《全等三角形》培优题型全集

合集下载

全等三角形培优经典题

全等三角形培优经典题

全等三角形培优习题1、已知正方形ABCD 中,E 为对角线BD 上一点,过E 点作EF ⊥BD 交BC 于F ,连接DF ,G 为DF 中点,连接EG ,CG .(1)直接写出线段EG 与CG 的数量关系;(2)将图1中△BEF 绕B 点逆时针旋转45o ,如图2所示,取DF 中点G ,连接EG ,CG . 你在(1)中得到的结论是否发生变化?写出你的猜想并加以证明.(3)将图1中△BEF 绕B 点旋转任意角度,如图3所示,再连接相应的线段,问(1)中的结论是否仍然成立?2、数学课上,张老师出示了问题:如图1,四边形ABCD 是正方形,点E 是边BC 的中点.90AEF ∠=,且EF 交正方形外角DCG ∠的平行线CF 于点F ,求证:AE =EF .经过思考,小明展示了一种正确的解题思路:取AB 的中点M ,连接ME ,则AM =EC ,易证AME ECF △≌△,所以AE EF =.在此基础上,同学们作了进一步的研究:(1)小颖提出:如图2,如果把“点E 是边BC 的中点”改为“点E 是边BC 上(除B ,C 外)的任意一点”,其它条件不变,那么结论“AE =EF ”仍然成立,你认为小颖的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由;(2)小华提出:如图3,点E 是BC 的延长线上(除C 点外)的任意一点,其他条件不变,结论“AE =EF ”仍然成立.你认为小华的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由.ADFC GE B图1ADF C GE B 图2 ADFC GE B图3FB D图1BDE图2B 图3D7.已知如图,E.F 在BD 上,且AB =CD ,BF =DE ,AE =CF,求证:AC 与BD 互相平分.8.如图, 已知:AB ⊥BC 于B , EF ⊥AC 于G , DF ⊥BC 于D , BC=DF .猜想线段AC 与EF 的关系,并证明你的结论.9如图ABD ∆和ACE ∆FG E DC B A A B EO F DOE DCB A10.如图∠ABC =90°AB =BC ,D 为AC 上一点分别过A.C 作BD 的垂线,垂足分别为E.F,求证:EF =CF -AE.11.如图5,已知AB ∥CD ,AD ∥BC , E.F 是BD 上两点,且BF =DE ,则图中共有 对全等三角形.12.如图7,AB ∥CD ,AD ∥BC ,OE=OF, 图中全等三角形共有______对. 1. 填空题常见题型13.两三角形有以下元素对应相等,不能判定全等的是( ) A. 两角和一边 B. 两边及夹角 C. 三个角 D. 三条边14.如果两个三角形两边对应相等,且其中一边所对的角也相等,那么这两个三角形( ) A. 一定全等 B. 一定不全等 C. 不一定全等 D. 面积相等15.如果两个三角形中两条边和其中一边上的高对应相等,那么这两个三角形的第三条边所对的角的关系是( )A. 相等B. 不相等C. 互余或相等D. 互补或相等 2. 常见题的解题方法与分析16. 下列各图中,一定全等的是( ) A. 各有一个角是︒45的两个等腰三角形 B. 两个等边三角形 C. 各有一个角是︒45,腰长都是3cm 的两个等腰三角形 D. 腰和顶角对应相等的两个等腰三角形 17.已知如图,CE ⊥AB 于点E ,BD ⊥AC 于点D ,BD 、CE 交于点O ,且AO 平分∠BAC , (1)图中有多少对全等的三角形?请你一 一列举出来(不要求说明理由)(2)求证BE=CD (3)要得到BE=CD ,你还有其他的思路吗?18.则∆图5A. 6cmB. 7cmC. 8cmD. 9 cm19如图,已知∠1=∠2,∠3=∠4,AB 与CD 相等吗?请你说明理由.20.已知:如图,△ABC 中,∠ABC =45°,CD ⊥AB 于D ,BE 平分∠ABC ,且BE ⊥AC 于E ,与CD 相交于点F ,H 是BC 边的中点,连结DH 与BE 相交于点G 。

word完整版全等三角形培优含答案推荐文档

word完整版全等三角形培优含答案推荐文档

三角形培优练习题1已知:AB=4 , AC=2 , D是BC中点,AD是整数,求AD2 已知:BC=DE,/ B= / E,/ C= / D , F 是CD 中点,求证:A 3 已知:/ 1 = / 2, CD=DE , EF//AB,求证:EF=AC4 已知:AD 平分/ BAC , AC=AB+BD,求证:/ B=2 / C5 已知:AC 平分/ BAD , CE丄AB,/ B+ / D=180 °,求证:AE=AD+BE6如图,四边形ABCD中,AB // DC, BE、CE分别平分/ ABC、/ BCD ,且点E在AD上。

求证:BC=AB+DC。

7 已知:AB=CD,/ A= / D,求证:/ B= / C8.P 是/ BAC 平分线AD 上一点,AC>AB,求证:PC-PB<AC-AB9 已知,E 是AB 中点,AF=BD , BD=5 , AC=7,求DC10.如图,已知AD // BC ,Z PAB的平分线与/ CBA的平分线相交于E, CE的连线交AP 于D .求证:AD + BC=AB.11如图,△ ABC中,AD是/ CAB的平分线,且AB=AC+CD,求证:/ C=2/ B12 如图:AE BC交于点M F 点在AMk, BE// CF, BE=CF求证:人皿是厶ABC的中线。

E13已知:如图,AB=AC, BD AC, CE AB,垂足分别为D、E, BD、CE相交于点F。

求证:BE =CD.C14在厶ABC中,ACB 90 , AC BC,直线MN经过点C,且AD MN于D ,BE MN于E •⑴当直线MN绕点C旋转到图1的位置时,求证:① ADC也CEB :②DE AD BE ;(2)当直线MN绕点C旋转到图2的位置时,(1)中的结论还成立吗?若成立,15 如图所示,已知AE! AB, AF丄AC, AE=AB AF=AC 求证:(1) EC=BF ( 2) EC丄BF请给出证明;若不成立,说明理由B C16.如图,已知AC // BD , EA、EB分别平分/ CAB和/ DBA , CD过点E,贝U AB与AC+BD 相等吗?请说明理由17.如图9所示,△ ABC是等腰直角三角形,/ ACB = 90°, AD是BC边上的中线,过C 作AD的垂线,交AB于点E,交AD于点F,求证:/ ADC = Z BDE .图9全等三角形证明经典(答案)1. 延长AD 至U E,使DE=AD, 则三角形ADC 全等于三角形EBD即BE=AC=2 在三角形ABE 中,AB-BE<AE<AB+BE即:10-2<2AD<10+2 4<AD<6又AD 是整数,则AD=52 证明:连接BF 和EF。

全等三角形专题培优(带答案)(精选.)

全等三角形专题培优(带答案)(精选.)

