圆柱与圆锥的侧面展开图
圆柱和圆锥的侧面展开图及计算方式
圆柱和圆锥的侧面展开图(四)2006-8-1 13:35页面功能【字体:大中小】【打印】【关闭】圆锥侧面展开图(扇形)中的各元素与圆锥的各元素之间的关系极为密切,即扇形的半径是圆锥的母线,扇形的弧长是圆锥底面圆的周长。
因此我们要重视空间图形与平面图形的互相转化。
教学步骤(一)明确目标在小学,同学们除了学习圆柱之外还学习了一个几何体——圆锥,在生活中我们也常常遇到圆锥形的物体,涉及到这些物体表面积的计算.这些圆锥形物体的表面积是怎样计算出来的?这就是本节课“7.21圆锥的侧面展开图”所要研究的内容。
(二)整体感如和圆柱一样,圆锥也是日常生活或实践活动中常见物体,在学生学过圆柱的有关计算后,进一步学习圆锥的有关计算,不仅对培养学生的空间观念有好处,而且能使学生体会到用平面几何知识可以解决立体图形的计算,为学习立体几何打基础。
圆锥的侧面展开图不仅用于圆锥表面积的计算,而且在生产中常用于画图下料上,因此圆锥侧面展开图是本课的重点。
本课首先在小学已具有圆锥直观感知的基础上,用直角三角形旋转运动的观点给出圆锥的一系列概念,然后利用圆锥的模型,把其侧面展开,使学生认识到圆锥的侧面展开图是一个扇形,并能将圆锥的有关元素与展开图扇形的有关元素进行相互间的转化,最后应用圆锥及其侧面展开图之间对应关系进行计算。
(三)教学过程[幻灯展示生活中常遇的圆锥形物体,如:铅锤、粮堆、烟囱帽]前面屏幕上展示的物体都是什么几何体?[安排回忆起的学生回答:圆锥]在小学我们已学过圆锥,哪位同学能说出圆锥有哪些特征?安排举手的学生回答:圆锥是由一个底面和一个侧面围成的,圆锥的底面是一个圆,侧面是一个曲面,从圆锥的顶点到底面圆的距离是圆锥的高。
[教师边演示模型,边讲解]:大家观察Rt,绕直线SO旋转一周得到的图形是什么?[安排中下生回答:圆锥]大家观察圆锥的底面,它是Rt 的哪条边旋转而成的?[安排中下生回答:OA]圆锥的侧面是Rt的什么边旋转而得的?[安排中下生回答,斜边],因圆锥是Rt绕直线SO旋转一周得到的,与圆柱相类似,直线SO应叫做圆锥的什么?[安排中下生回答:轴]大家观察圆锥的轴SO应具有什么性质?[安排学生稍加讨论,举手发言:圆锥的轴过底面圆的圆心,且与底面圆垂直,轴上连接圆锥顶点与底面圆心的线段就是圆锥的高。
圆柱、圆锥的侧面展开图
(2019年1月最新最细)2019全国中考真题解析考点汇编☆圆柱、圆锥的侧面展开图一、选择题1. (2019江苏无锡,4,3分)已知圆柱的底面半径为2cm ,高为5cm ,则圆柱的侧面积是( )A .20cm 2B .20πcm 2C .10πcm 2D .5πcm 2考点:圆柱的计算。
分析:圆柱的侧面积=底面周长×圆柱的高,据此即可求解. 解答:解:圆柱的底面周长是:2×2π=4πcm ,则圆柱的侧面积是:4π×5=20πcm 2. 故选B .点评:本题主要考查了圆柱侧面积的计算方法.2. (2019内蒙古呼和浩特,3,3)已知圆柱的底面半径为1,母线长为2,则圆柱的侧面积为( )A 、2B 、4C 、2πD 、4π 考点:圆柱的计算. 专题:计算题.分析:圆柱侧面积=底面周长×高. 解答:解:圆柱沿一条母线剪开,所得到的侧面展开图是一个矩形,它的长是底面圆的周长,即2π,宽为母线长为2cm ,所以它的面积为4πcm 2.故选D .点评:本题考查了圆柱的计算,掌握特殊立体图形的侧面展开图的特点,是解决此类问题的关键.3. (2019四川广安,6,3分)如图所示,圆柱的底面周长为6cm ,AC 是底面圆的直径,高BC = 6cm ,点P 是母线BC 上一点且PC =23BC .一只蚂蚁从A 点出发沿着圆柱体的表面爬行到点P 的最短距离是( )A .(64π+)cm B .5cm C . D .7cm考点:圆柱的表面展开图,勾股定理 专题:圆柱的表面展开图、勾股定理分析:画出该圆柱的侧面展开图如图所示,则蚂蚁从A 点出发沿着圆柱体的表面爬行到点P 的最短距离为线段AP 的长.在Rt △ACP 中,AC =()632cm =,PC =23BC =4cm ,所以()5AP cm ==.解答:B点评:解决这类问题要善于将空间图形转化为平面图形,采用“化曲为直”的方法,利用圆柱体的表面展开图,把求最短距离问题转化为求两点之间的线段的长度问题.4. (2019新疆乌鲁木齐,7,4)露露从纸上剪下一个圆形和一个扇形的纸片(如图),用它们恰好能围成一个圆锥模型,若圆的半径为1.扇形的圆心角等于120°,则此扇形的半径为( )A 、3B 、6错误!未找到引用源。
