三种基本放大电路

合集下载

(完整word版)放大电路的工作原理和三种基本放大组态

(完整word版)放大电路的工作原理和三种基本放大组态

放大电路的工作原理和三种基本放大组态放大电路里通常是晶体三极管、场效应管、集成运算放大器等,这些器件也称为有源器件。

共射放大电路如图所示。

V cc是集电极回路的直流电源,也是给放大电路提供能量的,一般在几伏到几十伏范围,以保证晶体三极管的发射结正向偏置、集电结反向偏置,使晶体三极管工作在放大区。

R c是集电极电阻,一般在几 K 至几十K 范围,它的作用是把集电极电流i C的变化变成集电极电压u CE的变化。

V BB是基极回路的直流电源,使发射结处于正向偏置,同时通过基极电阻R b提供给基极一个合适的基极电流I BQ,使三极管工作在放大区中适当的区域,这个电流I BQ常称为基极偏置电流,它决定着三极管的工作点,基极偏置电流I BQ是由V BB和基极电阻R b共同作用决定的,基极电阻R b一般在几十KΩ至几百KΩ范围。

如在输入端加上一个较小的正弦信号u i , 通过电容C1加到三极管的基极,从而引起基极电流i B在原来直流I BQ的基础上作相应的变化,由于u i是正弦信号,使i B随u i也相应地按正弦规律变化,这时的i B实际上是直流分流I BQ和交流分量i b迭加后的量。

同时i B的变化使集电极电流 i C 随之变化,因此i C也是直流分量I C和交流分量i c的迭加,但i C要比i B大得多(即β倍)。

电流i C在电阻R C上产生一个压降,集电极电压u CE =V CC-i C R L,这个集电极电压u CE也是由直流分量I C和交流分量 i C两部分迭加的。

这里的 u CE和 i C相位相反,即当 i C增大时, u CE减少。

由于C 2的隔直作用,使只有 u CE的交流分量通过电容C2作为放大电路的输出电压u O。

如电路参数选择适当,u O要比 u I的幅值要大得多,同时 u I与 u O的相位正好相反。

电路中各点的电流、电压波形如图所示。

放大电路的图解法放大电路有三种主要分析方法:一是图解法,二是微变等效电路法,三是计算机辅助分析法。

基本放大电路

基本放大电路

功率放大器电路实物图(12张)功放电路和前面介绍的基本放大电路都是能量转换电路,从能量控制的角度来 看,功率放大器和电压放大器并没有本质上的区别。但是,从完成任务的角度和对电路的要求来看,它们之间有 着很大的差别。低频电压是在小信号状态下工作,动态工作点摆动范围小,非线性失真小,因此可用微变等效电 路法分析、计算电压放大倍数、输入电阻和输出电阻等性能指标,一般不考虑输出功率。而功率放大电路是在大 信号情况下工作,具有动态工作范围大的特点,通常只能采用图解法分析,而分析的主要性能指标是输出功率和 效率。
具有足够大的输出功率
为了获得尽可能大的功率输出,要求功放管工作在接近“极限运用”的状态。选管子时应考虑管子的三个极 限参数能小
功放工作在大信号状态下,不可避免地会产生非线性失真,而且同一功放管的失真情况会随着输出功率的增 大而越发严重。技术上常常对电声设备要求其非线性失真尽量小,最好不发生失真。而在控制电动机和继电器等 方面,则要求以输出较大功率为主,对非线性失真的要求不是太高。
前级功放 其主要作用是对信号源传输过来的节目信号进行必要的处理和电压放大后,再输出到后级放大器。 后级功放 其对前级放大器送出的信号进行不失真放大,以强劲的功率驱动扬声器系统。除放大电路外,还设计有各种 保护电路,如短路保护、过压保护、过热保护、过流保护等。前级功放和后级功放一般只在高档机或专业的场合 采用。 合并式放大器 将前级放大器和后级放大器合并为一台功放,兼有前二者的功能,通常所说的放大器都是合并式的,应用范 围较广。
功率放大器主要考虑获得最大的交流输出功率,而功率是电压与电流的乘积,因此功放电路不但要有足够大 的输出电压,而且还应有足够大的输出电流。因此,对功放电路具有以下几点要求。
效率尽可能高
功放是以输出功率为主要任务的放大电路。由于输出功率较大,造成直流电源消耗的功率也大,效率的问题 突显。在允许的失真范围内,期望功放管除了能够满足所要求的输出功率外,应尽量减小其损耗,首先应考虑尽 量提高管子的工作效率。

第三章 基本放大电路

第三章 基本放大电路
输入
输出
话筒



喇叭
应用举例
直 流 电 源
基本放大电路
输入 放大器 输出
1、定义:放大电路的目的是将微弱的变化信 号不失真的放大成较大的信号。。
2、组成:三极管、场效应管、电阻、电容、电感、 变压器等。 3、特点:
①输出信号的功率大于输入信号的功率;
②输出信号的波形与输入信号的波形相同。
基本放大电路
RC
ui



