大电流温升试验系统

大电流温升试验系统

大电流温升试验系统

电缆加热循环系统是针对电缆厂对电缆作温升试验而设计的,由控制柜、大容量调压器、穿心式大电流发生器、温度测量系统等组成。设备稳定可靠耐用,操作方便。

1、输入电压:380V

2、测量精度:±3%(满量程)

3、额定容量:20KVA/30KVA/40KVA/50KVA/100KVA等(任选)

4、输出电流:2000A/3000A/4000A/5000A/10000A等(任选)

5、温度测量:0-200℃

温升测试规范

1.0测试目的 本作业指导书描述了园林工具、电动工具产品在发热试验中的工作程序,用以确定产品各部件的温升是否符合标准规定的允许值。 2.0适用范围: 适用于符合标准要求的所有园林工具及电动工具产品。 3.0 名词术语: 热平衡 --- 每隔前面已用的测试时间的10%的时间(但不少于5分钟)连续三次读数, 其变化少于1℃时样机所达到的热稳定状态. 4.0 参考文献 : EN/UL/CSA/GLOBE要求 5.0 职责: 实验室所有技术员及工程师 6.0 测试设备: 6.1 变频电源 6.2 交直流电参数测量仪 6.3 热电偶线(K型或J型) 6.4 UL胶水和催化剂 6.5 数据采集仪(安捷伦) 6.6 电机温升测试仪 7.0 测试程序: 7.1 温升测试前的条件。 7.1.1 使用的所有设备都必须以一年为周期进行调校. 载有最后调校日期和调校周期的调校 粘纸必须粘固在每一台仪器上. 7.1.2 检查样机的完整性,零部件,配件,附件应齐全。

7.1.3准备具有代表性的样机在温度23℃±2℃,湿度50﹪RH—90﹪RH之内的环境温度下放置10H,至样机 表面温度达到与室温平衡进行测试。 7.2 温升测试前的准备。 7.2.1 根据标准中对被测产品测试点位置的要求,把热电偶牢固粘接在被测产品各测量点部 位的表面(除非标准另有规定选用其它热电偶外),并应确保连接至数据采集仪的热电偶设置与仪器操作规范的要求一致。 a、热电偶线:J型或K型长度约1mm—2mm,探头为碰焊,材料为铁–铜镍合金(J 型),铬-硅,镍合金(K型) b、胶水,崔化剂(质量需保证,需有证可或能满足要求) c、对于工具类的产品通常需要布点的位置有: 电机绕组,炭刷,轴承(需要钻孔),电机外壳,开关,内部导线,把握手柄,电 阻,电容,PCB,IC,外壳(出风口处)等。 d、焊点:把探头紧贴在被测位置的比较恰当的点,打上一点胶水(胶水不宜过多, 能粘住即可) e、热电偶走线: 尽可能把机器内部的电线整齐,用高温胶带捆住,走边槽或电线槽 f、热电偶出线: 不得从进出风口或其它不安全处引出(尽可能走槽,没槽从外壳边挖一小孔出线) g、连接数据采集仪,检测各热电偶的状态是否正常,再检查环境温度是否稳定,等到 环境温度稳定后才可以开始进行温升试验。 7.2.2 如果用电阻法测试被测产品定、转子线圈温度(温升)时,用导线连接被测产品定子 线圈,作为数据采集仪的引线。转子一般是测试换向器的对角项位或侧角相位使作锥子在转子的对角相位的底部位置凿两个小眼,以便测量。 a、感应电机直接定子绕组线圈引线。 b、永磁电机直接测试转子。 c、串激电机定、转子绕组皆测。 d、定子引线,定子引线在装配好的机器中不得触及到带电或发热部件。引线不得从进 出风口或其它不安全处引出(尽可能走线槽)。引线不可太长(只要能引出机壳方便 测量即可)。 e、转子测试采用对角相位或侧角相位。顶角相位测试中必须断开碳刷,侧角相位测试 至少隔3片。(在换向器片数较少的情况下允许隔2片进行测试)

温升测试规范

研祥智能科技股份有限公司测试规范 MTD-CS-182 A1 温升测试规范 (共 7 页) 起草:冯金勇 2009.7.20 审核:卢栋才 2009.7.20 批准:卫海龙 2009.7.20 研祥智能科技股份有限公司技术管理本部发布 QR-STA-017 版本:A1

目次 前言............................................................................................................................................................... I 修订履历...................................................................................................................................................... II 1 范围 (1) 2 规范性引用文件 (1) 3 术语和定义 (1) 3.1 温升 (1) 3.2 热点 (1) 3.3 温度稳定 (1) 4 要求 (1) 4.1 测试配置的选取 (1) 4.2 测试点的选取 (1) 4.3 加载发热卡 (1) 5 试验方法 (1) 5.1 试验环境条件 (2) 5.2 试验程序 (2) 5.3 判定标准 (2) 5.4 常温温升超标时的选择 (3)

前言 温升测试是对产品散热性能的检测。本规范主要规定了整机、板卡、笔记本、CPCI系列产品温升测试的试验要求。 本规范由研祥智能科技股份有限公司技术管理本部中试部提出并归口管理。 本规范起草部门:中试部 本规范主要起草人:丁登峰冯金勇 本规范审核人:卢栋才 本规范批准人:卫海龙