圆柱和圆锥的侧面展开图
2010-9-5
5
新课
旋转一周, *矩形ABCD绕直线AB旋转一周,直线用叫做圆柱的 叫做圆柱的母线. 轴,CD叫做圆柱的母线.圆柱侧面上平行于轴的线 段都叫做圆柱的母线. AD、 段都叫做圆柱的母线.矩形的另一组对边AD、BC是 下底面的半径。 上、下底面的半径。 *圆柱一个底面上任意一点到另一底面的垂线 圆柱一个底面上任意一点到另一底面的垂线 段叫做圆柱的高, 段叫做圆柱的高,哪位同学发现圆柱的母线与 高有什么数量关系? 高有什么数量关系? *圆柱上、下底面圆有什么位置关系? 圆柱上、 圆柱上 下底面圆有什么位置关系? * A、B是两底面的圆心,直线 是轴.哪位同学 是两底面的圆心, 是轴. 是两底面的圆心 直线AB是轴 能叙述圆柱的轴的这一条性质? 能叙述圆柱的轴的这一条性质? *哪位同学能按轴、母线、底面的顺序归纳有关 哪位同学能按轴、 哪位同学能按轴 母线、 2010-9-5 圆柱的性质? 圆柱的性质?
6
新课
现在我把圆柱的侧面沿它的一条母线剪开, 现在我把圆柱的侧面沿它的一条母线剪开, 展在一个平面上, 展在一个平面上,观察这个侧面展开图是什 么图形? 么图形?
矩形
这个圆柱展开图——矩 矩 这个圆柱展开图 形的两边分别是圆柱中 的什么线段? 的什么线段? 归纳圆柱的侧面积公式? 归纳圆柱的侧面积公式?
S侧=底面圆周长×圆柱母 侧 底面圆周长 底面圆周长× 2010-9-5 线
7
例题
如图,把一个圆柱形木块沿它的轴剖开, [例1] 如图,把一个圆柱形木块沿它的轴剖开,得矩 已知AD=18CM AB=30CM。 AD=18CM, 形ABCD.已知AD=18CM,AB=30CM。求这个圆柱形木块 的表面积(精确到1C 1C㎡ 的表面积(精确到1C㎡). 解:AD是圆柱底面的直径,AB是圆 AD AB 柱母线,设圆柱的表面积为S,则 S=2S圆+S侧 所以S=2π(18/2)+2π*(18/2)*30 =162π+540π=2204(CM) 答:这个圆柱形木块的表面积约为 2204CM 2010-9-5
九年级数学教案圆柱和圆锥的侧面展开图
九年级数学教案圆柱和圆锥的侧面展开图一、教学目标素质教育目标(一)知识教学点1.使学生了解圆柱的特征,了解圆柱的侧面、底面、高、轴、母线、过轴的截面等概念,了解圆柱的侧面展开图是矩形.2.使学生会计算圆柱的侧面积或全面积.(二)能力训练点1.通过圆柱形成过程的教学,培养学生观察能力、抽象思维能力和概括能力;2.通过圆柱侧面积的计算,培养学生正确、迅速的运算能力;3.通过实际问题的教学,培养学生空间想象能力,从实际问题中抽象出数学模型的能力.(三)德育渗透点1.通过圆柱的实物观察及有关概念的归纳向学生渗透“真知产生于实践”的观点;3.通过圆柱侧面展开图的教学,向学生渗透化曲面为平面,化立体图形为平面图形的“转化”的观点;4.通过圆柱轴截面的教学,向学生渗透“抓主要矛盾、抓本质”的矛盾论的观点.(四)美育渗透点重点·难点·疑点及解决办法1.重点:(1)圆柱的形成手段和圆柱的轴、母线、高等概念及其特征;(2)会用展开图的面积公式计算圆柱的侧面积和全面积.2.难点:对侧面积计算的理解.3.疑点及解决方法:学生对圆柱侧面展开图的长为什么是底面圆的周长有疑虑,为此教学时用模型展开,加强直观性教学.二、教学步骤(一)明确目标在小学,大家已学过圆柱,在生活中我们也常常遇到圆柱形的物体,涉及到圆柱形物体的侧面积和全面积的计算问题如何计算呢这就是今天“7.21圆柱的侧面展开图”要研究的内容。