全等三角形专题培优考试总分: 110 分考试时间: 120 分钟卷I(选择题)一、选择题(共 10 小题,每小题 2 分,共 20 分)1.如图为个边长相等的正方形的组合图形,则A. B.C. D.2.下列定理中逆定理不存在的是()A.角平分线上的点到这个角的两边距离相等B.在一个三角形中,如果两边相等,那么它们所对的角也相等C.同位角相等,两直线平行D.全等三角形的对应角相等3.已知:如图,,,,则不正确的结论是()A.与互为余角B.C.D.4.如图,是的中位线,延长至使,连接,则的值为()A. B. C. D.5.如图,在平面直角坐标系中,在轴、轴的正半轴上分别截取、,使;再分别以点、为圆心,以大于长为半径作弧,两弧交于点.若点的坐标为,则与的关系为()A. B.C. D.6.如图,是等边三角形,,于点,于点,,则下列结论:①点在的角平分线上;②;③;④.正确的有()A.个B.个C.个D.个7.如图,直线、、″表示三条相互交叉的公路,现计划建一个加油站,要求它到三条公路的距离相等,则可供选择的地址有()A.一处B.二处C.三处D.四处8.如图,是的角平分线,则等于()A. B.C. D.9.已知是的中线,且比的周长大,则与的差为()A. B.C. D.10.若一个三角形的两条边与高重合,那么它的三个内角中()A.都是锐角B.有一个是直角C.有一个是钝角D.不能确定卷II(非选择题)二、填空题(共 10 小题,每小题 2 分,共 20 分)11.问题情境:在中,,,点为边上一点(不与点,重合),交直线于点,连接,将线段绕点顺时针方向旋转得到线段(旋转角为),连接.特例分析:如图.若,则图中与全等的一个三角形是________,的度数为________.类比探究:请从下列,两题中任选一题作答,我选择________题.:如图,当时,求的度数;:如图,当时,①猜想的度数与的关系,用含的式子表示猜想的结果,并证明猜想;②在图中将“点为边上的一点”改为“点在线段的延长线上”,其余条件不变,请直接写出的度数(用含的式子表示,不必证明)12.如图,正方形纸片的边长为,点、分别在边、上,将、分别沿、折叠,点、恰好都落在点处,已知,则的长为________.13.在中,为的平分线,于,于,面积是,,,则的长为________.14.在中,,的垂直平分线与所在的直线相交所得到锐角为,则等于________.15.如图,平分,于,于,,则图中有________对全等三角形.16.如图,在中,,点从点出发沿射线方向,在射线上运动.在点运动的过程中,连结,并以为边在射线上方,作等边,连结.当________时,;请添加一个条件:________,使得为等边三角形;①如图,当为等边三角形时,求证:;②如图,当点运动到线段之外时,其它条件不变,①中结论还成立吗?请说明理由.17.如图,从圆外一点引圆的两条切线,,切点分别为,.如果,,那么弦的长是________.18.如图,在中,,,是的平分线,平分交于,则________.19.阅读下面材料:小聪遇到这样一个有关角平分线的问题:如图,在中,,平分,,求的长.小聪思考:因为平分,所以可在边上取点,使,连接.这样很容易得到,经过推理能使问题得到解决(如图).请回答:是________三角形.的长为________.参考小聪思考问题的方法,解决问题:如图,已知中,,,平分,,.求的长.20.如图,在和中,,,若要用“斜边直角边..”直接证明,则还需补充条件:________.三、解答题(共 7 小题,每小题 10 分,共 70 分)21.如图,已知为等边三角形,为延长线上的一点,平分,,求证:为等边三角形.22.尺规作图(不要求写作法,保留作图痕迹)如图,作①的平分线;②边上的中线;22.一块三角形形状的玻璃破裂成如图所示的三块,请你用尺规作图作一个三角形,使所得的三角形和原来的三角形全等.(不要求写作法,保留作图痕迹.不能在原图上作三角形)22.如图:在正方形网格中有一个,按要求进行下列画图(只能借助于网格):①画出中边上的高(需写出结论).②画出先将向右平移格,再向上平移格后的.23.平行四边形中,,点为边上一点,连结,点在边所在直线上,过点作交于点.如图,若为边中点,交延长线于点,,,,求;如图,若点在边上,为中点,且平分,求证:;如图,若点在延长线上,为中点,且,问中结论还成立吗?若不成立,那么线段、、满足怎样的数量关系,请直接写出结论.24.如图,直线与轴、轴分别交于、两点,直线与直线关于轴对称,已知直线的解析式为,求直线的解析式;过点在的外部作一条直线,过点作于,过点作于,请画出图形并求证:;沿轴向下平移,边交轴于点,过点的直线与边的延长线相交于点,与轴相交于点,且,在平移的过程中,①为定值;②为定值.在这两个结论中,有且只有一个是正确的,请找出正确的结论,并求出其值.25.如图:,,过点,于,于,.求证:.26.如图,点,在上,,,,与交于点.求证:;试判断的形状,并说明理由.27.如图,已知点是平分线上一点,,,垂足为、吗?为什么?是的垂直平分线吗?为什么?答案1.B2.D3.D4.A5.B6.D7.D8.A9.B10.B11.[ “”, “” ][ “” ]12.[ “” ]13.[ “” ]14.[ “或” ]15.[ “” ]16.[ “;” ][ "添加一个条件,可得为等边三角形;故答案为:;①∵与是等边三角形,∴,,,∴,即,在与中,,∴,∴;②成立,理由如下;∵与是等边三角形,∴,,,∴,即,在与中,,∴,∴." ]17.[ “” ]18.[ “” ]19.[ "解:是等腰三角形,在与中,,∴,∴,,∵,∴,∴,∴是等腰三角形;" ][ "的长为,∵中,,,∴,∵平分,∴,在边上取点,使,连接,则,∴,∴,∴,在边上取点,使,连接,则,∴,,∵,∴,∴,∵,∴." ]\"go题库\"20.[ “” ]21.证明:∵为等边三角形,∴,,即,∵平分,∴,在和中,,∴,∴,,又,∴,∴为等边三角形.22.解:如图所示:;如图所示:即为所求;;①如图所示:即为所求;②如图所示:即为所求;..23.解:如图,在平行四边形中,,∴,∵在中,为的中点,,∴,又∵,∴,故可设,,则中,,解得,∴,又∵,,∴为的中点,∴;如图,延长交的延长线于点,则,∵,∴,又∵平分,∴,∴是等腰直角三角形,∴,又∵,∴,∴,,又∵为的中点,∴,∴,∴,∵,∴;若点在延长线上,为中点,且,则中的结论不成立,正确结论为:.证明:如图,延长交的延长线于点,则,∵,∴,∴,又∵,∴,∴,,又∵为的中点,∴,∴,∴,∵,∴.24.解:∵直线与轴、轴分别交于、两点,∴,,∵直线与直线关于轴对称,∴∴直线的解析式为:;如图..∵直线与直线关于轴对称,∴,∵与为象限平分线的平行线,∴与为等腰直角三角形,∴,∵,∴∴∴,,∴;①对,过点作轴于,直线与直线关于轴对称∵,,又∵,∴,则,∴∴∴∴∴.25.证明:连接,∵,∴,∵,∴,∴,∵,,∴,在和中,∴.26.证明:∵,∴,即.又∵,,∴,∴.解:为等腰三角形理由如下:∵,∴,∴,∴为等腰三角形.27.解:.理由:∵是的平分线,且,,∴,∴;是的垂直平分线.理由:∵,在和中,,∴,∴,由,,可知点、都是线段的垂直平分线上的点,从而是线段的垂直平分线.最新文件仅供参考已改成word文本。

全等三角形证明培优题

全等三角形证明培优题

模块一:根本辅助线1.如图,AC=BD,AD⊥AC,BC⊥BD,求证:AD=BC.2.如图,AB=AE,∠ABC=∠AED,BC=ED,点F是CD的中点,〔1〕求证:AF⊥CD.〔2〕在你连接BE后,还能得出什么新的结论?请写出三个〔不要求证明〕3.如图,∠B=∠E,∠C=∠D,BC=DE,M为CD中点,求证:AM⊥CD.4.如图,平面上有一边长为2的正方形ABCD,O为对角线的交点,正方形OEFG的顶点与O 重合,OE、OG分别与正方形ABCD的边交于M、N两点.①如图〔1〕,当OE⊥AB时,四边形OMBN的面积为___;②如图〔2〕,当正方形OEFG绕点O旋转时,四边形OMBN的面积会发生变化吗?试证明你的结论.5.如下图,在△ABC中,AB=AC,在AB上取一点E,在AC延长线上取一点F,使BE=CF,EF交BC于G.求证:EG=FG。

6.如图,在△ABC中,AB=AC,E在线段AC上,D在AB的延长线,连DE交BC于F,过点E 作EG⊥BC于G.〔1〕假设∠A=50°,∠D=30°,求∠GEF的度数;〔2〕假设BD=CE,求证:FG=BF+CG.模块二:母子型1:如图,点C为线段AB上一点,△ACM, △CBN都是等边三角形,AN交MC于点E,BM 交CN于点F.(1)求证:AN=BM;(2)求证:△CEF为等边三角形2.如图,,等腰Rt△OAB中,∠AOB=90°,等腰Rt△EOF中,∠EOF=90°,连结AE、BF。

求证:〔1〕AE=BF;〔2〕AE⊥BF。

3.如图1,假设四边形ABCD、四边形GFED都是正方形,显然图中有AG=CE,AG⊥CE;〔1〕当正方形GFED绕D旋转到如图2的位置时,AG=CE是否成立?假设成立,请给出证明;假设不成立,请说明理由;〔2〕当正方形GFED绕D旋转到如图3的位置时,延长CE交AG于H,交AD于M.①求证:AG⊥CH;②当AD=4,DG=2时,求CH的长.4.如图,△ABD、△AEC都是等边三角形,AF⊥CD于点F,AH⊥BE于点H,问:〔1〕BE与CD 有何数量关系?为什么?〔2〕AF、AH有何数量关系?为什么?5.:如图①所示,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE,且点B,A,D在一条直线上,连接BE,CD,M,N分别为BE,CD的中点.〔1〕求证:①BE=CD;②△AMN是等腰三角形;〔2〕在图①的根底上,将△ADE绕点A按顺时针方向旋转180°,其他条件不变,得到图②所示的图形.请直接写出〔1〕中的两个结论是否仍然成立;〔3〕在〔2〕的条件下,请你在图②中延长ED交线段BC于点P.求证:△PBD∽△AMN.6.〔2021•丰台区一模〕如图1,在△ABC中,∠ACB为锐角,点D为射线BC上一点,连接AD,以AD为一边且在AD的右侧作正方形ADEF.〔1〕如果AB=AC,∠BAC=90°,①当点D在线段BC上时〔与点B不重合〕,如图2,线段CF、BD所在直线的位置关系为______,线段CF、BD的数量关系为______;②当点D在线段BC的延长线上时,如图3,①中的结论是否仍然成立,并说明理由;〔2〕如果AB≠AC,∠BAC是锐角,点D在线段BC上,当∠ACB满足什么条件时,CF⊥BC〔点C、F不重合〕,并说明理由.模块三倍长中线(1)倍长中线〔2〕倍长类中线1.:如图,△ABC中,AD平分∠BAC,且BD=CD,求证:AB=AC.2.,如图△ABC 中,AC>AB,AM 是BC 边上的中线,求证:21〔AC-AB 〕<AM <21(AB+AC).3. 如下图,△ABC 中,AD 平分∠BAC,E,F 分别在BD,AD 上,DE=CD,EF=AC,求证:EF//AB.4.如图,AD 是△ABC 的中线,E 、F 分别在AB 、AC 上,且DE ⊥DF 求证:BE+CF >EF .4. 如图,在△ABC 中,AB=AC ,CE 是AB 边上的中线,延长AB 到D ,使BD=AB ,连接CD .求证:CE=21CD.5. 证明:直角三角形斜边上的中线等于斜边上的一半。

全等三角形专题培优(带答案)

全等三角形专题培优(带答案)