T
C2
RL


基本放大电路
3.2.2 放大器中电流电压符号使用规定含义 “小大” uBE—小写字母,大写下标,表示交、直混合量。 “大大” UBE — 大写字母,大写下标,表示直 流量。 “小小” ube—小写字母,小写下标,表示交流分量。
“大小” Ube—大写字母,小写下标,表示交流分量有效值。 uA
电路改进:采用单电源供电 +VCC RC C1 T
可以省去
C2
RB VBB
基本放大电路
+VCC RB C1 T RC C2
单电源供电电路
基本放大电路
(1)电路的简化
C1
ui (2)电路的简化画法
VCC
RB
C1
只用一个电源,减 少电源数。


T
C2

RL

RB
RC
VCC
uo


uo
不画电源符号, 只写出电源正 极对地的电位。

T
I CQ

U CEQ

(b) 首先画出放大电路的交流通路
基本放大电路
VCC
交流通路

共发射极放大电路三种典型放大电路

共发射极放大电路三种典型放大电路

一、单管共发射极放大电路仅有直流反馈-固定偏置基本的电路如下三、选择器件与多数计算:设置静态工作点并计算元件参数依据指标要求、静态工作点范围、经验值进行计算静态工作点Q 的计算:要求iR{26300i beCQmvR rIβ≈≈+}>1K有若取V BQ = 3V,得1.53BQ BEECQV VR KI-==Ω取标称值1.5KmA2.2mA300100026`CQ=-<βI由于CQBQ I I β=; ()5~10BQ I I =得,=20k Ω ; =60k Ω为使静态工作点调整方便,1B R 由20k固定电阻与100k 电位器相串联而成。

=2033根据V A 的理论计算公式, V A =40 得,1k Ω 由//L C LR R R •=2k Ω计算电容为: )()(13~108.22L S be C uF f R r π≥=+ 综合考虑标称值10Uf10C B C C uF ==取标称值100uF四、画出预设计总体电路图: 预设总体电路图:βCQ BQBQ B I V I V R )10~5(12==21B BQBQ CC B R V VV R -=)(26)1(300)(26)1(mA I mVmA I mV r r EQ EQ bbe ββ++=++=2.静态工作点的测试与调整:测量方法是不加输入信号,将放大器输入端(耦合电容CB负端)接地。

用万用表分别测量晶体管的B、E、C极对地的电压VBQ 、VEQ及VCQ。

一般VBQ =(3~7)V, VCEQ=正几伏。

如果出现VCQ VCC,说明晶体管工作在截止状态;如果出现VCEQ0.5V,说明晶体管已经饱和.调整方法是改变放大器上偏置电阻R B1的大小,即调节电位器的阻值,同时用万用表分别测量晶体管的各极的电位V BQ、V CQ、V EQ,并计算V CEQ及I CQ。

如果V CEQ为正几伏,说明晶体管工作在放大状态,但并不能说明放大器的静态工作点设置在合适的位置,所以还要进行动态波形观测。

三极管的三种基本放大电路

三极管的三种基本放大电路

二、性能指标分析
IBQ = (VCC – UBEQ) / [RB + (1 + β ) RE] ICQ = β I BQ UCEQ = VCC – ICQRE



rbe β ib RB + RE RL uo

R'L = RE // RL
第3章 放大电路基础
一、电路组成与静态工作点
IBQ C1 + RB +VCC C2 RL
Ri
R’i
例3.2.1 β =100, RS= 1kΩ, RB1= 62kΩ, RB2= 20kΩ, RC= 3kΩ Ω Ω Ω Ω RE = 1.5kΩ, RL= 5.6kΩ, VCC = 15V。求:“Q ”, Au, Ri, Ro Ω Ω 。 [解] 1)求“Q” 解 ) +VCC 20 × 15 RB1 RC C2 U BQ = ≈ 3.7 ( V ) C1 + 20 + 62 + + RL 3 .7 − 0 .7 uo I RS = 2 (mA ) + CQ = I EQ = + RB2 RE us 1 .5 CE − − I BQ ≈ 2 / 100 = 0.02 (mA) = 20 µA U = 15 − 2( 3 + 1.5) = 6 ( V ) 2)求 Au、Ri、Ro 、 Aus CEQ )

RE = RL = Rs = 1 kΩ, VCC = 12V。求:“Q ”、Au、Ri、 Ω 。 、 Ro [解] 1)求“Q” +VCC 解 ) IBQ RB C1 IBQ = (VCC – UBE) / [RB + (1+ β ) RE]
β =120, RB = 300 kΩ, r’bb= 200 Ω, UBEQ = 0.7V Ω

模电第二章 基本放大电路

模电第二章 基本放大电路
温 T ( C 度 ) I C T ( C I C ) E I C O
T ( C U B ) 不 E I B I C 变
温度T (C) IC ,
若此时I B
,则I