温升试验

什么是温升测试仪?温升测试仪工作原理、条件 温升测试仪,可用于考核电器附件在接上负载电流时其表面发 热情况,电极温升是否符合标准的要求,能有效检测插销和插座的 插套是否偏薄,插头和插座是否配合良好 在变压器所有型式试验和例行试验项目中以温升试验最为特殊。现在各大厂家一般都采用短路法,人工现场操作。温升试验具有以 下特点:第一,时间较长,大型变压器的试验需要十几个小时甚至 更长时间,即使中小型的试验过程也需要八、九个小时;第二,试验 过程单调枯燥,不仅需要监视加在被试变压器上的总损耗,调节试 验电源保证所加的总损耗,还要长时间地反复测量温度值。由此可见,温升试验常常长时间在夜间进行,夜间人容易疲劳,再加上试 验过程本身的单调,往往容易影响测量准确度,甚至操作错误。为此,实现试验过程的控制自动化就十分必要。 该温升试验自动控制系统引入微计算机技术,既能自动测量记 录相关温度,做出判断,又能测量试验中的相关电量做到实时监测 加在被试变压器上的总损耗等重要参数,并能在偏离预定值时自动 调整试验电源。 1 试验原理及过程简述 1.1温升试验原理 按JB/T501–91《电力变压器试验导则》进行变压器温升试验 有以下几种方法:直接负载法;相互负载法;循环电流法;零序电流法;短路法。 短路法试验是利用变压器短路产生损耗,来进行温升试验的。 目前,一般都用短路法。短路法试验变压器的温升是所有变压器温 升试验中需要电源容量最小,试验电压最低的试验方法,是大型油 浸式变压器温升试验最常用的方法。 1.2试验过程 采用短路法进行温升试验。首先确定试验电源容量和试验电流,连接好试验线路,然后开始试验。试验中监测加在被试变压器上的 损耗和电流,与设定值进行比较,若超过允许误差范围,调整试验 电源;并在间隔预定时间后(一般间隔15~30min)测试一次试验部 位温度,并记录、对测量结果做出判断。一直到检测的顶层油温升 的变化率小于1K/h,并继续维持3h,就认为油顶层温升已经稳定。 取最后一个小时中的平均值为油顶层温升。 之后,开始试验的第二阶段:绕组温升试验(测量热态电阻, 冷态电阻在温升试验前已经测定)。

DDG系列大电流温升测试系统

前言 大电流温升测试系统适用于频率50HZ开关、电流互感器和其它电器设备的电流负载试验及升温试验。该系列产品由操作台及升流器两部分构成,具有输出电流无极调整、电流上升平稳、负荷变化范围大、工作可靠、操作简便安全等特点,也可作为工矿企业进行升流或温升试验的电流源设备。配有互感器,能方便地读取试验电流值。 执行标准 大电流温升引用的国家参考标准: GB 7251低压成套开关设备 GB/T 14048 低压开关设备和控制设备总则 GB 1094.2-2013 电力变压器第2部分液浸式变压器的温升 试验目的 温升试验的目的是测量被试电器各部件的温度或温升,以确定试品是否符合标准要求,采用的是快速模拟试验方法,即主电路通以额定电流。温升试验的特点是: ①时间较长,中小型的试验过程需7、8 h,而大型变压器的试验需十几个小时甚至更长时间; ②耗费大,故许多厂家为了避过用电高峰而在夜间试验; ③试验过程单调枯燥,长时间里反复地测量温度值。传统的温升测试系统不仅误差大,而且占用大量人力和物力。 因此,有必要设计全自动的温升在线测试系统来减轻试验人员的劳动强度,避免事故的发生,提高试验结果的精度和试验过程的自动化水平。本装置主要依

据国家标准GB 7251低压成套开关设备和控制设备总则和GB/T 14048低压开关设备和控制设备总则的相关标准。 功能特点 ?读数直观:本仪器采用全数字显示电流 ?测量准确:具有较高的测量精度,测试值准确。 ?准确的保护功能:全数字化处理,过流保护值的设定均采用数字来实现,使保护更准确。 ?操作模式:程控。 ?含电源至调压器输入的开关、调压器输出至升流器输入的开关,紧急停止 ?具备调压器零位闭锁功能 ?带三相自动平衡系统,保证三相平衡输出,输出电流采样采用进口罗氏线圈并采用当前最新电力电子技术,抗干扰能力强,输出精度高,最高可达0. 2级。

GB14048.4交流接触器温升试验

交流接触器温升试验浅析 电器在工作时,由于电流通过导体和线圈而产生电阻损耗,而这些损耗几乎全部转变为热能。这些热能将影响电器工作的可靠性和使用寿命。 电器产品中的金属材料在温度高达一定数值以后,其机械强度会显著降低。另外电器的触头材料,除考虑机械强度外还要考虑它的氧化问题。一般金属材料的氧化物(银除外)都是电阻率很高的半导体,如铜触头氧化后的接触电阻将增大几十至几百倍,而且氧化的速度与触头的温度有关,当触头温度高于70~80℃时,氧化便会开始剧烈起来。还有电器产品绝缘材料的绝缘强度随温度的升高也会逐渐降低,当绝缘材料的温度超过极限温度时,材料急剧老化。温度越高则老化越快,寿命也就越短。 由于电器产品的材料在温度超过一定数值后其上述性能要变坏,因此为保证电器工作的可靠性和使用寿命,根据材料的机械和绝缘等性能的条件,对电器发热部件的温升允许极限值有明确的规定。温升试验就是测量电器的一些部件在规定的工作条件下的温升值。因此温升试验是试验中一个重要的安全检验项目。本文将根据GB14048.4-2010的规定,讨论交流接触器温升试验的要求和方法,以及测量过程中的有关影响因素。 交流接触器工作时的热源包括主回路和电磁系统两部分,主回路发热包括电流流过回路导体时的损耗、动静触头接触电阻的损耗以及连接导线和接线端的损耗;电磁系统发热包括线圈和分磁环的损耗以及铁磁体的损耗。因此根据标准规定交流接触器的温升试验主要涉及以下几个方面:接线端子的温升,易接近部件的温升,线圈和电磁铁绕组的温升。 一、交流接触器的温升试验要求 在GB14048.4-2010中,对交流接触器的发热部件规定了温升允许极限值。根据规定的试验方法进行试验,所测得的电器各部件温升应不超过以下有关规定值。 1、接线端子的温升 接线端子是用来与外部电路进行连接的电器部件,对于交流接触器来说主要包括主电路的接线端子和辅助电路的接线端子。两种接线端子的温升不应超过GB14048.1-2006表2的