全等三角形专题培优考试总分: 110 分考试时间: 120 分钟卷I(选择题)一、选择题(共 10 小题,每小题 2 分,共 20 分)1.如图为个边长相等的正方形的组合图形,则A. B.C. D.2.下列定理中逆定理不存在的是()A.角平分线上的点到这个角的两边距离相等B.在一个三角形中,如果两边相等,那么它们所对的角也相等C.同位角相等,两直线平行D.全等三角形的对应角相等3.已知:如图,,,,则不正确的结论是()A.与互为余角B.C.D.4.如图,是的中位线,延长至使,连接,则的值为()A. B. C. D.5.如图,在平面直角坐标系中,在轴、轴的正半轴上分别截取、,使;再分别以点、为圆心,以大于长为半径作弧,两弧交于点.若点的坐标为,则与的关系为()A. B.C. D.6.如图,是等边三角形,,于点,于点,,则下列结论:①点在的角平分线上;②;③;④.正确的有()A.个B.个C.个D.个7.如图,直线、、″表示三条相互交叉的公路,现计划建一个加油站,要求它到三条公路的距离相等,则可供选择的地址有()A.一处B.二处C.三处D.四处8.如图,是的角平分线,则等于()A. B.C. D.9.已知是的中线,且比的周长大,则与的差为()A. B.C. D.10.若一个三角形的两条边与高重合,那么它的三个内角中()A.都是锐角B.有一个是直角C.有一个是钝角D.不能确定卷II(非选择题)二、填空题(共 10 小题,每小题 2 分,共 20 分)11.问题情境:在中,,,点为边上一点(不与点,重合),交直线于点,连接,将线段绕点顺时针方向旋转得第1页,共7页第2页,共7页………外………○……………………○……………………○※※请※※不※※答※※题※………内………○……………………○……………………○到线段(旋转角为),连接.特例分析:如图.若,则图中与全等的一个三角形是________,的度数为________.类比探究:请从下列,两题中任选一题作答,我选择________题. :如图,当时,求的度数; :如图,当时,①猜想的度数与的关系,用含的式子表示猜想的结果,并证明猜想;②在图中将“点为边上的一点”改为“点在线段的延长线上”,其余条件不变,请直接写出的度数(用含的式子表示,不必证明)12.如图,正方形纸片的边长为,点、分别在边、上,将、分别沿、折叠,点、恰好都落在点处,已知,则的长为________.13.在中,为的平分线,于,于,面积是,,,则的长为________.14.在中,,的垂直平分线与所在的直线相交所得到锐角为,则等于________.15.如图,平分,于,于,,则图中有________对全等三角形.16.如图,在中,,点从点出发沿射线方向,在射线上运动.在点运动的过程中,连结,并以为边在射线上方,作等边,连结. 当________时,;请添加一个条件:________,使得为等边三角形; ①如图,当为等边三角形时,求证:;②如图,当点运动到线段之外时,其它条件不变,①中结论还成立吗?请说明理由.17.如图,从圆外一点引圆的两条切线,,切点分别为,.如果,,那么弦的长是________.18.如图,在中,,,是的平分线,平分交于,则________.19.阅读下面材料:小聪遇到这样一个有关角平分线的问题:如图,在中,,平分,, 求的长.小聪思考:因为平分,所以可在边上取点,使,连接.这样很容易得到,经过推理能使问题得到解决(如图). 请回答:是________三角形.的长为________.参考小聪思考问题的方法,解决问题: 如图,已知中,,,平分,,.求的长.20.如图,在和中,,,若要用“斜边直角边..”直接证明,则还需补充条件:________.三、解答题(共 7 小题 ,每小题 10 分 ,共 70 分 )21.如图,已知为等边三角形,为延长线上的一点,平分,,求证:为等边三角形.22.尺规作图(不要求写作法,保留作图痕迹)如图,作①的平分线;②边上的中线;22.一块三角形形状的玻璃破裂成如图所示的三块,请你用尺规作图作一个三角形,使所得的三角形和原来的三角形全等.(不要求写作法,保留作图痕迹.不能在原图上作三角形)22.如图:在正方形网格中有一个,按要求进行下列画图(只能借助于网格):①画出中边上的高(需写出结论).②画出先将向右平移格,再向上平移格后的.23.平行四边形中,,点为边上一点,连结,点在边所在直线上,过点作交于点.如图,若为边中点,交延长线于点,,,,求;如图,若点在边上,为中点,且平分,求证:;如图,若点在延长线上,为中点,且,问中结论还成立吗?若不成立,那么线段、、满足怎样的数量关系,请直接写出结论.24.如图,直线与轴、轴分别交于、两点,直线与直线关于轴对称,已知直线的解析式为,求直线的解析式;过点在的外部作一条直线,过点作于,过点作于,请画出图形并求证:;沿轴向下平移,边交轴于点,过点的直线与边的延长线相交于点,与轴相交于点,且,在平移的过程中,①为定值;②为定值.在这两个结论中,有且只有一个是正确的,请找出正确的结论,并求出其值.25.如图:,,过点,于,于,.求证:.第3页,共7页第4页,共7页26.如图,点,在上,,,,与交于点.求证:;试判断的形状,并说明理由.27.如图,已知点是平分线上一点,,,垂足为、吗?为什么?是的垂直平分线吗?为什么? 答案 1.B 2.D 3.D 4.A 5.B 6.D 7.D 8.A 9.B 10.B11.[ “”, “” ][ “” ] 12.[ “” ] 13.[ “” ] 14.[ “或” ]15.[ “” ] 16.[ “;” ][ "添加一个条件,可得为等边三角形; 故答案为:;①∵与是等边三角形, ∴,,, ∴, 即, 在与中, , ∴, ∴;②成立,理由如下; ∵与是等边三角形, ∴,,, ∴, 即, 在与中, , ∴, ∴." ] 17.[ “” ] 18.[ “” ]19.[ "解:是等腰三角形, 在与中,, ∴, ∴,, ∵, ∴, ∴,∴是等腰三角形;" ][ "的长为, ∵中,,, ∴, ∵平分, ∴,在边上取点,使,连接, 则,∴, ∴, ∴,在边上取点,使,连接, 则, ∴,, ∵, ∴, ∴, ∵,∴." ]\"go题库\"20.[ “” ]21.证明:∵为等边三角形,∴,,即,∵平分,∴,在和中,,∴,∴,,又,∴,∴为等边三角形.22.解:如图所示:;如图所示:即为所求;;①如图所示:即为所求;②如图所示:即为所求;..23.解:如图,在平行四边形中,,∴,∵在中,为的中点,,∴,又∵,∴,故可设,,则中,,解得,∴,又∵,,∴为的中点,∴;如图,延长交的延长线于点,则,∵,∴,又∵平分,∴,∴是等腰直角三角形,∴,又∵,∴,∴,,又∵为的中点,∴,∴,∴,∵,∴;第5页,共7页第6页,共7页…○…………装订…………○…※※请※※不※※内※※答※※题※※…○…………装订…………○…若点在延长线上,为中点,且,则中的结论不成立,正确结论为:. 证明:如图,延长交的延长线于点,则,∵, ∴, ∴, 又∵, ∴, ∴,,又∵为的中点, ∴, ∴, ∴, ∵, ∴.24.解:∵直线与轴、轴分别交于、两点, ∴,,∵直线与直线关于轴对称, ∴∴直线的解析式为:;如图..∵直线与直线关于轴对称, ∴,∵与为象限平分线的平行线, ∴与为等腰直角三角形, ∴, ∵, ∴ ∴ ∴,,∴;①对,过点作轴于,直线与直线关于轴对称∵,, 又∵, ∴, 则, ∴ ∴ ∴ ∴ ∴.25.证明:连接, ∵, ∴, ∵, ∴, ∴, ∵,, ∴, 在和中,∴.26.证明:∵,∴,即.又∵,,∴,∴.解:为等腰三角形理由如下:∵,∴,∴,∴为等腰三角形.27.解:.理由:∵是的平分线,且,,∴,∴;是的垂直平分线.理由:∵,在和中,,∴,∴,由,,可知点、都是线段的垂直平分线上的点,从而是线段的垂直平分线.第7页,共7页。

