时差法与多普勒超声波流量计的对比
流量计工作原理
定义 流量仪表又称为流量计,主要用于测量管道或明渠中流体的瞬时流量和
累计流量。
分类 按工作原理可分为:差压流量计、转子流量计、电磁流量计、科氏力质
量流量计、涡街流量计、涡轮流量计、超声波流量计等。
差压流量计
差压式流量计由一次装置(检测件)和二次装置(差压转换和流 量显示仪表)组成。
工作原理 在管道中流动的流体具有动能和静压能,且这两种能量可以
① 时差法 超声波在流体中顺流、逆流的传播速度不同,导致传播相
同距离时会存在时间差,该时间差与流体的流动速度成正比, 因此测出时间差就可以得出流体的流速。
时差法只能用于高速流动的清洁液体和气体。 ② 波束偏移法
流体流动会引起超声波束偏移,流速越大,偏移角越大, 两接收器收到的信号强度差值也越大,因此可以通过测量两接 收器的信号强度差值来确定流体的流速。
涡轮流量计
优点 ① 测量精度高,在所有流量计中,属于最精确的流量计; ② 无零点漂移,抗干扰能力好。 缺点 ① 不能长期保持测量准确性; ② 流体物性对测量结果有较大影响。 选用标准 ① 适用于洁净气体和粘度较小的洁净液体; ② 精确度要求高,量程比不大于10:1的场合。
超声波流量计
工作原理 超声波流量计工作原理可分为时差法、多普勒法、波束偏移法等。
压差的大小与流体流速有关,流速越快,产生的压差就越大。
差压流量计
优点 ① 应用范围广泛,能适用于绝大部分的流体,至今没有任何一类流量计可与之相比; ② 检测件与变送器、显示仪表可以分别由不同厂家生产,便于规模经济生产。 缺点 ① 测量精度普遍偏低; ② 范围度窄,一般仅3:1~4:1; ③ 由于要经过节流装置,流体压力损失较大。 选用标准 ① 一般流体的测量选用标准节流装置,如孔板、喷嘴等; ② 特殊情况下的流体测量可选用非标准节流装置,如1/4圆喷嘴、双重孔板、圆缺孔板等; ③ 洁净流体的微小流量在精度等级要求不高时可选用内藏孔板。
超声波流量计技术分析
有两种基本的超声波流量计技术:多普勒频移技术和时差技术。
多普勒法超声波流量计的工作原理是:通过测量在流体中不连贯声音、泡沫、或微粒折射的声波频率偏移来测量流体的流速。
当有流量时,随着流量的增加,频率偏移也增加。
时差法超声波流量计的工作原理是:通过观测超声波在介质中的顺流和逆流传播时间差来间接测量流体的流速。
有流速的地方,时间差随着流速的增加而增加。
时差法超声波流量计有单个或多个信号通道。
一个时差法超声波流量计的信号通道越多,它的精度就越高,也就是说它的精度越接近一个电磁式流量计的精度。
多普勒超声波流量计一直被应用于特殊场合,多年以来,它们在可靠性和其它一些问题破坏了它们的声誉。
多普勒流量计,不管是插入式(湿敏传感器),还是外夹式,主要应用于废水中的淤泥测量、挖泥和采矿中的高浓度泥浆测量。
对于外夹装式超声波流量计,不管是多普勒法式还是多时差法式,一个重要的问题是:他们都不能对体积流量提供一个可跟踪的准确的信息说明。
超声波流量计的性能说明常常是以高参考精度为主。
应当注意的是提到的典型精度是速度精度,不是测量的体积流量的精度。
一个能测量速度且具有高精度的超声波流量计,可能在测量体积流量时不具有高精度。
外夹装式超声波流量计另外一个重要的问题是管道衬里材料的不同,测量能力也不同。
比如,沥青衬里材料在声学上比其它材料,如塑料有更好的性能。
多年来,多通道时差法流量计一直应用于大口径管道中高品质液体和气体的测量及密闭输送。
这些装置受通道几何形状的限制,主要应用在大尺寸管道中,传感器的数量也增加了成本。
时差法超声波流量计资料
时差法超声波流量计1 引言超声波流量计是利用超声波在流体中的传播特性来测量流量的计量仪表。
凭借其非接触测流、仪表造价基本上与被测管道口径大小无关、精度高、测量范围大、安装方便、测试操作简单等自身的优势被认为是较好的大管径流量测量仪表,在电力、石油、化工特别是供水系统中被广泛应用。
随着超声波流量计的技术的不断成熟和用户对它的逐渐认可,超声波流量计市场正以前所未有的发展速度向前发展。
2 超声波流量计分类根据对信号检测的原理,超声波流量计可分为多普勒法、波束偏移法、噪声发、相关法等。
2.1 多普勒法多普勒法是应用声学中多普勒原理,检测反射声波与发射声波之间的频率偏移量即可以测定流体的流动速度,进而测出流体流量。
其工作原理如图1所示。