燃烧热的测定实验报告解读

浙江万里学院生物与环境学院化学工程实验技术实验报告 实验名称:燃烧热的测定

一、 实验预习(30分) 1. 实验装置预习(10分)_____年____月____日 指导教师______(签字)成绩 2. 实验仿真预习(10分)_____年____月____日 指导教师______(签字)成绩 3. 预习报告(10分) 指导教师______(签字)成绩 (1) 实验目的 1.用氧弹量热计测定蔗糖的燃烧热。 2.掌握恒压燃烧热与恒容燃烧热的概念及两者关系。 3.了解氧弹量热计的主要结构功能与作用;掌握氧弹量热计的实验操作技术。 4.学会用雷诺图解法校正温度变化。 (2) 实验原理 标准燃烧热的定义是:在温度T 、参加反应各物质均处标准态下,一摩尔β相的物质B 在纯氧中完全燃烧时所放出的热量。所谓完全燃烧,即组成反应物的各元素,在经过燃烧反应后,必须呈显本元素的最高化合价。如C 经燃烧反应后,变成CO 不能认为是完全燃烧。只有在变成CO 2时,方可认为是完全燃烧。同时还必须指出,反应物和生成物在指定的温度下都属于标准态。如苯甲酸在298.15K 时的燃烧反应过程为: (液)(气)(气)(固)O H CO O COOH H C 22 256372 15 +?+ 由热力学第一定律,恒容过程的热效应Q v ,即ΔU 。恒压过程的热效应Q p ,即ΔH 。它们之间的相互关系如下: nRT Q Q V P ?+= (1) 或nRT U H ?+?=? (2) 其中Δn 为反前后气态物质的物质的量之差。R 为气体常数。T 为反应的绝对温度。本实验通过测定蔗糖完全燃烧时的恒容燃烧热,然后再计算出蔗糖的恒压燃烧ΔH 。在计算蔗糖的恒压

温升试验测量审核试验说明20150521

关于参加测量审核的说明 真诚欢迎贵实验室参加本次测量审核活动,为了更好的完成本次测量审核,请注意以下事项: 除测量审核试验说明中我们规定的测试条件外,其余请按照相关测试标准的试验要求进行试验。 1、收到样品后,请尽快将“被测物品接收状态确认表”传真给我们,以确认样品 状态。 2、在试验进行的过程中,如果您偏离了试验相关说明要求,请您在调查表中指出。 为了确定它们对结果分析的影响,给出对于偏离细节的详细说明是非常重要的。 3、当您完成测试后请及时将以下纸质材料和样品寄回给我们 1)结果上报单(需加盖单位公章) 2)测量审核申请书(原件) 3)测量审核试验说明 4)试验调查表 5)被测物品接收状态确认表 6)试验中使用到的仪器设备清单 7)不确定度评定报告(如有) 8)设备计量校准证书复印件 4、如结果出现不满意,我司将及时上报不满意结果至CNAS。 5、完成报告的截止时间为2015 年 5 月13 日,请您在此日期之前务必将报告返还给我们。 如果您有任何疑问请及时咨询我们,

温升试验测量审核试验说明 1.本次测量审核样品为电烤箱:额定电压为220V~,50Hz。 2.本次试验的依据是GB4943.1-2011。 3.在进行本试验之前,不要对该样品进行与本试验指导书无关的预处理。在试验的准备和进程当中,不要对样品进行拆卸和组装,如果样品进行拆卸的话可能会对试验结果产生影响。 3.本次试验的基本步骤如下: a)把样品的底座水平放在涂黑无光的木板表面。 b) 食物盘置于烤网架上,样品放置在测试角测试,样品后表面和左侧面到测试角侧边的距离分别为20cm,具体摆放位置见图3-1,3-2,3-3,3-4。(如没有测试角,请将测试条件用文字和图片在“试验调查表”的第23题中详细描述)。 c) 请在距离样品大约1m处测量环境湿度,并放置热电偶的测量端测量环境温度 (如图1所示) d) 试验在一个无明显对流空气的,温度可控的环境里进行,在整个测试过程中,温湿度应测量和记录。平均环境温度为23±2℃,在测试过程中环境温度的波动不超过3℃。平均相对湿度是50%±20%RH。湿度的波动不应超过5%。 e) 开关旋钮调至图4所示位置(此时,下石英管处于接通状态,上石英管处于关闭状态)。 f) 整个试验过程样品定时器应保持常通。 g)按图2布置温升测试点。 h)样品在额定电压下进行测试。 i) 按“结果报告单”格式记录样品测试点的温升。

EN60335温升测试的介绍

只针对家电产品,也就是使用EN/IEC 60335的产品适用,但是原理部分所有安全测试的基准都是一样的,只是可能受到国家的电源供电系统的不同或产品的差异而有不同的要求。 分成四个部分来介绍温升测试,第一是实验室的5个要素;第二是温升测试的实验室5要素详谈;三是如何去选择测试需要考虑的点;第四是测试完后需要记录的数据和需要注意的问题。另外我觉得重点不是测试,而是之前的准备;而更加重要的是背景知识的积累。 第一部分实验室的5个要素,即试验环境,实验设备,实验样品,操作人员,试验方法,对任何产品均适用。 1)实验环境就是实验所需要满足的温度湿度等要求,有时需要特别的设备来达到这些要求; 2)实验设备这里所指的是你需要检查你所使用的仪器是不是经过校准的,并且是否在有效期以内的,另外这些设备的测试范围是否可以覆盖你所需测试的样品的,如果上面的情况是否请和贵公司的仪器部门联系,不要把问题扯远,工程师不是全能,知道自己需要使用什么量程的仪器就够了; 3)实验样品就是在测试前你需要检查你的样品是完好的,能正常工作的,这个问题说重要也重要,经常我都会发现有些工程师测试时间大于很多分配的时间,经过了解,有时可能就是忘记布点前先检查,结果布完发现样品不工作,不是所有从生产线上抽过来的样品都可以工作的;安全工程师一定不能有的心理就是侥幸,做一份工作就应该有相应工作的职业素养(题外话); 4)操作人员就是指负责这个测试的人员,必须保证测试人员是经过设备和实验方法的培训的,有资格从事这个实验的,如果是没有经验的操作人员需要有资历的工程师指导,很多工厂自己测试都是合格,然后给样板我们测试时就发现不合格,其原因就在于操作人员的问题了;一个臭氧浓度测试我都需要培训一次设备/测试标准/测试样板,指导新工程师测试一次,现场看新工程师测试3次,以后不定期的抽检,这一块对测试的结果可能影响是最大的也最可能出问题的; 5)实验方法,你所执行的测试所依据的标准,或者客户指定的测试方法,不管你有多么熟悉产品和标准,测试前还是浏览一下你所需要参考的标准,确保不遗漏任何信息。 第二部分,温升测试所对应的5要素 1)试验环境,一般part 1部分第五章就是关于测试的要求,比如温度,电压和频率的选者,PTC产品怎么做温升等等都可以在这里找到,一般都是要求20度+/-5度的,如果part 2部分没有特殊要求,就是参考part 1的要求,另外空调需要在焓差室,冰箱需要使用恒温恒湿箱,如果去热带气候的国家风扇类通风设备可能在40度的环境下做(国家差异中可以找到),总之结合part 1和part 2部分和国家差异的要求先了解清楚现在测试样品的环境条件; 2)设备和工具:温度巡检仪,细丝热电偶(fine-wire thermocouple),功率仪,测试角,如果要用绕组法测绕组的温升还需要(电桥或万用表(最好带存储功能的),开关,每个公司可能略有不同);温度巡检仪有些公司和电脑连在一起,系统控制(认证机构基本都用这个),有些是直接打点(工厂使用居多),这里需要注意的是功率仪是否满足你测试产品的电流和功率,尤其是大功率和一些特殊的产品,也就是量程要看一看,比如有些可以产生蒸汽或压力的设备那么你的测试仪器是否可以继续使用呢?以前公司用了一台不可以测试蒸汽类产品的设备来测试,由于这个问题的疏忽公司一次就损失了20万左右;