全等三角形培优专题训练

全等三角形培优专题训练

全等三角形培优专题训练第一篇:全等三角形培优专题训练做最适合你的数学培训八年级数学培优专题训练(二)探索三角形全等的条件1、一张长方形纸片沿对角线剪开,得到两张三角形纸片,再将这两张纸片摆成如下图形式,使点B、F、C、DCA在同一条直线上.EAEP MN⑴求证:AB⊥ED;⑵若PB=BC,请找出图中与此条件有关的一对全等三角形,并给予证明2、如图,在△ABC中,AC=BC,∠ACB=90°,AD平分∠BAC,BE⊥AD交AC的延长线于F,E为垂足,则结论:①AD=BF;②CF =CD;③AC+CD=AB;④BE=CF;⑤BF=2BE.其中正确的是()3、如图,点C在线段AB上,DA ⊥AB,EB⊥AB,FC⊥AB,且DA=BC,EB=AC,FC=AB,∠AFB=51°,求∠DFC的度数.DFFBDBFCDBEDCAEACBF__________________________________________________________ ______________________________________________________周老师·数学培优做最适合你的数学培训4、如图,四边形ABCD中,AB∥CD,AD∥BC,O为对角线AC 的中点,过点O作一条直线分别与AB、CD交于点M、N,点E、F 在直线M、N上,且OE=OF.⑴图中共有几对全等三角形,请把它们都写下来;⑵求证:∠MAE=∠NCFAEBMONCDF5、在△ABC中,高所在直线AD和BE交于H点,且BH=AC,则∠ABC=_____________.6、下列三个判断:⑴有两边及其中一边上的高对应相等的两个三角形全等;⑵有两边及第三边上的高对应相等的两个三角形全等;⑶一边及其它两边上的高对应相等的两个三角形全等.上述判断是否正确?若正确,说明理由;若不正确,请举出反例._________________________________________________________________ _______________________________________________周老师·数学培优做最适合你的数学培训八年级数学培优专题训练(三)全等三角形的应用全等三角形常用来转移线段和角,用它来证明:①线段和角的等量关系②线段和角的和差倍分关系③直线与直线的平行或垂直等位置关系1、如图,已知BD、CE分别是△ABC的边AC和AB上的高,点P在BD的延长线上,BP=AC,点Q在CE上,CQ=AB.试判断AP 与AQ的关系,并证明.2、如图,AD是△ABC的高,E为AC上一点,BE交AD于点F,且BF=AC,FD=CD,求证:BE⊥AC FAADQPEBCE3、(2012〃阜新中考)如图,在△ABC中,AB=AC,AD=AE,∠BAC=∠D AC=90°.⑴当点D在AC上时,如图①,线段BD,CE有怎样的数量和位置关系?证明你猜想的结论.⑵将图①中的△ADE绕点A顺时针旋转α角(0°<α<90°),如图②,线段BD、CE 有怎样的数量关系和位置关系?问明理由.BEABDCDC①AEDBC②__________________________________________ ____________________________________________________________________ __周老师·数学培优做最适合你的数学培训4、在△ABC中,AB=AC,点D是直线 BC上一点(不与B、C重合),以AD为一边在AD的右侧作△ADE,使AD=AE,∠DAE=∠BAC,连接CE.⑴如图①,当点D在线段BC上时,若∠BAC=90°,则∠BCE=_______度.⑵设∠BAC=α,∠BCE=βa、如图②,当点D在线段BC上移动时,α,β之间有怎样的数量关系?请说明理由.b、当点D在直线BC上移动时,α,β之间有怎样的数量关系?请直接写出你的结论.BDAEBDC①AEC②______________________________________________ __________________________________________________________________ 周老师·数学培优做最适合你的数学培训八年级数学培优专题训练(四)辅助线作法之连接法在几何证明中,常通过添加辅助线来构造全等三角形.常见的添加辅助线方法有:连接法、截长补短法、倍长中线法、翻折法、旋转法以及利用特殊条件构造全等三角形等等.1、如图,△ABC的两条高BD,CE相交于点P,且PD=PE.证明∶AC=AB2、已知AB=DE,BC=EF,∠B=∠E,AF=CD 求证:AC∥DF3、如图,AB交CD于点O,AD、CB的延长线相交于点E,且OA=OC,EA=EC.∠A=∠C吗?点O在∠AEC的平分线上吗?EBCDOABCDAFEAEBDPC_____________________________________ ____________________________________________________________________ _______周老师·数学培优做最适合你的数学培训八年级数学培优专题训练(五)辅助线作法之倍长中线法在题目条件中含有中线的问题,我们常用的辅助线就是将中线延长一倍,其目的是为了得一对全等三角形,将分散的条件集中到一个三角形中去.1、△ABC中,AB=5,AC=3,求中线AD的取值范围.2、如图,在△ABC中,AD是∠BAC的平分线,又是BC上的中线求证:AB=AC3、(2014〃襄阳初三模拟)在△ABC中,D是边BC上的一点,且CD=AB,∠BAD=∠BDA,AE是△ABD的中线.求证∶AC=2AE BEDCABDCAABDC____________________________________________ ____________________________________________________________________做最适合你的数学培训AFE4、(竞赛014)△ABC中,D为BC的中点,DE⊥DF交AB,AC于点E,F.求证:BE+CF>EF6、(竞赛015)例:已知AD是△ABC的中线,BE交AC于点E,交AD于点F,且AE=EF.求证:AC=BFBDCAEFDBC___________________________________________________ _____________________________________________________________ 周老师·数学培优做最适合你的数学培训八年级数学培优专题训练(六)辅助线作法之截长补短法截长法:在第三条线段上截下一段使其等于两条线段中的一条,再证明剩余部分与另一条相等.补短法:把两条线段中的一条补到另一条线段上去,证明所得新线段与第三条线段相等.1、已知A C∥BD,EA,EB分别平分∠CAB和∠DBA,点E在CD上.求证:AB=AC+BD2、在四边形ABCD中,AC平分∠BAD,CE⊥AB于点E,且AE =½(AB+AD).求证∶∠B+∠D=180°3、如图,已知△ABC中,∠A=90°,AB=AC,D为AC的中点,AE⊥BD于E,延长AE交BC于F.求证:∠ADB=∠CDF________________________________________________________________ ________________________________________________BFCAECDABADEBCED周老师·数学培优做最适合你的数学培训4、如图,∠C=90°,AC=BC,AD是∠BAC的角平分线.求证∶AC+CD=AB12、如图,已知AB=CD=AE=BC+DE=2,∠ABC=∠AED=90°,求五边形ABCDE的面积.CBABDCDAE____________________________________________________ ____________________________________________________________做最适合你的数学培训八年级数学培优专题训练(七)辅助线作法之利用特殊条件构造全等三角形2、(2012〃“华罗庚杯”)如图,在△ABC中,AC=½AB,AD平分∠BAC,且AD=BD 求证:CD⊥ACACBD__________________________________________________________ ______________________________________________________周老师·数学培优做最适合你的数学培训八年级数学培优专题训练(八)全等三角形在动态几何中的运用1、(竞赛〃014〃3)如图,△ABC的边BC在直线l上,AC⊥BC,且AC=BC.△EFP的边FP也在直线l上,边EF与边AC重合,且EF=FP.⑴在图①中,请你通过观察、测量、猜想并写出AB与AP所满足的数量关系和位置关系;⑵将△EFP沿直线l向左平移到图②的位置时,EP 交AC于点Q,连接AP,BQ.猜想并写出BQ与AP所满足的数量关系和位置关系,并证明你的猜想;⑶将△EFP沿直线l向左平移到图③的位置时,EP的延长线交AC的延长线于点Q,连接AP,BQ.你认为⑵中所猜想的BQ与AP的数量关系和位置关系还成立吗?若成立,给出证明;若不成立,请说明理由.A(E)EAEAQllBC(F)PFPBClBFCP Q__________________________________________________________________ ______________________________________________周老师·数学培优做最适合你的数学培训八年级数学培优专题训练(九)探究角平分线一、知识清单角平分线的定义:从一个角的顶点引出一条射线,把这个角分成两个相等的角,这条射线叫做这个角的角平分线.三角形的角平分线定义:三角形的一个角的平分线与这个角的对边相交,连结这个角的顶点和与对边交点的线段叫做三角形的角平分线(也叫三角形的内角平分线).由定义可知,三角形的角平分线是一条线段.角平分线性质:1、角平分线上的点,到这个角的两边的距离相等.2、角平分线分得的两个角相等,都等于该角的一半.3、三角形的三条角平分线交于一点,且到各边的距离相等,这个点称为内心.二、方法点拨证明角平分线有两种方法:一是运用定义证明两个角相等;二是运用角平分线的判定方法.三、规律清单①遇到角平分线,可从角平分线上的某一点向角的两边作垂线段(图1).②遇到角平分线,常可利用翻折法或截长补短法解题(图2).③有两条角平分线(内角或外角)交于一点,则连接该点与三角形第三个顶点的线段会平分一个内角或外角(图3).④有垂直于角平分线的线段,则延长这条线段以利用三线合一解题(图4).⑤遇到角内的一点到角的两边有垂线段时,就连接这点与角的顶点,看能否平分已知角(图5).⑥遇到有多条角平分线时,可尝试用整体的思想解题(图6).⑦有翻折条件时,除注意全等的结论,还应关注折线就是角平分线、是对称轴(如图7).⑧角平分线、平行线、等腰三角形三个条件中出现任意两个,常可直接得到另一个(如图8).AAACBDAFAEGDBDBC图2B图1CD图3DCBC_____________________________________________________________ ___________________________________________________周老师·数学培优做最适合你的数学培训AACFEBDC图4BFEDECF图5ADBA1D2B3A1APFC'D'DAD2CB图6EF∠1+∠2+∠3=90°∠1+∠2=90°-½∠BCBEC图7B图8CD四、真题训练1、(2011〃鄂州〃竞赛〃018 〃重庆中考)如图,△ABC的外角∠ACD的平分线CP与内角∠ABC的平分线BP相交于点P,若∠BPC=40°,则∠CAP=_____________.BCDAP2、(竞赛〃019)如图,∠B=∠C =90°,M是BC的中点,DM平分∠ADC.求证:AM平分∠DAB DCMAB_______________________________________________________ _________________________________________________________ 周老师·数学培优做最适合你的数学培训3、(竞赛〃019)如图,在△ABC中,∠BAC=90°,AB=AC,BE平分∠ABC,CE⊥BE.AED1求证:CE= BD 2BCA4、如图,在△ABC中,AD平分∠BAC,BD=CD 求证:∠B=∠C5、如图,在Rt△ABC中,∠C=90°,AC=BC,AD是∠BAC的平分线,交BC于D,DE⊥AB于E,若AB=10cm,则△DBE的周长是多少?ABDCAECDB6、(2011,恩施中考)AD是△ABC的角平分线,DF⊥AB,垂足为F,DE=DG,△ADG和△AED的面积分别为50和39,则△EDF的面积为多少?BEFGDC_______________________________________________________ _________________________________________________________ 周老师·数学培优做最适合你的数学培训7、如图,△ABC中,AD平分∠BAC,DG⊥BC且平分BC,DE⊥AB于E,DF⊥AC于F.求证:BE=CF8、在△ABC中,AD是∠BAC的平分线,E、F分别为AB、AC上的点,且∠EDF+∠BAF=180°⑴求证:DE=DF ⑵如果把最后一个条件改为AE>AF,且∠AED +∠AFD=180°,那么结论还成立吗?9、如图,已知AB=AC,BE⊥AC于E,CF⊥AB于F,BE与CF 交于点D 求证:点D在∠BAC的平分线上.10、如图,在四边形ABCD 中,对角线AC平分∠BAD,AB>AD,下列结论正确的是()A.AB-AD >CB-CD B.AB-AD=CB-CD C.AB-AD<CB-CD D.AB-CD与CB-CD的大小关系不确定BCAAEBGCFDAFEBDCBFDAECD______________________________ ____________________________________________________________________ ______________周老师·数学培优做最适合你的数学培训11、(竞赛014)如图,已知△ABC中,∠B=60°,∠BAC,∠BCA的平分线AD,CE相交于点O.求证:DC+AE=AC12、(竞赛〃019)如图,已知△ABC,P为内角平分线AD、BE、CF的交点,过点P作PG⊥BC于G点。

全等三角形培优试题

全等三角形培优试题

BO D CE 图21、已知:如图1,四边形ABCD 中,AC 平分角BAD ,CE 垂直AB 于E ,且∠B+∠D=180度,求证:AE=AD+BEABDCE 122如图,已知△ABC 是等边三角形,∠BDC =120º,说明AD=BD+CD 的理由 3、(1)如图1,点O 是线段AD 的中点,分别以AO 和DO 为边在线段AD 的同侧作等边三角形OAB 和等边三角形OCD ,连结AC 和BD ,相交于点E ,连结BC .求∠AEB 的大小;(2)如图2,ΔOAB 固定不动,保持ΔOCD 的形状和大小不变,将ΔOCD 绕着点O 旋转(ΔOAB 和ΔOCD 不能重叠),求∠AEB 的大小.C BOD 图1 AE4.如图所示,△ABC 是等腰直角三角形,∠ACB =90°,AD 是BC 边上的中线,过C 作AD 的垂线,交AB 于点E ,交AD 于点F ,求证:∠ADC =∠BDE .5已知:如图,△ABC 中,∠ABC =45°,CD ⊥AB 于D ,BE 平分∠ABC ,且BE ⊥AC 于E ,与CD 相交于点F ,H 是BC 边的中点,连结DH 与BE 相交于点G 。