(二)整体感知圆柱是生产、生活实际中常遇到的几何体,它是怎样形成的,如何计算它的表面积为了回答上述问题,首先在小学已具有直观感知的基础上,用矩形旋转、运动的观点给出圆柱体有关的一系列概念,然后利用圆柱的模型将它的侧面展开,使学生认识到圆柱的侧面展开图是一个矩形,并能将这矩形的长与宽跟圆柱的高(或母线)、底面圆半径找到相互转化的对应关系.最后应用对应关系和面积公式进行计算.〔三〕教学过程(幻灯展示生活中常遇的圆柱形物体,如:油桶、铅笔、圆形柱子等),前面展示的物体都是圆柱.在小学,大家已学过圆柱,哪位同学能说出圆柱有哪些特征(安排举手的学生回答:圆柱的两个底面都是圆面,这两个圆相等,侧面是曲面.)(教师演示模型并讲解):大家观察矩形ABCD,绕直线AB旋转一周得到的图形是什么(安排中下生回答:圆柱).大家再观察,圆柱的上、下底是由矩形的哪些线段旋转而成的(安排中下生回答:上底是以A为圆心,AD旋转而成的,下底是以B为圆心,BC旋转而成的.)上、下底面圆为什么相等(安排中下生回答:因矩形对边相等,所以上、下底半径相等,所以上、下底面圆相等.)大家再观察,圆柱的侧面是矩形ABCD的哪条线段旋转而成的(安排中下生回答:侧面由DC旋转而成的.)矩形ABCD绕直线AB旋转一周,直线用叫做圆柱的轴,CD叫做圆柱的母线.圆柱侧面上平行于轴的线段都叫做圆柱的母线.矩形的另一组对边AD、BC是上、下底面的半径。
部编版六年级数学下册第三单元第1课时《圆柱的认识及侧面展开图》(课件)
(2)沿斜线剪开,再展开。
底面
高
底面的周长
底面
圆柱的侧面不是沿高剪开,可以得到一个平行四边形。
你能总结一下圆柱的特征吗? 1 底面是两个同样大小的圆形。
2 侧面是一个曲面。 3 两个底面间的距离叫“高”,有无数条高。
4 侧面沿高展开是一个长方形或正方形。
下面哪些图形是圆柱?
①
②
③
④
⑤
(×)
(√ ) ( × ) (√) ( ×)两个底面——圆底面圆 一个侧面——曲面
柱 无数条高,高都相等
侧面
长方形
侧面展开 正方形 沿高
底面
平行四边形 沿斜线
圆柱的认识》圆柱的特征
练习
教材习题
1.下面的图形哪些是圆柱?在下面的( )里画“√”。
√
√
√
(选题源于教材P20第1题)
2.把一张长方形的纸横着或竖着卷起来,可以卷成
什么形状?
(选题源于教材P20第5题)
(1)沿高剪开,再展开。
侧面
曲面 长方形 “化曲为直”
这个长方形的长、宽与圆柱有什么关系?把这个长方形重新包 在圆柱上,你能发现什么?
宽 长
底面
底面的周长 高
底面
底面
底面的周长 高
底面
长方形的长=圆柱的底面周长
长方形的宽=圆柱的高
有没有同学展开后得到正方形?
当圆柱的底面周长和高相等时,侧面展开是正方形。
知识点 2 根据圆柱的展开图知识解题
3.把圆柱的侧面展开,不可能得到( C )。
A.长方形
B.正方形
C.等腰梯形
D.平行四边形
4.一个圆柱的侧面展开图是一个正方形,这个圆柱的 底面半径是20 cm。这个圆柱的底面周长和高各是多 少厘米?
圆锥的侧面展开图课件青岛版九年级数学下册
导入
圆锥的侧面积与底面积的和叫做圆锥的全面积(或表面积).
S侧 =prl S全 = S侧S 底 = prl p r2
(r表示圆锥底面的半径, l表示圆锥的母线长 )
导入
弧长与扇形面积计算 圆锥的侧面积计算
R l
l=n1π8R0 S=n3π6R02=12lR
2πr l
r
S = prl
例3 如图7-38,将半径为1、圆心角为90°的扇形薄铁片
2.把圆锥底面圆周上的任意一点与圆锥顶点 的连线叫做圆锥的母线
问题:圆锥的母线有几条?
3.连接顶点与底面圆心的线段
叫做圆锥的高 .
R h
r
观察与思考
图中 R 是圆锥的母线 h 就是圆锥的高 r 是底面圆的半径
R h
r
观察与思考
圆锥的底面半径、高线、母线长 三者之间有什么关系?