图1 多普勒法工作原理图 Fig.1 Theory of Doppler approach管壁两侧分别装有发射和接收两个超声波换能器,发射器向含有固体颗粒的流体中发射频率为0f 的连续超声波。
根据多普勒效应,在中间相交区的频率为1f ,接收器收到的经固体颗粒反射后的超声波频率为2f ,当粒子流速均为u 时,其关系为:)sin 21()sin 1()sin 1(02012Cu f C u f C u f f βββ-≈-=-= (1)βsin 2)(020f Cf f u -=(2)多普勒法只能用来测量含有固体颗粒的流体,比如血液、污水、蒸汽等。
2.2 波束偏移法波束偏移法是根据测量由于流体流动而引起的超声波束偏移角来确定流体流速的。
其测量原理如图2所示。
图2 波束偏移法原理图Fig.2 Theory of beam-excursion approach流速越大,偏移角越大,而两接收器收到的信号强度差值也越大,因此测出两接收器的信号强度差值可确定流体的流速。
波束偏移法用于测量准确度要求不高的高速流体流量测量。
3 时差法原理3.1 时差法时差法超声波流量计就是利用声波在流体中顺流、逆流传播相同距离时存在时间差,而传播时间的差异与被测流体的流动速度有关系,因此测出时间的差异就可以得出流体的流速。
时差法超声波流量计论
第一章绪论1.1 流量计的发展概述自古以来测量都是人类文明的一种标志,是计量科学技术的组成部分之一,它广泛存在于水利,化工,农业,石油,冶金以及人民生活各个领域之中,一直得到世界各国政府和企业的重视,而且重视程度一直在不断加强。
早在公元前1000年埃及人就开始利用堰法测量尼罗河的流量来预报年成的好坏,古罗马人则在修渠饮水中采用孔板测量流量。
1738年,瑞士人丹尼尔·伯努利以伯努利方程为依据,利用差压法测量水流量;后来意大利人文丘里研究用文丘里管测量流量,并于1791年发表了研究成果;1886年,美国人赫谢尔用文丘里管制成测量水流量的使用装置;1911~1912年,美籍匈牙利人卡门提出卡门涡街的新理论;30年代,又出现了探讨用声波测量液体和气体的流速的方法,但到第二次世界大战为止未获很大进展。
第二次世界大战后,随着国际经济和科学技术的迅速发展,流量计量日益受到重视,流量仪表随之迅速发展起来,测量仪表开始向精密化、小型化等方向发展。
目前国外投入使用的流量计有100多种,国内定型投产的也有近50种。
随着工业生产的自动化,管道化的发展,流量仪表在整个仪表生产中所占比重越来越大。
据国内外资料表明,在不同的工业部门中所使用的流量仪表占整个仪表总数的15-30%。
但是,由于流量测量技术的复杂化,以及科学技术的迅速发展向流量计量提出更新更高的要求,流量计量的现况远不能满足生产的需要,还有大量的流量计量技术问题有待进一步研究解决。
目前主要存在如下问题:流量仪表的品种、规格、准确度和可靠性尚不能满足生产要求,特别对腐蚀性流体、脏污流体、高粘性流体、多相流体、特大流量、微小流量等,有待发展有效的测量手段。
我国开展近代流量测量的技术比较晚,早期所需的流量仪表均从国外进口,直到20世纪30年代中期才出现光华精密机械厂所制造的家用水表,五十年代初有了新城仪表厂所开发的文丘里管差压流量计,60年代涡轮、电磁流量计的生产。
超声波流量计工作原理及分类和选型应用
超声波流量计工作原理及分类和选型应用2022年12月13日05:05生意社生意社12月13日讯一、CCS超声波流量计的工作原理及分类超声波流量计是一种利用超声波脉冲来测量流体流量的速度式流量仪表,如果在现场配以温度、压力仪表,经过密度补偿,还可以求得质量流量。
当超声波在流动的介质中传播的时候,相对于固定的坐标系统而言(如管道中的管壁),其声波的某些声学特性与静止介质中的声特性是不同的,在其基础上又叠加上了流体的流速信息,因而根据超声波某些声学特性随流速的变化就可以求出介质的流速。
超声波流量计根据测量原理的不同,种类较多,大致可以分为以下几类:1.传播速度法(时差法、相位差法和频差法)2.多普勒法3.相关法4.波束偏移法等。
但是目前最常采用的测量方法主要有两类:时差法和多普勒效应法。
同时,根据超声波流量计使用场合不同,可以分为固定式超声波流量计和便携式超声波流量计二、超声波流量计的选型应用根据原理不同:1、多谱勒式超声波流量计的选型多普勒法超声波流量计依靠水中杂质的反射来测量水的流速,因此适用于杂质含量较多的脏水和浆体,如城市污水、污泥、工厂排放液、杂质含量稳定的工厂过程液等,而且可以测量连续混入气泡的液体。