CQ
U CEQ在输出特性坐标
系中的位置就可能
基本不变。
2.4 放大电路静态工作点的稳定
一、典型电路
消除方法:增大Rb,减小Rc,减小β。
例2-1:由于电路参数的改变使静态工作点产生如图所示变化。 试问(1)当Q从Q1移到Q2、 从Q2移到Q3、 从Q3移到Q4时, 分别是电路的哪个参数变化造成的?这些参数是如何变化的?
4mA 3mA 2mA 1mA
40µA
Q3
Q4
30µA 20µA
IB=10µA
2 6 m V
2 6 m V
r b e 2 0 0 ( 1 ) I E Q 2 0 0 ( 1 3 0 ) 1 . 2 m A 8 7 1 . 6 7
R i R b ∥ r b e r b e 8 7 1 . 6 7 R o R c 6 k
2.4 放大电路静态工作点的稳定
温度对Q点的影响
2、放大电路的动态分析(性能指标分析)
(1)放大电路的动态图解分析法
结论: 1. ui uBE iB iC uCE uo
阻容耦合共射放大电路
2、放大电路的动态分析(性能指标分析)
(1)放大电路的动态图解分析法 二、图解分析
结论: 2. uo与ui相位相反;3. 测量电压放大倍数;4. 最大不失 真输出电压Uom (UCEQ -UCES与 VCC- UCEQ ,取其小者,除以 2 )。
Q
UBE/V
UBEQ VCC
1、放大电路的静态工作点 (2)图解法确定静态工作点

放大电路的三种基本组态

放大电路的三种基本组态

一、复习引入复习基本共射极放大电路的结构及各元件的名称和作用。

二、新授(一)基本共射极放大电路分析(1)基本共射极放大电路的静态工作点无输入信号(u i=0)时电路的状态称为静态,只有直流电源U cc加在电路上,三极管各极电流和各极之间的电压都是直流量,分别用I B、I C、U BE、U CE表示,它们对应着三极管输入输出特性曲线上的一个固定点,习惯上称它们为静态工作点,简称Q点。

I B、I C、U BE、U CE通常表示为I BQ、I CQ、U BEQ 和U CEQ。

(a)共射放大电路 (b)直流通路图1 共射基本放大电路及其直流通路静态值既然是直流,故可用交流放大电路的直流通路来分析计算。

在如图1(b)所示共射基本电路的直流通路中,由+U cc —R b—b极—e极—地可得:一般U CC>U BEE,则I BQ=(U CC-U BEQ)/R b≈U CC/R b当U CC和R b选定后,偏流I B即为固定值,所以共射极基本电路又称为固定偏流电路。

如果三极管工作在放大区,且忽略I CEO,则I CQ≈βI BQ由+U cc—R c b极—c极—e极—地可得U CEQ=U CC=I CQ R C如果按上式算得值小于0.3V,说明三极管已处于或接近饱和状态,I CQ将不再与I BQ成β倍关系。

此时I CQ称为集电极饱和电流I CS,集电极与发射极间电压称为饱和电压U CES。

U CES值很小,硅管取0.3V。

可由下式求得I CS =(U CC-U CES)/R C一般情况下,U cc>U CESI CS≈U CC/R C(2)微变等效电路分析法共射基本放大电路的微变等效电路,如图2所示。

从图中可以看出,输入电阻R i为R b与r be的并联值,所图2 R i基本共射电路的微变等效电路R i=R b//r be≈r be当us被短路时,i b=0,i c=0,从输出端看进去,只有电阻Rc,所以输出电阻为R0=R C从图2中输入回路可以看出U i=i b r be令RL′=RC//RL,其输出电压为U O=-i c(R C//R L)=-i c R L′=-βi b R L′因此,电压放大倍数为A u=u o/u i=-iβR L/r be式中,负号表示U0志u r相位相反。

三极管基本放大电路的三种组态

三极管基本放大电路的三种组态

除去信号的输入、输出端。

另一端就是共极三极管基本放大电路的三种组态组态一:共射电路组态二:共集电极电路共集电极组态基本放大电路如图所示。

(1)直流分析(2)交流分析放大倍数/输入电阻/输出电阻组态三:共基极放大电路共基组态放大电路如图交流、直流通路微变等效电路共基极组态基本放大电路的微变等效电路性能指标三种组态电路比较放大电路的三种基本组态2.6.1共集电极放大电路上图(a)是一个共集组态的单管放大电路,由上图(b)的等效电路可以看出,输入信号与输出信号的公共端是三极管的集电极,所以属于共集组态。

又由于输出信号从发射极引出,因此这种电路也称为射极输出器。

下面对共集电极放大电路进行静态和动态分析。

一、静态工作点根据上图(a)电路的基极回路可求得静态基极电流为二、电流放大倍数由上图(b)的等效电路可知三、电压放大倍数由上图(a)可得Re’=Re//RL由式(2.6.4)和(2.6.5)可知,共集电极放大电路的电流放大倍数大于1,但电压放大倍数恒小于1,而接近于1,且输出电压与输入电压同相,所以又称为射极跟随器。

四、输入电阻由图2.6.1(b)可得Ri=rbe+(1+β)Re’由上式可见,射极输出器的输入电阻等于rbe和(1+β)R、e相串连,因此输入电阻大大提高了。

由上式可见,发射极回路中的电阻R、e折合到基极回路,需乘(1+β)倍。

五、输出电阻在上图(b)中,当输出端外加电压U。

,而US=0时,如暂不考虑Re的作用,可得下图。

由图可得由上式可知,射极输出器的输出电阻等于基极回路的总电阻()除以(1+β),因此输出电阻很低,故带负载能力比较强。

由上式也可见,基极回路的电阻折合到发射极,需除以(1+β)。

2.6.2共基极放大电路上图(a)是共基极放大电路的原理性电路图。

由图可见,发射极电源VEE的极性保证三极管的发射结正向偏置,集电极电源VCC的极性保证集电结反向偏置,从而可以使三极管工作在放大区,因输入信号与输出信号的公共端是基极,因此属于共基组态。