R2 = h2 r2
例4 如图7-40,一顶帐篷的上半部是圆锥形,下半部是圆
柱形,已知圆柱的底面半径为、母线长,圆锥的高为1m. (1)制作一项这样的账篷(接缝不计)大约需要用多少帆布 (精确到0.1m²)? (2)帐篷的容积大约是多少(精确到01m³)?
例4 解: (1)圆柱底面周长l≈,
∴S圆柱侧 = lh≈15.07 1.6 = 24.11
解: (2) ∴V圆柱 = p r 2h 3.14 2.42 1.6 28.95.
V圆锥 =
1p
3
r2h
1 3
3.14
2.42
1
6.03.
∴V圆柱 V圆锥 28.95 6.03 35.0.
所以,帐篷的容积大约35.0m².
练习
1、若圆锥的底面半径r =4 cm,高线h =3 cm,则它的侧面展开 图中扇形的圆心角是 288 度.
圆柱、圆锥的侧面展开图及其计算
24.4.2 圆柱、圆锥的侧面展开图及其计算教学目标(一)知识教学目标1.使学生了解圆柱的特征,了解圆柱的侧面、底面、高、轴、母线、过轴的截面等概念,了解圆柱的侧面展开图是矩形.2.使学生会计算圆柱的侧面积或全面积.3.使学生了解圆锥的特征,了解圆锥的侧面、底面、高、轴、母线、过轴的截面等概念,了解圆锥的侧面展开图是扇形。
4.使学生会计算圆锥的侧面积或全面积。
(二)能力训练目标1.通过圆柱、圆锥形成过程的教学,培养学生观察能力、抽象思维能力和概括能力;2.通过圆柱、圆锥侧面积的计算,培养学生正确、迅速的运算能力;3.通过实际问题的教学,培养学生空间想象能力,从实际问题中抽象出数学模型的能力.教学重点·难点·1.重点:(1)圆柱的形成和圆柱的轴、母线、高等概念及其特征;(2)会用展开图的面积公式计算圆柱、圆锥的侧面积和全面积.2.难点:圆柱、圆锥的侧面积计算的理解.教学过程一、复习导入在小学,大家已学过圆柱,在生活中我们也常常遇到圆柱形的物体,涉及到圆柱形物体的侧面积和全面积的计算问题如何计算呢?圆柱是生产、生活实际中常遇到的几何体,它是怎样形成的,如何计算它的表面积?(展开图是一个矩形,并能将这矩形的长与宽跟圆柱的高(或母线)、底面圆半径找到相互转化的对应关系.最后应用对应关系和面积公式进行计算.)二、新课学习(一)圆柱学习(幻灯展示生活中常遇的圆柱形物体,如:油桶、铅笔、圆形柱子等),前面展示的物体都是圆柱.在小学,大家已学过圆柱,哪位同学能说出圆柱有哪些特征?(教师演示模型并讲解):大家观察矩形ABCD,绕直线AB旋转一周得到的图形是什么?大家再观察,圆柱的上、下底是由矩形的哪些线段旋转而成的?上、下底面圆为什么相等?圆柱的侧面是矩形ABCD的哪条线段旋转而成的?矩形ABCD绕直线AB旋转一周,直线用叫做圆柱的轴,CD叫做圆柱的母线.圆柱侧面上平行于轴的线段都叫做圆柱的母线.矩形的另一组对边AD、BC是上、下底面的半径。
冀教版初中九年级下册数学课件 《直棱柱和圆锥的侧面展开图》PPT1
如下图所示 ∵长方体的底面边长分别为2cm和4cm,高为5cm. ∴PA=4+2+4+2=12(cm),QA=5cm, ∴PQ= =13cm.
跟踪训练
圆锥的侧面展开图是一个扇形.
l
o
r
这个扇形的半径是圆锥的母线长,扇形弧长是圆锥底面圆的周长.
.如图小刚用一张半径为24cm的扇形纸板做一个圆锥形帽子,如果做成的圆锥形帽子的底面半径为10cm,那么这张扇形纸板的面积S是多少?
分析圆锥形帽子的底面周长就是扇形的弧长. 解扇形的弧长(即底面圆周长)为 所以扇形纸板的面积
跟踪训练
3.(2016·昆明)如图,从直径为4cm的圆形纸片中,剪出一个圆心角为90°的扇形OAB,且点A,B在圆周上,把它围成一个圆锥,则圆锥的底面圆的半径是cm.
