8-核苷酸代谢(7年制检查)-lg

合集下载

第二章 茶树次级代谢(10学时)-第二节(2学时)

第二章 茶树次级代谢(10学时)-第二节(2学时)
茶叶生物化学 Tea Biochemistry
洪永聪 青岛农业大学茶叶研究所
第二章 茶树次级代谢 10学时 学时) (10学时)
第一节 茶树次级代谢的特点(2学时) 茶树次级代谢的特点(2 第二节 茶树中的嘌呤碱代谢(2学时) 茶树中的嘌呤碱代谢(2 第三节 茶树中的茶氨酸代谢(2学时) 茶树中的茶氨酸代谢(2 第四节 茶叶中的多酚类物质代谢(2学时) 茶叶中的多酚类物质代谢(2 第五节 茶叶中的芳香物质代谢(2学时) 茶叶中的芳香物质代谢(2
第二章 茶树次级代谢
2、N-甲基核苷酶
N-甲基核苷酶是咖啡 碱合成中的一个调节 酶,如果没有该酶对 7-甲基黄嘌呤核苷的 水解,以后嘌呤甲基 化,进而生成咖啡碱 的反应就无法进行。 此酶为水解酶,主要 是催化7-甲基黄嘌呤 核苷水解脱去核糖而 转变为7-甲基黄嘌呤 的反应。 其分子量大约为 55,000,最适pH为 8.0-8.5,最适温度为 40-45℃。
第二章 茶树次级代谢
第二节 茶树中的嘌呤碱代谢(2学时)
一、茶树体内咖啡碱的分布 二、茶树体内咖啡碱的生物合成 三、茶树体内咖啡碱的分解
第二章 茶树次级代谢
茶树中的生物碱
茶树中的生物碱以嘌呤碱为主,而嘌呤碱中又以咖 啡碱为主体成分。 咖啡碱为茶树的特征性成分之一。
第二章 茶树次级代谢
一、茶树体内咖啡碱的分布
第二章 茶树次级代谢
4、AMP脱氨酶
AMP脱氨酶是催化腺苷酸 脱氨产生次黄嘌呤核苷酸 的反应。 Fujimori N, Ashihara H(1993) 研究了茶树花芽 中嘌呤碱的生物合成,试 验表明腺嘌呤在雄蕊中先 转化成腺嘌呤核苷酸,然 后转化成可可碱和咖啡碱, 如果加入 AMP脱氨酶抑制 剂,能够抑制转化成嘌呤 碱的放射强度。 说明从腺嘌呤核苷酸合成 咖啡碱受AMP脱氨酶活性 所调控。

基础生物化学 第十二章(1-3节)-核酸的合成与分解

基础生物化学 第十二章(1-3节)-核酸的合成与分解
尿囊素酶
+ H2 O
尿囊素
尿囊酸酶
+ H2 O
尿囊酸 4NH3
2CO2
尿酶
+2H2O
尿素
乙醛酸
二、嘧啶核苷酸的代谢1
1,尿嘧啶与胸腺嘧啶在哺乳动物体内分解时,先
还原成对应的二氢衍生物。
2,破开环状结构分别产生β-丙氨酸及β-氨基异
丁酸。
3,最后成为CO2和NH3
胞嘧啶具有氨基,所以要先在胞嘧啶脱氨酶的作
通过用同位素标记的化合物实验来 确定,即用标有同位素的各种营养物喂 鸽子,然后将其排出的尿酸进行分析。
(一)嘌呤环的元素来源2(图示)
天冬氨酸
N1
6C
CO2
甲酰FH4
C2
5C
N7
甘氨酸
C8 甲酰FH4 N3
谷氨酰胺
4C
N9
谷氨酰胺
(二)合成过程(总)
从头合成嘌呤的途径已于50年代被
Greenberg等基本搞清,此途径是在核糖- 5-磷酸的第一碳原子上逐步增加原子生 成次黄苷酸(肌苷酸) ,然后再由次黄 苷酸转变为腺苷酸和鸟苷酸。 反应分为两个阶段: 1,次黄苷酸的合成(11步反应) 2,腺苷、鸟苷的生成 (南大P480,图12-2)
途径称为补救途径。通过补救途径可以重新 利用核酸分解产生的嘌呤和嘧啶或它们的衍 生物。
从胸腺嘧啶或胸苷转变成胸苷酸的补救途径,
除真菌外,对所有细胞都是一样的,故常利 用放射性同位素标记胸腺嘧啶或胸苷参入DNA 的实验作为检查DNA合成的手段。
三、核苷酸合成的补救途径2
核苷 核糖-1-磷酸
激酶
核糖-5-磷酸
1.鸟嘌呤的分解
动物组织中广泛含有鸟嘌呤酶,可以催化 鸟嘌呤水解脱氨产生黄嘌呤,然后黄嘌呤在黄 嘌呤氧化酶的作用下氧化成尿酸。

核苷酸代谢习题(附答案)

核苷酸代谢习题(附答案)