温升测试的介绍

温升测试的介绍 只针对家电产品,也就是使用EN/IEC 60335的产品适用,但是原理部分所有安全测试的基准都是一样的,只是可能受到国家的电源供电系统的不同或产品的差异而有不同的要求。 我将会分成四个部分来介绍温升测试,第一是实验室的5个要素;第二是温升测试的实验室5要素详谈;三是如何去选择测试需要考虑的点;第四是测试完后需要记录的数据和需要注意的问题。另外我觉得重点不是测试,而是之前的准备;而更加重要的是背景知识的积累。 第一部分实验室的5个要素,即试验环境,实验设备,实验样品,操作人员,试验方法,对任何产品均适用。 1)实验环境就是实验所需要满足的温度湿度等要求,有时需要特别的设备来达到这些要求; 2)实验设备这里所指的是你需要检查你所使用的仪器是不是经过校准的,并且是否在有效期以内的,另外这些设备的测试范围是否可以覆盖你所需测试的样品的,如果上面的情况是否请和贵公司的仪器部门联系,不要把问题扯远,工程师不是全能,知道自己需要使用什么量程的仪器就够了; 3)实验样品就是在测试前你需要检查你的样品是完好的,能正常工作的,这个问题说重要也重要,经常我都会发现有些工程师测试时间大于很多分配的时间,经过了解,有时可能就是忘记布点前先检查,结果布完发现样品不工作,不是所有从生产线上抽过来的样品都可以工作的;安全工程师一定不能有的心理就是侥幸,做一份工作就应该有相应工作的职业素养(题外话); 4)操作人员就是指负责这个测试的人员,必须保证测试人员是经过设备和实验方法的培训的,有资格从事这个实验的,如果是没有经验的操作人员需要有资历的工程师指导,很多工厂自己测试都是合格,然后给样板我们测试时就发现不合格,其原因就在于操作人员的问题了;一个臭氧浓度测试我都需要培训一次设备/测试标准/测试样板,指导新工程师测试一次,现场看新工程师测试3次,以后不定期的抽检,这一块对测试的结果可能影响是最大的也最可能出问题的; 5)实验方法,你所执行的测试所依据的标准,或者客户指定的测试方法,不管你有多么熟悉产品和标准,测试前还是浏览一下你所需要参考的标准,确保不遗漏任何信息。 第二部分,温升测试所对应的5要素 1)试验环境,一般part 1部分第五章就是关于测试的要求,比如温度,电压和频率的选者,PTC产品怎么做温升等等都可以在这里找到,一般都是要求20度+/-5度的,如果part 2部分没有特殊要求,就是参考part 1的要求,另外空调需要在焓差室,冰箱需要使用恒温恒湿箱,如果去热带气候的国家风扇类通风设备可能在40度的环境下做(国家差异中可以找到),总之结合part 1和part 2部分和国家差异的要求先了解清楚现在测试样品的环境条件; 2)设备和工具:温度巡检仪,细丝热电偶(fine-wire thermocouple),功率仪,测试角,如果要用绕组法测绕组的温升还需要(电桥或万用表(最好带存储功能的),开关,每个公司可能略有不同);温度巡检仪有些公司和电脑连在一起,系统控制(认证机构基本都用这个),有些是直接打点(工厂使用居多),这里需要注意的是功率仪是否满足你测试产品的电流和功率,尤其是大功率和一些特殊的产品,也就是量程要看一看,比如有些可以产生蒸汽或压力的设备那么你的测试仪器是否可以继续使用呢?以前公司用了一台不可以测试蒸汽类产品的设备来测试,由于这个问题的疏忽公司一次就损失了20万左右; 再来看看细丝热电偶,热电偶不一定都是细丝的哦,但是标准要求你是用细丝热电偶,何谓细丝,标准也有定义,直径不超过0,3mm的,从这个角度看很多工厂的热电偶都是不