直击中考:
4.如图,一棵直立于地面的树干上下粗细相差不大(可看成圆柱体),测得树干的周长为3米,高为20米,一根紫藤从树干底部均匀地盘绕在树干上,恰好绕7周到达树干的顶部,你能求出这根紫藤至少是多少米吗?请通过计算作出回答。
4242
2.圆柱的底面周长是40,高是30,若在圆柱体的侧面绕一圈丝线作装饰,从下底面A出发,沿圆柱侧面绕一周到上底面B,则这条丝线最短的长度是
跟踪训练:
圆锥是由一个底面和一个侧面围成的图形.
如图,圆锥的底面是一个圆,
l
o
r
连结顶点与底面圆心的线段叫作圆锥的高,
圆锥顶点与底面圆上任意一点的连线段都叫作圆锥的母线,母线的长度均相等
[知识总结]
1.立体图形是由面围成的,同一个立体图形,沿不同方式展开,得到的平面图形是不同的. 2.圆锥的侧面展开图是一个扇形。
圆锥的侧面展开图是扇形,扇形的半径为围成的圆锥的母线长,扇形的弧长为围成的圆锥的底面周长.
高中数学 必修2(北师大)6.6.1柱、锥、台的侧面展开与面积
易错警示
易错原因
纠错心得
解本题易出现的错误有:(1)错误判 断几何体的形状,如绕 x 轴旋转时 漏掉了线段 OB 所产生的圆面,这 样计算时就少了这个圆的面积;(2) 用错旋转体的面积计算公式,特别 是圆台的侧面积公式,导致运算错 误.
确定平面图形旋转形成的几何体 的形状时,要根据旋转体的定义, 将平面图形分成一些矩形、直角三 角形、直角梯形、半圆等,要注意 形成的旋转体之间的关系,尤其是 几何体的挖空或重叠,防止求解几 何体的表面积时造成遗漏或重复 计算.
2.已知长方体同一顶点上的三条棱长分别为 1,2,3,则该长方体 的表面积为( )
A.22 B.20 C.10 D.11
解析:长方体的表面积为 S 表=2×(1×2)+2×(1×3)+2×(2×3)=22. 答案:A
3.若圆柱的轴截面为边长为 2 的正方形,求圆柱的侧面积( ) A.2π B.4π C.6π D.8π
解析:设正三棱锥底面边长为 a,斜高为 h′,
如图所示,过 O 作 OE⊥AB,连接 SE,则 SE⊥AB,且 SE=h′. 因为 S 侧=2S 底,
所以21×3a×h′= 43a2×2, 所以 a= 3h′. 因为 SO⊥OE,所以 SO2+OE2=SE2,
所以
32+
63×
3h′2=h′2,
所以 h′=2 3,所以 a= 3h′=6,
[基础自测]
1.判断正误(正确的画“√”,错误的画“×”) (1)把柱、锥、台的侧面无论沿哪一条侧棱或母线剪开,所得到的 展开图形状都相同,面积都相等.( √ ) (2)无论是哪种几何体,它们的侧面展开图都是极为规则的平面图 形.( × ) (3)空间几何体的侧面积即是表面积.( × ) (4)圆台的侧面展开图是一个扇环.( √ )
《圆柱和圆锥的侧面展开图》教案设计
《圆柱和圆锥的侧面展开图》教案设计第一章:圆柱的侧面展开图1.1 教学目标让学生了解圆柱的侧面展开图的概念。
让学生掌握圆柱的侧面展开图的绘制方法。
让学生能够运用圆柱的侧面展开图解决实际问题。
1.2 教学内容圆柱的侧面展开图的定义。
圆柱的侧面展开图的绘制方法。
圆柱的侧面展开图在实际问题中的应用。
1.3 教学步骤引入圆柱的侧面展开图的概念。
讲解圆柱的侧面展开图的绘制方法。
通过实例展示圆柱的侧面展开图在实际问题中的应用。
1.4 练习与作业让学生绘制圆柱的侧面展开图。
让学生运用圆柱的侧面展开图解决实际问题。
第二章:圆锥的侧面展开图2.1 教学目标让学生了解圆锥的侧面展开图的概念。
让学生掌握圆锥的侧面展开图的绘制方法。
让学生能够运用圆锥的侧面展开图解决实际问题。
2.2 教学内容圆锥的侧面展开图的定义。
圆锥的侧面展开图的绘制方法。
圆锥的侧面展开图在实际问题中的应用。
2.3 教学步骤引入圆锥的侧面展开图的概念。
讲解圆锥的侧面展开图的绘制方法。
通过实例展示圆锥的侧面展开图在实际问题中的应用。
2.4 练习与作业让学生绘制圆锥的侧面展开图。
让学生运用圆锥的侧面展开图解决实际问题。
第三章:圆柱和圆锥的侧面展开图的比较3.1 教学目标让学生了解圆柱和圆锥的侧面展开图的异同。