第10章核苷酸代谢一、选择题A型题1.嘌呤环中C4、C5和N7来自于下列哪种化合物A.甘氨酸B.一碳单位C.谷氨酰胺D.天冬氨酸E.CO22.体内进行嘌呤核苷酸从头合成最主要的组织是A.胸腺B.小肠黏膜C.肝D脾E.骨髓3.嘌呤核苷酸从头合成时首先生成的是A.GMP B.AMP C.IMP D.ATP E.GTP4.胸腺嘧啶的甲基来自A.N10-CHOFH4 B.N5,N10=CH-FH4C.N5,N10-CH2-FH4D.N5-CH3FH4 E.N5-CH=NHFH45.5-氟尿嘧啶的抗癌作用机制是A.合成错误的DNA B.抑制尿嘧啶的合成C.抑制胞嘧啶的合成D.抑制胸苷酸的合成E.抑制二氢叶酸还原酶6.哺乳类动物体内直接催化尿酸生成的酶是A.尿酸氧化酶B.黄嘌呤氧化酶C.腺苷脱氨酶D.鸟嘌呤脱氨酶E.核苷酸酶7.HGPRT(次黄嘌呤鸟嘌呤磷酸核糖转移酶)参与下列哪种反应A.嘌呤核苷酸从头合成B.嘧啶核苷酸从头合成C.嘌呤核苷酸补救合成D.嘧啶核苷酸补救合成E.嘌呤核苷酸分解代谢8.6-巯基嘌呤核苷酸不抑制A.IMP-AMP B.IMP-GMP C.PRPP酰胺转移酶D.嘌呤磷酸核糖转移酶E.嘧啶磷酸核糖转移酶9.下列哪种物质不是嘌呤核苷酸从头合成的直接原料A.甘氨酸B.天冬氨酸C.谷氨酸D.CO2E.一碳单位10.下列化合物中作为合成IMP和UMP的共同原料是A.天冬酰胺B.磷酸核糖C.甘氨酸D.甲硫氨酸E.一碳单位11.下列哪种物质的合成需要谷氨酰胺分子上的酰胺基A.TMP上的两个氮原子B.嘌呤环上的两个氮原子C.UMP上的两个氮原子D.嘧啶环上的两个氮原子E.腺嘌呤上的氨基12.核酸完全水解后不生成A.磷酸B.胞嘧啶C.核糖D.腺苷E.鸟嘌呤13.如下哪一种化合物不是共同用于嘌呤、嘧啶与嘧啶核苷酸的合成A.谷氨酰胺B.天冬氨酸C.磷酸核糖焦磷酸D.氨基甲酰磷酸E.四氢叶酸衍生物14.下列哪种酶缺陷是导致Lesch-Nyhan综合征的原因A.腺苷脱氨酶B.腺嘌呤磷酸核糖转移酶C.嘌呤5′-核苷酸酶D.次黄嘌呤-鸟嘌呤磷酸核糖转移酶E.嘌呤核苷磷酸化酶15.由IMP合成GMP需要A.NAD+、A TP、氨B.NADH、A TP、谷氨酰胺C.NADH、GTP、谷氨酰胺D.NAD+、ATP、谷氨酰胺E.NADP+、GTP、氨16.嘌呤环的四个氮原子来源于A.天冬氨酸、谷氨酰胺、甘氨酸B.谷氨酰胺、氨、天冬氨酸C.甘氨酸、天冬氨酸D.氨、甘氨酸、谷氨酰胺E.尿素、氨17.参与嘌呤核苷酸补救合成途径的酶类是.A.GMP激酶B.二磷酸核苷激酶C.AMP激酶D.腺嘌呤磷酸核糖转移酶E.以上都是18.人类嘧啶代谢的主要产物是A.β-丙氨酸B.尿囊素C.次黄嘌呤D.尿素E.尿酸19.导致痛风症的可能的原因是A.痛风患者出现的高尿酸血症B.尿酸的过度形成C.嘌呤生成减少D.肾脏分泌尿酸能力减低E.血钙升高,导致尿酸钙沉积附:近年研考及执考试题A型题1.RNA和DNA彻底水解后的产物(1992研考)A.核糖相同,部分碱基不同B.碱基相同、核糖不同C.碱基不同、核糖不同D.碱基相同、核糖相同E.部分碱基不同、核糖不同2.合成嘌吟、嘧啶的共同原料是(2004研考)A.甘氨酸B.一碳单位C.谷氨酸D.天冬氨酸E.氨基甲酰磷酸3.从头合成嘌呤的直接原料是(2010研考)A.谷氨酸B.甘氨酸C.天冬酰胺D.氨基甲酰磷酸4.最直接联系核苷酸合成与糖代谢物质是(2000研考)A.葡萄糖B.6-磷酸葡萄糖C.1-磷酸葡萄糖D.1,6 二磷酸果糖E.5-磷酸核糖5.脱氧核糖核苷酸的生成方式主要是(1998研考)A.直接由核糖还原B.由核苷还原C.由一磷酸核苷还原D.由二磷酸核苷还原E.由三磷酸核苷还原6.下列核苷酸经核糖核苷酸还原酶催化能转化生成脱氧核苷酸的是(2009研考) A.NMP B.NDP C.NTP D.dNTP7.人体内嘌呤分解代谢的最终产物是(1997研考、2002执考)A.尿素B.胺C.肌酸D.β丙氨酸E.尿酸8.下列哪种代谢异常,可引起血中尿酸含量增高(1992研考)A.蛋白质分解代谢增加B.胆红素代谢增加C.胆汁酸代谢增加D.嘌呤核苷酸分解代谢增加E.嘧啶核苷酸分解代谢增加9.在体内能分解生成β氨基异丁酸的是(2002研考)A.AMP B.GMP C.CMP D.UMP E.TMP10.胸腺嘧啶分解代谢的产物为(2011研考)A.β-氨基丁酸B.β-氨基异丁酸C.β-丙氨酸D.尿酸11.别嘌呤醇治疗痛风的可能机制是(2013研考)A.抑制黄嘌呤氧化酶B.促进dUMP的甲基化C.促进尿酸生成的逆反应D.抑制脱氧核糖核苷酸的生成12.dTMP是由下列那种核苷酸直接转变而来(1996、1999、2007、2008研考)A.TMP B.TDP C.dUDP D.dUMP E.dCMP13.氮杂丝氨酸干扰核苷酸合成是因为它的结构相似于(2003研考)A.丝氨酸B.甘氨酸C.天冬氨酸D.天冬酰胺E.谷氨酰胺14.谷氨酰胺类似物所拮抗的反应是(2012研考)A.脱氧核糖核苷酸的合成B.dUMP的甲基化C.嘌呤核苷酸的从头合成D.黄嘌呤氧化酶的催化作用15.嘌呤从头合成的氨基酸有(2007执考)A.鸟氨酸B.谷氨酸C.天冬酰胺D.天冬氨酸E.丙氨酸16.男,51岁,近3年来出现关节炎症状和尿路结石,进食肉类食物时病情加重,该患者发生的疾病涉及的代谢途径是(2000执考)A.糖代谢B.脂代谢C.嘌呤核苷酸代谢D.嘧啶核苷酸代谢E.氨基酸代谢17.在嘧啶合成途径中,合成CTP的直接前提是(2014研考)A.UMP B.A TP C.GMP D.UTP18.能直接以甘氨酸为原料合成的化合物是(2018年研考)A.二氢乳清酸B.磷酸核糖焦磷酸C.一磷酸腺苷D.二磷酸尿苷19.直接参与嘌呤.嘧啶和尿素合成的氨基酸是(2017年研考)A.谷氨酰胺B.天冬氨酸C.丙氨酸D.亮氨酸20.在嘧啶合成途径中,合成CTP的直接前体是(2014年研考)A.ATPB.GMPC.UTPD.UMP21.嘌呤核苷酸补救合成途径的底物是A.甘氨酸B.天冬氨酸C.谷氨酰胺D.腺嘌呤22.嘌呤核苷酸从头合成时首先生成的核苷酸中间产物是(2015年研考)A.UMPB.GMPC.AMPD. IMP【参考答案】一、选择题A型题1.A 2.C 3.C 4.C 5.D 6.B 7.C 8.E 9.C 10.B11.B 12.D 13.D 14.D 15.D 16.A 17.D 18.A 19.B附:近年研考及执考试题A型题1.E 2.D 3.B 4.E 5.D 6.B 7.E 8.D 9.E 10.B 11.A 12.D 13.E 14.C 15.D 16.C 17.D 18.C 19.B 20.C 21.D 22.D。