(1) BF =AC (2) CE =12BF (3)CE 与BC 的大小关系如何。

6、.在△ABC 中,∠ACB =90°,AC =BC ,直线MN 经过点C ,且AD ⊥MN 于D ,BE ⊥MN 于E . (1)当直线MN 绕点C 旋转到图1的位置时,求证:①△ADC ≌△CEB ;②DE =AD +BE ;(2)当直线MN 绕点C 旋转到图2的位置时,求证:DE =AD -BE ;(3)当直线MN 绕点C 旋转到图3的位置时,试问DE ,AD ,BE 具有怎样的等量关系?请写出这个等量关系,并加以证明.CB AE D图1 N M A B CDE M N 图2A C BE D N M 图3 A B C D EF7.如图①,△ABC 是正三角形,△BDC 是顶角∠BDC =120°的等腰三角形,以D 为顶点作一个60°角,角的两边分别交AB 、AC 边于M 、N 两点,连接MN .探究:在下面两种条件下,线段BM 、MN 、NC 之间的关系,并加以证明. ①AN NC =(如图②); ②//DM AC (如图③).附加题:若点M 、N 分别是射线AB 、CA 上的点,其它条件不变,再探线段BM 、MN 、NC 之间的关系,在图④中画出图形,并说明理由.DACNM BACN MB① ②DACN M BDAB③ ④8直线CD 经过BCA ∠的顶点C ,CA=CB .E 、F 分别是直线CD 上两点,且BEC CFA α∠=∠=∠.(1)若直线CD 经过BCA ∠的内部,且E 、F 在射线CD 上,请解决下面两个问题:①如图1,若90,90B C A α∠=∠= ,则EFAF -(填“>”,“<”或“=”号);②如图2,若0180BCA <∠< ,若使①中的结论仍然成立,则 α∠与BCA ∠ 应满足的关系是 ;(2)如图3,若直线CD 经过BCA ∠的外部,BCA α∠=∠,请探究EF 、与BE 、AF 三条线段的数量关系,并给予证明.9如图甲,在△ABC 中,∠ACB 为锐角.点D 为射线BC 上一动点,连接AD ,以AD 为一边且在AD 的右侧作正方形ADEF . 解答下列问题:(1)如果AB=AC ,∠BAC=90º.①当点D 在线段BC 上时(与点B 不重合),如图乙,线段CF 、BD 之间的位置关系为 ,数量关系为 .②当点D 在线段BC 的延长线上时,如图丙,①中的结论是否仍然成立,为什么?(2)如果AB ≠AC ,∠BAC ≠90º,点D 在线段BC 上运动. 试探究:当△ABC 满足一个什么条件时,CF ⊥BC (点C 、F 重合除外)?画出相应图形,并说明理由.(画图不写作法)A B C E F DD A B C EF A D F C E B图1 图2 图3A B C D EF图甲 图乙 F E AF E D C B A 图丙10如图1,四边形ABCD 是正方形,点E 是边BC 的中点.90AEF ∠= ,且EF 交正方形外角DCG ∠的平行线CF 于点F ,求证:AE =EF .经过思考,小明展示了一种正确的解题思路:取AB 的中点M ,连接ME ,则AM =EC ,易证AME ECF △≌△,所以AE EF =.在此基础上,同学们作了进一步的研究:(1)小颖提出:如图2,如果把“点E 是边BC 的中点”改为“点E 是边BC 上(除B ,C 外)的任意一点”,其它条件不变,那么结论“AE =EF ”仍然成立,你认为小颖的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由;(2)小华提出:如图3,点E 是BC 的延长线上(除C 点外)的任意一点,其他条件不变,结论“AE =EF ”仍然成立.你认为小华的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由.11如图(1),已知正方形ABCD 在直线MN 的上方,BC 在直线MN 上,E 是BC 上一点,以AE 为边在直线MN 的上方作正方形AEFG . (1)连接GD ,求证:△ADG ≌△ABE ;(2)连接FC ,观察并猜测∠FCN 的度数,并说明理由;ADFC GE B图1ADF C GE B 图2 ADFC GB图3NMB E ACD FG 图1。

全等三角形证明培优题【精】整理版

全等三角形证明培优题【精】整理版

全等三⾓形证明培优题【精】整理版模块⼀:基本辅助线1.如图,已知AC=BD,AD⊥AC,BC⊥BD,求证:AD=BC.2.如图,AB=AE,∠ABC=∠AED,BC=ED,点F是CD的中点,(1)求证:AF⊥CD.(2)在你连接BE后,还能得出什么新的结论?请写出三个(不要求证明)3.如图,∠B=∠E,∠C=∠D,BC=DE,M为CD中点,求证:AM⊥CD.4.如图,平⾯上有⼀边长为2的正⽅形ABCD,O为对⾓线的交点,正⽅形OEFG的顶点与O 重合,OE、OG分别与正⽅形ABCD的边交于M、N两点.①如图(1),当OE⊥AB时,四边形OMBN的⾯积为___;②如图(2),当正⽅形OEFG绕点O旋转时,四边形OMBN的⾯积会发⽣变化吗?试证明你的结论.5.如图所⽰,在△ABC中,AB=AC,在AB上取⼀点E,在AC延长线上取⼀点F,使BE=CF,EF交BC于G.求证:EG=FG。

6.如图,在△ABC中,AB=AC,E在线段AC上,D在AB的延长线,连DE交BC于F,过点E 作EG⊥BC于G.(1)若∠A=50°,∠D=30°,求∠GEF的度数;(2)若BD=CE,求证:FG =BF+CG.模块⼆:母⼦型1已知:如图,点C为线段AB上⼀点,△ACM, △CBN都是等边三⾓形,AN交MC于点E,BM交CN于点F.(1)求证:AN=BM;(2)求证:△CEF为等边三⾓形2.如图,已知,等腰Rt△OAB中,∠AOB=90°,等腰Rt△EOF中,∠EOF=90°,连结AE、BF。

求证:(1)AE=BF;(2)AE⊥BF。

3.如图1,若四边形ABCD、四边形GFED都是正⽅形,显然图中有AG=CE,AG⊥CE;(1)当正⽅形GFED绕D旋转到如图2的位置时,AG=CE是否成⽴?若成⽴,请给出证明;若不成⽴,请说明理由;(2)当正⽅形GFED绕D旋转到如图3的位置时,延长CE交AG于H,交AD于M.①求证:AG⊥CH;4.如图,已知△ABD、△AEC都是等边三⾓形,AF⊥CD于点F,AH⊥BE于点H,问:(1)BE 与CD有何数量关系?为什么?(2)AF、AH有何数量关系?为什么?5.已知:如图①所⽰,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE,且点B,A,D 在⼀条直线上,连接BE,CD,M,N分别为BE,CD的中点.(1)求证:①BE=CD;②△AMN是等腰三⾓形;(2)在图①的基础上,将△ADE绕点A按顺时针⽅向旋转180°,其他条件不变,得到图②所⽰的图形.请直接写出(1)中的两个结论是否仍然成⽴;(3)在(2)的条件下,请你在图②中延长ED交线段BC于点P.求证:△PBD∽△AMN.6.(2009?丰台区⼀模)如图1,在△ABC中,∠ACB为锐⾓,点D为射线BC上⼀点,连接AD,以AD为⼀边且在AD的右侧作正⽅形ADEF.(1)如果AB=AC,∠BAC=90°,①当点D在线段BC上时(与点B不重合),如图2,线段CF、BD所在直线的位置关系为______,线段CF、BD的数量关系为______;②当点D在线段BC的延长线上时,如图3,①中的结论是否仍然成⽴,并说明理由;(2)如果AB≠AC,∠BAC是锐⾓,点D在线段BC上,当∠ACB满⾜什么条件时,CF⊥BC(点C、F不重合),并说明理由.模块三倍长中线(1)倍长中线(2)倍长类中线1.已知:如图,△ABC中,AD平分∠BAC,且BD=CD,求证:AB=AC.2.已知,如图△ABC 中,AC>AB,AM 是BC 边上的中线,求证:21(AC-AB )<AM <21(AB+AC).3. 如图所⽰,已知△ABC 中,AD 平分∠BAC,E,F 分别在BD,AD 上,DE=CD,EF=AC,求证:EF//AB.4.如图,AD 是△ABC 的中线,E 、F 分别在AB 、AC 上,且DE ⊥DF 求证:BE+CF >EF .5. 证明:直⾓三⾓形斜边上的中线等于斜边上的⼀半。

全等三角形综合培优测试题

全等三角形综合培优测试题

A B CD E12A B CDEA BD CE .3421D CBA全等三角形综合试题1、如图,∠1=∠2,∠C=∠D ,AC 、BD 交于E 点,求证:CE=DE2、如图,已知AB=AD ,AC 平分∠DAB ,求证:EDC EBC ∠=∠。

3、已知如图,E.F 在BD 上,且AB =CD ,BF =DE ,AE =CF,求证:AC 与BD 互相平分.4、如图, 已知:AB ⊥BC 于B , EF ⊥AC 于G , DF ⊥BC 于D , BC=DF .猜想线段AC 与EF 的关系,并证明你的结论.5、如图∠ABC =90°AB =BC ,D 为AC 上一点分别过A.C 作BD 的垂线,垂足分别为E.F,求证:EF =CF -AE.6、如图,已知AB ∥CD ,AD ∥BC ,E.F 是BD上两点,且BF =DE ,则图中共有 对全等三角形.7、如图,AB ∥CD ,AD ∥BC ,OE=OF,图中全等三角形共有______对.8、两三角形有以下元素对应相等,不能判定全等的是( ) A. 两角和一边 B. 两边及夹角 C. 三个角 D. 三条边9、如果两个三角形两边对应相等,且其中一边所对的角也相等,那么这两个三角形( )A. 一定全等B. 一定不全等C. 不一定全等D. 面积相等 10、如果两个三角形中两条边和其中一边上的高对应相等,那么这两个三角形的第三条边所对的角的关系是( )A. 相等B. 不相等C. 互余或相等D. 互补或相等11、如图在ABC ∆中,︒=∠90C ,AC=BC ,AD 平分CAB ∠交BC 于D ,DE ⊥AB 于E ,若AB=6cm则DEB ∆的周长是( )A. 6cmB. 7cmC. 8cmD. 9 cm12、如图,已知∠1=∠2,∠3=∠4,AB 与CD 相等吗?请你说明理由.13、已知:如图,△ABC 中,∠ABC=45°,CD ⊥AB 于D ,BE 平分∠ABC ,且BE ⊥AC 于E ,与CD 相交于点F ,H 是BC 边的中点,连结DH 与BE 相交于点G 。

