2020年高考文科数学原创专题卷:《数列》

合集下载

2020高考数学全国试题分类解析(数列部分)

2020高考数学全国试题分类解析(数列部分)

1. (广东卷)已知数列{}n x 满足122x x =,()1212n n n x x x --=+,3,4,n =….若lim 2n n x →∞=,则(B)(A)32(B)3(C)4(D)52. (福建卷)3.已知等差数列}{n a 中,12497,1,16a a a a 则==+的值是( A )A .15B .30C .31D .643. (湖南卷)已知数列}{n a 满足)(133,0*11N n a a a a n n n ∈+-==+,则20a =(B ) A .0B .3-C .3D .23 4. (湖南卷)已知数列{log 2(a n -1)}(n∈N *)为等差数列,且a 1=3,a 2=5,则nn n a a a a a a -++-+-+∞→12312lim 111(= (C )A .2B .23C .1D .215. (湖南卷)设f 0(x )=sinx ,f 1(x )=f 0′(x ),f 2(x )=f 1′(x ),…,f n +1(x )=f n ′(x ),n ∈N ,则f 2005(x )=(C ) A .sinxB .-sinxC .cos xD .-cosx6. (江苏卷)在各项都为正数的等比数列{a n }中,首项a 1=3 ,前三项和为21,则a 3+ a 4+ a 5=(C )( A ) 33 ( B ) 72 ( C ) 84 ( D )1897. (全国卷II) 如果数列{}n a 是等差数列,则(B ) (A)1845a a a a +<+ (B)1845a a a a +=+ (C) 1845a a a a +>+ (D) 1845a a a a =8. (全国卷II) 11如果128,,,a a a 为各项都大于零的等差数列,公差0d ≠,则(B) (A)1845a a a a >(B)1845a a a a <(C)1845a a a a +>+ (D) 1845a a a a =9. (山东卷){}n a 是首项1a =1,公差为d =3的等差数列,如果n a =2005,则序号n 等于(C )(A )667 (B )668 (C )669 (D )67010. (上海)16.用n 个不同的实数a 1,a 2,┄a n 可得n!个不同的排列,每个排列为一行写成 1 2 3一个n!行的数阵.对第i 行a i1,a i2,┄a in ,记b i =- a i1+2a i2-3 a i3+┄+(-1)n na in , 1 3 2i=1,2,3, ┄,n!.用1,2,3可你数阵如右,由于此数阵中每一列各数之和都 2 1 3是12,所以,b 1+b 2+┄+b 6=-12+2⨯12-3⨯12=-24.那么,在用1,2,3,4,5形成 2 3 1 的数阵中,b 1+b 2+┄+b 120等于3 1 23 2 1[答]( C )(A)-3600 (B) 1800 (C)-1080 (D)-72011. (浙江卷)limn →∞2123nn ++++=( C )(A) 2 (B) 4 (C)21(D)0 12. (重庆卷) 有一塔形几何体由若干个正方体构成,构成方式如图所示,上层正方体下底面的四个顶点是下层正方体上底面各边的中点。

2020高考数学《数列》

2020高考数学《数列》

数列考试内容:数列.等差数列及其通项公式.等差数列前n项和公式.等比数列及其通项公式.等比数列前n项和公式.考试要求:(1)理解数列的概念,了解数列通项公式的意义了解递推公式是给出数列的一种方法,并能根据递推公式写出数列的前几项.(2)理解等差数列的概念,掌握等差数列的通项公式与前n项和公式,并能解决简单的实际问题.(3)理解等比数列的概念,掌握等比数列的通项公式与前n项和公式,井能解决简单的实际问题.§03. 数列知识要点1. ⑴等差、等比数列:⑵看数列是不是等差数列有以下三种方法: ①),2(1为常数d n d a a n n ≥=-- ②211-++=n n n a a a (2≥n ) ③b kn a n +=(k n ,为常数).⑶看数列是不是等比数列有以下四种方法: ①)0,,2(1≠≥=-且为常数q n q a a n n②112-+⋅=n n na a a (2≥n ,011≠-+n n n a a a )① 注①:i. acb =,是a 、b 、c 成等比的双非条件,即ac b =、b 、c 等比数列.ii. ac b =(ac >0)→为a 、b 、c 等比数列的充分不必要. iii. ac b ±=→为a 、b 、c 等比数列的必要不充分. iv. ac b ±=且0φac →为a 、b 、c 等比数列的充要.注意:任意两数a 、c 不一定有等比中项,除非有ac >0,则等比中项一定有两个. ③n n cq a =(q c ,为非零常数).④正数列{n a }成等比的充要条件是数列{n x a log }(1φx )成等比数列.⑷数列{n a }的前n 项和n S 与通项n a 的关系:⎩⎨⎧≥-===-)2()1(111n s s n a s a n n n[注]: ①()()d a nd d n a a n -+=-+=111(d 可为零也可不为零→为等差数列充要条件(即常数列也是等差数列)→若d 不为0,则是等差数列充分条件). ②等差{n a }前n 项和n d a n d Bn An S n ⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛=+=22122 →2d可以为零也可不为零→为等差的充要条件→若d 为零,则是等差数列的充分条件;若d 不为零,则是等差数列的充分条件. ③非零..常数列既可为等比数列,也可为等差数列.(不是非零,即不可能有等比数列) 2. ①等差数列依次每k 项的和仍成等差数列,其公差为原公差的k 2倍...,,232k k k k k S S S S S --;②若等差数列的项数为2()+∈Nn n ,则,奇偶nd S S =-1+=n n a a S S 偶奇;③若等差数列的项数为()+∈-N n n 12,则()n n a n S 1212-=-,且n a S S =-偶奇,1-=n n S S 偶奇 得到所求项数到代入12-⇒n n . 3. 常用公式:①1+2+3 …+n =()21+n n ②()()61213212222++=+++n n n n Λ③()2213213333⎥⎦⎤⎢⎣⎡+=++n n n Λ[注]:熟悉常用通项:9,99,999,…110-=⇒n n a ; 5,55,555,…()11095-=⇒nn a . 4. 等比数列的前n 项和公式的常见应用题:⑴生产部门中有增长率的总产量问题. 例如,第一年产量为a ,年增长率为r ,则每年的产量成等比数列,公比为r +1. 其中第n 年产量为1)1(-+n r a ,且过n 年后总产量为:.)1(1])1([)1(...)1()1(12r r a a r a r a r a a n n +-+-=+++++++-⑵银行部门中按复利计算问题. 例如:一年中每月初到银行存a 元,利息为r ,每月利息按复利计算,则每月的a 元过n 个月后便成为n r a )1(+元. 因此,第二年年初可存款:)1(...)1()1()1(101112r a r a r a r a ++++++++=)1(1])1(1)[1(12r r r a +-+-+.⑶分期付款应用题:a 为分期付款方式贷款为a 元;m 为m 个月将款全部付清;r 为年利率.()()()()()()()()1111111 (1112)1-++=⇒-+=+⇒++++++=+--m m m mm m mr r ar x r r x r a x r x r x r x r a5. 数列常见的几种形式:⑴n n n qa pa a +=++12(p 、q 为二阶常数)→用特证根方法求解.具体步骤:①写出特征方程q Px x +=2(2x 对应2+n a ,x 对应1+n a ),并设二根21,x x ②若21x x ≠可设n n n x c x c a 2211.+=,若21x x =可设n n x n c c a 121)(+=;③由初始值21,a a 确定21,c c .⑵r Pa a n n +=-1(P 、r 为常数)→用①转化等差,等比数列;②逐项选代;③消去常数n 转化为n n n qa Pa a +=++12的形式,再用特征根方法求n a ;④121-+=n n P c c a (公式法),21,c c 由21,a a 确定.①转化等差,等比:1)(11-=⇒-+=⇒+=+++P rx x Px Pa a x a P x a n n n n . ②选代法:=++=+=--r r Pa P r Pa a n n n )(21x P x a P r P P r a a n n n -+=---+=⇒--1111)(1)1(Λ r r P a P n n +++⋅+=--Pr 211Λ.③用特征方程求解:⇒⎭⎬⎫+=+=-+相减,r Pa a r Pa a n n n n 111+n a 1111-+--+=⇒-=-n n n n n n Pa a P a Pa Pa a )(. ④由选代法推导结果:Pr P P r a c P c a P r a c P r c n n n -+-+=+=-+=-=--111111112121)(,,. 6. 几种常见的数列的思想方法:⑴等差数列的前n 项和为n S ,在0πd 时,有最大值. 如何确定使n S 取最大值时的n 值,有两种方法:一是求使0,01π+≥n n a a ,成立的n 值;二是由n da n d S n )2(212-+=利用二次函数的性质求n 的值.⑵如果数列可以看作是一个等差数列与一个等比数列的对应项乘积,求此数列前n 项和可依照等比数列前n 项和的推倒导方法:错位相减求和. 例如:, (2)1)12,...(413,211n n -⋅⑶两个等差数列的相同项亦组成一个新的等差数列,此等差数列的首项就是原两个数列的第一个相同项,公差是两个数列公差21d d ,的最小公倍数.2. 判断和证明数列是等差(等比)数列常有三种方法:(1)定义法:对于n ≥2的任意自然数,验证)(11---n nn n a a a a 为同一常数。

2020衡水名师文科数学专题卷:专题九《数列》

2020衡水名师文科数学专题卷:专题九《数列》

2020衡水名师原创文科数学专题卷专题九 数列考点24:数列的概念与简单表示法(1,2题,13题,17题) 考点25:等差数列及其前n 项和(3-6题,18-21题) 考点26:等比数列及其前n 项和(7,8题,14题,18-21题) 考点27:数列求和(9,10题,18-21题)考点28:数列的综合问题及其应用(11,12题,15,16题,22题)考试时间:120分钟 满分:150分说明:请将选择题正确答案填写在答题卡上,主观题写在答题纸上第I 卷(选择题)一、选择题(本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是最符合题目要求的。

