全等三角形经典培优题型(含答案)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三角形培优练习题
1已知:AB=4,AC=2,D 是BC 中点,AD 是整数,求AD
2已知:BC=DE ,∠B=∠E ,∠C=∠D ,F 是CD 中点,求证:∠1=∠2
3已知:∠1=∠2,CD=DE ,EF//AB ,求证:EF=AC
4已知:AD 平分∠BAC ,AC=AB+BD ,求证:∠B=2∠C
C
D
B A
D B C A
B A
C D F 2 1 E
5已知:AC 平分∠BAD ,CE ⊥AB ,∠B+∠D=180°,求证:AE=AD+BE
6 如图,四边形ABCD 中,AB ∥DC ,BE 、CE 分别平分∠ABC 、∠BCD ,且点E 在AD 上。求证:BC=AB+DC 。
7已知:AB=CD ,∠A=∠D ,求证:∠B=∠C
8.P 是∠BAC 平分线AD 上一点,AC>AB ,求证:PC-PB A B C D P D A C B 9已知,E 是AB 中点,AF=BD ,BD=5,AC=7,求DC 10.如图,已知AD ∥BC ,∠P AB 的平分线与∠CBA 的平分线相交于E ,CE 的连线交AP 于D .求证:AD +BC =AB . 11如图,△ABC 中,AD 是∠CAB 的平分线,且AB =AC +CD ,求证:∠C =2∠B 12如图:AE 、BC 交于点M ,F 点在AM 上,BE ∥CF ,BE=CF 。 求证:AM 是△ABC 的中线。 F A E D C B P E D C B A D C B A M F E C B A 13已知:如图,AB =AC ,BD ⊥AC ,CE ⊥AB ,垂足分别为D 、E ,BD 、CE 相交于点F 。 求证:BE =CD . 14在△ABC 中,︒=∠90ACB ,BC AC =,直线MN 经过点C ,且MN AD ⊥于D ,MN BE ⊥于E .(1)当直线MN 绕点C 旋转到图1的位置时, 求证: ①ADC ∆≌CEB ∆;②BE AD DE +=; (2)当直线MN 绕点C 旋转到图2的位置时,(1)中的结论还成立吗?若成立, 请给出证明;若不成立,说明理由. 15如图所示,已知AE ⊥AB ,AF ⊥AC ,AE=AB ,AF=AC 。求证:(1)EC=BF ;(2)EC ⊥BF A C B D E F A E B M C F 16.如图,已知AC ∥BD ,EA 、EB 分别平分∠CAB 和∠DBA ,CD 过点E ,则AB 与AC+BD 相等吗?请说明理由 17.如图9所示,△ABC 是等腰直角三角形,∠ACB =90°,AD 是BC 边上的中线,过C 作AD 的垂线,交AB 于点E ,交AD 于点F ,求证:∠ADC =∠BDE . A B C D E F 图9 全等三角形证明经典(答案) 1. 延长AD到E,使DE=AD, 则三角形ADC全等于三角形EBD 即BE=AC=2 在三角形ABE中,AB-BE 即:10-2<2AD<10+2 4 又AD是整数,则AD=5 2证明:连接BF和EF。 因为BC=ED,CF=DF,∠BCF=∠EDF。 所以三角形BCF全等于三角形EDF(边角边)。 所以BF=EF,∠CBF=∠DEF。 连接BE。 在三角形BEF中,BF=EF。 所以∠EBF=∠BEF。 又因为∠ABC=∠AED。 所以∠ABE=∠AEB。 所以AB=AE。 在三角形ABF和三角形AEF中, AB=AE,BF=EF, ∠ABF=∠ABE+∠EBF=∠AEB+∠BEF=∠AEF。 所以三角形ABF和三角形AEF全等。 所以∠BAF=∠EAF (∠1=∠2)。 3 证明: 过E点,作EG//AC,交AD延长线于G 则∠DEG=∠DCA,∠DGE=∠2 又∵CD=DE ∴⊿ADC≌⊿GDE(AAS) ∴EG=AC ∵EF//AB ∴∠DFE=∠1 ∵∠1=∠2 ∴∠DFE=∠DGE ∴EF=EG ∴EF=AC 4证明: 在AC上截取AE=AB,连接ED ∵AD平分∠BAC ∴∠EAD=∠BAD 又∵AE=AB,AD=AD ∴⊿AED≌⊿ABD(SAS) ∴∠AED=∠B,DE=DB ∵AC=AB+BD AC=AE+CE ∴CE=DE ∴∠C=∠EDC ∵∠AED=∠C+∠EDC=2∠C ∴∠B=2∠C 5证明: 在AE上取F,使EF=EB,连接CF 因为CE⊥AB 所以∠CEB=∠CEF=90° 因为EB=EF,CE=CE, 所以△CEB≌△CEF 所以∠B=∠CFE 因为∠B+∠D=180°,∠CFE+∠CFA=180° 所以∠D=∠CFA 因为AC平分∠BAD 所以∠DAC=∠FAC 又因为AC=AC 所以△ADC≌△AFC(SAS) 所以AD=AF 所以AE=AF+FE=AD+BE 6证明:在BC上截取BF=BA,连接EF. ∠ABE=∠FBE,BE=BE,则⊿ABE≌ΔFBE(SAS),∠EFB=∠A; AB平行于CD,则:∠A+∠D=180°; 又∠EFB+∠EFC=180°,则∠EFC=∠D; 又∠FCE=∠DCE,CE=CE,故⊿FCE≌ΔDCE(AAS),FC=CD. 所以,BC=BF+FC=AB+CD. 7证明:设线段AB,CD所在的直线交于E,(当AD 则: △AED是等腰三角形。 所以:AE=DE 而AB=CD 所以:BE=CE (等量加等量,或等量减等量) 所以:△BEC是等腰三角形 所以:角B=角C.