全等三角形经典题型汇集(培优专练)

全等三角形经典题型汇集(培优专练)


(2)如图 2,当点 E,F 分别在 CB,DC 的延长线上,CF=2 时,求△CEF 的周长;
拓展提升:
如图 3,在 Rt△ABC 中,∠ACB=90°,CA=CB,过点 B 作 BD⊥BC,连接 AD,在 BC 的延长线上取一 点 E,使∠EDA=30°,连接 AE,当 BD=2,∠EAD=45°时,请直接写出线段 CE 的长度.
7.阅读下面材料:
小炎遇到这样一个问题:如图 1,点 E、F 分别在正方形 ABCD 的边 BC,CD 上,∠EAF=45°,连结 EF,则 EF=BE+DF, 试说明理由.
小炎是这样思考的:要想解决这个问题,首先应想办法将 这些分散的线段相对集中.她先后尝试了翻折、旋转、平 移的方法,最后发现线段 AB,AD 是共点并且相等的,于是找到解决问题的方法.她的方法是将△ABE 绕着 点 A 逆时针旋转 90°得到△ADG,再利用全等的知识解决了这个问题(如图 2).
2.阅读下面材料:
数学课上,老师给出了如下问题:如图,AD 为△ABC 中线,点 E 在 AC 上,BE 交 AD 于点 F,AE=EF.求 证:AC=BF. 经过讨论,同学们得到以下两种思路:
思路一如图①,添加辅助线后依据 SAS 可证得△ADC≌△GDB,再利用 AE =EF 可以进一步证得∠G=∠FAE=∠AFE=∠BFG,从而证明结论.
3.如图,分别以 ABC 的边向外作正方形 ABFG 和 ACDE,连接 EG,若 O 为 EG 的中点,
求证:(1) AO 1 BC ;(2) AO BC . 2
4.如图所示,已知 ⶠࢼ 中, 平分 ⶠ ࢼ, 、 分别在 ⶠ 、 上.
ࢼ,
ࢼ.求证: ∥ ⶠ.
5.如图所示, ⶠ ࢼ

全等三角形培优竞赛题精选

全等三角形培优竞赛题精选

全等三角形证明1、已知:∠1=∠2,CD=DE ,EF知:AB知:如图所示,AB =AD ,BC =DC ,E 、F 分别是DC 、BC 的中点,求证: AE =AF 。

10.如图,在四边形ABCD 中,E 是AC 上的一点,∠1=∠2,∠3=∠4,求证: ∠5=∠6. 11.如图:BE ⊥AC ,CF ⊥AB ,BM=AC ,CN=AB 。

求证:(1)AM=AN ;(2)AM ⊥AN 。

12.如图所示,△ABC ≌△ADE ,BC 的延长线过点E ,∠ACB=∠AED=105°,∠CAD=10°,∠B=50°,求∠DEF 的度数。

13.如图,AD 是△ABC 的角平分线,DE ⊥AB,DF ⊥AC,垂足分别是E,F ,连接EF,交AD 于G,AD 与EF 垂直吗?证明你的结论。

FAEDC BP DACBDCBAFEBA CDF2 1 EA14.如图所示,在△ABC 中,AD 为∠BAC 的角平分线,DE ⊥AB 于E,DF ⊥AC 于F, △ABC 的面积是28cm 2,AB=20cm,AC=8cm,求DE 的长。

15.如图,在R t △ABC 中,∠ACB=450,∠BAC=900,AB=AC ,点D 是AB 的中点,AF ⊥CD 于H 交BC 于F ,BE ∥AC 交AF 的延长线于E ,求证:BC 垂直且平分DE.16、已知正方形ABCD 中,E 为对角线BD 上一点,过E 点作EF ⊥BD 交BC 于F ,连接DF ,G 为DF 中点,连接EG ,CG .(1)直接写出线段EG 与CG 的数量关系;(2)将图1中△BEF 绕B 点逆时针旋转45º,如图2所示,取DF 中点G ,连接EG ,CG . 你在(1)中得到的结论是否发生变化?写出你的猜想并加以证明.(3)将图1中△BEF 绕B 点旋转任意角度,如图3所示,再连接相应的线段,问(1)中的结论是否仍然成立?17、已知Rt ABC △中,90AC BC C D ==︒,∠,AB 边的中点,90EDF ∠=, EDF ∠绕D 点旋转,它的两边分别交AC 、CB (或它们的延长线)于E 、F .当EDF ∠绕D 点旋转到DE AC ⊥于E 时(如图1),易证12CEF ABC S S S +=△△△.当EDF ∠绕D 点旋转到DE AC 和不垂直时,在图2和图3这两种情况下,上述结论是否成立?若成立,请给予证明;若不成立,DEF S △、CEF S △、ABC S △又有怎样的数量关系?请写出你的猜想,不需证明.18、在中,将绕点顺时针旋转角得交于点,分别交于两点.(1)如图1,观察并猜想,在旋转过程中,线段与有怎样的数量关系?并证明你的结论;B DCF AE GAEFBDCA DE G图1F A DE G图2 FAE 图3 D AE CFBD图1图3AD FECBA DBCE 图2F(2)如图2,当时,试判断四边形的形状,并说明理由; (3)在(2)的情况下,求的长.19、如图9,若△ABC 和△ADE 为等边三角形,M ,N 分别EB ,CD 的中点,易证:CD=BE ,△AMN 是等边三角形.(1)当把△ADE 绕A 点旋转到图10的位置时,CD=BE 是否仍然成立?若成立请证明,若不成立请说明理由;(4分)(2)当△ADE 绕A 点旋转到图11的位置时,△AMN 是否还是等边三角形?若是,请给出证明,并求出当AB =2AD 时,△ADE 与△ABC 及△AMN 的面积之比;若不是,请说明理由.(6分)20、如图,直角梯形ABCD 中,BC AD ∥,90BCD ∠=°,且2tan 2CD AD ABC =∠=,,过点D 作AB DE ∥,交BCD ∠的平分线于点E ,连接BE . (1)求证:BC CD =;(2)将BCE △绕点C ,顺时针旋转90°得到DCG △,连接EG..求证:CD 垂直平分EG . (3)延长BE 交CD 于点P .求证:P 是CD 的中点.21、如图,四边形ABCD 是正方形,△ABE 是等边三角形,M 为对角线BD (不含B 点)上任意一点,将BM 绕点B 逆时针旋转60°得到BN ,连接EN 、AM 、CM. ⑴ 求证:△AMB≌△ENB;⑵ ①当M 点在何处时,AM +CM 的值最小;②当M 点在何处时,AM +BM +CM22、如图,△ABC 中,D 是BC 的中点,过D 点的直线行线BG 于G 点,DE ⊥DF ,交AB 于点E ,连结EG 、EF.求证:EG=EF;请你判断BE+CF 与EF 23、如图,等腰直角三角形ABC 中,∠ACB =90°,AD 为腰CB 上的中线,CE ⊥AD 交AB 于E .求证∠CDA =∠EDB .24、在Rt △ABC 中,∠A =90°,CE 是角平分线,和高AD 相交于F ,作FG ∥BC 交AB 于G ,求证:AE =BG .AD BECFD BECFADGECB图9 图10 图11E A DB C C25、如图,已知∠BAC=90º,AD ⊥BC, ∠1=∠2,EF ⊥BC, FM ⊥AC,说明FM=FD 的理由26、用两个全等的等边三角形△ABC 和△ACD 拼成菱形ABCD.把一个含60°角的三角尺与这个菱形叠合,使三角尺的60°角的顶点与点A 重合,两边分别与AB 、AC 重合.将三角尺绕点A 按逆时针方向旋转.(1)当三角尺的两边分别与菱形的两边BC 、CD 相交于点E 、F 时(如图所示),通过观察或测量BE 、CF 的长度,你能得出什么结论?并证明你的结论;(2)当三角尺的两边分别与菱形的两边BC 、CD 的延长线相交于点E 、F 时(如图所示),你在(1)中得到的结论还成立吗?说明理由。

全等三角形经典培优题型(含标准答案)

全等三角形经典培优题型(含标准答案)

三角形培优练习题1已知:AB=4,AC=2,D 是BC 中点,AD 是整数,求AD2已知:BC=DE ,∠B=∠E ,∠C=∠D ,F 是CD 中点,求证:∠1=∠23已知:∠1=∠2,CD=DE ,EF//AB ,求证:EF=AC4已知:AD 平分∠BAC ,AC=AB+BD ,求证:∠B=2∠C5已知:AC 平分∠BAD ,CE ⊥AB ,∠B+∠D=180°,求证:AE=AD+BE6如图,四边形ABCD 中,AB ∥DC ,BE 、CE 分别平分∠ABC 、∠BCD ,且点E 在AD 上。

求证:BC=AB+DC 。

已知:AB=CD ,∠A=∠D ,求证:∠B=∠C78.P 是∠BAC 平分线AD 上一点,AC>AB ,求证:PC-PB<AC-ABCDBA BC DEF 2 1ADBCA B CD ABACDF2 1 E9已知,E 是AB 中点,AF=BD ,BD=5,AC=7,求DC10.如图,已知AD ∥BC ,∠P AB 的平分线与∠CBA 的平分线相交于E ,CE 的连线交AP 于D .求证:AD +BC =AB .11如图,△ABC 中,AD 是∠CAB 的平分线,且AB =AC +CD ,求证:∠C =2∠B12如图:AE 、BC 交于点M ,F点在AM 上,BE∥CF ,BE=CF 。

求证:AM 是△ABC 的中线。

13已知:如图,AB =AC ,BD ⊥AC ,CE ⊥AB ,垂足分别为D 、E ,BD 、CE 相交于点F 。

求证:BE =CD .14在△ABC 中,︒=∠90ACB ,BC AC =,直线MN 经过点C ,且MN AD ⊥于D ,MN BE ⊥于E .(1)当直线MN 绕点C 旋转到图1的位置时,求证: ①ADC ∆≌CEB ∆;②BE AD DE +=;(2)当直线MN 绕点C 旋转到图2的位置时,(1)中的结论还成立吗?若成立,请给出证明;若不成立,说明理由.15如图所示,已知AE ⊥AB ,AF ⊥AC ,AE=AB ,AF=AC 。