) 1.考点24 易已知数列,L LA. 第10项B. 第11项C. 第12项D. 第21项 2. 考点24 易已知123,6a a ==,且21n n n a a a ++=-,则2016a 等于( ) A.3 B .-3 C .6 D .-63. 考点25 易在等差数列{}n a 中,已知4816a a +=,则210a a +=( ) A .12 B .16 C .20 D .244.考点25 易设数列{}n a 为等差数列,若45076543=++++a a a a a ,则=+82a a ( ) A. 180 B. 90 C. 210 D. 100 5. 考点25 中难已知首项为正数的等差数列{}n a 满足:20052006200520060,.0a a a a +><.则使0n S >成立的最大自然数n 是 ( )A. 4009B.4010C. 4011D.4012 6. 考点25 中难正项等比数列{}n a 中, 4532a a ⋅= ,则212228log log log a a a +++的值为( )A.10B.20C.36D.128 7.考点26 易已知{}n a 是等比数列,且0n a >,243546225a a a a a a ++=,那么35a a += ( ) A.10 B.15 C.5 D.6 8. 考点26 中难已知等比数列{}n a 的首项为1,且64312()a a a a +=+,则1237a a a a =( )A.16B.64C.128D.2569. 考点27 中难设n S 为数列{}n a 的前n 项和,已知1111,22n n nn n a a a ++==+,则100S = ( ) A. 1004922- B. 994922-C. 1005122-D. 995122-10.点27 难若数列{}n a 的通项公式为2n n na =,则前n 项和为( ) A. 1122n n S -=- B. B. 11222n n n nS -=--C. C. 112n n S n ⎛⎫=- ⎪⎝⎭D. D. 11222n n nn S -=-+ 11. 考点28 难已知等差数列{}n a 的前n 项和为n S ,{}n b 是递增的等比数列,其前n 项和为n T ,若23233217,4104,n a b T S S n n -+==-+=,则5b =( )A .64B .16C .12D .1412. 考点28 难在公差不为零的等差数列{}n a 中,137,,a a a 依次成等比数列,前7项和为35,则数列{}n a 的通项n a 等于( )A.n B .1n + C .21n - D .21n +第Ⅱ卷(非选择题)二.填空题(每题5分,共20分) 13. 考点24 易已知数列前n 项和2*231,N n S n n n =-+∈,则它的通项公式为__________.14.考点26 易已知等比数列{}n a 的各项均为正数,公比1q ≠,设0.550.571(log log )2P a a =+,390.5log 2a a Q +=,P 与Q 的大小关系是 . 15. 考点28 中难已知等差数列{}n a 的公差0d ≠且139,,a a a 成等比数列,则2910341a a a a a a ++=++__________16.考点28 难设数列{}n a 是以2为首项,1为公差的等差数列,{}n b 是以1为首项,2为公比的等比数列,则1210b b b a a a +++=__________.三.解答题(共70分)17.(本小题满分10分) 考点24 易已知数列{}n a 的通项公式为2299291n n n a n -+=-. 1.求这个数列的第10项. 2.98101是不是该数列中的项,为什么?3.求证:数列中的各项都在区间(0,1)内.4.在区间12(,)33内有没有数列中的项?若有,有几项?若没有,请说明理由.18.(本小题满分12分)【来源】 考点25 考点26考点27易已知单调递增的等比数列{}n a 满足23428a a a ++=,且32a +是2a ,4a 的等差中项。

2020高考真题汇编8:数列(文)

2020高考真题汇编8:数列(文)
二、填空题
5.【2020年高考全国Ⅰ卷文数】数列 满足 ,前16项和为540,则 .
6.【2020年高考全国Ⅱ卷文数】记Sn为等差数列{an}的前n项和.若a1=−2,a2+a6=2,则S10=__________.
7.【2020年高考浙江】我国古代数学家杨辉,朱世杰等研究过高阶等差数列的求和问题,如数列 就是二阶等差数列.数列 的前3项和是_______.
由 可知 ,从而 ,与数列的单调性矛盾,假设不成立.
第二种情况:若 ,由①知存在实数 ,满足 ,由 的定义可知: ,
另一方面, ,由数列 单调性可知: ,
这与 的定义矛盾,假设不成立.
同理可证得数列中的项数恒为负数.
综上可得,数列中的项数同号.
其次,证明 :
利用性质②:取 ,此时 ,
由数列的单调性可知 ,
从而题中的结论得证,数列 为等比数列.
15.解析:(1)因为等差数列 是“λ~1”数列,则 ,即 ,
也即 ,此式对一切正整数n均成立.
若 ,则 恒成立,故 ,而 ,
这与 是等差数列矛盾.
所以 .(此时,任意首项为1的等差数列都是“1~1”数列)
(2)因为数列 是“ ”数列,
所以 ,即 .
因为 ,所以 ,则 .
等比数列 的前 项和公式为 ,
依题意 ,即 ,
通过对比系数可知 ,故 .
故答案为: .
9.答案:
解析:因为数列 是以1为首项,以2为公差的等差数列,
数列 是以1首项,以3为公差的等差数列,
所以这两个数列的公共项所构成的新数列 是以1为首项,以6为公差的等差数列,
所以 的前 项和为 ,
故答案为: .
10.解析:(1)设 的公比为 .由题设得 , .

数列—高考真题文科数学分项汇编(解析版)

数列—高考真题文科数学分项汇编(解析版)

当d 0时,a1 d,∴3d 2a1 d 2d a1 0即b4 2 b2b8 0,所以b4 b2b8 0,D不正确.
故选:D ..
2
【点睛】本题主要考查等差数列的性质应用,属于基础题.
5.【2019年高考全国 III卷文数】已知各项均为正数的等比数列an的前
则a3
4项和为 15,且a 3a3 4a1, 5
i
由 TTi ai 1i 7,i N可知数列Tn不存在最小项,
i1
由于a1 9,a2 7,a3 5,a4 3,a5 1,a6 1,
故数列Tn中的正项只有有限项:
T 2
63,T4
6315
945
.
T
故数列Tn中存在最大项,且最大项为
4.
故选:B.
【点睛】本题主要考查等差数列的通项公式,等差数列中项的符号问题,分类讨论的数学思想等知识,
a1 7 .
故答案为: 7 .
【点睛】本题考查数列的递推公式的应用,以及数列的并项求和,考查分类讨论思想和数学计算能力, 属于较难题.
12.【2020年高考浙江】我国古代数学家杨辉,朱世杰等研究过高阶等差数列的求和问题,如数列{n(n 1) } 2
就是二阶等差数列.数列{n(n 1)}(nN*)的前 2
3,nN*),
则数列an是等比数列.
10.【2020年高考全国Ⅱ卷文数】记Sn为等差数列{an}的前n项和.若a1=−2,a2+a6=2,则S10=__________.
【答案】 25
【解析】 an是等差数列,且a1 2,a2 a6 2 设an等差数列的公差d
根据等差数列通项公式:an a1 n1 d
因此
an
2
n1

2020届新高考高三数学试题分项汇编专题7 数列(原卷版+解析版)

2020届新高考高三数学试题分项汇编专题7 数列(原卷版+解析版)

(1)求an 的通项公式;
(2)设 bn 2an ,记 Tn 为数列 bn 的前 n 项和.若 Tm 124 ,求 m.
23.(2020 届山东省潍坊市高三模拟二)已知数列{an}的首项为 a1=1,且 an1 2(an 1)(n N * ) .
(Ⅰ)证明:数列{an+2}是等比数列,并求数列{an}的通项公式;
③数列 f an 是首项为 2,公差为 2 的等差数列的前 n 项和构成的数列.
2n1
(2)在(1)的条件下,当 k 2 时,设 anbn 4n2 1 ,求数列 bn 的前 n 项和 Tn .
26.(2020 届山东济宁市兖州区高三网络模拟考)在① a3 5,a2 a5 6b2 ;② b2 2,a3 a4 3b3 ;
bn
cn
,的前 n 项和 Tn .注:如果选择多个条件分别解答,按第一个解答计分.
1
2
3
nn
27.(2020·山东高三下学期开学)已知数列an 满足 2a1 5 2a2 5 2a3 5 … 2an 5 3 .
(1)求数列an 的通项公式;
1
1
1
(2)设数列
anan1
的前
n
项和为 Tn
数列, a2 a4 6 .
(1)求数列an 的通项 an ;
(2)设 bn an cos 2an 1 ,求数列bn 的前 2020 项的和 S2020 .
3
21. (2020 届山东省菏泽一中高三 2 月月考)设数列 an 的前 n 项和为 Sn ,已知 a1 1 , Sn1 2Sn 1, n N .
一、单选题 1.(2020 届山东省淄博市高三二模)“十二平均律” 是通用的音律体系,明代朱载堉最早用数学方法计算 出半音比例,为这个理论的发展做出了重要贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三

2020年高考文科数学一轮复习大题篇----数列

2020年高考文科数学一轮复习大题篇----数列

2020年高考文科数学一轮复习大题篇----数列题型一 等差数列、等比数列的交汇【例】记S n 为等比数列{a n }的前n 项和.已知S 2=2,S 3=-6.(1)求{a n }的通项公式;(2)求S n ,并判断S n +1,S n ,S n +2是否成等差数列.【解】 (1)设{a n }的公比为q .由题设可得⎩⎪⎨⎪⎧ a 11+q =2,a 11+q +q 2=-6.解得q =-2,a 1=-2.故{a n }的通项公式为a n =(-2)n .(2)由(1)可得S n =a 11-q n 1-q =-23+(-1)n 2n +13. 由于S n +2+S n +1=-43+(-1)n 2n +3-2n +23 =2⎣⎡⎦⎤-23+-1n 2n +13=2S n , 故S n +1,S n ,S n +2成等差数列.【思维升华】 等差与等比数列的基本量之间的关系,利用方程思想和通项公式、前n 项和公式求解.求解时,应“瞄准目标”,灵活应用数列的有关性质,简化运算过程.【训练】已知公差不为0的等差数列{a n }的前n 项和为S n ,S 1+1,S 3,S 4成等差数列,且a 1,a 2,a 5成等比数列.(1)求数列{a n }的通项公式;(2)若S 4,S 6,S n 成等比数列,求n 及此等比数列的公比.【解】 (1)设数列{a n }的公差为d ,由题意可知⎩⎪⎨⎪⎧ 2S 3=S 1+1+S 4,a 22=a 1a 5,d ≠0,整理得⎩⎪⎨⎪⎧ a 1=1,d =2a 1,即⎩⎪⎨⎪⎧a 1=1,d =2,∴a n =2n -1. (2)由(1)知a n =2n -1,∴S n =n 2,∴S 4=16,S 6=36,又S 4S n =S 26,∴n 2=36216=81,∴n =9,公比q =S 6S 4=94. 题型二 新数列问题【例】对于数列{x n },若对任意n ∈N +,都 有x n +2-x n +1>x n +1-x n 成立,则称数列{x n }为“增差数列”.设a n =t 3n +n 2-13n,若数列a 4,a 5,a 6,…,a n (n ≥4,n ∈N +)是“增差数列”,求实数t 的取值范围。