但是根据测量原理,被测介质中必须含有一定数量的散射体(颗粒或气泡),否则仪表就不能正常工作。
2、时差式超声波流量计的选型目前生产最多、应用范围最广泛的是时差式超声波流量计。
它主要用来测量洁净的流体流量,在自来水公司和工业用水及江河水、回用水领域,得到广泛应用。
时差式超声波流量计此外可以测量杂技含量不高(杂质含量小于10g/L,粒径小于1mm)的均匀流体,如污水等介质的流量,但不能测量含有影响超声波传播的连续混入气泡或体积较大固体物的液体。
在这种情况下应用,应在换能器的上游进行消气、沉淀或过滤。
在悬浮颗粒含量过多或因管道条件致使超声信号严重衰减而不能测量时,有时可以试降低换能器频率,予以解决。
而且精度可达±1%。
超声波流速测量系统研究技术报告
超声波速度测量系统技术报告1导言1.1研究背景和意义超声波被用来测量流体流量已经有几十年了。
1928年,法国人于滕成功研制出世界上第一台超声波流量计。
而时差式超声波流量计为了使超声波流量计具有一定的精度,对时间测量要求相当高的测量精度,这在当时是很难实现的。
1955年,美国研制成功声学循环法迈克松流量计,用于测量航空燃油的流量。
50年代末,超声波流量计从理论研究阶段进入工业应用阶段。
但是电子电路太复杂,无法占据稳固的地位。
80年代中后期,单片机技术的应用使超声波流量计向高性能、智能化方向发展。
由于采用单片机作为中央处理单元,该系统不仅能进行复杂的数学运算和数据处理,还能进一步提高超声波流量计的测量精度。
此外,还可以设计友好的人机界面,使系统具有参数设置、自动检错调试等辅助功能,极大地方便了用户的操作和使用。
单片机在超声波流量计中的应用,是超声波流量计真正进入工业测量领域。
1.2超声波流量计的现状近10年来,基于高速数字信号处理技术和微处理器技术的进步,新型探头材料和技术的研究,以及通道结构和流动力学的研究,超声波流量测量技术取得了长足的进步,显示出强大的技术优势,形成了快速发展的势头。
其巨大的潜在生命力是显而易见的。
在国外,以美国Controlotron公司和Ploysonics公司为代表的产品多采用数字信号处理技术,如“同步调制”和FFT技术。
他们广泛采用以DSP为核心的数字处理电路,可以更快更实时地处理超声信号,同时可以实现一些复杂的算法。
例如,Ploysonics公司的DDF3088是新一代全数字便携式多普勒流量计。
它采用数字滤波和数字频谱分析技术,能自动识别多普勒信号和噪声信号,抗干扰能力强。
采用高分辨率液晶显示器,可现场进行多普勒分析。
在测量方法上,有的采用改进的时差法消除温度对速度的影响,时差法和多普勒法的结合,如Controlotron公司开发的480超声波流量计,使产品的适用性更强。
简述各种流量计原理及特点
简述各种流量计原理及特点. 简述目前工程实际中,流量测量方法及流量仪表的种类繁多,至今为止,可供工业用的流量仪表种类多达数十余种。
在流量仪表的家族中,每种产品都有它特定的适用性及使用局限性。
按测量对象划分就有封闭管道和明渠两大类:按测量目的又可分为总量测量和流量测量,其仪表分别称作总量表和流量计。
本文简要介绍目前最常用流量计分类法,主要有:差压式流量计、容积式流量计、差压式流量计、浮子流量计、涡轮流量计、电磁流量计、流体振荡流量计中的涡街流量计质量流量计等分别简述各种流量计的原理及特点。
2. 差压式流量计差压式流量计是通过安装于是工业管道中流量检测元件产生的差压,将已知流体条件和检测件与管道的几何尺寸来计差压式流量计算流量计。
差压式流量计由一次检测件及二次仪表(差压转换器或变送器和流量显示仪表)组成。
以检测件形式划分差压式流量计分类,有孔板流量计、文丘里流量计、均速管流量计等。
二次仪表为各种机械、电子、机电一体式差压式流量计、差压变送器及流量显示仪表。
差压式流量仪表是流量仪表大家族中应用最广泛的一中流量仪表,目前国内外已系列化、通用化、标准化,差压式流量计既可单独测量流量参数,也可测量其它参数(压力、物位、密度)等。
差压式流量计的检测件按其作用原理可分为:节流装置、水利阻力、动压头式、动压头增益及射流式、以及离心式等几大类。
检测件有标准化型式或非标准两大类。
标准型检测元件是以标准文件设计、制造、安装和使用,无需经实流标定即可确定其流量值和估算测量误差。
而非标型检测元件一般尚未列入国际标准中检测元件。