全等三角形经典培优题型(含答案)

全等三角形经典培优题型(含答案)

全等三角形的提高拓展训练全等三角形的性质:对应角相等,对应边相等,对应边上的中线相等,对应边上的高相等,对应角的角平分线相等,面积相等.寻找对应边和对应角,常用到以下方法:(1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边.(2)全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角.(3)有公共边的,公共边常是对应边.(4)有公共角的,公共角常是对应角.(5)有对顶角的,对顶角常是对应角.(6)两个全等的不等边三角形中一对最长边(或最大角)是对应边(或对应角),一对最短边(或最小角)是对应边(或对应角).要想正确地表示两个三角形全等,找出对应的元素是关键.全等三角形的判定方法:(1) 边角边定理(SAS):两边和它们的夹角对应相等的两个三角形全等.(2) 角边角定理(ASA):两角和它们的夹边对应相等的两个三角形全等.(3) 边边边定理(SSS):三边对应相等的两个三角形全等.(4) 角角边定理(AAS):两个角和其中一个角的对边对应相等的两个三角形全等.(5) 斜边、直角边定理(HL):斜边和一条直角边对应相等的两个直角三角形全等.全等三角形的应用:运用三角形全等可以证明线段相等、角相等、两直线垂直等问题,在证明的过程中,注意有时会添加辅助线.拓展关键点:能通过判定两个三角形全等进而证明两条线段间的位置关系和大小关系.而证明两条线段或两个角的和、差、倍、分相等是几何证明的基础.全等三角形证明经典题1已知:AB=4,AC=2,D是BC中点,AD是整数,求AD2已知:BC=DE,∠B=∠E,∠C=∠D,F是CD中点,求证:∠1=∠23已知:∠1=∠2,CD=DE,EF//AB,求证:EF=AC4已知:AD平分∠BAC,AC=AB+BD,求证:∠B=2∠CA5已知:AC平分∠BAD,CE⊥AB,∠B+∠D=180°,求证:AE=AD+BE6 如图,四边形ABCD中,AB∥DC,BE、CE分别平分∠ABC、∠BCD,且点E 在AD上。

全等三角形经典培优题型(含答案)

全等三角形经典培优题型(含答案)

全等三角形的提高拓展训练全等三角形的性质:对应角相等,对应边相等,对应边上的中线相等,对应边上的高相等,对应角的角平分线相等,面积相等.寻找对应边和对应角,常用到以下方法:(1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边.(2)全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角.(3)有公共边的,公共边常是对应边.(4)有公共角的,公共角常是对应角.(5)有对顶角的,对顶角常是对应角.(6)两个全等的不等边三角形中一对最长边(或最大角)是对应边(或对应角),一对最短边(或最小角)是对应边(或对应角).要想正确地表示两个三角形全等,找出对应的元素是关键.全等三角形的判定方法:(1)边角边定理(SAS):两边和它们的夹角对应相等的两个三角形全等.(2)角边角定理(ASA):两角和它们的夹边对应相等的两个三角形全等.(3)边边边定理(SSS):三边对应相等的两个三角形全等.(4)角角边定理(AAS):两个角和其中一个角的对边对应相等的两个三角形全等.(5)斜边、直角边定理(HL):斜边和一条直角边对应相等的两个直角三角形全等.全等三角形的应用:运用三角形全等可以证明线段相等、角相等、两直线垂直等问题,在证明的过程中,注意有时会添加辅助线.拓展关键点:能通过判定两个三角形全等进而证明两条线段间的位置关系和大小关系.而证明两条线段或两个角的和、差、倍、分相等是几何证明的基础.全等三角形证明经典题1已知:AB=4,AC=2,D是BC中点,AD是整数,求AD2已知:BC=DE,∠B=∠E,∠C=∠D,F是CD中点,求证:∠1=∠23已知:∠1=∠2,CD=DE,EF//AB,求证:EF=AC4已知:AD平分∠BAC,AC=AB+BD,求证:∠B=2∠C5已知:AC平分∠BAD,CE⊥AB,∠B+∠D=180°,求证:AE=AD+BE6 如图,四边形ABCD中,AB∥DC,BE、CE分别平分∠ABC、∠BCD,且点E在AD上。

《全等三角形》培优题型全集

《全等三角形》培优题型全集

《全等三角形》培优题型全集题型一:倍长中线(线段)造全等1、已知:如图,AD 是△ABC 的中线,BE 交AC 于E ,交AD 于F ,且 AE=EF ,求证:AC=BFC2、如图,△ABC 中,AB=5,AC=3,则中线AD 的取值范围是______.DCBA3、在△ABC 中,AC=5,中线AD=7,则AB 边的取值范围是( ) A 、1<AB<29 B 、4<AB<24C 、5<AB<19D 、9<AB<194、已知:AD 、AE 分别是△ABC 和△ABD 的中线,且BA=BD , 求证:AE=21AC CE5、已知:如图,在ABC ∆中,AC AB ≠,D 、E 在BC 上,且DE=EC ,过D 作BA DF //交AE 于点F ,DF=AC. 求证:AE 平分BAC ∠ABFDEC题型二:截长补短1、已知,四边形ABCD 中,AB ∥CD ,∠1=∠2,∠3=∠4。

求证:BC =AB +CD 。

2、已知:如图,在△ABC 中,∠C =2∠B ,∠1=∠2, 求证:AB=AC+CD.3、如图,在△ABC 中,∠BAC=60°, AD 是∠BAC 的平分线,且AC=AB+BD ,求∠ABC 的度数DCBA4、已知ABC ∆中,60A ∠=,BD 、CE 分别平分ABC ∠和.ACB ∠,BD 、CE 交于点O ,试判断BE 、CD 、BC 的数量关系,并加以证明.DOECB ADCB A 12题型三:角平分线上的点向角两边引垂线段1、如图,在四边形ABCD中,BC>BA,AD=CD,求证:∠BAD+∠C=180°DCBA2、如图,四边形ABCD中,AC平分∠BAD,CE⊥AB于E ,AD+AB=2AE,则∠B与∠ADC互补,为什么?3、如图,△ABD和△ACD,BD=CD,∠ABD=∠ACD,求证AD平分∠BAC.4、已知,AB>AD,∠1=∠2,CD=BC。

《全等三角形》培优题型全集之欧阳数创编

《全等三角形》培优题型全集之欧阳数创编

1的中线,BE交AC于E,交AD于F,且AE=EF,求证:AC=BFC2、如图,△ABC中,AB=5,AC=3,则中线AD的取值范围是______.D CBA3、在△ABC中,AC=5,中线AD=7,则AB边的取值范围是( )A、1<AB<29B、4<AB<24C、5<AB<19D、9<AB<194、已知:AD、AE分别是△ABC和△ABD的中线,且BA=BD,求证:AE=21ACC5、已知:如图,在ABC∆中,ACAB≠,D、E在BC上,且DE=EC,过D作BADF//交AE于点F,DF=AC.求证:AE平分BAC∠ABFD E C题型二:截长补短1、已知,四边形ABCD中,AB∥CD,∠1=∠2,∠3=∠4。

求证:BC=AB+CD。

2、已知:如图,在△ABC中,∠C=2∠B,∠1=∠2,求证:AB=AC+CD.3、如图,在△ABC中,∠BAC=60°, AD是∠BAC的平分线,且AC=AB+BD,求∠ABC 的度数D CBA12D CB A4、已知ABC ∆中,60A ∠=,BD 、CE 分别平分ABC ∠和.ACB ∠,BD 、CE 交于点O ,试判断BE 、CD 、BC 的数量关系,并加以证明.DOECB A题型三:角平分线上的点向角两边引垂线段 1、如图,在四边形ABCD 中,BC >BA,AD =CD , 求证:∠BAD+∠C=180°DCBA2、如图,四边形ABCD 中,AC 平分∠BAD ,CE ⊥AB 于E ,AD+AB=2AE ,则∠B 与∠ADC 互补,为什么?3、如图,△ABD 和△ACD ,BD=CD ,∠ABD=∠ACD,求证AD 平分∠BAC.4、已知,AB >AD ,∠1=∠2,CD =BC 。

求证:∠ADC +∠B =180°。

图九21CBAD5、如图,在△ABC 中∠A BC,∠A CB 的外角平分线相交于点P ,求证:AP 是∠BAC 的角平分线图十一4321BCABCD6、如图,∠B=∠C=90°,AM 平分∠DAB ,DM 平分∠ADC 。

全等三角形经典培优题型(含答案)

全等三角形经典培优题型(含答案)

全等三角形的提高拓展训练全等三角形的性质:对应角相等,对应边相等,对应边上的中线相等,对应边上的高相等,对应角的角平分线相等,面积相等. 寻找对应边和对应角,常用到以下方法:(1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边. (2)全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角. (3)有公共边的,公共边常是对应边. (4)有公共角的,公共角常是对应角. (5)有对顶角的,对顶角常是对应角.(6)两个全等的不等边三角形中一对最长边(或最大角)是对应边(或对应角),一对最短边(或最小角)是对应边(或对应角).要想正确地表示两个三角形全等,找出对应的元素是关键. "全等三角形的判定方法:(1) 边角边定理(SAS ):两边和它们的夹角对应相等的两个三角形全等. (2) 角边角定理(ASA ):两角和它们的夹边对应相等的两个三角形全等. (3) 边边边定理(SSS ):三边对应相等的两个三角形全等.(4) 角角边定理(AAS ):两个角和其中一个角的对边对应相等的两个三角形全等. (5) 斜边、直角边定理(HL ):斜边和一条直角边对应相等的两个直角三角形全等.全等三角形的应用:运用三角形全等可以证明线段相等、角相等、两直线垂直等问题,在证明的过程中,注意有时会添加辅助线. 拓展关键点:能通过判定两个三角形全等进而证明两条线段间的位置关系和大小关系.而证明两条线段或两个角的和、差、倍、分相等是几何证明的基础.全等三角形证明经典题1已知:AB=4,AC=2,D 是BC 中点,AD 是整数,求AD ?2已知:BC=DE ,∠B=∠E ,∠C=∠D ,F 是CD 中点,求证:∠1=∠2BADBC3已知:∠1=∠2,CD=DE ,EF︒=∠90ACB BC AC =MN C MN AD ⊥D MN BE ⊥E 1)当直线MN 绕点C 旋转到图1的位置时,求证: ①ADC ∆≌CEB ∆;②BE AD DE +=; (2)当直线MN 绕点C 旋转到图2的位置时,(1)中的结论还成立吗若成立,请给出证明;若不成立,说明理由.《&C#BABCDPDA CA PEDCBADCBAMF ECB AA CB $D E F ¥A CD F21 E15如图所示,已知AE ⊥AB ,AF ⊥AC ,AE=AB ,AF=AC 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《全等三角形》培优题型全集《全等三角形》培优题型全集题型一:倍长中线(线段)造全等 1、已知:如图,AD 是△ABC 的中线,BE 交AC 于E ,交AD 于F ,且 AE=EF ,求证:AC=BFA C EF2、如图,△ABC 中,AB=5,AC=3,则中线AD 的取值范围是______.DCBA3、在△ABC 中,AC=5,中线AD=7,则AB 边的取值范围是( ) A 、1<AB<29 B 、4<AB<24C 、5<AB<19D 、9<AB<194、已知:AD 、AE 分别是△ABC 和△ABD 的中线,且BA=BD , 求证:AE=21AC CE5、已知:如图,在ABC ∆中,AC AB ≠,D 、E 在BC 上,且DE=EC ,过D 作BA DF //交AE 于点F ,DF=AC. 求证:AE 平分BAC ∠ABFDEC题型二:截长补短1、已知,四边形ABCD 中,AB ∥CD ,∠1=∠2,∠3=∠4。