2020年全国各地高中数学真题分类汇编—数列(含答案)

2020年全国各地高中数学真题分类汇编—数列(含答案)

2020年全国各地⾼考真题分类汇编—数列1.(2020•浙江)已知等差数列{a n}的前n项和S n,公差d≠0,且≤1.记b1=S2,b n+1=S2n+2﹣S2n,n∈N*,下列等式不可能成⽴的是()A.2a4=a2+a6B.2b4=b2+b6C.a42=a2a8D.b42=b2b82.(2020•北京)在等差数列{a n}中,a1=﹣9,a5=﹣1.记T n=a1a2…a n(n=1,2,…),则数列{T n}()A.有最⼤项,有最⼩项B.有最⼤项,⽆最⼩项C.⽆最⼤项,有最⼩项D.⽆最⼤项,⽆最⼩项3.(2020•新课标Ⅰ)设{a n}是等⽐数列,且a1+a2+a3=1,a2+a3+a4=2,则a6+a7+a8=()A.12B.24C.30D.324.(2020•新课标Ⅱ)如图,将钢琴上的12个键依次记为a1,a2,…,a12.设1≤i<j<k≤12.若k﹣j=3且j﹣i=4,则a i,a j,a k为原位⼤三和弦;若k﹣j=4且j﹣i=3,则称a i,a j,a k 为原位⼩三和弦.⽤这12个键可以构成的原位⼤三和弦与原位⼩三和弦的个数之和为()A.5B.8C.10D.155.(2020•新课标Ⅱ)0﹣1周期序列在通信技术中有着重要应⽤.若序列a1a2…a n…满⾜a i∈{0,1}(i=1,2,…),且存在正整数m,使得a i+m=a i(i=1,2,…)成⽴,则称其为0﹣1周期序列,并称满⾜a i+m=a i(i=1,2…)的最⼩正整数m为这个序列的周期.对于周期为m的0﹣1序列a1a2…a n…,C(k)=a i a i+k(k=1,2,…,m﹣1)是描述其性质的重要指标,下列周期为5的0﹣1序列中,满⾜C(k)≤(k=1,2,3,4)的序列是()A.11010…B.11011…C.10001…D.11001…6.(2020•新课标Ⅱ)记S n为等⽐数列{a n}的前n项和.若a5﹣a3=12,a6﹣a4=24,则=()A.2n﹣1B.2﹣21﹣n C.2﹣2n﹣1D.21﹣n﹣17.(2020•新课标Ⅱ)数列{a n}中,a1=2,a m+n=a m a n.若a k+1+a k+2+…+a k+10=215﹣25,则k=()A.2B.3C.4D.58.(2020•新课标Ⅱ)北京天坛的圜丘坛为古代祭天的场所,分上、中、下三层.上层中⼼有⼀块圆形⽯板(称为天⼼⽯),环绕天⼼⽯砌9块扇⾯形⽯板构成第⼀环,向外每环依次增加9块.下⼀层的第⼀环⽐上⼀层的最后⼀环多9块,向外每环依次也增加9块.已知每层环数相同,且下层⽐中层多729块,则三层共有扇⾯形⽯板(不含天⼼⽯)()A.3699块B.3474块C.3402块D.3339块9.(2020•上海)已知数列{a n}是公差不为零的等差数列,且a1+a10=a9,则=.10.(2020•新课标Ⅱ)记S n为等差数列{a n}的前n项和.若a1=﹣2,a2+a6=2,则S10=.11.(2020•浙江)已知数列{a n}满⾜a n=,则S3=.12.(2020•海南)将数列{2n﹣1}与{3n﹣2}的公共项从⼩到⼤排列得到数列{a n},则{a n}的前n项和为.13.(2020•江苏)设{a n}是公差为d的等差数列,{b n}是公⽐为q的等⽐数列.已知数列{a n+b n}的前n项和S n=n2﹣n+2n﹣1(n∈N*),则d+q的值是.14.(2020•新课标Ⅰ)数列{a n}满⾜a n+2+(﹣1)n a n=3n﹣1,前16项和为540,则a1=.15.(2020•天津)已知{a n}为等差数列,{b n}为等⽐数列,a1=b1=1,a5=5(a4﹣a3),b5=4(b4﹣b3).(Ⅰ)求{a n}和{b n}的通项公式;(Ⅱ)记{a n}的前n项和为S n,求证:S n S n+2<S n+12(n∈N*);(Ⅲ)对任意的正整数n,设c n=求数列{c n}的前2n项和.16.(2020•海南)已知公⽐⼤于1的等⽐数列{a n}满⾜a2+a4=20,a3=8.(1)求{a n}的通项公式;(2)求a1a2﹣a2a3+…+(﹣1)n﹣1a n a n+1.17.(2020•江苏)已知数列{a n}(n∈N*)的⾸项a1=1,前n项和为S n.设λ和k为常数,若对⼀切正整数n,均有S n+1﹣S n=λa n+1成⽴,则称此数列为“λ﹣k”数列.(1)若等差数列{a n}是“λ﹣1”数列,求λ的值;(2)若数列{a n}是“﹣2”数列,且a n>0,求数列{a n}的通项公式;(3)对于给定的λ,是否存在三个不同的数列{a n}为“λ﹣3”数列,且a n≥0?若存在,求出λ的取值范围;若不存在,说明理由.18.(2020•新课标Ⅰ)设{a n}是公⽐不为1的等⽐数列,a1为a2,a3的等差中项.(1)求{a n}的公⽐;(2)若a1=1,求数列{na n}的前n项和.19.(2020•⼭东)已知公⽐⼤于1的等⽐数列{a n}满⾜a2+a4=20,a3=8.(1)求{a n}的通项公式;(2)记b m为{a n}在区间(0,m](m∈N*)中的项的个数,求数列{b m}的前100项和S100.20.(2020•新课标Ⅲ)设等⽐数列{a n}满⾜a1+a2=4,a3﹣a1=8.(1)求{a n}的通项公式;(2)记S n为数列{log3a n}的前n项和.若S m+S m+1═S m+3,求m.21.(2020•浙江)已知数列{a n},{b n},{c n}满⾜a1=b1=c1=1,c n=a n+1﹣a n,c n+1=c n,(n∈N*).(Ⅰ)若{b n}为等⽐数列,公⽐q>0,且b1+b2=6b3,求q的值及数列{a n}的通项公式;(Ⅱ)若{b n}为等差数列,公差d>0,证明:c1+c2+c3+…+c n<1+,n∈N*.22.(2020•上海)已知各项均为正数的数列{a n},其前n项和为S n,a1=1.(1)若数列{a n}为等差数列,S10=70,求数列{a n}的通项公式;(2)若数列{a n}为等⽐数列,a4=,求满⾜S n>100a n时n的最⼩值.参考答案与试题解析⼀.选择题(共8⼩题)1.(2020•浙江)已知等差数列{a n}的前n项和S n,公差d≠0,且≤1.记b1=S2,b n+1=S2n+2﹣S2n,n∈N*,下列等式不可能成⽴的是()A.2a4=a2+a6B.2b4=b2+b6C.a42=a2a8D.b42=b2b8【解答】解:在等差数列{a n}中,a n=a1+(n﹣1)d,∴a2=a1+d,a4=a1+3d,a8=a1+7d,b n+1=S2n+2﹣S2n,∴b2=S4﹣S2=a3+a4,b4=S8﹣S6=a7+a8,b6=S12﹣S10=a11+a12,b8=S16﹣S14=a15+a16,A.2a4=a2+a6,根据等差数列的性质可得A正确,B.若2b4=b2+b6,则2(a7+a8)=a3+a4+a11+a12=(a3+a12)+(a4+a11),成⽴,B正确,C.若a42=a2a8,则(a1+3d)2=(a1+d)(a1+7d),即a12+6a1d+9d2=a12+8a1d+7d2,得a1d=d2,∵d≠0,∴a1=d,符合≤1,C正确;D.若b42=b2b8,则(a7+a8)2=(a3+a4)(a15+a16),即4a12+52a1d+169d2=4a12+68a1d+145d2,得16a1d=24d2,∵d≠0,∴2a1=3d,不符合≤1,D错误;故选:D.2.(2020•北京)在等差数列{a n}中,a1=﹣9,a5=﹣1.记T n=a1a2…a n(n=1,2,…),则数列{T n}()A.有最⼤项,有最⼩项B.有最⼤项,⽆最⼩项C.⽆最⼤项,有最⼩项D.⽆最⼤项,⽆最⼩项【解答】解:设等差数列{a n}的公差为d,由a1=﹣9,a5=﹣1,得d=,∴a n=﹣9+2(n﹣1)=2n﹣11.由a n=2n﹣11=0,得n=,⽽n∈N*,可知数列{a n}是单调递增数列,且前5项为负值,⾃第6项开始为正值.可知T1=﹣9<0,T2=63>0,T3=﹣315<0,T4=945>0为最⼤项,⾃T5起均⼩于0,且逐渐减⼩.∴数列{T n}有最⼤项,⽆最⼩项.故选:B.3.(2020•新课标Ⅰ)设{a n}是等⽐数列,且a1+a2+a3=1,a2+a3+a4=2,则a6+a7+a8=()A.12B.24C.30D.32【解答】解:{a n}是等⽐数列,且a1+a2+a3=1,则a2+a3+a4=q(a1+a2+a3),即q=2,∴a6+a7+a8=q5(a1+a2+a3)=25×1=32,故选:D.4.(2020•新课标Ⅱ)如图,将钢琴上的12个键依次记为a1,a2,…,a12.设1≤i<j<k≤12.若k﹣j=3且j﹣i=4,则a i,a j,a k为原位⼤三和弦;若k﹣j=4且j﹣i=3,则称a i,a j,a k 为原位⼩三和弦.⽤这12个键可以构成的原位⼤三和弦与原位⼩三和弦的个数之和为()A.5B.8C.10D.15【解答】解:若k﹣j=3且j﹣i=4,则a i,a j,a k为原位⼤三和弦,即有i=1,j=5,k=8;i=2,j=6,k=9;i=3,j=7,k=10;i=4,j=8,k=11;i=5,j =9,k=12,共5个;若k﹣j=4且j﹣i=3,则a i,a j,a k为原位⼩三和弦,可得i=1,j=4,k=8;i=2,j=5,k=9;i=3,j=6,k=10;i=4,j=7,k=11;i=5,j =8,k=12,共5个,总计10个.故选:C.5.(2020•新课标Ⅱ)0﹣1周期序列在通信技术中有着重要应⽤.若序列a1a2…a n…满⾜a i∈{0,1}(i=1,2,…),且存在正整数m,使得a i+m=a i(i=1,2,…)成⽴,则称其为0﹣1周期序列,并称满⾜a i+m=a i(i=1,2…)的最⼩正整数m为这个序列的周期.