药物代谢组学研究及其在个体化治疗中的应用

药物代谢组学研究及其在个体化治疗中的应用

nl i) ay s 。鉴于 药物 代 谢 组 学 与 个 体 化 治 疗 密 切 相 s 关, 故在 此重 点对药 物代 谢组学 做一 概述 。
以产生 不 同的反应 : 有人 表 现 出 高度 敏 感性 或容 易
产 生不 良反应 , 的却 表 现为 耐 受 性 。究其 原 因何 有 在 , 个 很 重 要 的 因 素 就 是 药 物 反 应 的 个 体 差 一
康 志愿 者 ( 性 2 男 0例 , 女性 1 ) 1 7例 和 9例不 能切除
的非小 细胞肺 癌 患者 ( 性 l 男 0例 , 性 9例 ) 女 的尿
样 中的 P E 和 P E—M 水 平 进 行 检 测 , 现 C 物 的代谢 转 归 。另外 , aa— N ky
疗效果 。M rh y等 应 用 L up e C—MS法 对 3 7名健
病理分 级 。该 研 究 首 次 证 实 了药 物 在 个 体 上 可 能
引起 的反应 能够被 给 药 前 的代 谢 物 表 型所 预测 , 而 给药前 代谢 物 的 表 型能 够 反 应 药 物 代 谢 和药 物 效
出的¨ 。代谢 组 学 是 一 门 检 测 生 物 体 液 中代 谢 物 J 水平 , 提取 相 关 生 物 标 志 物 , 后 经 由综 合 分 析 来 最 揭示 机体 生 物 学 功 能 和状 态 的 学 科 J 。代 谢 组 学 关 注的是 各 种 代 谢 路 径 底 物 和 产 物 的小 分 子 代 谢
应 相关 的多种 因素 , 即药 物代 谢 组 学 对个 体 反 应具
备 预测 性 。继 动 物 实 验 之 后 , ly n 2 0 Cat ¨ 0 9年 的 o 研 究表 明 , 物代谢 组 学 能够 表 现 为 人类 接 受 治疗 药 剂 量 的对 乙酰 氨基 酚 , 通过 个 体 的 前剂 量 的 尿 液代

《生物化学与分子生物学》理论教学大纲

《生物化学与分子生物学》理论教学大纲

生物化学与分子生物学理论教学大纲(供临床医学5年制专业使用)Ⅰ前言生物化学是研究生命的化学,它从分子水平上研究生命现象的本质,即研究生物大分子的结构与功能、物质代谢及其调节、基因信息传递及其调控等。

生物化学和临床医学的关系极为密切。

近代医学经常运用生物化学与分子生物学的理论和技术进行诊断、治疗和预防疾病,而且许多疾病的发病机制需从分子水平上探讨。

重大疾病相关基因的克隆、基因诊断和治疗等都离不开生物化学与分子生物学,因此是一门重要的医学专业基础课。

在医学教育中,学好生物化学与分子生物学知识具有特别重要的意义,希望医学生通过生物化学与分子生物学的学习,掌握生物化学与分子生物学的基本理论和技术,并利用所学知识,理解某些疾病产生的临床症状和某些药物作用的机理,为病理生理学、药理学以及后期的专业课程的学习提供基础理论、基本技能和相关知识。

本大纲是按照我校2019版临床医学5年制专业人才培养方案要求,以2019版国家临床执业医师《生物化学》考试大纲为基本依据编写而成。

为了使教师和学生更好地学习和掌握本课程,现将大纲使用中有关问题说明如下:1、大纲每一章均由教学目的、教学要求和教学内容三部分组成。

教学目的注明教学目标,教学要求分掌握、熟悉和了解三个级别,教学内容与教学要求级别对应,并统一标示(核心内容知识点以下划实线,重点内容以下划虚线,一般内容不标示)便于学生重点学习。

2、教师在保证大纲核心内容的前提下,可根据不同专业要求和不同教学手段,讲授重点内容和介绍一般内容。

3、总教学参考学时为104学时,理论与实验比值9:4,即理论72学时,实验32学时。

Ⅱ课程基本信息一、教学目标:学习本课程后,学生应建立对生物化学与分子生物学基础理论的整体性框架,对从分子水平探讨生命现象的本质有较全面的理解,掌握生物化学与分子生物学的基本理论和基本实验技能,熟悉生物化学与分子生物学专业外语词汇,了解生物化学与分子生物学理论和技术在医学领域的发展和应用趋势,为后期学习其他医学基础课程、临床医学课程及毕业后的继续医学教育奠定基础。