差压式流量计也是应用最广泛的一种流量仪表,在各种流量计使用量中占据首位。
主要优点是:(1)应用最多的孔板式流量计结构牢固,性能稳定可靠,使用寿命长;(2)应用范围广泛,至今尚无任何一流量计可与之比拟;(3)检测件与变送器、显示仪表分别由不同厂家生产,便于规模经济生产。
主要缺点是:(1)测量精度普遍偏低:(2)范围度窄,一般仅3:1~4:1;(3)现场安装条件要求高;(4)压损大(指孔板、喷嘴等)。
超声波原理
超声波流量计的测流原理及其应用摘要:本文阐述了超声波流量计常用的时差法、多普勒法的测流原理,以及超声波流量计的分类。
通过实际测流应用并与流速仪所测的流量结果做了对比分析,得出超声波流量计无论在测流准确度还是在测流精度上都比其它的测流设备高,而且具有其它测流设备所不具备的实时在线和数据远传的优越性能。
关键词:超声波流量计;时差法;多普勒;测流1引言近几年来,随着电子技术、数字技术和声楔材料等技术的发展,利用超声波脉冲测量流体流量的技术发展很快。
基于不同原理,适用于不同场合的各种形式的超声波流量计已相继出现,其应用领域涉及到工农业、水利、水电等部门,正日趋成为测流工作的首选工具。
2超声波流量计的测量原理超声波流量计常用的测量方法为传播速度差法、多普勒法等。
传播速度差法又包括直接时差法、相差法和频差法。
其基本原理都是测量超声波脉冲顺水流和逆水流时速度之差来反映流体的流速,从而测出流量;多普勒法的基本原理则是应用声波中的多普勒效应测得顺水流和逆水流的频差来反映流体的流速从而得出流量。
2.1时差法测量原理时差法测量流体流量的原理如图1所示。
它利用声波在流体中传播时因流体流动方向不同而传播速度不同的特点,测量它的顺流传播时间t1和逆流传播时间t2的差值,从而计算流体流动的速度和流量。
图1超声波流量计测流原理图设静止流体中声速为c,流体流动速度为v,把一组换能器P1、P2与管渠轴线安装成θ角,换能器的距离为L。
从P1到P2顺流发射时,声波传播时间t1为:从P2到P1逆流发射时,声波的传播时间t2为:一般c>>v,则时差为:单声道测试系统只适用于小型渠道水位和流速变化不大的场合。
大型渠道水面宽、水深大,其流速纵横变化也较大,须采用多声道超声波测流才能获得准确的流量值,见图2。
应用公式(5)、(6)可测得流量Q。
以上各式中:d为垂直于水流方向上两换能器之间水平投影的距离,为声道数,S为两声道之间的过水断面面积。
超声波流量计原理
1引言近几年来,随着电子技术、数字技术与声楔材料等技术得发展,利用超声波脉冲测量流体流量得技术发展很快。
基于不同原理,适用于不同场合得各种形式得超声波流量计已相继出现,其应用领域涉及到工农业、水利、水电等部门,正日趋成为2超声波流量计得测量原理ﻫ测流工作得首选工具。
ﻫﻫ超声波流量计常用得测量方法为传播速度差法、多普勒法等、传播速度差法又包括直接时差法、相差法与频差法。
其基本原理都就是测量超声波脉冲顺水流与逆水流时速度之差来反映流体得流速,从而测出流量;多普勒法得基本原理则就是应用声波中得多普勒效应测得顺水流与逆水流得频差来反映流体得流速从而得出流量。
ﻫ2、1时差法测量原理ﻫﻫ时差法测量流体流量得原理如图1所示。
它利用声波在流体中传播时因流体流动方向不同而传播速度不同得特点,测量它得顺流传播时间t1与逆流传播时间t2得差值,从而计算流体流动得速度与流量。
ﻫ图1超声波流量计测流原理图设静止流体中声速为c,流体流动速度为v,把一组换能器P1、P2与管渠轴线安装成θ角,换能器得距离为L。
从P1到P2顺流发射时,声波传播时间t1为:从P2到P1逆流发射时,声波得传播时间t2为:一般c>>v,则时差为:单声道测试系统只适用于小型渠道水位与流速变化不大得场合。
大型渠道水面宽、水深大,其流速纵横变化也较大,须采用多声道超声波测流才能获得准确得流量值,见图2。
应用公式(5)、(6)可测得流量Q。
以上各式中:d为垂直于水流方向上两换能器之间水平投影得距离,为声道数,S为两声道之间得过水断面面积、图2多声道超声波流量计测流原理图2。
2多普勒法测量原理ﻫ多普勒法测量原理,就是依据声波中得多普勒效应,检测其多普勒频率差。
超声波发生器为一固定声源,随流体以同速度运动得固体颗粒与声源有相对运动,该固体颗粒可把入射得超声波反射回接收器。
入射声波与反射声波之间得频率差就就是由于流体中固体颗粒运动而产生得声波多普勒频移。
时差法超声波流量计.