对于周期为m的0﹣1序列a1a2…a n…,C(k)=a i a i+k(k=1,2,…,m﹣1)是描述其性质的重要指标,下列周期为5的0﹣1序列中,满⾜C(k)≤(k=1,2,3,4)的序列是()A.11010…B.11011…C.10001…D.11001…【解答】解:对于A选项:序列1101011010C(1)=a i a i+1=(1+0+0+0+0)=,C(2)=a i a i+2=(0+1+0+1+0)=,不满⾜C(k)≤(k=1,2,3,4),故排除A;对于B选项:序列1101111011C(1)=a i a i+1=(1+0+0+1+1)=,不满⾜条件,排除;对于C选项:序列100011000110001C(1)=a i a i+1=(0+0+0+0+1)=,C(2)=a i a i+2=(0+0+0+0++0)=0,C(3)=a i a i+3=(0+0+0+0+0)=0,C(4)=a i a i+4=(1+0+0+0+0)=,符合条件,对于D选项:序列1100111001C(1)=a i a i+1=(1+0+0+0+1)=不满⾜条件.故选:C.6.(2020•新课标Ⅱ)记S n为等⽐数列{a n}的前n项和.若a5﹣a3=12,a6﹣a4=24,则=()A.2n﹣1B.2﹣21﹣n C.2﹣2n﹣1D.21﹣n﹣1【解答】解:设等⽐数列的公⽐为q,∵a5﹣a3=12,∴a6﹣a4=q(a5﹣a3),∴q=2,∴a1q4﹣a1q2=12,∴12a1=12,∴a1=1,∴S n==2n﹣1,a n=2n﹣1,∴==2﹣21﹣n,故选:B.7.(2020•新课标Ⅱ)数列{a n}中,a1=2,a m+n=a m a n.若a k+1+a k+2+…+a k+10=215﹣25,则k=()A.2B.3C.4D.5【解答】解:由a1=2,且a m+n=a m a n,取m=1,得a n+1=a1a n=2a n,∴,则数列{a n}是以2为⾸项,以2为公⽐的等⽐数列,则,∴a k+1+a k+2+…+a k+10==215﹣25,∴k+1=5,即k=4.故选:C.8.(2020•新课标Ⅱ)北京天坛的圜丘坛为古代祭天的场所,分上、中、下三层.上层中⼼有⼀块圆形⽯板(称为天⼼⽯),环绕天⼼⽯砌9块扇⾯形⽯板构成第⼀环,向外每环依次增加9块.下⼀层的第⼀环⽐上⼀层的最后⼀环多9块,向外每环依次也增加9块.已知每层环数相同,且下层⽐中层多729块,则三层共有扇⾯形⽯板(不含天⼼⽯)()A.3699块B.3474块C.3402块D.3339块【解答】解:⽅法⼀:设每⼀层有n环,由题意可知从内到外每环之间构成等差数列,且公差d=9,a1=9,由等差数列的性质可得S n,S2n﹣S n,S3n﹣S2n成等差数列,且(S3n﹣S2n)﹣(S2n﹣S n)=n2d,则n2d=729,则n=9,则三层共有扇⾯形⽯板S3n=S27=27×9+×9=3402块,⽅法⼆:设第n环天⽯⼼块数为a n,第⼀层共有n环,则{a n}是以9为⾸项,9为公差的等差数列,a n=9+(n﹣1)×9=9n,设S n为{a n}的前n项和,则第⼀层、第⼆层、第三层的块数分别为S n,S2n﹣S n,S3n﹣S2n,∵下层⽐中层多729块,∴S3n﹣S2n=S2n﹣S n+729,∴﹣=﹣+729,∴9n2=729,解得n=9,∴S3n=S27==3402,故选:C.⼆.填空题(共6⼩题)9.(2020•上海)已知数列{a n}是公差不为零的等差数列,且a1+a10=a9,则=.【解答】解:根据题意,等差数列{a n}满⾜a1+a10=a9,即a1+a1+9d=a1+8d,变形可得a1=﹣d,所以====.故答案为:.10.(2020•新课标Ⅱ)记S n为等差数列{a n}的前n项和.若a1=﹣2,a2+a6=2,则S10=25.【解答】解:因为等差数列{a n}中,a1=﹣2,a2+a6=2a4=2,所以a4=1,3d=a4﹣a1=3,即d=1,则S10=10a1=10×(﹣2)+45×1=25.故答案为:2511.(2020•浙江)已知数列{a n}满⾜a n=,则S3=10.【解答】解:数列{a n}满⾜a n=,可得a1=1,a2=3,a3=6,所以S3=1+3+6=10.故答案为:10.12.(2020•海南)将数列{2n﹣1}与{3n﹣2}的公共项从⼩到⼤排列得到数列{a n},则{a n}的前n项和为3n2﹣2n.【解答】解:将数列{2n﹣1}与{3n﹣2}的公共项从⼩到⼤排列得到数列{a n},则{a n}是以1为⾸项、以6为公差的等差数列,故它的前n项和为n×1+=3n2﹣2n,故答案为:3n2﹣2n.13.(2020•江苏)设{a n}是公差为d的等差数列,{b n}是公⽐为q的等⽐数列.已知数列{a n+b n}的前n项和S n=n2﹣n+2n﹣1(n∈N*),则d+q的值是4.【解答】解:因为{a n+b n}的前n项和S n=n2﹣n+2n﹣1(n∈N*),因为{a n}是公差为d的等差数列,设⾸项为a1;{b n}是公⽐为q的等⽐数列,设⾸项为b1,所以{a n}的通项公式a n=a1+(n﹣1)d,所以其前n项和S==n2+(a1﹣)n,当{b n}中,当公⽐q=1时,其前n项和S=nb1,所以{a n+b n}的前n项和S n=S+S=n2+(a1﹣)n+nb1=n2﹣n+2n﹣1(n∈N*),显然没有出现2n,所以q≠1,则{b n}的前n项和为S==+,所以S n=S+S=n2+(a1﹣)n+﹣=n2﹣n+2n﹣1(n∈N*),由两边对应项相等可得:解得:d=2,a1=0,q=2,b1=1,所以d+q=4,故答案为:4.14.(2020•新课标Ⅰ)数列{a n}满⾜a n+2+(﹣1)n a n=3n﹣1,前16项和为540,则a1=7.【解答】解:由a n+2+(﹣1)n a n=3n﹣1,当n为奇数时,有a n+2﹣a n=3n﹣1,可得a n﹣a n﹣2=3(n﹣2)﹣1,…a3﹣a1=3•1﹣1,累加可得a n﹣a1=3[1+3+…+(n﹣2)]﹣=3•=;当n为偶数时,a n+2+a n=3n﹣1,可得a4+a2=5,a8+a6=17,a12+a10=29,a16+a14=41.可得a2+a4+…+a16=92.∴a1+a3+…+a15=448.∴=448,∴8a1=56,即a1=7.故答案为:7.三.解答题(共8⼩题)15.(2020•天津)已知{a n}为等差数列,{b n}为等⽐数列,a1=b1=1,a5=5(a4﹣a3),b5=4(b4﹣b3).(Ⅰ)求{a n}和{b n}的通项公式;(Ⅱ)记{a n}的前n项和为S n,求证:S n S n+2<S n+12(n∈N*);(Ⅲ)对任意的正整数n,设c n=求数列{c n}的前2n项和.【解答】解:(Ⅰ)设等差数列{a n}的公差为d,等⽐数列{b n}的公⽐为q,由a1=1,a5=5(a4﹣a3),则1+4d=5d,可得d=1,∴a n=1+n﹣1=n,∵b1=1,b5=4(b4﹣b3),∴q4=4(q3﹣q2),解得q=2,∴b n=2n﹣1;(Ⅱ)证明:法⼀:由(Ⅰ)可得S n=,∴S n S n+2=n(n+1)(n+2)(n+3),(S n+1)2=(n+1)2(n+2)2,∴S n S n+2﹣S n+12=﹣(n+1)(n+2)<0,∴S n S n+2<S n+12(n∈N*);法⼆:∵数列{a n}为等差数列,且a n=n,∴S n=,S n+2=,S n+1=,∴==<1,∴S n S n+2<S n+12(n∈N*);(Ⅲ),当n为奇数时,c n===﹣,当n为偶数时,c n==,对任意的正整数n,有c2k﹣1=(﹣)=﹣1,和c2k==+++…+,①,由①×可得c2k=++…++,②,①﹣②得c2k=+++…+﹣﹣,∴c2k=﹣,因此c2k=c2k﹣1+c2k=﹣﹣.数列{c n}的前2n项和﹣﹣.16.(2020•海南)已知公⽐⼤于1的等⽐数列{a n}满⾜a2+a4=20,a3=8.(1)求{a n}的通项公式;(2)求a1a2﹣a2a3+…+(﹣1)n﹣1a n a n+1.【解答】解:(1)设等⽐数列{a n}的公⽐为q(q>1),则,∵q>1,∴,∴.(2)a1a2﹣a2a3+…+(﹣1)n﹣1a n a n+1=23﹣25+27﹣29+…+(﹣1)n﹣1•22n+1,==.17.(2020•江苏)已知数列{a n}(n∈N*)的⾸项a1=1,前n项和为S n.设λ和k为常数,若对⼀切正整数n,均有S n+1﹣S n=λa n+1成⽴,则称此数列为“λ﹣k”数列.(1)若等差数列{a n}是“λ﹣1”数列,求λ的值;(2)若数列{a n}是“﹣2”数列,且a n>0,求数列{a n}的通项公式;(3)对于给定的λ,是否存在三个不同的数列{a n}为“λ﹣3”数列,且a n≥0?若存在,求出λ的取值范围;若不存在,说明理由.【解答】解:(1)k=1时,a n+1=S n+1﹣S n=λa n+1,由n为任意正整数,且a1=1,a n≠0,可得λ=1;(2)﹣=,则an+1=S n+1﹣S n=(﹣)•(+)=•(+),因此+=•,即=,Sn+1=a n+1=(S n+1﹣S n),从⽽S n+1=4S n,⼜S1=a1=1,可得S n=4n﹣1,a n=S n﹣S n﹣1=3•4n﹣2,n≥2,综上可得a n=,n∈N*;(3)若存在三个不同的数列{a n}为“λ﹣3”数列,则S n+1﹣S n=λa n+1,则S n+1﹣3S n+1S n+3S n+1S n﹣S n=λ3a n+1=λ3(S n+1﹣S n),由a1=1,a n≥0,且S n>0,令p n=()>0,则(1﹣λ3)p n3﹣3p n2+3p n﹣(1﹣λ3)=0,λ=1时,p n=p n2,由p n>0,可得p n=1,则S n+1=S n,即a n+1=0,此时{a n}唯⼀,不存在三个不同的数列{a n},λ≠1时,令t=,则p n3﹣tp n2+tp n﹣1=0,则(p n﹣1)[p n2+(1﹣t)p n+1]=0,①t≤1时,p n2+(1﹣t)p n+1>0,则p n=1,同上分析不存在三个不同的数列{a n};②1<t<3时,△=(1﹣t)2﹣4<0,p n2+(1﹣t)p n+1=0⽆解,则p n=1,同上分析不存在三个不同的数列{a n};③t=3时,(p n﹣1)3=0,则p n=1,同上分析不存在三个不同的数列{a n}.