生物化学考研题库(名校真题-核苷酸代谢)【圣才出品】

生物化学考研题库(名校真题-核苷酸代谢)【圣才出品】

第10章核苷酸代谢一、选择题1.生物体嘌呤核苷酸合成途径中首先合成的核苷酸是()。

[四川大学2015研] A.ANPB.GNPC.IMPD.NMP【答案】C【解析】在嘌呤核苷酸生物合成中首先合成次黄嘌呤核苷酸(IMP),次黄嘌呤核苷酸先氧化成黄嘌呤核苷酸(XMP),再氨基化生成嘌呤核苷酸。

2.嘌呤核苷酸从头合成的原料不包括()。

[华东理工大学2017研]A.R-5′-PB.一碳单位C.天冬氨酸、甘氨酸D.Gln、CO2E.S-腺苷蛋氨酸【答案】E3.嘌呤核苷酸与嘧啶核苷酸合成所需的共同原料为()。

[华东理工大学2017研] A.天冬氨酸B.甲酸C.谷氨酸D.丙氨酸E.鸟氨酸【答案】A【解析】嘌呤核苷酸从头合成需要5-磷酸核糖、谷氨酰胺、甘氨酸、天冬氨酸、一碳单位和CO2等原料;而嘧啶核苷酸的从头合成需要谷氨酰胺、天冬氨酸和CO2等原料,因此嘌呤核苷酸和嘧啶核苷酸合成所需的共同原料为天冬氨酸。

4.下列哪种物质在人体内分解代谢中不能产生尿酸?()[厦门大学2014研] A.CoAB.FADC.UMPD.ADP-葡萄糖【答案】C【解析】UMP最终分解生成NH3、CO2及β-丙氨酸。