t
2dv tan
C2
C2
2d tan t
v n v K 2n 1 2n 1 流量修正系数K 2n
v
1
v
雷诺数(Re)一种可用来表征流体流动情况的无量纲数,是流体流动状态的一个 判断依据。
折射角θ 修正
θ 角随流体中声速C的变化而变化,而C又是流体温度的函数。因此,必须 对θ 角进行自动跟踪补偿,以达到温度补偿的目的。
3、噪声法 4、相关法
三、时差法原理
流量
单位时间内,流体流过管道或设备某处横截面的数量称为流量。流体流 量可用单位时间内流过通道横截面的流体体积或质量来表示,前者称为 体积流量,用Q表示,单位为m3/s,后者成为质量流量,用G表示,单 位为kg/s。
Q v S
超声波特性
超声波通常指频率高于20KHz的机 械波,它可以在气体、液体和固体 中传播。我们只以水为介质进行分 析。
sin 0
C0
sin 1
C1
sin
C
C sin 0 arcsin( ) C0
C 0 和 0为已知量,C为超声波在被测流体中的传播速度,是温度的变量。 这样就可以通过修正后的C对θ进行修正了。
四、总体设计
换能器安装
本设计中,我们的换能器将采用V字型安装,这样可以提高系统的分辨率,发射、 接收器安装在管壁同一侧,让超声波在管壁对侧反射一次的方法还可以减少流速断 面分布不均匀的误差,
时差法超声波流量计
1 2 3 4 5 6
概述及超声波流量计简介 超声波流量计分类 时差法原理 总体设计 硬件、软件设计 实验研究
目
录
一、概述及超声波流量计简介
自古以来流量测量都是人类文明一种标志,是计量科学技术的组成部 分之一,它广泛存在于水利、化工、农业、石油、冶金以及人民生活各个 领域之中,一直得到世界各国政府和企业的重视,而且重视程度一直在不 断加强。 我国开展近代流量测量技术的工作比较晚,早期所需的流量仪表均从 国外进口。目前我国的流量装置方面,与国际水平仍存在较大差距,现有 产品的品种、规格、精确度和可靠性尚不能满足国内市场的需求。 超声波流量计(简称USF)是利用超声波在流体中的传播特性来测量 流量的计量仪表。凭借其非接触测流、仪表造价基本上与被测管道口径大 小无关、精度高、测量范围大、安装方便、测试操作简单等自身的优势被 认为是较好的大管径流量测量仪表,在电力、石油、化工特别是供水系统 中被广泛应用。 随着超声波流量计的技术的不断成熟和用户对它的逐渐认可,超声波 流量计市场正以前所未有的发展速度向前发展。ARC(Auotmation Research Corp)2001年给出2001-2005年超声波流量计的年复合增长率( CompoundAnnualGrowthRate,CARG)为10.5,远远高于其它流量计的增 长率。
超声波流量计
原理: 根据对信号检测的原理超声波流量计可分为传播速度 差法(直接时差法、时差法、相位差法和频差法)、波束偏 移法、多普勒法、互相关法、空间滤法及噪声法等。 超声流量计和超声波流量计一样,因仪表流通通道未 设置任何阻碍件,均属无阻碍流量计,是适于解决流量测 1 量困难问题的一类流量计,特别在大口径流量测量方面有 较突出的优点,它是发展迅速的一类流量计之一。 超声波流量计采用时差式测量原理:一个探头发射信 号穿过管壁、介质、另一侧管壁后,被另一个探头接收到 ,同时,第二个探头同样发射信号被第一个探头接收到, 由于受到介质流速的影响,二者存在时间差Δt,根据推算 可以得出流速V和时间差Δt之间的换算关系V=(C2/2L)×Δt ,进而可以得到流量值Q。
2
注意事项
超声波流量计正确选型才能保证超声波流量计更好的使用。选用什么种类的超声波 流量计应根据被测流体介质的物理性质和化学性质来决定?使超声波流量计的通径、 流量范围、衬里材料、电极材料和输出电流等?都能适应被测流体的性质和流量测量 的要求。 1、精密功能检查 精度等级和功能根据测量要求和使用场合选择仪表精 度等级,做到经济合算。比如用 于贸易结算、产品交接和能源计量的场合,应该选择精度等级高些,如1.0级、0.5级 ,或者更高等级; 用于过程控制的场合,根据控制要求选择不 同精度等级;有些仅仅是 检测一下过程流量,无需做精确控制和计量的场合,可以选择精度等级稍低的,如1.5 级、2.5级,甚至 4.0级,这时可以选用价格低廉的插入式超声波流量计。 2、可测量的介质 1 测量介质流速、仪表量程与口径 测量一般的介质时,超声波流量计的满度 流量可以 在测量介质流速0.5—12m/s范围内 选用,范围比较宽。选择仪表规格(口径)不一 定与 工艺管道相同,应视测量流量范围是否 在流速范围内确定,即当管道流速偏低,不能 满足流量仪表要求时或者在此流速下测量准 确度不能保证时,需要缩小仪表口径,从 而提 高管内流速,得到满意测量结果。 超声波液位计测量水位的原理以及安装要求: 超声波液位计工作时,高频脉冲声波由换能器(探头)发出,遇被测物体(水面)表 面被反射,折回的反射回波被同一换能器(探头)接收,转换成电信号。脉冲发送和 接收之间的时间(声波的运动时间)与换能器到物体表面的距离成正比,声波传输的 距离S与声速C和传输时间T之间的关系可以用公式表示:S= CⅩT/2 例如:声速C=344m/s,传输时间为50ms,即可算出传输的距离为17.2m,测定距离 为8.6m。