④t>3时,即0<λ<1时,△=(1﹣t)2﹣4>0,p n2+(1﹣t)p n+1=0有两解α,β,设α<β,α+β=t﹣1>2,αβ=1>0,则0<α<1<β,则对任意n∈N*,=1或=α3(舍去)或=β3,由于数列{S n}从任何⼀项求其后⼀项均有两种不同的结果,所以这样的数列{S n}有⽆数多个,则对应的数列{a n}有⽆数多个.则存在三个不同的数列{a n}为“λ﹣3”数列,且a n≥0,综上可得0<λ<1.18.(2020•新课标Ⅰ)设{a n}是公⽐不为1的等⽐数列,a1为a2,a3的等差中项.(1)求{a n}的公⽐;(2)若a1=1,求数列{na n}的前n项和.【解答】解:(1)设{a n}是公⽐q不为1的等⽐数列,a1为a2,a3的等差中项,可得2a1=a2+a3,即2a1=a1q+a1q2,即为q2+q﹣2=0,解得q=﹣2(1舍去),所以{a n}的公⽐为﹣2;(2)若a1=1,则a n=(﹣2)n﹣1,na n=n•(﹣2)n﹣1,则数列{na n}的前n项和为S n=1•1+2•(﹣2)+3•(﹣2)2+…+n•(﹣2)n﹣1,﹣2S n=1•(﹣2)+2•(﹣2)2+3•(﹣2)3+…+n•(﹣2)n,两式相减可得3S n=1+(﹣2)+(﹣2)2+(﹣2)3+…+(﹣2)n﹣1﹣n•(﹣2)n=﹣n•(﹣2)n,化简可得S n=,所以数列{na n}的前n项和为.19.(2020•⼭东)已知公⽐⼤于1的等⽐数列{a n}满⾜a2+a4=20,a3=8.(1)求{a n}的通项公式;(2)记b m为{a n}在区间(0,m](m∈N*)中的项的个数,求数列{b m}的前100项和S100.【解答】解:(1)∵a2+a4=20,a3=8,∴+8q=20,解得q=2或q=(舍去),∴a1=2,∴a n=2n,(2)记b m为{a n}在区间(0,m](m∈N*)中的项的个数,∴2n≤m,∴n≤log2m,故b1=0,b2=1,b3=1,b4=2,b5=2,b6=2,b7=2,b8=3,b9=3,b10=3,b11=3,b12=3,b13=3,b14=3,b15=3,b16=4,…,可知0在数列{b m}中有1项,1在数列{b m}中有2项,2在数列{b m}中有4项,…,由<100,>100可知b63=5,b64=b65=…=b100=6.∴数列{b m}的前100项和S100=0+1×2+2×4+3×8+4×16+5×32+6×37=480.20.(2020•新课标Ⅲ)设等⽐数列{a n}满⾜a1+a2=4,a3﹣a1=8.(1)求{a n}的通项公式;(2)记S n为数列{log3a n}的前n项和.若S m+S m+1═S m+3,求m.【解答】解:(1)设公⽐为q,则由,可得a1=1,q=3,所以a n=3n﹣1.(2)由(1)有log3a n=n﹣1,是⼀个以0为⾸项,1为公差的等差数列,所以S n=,所以+=,m2﹣5m﹣6=0,解得m=6,或m=﹣1(舍去),所以m=6.21.(2020•浙江)已知数列{a n},{b n},{c n}满⾜a1=b1=c1=1,c n=a n+1﹣a n,c n+1=c n,(n∈N*).(Ⅰ)若{b n}为等⽐数列,公⽐q>0,且b1+b2=6b3,求q的值及数列{a n}的通项公式;(Ⅱ)若{b n}为等差数列,公差d>0,证明:c1+c2+c3+…+c n<1+,n∈N*.【解答】(Ⅰ)解:由题意,b2=q,b3=q2,∵b1+b2=6b3,∴1+q=6q2,整理,得6q2﹣q﹣1=0,解得q=﹣(舍去),或q=,∴c n+1=•c n=•c n=•c n=•c n=4•c n,∴数列{c n}是以1为⾸项,4为公⽐的等⽐数列,∴c n=1•4n﹣1=4n﹣1,n∈N*.∴a n+1﹣a n=c n=4n﹣1,则a1=1,a2﹣a1=1,a3﹣a2=41,•••a n﹣a n﹣1=4n﹣2,各项相加,可得a n=1+1+41+42+…+4n﹣2=+1=.(Ⅱ)证明:依题意,由c n+1=•c n(n∈N*),可得b n+2•c n+1=b n•c n,两边同时乘以b n+1,可得b n+1b n+2c n+1=b n b n+1c n,∵b1b2c1=b2=1+d,∴数列{b n b n+1c n}是⼀个常数列,且此常数为1+d,b n b n+1c n=1+d,∴c n==•=(1+)•=(1+)(﹣),⼜∵b1=1,d>0,∴b n>0,∴c1+c2+…+c n=(1+)(﹣)+(1+)(﹣)+…+(1+)(﹣)=(1+)(﹣+﹣+…+﹣)=(1+)(﹣)=(1+)(1﹣)<1+,∴c1+c2+…+c n<1+,故得证.22.(2020•上海)已知各项均为正数的数列{a n},其前n项和为S n,a1=1.(1)若数列{a n}为等差数列,S10=70,求数列{a n}的通项公式;(2)若数列{a n}为等⽐数列,a4=,求满⾜S n>100a n时n的最⼩值.【解答】解:(1)数列{a n}为公差为d的等差数列,S10=70,a1=1,可得10+×10×9d=70,解得d=,则a n=1+(n﹣1)=n﹣;(2)数列{a n}为公⽐为q的等⽐数列,a4=,a1=1,可得q3=,即q=,则a n=()n﹣1,S n==2﹣()n﹣1,S n>100a n,即为2﹣()n﹣1>100•()n﹣1,即2n>101,可得n≥7,即n的最⼩值为7.考点卡⽚1.数列的函数特性【知识点的认识】1、等差数列的通项公式:a n=a1+(n﹣1)d;前n项和公式S n=na1+n(n﹣1)d或者S n=2、等⽐数列的通项公式:a n=a1q n﹣1;前n项和公式S n==(q≠1)3、⽤函数的观点理解等差数列、等⽐数列(1)对于等差数列,a n=a1+(n﹣1)d=dn+(a1﹣d),当d≠0时,a n是n的⼀次函数,对应的点(n,a n)是位于直线上的若⼲个点.当d>0时,函数是增函数,对应的数列是递增数列;同理,d=0时,函数是常数函数,对应的数列是常数列;d<0时,函数是减函数,对应的数列是递减函数.若等差数列的前n项和为S n,则S n=pn2+qn(p、q∈R).当p=0时,{a n}为常数列;当p≠0时,可⽤⼆次函数的⽅法解决等差数列问题.(2)对于等⽐数列:a n=a1q n﹣1.可⽤指数函数的性质来理解.当a1>0,q>1或a1<0,0<q<1时,等⽐数列是递增数列;当a1>0,0<q<1或a1<0,q>1时,等⽐数列{a n}是递减数列.当q=1时,是⼀个常数列.当q<0时,⽆法判断数列的单调性,它是⼀个摆动数列.【典型例题分析】典例1:数列{a n}满⾜a n=n2+kn+2,若不等式a n≥a4恒成⽴,则实数k的取值范围是()A.[﹣9,﹣8]B.[﹣9,﹣7]C.(﹣9,﹣8)D.(﹣9,﹣7)解:a n=n2+kn+2=,∵不等式a n≥a4恒成⽴,∴,解得﹣9≤k≤﹣7,故选:B.典例2:设等差数列{a n}满⾜a1=1,a n>0(n∈N*),其前n项和为S n,若数列{}也为等差数列,则的最⼤值是()A.310B.212C.180D.121解:∵等差数列{a n}满⾜a1=1,a n>0(n∈N*),设公差为d,则a n=1+(n﹣1)d,其前n项和为S n=,∴=,=1,=,=,∵数列{}也为等差数列,∴=+,∴=1+,解得d=2.∴S n+10=(n+10)2,=(2n﹣1)2,∴==,由于为单调递减数列,∴≤=112=121,故选:D.2.等差数列的通项公式【知识点的认识】等差数列是常⻅数列的⼀种,数列从第⼆项起,每⼀项与它的前⼀项的差等于同⼀个常数,已知等差数列的⾸项a1,公差d,那么第n项为a n=a1+(n﹣1)d,或者已知第m项为a m,则第n项为a n=a m+(n﹣m)d.【例题解析】eg1:已知数列{a n}的前n项和为S n=n2+1,求数列{a n}的通项公式,并判断{a n}是不是等差数列解:当n=1时,a1=S1=12+1=2,当n≥2时,a n=S n﹣S n﹣1=n2+1﹣(n﹣1)2﹣1=2n﹣1,∴a n=,把n=1代⼊2n﹣1可得1≠2,∴{a n}不是等差数列考察了对概念的理解,除掉第⼀项这个数列是等差数列,但如果把⾸项放进去的话就不是等差数列,题中a n的求法是数列当中常⽤到的⽅式,⼤家可以熟记⼀下.eg2:已知等差数列{a n}的前三项分别为a﹣1,2a+1,a+7则这个数列的通项公式为解:∵等差数列{a n}的前三项分别为a﹣1,2a+1,a+7,∴2(2a+1)=a﹣1+a+7,解得a=2.∴a1=2﹣1=1,a2=2×2+1=5,a3=2+7=9,∴数列a n是以1为⾸项,4为公差的等差数列,∴a n=1+(n﹣1)×4=4n﹣3.故答案:4n﹣3.这个题很好的考察了的呢公差数列的⼀个重要性质,即等差中项的特点,通过这个性质然后解⽅程⼀样求出⾸项和公差即可.【考点点评】求等差数列的通项公式是⼀种很常⻅的题型,这⾥⾯往往⽤的最多的就是等差中项的性质,这也是学习或者复习时应重点掌握的知识点.3.等差数列的前n项和【知识点的认识】等差数列是常⻅数列的⼀种,如果⼀个数列从第⼆项起,每⼀项与它的前⼀项的差等于同⼀个常数,这个数列就叫做等差数列,⽽这个常数叫做等差数列的公差,公差常⽤字⺟d表示.