二、填空题1.在嘌呤核苷酸合成过程中,AMP由前体转变而来,需要消耗______作为能量来源。

[中山大学2018研]【答案】ATP2.核苷酸合成时,GMP是由______核苷酸转变而来。

[中山大学2018研]【答案】次黄嘌呤【解析】嘌呤核苷酸从头合成时先合成次黄嘌呤核苷酸(IMP),然后由IMP再分别转变成AMP和GMP。

3.尿素分子中两个N原子,一个来自______,另一个来自______,通过______由其他氨基酸提供。

[华中农业大学2017研]【答案】氨分子;天冬氨酸;尿素循环4.核苷酸合成包括______途径和______途径。

对某些缺乏前者的组织器官,如脑、骨髓等,后者具有更重要的生理意义。

若______酶活性下降或缺失,会导致______水平升高,引起痛风或自毁容貌症(Lesch Nyhan综合征)。

08生物化学习题与解析汇报--核苷酸代谢

08生物化学习题与解析汇报--核苷酸代谢

核苷酸代谢一、选择题(一)A型题1.下列关于嘌呤核苷酸从头合成的叙述正确的是A.嘌呤环的氮原子均来自于氨基酸的α-氨基B.氨基甲酰磷酸为嘌呤环提供甲酰基C.次黄嘌呤鸟嘌呤磷酸核糖转移酶催化IMP转变成GMPD.由IMP合成AMP和GMP均有ATP供能E.合成过程中不会产生解放嘌呤碱2 .体内进行嘌呤核苷酸从头合成的是A.胸腺B.骨髓C.肝D.脾E.小肠粘膜3.嘌呤核苷酸从头合成时首先生成的是A.AMP B.GMP C.IMP D.ATP E.GTP4.人体内嘌呤核苷酸的分解代谢的主要终产物是A.尿素B.尿酸C.肌酸D.肌酸酐E.β-丙氨酸5.胸腺嘧啶的甲基来自A.N 10 -CHO-FH 4 B.N 5,N 10 =CH-FH 4 C.N 5,N 10 -CH 2 -FH4 D.N 5 -CH 3 -FH 4 E.N 5 -CH=NH-FH 46.哺乳动物嘧啶核苷酸从头合成的主要调节酶是A.天冬氨酸氨基甲酰转移酶B.二氢乳清酸酶C.二氢乳清酸脱氢酶D.乳清酸磷酸核糖转移酶E.氨基甲酰磷酸合成酶II7.嘧啶核苷酸生物合成时CO 2中C原子进入嘧啶哪个部位?A.C 6 B.C 4 C.C 5 D.C 2 E.没有进入8.痛风症患者血中含量升高的物质是A.尿酸B.肌酸C.尿素D.胆红素E.NH 49.不属于嘌呤核苷酸从头合成直接原料的是A.CO 2 B.谷氨酸C.甘氨酸D.一碳单位E.天冬氨酸10.dTMP合成的直接前体是A.dCMP B.dUDP C.dUMP D.UMP E.UDP11.嘌呤核苷酸与嘧啶核苷酸合成的共同原料是A.丙氨酸B.谷氨酸C.甘氨酸D.天冬酰胺E.天冬氨酸12.嘌呤核苷酸分解代谢的共同中间产物是A.IMP B.XMP C.黄嘌呤D.次黄嘌呤E.尿酸13.下面分别表示嘌呤环结构中各原子的编号,谷氨酰胺提供哪些原子A.C 2、C 8 B.C 4、C 5、N 7 C.N 1 D.N 3、N 9 E.C414.哺乳类动物体内直接催化尿酸生成的酶是A.核苷酸酶B.黄嘌呤氧化酶C.鸟嘌呤脱氨酶D.腺苷脱氨酶E.尿酸氧化酶15.最直接联系核苷酸合成与糖代谢的物质是A.5-磷酸核糖B.1-磷酸葡萄糖C.6-磷酸葡萄糖D.1,6-二磷酸葡萄糖E.葡萄糖16.HGRPT(次黄嘌呤-鸟嘌呤磷酸核糖转移酶)参与下列哪种反应A.嘌呤核苷酸从头合成B.嘧啶核苷酸从头合成C.嘌呤核苷酸补救合成D.嘧啶核苷酸补救合成E.嘌呤核苷酸分解代谢17.下列哪种物质不是嘌呤核苷酸从头合成的直接原料A.甘氨酸B.谷氨酸C.天冬氨酸D.CO 2 E.一碳单位18.体内直接还原生成脱氧核苷酸是A.核糖B.核糖核苷C.一磷酸核苷D.二磷酸核苷E.三磷酸核苷19.嘧啶核苷酸合成中,生成氨基甲酰磷酸的部位是A.胞浆B.微粒体C.溶酶体D.线粒体E.细胞核20.下列对嘌呤核苷酸的生物合成不产生直接反馈抑制作用的化合物是A.IMP B.AMP C.ADP D.GMP E.TMP21.氮杂丝氨酸干扰核苷酸合成,因为它是下列哪种化合物的类似物A.天冬氨酸B.谷氨酰胺C.天冬酰胺D.丝氨酸E.甘氨酸22.催化dUMP转变为dTMP的酶是A.核糖核苷酸还原酶B.胸苷酸合酶C.核苷酸激酶D.甲基转移酶E.脱氧胸苷激酶23.下列化合物中作为合成IMP和UMP的共同原料是A.天冬酰胺B.磷酸核糖C.甘氨酸D.甲硫氨酸E.一碳单位24.dTMP合成的直接前体是A.TMP B.TDP C.dUMP D.dUDP E.dCMP25.能在体内分解产生β-氨基异丁酸的核苷酸是A.CMP B.AMP C.IMP D.UMP E.TMP26.别嘌呤醇治疗痛风症是因为能抑制A.尿酸氧化酶B.核苷酸氧化酶C.鸟嘌呤氧化酶D.腺苷脱氢酶E.黄嘌呤氧化酶27.5-氟尿嘧啶抗癌作用的机理是A.抑制胞嘧啶的合成B.抑制胸苷酸的合成C.抑制尿嘧啶的合成D.抑制二氢叶酸还原酶E.合成错误的DNA28.dNTP直接由何种物质转变而来A.ATP B.TMP C.UMP D.NDP E.NMP29.IMP转变成GMP时,发生了A.还原反应B.硫化反应C.氧化反应D.生物氧化E.脱水反应30.干扰dUMP转变成dTMP的是A.别嘌呤醇B.阿糖胞苷C.6-巯基嘌呤D.氮杂丝氨酸E.甲氨蝶呤31.动物体内嘧啶代谢的终产物不包括A.CO 2 B.NH 3 C.β-丙氨酸D.尿酸E.β-氨基异丁酸32.需要谷氨酰胺提供酰胺基的是A.TMP上的2个氮原子B.UMP上的2个氮原子C.嘧啶环上的2个氮原子D.嘌呤环上的2个氮原子E.腺嘌呤C-6上的氨基33.嘧啶环中的两个氮原子来自A.谷氨酸、氨基甲酰磷酸B.谷氨酰胺、天冬酰胺C.谷氨酰胺D.天冬氨酸、谷氨酰胺E.甘氨酸、丝氨酸34.参与嘌呤合成的氨基酸是A.组氨酸B.甘氨酸C.腺苷酸D.胸苷酸E.胞苷酸35.氨基蝶呤和甲氨蝶呤抑制嘌呤合成,因为它们抑制A.ATP磷酸键能的转移B.天冬氨酸的氮转移C.谷氨酰胺的酰胺氮的转移D.CO 2加到新生环中E.二氢叶酸还原成四氢叶酸36.dNDP直接由何种物质转变而来A.dNMP B.dNTP C.ATP D.NDP E.UMP37.与核苷酸从头合成直接有关的维生素包括A.叶酸B.硫胺素C.泛酸D.维生素A E.磷酸吡哆醛38.嘌呤核苷酸从头合成的特点是A.先合成嘌呤碱,再与磷酸核糖结合B.先合成嘌呤碱,再与氨基甲酰磷酸结合C.在磷酸核糖焦磷酸的基础上逐步合成嘌呤核苷酸D.在氨基甲酰磷酸基础上逐步合成嘌呤核苷酸E.不耗能39.DNA合成的底物分子dNTP在细胞内的合成方式为A.NMP → dNMP → dNDP → dNTP B .NDP → dNDP → dNTP C.NTP → dNTP D.NMP → dNMP → dNTP E .UTP → dTTP (二)B型题A.参与DNA合成的原料B.参与RNA合成的原料C.参与NAD +组成D.参与供给能量E.参与细胞信息传递1.cGMP2.dGTP3.AMPA.参与嘌呤核苷酸从头合成B.参与嘌呤核苷酸补救合成C.参与嘧啶核苷酸从头合成D.参与嘌呤核苷酸分解E.参与嘧啶核苷酸分解4.一碳单位5.HGPRT6.黄嘌呤氧化酶A.抑制嘌呤核苷酸从头合成B.抑制NDP → dNDPC.抑制UMP → UDP D .抑制尿酸生成E.抑制嘧啶核苷酸分解7.氮杂丝氨酸8.6MP9.MTX10.别嘌呤醇A.抑制PRPP酰胺转移酶B.抑制氨基甲酰磷酸合成酶C.抑制核苷酸还原酶D.促进PRPP合成酶E.抑制黄嘌呤氧化酶11.UMP12.IMP13.5-磷酸核糖A.AMP类似物B.嘧啶类似物C.叶酸类似物D.谷氨酰胺类似物E.次黄嘌呤类似物14.5-FU15.MTX16.别嘌呤醇A.肝素B.尿酸C.尿素D.β-丙氨酸E.β-氨基异丁酸17.AMP分解的终产物是18.GMP分解的终产物是19.CMP分解的终产物是20.TMP分解的终产物是A.C 6 B.N 7、N 5、N 4 C.N 1 D.N 3、N 9 E.C 2、C821.甘氨酸提供嘌呤环的22.谷氨酰胺提供嘌呤环的23.一碳单位提供嘌呤环的24.CO 2提供嘌呤环的A.UMP B.UTP C.ATP D.IMP E.GTP25.能生成CTP26.生成AMP和GMP的前体27.生成CTP和TMP的前体(三)X型题1.嘌呤核苷酸从头合成的原料包括A.5-磷酸核糖B.CO 2 C.一碳单位D.谷氨酰胺E.天冬氨酸2.PRPP参与的代谢途径A.嘌呤核苷酸的从头合成B.嘧啶核苷酸的从头合成C.嘌呤核苷酸的补救合成D.嘧啶核苷酸的补救合成E.NMP→NDP→NTP3.对嘌呤核苷酸合成产生反馈抑制作用的化合物有A.IMP B.AMP C.GMP D.尿酸E.尿素4.尿酸是下列哪些化合物分解的终产物A.AMP B.UMP C.IMP D.TMP E.GMP5.嘧啶核苷酸分解代谢产物有A.NH 3 B.尿酸C.CO 2 D.β-氨基酸E.GTP6.嘌呤核苷酸合成的限速步骤是合成A.5-磷酸核糖胺B.次黄嘌呤核苷酸C.PRPP D.AMP E.GMP7.别嘌呤醇的作用A.是次黄嘌呤的类似物B.抑制黄嘌呤氧化酶C.可降低痛风患者体内尿酸水平D.增加尿酸水平E.使痛风患者尿中次黄嘌呤和黄嘌呤的排泄量减少8.嘧啶合成的反馈抑制作用是由于控制了下列哪些酶的活性A.氨基甲酰磷酸合成酶II B.二氢乳清酸酶C.天冬氨酸氨基甲酰转移酶D.乳清酸核苷酸脱羧酶E.酰胺转移酶9.参与嘌呤核苷酸合成的氨基酸有A.甘氨酸B.谷氨酰胺C.丙氨酸D.天冬氨酸E.谷氨酸10.合成嘌呤核苷酸和嘧啶核苷酸的共同物质有A.甘氨酸B.谷氨酰胺C.5-磷酸核糖D.天冬氨酸E.脯氨酸11.下列哪些情况可能与痛风症的产生有关A.嘧啶核苷酸合成增强B.嘌呤核苷酸分解增强C.嘧啶核苷酸分解增强D.嘌呤核苷酸代谢酶缺陷E.尿酸排泄障碍12.嘌呤核苷酸从头合成途径受抑制的反应有A.5-氟尿嘧啶B.氮杂丝氨酸C.甲氨蝶呤D.6-巯基嘌呤E.阿糖胞苷二、是非题1.在嘌呤核苷酸的从头合成中,C 2、C 8原子来源于一碳单位。