让学生能够运用侧面展开图的比较解决实际问题。
3.2 教学内容圆柱和圆锥的侧面展开图的异同。
圆柱和圆锥的侧面展开图在实际问题中的应用。
3.3 教学步骤讲解圆柱和圆锥的侧面展开图的异同。
通过实例展示圆柱和圆锥的侧面展开图在实际问题中的应用。
3.4 练习与作业让学生比较圆柱和圆锥的侧面展开图。
让学生运用圆柱和圆锥的侧面展开图解决实际问题。
第四章:圆柱和圆锥的侧面展开图的实际应用4.1 教学目标让学生了解圆柱和圆锥的侧面展开图在实际问题中的应用。
让学生能够运用圆柱和圆锥的侧面展开图解决实际问题。
4.2 教学内容圆柱和圆锥的侧面展开图在实际问题中的应用。
4.3 教学步骤讲解圆柱和圆锥的侧面展开图在实际问题中的应用。
柱、锥、台体、圆的面积与体积公式
柱、锥、台体、圆的面积与体积公式(一)圆柱、圆锥、圆台的侧面积将侧面沿母线展开在平面上,则其侧面展开图的面积即为侧面面积。
1、圆柱的侧面展开图——矩形圆柱的侧面积2,,,S cl rl r l c π==圆柱侧其中为底面半径为母线长为底面周长2、圆锥的侧面展开图——扇形圆锥的侧面积1,,,2S cl rl r l c π==圆锥侧其中为底面半径为母线长为底面周长3、圆台的侧面展开图——扇环圆台的侧面积(二)直棱柱、正棱锥、正棱台的侧面积把侧面沿一条侧棱展开在一个平面上,则侧面展开图的面积就是侧面的面积。
1、柱的侧面展开图——矩形直棱柱的侧面积2、锥的侧面展开图——多个共点三角形'h侧面展开'hc正棱锥的侧面积3、正棱台的侧面展开图——多个等腰梯形c侧面展开'h,c'h正棱台的侧面积说明:这个公式实际上是柱体、锥体和台体的侧面积公式的统一形式 ①即锥体的侧面积公式;②c'=c 时即柱体的侧面积公式;(三)棱柱和圆柱的体积,V Sh h =柱体其中S 为柱体的底面积,为柱体的高斜棱柱的体积=直截面的面积×侧棱长(四)棱锥和圆锥的体积1,3V Sh h =锥体其中S 为锥体的底面积,为锥体的高(五)棱台和圆台的体积说明:这个公式实际上是柱、锥、台体的体积公式的统一形式: ①0S =上时即为锥体的体积公式; ②S 上=S 下时即为柱体的体积公式。
(六)球的表面积和体积公式(一)简单的组合几何体的表面积和体积——割补法的应用割——把不规则的组合几何体分割为若干个规则的几何体;补——把不规则的几何体通过添补一个或若干个几何体构造出一个规则的新几何体,如正四面体可以补成一个正方体,如图:四、考点与典型例题考点一 几何体的侧面展开图例1. 有一根长为5cm ,底面半径为1cm 的圆柱形铁管,用一段铁丝在铁管上缠绕4圈,并使铁丝的两个端点落在圆柱的同一母线的两端A 、D ,则铁丝的最短长度为多少厘米?D CBA解:展开后使其成一线段AC 222425AB BC cm π+=+考点二 求几何体的面积例2. 设计一个正四棱锥形的冷水塔顶,高是0.85m ,底面的边长是1.5m ,制造这种塔顶需要多少平方米铁板?(保留两位有效数字)ESO解:)m (40.313.15.1214S 2=⨯⨯⨯=⇒答:略。
人教版小学六年级数学下册《圆柱的认识及侧面展开图》优秀课件
O 高
O
再仔细读 一下书上 这段话。
请看演示
休息一下,去 完成书上18页 的做一做。
沿高剪开
“化曲为直”,得到一个长方形。
请看演示
底面
高
底面的周长 底面
底面
长方形的长=圆柱的底面周长
底面的周长 高
底面
长方形的宽=圆柱的高
你明白了吗?试着完成 19页做一做的第1题。
当圆柱的底面周长和高相 等时,侧面展开是正方形。
圆柱有什么特征呢?请看教材。
第三步 精读教材
请仔细阅读课本第18页例1,并回答提出的问题。
请看下面的演 示,逐步回答 出以上问题。
底面 底面
底面
继续观察 还有什么 特征呢?
侧 面
底面
圆 柱 的 面
圆柱周围的面(上、下底 面除外)叫做侧面。 底面 两个,圆形,大小相同。
圆柱有三个面。 侧面 一个,曲面。
5.某种饮料罐的形状是圆柱形,底面直径为6 cm,高 为12 cm。将20罐这种饮料按如图所示的方法放入箱 中,这个箱子的长、宽、高至少是多少厘米?