变频器的温升及其试验方法

2012年12月(中)工业技术科技创新与应用 变频器的温升及其试验方法探讨 徐文广 (天津亿鑫通科技股份有限公司,天津300000) 1引言 在传统工业生产中,变频器主要用于对电动机进行控制,而随着科学技术的不断进步,变频器的应用范围越来越广泛,例如可以将变频器应用于逆变电源中。对用户而言,想要保证变频器能够稳定运行,在选用时需对变频器有一个全面的认识。型式试验是判定变频器产品标准的一个重要环节,而温升试验作为型式试验中的一项重要检测步骤,其试验中的温升值是衡量变频器整体性能的一个重要因素。温升数值过大说明变频器很容易在负载过大、电流过强、周围温度过高的情况下被烧毁。相反,温升数值过低则说明变频器在设计时为增加散热而增大了体积,这便造成了成本过高的问题。随着变频器温度的升高,其出现故障的频率也随之增大,成指数上升,其使用寿命随之降低,成指数下降,因此,应严格控制变频器的使用温度,在其散热方面狠下功夫。 2变频器的基本原理及发热部位 常规情况下,变频器一般采用AC-DC-AC的变换方式,如图1所示,为常规变频器的主电路原理图,其中包含了AC-DC的整流模块、能耗模块以及DC-AC的逆变模块。其基本原理是将频率和电压均为固定值的三相电压转换为频率和电压可变的三相交流电。 图1常规变频器主电路原理图 整流模块和逆变模块是变频器中的主要发热部位。由于在整流过程中,通过三相桥式整流电路的电压频率为固定值,所以只能在降低整流电路压降方面控制温升,但这种方法对温升影响不大。逆变模块主要用于转变功率,并且作为输出器件,其发热量较多,对温升影响很大。 目前,绝大部分变频器将绝缘栅双极型晶体管(即IGBT)作为其逆变模块的主要器件。双极型晶体管和金氧半场效晶体管(MOSFET)共同构成了IGBT,由于IGBT工作时,流通电流较大,极间开关频率也较高,这就导致了其功耗很大。若不能有效控制其发热量,将极易损坏IGBT内部结构。在变频器工作时,除了IGBT容易产生发热外,诸如其他器件连接处、特定材料的导线、电阻电感等也会产生热量,因此,应该按国家规定标准控制其温升极限值。 3变频器的温升试验 3.1等效法温升试验 如图2所示为等效法温升试验原理图,利用电阻和电感作为其模拟负载,由于这种方法在调节负载方面不够灵敏,且功耗很大,所以已经很少被采用。 图2等效法温升试验原理图 3.2模拟法温升试验 目前主流的温升试验方法是模拟法,如图3所示为模拟法试验原理图,其基本原理是将电动机与变频器相连,作为其负载,然后将电动机与直流发电机通过连接轴相连,达到驱动发电机的目的。这样,直流发电机产生的电能便能被逆变装置回馈给电网。如想改变变频器的负载大小,仅需对发电机的励磁进行调节便可,试验过程操作简单,而且功耗很低,逆变器对电网无谐波干扰。这种方法非常实用于通用V/F变频器中高转速试验,其逆变效果在直流电压较高时非常明显。在进行模拟法试验时,应注意:作为变频器的负载,电动机的额定容量应与之匹配,发电机和电动机需同轴连接,且容量大抵相当。 图3模拟法温升试验原理图 3.3试验仪器的选择 (1)电压、电流表。应用频谱分析仪所选电压表、电流表进行校核。(2)远红外测试仪。可用其对变频器外表部分进行温度测量,用其显示读数减去当时环境温度即可得到温升值。(3)热电偶或热敏电阻。将其与测试部位相粘连,通过测量其两端热电势或电阻值,然后再与所对应的温升分度表对照,即可检测变频器内部温升。 3.4测量方法 在进行变频器温升试验时,应保证所处环境为室温,注意保证周围环境的通风和散热,在变频器周围半米高、一米远的距离均匀放置若干个温度计,在进行测量时,保证变频器输入电压为额定电压,流经电流为额定电流,测量用电流表应调至0.5级以上,并且其指针应超过2/3量程。这时,方可对变频器的诸如整流模块、IGBT、电路导线等主要部件进行温升测试。对温度进行测量的时间周期一般需达到4个小时以上,记录温升值的频率应保证每隔半个小时一次,当对比温度变化率不足1℃/h时,即可停止试验,说明温升已趋于稳定。 3.5试验判定 表1所示为生产厂商所提供的标准极限温升,将试验结果与之对比,验证其是否符合要求。 表1主要部件极限温升 4结论 事实证明凡经试验验证符合标准要求,并通过长时间考核的变 频器投运以后,都会有很高的可靠性。所以了解变频器的发热原因, 并对其进行温升考核是提高变频器使用寿命的重要前提。 参考文献 [1]冯秋,曹国刚.浅谈IGBT在变频器保护中的应用[J].北京:电力 电子技术应用,,2010,(10);187-188. [2]葛云燕,李新平.低压变频器温升理论研究[J].中国电力企业化 管理,2007,(3);66-67. [3]李宝英,魏长宏.基于变频器的温升试验探讨[J].动力与电气工程, 2011,(03);167-168. 摘要:在日常生活和生产中,已经越来越多的应用到了变频器,其可靠性在很大程度上受散热问题影响。本文首先分析了变频 器的基本原理及发热部位,然后重点阐述了变频器的温升试验方法。 关键词:变频器;温升;试验方法 ;;;;;;;;;;;;;;; ;;;;;;;;;;;;;;;;;;;;;;;;;; ;;;;;; ;;;;;;; ;;;;;; ;;;;;;; ;;;;;;;;;; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 110 --

电机温升测试

电机温升试验 电机中绝缘材料的寿命与运行温度有密切的关系,为保证电机安全、合理的使用,需要监视与测量电机绕组、铁心等其他部分的温度。按国家标准规定,不通绝缘等级的电机绕组有不同的允许温升,如下表所示 若超过规定值,如对B级绝缘的电机,温升每增加10度,电机的寿命将降低一半。因此电机的温升试验,准确的测取个部件的温度,对改进电机的设计和制造工艺,提高电机的质量是非常重要的对电机绕组和其他各部分的温度测量,目前虽已采用不少先进技术,仍可归纳为电阻法、温度计法、埋置检温计法三种基本方法。 一、电阻法 在一定的温度范围内,电机绕组的电阻值将随着温度的上升而相应的增加,而且其阻值与温度之间存在着一定的函数关系。根据这一原理,可以通过测定电机绕组的电阻来确定其温度,故称电阻测量法。 当绕组温度在-50~150度范围时,其温升有下式确定