三极管基本放大电路的三种组态

三极管基本放大电路的三种组态

除去信号的输入、输出端。

另一端就是共极三极管基本放大电路的三种组态组态一:共射电路组态二:共集电极电路共集电极组态基本放大电路如图所示(1)直流分析/『W B厂心訓【血斗⑴的』"叱亡―厶傀_ '忧_Wn流通路R产隔川4交流通路,(2)交流分析渤呼筲帥由淬迴園b2h放大倍数/输入电阻/输出电阻① 中Ifi 电压放人倍数 芜賽(1+处;碍"(1 + 0)化比较匸£和CU 组态放大电瞎的电压放大倍数公式.它们的分r 足"乘以输岀电极对地妁址漩这效负载屯 阻.分母都是三极管基极对地的交流输入电阻。

② 输入电阻尽"Ke 十(”®用L )]③ 输出电阳 将綸入信号 垣路,负载开 路异那 ,信 巧源短路,内阻 保留〃總=叫g 十码),R\ =尺〃鹉"甩 氏=[(1M )1* A 肛+心沪(底爪)共基组态放大电路如图生广冻*舟+玮广幷(1+”)P 先企) 死乩电苗电蹦组态三:共基极放大电路微变等效电路共基极组态基本放大电路的微变等效电路I「1仁矶o —1 +]&比tO■1—►b—性能指标① 电压放大倍数 弟=!&//&=十色型$he② 输入电限 R.=曲 jfe= 1 1L+0 % 1 协③ 输出电阻R 严氐交流、直流通路空流通路;三种组态电路比较■共射电路;电压和电流放大倍数均大,输入输岀电压相位相反,输岀输出电阻适中°常用于电压放大.・共集电路二电压放大倍数是小于且扌妾近于1的正数,具有电压跟随特点I输入电阳大’输岀电阻小.常作为电路的输入和输出级乜■共基电弟匕放大倍数同共射电路.输入电阻小,频率特性好.帘用作宽带庶大器口放大电路的三种基本组态2. 6. 1共集电极放大电路上图(a)是一个共集组态的单管放大电路,由上图(b)的等效电路可以看出,输入信号与输出信号的公共端是三极管的集电极,所以属于共集组态。

三极管的三种基本放大电路

三极管的三种基本放大电路

基极放大电‎路共基极的放‎大电路,如图1所示‎,图1 共基极放大‎电路主要应用在‎高频放大或‎振荡电路,其低输入阻‎抗及高输出‎阻抗的特性‎也可作阻抗‎匹配用。

电路特性归‎纳如下:输入端(EB之间)为正向偏压‎,因此输入阻‎抗低(约20~200 )输出端(CB之间)为反向偏压‎,因此输出阻‎抗高(约100k‎~1M )。

电流增益:虽然AI小‎于1,但是RL / Ri很大,因此电压增‎益相当高。

功率增益:由于AI小‎于1,所以功率增‎益不大。

共发射极放‎大电路共发射极的‎放大电路,如图2所示‎。

图2 共发射极放‎大电路因具有电流‎与电压放大‎增益,所以广泛应‎用在放大器‎电路。

其电路特性‎归纳如下:输入与输出‎阻抗中等(Ri约1k‎~5k ;RO约50‎k)。

电流增益:电压增益:负号表示输‎出信号与输‎入信号反相‎(相位差18‎0°)。

功率增益:功率增益在‎三种接法中‎最大。

共集电极放‎大电路共集电极放‎大电路,如图3所示‎,图3 共集电极放‎大电路高输入阻抗‎及低输出阻‎抗的特性可‎作阻抗匹配‎用,以改善电压‎信号的负载‎效应。

其电路特性‎归纳如下:输入阻抗高‎(Ri约20‎k );输出阻抗低‎(RO约20‎)。

电流增益:电压增益:电压增益等‎于1,表示射极的‎输出信号追‎随着基极的‎输入信号,所以共集极‎放大器又称‎为射极随耦‎器(emitt‎e r follo‎w er)。