南开大学2019年医学院基础医学科学学位硕士研究生入学考试《基础医学综合》(704)考试大纲

南开大学2019年医学院基础医学科学学位硕士研究生入学考试《基础医学综合》(704)考试大纲

南开大学医学院2019年基础医学科学学位硕士研究生入学考试《基础医学综合》(704)考试大纲Ⅰ. 考试范围医学院校的基础医学科目,包括生理学、生物化学与分子生物学、细胞生物学、病理生理学等学科的基本理论和专业知识。

Ⅱ. 考试目标要求要求考生系统掌握基础医学科目中的生理学、生物化学与分子生物学、细胞生物学、病理生理学的基础理论和专业知识,并能运用所学理论分析问题、解决问题,具备攻读硕士学位研究生的专业知识和素质,达到研究生入学水平。

Ⅲ. 答题方式及时间:闭卷,笔试,180分钟Ⅳ. 题型结构及比例:1.比例:生理学约30%生物化学与分子生物学约30%细胞生物学约20%病理生理学约20%2.题型:选择题:共50题名词解释:共12题问答题:共12题生理学一、绪论1.生命活动基本特征(新陈代谢、兴奋性、适应性、生殖)2.机体的内环境和稳态3.生理功能的神经调节、体液调节和自身调节4.体内反馈控制系统二、细胞的基本功能1.物质跨细胞膜转运:被动转运、主动转运、胞吐和胞吞2.跨膜信息转导的几种主要方式3.静息电位和动作电位及其产生机制4.局部电位及其特性,动作电位的传导5.受体和配体,细胞的跨膜信号转导6.神经-骨骼肌接头处的兴奋传递7.横纹肌的收缩机制、兴奋-收缩偶联和影响收缩效能的因素三、血液1.血液的基本组成、血量和理化特性2.血细胞(红细胞、白细胞和血小板)的数量、生理特性和功能3.红细胞的生成与破坏4.生理性止血,血液凝固、体内抗凝系统和纤维蛋白的溶解5.ABO 和Rh 血型系统及其临床意义6.输血和交叉配血四、血液循环1.心肌细胞的跨膜电位及其简要的形成机制2.心肌的生理特性:兴奋性、自律性、传导性和收缩性3.心脏的泵血功能:心动周期,心脏泵血的过程和机制,心音,心脏泵血功能的评定,影响心输出量的因素4.动脉血压的形成和影响因素5.静脉血压、中心静脉压及影响静脉回流的因素6.微循环的组成及血流动力学,组织液和淋巴液的生成与回流7.心脏和血管的神经支配,心血管活动的中枢调节,心血管反射8.心血管活动的调节9.动脉血压的短期调节和长期调节10.冠脉循环和脑循环的特点和调节五、呼吸1.肺通气的动力和阻力,胸膜腔内压,肺表面活性物质2.肺容积和肺容量,肺通气量和肺泡通气量3.肺换气的基本原理、过程和影响因素,气体扩散速率,通气/血流比值及其意义4.氧和二氧化碳在血液中的运输方式,氧和二氧化碳的解离曲线及其影响因素5.中枢和外周化学感受器。