超声波流量计的基本原理及类型
超声波流量计的基本原理及类型超声波流量计的基本原理及类型刘欣荣超声波在流动的流体中传播时就载上流体流速的信息。
因此通过接收到的超声波就可以检测出流体的流速,从而换算成流量。
根据检测的方式,可分为传播速度差法、多普勒法、波束偏移法、噪声法及相关法等不同类型的超声波流量计。
起声波流量计是近十几年来随着集成电路技术迅速发展才开始应用的一种非接触式仪表,适于测量不易接触和观察的流体以及大管径流量。
它与水位计联动可进行敞开水流的流量测量。
使用超声波流量比不用在流体中安装测量元件故不会改变流体的流动状态,不产生附加阻力,仪表的安装及检修均可不影响生产管线运行因而是一种理想的节能型流量计。
众所周知,目前的工业流量测量普遍存在着大管径、大流量测量困难的问题,这是因为一般流量计随着测量管径的增大会带来制造和运输上的困难,造价提高、能损加大、安装不仅这些缺点,超声波流量计均可避免。
因为各类超声波流量计均可管外安装、非接触测流,仪表造价基本上与被测管道口径大小无关,而其它类型的流量计随着口径增加,造价大幅度增加,故口径越大超声波流量计比相同功能其它类型流量计的功能价格比越优越。
被认为是较好的大管径流量测量仪表,多普勒法超声波流量计可测双相介质的流量,故可用于下水道及排污水等脏污流的测量。
在发电厂中,用便携式超声波流量计测量水轮机进水量、汽轮机循环水量等大管径流量,比过去的皮脱管流速计方便得多。
超声被流量汁也可用于气体测量。
管径的适用范围从2cm到5m,从几米宽的明渠、暗渠到500m宽的河流都可适用。
另外,超声测量仪表的流量测量准确度几乎不受被测流体温度、压力、粘度、密度等参数的影响,又可制成非接触及便携式测量仪表,故可解决其它类型仪表所难以测量的强腐蚀性、非导电性、放射性及易燃易爆介质的流量测量问题。
另外,鉴于非接触测量特点,再配以合理的电子线路,一台仪表可适应多种管径测量和多种流量范围测量。
超声波流量计的适应能力也是其它仪表不可比拟的。
超声波流量计的原理及应用
超声波流量计的原理及应用
超声波流量计是一种通过测量流体中的超声波传播时间和频率变化来确定流速和流量的仪器。
它能够实现非接触式测量,不影响管道内的流体流动,具有高精度、高灵敏度、稳定性好、使用寿命长等特点,因此被广泛应用于各种工业领域的液体和气体流量测量。
超声波流量计的原理是利用超声波在流体中传播的速度与方向受流体速度的影响,从而实现流速和流量测量。
它的工作原理可分为时差法和多普勒法。
时差法是通过测量超声波从传感器发射到反射回来的时间差来计算液体流量的。
当超声波传播在流体中时,它的速度受到液体流速的影响而发生变化,这导致了反射回传感器的超声波信号的到达时间会发生变化。
使用两个超声波传感器分别作为发射器和接收器,测量时间差,就可以得到流速和流量的数据。
而多普勒法则是测量通过超声波反射后发生其他频率变化的超声波信号的技术。
当超声波以一定倾角穿过液体流动时,流速会导致它们以不同的频率回反射回来。
利用这种现象,只需测量回波的频率变化就可以确定液体流量。
超声波流量计的应用非常广泛,包括水厂、石油化工、制药、食品饮料、化肥生产以及市政供水等行业。
用于管道的流量计可以测量液体、气体、和气体粉尘混合物的流速和流量。
它还能够自适应地适应温度、压力、粘度和介质的变化。
此外,超声波流量计对管道的直径、材料和形状等都没有严格的要求,适用范围非常广泛。
总之,超声波流量计是一种高效、高精度、高灵敏度的流量测量仪器,具有广泛的应用领域,是现代工业流量测量和控制领域不可或缺的重要仪器。
时差型超声波流量计是一种通用超声波液体流量计
时差型超声波流量计是一种通用的超声波液体流量计,适用于工业环境下连续测量不含大浓度悬浮粒子或气体的绝大多数清洁均匀液体的流量。
基本构成如下:1.声学系统:由安装于待测管道外表面的一对超声波探头(换能器)组成。
2.测量主机:主机与探头之间由两根双屏蔽电缆连接。
测量主机可以外接远传装置、控制器等。
超声波流量计工作原理FV4018型流量计是基于微处理器技术,自身完备的流量测量仪表,与其它常规型流量计或其它超声波流量计相比具有下列更多的优点。
采用超大规模集成电路CPLD技术,小型化设计,硬件数目少,表贴工艺,低功耗。
高可靠性、高适用性、强抗干扰性设计,可用于几乎全部工业环境中。
优化的智能信号自适用处理,使用者无需任何电路调整,并加快了流量计的响应时间,使安装更容易简单。