功率增益A‎p= AI × Av≈β,功率增益低‎。

三极管三种放大电‎路特性比较‎。

三种基本放大电路及静态工作点

三种基本放大电路及静态工作点

动态:输入信号不为零时,放大电路的工作
状态,也称交流工作状态。
电路处于静态时,三极管个电极的电压、电
流在特性曲线上确定为一点,称为静态工作点,
常称为Q点。一般用IB、 IC、和VCE (或IBQ、ICQ、 和VCEQ )表示。
# 放大电路为什么要建立正确的静态?
2.3 图解分析法
2.3.1 静态工作情况分析
交流负载线。
即 iC = (-1/RL) vCE + (1/RL) VCEQ+ ICQ 交流通路
2.3 图解 分析法
通过图2解.3分.2析,动可态得如工下作结论情: 况分析 1. vi vBE iB iC vCE |-vo|
2.
输入交流2信. 号vo与时vi相的位图相反解;分析
3. 可以测量出放大电路的电压放大倍数;
放大电路向电阻性负载提供的输出功率
Po
Vom 2
Iom 2
1 2
Vom
I
om
在输出特性曲线上,正
好是三角形ABQ的面积,这
一三角形称为功率三角形。
(思考题)
要想PO大,就要使功率三角形的 功率三角形 面积大,即必须使Vom 和Iom 都要大。
例题 放大电路如图所示。已知BJT的
ß=80, Rb=300k, Rc=2k, VCC= +12V, 求: (1)放大电路的Q点。此时BJT 工作在哪个区域?
截止区特点:iB=0, iC= ICEO 当工作点进入饱和区或截止区时,将产生非线性失真。
2.3 图解 分析法
2.3.2 动态工作情况分析
3. BJT的三个工作区
①波形 的失真
由于放大电路的工作点达到了三极管
的饱和区而引起的非线性失真。对于NPN管, 输出电压表现为底部失真。

三极管的三种放大电路

三极管的三种放大电路

三极管的三种放大电路三极管是一种常用的电子元件,它具有放大信号的特性,因此被广泛应用于各种放大电路中。

三极管的三种放大电路分别是共射放大电路、共基放大电路和共集放大电路。

1. 共射放大电路共射放大电路是最常见的三极管放大电路之一,它的特点是输入信号与输出信号都是相对于电源地的。

在共射放大电路中,三极管的发射极作为输入端,集电极作为输出端,基极则起到控制信号的作用。

共射放大电路的工作原理是:当输入信号加在基极上时,三极管的发射极电流会发生相应的变化,进而改变集电极电流,实现对输入信号的放大。

由于共射放大电路具有较大的电压增益和较小的输入阻抗,因此常用于需要较大信号放大的场合,如音频放大电路。

2. 共基放大电路共基放大电路是另一种常见的三极管放大电路,它的特点是输入信号与输出信号都是相对于基极的。

在共基放大电路中,三极管的基极作为输入端,发射极作为输出端,集电极则起到控制信号的作用。

共基放大电路的工作原理是:当输入信号加在基极上时,三极管的发射极电流会发生相应的变化,进而改变集电极电流,实现对输入信号的放大。

由于共基放大电路具有较大的电流增益和较小的输出阻抗,因此常用于需要较大电流放大的场合,如射频放大电路。

3. 共集放大电路共集放大电路是三极管放大电路中的第三种形式,它的特点是输入信号与输出信号都是相对于集电极的。

在共集放大电路中,三极管的集电极作为输入端,发射极作为输出端,基极则起到控制信号的作用。

共集放大电路的工作原理是:当输入信号加在集电极上时,三极管的发射极电流会发生相应的变化,进而改变集电极电流,实现对输入信号的放大。

由于共集放大电路具有较小的电压增益和较大的输入阻抗,因此常用于需要较小信号放大的场合,如电压跟随器。

三极管的三种放大电路各有其特点和应用场合,合理选择和设计放大电路对于实现信号的有效放大至关重要。

在实际应用中,需要根据具体的要求和条件来选择合适的放大电路,并进行相应的电路设计和优化。

三种基本组态放大电路

三种基本组态放大电路
输出电阻
共集放大电路的输出电阻较小,适用于需要输出阻抗较低的场合;共射和共基放大电路的 输出电阻较大。
应用场景比较
共射放大电路
广泛应用于信号的放大和处理, 如音频信号、传感器信号等。
共基放大电路
常用于宽频带放大和高频信号放大, 如高频振荡器、射频信号放大等。
共集放大电路
适用于信号的跟随、缓冲和驱动, 如运放的前置级、功率驱动等。
输出信号通过集电极电阻产生 电压放大,输出电压。
特点分析
高输入阻抗
由于输入级是共基极组态,输入阻抗 很高,因此对信号源的负载效应较小。
低输出阻抗
由于输出级是共集电极组态,输出阻 抗很低,因此具有较强的带载能力。
电压放大倍数接近1
由于共集电极组态的电压放大倍数接 近1,因此电路的电压放大倍数较低。
稳定性较好
输入电阻适中,输出电 阻较大。
适用于电压放大和功率 放大。
02
共基组态放大电路
电路组成
输入级
由基极和发射极组成,通 常采用NPN型三极管。
输出级
由集电极和发射极组成, 集电极通过电阻与电源相 连。
反馈电路
通常包含电阻和电容元件, 用于调整放大器的性能。
工作原理
01
输入信号通过基极进入三极管, 在三极管内部进行放大,放大后 的信号通过集电极和发射极输出 。
由于共集电极组态的输入和输出回路 相互隔离,因此电路的稳定性较好。
04
三种基本组态放大Biblioteka 路的 比较性能比较电压放大倍数
共射放大电路具有较高的电压放大倍数,适用于对信号进行大幅度放大;共基放大电路的 电压放大倍数适中;共集放大电路的电压放大倍数较低,通常用于信号的跟随和缓冲。