Δθ=(R f-R0)(k+θ0)/R0+θ0-θf 式中R0、θ0分别为绕组的实际冷态电阻和环境温度;R f、θf分别为绕组热态式电阻和环境温度;k为常数,对铜绕组为235,对铝绕组225 如果不能采用带电测量装置,可采用较先进的快捷、准确、数字显示的各种毫欧表或微欧计等直流电阻测量仪。其基本工作原理是采用高准确度、高稳定度的恒流电源所产生的直流电流通到被测电阻上,则电阻两端的电压降将严格的按照电阻值变化 二、温度计法 对电机中不能采用电阻法测量的部位,如定子铁心,轴承及冷却介质等,可采用温度计法来测量。 温度计法是用温度计贴附在可接触的表面来测量温度,所测得的温度是被测点的表面温度。为了减小误差,从被测点到温度计的热传导尽可能的良好,将温度计球面部分用绝热材料覆盖,以免周围冷却介质的影响。温度计除包括水银、酒精等膨胀式温度计外,也包括半导体温度计及非埋置的热电耦或电阻温度计。在电机中存在交变磁场的部分,不可采用水银温度计,因为交变磁场在水银中产生涡流会发热,以致影响测量的准确性。 三、埋置检温计法 埋置检温计法是讲电阻检温计、热电耦或半导体热敏元件埋植于电机内部不能触及的部位,如定子绕组的槽部和铁心内等,经连接导线引到电机外的二次仪表,从而测定温度值。在测量时应控制测量

量热仪测定发热量的实验结果分析

煤的化验煤的化验 在煤质分析化验等实验中,量热仪测定通常会出现发热量结果不准确的情况综合分析,现总结如下: 1、煤炭化验过程中热容量标定值常常不准确。一般会带来系统误差,多是由于使用的苯甲酸不合格或计算热容量时忘记加硝酸形成热。 (1)(苯甲酸选择标准:应该使用经计量部门检定合格的二级基准计量标准热物质苯甲酸来标定仪器的热容量,并且保证计算正确。) (2)用全自动量热仪进行发热量测定时的内筒水量与热容量标定时的不完全一致,也会使标得的热容量值不适用于发热量测定试验。标定完热容量后应将内筒水的质量(包括内筒本身)记下来,保证在以后所有的试验中内筒水量完全一致。 2、全自动量热仪的搅拌器故障或搅拌速度不均匀。有时热量计的搅拌器接线部分接触不良,有虚接现象,这样会导致搅拌速度时快时慢,时转时停;有时搅拌叶安装得不合适,被卡住而不能自由动作,会导致内筒水局部获得的热量不能及时均匀地散出,从而使测得的内筒温度变化为虚假的温度变化。用这种温升计算出的发热量必然是错误的结果。当发现热容量或发热量重复测定结果高低相差很大时,可从这方面查找原因。 3、使用贝克曼温度计未进行或未能正确地进行毛细孔径和平均分度值的修正。使用贝克曼温度计测量内筒温度变化,若不能正确的进行毛细孔径值和平均分度值的修正,将会使测得的温升不准,从而导致发热量测定的误差。 4、煤质分析仪器过程中内筒中的水量不能保持一致。内筒水的热容量在整个仪器的热容量中占相当大的比重,由于水的比热很大,内筒中水的量若不准确将会使仪器的热容量发生变化,从而导致发热量的测定误差。 5、使用绝热式热量计时,热量计的平衡点有问题。会影响外筒温度跟踪内筒温度的能力,使内外温度不一致,导致过多的热交换。而在绝热式热量计中不对这种热交换进行校正,因此,将会引起发热量的测定误差。平衡点有问题,是指平衡点不稳定或不出现。一则是可能是操作者在使用热量计前未仔细检查和调定平衡点,二则可能是仪器的自动控温线路有问题。平衡点不出现或不稳定的表现,是在较长时间内内筒温度不能达到恒定,或是这次平衡出现了,下次又不出现了。遇到这种情况,操作者应该仔细检查和调定仪器的平衡点,若经多次调试,总是不能成功,则应请厂家修理或帮助查找原因。

干式变压器温升试验

干式变压器温升试验之“模拟负载法” 1.试验方法:模拟负载法。 2.试验原理:通过短路试验和空载试验的组合来确定的。 3.试验目的:是验证变压器冷却能力,能否将由总损耗所产生的热量散发出去,达 到热平衡时使变压器绕组(平均)高于冷却介质的温升不超过规定的限值,同时还要通过红热扫描观测电路联结点、铁心及结构件、绕组等是否有局部过热。 4.试验接线图: 5.试验过程:在额定电压下连续进行的空载试验应一直持续到绕组和铁心的稳定状态, 然后测量各个线圈的温升Δθe;立即进行短路试验,此时一个线圈由开路变成短路,另一 个线圈输入额定电流,直到绕组和铁心稳定为止,然后测量各个线圈的温升Δθc。(试验顺序可以互换) 绕组温升:Δθc(Δθe)=R2/R1(T+θ1)-( T+θ2) 各个线圈的总温升: Δθc’=Δθc [1+(Δθe /Δθc)1/k1]k1 式中:Δθc’--绕组总温升;Δθc—短路试验下的绕组温升; Δθe—空载试验下的绕组温升;T—温度系数,铜时为:235铝时为:225 R1、R2、θ1、θ2—冷态电阻、热态电阻、冷电阻环温、热电阻环温; k1—对于自冷式为0.8;对于风冷式为0.9。 备注:由于某种原因,施加电流没有达到额定电流时折算: I r Δθr=Δθ×(-)q I t 式中:Δθr、Δθt-额定电流下、试验电流下的绕组温升; I r、I t-额定电流、试验电流;(I t >0.9I r) q-AN:1.6、AF:1.8。 首先要测冷电阻并准确的记录绕组温度,接线方式分别同空载试验和负载试验。负载状态下试验的电流应尽可能接近额定持续电流,并不小于此值的90%,电流应持续直到变压器 任何部分每小时的温度上升少于2K。测量高、低压热电阻并准确的记录绕组温度,记录数 据并计算结果。检验绕组的温升是否符合设计要求。 6.温升试验分接位置的选择: a. 对分接范围在±5%以内,且额定容量不超过2500kVA的变压器,如无特殊要求,温 升试验选在主分接上进行。 b. 对分接范围超过±5%,或额定容量大于2500kVA的变压器,温升试验选在最大电流分接上进行。 7.海拔与温升限值的关系: 变压器运行高度超过海拔1000米,但试验场地是正常海拔,温升限值应递减,变压器运行高度低于海拔1000米,但试验场地高于海拔1000米,温升限值应递增,海拔超过1000米每500米为一级, AN:2.5% AF:5% 8.温升稳定的判断方法: 铁芯、绕组温升持续三小时且每小时不超过1K时,变压器视为稳定。 国家标准对温升限值的要求: 部位绝缘系统温度℃最高温升K 线圈 A 105 60 (电阻法) E 120 75 B 130 80

