点作两边的垂线。
另外掌握两个常用的结论:角平分
线与平行线构成等腰三角形,角平分线与垂线构成等腰三角形。
1. 如图,在ΔABC 中,D 是边BC 上一点,AD 平分∠BAC ,在AB 上截取AE=AC ,
连结DE ,已知DE=2cm ,BD=3cm ,求线段BC 的长。
2. 已知:如图所示,BD 为∠ABC 的平分线,AB=BC ,点P 在BD 上,PM ⊥AD 于M ,
•PN ⊥CD 于N ,判断PM 与PN 的关系.
3. 已知:如图E 在△ABC 的边AC 上,且∠AEB=∠ABC 。
(1) 求证:∠ABE=∠C ;
(2) 若∠BAE 的平分线AF 交BE 于F ,FD ∥BC 交AC 于D ,设AB=5,
AC=8,求DC 的长。
A
B C D
E P D A C
B
M N
二、中点型
由中点应产生以下联想: 1、想到中线,倍长中线
2、利用中心对称图形构造8字型全等三角形
3、在直角三角形中联想直角三角形斜边上的中线
4、三角形的中位线
2、已知:如图,ABC △中,45ABC ∠=°,CD AB ⊥于D ,
BE
平分ABC ∠,且BE AC ⊥于E ,与CD 相交于点F H ,是BC
边的中点,连结DH 与BE 相交于点G . (1)求证:BF AC =;
(2)求证:1
2
CE BF =
D
A
E
F
C
H
G
B
3、如图,△ABC中,D是BC的中点,DE⊥DF,试判断BE+CF与EF的大小关
系,并证明你的结论。
4、如图,已知在△ABC中,AD是BC边上的
中线,E 是AD 上的一点,且BE=AC ,延长BE 交AC 于F ,求证:AF=EF
三、多个直角型
在多个直角的问题中很容易找的条件是直角相等以及边相等,而最难找的是锐角相等,所以“同角的余角相等”这个定理就显得非常重要,它是证明多个直角问题中锐角相等的有利工具。
1、 如图,已知: AD 是BC 上的中线 ,且DF=DE .求证:BE ∥CF .
2、如图, 已知:AB ⊥BC 于B , EF ⊥AC 于G , DF ⊥BC 于D , BC=DF .求证:AC=EF .
E F
D
B
A
3、如图,∠ABC=90°,AB=BC ,BP 为一条射线,AD ⊥BP ,CE ⊥PB ,若AD=4,EC=2.求DE 的长。
4、如图,ΔABC 的两条高AD 、BE 相交于H ,且AD=BD ,试说明下列结论成立的理由。
(1)∠DBH=∠DAC ; (2)ΔBDH ≌ΔADC 。
4. 如图∠ACB=90°,AC=BC,BE ⊥CE,AD ⊥CE 于D ,AD=2、
5cm ,DE=1.7cm,求BE 的长
F
G
E D C B A A
B C D
E
H
5.如图①,E、F分别为线段AC上的两个动点,且DE⊥AC于E,BF⊥AC于F,
若AB=CD,AF=CE,BD交AC于点M.
(1)求证:MB=MD,ME=MF
(2)当E、F两点移动到如图②的位置时,其余条件不变,上述结论能否成立?若成立请给予证明;若不成立请说明理由.
6.如图(1), 已知△ABC中, ∠BAC=900, AB=AC, AE是过A的一条直线, 且B、
C在A、E的异侧, BD⊥AE于D, CE⊥AE于E
(1)试说明: BD=DE+CE.
(2)若直线AE绕A点旋转到图(2)位置时(BD<CE), 其余条件不
F E D
C
B
A
变, 问BD 与DE 、CE 的关系如何? 为什么?
(3) 若直线AE 绕A 点旋转到图(3)位置时(BD>CE), 其余条件不
变, 问BD 与DE 、CE 的关系如何? 请直接写出结果, 不需说明.
(4)归纳前二个问得出BD 、DE 、CE 关系。
用简洁的语言加以说明。
四、等边三角形型
由于等边三角形是轴对称图形,所以很多时候利用其轴对称性进行构造全等三角形,另外等边三角形又具有60度和120度的旋转对称性,所以经常利用旋转全等的知识进行解答,同时等边三角形具有丰富的边角相等的性质,因此当我们看到有60度的角的时候经常构造等边三角形解题。
1、如图,已知ABC ∆为等边三角形,D 、E 、F 分别在边BC 、CA 、AB 上,且DEF ∆也是等边三角形.
(2) 除已知相等的边以外,请你猜想还有哪些相等线段,并证明你的
猜想是正确的;
(3) 你所证明相等的线段,可以通过怎样的变化相互得到?写出变化
过程.
2、已知等边三角形ABC中,BD=CE,AD与BE相交于点P,求∠APE的大小。
3、如图,D是等边△ABC的边AB上的一动点,以CD为一边向上作等边△EDC,连接AE,找出图中的一组全等三角形,并说明理由.
4、已知,△ABC和△ECD都是等边三角形,且点B,C,D在一条直线上.求证:BE=AD
E D
C B
A
5、已知P是等边△ABC内的一点,BPC
PC
PB
PA∠
=
=
=则
,3
,4
,5的度数为多少?
6、已知P是正方形ABCD内的一点,PA∶PB∶PC=1∶2∶3,APB
∠
则的度数为多少?.
A B
D
C
P
E
A B C
D
E
F
G
五、等腰三角形型
由于等腰三角形是轴对称图形,所以很多时候利用其轴对称性进行构造全等三角形,另外等腰三角形又具有旋转对称性,所以经常利用旋转全等的知识进行解答
1、如图所示,已知AE⊥AB,AF⊥AC,AE=AB,AF=AC。
求证:(1)EC=BF;(2)EC⊥BF
A
E
M
C
F
1. 在△ABC 中,,AB=AC , 在AB 边上取点D ,在AC 延长线上取点E ,使CE=BD ,
连接DE 交BC 于点F ,求证DF=EF .
2. 如图所示,已知D 是等腰△ABC 底边BC 上的一点,它到两腰AB 、AC 的距离分
别为DE 、DF,CM ⊥AB,垂足为M,请你探索一下线段DE 、DF 、CM 三者之间的数量关系, 并给予证明. F C B E
D
E
C B A
M
F
折叠型
23、如图①,将边长为4cm 的正方形纸片ABCD 沿EF 折叠(点E 、F 分别在边AB 、CD 上),使点B 落在AD 边上的点 M 处,点C 落在点N 处,MN 与CD 交于点P , 连接EP .
(1)如图②,若M 为AD 边的中点,
①,△AEM 的周长=_____cm ;
②求证:EP=AE+DP ;
(2)随着落点M 在AD 边上取遍所有的位置(点M 不与A 、D 重合),△PDM 的周长是否发生变化?请说明理由.。