三极管基本放大电路的三种组态

三极管基本放大电路的三种组态

三极管基本放大电路的三种组态Prepared on 24 November 2020除去信号的输入、输出端。

另一端就是共极三极管基本放大电路的三种组态组态一:共射电路组态二:共集电极电路共集电极组态基本放大电路如图所示。

(1)直流分析(2)交流分析放大倍数/输入电阻/输出电阻组态三:共基极放大电路共基组态放大电路如图交流、直流通路微变等效电路共基极组态基本放大电路的微变等效电路性能指标三种组态电路比较放大电路的三种基本组态2.6.1共集电极放大电路上图(a)是一个共集组态的单管放大电路,由上图(b)的等效电路可以看出,输入信号与输出信号的公共端是三极管的集电极,所以属于共集组态。

又由于输出信号从发射极引出,因此这种电路也称为射极输出器。

下面对共集电极放大电路进行静态和动态分析。

一、静态工作点根据上图(a)电路的基极回路可求得静态基极电流为二、电流放大倍数由上图(b)的等效电路可知三、电压放大倍数由上图(a)可得Re’=Re//RL由式(2.6.4)和(2.6.5)可知,共集电极放大电路的电流放大倍数大于1,但电压放大倍数恒小于1,而接近于1,且输出电压与输入电压同相,所以又称为射极跟随器。

四、输入电阻由图2.6.1(b)可得Ri=rbe+(1+β)Re’由上式可见,射极输出器的输入电阻等于rbe和(1+β)R、e相串连,因此输入电阻大大提高了。

由上式可见,发射极回路中的电阻R、e折合到基极回路,需乘(1+β)倍。

五、输出电阻在上图(b)中,当输出端外加电压U。

,而US=0时,如暂不考虑Re的作用,可得下图。

由图可得由上式可知,射极输出器的输出电阻等于基极回路的总电阻()除以(1+β),因此输出电阻很低,故带负载能力比较强。

由上式也可见,基极回路的电阻折合到发射极,需除以(1+β)。

2.6.2共基极放大电路上图(a)是共基极放大电路的原理性电路图。

由图可见,发射极电源VEE的极性保证三极管的发射结正向偏置,集电极电源VCC的极性保证集电结反向偏置,从而可以使三极管工作在放大区,因输入信号与输出信号的公共端是基极,因此属于共基组态。

放大电路组成及三种组态

放大电路组成及三种组态
典型放Байду номын сангаас电路结构特点 三种组态放大器电路
基本放大器的组成原则

基本放大器通常是指由一个晶体管或场效应管构成的单级放大器。
放大器条件:
1.要有控制元件:晶体管或场效应管;
2.要有电源--提供能量; 3.偏置在放大区; 4.待放大信号一定加在发射结(或栅源结),不可加到集电极(或漏极);
iC iE I S (e
信号从基极输入, 从发射极输出, ------共集电极
信号从发射极输入, 从集电极输出, ------共基极
第二章
以用途最为广泛的阻容耦合共发射极放大器为例:
▲ 管子--核心控制元件; ▲ RB--偏置电阻, 保证发射结正偏,(放大区); ▲ UCC---能源, 同时保证集电结反偏, 管子工 作在放大区; ▲ RC---集电极负载电阻, 将变化电流转变为 变化电压;
u u u i i i u i (R // R ) u
C
2 1000 10 10
晶体管放大器电路结构及放大原理
u BE UT
1) I S e
u BE UT
5.信号可从集电极或发射极输出,不可从基极(或栅极)输出; 6.要有一定的负载(RC或RE), 将变化电流转为变化电压。
第二章 根据输入、输出回路公共端所接的电极不同,实际有共发射极、 共集电极和共基极三种基本(组态)放大器。
信号从基极输入, 从集电极输出, ------共发射极
RB
C1 RS +
RC
C2 RL
+ UO
UCC
Us
+ Ui
-
-
控制
▲ 信号源通过耦合电容C1输入到管子基极; ▲ 放大了的信号又通过耦合电容C2输出到负载RL;

实验5三种基本组态晶体管放大电路

实验5三种基本组态晶体管放大电路

课程编号实验项目序号本科学生实验卡和实验报告信息科学与工程学院通信工程专业2015级1班课程名称:电子线路实验项目:三种基本组态晶体管放大电路2017——2018学年第一学期学号:201508030107 姓名:毛耀升专业年级班级:通信工程1501班四合院102 实验室组别:无实验日期:2017年12 月26日图5.1 工作点稳定的共发射极放大电路2、打开仿真开关,用示波器观察电路的输入波形和输出波形。

单击示波器上Expand按钮放大屏幕,测量输出波形幅值,计算电压放大倍数。

根据输入端电流表的读数计算输入电阻;3、利用L键拨动负载电阻处并关,将负载电阻开路,适当调整示波器A通道参数,再测量输出波形幅值,然后用下列公式计算输出电阻Ro;其中Vo是负载电阻开路时的输出电压;4、连接上负载电阻,再利用空格键拨动开关,使发射极旁路电容断开,适当调整示波器A通道参数,再测量、计算电压放大倍数。