其求和公式为S n=na1+n(n﹣1)d或者S n=【例题解析】eg1:设等差数列的前n项和为S n,若公差d=1,S5=15,则S10=解:∵d=1,S5=15,∴5a1+d=5a1+10=15,即a1=1,则S10=10a1+d=10+45=55.故答案为:55点评:此题考查了等差数列的前n项和公式,解题的关键是根据题意求出⾸项a1的值,然后套⽤公式即可.eg2:等差数列{a n}的前n项和S n=4n2﹣25n.求数列{|a n|}的前n项的和T n.解:∵等差数列{a n}的前n项和S n=4n2﹣25n.∴a n=S n﹣S n﹣1=(4n2﹣25n)﹣[4(n﹣1)2﹣25(n﹣1)]=8n﹣29,该等差数列为﹣21,﹣13,﹣5,3,11,…前3项为负,其和为S3=﹣39.∴n≤3时,T n=﹣S n=25n﹣4n2,n≥4,T n=S n﹣2S3=4n2﹣25n+78,∴.点评:本题考查等差数列的前n项的绝对值的和的求法,是中档题,解题时要认真审题,注意分类讨论思想的合理运⽤.其实⽅法都是⼀样的,要么求出⾸项和公差,要么求出⾸项和第n项的值.【考点点评】等差数列⽐较常⻅,单独考察等差数列的题也⽐较简单,⼀般单独考察是以⼩题出现,⼤题⼀般要考察的话会结合等⽐数列的相关知识考察,特别是错位相减法的运⽤.4.等⽐数列的性质【等⽐数列】(⼜名⼏何数列),是⼀种特殊数列.如果⼀个数列从第2项起,每⼀项与它的前⼀项的⽐等于同⼀个常数,这个数列就叫做等⽐数列,因为第⼆项与第⼀项的⽐和第三项与第⼆项的⽐相等,这个常数叫做等⽐数列的公⽐,公⽐通常⽤字⺟q表示(q≠0).注:q=1时,a n 为常数列.等⽐数列和等差数列⼀样,也有⼀些通项公式:①第n项的通项公式,a n=a1q n﹣1,这⾥a1为⾸项,q为公⽐,我们发现这个通项公式其实就是指数函数上孤⽴的点.②求和公式,S n=,表示的是前⾯n项的和.③若m+n=q+p,且都为正整数,那么有a m•a n =a p•a q.例:2,x,y,z,18成等⽐数列,则y=.解:由2,x,y,z,18成等⽐数列,设其公⽐为q,则18=2q4,解得q2=3,∴y=2q2=2×3=6.故答案为:6.本题的解法主要是运⽤了等⽐数列第n项的通项公式,这也是⼀个常⽤的⽅法,即知道某两项的值然后求出公⽐,继⽽可以以已知项为⾸项,求出其余的项.关键是对公式的掌握,⽅法就是待定系数法.【等⽐数列的性质】(1)通项公式的推⼴:a n=a m•q n﹣m,(n,m∈N*).(2)若{a n}为等⽐数列,且k+l=m+n,(k,l,m,n∈N*),则a k•a l=a m•a n(3)若{a n},{b n}(项数相同)是等⽐数列,则{λa n}(λ≠0),{a},{a n•b n},仍是等⽐数列.(4)单调性:或 {a n}是递增数列;或 {a n}是递减数列;q=1 {a n}是常数列;q<0 {a n}是摆动数列.5.等⽐数列的通项公式【知识点的认识】1.等⽐数列的定义如果⼀个数列从第2项起,每⼀项与它的前⼀项的⽐值等于同⼀个常数,那么这个数列叫做等⽐数列,这个常数叫做等⽐数列的公⽐,通常⽤字⺟q表示(q≠0).从等⽐数列的定义看,等⽐数列的任意项都是⾮零的,公⽐q也是⾮零常数.2.等⽐数列的通项公式设等⽐数列{a n}的⾸项为a1,公⽐为q,则它的通项a n=a1•q n﹣13.等⽐中项:如果在a与b中间插⼊⼀个数G,使a,G,b成等⽐数列,那么G叫做a与b的等⽐中项.G2=a•b(ab≠0)4.等⽐数列的常⽤性质(1)通项公式的推⼴:a n=a m•q n﹣m,(n,m∈N*).(2)若{a n}为等⽐数列,且k+l=m+n,(k,l,m,n∈N*),则a k•a l=a m•a n(3)若{a n},{b n}(项数相同)是等⽐数列,则{λa n}(λ≠0),{a},{a n•b n},仍是等⽐数列.(4)单调性:或 {a n}是递增数列;或 {a n}是递减数列;q=1 {a n}是常数列;q<0 {a n}是摆动数列.6.等⽐数列的前n项和【知识点的知识】1.等⽐数列的前n项和公式等⽐数列{a n}的公⽐为q(q≠0),其前n项和为S n,当q=1时,S n=na1;当q≠1时,S n==.2.等⽐数列前n项和的性质公⽐不为﹣1的等⽐数列{a n}的前n项和为S n,则S n,S2n﹣S n,S3n﹣S2n仍成等⽐数列,其公⽐为q n.7.数列的应⽤【知识点的知识】1、数列与函数的综合2、等差数列与等⽐数列的综合3、数列的实际应⽤数列与银⾏利率、产品利润、⼈⼝增⻓等实际问题的结合.8.数列的求和【知识点的知识】就是求出这个数列所有项的和,⼀般来说要求的数列为等差数列、等⽐数列、等差等⽐数列等等,常⽤的⽅法包括:(1)公式法:①等差数列前n项和公式:S n=na1+n(n﹣1)d或S n=②等⽐数列前n项和公式:③⼏个常⽤数列的求和公式:(2)错位相减法:适⽤于求数列{a n×b n}的前n项和,其中{a n}{b n}分别是等差数列和等⽐数列.(3)裂项相消法:适⽤于求数列{}的前n项和,其中{a n}为各项不为0的等差数列,即=().(4)倒序相加法:推导等差数列的前n项和公式时所⽤的⽅法,就是将⼀个数列倒过来排列(反序),再把它与原数列相加,就可以得到n个(a1+a n).(5)分组求和法:有⼀类数列,既不是等差数列,也不是等⽐数列,若将这类数列适当拆开,可分为⼏个等差、等⽐或常⻅的数列,然后分别求和,再将其合并即可.【典型例题分析】典例1:已知等差数列{a n}满⾜:a3=7,a5+a7=26,{a n}的前n项和为S n.(Ⅰ)求a n及S n;(Ⅱ)令b n=(n∈N*),求数列{b n}的前n项和T n.分析:形如的求和,可使⽤裂项相消法如:.解:(Ⅰ)设等差数列{a n}的公差为d,∵a3=7,a5+a7=26,∴,解得a1=3,d=2,∴a n=3+2(n﹣1)=2n+1;S n==n2+2n.(Ⅱ)由(Ⅰ)知a n=2n+1,∴b n====,∴T n===,即数列{b n}的前n项和T n=.点评:该题的第⼆问⽤的关键⽅法就是裂项求和法,这也是数列求和当中常⽤的⽅法,就像友情提示那样,两个等差数列相乘并作为分⺟的⼀般就可以⽤裂项求和.【解题⽅法点拨】数列求和基本上是必考点,⼤家要学会上⾯所列的⼏种最基本的⽅法,即便是放缩也要往这⾥⾯考.9.数列递推式【知识点的知识】1、递推公式定义:如果已知数列{a n}的第1项(或前⼏项),且任⼀项a n与它的前⼀项a n﹣1(或前⼏项)间的关系可以⽤⼀个公式来表示,那么这个公式就叫做这个数列的递推公式.2、数列前n项和S n与通项a n的关系式:a n=.在数列{a n}中,前n项和S n与通项公式a n的关系,是本讲内容⼀个重点,要认真掌握.注意:(1)⽤a n=S n﹣S n﹣1求数列的通项公式时,你注意到此等式成⽴的条件了吗?(n≥2,当n=1时,a1=S1);若a1适合由a n的表达式,则a n不必表达成分段形式,可化统⼀为⼀个式⼦.(2)⼀般地当已知条件中含有a n与S n的混合关系时,常需运⽤关系式a n=S n﹣S n﹣1,先将已知条件转化为只含a n或S n的关系式,然后再求解.3、数列的通项的求法:(1)公式法:①等差数列通项公式;②等⽐数列通项公式.(2)已知S n(即a1+a2+…+a n=f(n))求a n,⽤作差法:a n=.⼀般地当已知条件中含有a n与S n的混合关系时,常需运⽤关系式,先将已知条件转化为只含或的关系式,然后再求解.(3)已知a1•a2…a n=f(n)求a n,⽤作商法:a n,=.(4)若a n+1﹣a n=f(n)求a n,⽤累加法:a n=(a n﹣a n﹣1)+(a n﹣1﹣a n﹣2)+…+(a2﹣a1)+a1(n≥2).(5)已知=f(n)求a n,⽤累乘法:a n=(n≥2).(6)已知递推关系求a n,有时也可以⽤构造法(构造等差、等⽐数列).特别地有,①形如a n=ka n﹣1+b、a n=ka n﹣1+b n(k,b为常数)的递推数列都可以⽤待定系数法转化为公⽐为k的等⽐数列后,再求a n.②形如a n=的递推数列都可以⽤倒数法求通项.(7)求通项公式,也可以由数列的前⼏项进⾏归纳猜想,再利⽤数学归纳法进⾏证明.10.等差数列与等⽐数列的综合【知识点的知识】1、等差数列的性质(1)若公差d>0,则为递增等差数列;若公差d<0,则为递减等差数列;若公差d=0,则为常数列;(2)有穷等差数列中,与⾸末两端“等距离”的两项和相等,并且等于⾸末两项之和;(3)m,n∈N+,则a m=a n+(m﹣n)d;(4)若s,t,p,q∈N*,且s+t=p+q,则a s+a t=a p+a q,其中a s,a t,a p,a q是数列中的项,特别地,当s+t=2p时,有a s+a t=2a p;(5)若数列{a n},{b n}均是等差数列,则数列{ma n+kb n}仍为等差数列,其中m,k均为常数.(6)a n,a n﹣1,a n﹣2,…,a2,a1仍为等差数列,公差为﹣d.(7)从第⼆项开始起,每⼀项是与它相邻两项的等差中项,也是与它等距离的前后两项的等差中项,即2a n+1=a n+a n+2,2a n=a n﹣m+a n+m,(n≥m+1,n,m∈N+)(8)a m,a m+k,a m+2k,a m+3k,…仍为等差数列,公差为kd(⾸项不⼀定选a1).2、等⽐数列的性质.(1)通项公式的推⼴:a n=a m•q n﹣m,(n,m∈N*).(2)若{a n}为等⽐数列,且k+l=m+n,(k,l,m,n∈N*),则a k•a l=a m•a n(3)若{a n},{b n}(项数相同)是等⽐数列,则{λa n}(λ≠0),{a},{a n•b n},仍是等⽐数列.(4)单调性:或 {a n}是递增数列;或 {a n}是递减数列;q=1 {a n}是常数列;q<0 {a n}是摆动数列.31。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