全窗口化的软件操作,使用方便可靠,并且功能多。
可使用公制或英制单位,流量的单位可选用几乎所有常用的中外通用单位,在带背光液晶显示器上显示流量、流速、累积量及日期时间等。
日、月、年流量累积功能可记录前64个运行天、前64个运行月、前5个运行年的流量。
上、断电管理功能可记录前64个上电、断电时间及上断电时刻的瞬时流量,保护所有数据,用户可以选择自动或手动补量,便于累计数据的修正和管理。
完备的输出信号包括继电器、集电极开路、频率信号输出、4-20mA电流环模拟输出等,带倍乘因子(量程)的机七位数长的正向、负向、净流量独立工作,并可通过继电器或集电极开路电路输出累计脉冲和频率输出信号。
从前面所讲的超声波流量计工作原理可知,超声波流量计测量技术的核心在于超声波传播时间的测量,FV4018型流量计使用了可达0.1nS超高分辩率、超高线性、超高稳定的时间测量电路,加上机使用的32位长数字处理程序,保证了FV4018比其它任何类型的流量计具有更高的分辩率和测量围。
在设计上,采用了世界上最先进的集成电路及微处理器智能控制,实现了生产过程中元器件参数无调整化,提高了产品可靠性,产品一致性好,保证每一台出厂的机器都达到最佳性能、最好工超声波流量计的原理及应用(2003年索尼卡公司服务部)一.引言首先家简单介绍一下流量计的概念凡是有物质流动的场合,人们为掌握其数量都需要流量测量。
超声波流量计原理
精心整理1引言近几年来,随着电子技术、数字技术和声楔材料等技术的发展,利用超声波脉冲测量流体流量的技术发展很快。
基于不同原理,适用于不同场合的各种形式的超声波流量计已相继出现,其应用领域涉及到工农业、水利、水电等部门,正日趋成为测流工作的首选工具。
2超声波流量计的测量原理超声波流量计常用的测量方法为传播速度差法、多普勒法等。
传播速度差法又包括直接时差法、相差法和频差法。
其基本原理都是测量超声波脉冲顺水流和逆水流时速度之差来反映流体的流速,从而测出流量;多普勒法的基本原理则是应用声波中的多普勒效应测得顺水流和逆水流的频差来反映流体的流速从而得出流量。
2.1时差法测量原理时差法测量流体流量的原理如图1所示。
它利用声波在流体中传播时因流体流动方向不同而传播速度不同的特点,测量它的顺流传播时间t1和逆流传播时间t2的差值,从而计算流体流动的速度和流量。
图1超声波流量计测流原理图设静止流体中声速为c,流体流动速度为v,把一组换能器P1、P2与管渠轴线安装成θ角,换能器的距离为L。
从P1到P2顺流发射时,声波传播时间t1为:从P2到P1逆流发射时,声波的传播时间t2为:一般c>>v,则时差为:单声道测试系统只适用于小型渠道水位和流速变化不大的场合。
大型渠道水面宽、水深大,其流速纵横变化也较大,须采用多声道超声波测流才能获得准确的流量值,见图2。
应用公式(5)、(6)可测得流量Q。
以上各式中:d为垂直于水流方向上两换能器之间水平投影的距离,为声道数,S为两声道之间的过水断面面积。
图2多声道超声波流量计测流原理图2.2多普勒法测量原理多普勒法测量原理,是依据声波中的多普勒效应,检测其多普勒频率差。
超声波发生器为一固定声源,随流体以同速度运动的固体颗粒与声源有相对运动,该固体颗粒可把入射的超声波反射回接收器。
入射声波与反射声波之间的频率差就是由于流体中固体颗粒运动而产生的声波多普勒频移。
由于这个频率差正比于流体流速,所以通过测量频率差就可以求得流速,进而可以得到流体流量,如图3。
石油化工行业中流量仪表的选型及应用
石油化工行业中流量仪表的选型及应用摘要:伴随我国社会经济飞速发展,石油作为一项重要的能源,在多个领域中发挥着极其重要的作用。
将流量仪表应用于石油化工行业当中可以在很大程度上节约成本,提高生产效率。
现阶段,市场当中的流量仪表种类越来越多样化,不同类型仪表的适用范围与环境也存在差异,只有在了解仪表特征的基础上才能够将各类流量仪表的作用充分发挥出来,以便于更好地提高石油化工企业的生产效益。
为此,本文探讨了流量仪表的类型与选择要点,并分析了其选型应用的具体策略,希望通过本文的分析可以为相关行业工作者提供一些参考。
关键词:石油化工;流量仪表;选型应用当前我国国际市场一体化的进程在不断加快,同时石油化工行业也面临着巨大的挑战,如何有效提高企业生产效率,提高产品质量已经成为现阶段石油化工企业需要面对的一项重要问题。
经过有关人员调查发现,科学的进行流量测量仪表的选用可以在很大程度上控制企业成本,达到提高生产效率的目的。
但不同工况下各类工艺介质所需要的流量仪表类型存在差异,因此,需要结合具体的生产状况来科学的选择,以期推动石油化工企业长期稳定的发展。
1 流量仪表的主要类型1.1 涡街流量计涡街流量计是根据卡门涡街原理来进行气体、液体或蒸汽流量测量的仪表。
当在流体中插入一个障碍物时,流体的流动就会受到影响,障碍物的两侧交替分离释放出两串旋涡,在下游形成互相平行的两个旋涡流,称为卡门涡街。