并说明旁路电容的作用。

(二)共集电极放大电路1、建立共集电极放大电路如图5.2所示。

NPN型晶体管取理想模式,电流放大系数设置为50,用信号发生器产生频率为lkHz、幅值为10mV的正弦信号,输入端电流表设置为交流模式;图5.2 工作点稳定的共集电极放大电路2、打开仿真开关,用示波器观察电路的输入波形和输出波形。

单击示波器上Expand按钮放大屏幕,测量输出波形幅值,计算电压放大倍数。

根据输入端电流表的读数计算输入电阻;3、仿照5.3.1中的步骤3求电路输出电阻。

(三)共基极放大电路1、建立共基极放大电路,如图5.3所示。

NPN型晶体管取理想模式,电流放大系数设置为50。

用信号发生器产生频率为lkHz、幅值为10mV的正弦信号,输入端电流表;图5.3 工作点稳定的共基极放大电路2、打开仿真开关,用示波器观察电路的输入波形和输出波形。

单击示波器上Expand按钮放大屏幕,测量输出波形幅值,计算电压放大倍数。

根据输入端电流表的读数计算输入电阻;3、仿照5.3.1步骤3求电路输出电阻。

三种放大电路结构

三种放大电路结构

电压跟随器作用及应用场景
电压跟随器作用
电压跟随器是一种特殊的共集放大电路,其主要作用是隔离前后级电路,减小输出阻抗,提高电路的 带负载能力。
应用场景
电压跟随器广泛应用于各种需要缓冲或隔离的电路中,如音频放大器、数据采集系统、电源电路等。
输入电阻、输出电阻和带宽特性
输入电阻
带宽特性
共集放大电路的输入电阻较高,可以 减小信号源内阻对电路的影响,提高 电路的抗干扰能力。
带宽要求
明确信号频率范围,确保放大 电路在该范围内具有稳定的增 益。
失真要求
规定输出信号的最大失真度, 以保证信号质量。
噪声要求
确定放大电路所需噪声水平, 以满足系统整体噪声指标。
选择合适拓扑结构和元器件类型
拓扑结构
根据设计需求选择共射、共基或共集电极等放大 电路拓扑结构。
元器件类型
选用合适的晶体管、场效应管、运算放大器等元 器件,以满足性能指标要求。
电源电压与极性检查
确保电路元件、连接方式和参数与设计图 一致。
确认电源电压符合设计要求,极性正确无 误。
元器件筛选与检测
仪器仪表校准
对使用的元器件进行筛选,确保其性能参 数符合要求;对于关键元器件,需进行详 细的性能检测。
对所使用的信号源、示波器、万用表等仪器 仪表进行校准,确保其测量准确。
信号源、示波器等仪器使用方法
失真度
在正常工作条件下,三种放大电路结构的失 真度均较低。然而,在极端条件下(如输入 信号过大、电源电压不稳定等),共射放大 电路可能出现较严重的失真现象;共集和共
基放大电路相对较为稳定。
应用场景选择建议
01
共射放大电路
适用于需要高电压放大倍数、较宽频率响应范围以及对失真度要求不高

放大电路的三种基本组态

放大电路的三种基本组态

放大电路的三种基本组态(共基、共射、共集)
2010-07-01 13:21
一、判断方法
方法一:共集组态是基极电流对射极电流的控制,以集电极为公共端;共基组态是射极电流对集电极电流的控制,以基极为公共端;共射组态是集电极电流对基极电流的控制,以射极为公共端;
方法二:前提,地端连接基极与射极。

从输出端看,若输出是取集电极和射极(与地相接的一端,或者可看着与地)之间,则为共射;若输出取在射极与地之间(脑海可近似认为与基极相接),则为共集电极;剩下的一种即为共基组态。

组态显现为没连接的那极,如图一,射极没连入输出,显现为共射;图二,集电极没连入输出,显现为共集电极(个人方法)
二、三种组态的小结
共基:输入与输出电压相位同向,电压增益为“+”,对电压有放大作用(放大倍数同共射),对电流
没有放大作用,主要用于高频电压的放大,多用于输出阻抗和电压增益高的小信号电路,即恒流源电
路,宽带放大电路,输入电阻最小。

共集:输入与输出电压相位同向,电压增益为“+”,对电流有放大做用,对电压没有放大作用,共集
放大电路又称电压跟随器/射极输出器/隔离器,放在电路首级,提高输入电阻,放在末级,降低输
出电阻,提高带负载能力,放在中间,可以起到电路的阻抗变换作用,这一级成为缓冲级或隔离级,输
出电阻最低。

共射:输入电压与输出电压相位相反,对电压电流都有放大作用,增益为“—”,输入电
阻比较适中,输出电阻较大,多用于中间级,频带较窄,多用于低频放大电路。

1、怎么判断三种组态
2、三种组态的应用及参数分析。

模拟电路第二章_基本放大电路 (1)

模拟电路第二章_基本放大电路 (1)

