全等三角形经典培优题型(含问题详解)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
全等三角形的提高拓展训练
全等三角形的性质:对应角相等,对应边相等,对应边上的中线相等,对应边上的高相等,对应角的角平分线相等,面积相等. 寻找对应边和对应角,常用到以下方法:
(1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边. (2)全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角. (3)有公共边的,公共边常是对应边. (4)有公共角的,公共角常是对应角. (5)有对顶角的,对顶角常是对应角.
(6)两个全等的不等边三角形中一对最长边(或最大角)是对应边(或对应角),一对最短边(或最小角)是对应边(或对应角).
要想正确地表示两个三角形全等,找出对应的元素是关键. 全等三角形的判定方法:
(1) 边角边定理(SAS ):两边和它们的夹角对应相等的两个三角形全等. (2) 角边角定理(ASA ):两角和它们的夹边对应相等的两个三角形全等. (3) 边边边定理(SSS ):三边对应相等的两个三角形全等.
(4) 角角边定理(AAS ):两个角和其中一个角的对边对应相等的两个三角形全等. (5) 斜边、直角边定理(HL ):斜边和一条直角边对应相等的两个直角三角形全等.
全等三角形的应用:运用三角形全等可以证明线段相等、角相等、两直线垂直等问题,在证明的过程中,注意有时会添加辅助线. 拓展关键点:能通过判定两个三角形全等进而证明两条线段间的位置关系和大小关系.而证明两条线段或两个角的和、差、倍、分相等是几何证明的基础.
全等三角形证明经典题
1已知:AB=4,AC=2,D 是BC 中点,AD 是整数,求AD
2已知:BC=DE ,∠B=∠E ,∠C=∠D ,F 是CD 中点,求证:∠1=∠2
A
D
B
C
3已知:∠1=∠2,CD=DE ,EF//AB ,求证:EF=AC
4已知:AD 平分∠BAC ,AC=AB+BD ,求证:∠B=2∠C
5已知:AC 平分∠BAD ,CE ⊥AB ,∠B+∠D=180°,求证:AE=AD+BE
6 如图,四边形ABCD 中,AB ∥DC ,BE 、CE 分别平分∠ABC 、∠BCD ,且点E 在AD 上。求证:BC=AB+DC 。
C
D
B A
B A C
D
F
2 1 E
7已知:AB=CD ,∠A=∠D ,求证:∠B=∠C
8 P 是∠BAC 平分线AD 上一点,AC>AB ,求证:PC-PB 9已知,E 是AB 中点,AF=BD ,BD=5,AC=7,求DC A B C D P D A C B F A E D C B 10.(5分)如图,已知AD ∥BC ,∠PAB 的平分线与∠CBA 的平分线相交于E ,CE 的连线交 AP 于D .求证:AD +BC =AB . 11(6分)如图,△ABC 中,AD 是∠CAB 的平分线,且AB =AC +CD ,求证:∠C =2∠B 12(10分)如图:AE 、BC 交于点M ,F 点在AM 上,BE ∥CF ,BE=CF 。 求证:AM 是△ABC 的中线。 P E D C B A D C B A M F E C B A 13已知:如图,AB =AC ,BD ⊥AC ,CE ⊥AB ,垂足分别为D 、E ,BD 、CE 相交于点F ,求证:BE =CD . 14在△ABC 中,︒=∠90ACB ,BC AC =,直线MN 经过点C ,且MN AD ⊥于D , MN BE ⊥于E .(1)当直线MN 绕点C 旋转到图1的位置时, 求证: ①ADC ∆≌CEB ∆;②BE AD DE +=; (2)当直线MN 绕点C 旋转到图2的位置时,(1)中的结论还成立吗?若成立,请给出证明;若不成立,说明理由. A C B D E F 15如图所示,已知AE ⊥AB ,AF ⊥AC ,AE=AB ,AF=AC 。求证:(1)EC=BF ;(2)EC ⊥BF 16.如图,已知AC ∥BD ,EA 、EB 分别平分∠CAB 和∠DBA ,CD 过点E ,则AB 与AC+BD 相等吗?请说明理由 17.如图9所示,△ABC 是等腰直角三角形,∠ACB =90°,AD 是BC 边上的中线,过C 作AD 的垂线,交AB 于点E ,交AD 于点F ,求证:∠ADC =∠BDE . A E B M C F A B C D E F 图9 全等三角形证明经典(答案) 1. 延长AD到E,使DE=AD, 则三角形ADC全等于三角形EBD 即BE=AC=2 在三角形ABE中,AB-BE 即:10-2<2AD<10+2 4 又AD是整数,则AD=5 2证明:连接BF和EF。 因为 BC=ED,CF=DF,∠BCF=∠EDF。 所以三角形BCF全等于三角形EDF(边角边)。 所以 BF=EF,∠CBF=∠DEF。 连接BE。 在三角形BEF中,BF=EF。 所以∠EBF=∠BEF。 又因为∠ABC=∠AED。 所以∠ABE=∠AEB。 所以 AB=AE。 在三角形ABF和三角形AEF中, AB=AE,BF=EF, ∠ABF=∠ABE+∠EBF=∠AEB+∠BEF=∠AEF。 所以三角形ABF和三角形AEF全等。 所以∠BAF=∠EAF (∠1=∠2)。 3 证明: 过E点,作EG//AC,交AD延长线于G 则∠DEG=∠DCA,∠DGE=∠2 又∵CD=DE ∴⊿ADC≌⊿GDE(AAS) ∴EG=AC ∵EF//AB ∴∠DFE=∠1 ∵∠1=∠2 ∴∠DFE=∠DGE ∴EF=EG ∴EF=AC 4证明: 在AC上截取AE=AB,连接ED ∵AD平分∠BAC ∴∠EAD=∠BAD 又∵AE=AB,AD=AD