因为旋涡是有规则的,即涡街的频率与流体的流速成正比,因此可以根据旋涡脱离旋涡发生体的频率来确定流体的流量。
涡街流量计具有测量精度高,结构简单的特点,并且量程比高,能达到10:1及以上。
测量体积流量时几乎不受流体温度、压力、密度、粘度等参数的影响。
流量计的内部没有可动元件,也没有节流部件阻碍工艺介质的流动,因此使用过程中的压力损失比较小,仪表参数能长期稳定。
缺点是抗振性能差,外部振动会使涡街流量计产生很大的误差,甚至无法正常工作;无法使用在工艺介质脏污的工况,涡街发生元件很容易被介质污染或吸附,导致结构外形变化,进而影响测量精准度;对前后管道直管段长度要求高,如果需要达到理想的测量精度,涡街流量计直管段至少要保证前20D、后5D。
多普勒流量计与时差法流量计区别
多普勒流量计与PORAFLOW X超声波流量计区别:1.多普勒流量计的测量原理,从配管外部发射超声波,超声波被流体中的杂质反射后,作为接收信号被接受。
利用多普勒效应产生的接收信号波的頻差和流速之间的比例关系,进行流速的测量。
a)基于该原理,(1)流体中含有杂质(包含气泡)是测量的前提条件,适用于下水,不适用于上水;(2)由于无法明确接收的反射波来自流体中的哪个部分,考虑到配管中的流速分布,如杂质混入程度发生变化,将会对精度产生影响。
2.PORAFLOW X超声波流量计是利用横穿配管的超声波来测量流速,所得到的是管内的平均流速,与多普勒式流量计相比较而言,是一种高精度的流量计。
3.多普勒流量计和时差法超声波流量计的区别:超声波流量计采用时差式测量原理:一个探头发射信号穿过管壁、介质、另一侧管壁后,被另一个探头接收到,同时,第二个探头同样发射信号被第一个探头接收到,由于受到介质流速的影响,二者存在时间差Δt,根据推算可以得出流速V和时间差Δt之间的换算关系V=(C2/2L)×Δt,进而可以得到流量值Q。
超声波在传播路径上如遇到微小固体颗粒或气泡会被散射,因此用时差法测量含有这类东西的流体时就不能很好地工作,它只能用来测量比较洁净的流体。
而多普勒法正是利用超声波被散射这一特点工作的,所以多普勒法正适合测量含固体颗粒或气泡的流体,但由于散射粒子或气泡是随机存在的,流体传声性能也有差别。
如果是测量传声性能差的流体,则在近管壁的低流速区散射较强;而测量传声性能好的流体在高流速区散射占优势,这就使得多普勒法的测量精度较低。
虽然采用发射换能器与接收换能器分开的结构,这样可以只接收流速断面中间区域的散射,但与时差法比较测量精度还是低一些。
时差法流量计必须有一双传感器,每个包含压电晶体。
一个传感器传输的声音,而作为接收器的其他行为。
顾名思义,时差法流量计测量的时间,它需要从一个传感器发出的超声波信号,跨越管和第二个传感器接收。
时差法+多普勒法
时差法+多普勒法
时差法和多普勒法都是用于测量恒星或行星与地球之间距离的天文学方法。
1.时差法:这种方法通过测量光从目标天体到达两个地球位置之间的时间差来确定距离。
由于光速是已知的,因此当我们测量出光信号在两个地球位置之间的传播时间时,就可以利用这个时间差和光速来计算目标天体的距离。
2. 多普勒法:多普勒效应是指当光源或接收者相对于观察者以很快的速度远离或接近时,光的频率会发生变化。
对于恒星或行星,它们的运动会导致从它们发出或反射回地球的光产生多普勒效应。
通过观测这种频率的变化,可以确定目标天体的运动速度,从而推断出它们与地球的距离。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
淮安嘉可自动化仪表有限公司
时差法与多普勒超声波流量计的对比
超声波流量计是20世纪70年代开始应用的一种流量仪表,和电磁流量计一样,因为仪表流通通道未设置任何阻碍件,都属于无阻碍流量计,适合测量大管径和不易接触的流体。
超声波流量计测量是一种间接测量方法,主要有多普勒法和时差法两种方式。
在污水测量中应用广泛的是多普勒超声波流量计。
时差法超声波流量计的工作原理:在流体中超声波信号顺流时传播速度快,逆流时信号传播速度慢,通过测量超声波信号在流体中顺流和逆流传播时间差,即时差,间接测出流体流速,再通过流速可以计算出流体流量。
时差法适合用于测量纯净流体,有较多气泡或杂质的流体会阻碍超声波正常传播,会影响测量结果不准确。
多普勒超声波流量计的工作原理:超声接收器接收到超声波传播途中遇到的悬浮物质或微小气泡而被散射的信号。
发射信号频率受多普勒效应(利用声波所产生的多普勒频移现象,通过在静止点检测从移动源所发射声波产生的多普勒频移来计算散射体流动速度进行测量)的影响变为不同的信号频率,根据频率之差与流体流速的数量关系,可算出流体流量。
多普勒法流量计适用于测量浑浊流体,但只能测量杂质约50mg/L以上的流体。
多普勒法测量精度低于时差法。