电动机温升的基本测量方法

电动机温升的基本测量方法 电力作业人员都知道,电力设备在运行做工的过程中不可避免的要产生热能,进而产生无功功率等,电动机的运行也不例外,其中电动机的温升是判断电动机是否正常运行的一个重要的参考指标,那么电动机的温升具体是怎么测量的呢? 一,电动机温度热量的产生。 一台电机中的温度分布和热量流通情况十分复杂。各种损耗形成不同的热风损耗转化为热量后,将流过不同的材料,由电机外表面散发至外面。 主要的热源来自电机内部,即来自电流流过导体时产生的铜损耗,以及在铁芯内当磁通变化时所产生的铁损耗。轴承摩擦所产生的热,仅为局部的热源,对绕组和铁芯的温升影响不大。在电机内部,各点的温度是不均匀的。在发热量大而散热不易之处,例如在电枢的槽的底部温度为最高。 当电机开始运转后,由于热量不断产生,各部分温度将继续增加,直到热量的产生和散发达到乎衡为止。 二,电动机散热的基本方式。 1,电机的热量向外发散时主要依靠对流作用,其次为幅射作用。 因为电机的底座和电机所接触的空气都为不良导热体,由传导作用传热主要在电机内部进行。辐射作用的有效表面仅为电机各部分的

外表面。 2,对流作用又可区分为自然对流和强制对流两种。 自然对流作用:是由于和散热面相接触的热空气的上升,且其所逸出的空间由周围的空气的填补; 强制对流作用:是由待备的通风器,例如附装在机轴上的风扇,在冷却表面上形成气流。 旋转着的电枢本身也起着带动气流的作用。限制温升的有效方法是增强散热作用。 三,电动机温升的基本测量方法。 由于电机各部分的发热和散热过程比较复杂,影响的因素很多,所以对温升的计算通常只作近似的估算,在设计电机时,常以经验数据为依据。 测定电机各部分温度的方法,主要有下列四种方法: 1、温度计测量法。 此法用温度计直接测定温度,最为简便。但用温度计仅能接触到电机各部分的表面,所测得的仅为表面温度。用温度计无法测出电机内部的最高温度。 2、电阻测量法。 此法只能用以测定绕组的平均温度。原理: 在电机运转以前,我们先测得绕组的冷态电阻r1,即当绕组温度等于冷却介质温度t1时的电阻。设电机运转以后绕组的湿度升高至t2,绕组的电阻便增加至r2。加温度用摄氏来量度,则对铜线绕组

温升试验不确定度报告

温升试验不确定度分析报告 1. 测量方法 样品为可拆线移动式多位插座10A 220V~,拧除插座的底座螺丝,拆开底座,在指定的温度测量点上布上热电偶,如图1所示。然后盖上底座,重新拧紧螺丝,按照GB 2099.1-2008《家用和类似用途插头插座 第1部分:通用要求》的测试方法对导体温度进行测量,并计算温升结果。 图1 2. 数学模型 温度记录仪是直接读数,模型为 12T T T -=? T ?—— 温升,℃; 2T —— 端子稳定后结束温度,℃; 1T —— 结束时环境温度,℃; 3. 标准不确定度的A 类评定 实验室结束前,对点1的温度进行了10次重复测量,所得数据见表1。 表1 测量结果 ( 单位:℃ ) 1 2

根据贝塞尔公式,1 )()(1012--=∑=n x x i i i x s 求得标准偏差值为0.082℃。 测量结果的标准不确定度为: n x s x s ) ()(==0.082/10=0.026℃ 自由度为:119v n =-= 4. 标准不确定度的B 类评定 4.1 热电偶准确度等级引入的不确定度分量U 2 热电偶为J 型精密级,规格书上的误差为0.4T 或±1.5℃,按均匀分布,则其不确定度为:U 2=1.5/3=0.866℃ 4.2 温度记录仪引入的不确定度分量U 3 由校准证书知道,U=0.4℃,k=2,则其标准不确定度为: U 3=U/k=0.4/2=0.2℃ 4.4 环境温度、通风状态引起的不确定度分量U 4 本次试验环境温度、通风状态的误差不超过0.5℃,按均匀分布,则其不确定度为:U 4=0.5/3=0.289℃ 5. 合成标准不确定度 =+++=24232 221c U U U U U 0.935℃ 6. 扩展不确定度的计算 U=k ×U C =2×0.935=1.87(℃) 7. 不确定度的报告结果 扩展不确定度:U=1.87℃(取包含因子k=2,置信概率P=95%) — 完 —

变压器温升测量方法的比较

变压器温升测量方法的比较 在设备中,变压器作为安全件有着极其重要的作用。如果设备在正常工作或局部产生故障的情况下,而引起变压器温升过高且已超出变压器材料件(如骨架、线包、漆层等)所能承受的温度,可能会使变压器绝缘失效,引起触电危险或着火危险。所以在设备中对变压器温升的测量是必不可少的。通常对变压器温升的测量,我们采用两种方法:热电偶法和电阻法。 一、热电偶法:目前可采用DR030数字温度巡回检测仪来测量变压器温升。测试时可用胶布或用涂 料(氧化铝+溶剂将热电偶丝粘贴在变压器被测部位上。贴好热电偶后,受试变压器加上负载,接通电源,待热稳定或4h后测量其温升。二、电阻法:首先在变压器加负载并接通电源前,应先测量变压器的冷态电阻R1, 然后,给变压器加上负载并接通电源,4h或热稳定后,断开电源,立即测量变压器各线包的热态电阻R2,由以下公式计算出变压器的温升:Δt=R2-R1∕R1(234.5+t1)-( t2- t1) ;R1:试验开始时的阻值(Ω);R2:试验结束时的阻值(Ω);t1:试验开始时的室温(℃) ;t2:试验结束时的室温(℃)。 从上述测试方法不难发现,用热电偶法和电阻法测量变压器温升时,前者测量的是变压器线包外层的温升,后者测得的是变压器线包的平均温升。在GB4943中规定测量变压器的线包温升允许采用热电偶法,测得的结果增加10℃,GB8898则要求用电阻法测量变压器线包的温升。为了了解这两种方法的差异,同时, 为了了解我们在测量变压器温升时,是测量变压器初级线包还是次级线包更能反应出变压器温升的实际情况,所以在对变压器进行温升试验时,特留意了以下两种结构的电源变压器,根据测量结果,进行了比对。热电偶法和电阻法变压器温升测量结果表(纯电阻负载)