9.3 核苷酸抗代谢物与抗肿瘤药物

9.3 核苷酸抗代谢物与抗肿瘤药物

9.3 核苷酸抗代谢物与抗肿瘤药物目录核苷酸的抗代谢物的概念核苷酸抗代谢物是一些嘌呤、嘧啶、氨基酸、核苷和叶酸的类似物。

它们主要以竞争性抑制方式干扰、阻断核苷酸合成代谢,或以假乱真掺入核酸,从而阻止核酸以及蛋白质的生物合成。

这些核苷酸代谢类似物不仅是研究生化代谢途径的工具,也是治疗肿瘤的有效药物。

目录目录抗代谢物在治疗肿瘤时也作用于正常细胞由于肿瘤细胞生长旺盛,因而摄取抗代谢物多,肿瘤细胞被阻碍或杀伤。

但体内代谢旺盛的组织细胞也受抗代谢物的影响,因而出现相应毒副作用。

目录嘌呤核苷酸的抗代谢物嘌呤核苷酸的抗代谢物是一些嘌呤、氨基酸或叶酸等的类似物,它们具有抗肿瘤作用。

嘌呤类似物氨基酸类似物叶酸类似物6-巯基嘌呤6-巯基鸟嘌呤8-氮杂鸟嘌呤等氮杂丝氨酸等氨蝶呤氨甲蝶呤等目录8-azaguanine ,8-AG 6-mercaptopurine ,6-MP 6-thioguanine ,6-TG6-巯基嘌呤6-巯基鸟嘌呤8-氮杂鸟嘌呤嘌呤类似物目录次黄嘌呤(H)6-巯基嘌呤(6-MP)6-巯基嘌呤的结构目录甲酰甘氨酰胺核苷酸(FGAR )PRPP 谷氨酰胺(Gln )=PRA 甘氨酰胺核苷酸(GAR )甲酰甘氨脒核苷酸(FGAM )5-氨基异咪唑-4-甲酰胺核苷酸(AICAR )5-甲酰胺基咪唑-4-甲酰胺核苷酸(FAICAR )IMP 次黄嘌呤(H )PRPP PPi =AMP PRPPPPi =腺嘌呤(A )GMP =PRPPPPi 鸟嘌呤(G)6-MP6-MP6-MP 6-MP6-MP 6-MP目录H 2N C CH CH 2CH COOHO NH 2谷氨酰胺N +N CH 2 C O CH 2CH COOHNH 2O Azaserine :氮杂丝氨酸(谷氨酰胺类似物)氮杂丝氨酸抑制谷氨酰胺参与的反应目录甲酰甘氨酰胺核苷酸(FGAR )PRPP 谷氨酰胺(Gln )=PRA 甘氨酰胺核苷酸(GAR )=甲酰甘氨脒核苷酸(FGAM )5-氨基异咪唑-4-甲酰胺核苷酸(AICAR )5-甲酰胺基咪唑-4-甲酰胺核苷酸(FAICAR )IMP 次黄嘌呤(H )PRPP PPi AMPPRPPPPi =腺嘌呤(A )GMP =PRPPPPi 鸟嘌呤(G)氮杂丝氨酸氮杂丝氨酸氮杂丝氨酸目录NC C C C 7CH 26CH HN 85N HH 2N 3N OH 9CH 210NH C O NH CH COOHCH 2CH 2COOH5,6,7,8-四氢叶酸(FH 4)* FH 4的生成:F FH 2FH 4FH 2还原酶FH 2还原酶NADPH+H +NADP +NADPH+H +NADP +(folic acid)目录N C C C C CH C NN H 2N N NH 2CH 2N C O NH CH COOHCH 2CH 2COOH R R =H 氨喋呤R =CH 3甲氨喋呤(MTX )氨喋呤和甲氨喋呤是叶酸的类似物,能竞争性抑制二氢叶酸还原酶,抑制FH 4的形成。

生物化学(9.4)--作业核苷酸代谢(附答案)

生物化学(9.4)--作业核苷酸代谢(附答案)
核苷酸合成的反馈调节 [答案]核苷酸合成的反馈调节是指在核苷酸的合成过程中,反应产物对反应过 程中关键酶的抑制作用。它一方面根据机体的需要合成核苷酸,另一方面又不会 使核苷酸合成过多,“供过于求”,以节省营养物质和能量的消耗。
核苷酸抗代谢物 [答案]抗代谢物是指在结构上与天然的代谢物类似,如果它们进入人体内,可 与体内的正常代谢物相拮抗,从而影响正常的代谢进行。具体来讲,核苷酸抗代 谢物是指嘌呤、嘧啶、氨基酸或叶酸等的结构类似物,主要以竞争性抑制作用或 以假乱真等方式干扰或阻断核苷酸的合成,从而进一步抑制核酸、蛋白质合成以 及细胞增殖的作用,可作为肿瘤的化疗依据。核苷酸抗代谢物主要有 6—巯基嘌 呤(次黄嘌呤的类似物)、5—氟尿嘧啶(胸腺嘧啶的类似物)、氮杂丝氨酸(谷氨酰胺 的类似物)及甲氨蝶呤(叶酸的类似物)等。
核苷酸的补救合成 [答案]利用体内现成的嘌呤、嘧啶碱或其核苷,经过磷酸核糖转移酶或核苷激酶 等催化的简单反应,合成核苷酸的过程。其合成反应较从头合成要简单,耗能亦 少。通过补救合成,一方面节省了体内的能量和原料,另一方面对于一些缺乏从 头合成核苷酸酶系而只能进行补救合成的组织器官,如脑、骨髓等,该途径则具 有更重要的意义。
成。
试述嘌呤核苷酸补救合成的生理意义。 [答案](1)节省能量和原料。补救合成途径可以节省嘌呤核苷酸从头合成时的能量 和一些氨基酸的消耗。 (2)某些器官缺乏嘌呤核苷酸从头合成的酶系,例如脑、骨髓等,这些器官只能 进行嘌呤核苷酸的补救合成。所以对这些组织器官来讲,补救合成途径具有更重 要的生物学意义。
试述核苷酸的生理功能。 [答案] 核苷酸在体内具有重要的生理功能: (1)、作为核酸合成的原料,这是核苷酸最主要的生理功能。其中 DNA 的合成 原料是 dNTP,RNA 的合成原料是 NTP。 (2)、体内能量的利用形式。ATP 是细胞的主要能量形式,另外,GTP (蛋白质的合成)、UTP(糖原的合成)和 CTP(甘油磷脂的合成)也可提供能量。