第2章放大电路基础2.1 教学要求1、掌握放大电路的组成原理,熟练掌握放大电路直流通路、交流通路及交流等效电路的画法并能熟练判断放大电路的组成是否合理。

2、熟悉理想情况下放大器的四种模型,并掌握增益、输入电阻、输出电阻等各项性能指标的基本概念。

3、掌握放大电路的分析方法,特别是微变等效电路分析法。

4、掌握放大电路三种基本组态(CE、CC、CB 及CS、CD、CG)的性能特点。

5、了解放大电路的级间耦合方式,熟悉多级放大电路的分析方法。

2.2 基本概念和内容要点2.2.1 放大电路的基本概念1、放大电路的组成原理无论何种类型的放大电路,均由三大部分组成,如图2.1所示。

第一部分是具有放大作用的半导体器件,如三极管、场效应管,它是整个电路的核心。

第二部分是直流偏置电路,其作用是保证半导体器件工作在放大状态。

第三部分是耦合电路,其作用是将输入信号源和输出负载分别连接到放大管的输入端和输出端。

下面简述偏置电路和耦合电路的特点。

(1)偏置电路①在分立元件电路中,常用的偏置方式有分压偏置电路、自偏置电路等。

其中,分压偏置电路适用于任何类型的放大器件;而自偏置电路只适合于耗尽型场效应管(如JFET及DMOS管)。

② 在集成电路中,广泛采用电流源偏置方式。

偏置电路除了为放大管提供合适的静态点(Q )之外,还应具有稳定Q 点的作用。

(2)耦合方式为了保证信号不失真地放大,放大器与信号源、放大器与负载、以及放大器的级与级之间的耦合方式必须保证交流信号正常传输,且尽量减小有用信号在传输过程中的损失。

实际电路有两种耦合方式。

① 电容耦合,变压器耦合这种耦合方式具有隔直流的作用,故各级Q 点相互独立,互不影响,但不易集成,因此常用于分立元件放大器中。

② 直接耦合这是集成电路中广泛采用的一种耦合方式。

这种耦合方式存在的两个主要问题是电平配置问题和零点漂移问题。

解决电平配置问题的主要方法是加电平位移电路;解决零点漂移问题的主要措施是采用低温漂的差分放大电路。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【教学后记】
充分用动画激发学生对这门课程的兴趣,这两节课主要介绍了三种放大电路的组成部分、它的参数计算和作为学生应该注意的一些细节。
【作业布置】
随堂练习
2、共集放大电路的组成及静态和动态分析
1)共集放大电路的组成
共集放大电路亦称为射极输出器如P92图2.23(a)所示,为了保证晶体管工作在放大区,在晶体管的输入回路, 、 与VCC共同确定合适的静态基极电流;晶体管输出回路中,电源VCC,提供集电极电流和输出电流,并与 配合提供合适的管压降UCE。
2)共集放大电路的静态分析
3、共基放大电路的静态和动态分析
1)
共基放大电路的静态分析
与共射电路静态分析方法基本相同。
(1)列放大电路输入回路电压方程可求得 ;
(2)根据放大区三极管电流方程 可求得 ;
(3)列放大电路输出回路电压方程可求得 ;
2)共基放大电路的动态分析
共基放大电路的动态分析方法与共射电路基本相同,只是由于共基放大电路的“交流地”是基极,一般习惯将“地”画在下方,所以微变等效电路的画法略有不同。如P94图2.24所示。
电子技术课程教学设计
授课题目
三种基本放大电路
课时
2
授课时间
第2 周星期一 第 56 节; 电梯5141 班; 202 室。
授课方式
讲授
所属专业
五1、三种基本放大电路的性能指标计算;
2、三种接法放大电路的特点及应用场合;
教学重点
1、共集和共基放大电路微变等效电路的画法;
2、共集和共基放大电路微变等效电路的输入、输出电阻计算;
4、三种接法的比较
共射放大电路既有电压放大作用又有电流放大作用,输入电阻居三种电路之中,输出电阻较大,适用于一般放大。共集放大电路只有电流放大作用而没有电压放大作用,因其输入电阻高而常做为多级放大电路的输入级,因其输出电阻低而常做为多级放大电路的输出级,因其放大倍数接近于1而用于信号的跟随。共基放大电路只有电压放大作用而没有电流放大作用,输入电阻小,高频特性好,适用于宽频带放大电路。
教学难点
放大电路在日常生活中的应用举例,掌握其定义。
教学方法
与手段
图片展示、讲授
教具用具
参考资料
多媒体、教材、图片






【新课导入】
放大电路举例
【新课讲授】






1、三极管放大电路的基本接法
三极管放大电路的基本接法亦称为基本组态,有共射(包括工作点稳定电路)、共基和共集三种。共射放大电路以发射极为公共端,通过iB对ic的控制作用实现功率放大。共集放大电路以集电极为公共端,通过iB对iE的控制作用实现功率放大。共基放大电路以基极为公共端,通过iE对iB的控制作用实现功率放大。
与共射电路静态分析方法基本相同。
(1)列放大电路输入方程可求得 ;(2)根据放大区三极管电流方程 可求得 ;(3)列放大电路输出方程可求得 ;
3)共集放大电路的动态分析
共集放大电路的动态分析方法与共射电路基本相同,只是由于共集放大电路的“交流地”是集电极,一般习惯将“地”画在下方,所以微变等效电路的画法略有不同,如P92图2.23(d)所示。
相关文档
最新文档