温升测试作业规范

更改记录

作业文件 版次 1.0 文件编号温升测试操作规范页码2/3实施日期 1、测试目的:规范本公司漏电保产品品质,使产品在常温下对可触及的表面进行温度测试。 2、测试范围:适用本公司生产之所有漏电保护器产品。 3、引用标准:UL943B标准。 4、使用仪器:热电耦测量温度, 电阻式温度计,调压仪,负载。 5、测试程序: 5.1 测试前确认及基本要求 5.1.1 确认测试样品接一个有效负载,并施加额定电流, 使负载电流值与装置的安培 额定值相同(此项测试也可在做UL943B第21节的总则测试时进行)。 5.1.2 确认测试样品接有效负载后的各项功能完全正常。 5.1.2 确认热电耦所用导线不大于24 AWG(0.21 mm2),用热电耦温度计确定电子 装置加热温度时,一般使用由30 AWG(0.05 mm2)铁镍铜丝构成的热电耦, 以及电位计式指示仪。 5.1.3 热电耦温度计和有关仪器必须准确,要用认可的实验室标准法进行校准。 5.2 对产品进行温升测试 5.2.1 将样品置于室温25℃的环境中,待额定电流值参数稳定后,用热电耦测量温度, 除非无法装上热电耦温度计(例如:装在密封体中)或者除非线圈外壳包括有隔 状物,如石棉或两层以上(1/32英寸或最大要0.8 mm)的棉、纸、人造纤维或 类似物。由于受外部热源的影响,用热电耦温度计测得的线圈子表面的温升可允 许超过最大规定值的10℃(18℉)。用电阻式温度计测得的线圈表面的温升值不 得超过下表30.1所标明的值。 5.2.2 可通过热电耦温度计获得温度读数,热电耦所用导线不大于24 AWG(0.21 mm2),以一定间隔连续获得的三个读数无变化时,就可认爲是恒温,提取读数 的间隔爲上一测试所耗时间的10%,但该间隔不得短于5分钟。 6、结果判定: 6.1 a) 任意点温度过高而有着火危险或损坏装置所用材料, b) 某点温升超过下表30.1规定值。 表30.1 最大可接受温升值

温升测试报告

T EST R EPORT Page Report No. 1 of 4BSB2015020501测试项目:120A温升试验 Appendix Photos No.Description Photo 1测试电流 2测试部位 3测试结果 Generally, The test report is only responsible for samples 测试报告只对样品负责 F-0227-A

TEST REPORT Page Report No. 2 of 4BSB2015020501 300A温度测试数据(单位:℃) MCGS_Time线缆外皮线芯线缆压接处1线缆压接处2室温2015/2/4 19:2721.6 21.3 21.1 21.2 21.0 2015/2/4 19:3227.8 29.9 29.3 28.0 21.3 2015/2/4 19:3731.0 33.1 33.1 31.7 21.5 2015/2/4 19:4232.3 34.6 34.8 33.2 21.7 2015/2/4 19:4733.1 35.6 35.7 34.2 21.8 2015/2/4 19:5233.4 35.9 36.3 34.1 21.9 2015/2/4 19:5733.9 36.3 36.6 34.8 21.9 2015/2/4 20:0234.4 36.4 37.0 35.3 21.9 2015/2/4 20:0734.1 36.5 37.1 34.9 22.0 2015/2/4 20:1234.5 36.7 37.3 35.6 22.0 2015/2/4 20:1734.1 36.7 37.2 35.0 22.2 2015/2/4 20:2234.5 36.7 37.2 35.3 22.1 2015/2/4 20:2734.5 36.7 37.4 35.5 22.1 2015/2/4 20:3234.5 36.7 37.4 35.3 22.1 2015/2/4 20:3734.2 36.7 37.4 35.1 22.2 2015/2/4 20:4234.4 36.9 37.3 35.0 22.2 2015/2/4 20:4734.5 36.9 37.6 35.2 22.1 2015/2/4 20:5234.8 36.4 37.2 34.7 22.5 2015/2/4 20:5733.9 35.7 36.2 33.8 22.6 2015/2/4 21:0233.1 35.4 35.7 33.2 20.9 2015/2/4 21:0733.8 35.5 36.1 33.8 21.2 2015/2/4 21:1233.4 35.1 35.4 33.5 21.9 2015/2/4 21:1733.3 35.1 35.4 33.4 22.3 2015/2/4 21:2233.3 35.1 35.3 33.3 22.4 2015/2/4 21:2733.4 35.2 35.5 33.3 22.6 2015/2/4 21:3233.4 35.1 35.5 33.2 22.0 2015/2/4 21:3733.1 35.5 35.8 33.2 20.3 2015/2/4 21:4233.8 35.8 36.2 34.2 21.3 2015/2/4 21:4733.8 36.0 36.7 35.0 21.9 2015/2/4 21:5234.0 36.3 36.8 34.7 22.0 2015/2/4 21:5734.2 36.5 37.0 34.7 22.1 2015/2/4 22:0234.4 36.5 37.2 35.3 22.1 2015/2/4 22:0734.6 36.8 37.2 35.4 22.1 2015/2/4 22:1234.3 36.6 37.3 35.1 22.2 2015/2/4 22:1734.4 36.7 37.4 35.4 22.2 2015/2/4 22:2234.6 36.8 37.5 35.6 22.2 2015/2/4 22:2734.7 36.9 37.4 35.5 22.2

相关文档
最新文档