长:6×5=30(cm) 宽:6×4=24(cm) 高:12 cm 答:这个箱子的长至少是30 cm, 宽至少是24 cm,高至少是12 cm。
6.今天是小明的生日,妈妈送给他一个大蛋糕,蛋糕 盒是圆柱形,现在用丝带将它捆扎起来(如下图), 需要多长的丝带呢?(蝴蝶结用去15 dm丝带)
3 圆柱与圆锥
第1课时 圆柱的认识与侧面展开图
RJ 六年级下册
第一步 旧知回顾
我们学过哪些立体图形?
它们有什 么特征?
第二步 新知引入
我们学过的长方体和正方体都是由平面围成 的立体图形。现在我们再来研究一种立体图 形——圆柱。
7.1柱 锥 台的侧面展开与面积
其中c为底面周长,h为高。
11
思考2:把正四棱锥侧面沿一条侧棱剪开再展开, 得到什么图形?侧面积怎么求?
h
h
a
正四棱锥
S正 棱 锥 侧
1 2
ch
c为正棱锥的底周长,h 为斜高,
即侧面等腰三角形的高。
12
思考3:把正三棱台侧面沿一条侧棱剪开再展开, 得到什么图形?侧面积怎么求?
S正棱台侧=
和6cm,高是1.5cm.求三棱台的侧面积。
解:如图,O1,O分别是上、下底面中心,则 O1O=1.5, 连接A1O1并延长交B1C1于D1, A1
连接AO并延长交BC于D,过D1作D1E
⊥AD于E, 在Rt△D1ED中,
A
D1E=O1O=1.5, DE=DO-OE=DO-D1O1=
1 3
3 6 1
1(c 2
c'
)h'
h'
c、c分别为正棱台的上、
h'
下底的周长,h为斜高,
即侧面等腰梯形的高。
13
直棱柱、正棱锥、正棱台的侧面积公式之间 有何关系,如何转化?
c’ห้องสมุดไป่ตู้c
c’=0
S直棱柱侧 ch '
S正棱台侧
1 2
c '
ch'
S正棱锥侧
1 ch ' 2
14
例3、一个正三棱台的上、下底面边长分别为3cm
弧形长度公式:l n R
2
180
思考1: 把圆柱的侧面沿着一条母线剪开再展开, 得到什么图形?展开的图形与原图有什么关系?
r
l
长方形
宽= l
圆柱、圆锥的侧面展开图课件
R r
R
展开
2πr
圆 锥 的 侧 面 展 开 图
四、圆锥的侧面积和全面积 r 2 360 360 288 4.圆锥的侧面积就是弧长为圆锥底面的周长、
半径为圆锥的一条母线的长的扇形面积.
1 S锥侧= s πr×R=πrR ·l 2 s圆锥侧 2×2扇形
l
2. 5
圆 柱 的 结 构 特 征
圆柱:以矩形的一边所在的直线为旋转轴, 其余三边旋转形成的曲面所围成的几何体 叫做圆柱。
A’ 母 线
O’
B’
轴
侧 面
圆柱和棱柱统称为 柱体。
A
O
B
圆柱用表示它的轴的字母表示.如圆柱OO’
如图,将圆柱的侧面沿AA’展开,得 到一个什么图形?圆柱的侧面展开图与 圆柱又怎样的关系?
AC = 6 – 1 = 5 , BC = 24 × 1 = 12, 2 由勾股定理得 AB2= AC2+ BC2=169, ∴AB=13(m) .
例4、如图,圆锥的底面半径为1,母线长为6, 一只蚂蚁要从底面圆周上一点B出发,沿圆锥 侧面爬行一圈再回到点B,问它爬行的最短路 线是多少?
A
B
C
圆锥的轴截面(过圆锥顶点和底面圆心的轴截面)是边长 为4cm的等边三角形ABC,点D是母线AC的中点,一只蚂 蚁从点B出发沿圆锥的表面爬行到点D,这只蚂蚁爬行的最短 距离是多少? A
r R
展开
R
2πr
圆 柱 的 侧 面 展 开 图
展开图是矩形,矩形的两边长分别是圆柱的母线 长和底面圆的周长.