原创文科数学专题卷专题 数列考点23:数列的概念与简单表示法(1,2题,13题,17题) 考点24:等差数列及其前n 项和(3-6题,18-21题) 考点25:等比数列及其前n 项和(7,8题,14题,18-21题) 考点26:数列求和(9,10题,18-21题)考点27:数列的综合问题及其应用(11,12题,15,16题,22题)考试时间:120分钟 满分:150分说明:请将选择题正确答案填写在答题卡上,主观题写在答题纸上第I 卷(选择题)一、选择题(本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是最符合题目要求的。

) 1.【来源】2016-2017学年福建晋江季延中学高二上期中 考点23 易 已知数列{}n a 的前n 项和21n S n n =++,则19a a +等于 A.19 B.20 C.21 D.22 2.【来源】2017届湖南五市十校高三文12月联考 考点23 易已知n S 是数列{}n a 的前n 项和,且1453,23n n n S S a a a +=+++=,则8S =( ). A .72 B .88 C .92 D .98 3.【2017课标1,理4】 考点24 易记n S 为等差数列{}n a 的前n 项和.若4524a a +=,648S =,则{}n a 的公差为A .1B .2C .4D .84.【2017课标3,理9】考点24 易等差数列{}n a 的首项为1,公差不为0.若a 2,a 3,a 6成等比数列,则{}n a 前6项的和为( )A .24-B .3-C .3D .85.【来源】2016-2017学年山东曲阜师大附中高二上学期期中 考点24 中难 数列{}n a 是等差数列,若11101a a <-,且它的前n 项和n S 有最大值,那么当n S 取得最小正值时,n =( )A .11B .17C .19D .21 6.【来源】2017届山西山西大学附中高三理上学期期中 考点24 中难 设等差数列{}n a 的前n 项和为n S ,且满足170S >,180S <,则11S a ,22Sa ,…,1515S a 中最大的项为( ) A.77S a B.88S a C.99S a D.1010Sa7.【2017课标II ,理3】考点25 易我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯( )A .1盏B .3盏C .5盏D .9盏 8.【来源】2017届辽宁盘锦高级中学高三11月月 考点25 中难等比数列{}n a 中,已知对任意正整数n ,1232nn a a a a m ++++=+…,则22212n a a a +++…等于( )A .1(4)3n m +B .1(21)3n - C .41n- D .2(2)n m +9.【来源】2017届广东顺德李兆基中学高三理上月考二 考点26 中难在数列{}n a 中,若对任意的*n N ∈均有12n n n a a a ++++为定值,且79982,3,4a a a ===,则数列{}n a 的前100项的和100S =( )A .132B .299C .68D .99 10.【2017课标1,理12】 考点26 难几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是20,接下来的两项是20,21,再接下来的三项是20,21,22,依此类推.求满足如下条件的最小整数N :N >100且该数列的前N 项和为2的整数幂.那么该款软件的激活码是( )A .440B .330C .220D .11011.【来源】2017届天津市六校高三理上学期期中联考 考点27 难 已知数列{}n a 满足:11a =,12n n n a a a +=+()n N *∈.若11(2)(1)n nb n a λ+=-⋅+()n N *∈,1b λ=-,且数列{}n b 是单调递增数列,则实数λ的取值范围是( )A.23λ>B.32λ>C.32λ<D.23λ< 12.【来源】2017届黑吉两省八校高三上学期期中 考点27 难 已知数列{}n a 的前n 项和为n S ,且11a =,12n n a S +=+,则满足2110n n S S <的n 的最小值为( )A .4B .5C .6D .7第Ⅱ卷(非选择题)二.填空题(每题5分,共20分) 13.【来源】2017届宁夏育才中学高三上第二次月考 考点23 易 数列}{n a 满足2,1181=-=+a a a nn ,则=1a ________. 14.【2017课标3,理14】 考点25 易设等比数列{}n a 满足a 1 + a 2 = –1, a 1 – a 3 = –3,则a 4 = ___________. 15.【来源】2016届福建福州市高三上学期期末 考点27 中难 已知()12n n n a +=,删除数列{}n a 中所有能被2整除的数,剩下的数从小到大排成数列{}n b ,则51b =_________.16.【来源】2017届江西抚州七校高三上期联考 考点27 难在数列{}n a 及{}n b中,1n n n a a b +=++1n n n b a b +=+11a =,11b =.设112()n n n nc a b =+,则数列{}n c 的前n 项和为 . 三.解答题(共70分) 17.(本小题满分10分)【来源】2017届河北沧州一中高三11月月考 考点23 易 设数列{}n a 的前n 项和为n S ,已知11a =,()*121n n S S n n N +=++∈. (1)求数列{}n a 的通项公式; (2)若11n n n n a b a a ++=⋅,求数列{}n b 的前n 项和n T .18.(本小题满分12分)【来源】2017届河北沧州一中高三11月月考 考点24 考点25考点26易 已知{}n a 是等差数列,{}n b 是等比数列,且23b =,39b =,11a b =,144a b =. (1)求{}n a 的通项公式;(2)设n n n c a b =+,求数列{}n c 的前n 项和.19.(本小题满分12分)【来源】2017届湖北孝感市高三文上学期第一次统考试 考点24考点25考点26中难 设正项等比数列{}n a 的前n 项和为n S ,且满足33232S a a =+,48a =.(Ⅰ)求数列{}n a 的通项公式;(Ⅱ)设数列2log n n b a =,求{}n b 的前n 项和n T . 20.(本小题满分12分)【来源】2017届河南中原名校高三理上质检三 考点24 考点25考点26中难 已知数列{}n a 满足137a =,1341n n n a a a +=+,n N *∈.(1)求证:数列12n a ⎧⎫-⎨⎬⎩⎭是等比数列,并且求出数列{}n a 的通项公式; (2)求数列n n a ⎧⎫⎨⎬⎩⎭的前n 项和n S . 21.(本小题满分12分)【来源】2017届湖北荆州市高三上质检一 考点24考点25 考点26中难 已知等差数列{}n a 的前n 项和为n S ,55S =-,且346,,a a a 成等比数列. (Ⅰ)求数列{}n a 的通项公式;(Ⅱ)设()*21231n n n b n N a a ++=∈,求数列{}n b 的前n 项和n T . 22.(本小题满分12分)【来源】2017届天津市六校高三理上学期期中联考 考点27 难已知各项都是正数的数列{}n a 的前n 项和为n S ,212n n n S a a =+,n N *∈ (1)求数列{}n a 的通项公式;(2)设数列{}n b 满足:11b =,12(2)n n n b b a n --=≥,数列1n b ⎧⎫⎨⎬⎩⎭的前n 项和n T ,求证:2n T <;(3)若(4)n T n λ≤+对任意n N *∈恒成立,求λ的取值范围.参考答案1.C【解析】()()11998193,8196481821a S a S S a a===-=+-+=∴+=2.C【解析】1133n n n n nS S a a a++=++⇒-=⇒{}n a为等差数列,公差为3,所以由4523a a+=得118127231,8873922a d a S+=⇒==+⨯⨯⨯=,选C.3.【答案】C【解析】设公差为d,45111342724a a a d a d a d+=+++=+=,611656615482S a d a d⨯=+=+=,联立112724,61548a da d+=⎧⎨+=⎩解得4d=,故选C.4.【答案】A【解析】5.C【解析】∵Sn有最大值,∴d<0则a10>a11,又11101aa<-,∴a11<0<a10∴a10+a11<0,()()20120101110100S a a a a∴=+=+<,1910190S a=>又12101112a a a a a>>>>>>L∴10921S S S S>>>>>L,1011192021S S S S S>>>>>>L又()1912319101190S S a a a a a-=+++=+<L∴19S为最小正值6.C【解析】117917917()17(2)000022a a aS a+>⇒>⇒>⇒>11889181091018()18()0000022a a a a S a a a ++<⇒<⇒<⇒+<⇒<,因此8910121289100,0,0,0,0,S S S S Sa a a a a >>>><L 而1291289,S S S a a a a <<<>>>>L L , 所以89121289S S S S a a a a <<<<L ,选C. 7.