求证:BC =AB +CD 。

4321DEA2、已知:如图,在△ABC 中,∠C =2∠B ,∠1=∠2, 求证:AB=AC+CD.3、如图,在△ABC 中,∠BAC=60°, AD 是∠BAC 的平分线,且AC=AB+BD ,求∠ABC 的度数DCBA4、已知ABC ∆中,60A ∠=,BD 、CE 分别平分ABC ∠和.ACB ∠,BD 、CE 交于点O ,试判断BE 、CD 、BC 的数量关系,并加以证明.DOECB ADCB A 12姓名题型四:连接法(构造全等三角形)1、已知:如图,AB =AD ,BC =DC ,E 、F 分别是DC 、BC 的中点,求证: AE =AF 。

2、如图,直线AD 与BC 相交于点O ,且AC=BD ,AD=BC .求证:CO=DO .AODC B3、已知:如图,AB=AE ,BC=ED ,点F 是CD 的中点,AF ⊥CD .求证:∠B=∠E .AF DCBE4、在等边ABC ∆内取一点D ,使DA DB =,在ABC ∆外取一点E ,使DBE DBC ∠=∠,且BE BA =,求BED ∠.题型五:全等+角平分线性质1、如图,AD 平分∠BAC ,DE ⊥AB 于E ,DF ⊥AC 于F ,且DB=DC , 求证:EB=FC2、已知:如图所示,BD 为∠ABC 的平分线,AB=BC ,点P 在BD 上,PM ⊥AD 于M ,•PN ⊥CD 于N ,求证:PM= PNP D ACM N题型六:全等+等腰三角形的性质1、如图,在△ABE 中,AB =AE,AD =AC,∠BAD =∠EAC, BC 、DE 交于点O.求证:(1) △ABC ≌△AED ; (2) OB =OE .OCEBDA2、.已知:如图,B 、E 、F 、C 四点在同一条直线上,AB =DC ,D BAFEDECBABE =CF ,∠B =∠C .求证:OA =OD .题型七:两次全等1、如图,AB=AC ,DB=DC ,F 是AD 的延长线上的一点。

求证:BF=CFFDCBA2、如图,D 、E 、F 、B 在一条直线上AB=CD, ∠B=∠D ,BF=DE. 求证:(1)AE=CF; (2)AE ∥CF (3)∠AFE=∠CEF3、如图:A 、E 、F 、B 四点在一条直线上,AC ⊥CE ,BD ⊥DF ,AE=BF ,AC=BD 。

求证:△ACF ≌△BDEABC EFD4、如图,在四边形ABCD 中,E 是AC 上的一点,∠1=∠2,∠3=∠4,求证: ∠5=∠6.654321E DCBA5、已知如图,E 、F 在BD 上,且AB =CD ,BF =DE ,AE =CF ,求证:AC 与BD 互相平分6、如图,在四边形ABCD 中,AD ∥BC ,∠ABC=90°DE ⊥AC 于点F ,交BC 于点G ,交AB 的延长线于点E ,且AE=AC.求证:BG=FG题型八:直角三角形全等(余角性质)1、如图,在等腰Rt △ABC 中,∠C =90°,D 是斜边上AB 上任一点,AE ⊥CD 于E ,BF ⊥CD 交CD 的延长线于F ,CH ⊥AB 于H 点,交AE 于G .求证:BD =CG .2、如图,将等腰Rt △ABC 的直角顶点置于直线l 上,且过A ,B 两点分别作直线l 的垂线,垂足分别为D ,E ,请你在图中找出一对全等三角形,并写出证明它们全等的过程.A BEO F DCAF CBD EGA DFE C B3、如图,∠ABC =90°,AB =BC ,D 为AC 上一点,分别过A 、C 作BD 的垂线,垂足分别为E 、F ,求证:EF =CF -AE题型九:延长角平分线的垂线段1、如图,在△ABC 中,AD 平分∠BAC ,CE ⊥AD 于E . 求证:∠ACE=∠B+∠ECD .AF DCBE2、如图,△ABC 中,∠BAC=90度,AB=AC ,BD 是∠ABC 的平分线,BD 的延长线垂直于过C 点的直线于E ,直线CE 交BA 的延长线于F .求证:BD=2CE .FE DCBA3、已知,如图34,△ABC 中,∠ABC=90º,AB=BC ,AE 是∠A 的平分线,CD ⊥AE 于D .求证:CD=21AE . CEBAD题型十:面积法 1、如图,在△ABC 中,∠BAC 的角平分线AD 平分底边BC , 求证AB=AC.2、如图,在△ABC 中,∠A=90°,D 是AC 上的一点,BD=DC ,P 是BC 上的任一点,PE ⊥BD ,PF ⊥AC ,E 、F 为垂足. 求证:PE+PF=AB .3、己知,△ABC 中,AB=AC ,CD ⊥AB ,垂足为D ,P 是线段BC 上任一点,PE ⊥AB ,PF ⊥AC 垂足分别为E 、F ,求证: PE+PF=CD.4、己知,△ABC 中,AB=AC ,CD ⊥AB ,垂足为D ,P 是射线BC 上任一点,PE ⊥AB ,PF ⊥AC 垂足分别为E 、F ,求证: PE – P F=CD.A FDE F EDCABG P题型十一:旋转型1、如图,正方形ABCD 的边长为1,G 为CD 边上一动点(点G 与C 、D 不重合), 以CG 为一边向正方形ABCD 外作正方形GCEF ,连接DE 交BG 的延长线于H 。

求证:① △BCG ≌△DCE ,② BH ⊥DE2、两个大小不同的等腰直角三角形三角板如图1所示放置,图2是由它抽象出的几何图形,B ,C ,E 在同一条直线上,连结DC . (1)请找出图2中的全等三角形,并给予证明(说明:结论中不得含有未标识的字母);(2)证明:DC ⊥BE .3、(1)如图7,点O 是线段AD 的中点,分别以AO 和DO 为边在线段AD 的同侧作等边三角形OAB 和等边三角形OCD ,连结AC 和BD ,相交于点E ,连结BC .求∠AEB 的大小;(2)如图8,ΔOAB 固定不动,保持ΔOCD 形状和大小不变,将ΔOCD 绕着点O 旋转(ΔOAB 和ΔOCD 不重叠),求∠AEB .4、如图,AE ⊥AB ,AD ⊥AC ,AB=AE ,∠B=∠E ,求证:(1)BD=CE ;(2)BD ⊥CE .5、如图所示,已知AE ⊥AB ,AF ⊥AC ,AE=AB ,AF=AC 。

求证: (1)EC=BF ;(2)EC ⊥BF6、 正方形ABCD 中,E 为BC 上的一点,F 为CD 上的一点,BE+DF=EF ,求∠EAF 的度数.7、D 为等腰Rt ABC ∆斜边AB 的中点,DM ⊥DN,DM,DN 分别交BC,CA 于点E,F 。

①当MDN ∠绕点D 转动时,求证DE=DF 。

②若AB=2,求四边形DECF 的面积。

8、五边形ABCDE 中,AB =AE ,BC +DE =CD ,∠ABC +∠AED =180°,求证:AD 平分∠CDEB A OD CE图F ED C ABG P图图D A BC B OD图AEA EB MC FFED CABG HCEDB A9、如图,已知AB=CD=AE=BC+DE=2,∠ABC=∠AED=90°, 求五边形ABCDE 的面积10、已知Rt ABC △中,90AC BC C D ==︒,∠,为AB 边的中点,90EDF ∠=°,EDF ∠绕D 点旋转,它的两边分别交AC 、CB (或它们的延长线)于E 、F .(1)当EDF ∠绕D 点旋转到DE AC ⊥于E 时(如图1),求证:12DEF CEF ABC S S S +=△△△.(2)当EDF ∠绕D 点旋转到DE AC 和不垂直时(如图2),求DEF S △、CEF S △、ABC S △之间的数量关系? (3)当EDF ∠绕D 点旋转到DE AC 和不垂直时(如图3),求DEF S △、CEF S △、ABC S △之间的数量关系?11、在△ABC 中,∠ACB =90°,AC=BC ,直线MN 经过点C ,且AD ⊥MN 于D ,BE ⊥MN 于E.A E CFBD 图图ADFECBADB CE图F(1)、当直线MN 绕点C 旋转到图1的位置时,求证:①△ADC ≌△CEB ;②DE=AD +BE ;(2)、当直线MN 绕点C 旋转到图2的位置时,求证:DE=AD-BE ; (3)、当直线MN 绕点C 旋转到图3的位置时,试问DE 、AD 、BE 具有怎样的等量关系?A C BE DNM 图3ACD E MN图2 CBA E D图1N M。

相关文档
最新文档