圆锥:以直角三角形的一条直角边所在的直线 为旋转轴,其余两边旋转形成的曲面所围成的 圆 几何体叫做圆锥。 A
圆柱圆锥的侧面展开图
01 圆柱的侧面展开图
圆柱的定义和性质
圆柱是由一个矩形绕 其一边旋转形成的几 何体。
圆柱的侧面是一个曲 面,其高度等于矩形 的边长。
圆锥的侧面展开图面积也可以用扇形面积公式计算,即 (θ/360)πrl^2,其中θ是扇形的圆心角。
03 圆柱和圆锥侧面展开图的 比较
形状比较
圆柱侧面展开图是一个矩形,其长等于圆柱底面的周长, 宽等于圆柱的高。
圆锥侧面展开图是一个扇形,其弧长等于圆锥底面的周长 ,半径等于圆锥的母线长度。
面积比较
利用圆柱和圆锥侧面展开 图的几何意义,可以将实 际问题转化为数学模型, 便于求解。
表面积计算
通过圆柱和圆锥侧面展开 图,可以方便地计算其表 面积,从而了解物体的表 面特性。
三维空间想象
通过观察圆柱和圆锥侧面 展开图,可以培养三维空 间想象能力,有助于解决 更复杂的几何问题。
05 圆柱和圆锥侧面展开图的 实例分析
圆锥的底面半径为r,高为h,母线长 为l。
圆锥的侧面展开图形状
圆锥的侧面展开后是一个扇形,扇形 的半径等于圆锥的母线长,扇形的弧 长等于圆锥底面的周长。
圆锥的侧面展开图是一个等腰三角形 绕其中垂线旋转一周形成的曲面。
圆锥的侧面展开图面积计算
圆锥的侧面展开图面积等于底面周长与母线长的乘积的一半, 即πrl/2。
扇形
当圆锥的侧面展开时,其形状呈 现为一个扇形。扇形的半径等于 圆锥的母线长度,弧长等于圆锥
底面的周长。
表面积变化
圆锥侧面展开后,其表面积由底面 圆周长和扇形弧长组成,与原始圆 锥的侧面积相等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
问题4:圆柱的侧面展开图与圆柱元素之间的关系? 总结:
①圆柱的侧面展开图为矩形;
②一边是圆柱的母线(高),一边是圆柱底面圆的
周长;
③ S圆柱侧=底面圆周长×圆柱母线(S圆柱侧=底面周长
×高).
问题5:将一张矩形的纸片围成圆柱的侧面积,你发 现有什么问题? 能围成两个不同的圆柱 .
随堂练习:
1、如果圆柱底面积为16 πcm2 侧面积为64лcm2 那么它的母线长 为——— 2、一矩形的长AB=3 宽AD=2 若以它的一边为轴旋转一周所得到 的圆柱表面积为———— 3、已知圆柱的底面半径为2cm 对角线长是———— 高是3л cm 则它的侧面展开图的
4、若一个圆柱的底面半径长和母线长是方程 2x2-5x+1=0 的两个根 则该圆柱的侧面展开图的面积是————
第七章 圆
7.21 圆柱与圆锥的侧面展开图
问题1:在生活中常遇的圆柱形物体,如:油桶、铅 笔、圆形柱子等.那么圆柱有哪些特征?
油桶
铅笔、圆形柱子
圆形大厦
问题2:矩形ABCD,绕直线AB旋转一周得到的图形 是什么?
动画演示
A
D
B
C
轴:矩形ABCD绕直线AB旋转
一周所得的图形是一个圆柱, 直线AB叫做圆柱的轴 母线:CD叫做圆柱的母线, 圆柱侧面上平行于轴的线段 都叫做圆柱的母线。
答:木块的表面积为2204cm 2。
S = 2S圆 + S侧
[例2] 用一张面积为900cm2的正方形硬纸片围成一个圆柱的 侧面,求这个圆柱的底面直径。(精确到0.1cm)
解:设正方形的边长为x,圆柱底面直径为d。
x 900 30
依题意得 d=30
d 30
9.6(cm)
答:这个园柱的底面的直经约为9.6cm。
[例1] 如图、把一个圆柱形木块沿它的轴剖开,得矩形ABCD。 已知AD=18cm AB=30cm 求这个圆柱形木块的表面积。 (精确到1cm2) 解:AD是圆柱底面的直径,AB是圆柱的母线 设圆柱表面积为S 则
18 2 18 S=2 ( ) 2 30 2 2
=162 π +540 π ≈2204(cm 2 )
Hale Waihona Puke 高:圆柱的一个底面上任意一点
到另一底面的垂线段叫做圆 柱的高。
圆柱的特征: ①圆柱的轴通过上、下底面的圆心, 且垂直于上、下底; ②圆柱的母线平行于轴且长都相等,等于圆柱的高 ③圆柱的底面圆平行且相等.
S圆柱侧=底面圆周长 圆柱母线
S圆柱侧=底面周长 高
问题3:将圆柱的侧面沿母线剪开,得到什么图形?
总结
知识:圆柱的形成、圆柱的概念、圆柱的性质、圆
柱的侧面展开图及其面积计算.
思想:“转化思想”,求圆柱的侧面积(立体问题
)求矩形的面积(平面问题)
方法:圆柱的侧面展开.
作业 教材P192中2、3、4.