【答案】B 【解析】8.A【解析】∵等比数列{}n a 中,对任意正整数n ,1232nn a a a a m ++++=+…,∴m a +=21,m a a +=+421,m a a a +=++8321,∴m a +=21,22=a ,43=a ,∴1-=m ,11=a ,∴121=a ,422=a ,1623=a ,∴{}2n a 是首项为1,公比为4的等比数列,∴()()m a a a a n n n n+=-=--=++++431143141412232221Λ.故选:A . 9.B【解析】12n n n a a a ++++为定值,所以3n n a a +=,所以数列的周期为3,故29817394,2,3a a a a a a ======,所以()10012310033299S a a a a =⋅+++=.10.【答案】A11.D 【解析】 因为11111121111112(1)1(1)222n n n n n n n n n n a a a a a a a a a -+++=⇒=+⇒+=+⇒+=+=+,所以1(2)2nn b n λ+=-⋅,因为数列{}n b 是单调递增数列,所以当2n ≥时113(2)2(12)2212212n n n n b b n n n λλλλλ-+>⇒-⋅>--⋅⇒>-⇒>-⇒<;当1n =时,213(12)22b b λλλ>⇒-⋅>-⇒<,因此23λ<,选D. 12.A【解析】由12n n a S +=+得12n n n S S S +-=+,即122(2)n n S S ++=+,又11223S a +=+=,所以1232n n S -+=⨯,即1322n n S -=⨯-,所以1212322132210n n n n S S --⨯-=<⨯-,即12130220322n n --⨯-<⨯-, ()2113215290n n --⨯-⨯+>,令12n t -=,则231590t t -+>,函数2()3159h t t t =-+的对称轴为156t =,又t 的可能值为11,2,4,8,,2n -L ,所以 1(1)(2)(4)(8)(2)n h h h h h -><<<<L ,(1)315930,(2)1230990h h =-+=-<=-+=-<,(4)4860930,(8)1921209810h h =-+=-<=-+=>,这时4n =,所以从第四项起以后各项均满足2110n n S S <,故选A. 13.12【解析】117651111112111212112222n n n n n a a a a a a a a a +++---=⇒=⇒==⇒==-⇒=⇒=-L .14.【答案】8-【解析】设等比数列的公比为q ,很明显1q ≠- ,结合等比数列的通项公式和题意可得方程组:()()12121311113a a a q a a a q ⎧+=+=-⎪⎨-=-=-⎪⎩,①,②,由 ②① 可得:2q =- ,代入①可得11a =, 由等比数列的通项公式可得:3418a a q ==- .15.5151【解析】由题意,得,∵2)1(+=n n a n ,10,6,3,14321====∴a a a a ,⋅⋅⋅,∵2)1(+=n n a n ,删除数列{}n a 中所有能被2整除的数,剩下的数从小到大排成数列{}n b ,∴515110151==a b .16.224n +-【解析】由221n n n n n a a b a b +=+++,221n n n n nb a b a b +=+-+,两式相加可得:()n n n n b a b a +=+++211,故数列{}n n b a +是以2为首项,2为公比的等比数列,得n n n b a 2=+;两式相乘可得:()()n n n n n n n n b a b a b a b a ⋅=+-+=⋅++222211,故数列{}n n b a ⋅是以1为首项,2为公比的等比数列,得12-=⋅n n n b a ,故122112+=⋅+⋅=⎪⎪⎭⎫ ⎝⎛+=n n n n n n n nnn b a b a b a c ,故其前n 项和为()42212142-=--=+n n n S .17.(1)()*21n n a n N =-∈;(2)12111--=-n n T .【解析】(1)121++=+n S S n n ,当2n ≥时,12n n S S n -=+,∴121n n a a +=+,()1121n n a a +∴+=+,即1121n n a a ++=+,12n n a +=,即()*21n n a n N =-∈……………………………(5分)(2)12-=nna ,()()1121121212121n n n n n n b ++∴==----⋅-, 2231111111111212121212121n n n n T --∴=-+-++-=-------L .……………………(10分)18.(1)21n a n =-;(2)2132-+=n n n T .【解析】(1)等比数列{}n b 的公比32933b q b ===,所以211b b q==,4327b b q ==, 设等差数列{}n a 的公差为d ,因为111a b ==,14427a b ==,所以11327d +=,即2d =, 所以21n a n =- ……………………………(6分)(2)由(1)知,21n a n =-,13n n b -=,因此1213n n n c a b n -=+=-+,从而数列{}n c 的前n 项和()()1221133113211332132n n n n n n S n n ----=+++-++++=+=+-L L ……………(12分) 19.(Ⅰ)7)21(-=n n a ;(Ⅱ)⎪⎪⎩⎪⎪⎨⎧>+-≤+-=7,4221327,213222n n n n n n T n. 【解析】(Ⅰ) 设正项等比数列}{n a 的公比为q ,则0>q由已知23323a a S +=有02123=-+a a a ,即021121=-+a q a q a0122=-+∴q q 故21=q 或1-=q (舍)74421--⎪⎭⎫ ⎝⎛=⨯=∴n n n q a a ……………………………(6分)(Ⅱ)由(Ⅰ)知:n b n -=7 故当7≤n 时,0≥n b∴当7≤n 时,21322)(2121nn b b n b b b T n n n +-=+=+++=Λ 当7>n 时,)(98721n n b b b b b b T ΛΛ++-+++=422132)()(2221721+-=+++-+++=nn b b b b b b n ΛΛ⎪⎪⎩⎪⎪⎨⎧>+-≤+-=∴7,4221327,213222n n n n nn T n . ……………………………(12分) 20.(1)证明见解析,3,231n n na n N *=∈⨯+;(2)2323434n n n S n n +=-+++⨯. 【解析】(1)由137a =,13,41n n n a a n N a *+=∈+所以141114333n n n n a a a a ++==+ 即1111223n n a a +⎛⎫-=- ⎪⎝⎭所以数列12n a -是以13为首项,13为公比的等比数列 111112333n nn a -⎛⎫⎛⎫∴-== ⎪ ⎪⎝⎭⎝⎭所以数列{}n a 的通项公式为3,231nn na n N *=∈⨯+ ……………………………(4分) (2)23n n n nn a =+ 设231123133333n n n n n T --=+++++L则234111231333333n n n n n T +-=+++++L两式相减得231121111111333333233n n n n n n n T ++⎛⎫=++++-=-- ⎪⎝⎭L 所以332443n nn T +=-⨯ ……………………………(8分) 又22462n n n ++++=+L ……………………………(10分)所以2323434n n n S n n +=-+++⨯. ……………………………(12分) 21.(Ⅰ)1n a =-或2n a n =-; (Ⅱ)21n n + 【解析】 (1)由等差数列性质,5355S a =-=,所以31a =-设公差为d ,则()()()21113d d -+=-⋅-+,解得0d =或1d =- 1n a =-或2n a n =- ……………………………(4分)(2)①当1n a =-时,n T n = ……………………………(6分)②当2n a n =-时,()()212311111212122121n n a a n n n n ++⎛⎫==- ⎪-+-+⎝⎭ 11111111112335212122121n n T n n n n ⎛⎫⎛⎫=-+-++-=-= ⎪ ⎪-+++⎝⎭⎝⎭L ………………………(12分) 22.(Ⅰ)12n a n =(Ⅱ)详见解析(Ⅲ)29λ≥【解析】(1)时, 当时,2≥n是以为首项,为公差的等差数列……………………………(4分)(2),,即T ……………………………(8分)2n(3)由得,当且仅当时,有最大值,……………………………(12分)。

相关文档
最新文档