孤独症谱系障碍的病因学研究进展

孤独症谱系障碍的病因学研究进展

白修饰等 ,在综合征 以及 非综合征性 AS D中发挥病 因学作用 。
作者单位 :青岛市妇女儿 童医院神经康复科 ,山东青岛市 2 6 3 。作者 简介 :侯梅(9 5) 604 1 6 一,女 ,山东胶州市人 ,硕 士 ,主任医师 ,主要研究
方 向 :儿 科 神 经 康 复 。
ht :w w. r o l ec r t / w c t ni . n p/ jp n o
点 ,认 为 与 疫 苗 接 种 有 关 。 注 射 性 疫 苗 ,尤 其 是 麻 疹 一 腺 炎 一 腮 风 疹 ( als m srb l , mes — e mu p — e aMMR 疫 苗 含 有 的防 腐 剂 邻 乙 汞 硫 u l ) 基 苯 酸 钠 可 能 诱 发 AS 一 D 。但 多 项 研 究 证 实 ,免 疫 和 孤 独 症 之 间 的关 系 没有 支持 证据 u“ 。
64 — 2 —
— —
中 国康复 理论 与实 践 2 1年 7 02 月第 l 卷第 7 C iJ eaiT erPat u.02 V 11, o 8 期 h R hbl ho r , 12 1, o 8 N . n y cJ . 7
基 因 组 加 末 端 着 丝 粒 ( bt o r ) 域 中 检 测 已 知 的删 除 / s lmei 区 u e c 重 复 综 合 征 ,使 用 不 同 的 分 子 学 标 记 密 度 和 类 型 ( A B C、 S NP以 及寡聚核苷酸克隆) ,并 随 着新 的 C NVs 点 而 不 断 升 级 。 热
征 … 。
AS D的 病 因学 特 点 与 智 力 残 疾 和 脑 瘫 的 病 因学 特 点 类 似 , 涉 及 多 种 遗 传 学 和 非 遗 传 学 因 子 , 临 床 表 现 为 原 发 性 单 纯 性 AS 或 多 种 综 合 征 性 AS D D。 AS 个 体 的 病 因 学 诊 断 较 困 难 , D 病 因 明 确 者 仅 占少 数 ,7 %~ 0 的 患 者 病 因 不 明 。 5 8%

专科(生物化学)第9章 核苷酸代谢

专科(生物化学)第9章 核苷酸代谢

酸提供氨基合成腺苷酸代琥珀酸(AMP-S),然后
裂解产生AMP;
• IMP也可在IMP脱氢酶的催化下,以NAD+为受氢体,
脱氢氧化为黄嘌呤核苷酸(XMP),后者再在鸟苷 酸合成酶催化下,由谷氨酰胺提供氨基合成鸟苷酸 (GMP)。
2、AMP和GMP的生成
HOOCCH2CHCOOH
NH2 NH C N C N C 延胡索酸 N HN C CH CH HC C N N HC C 腺苷酸代琥珀 N N R-5'-P
1.嘌呤类似物:
6-巯基嘌呤(6MP)、6-巯基鸟嘌呤、 8-氮杂鸟嘌呤
其中, 6MP临床应用较多.其化学结构与次黄嘌
呤相似,并可在体内转变成6MP核苷酸.因而可抑 制IMP转变为AMP及GMP;可通过竞争性抑制影 响次黄嘌呤-鸟嘌呤磷酸核糖转移酶(HGPRT)而 阻止了补救合成途径;还可反馈抑制PRPP酰基转
MTX
AICAR FAICAR
6MP
IMP
AMP
PPi
A
PRPP
6MP
GMP
PPi
I G
PRPP
氮杂丝氨酸
嘌呤核苷酸抗代谢物的作用
6MP
二、
嘧啶核苷酸的合成
合成途径:
从头合成
补救合成

嘧啶核苷酸的结构
(一)嘧啶核苷酸的从头合成
•定义
嘧啶核苷酸的从头合成是指利用磷
酸核糖、氨基酸、二氧化碳等简单物
2.体内某些组织器官,如脑、骨髓等只能进行补
救合成。
(基因缺陷导致HGPRT完全缺乏的患儿,表现为自
毁容貌征或称: Lesch-Nyhan综合征 )
1、病因:
自毁容貌症(Lesch-Nyhan综合症)

核苷酸的结构、功能与核苷酸代谢试题(有答案)

核苷酸的结构、功能与核苷酸代谢试题(有答案)

八、核苷酸的结构、功能与核苷酸代谢一、A11、嘧啶核苷酸在核苷酸酶和核苷磷酸化酶的催化下,生成A、磷酸、核糖B、磷酸、戊糖C、核糖、嘧啶碱D、磷酸、核糖、嘧啶碱E、磷酸、核糖、β-氨基异丁酸2、关于痛风的描述错误的是A、一种多基因疾病B、多见于成年女性C、某些参与嘌呤核苷酸代谢的酶先天性缺陷可引起D、表现为尿酸生成增多,产生高尿酸血症E、常用次黄嘌呤的类似物别嘌呤醇来治疗痛风症3、IMP转变成GMP的过程中经历了A、氧化反应B、还原反应C、脱水反应D、硫化反应E、生物转化4、AMP在体内分解时首先形成的核苷酸是A、IMPB、XMPC、GMPD、CMPE、UMP5、AMP和GMP在细胞内分解时,最终均生成A、黄嘌呤B、尿酸C、次黄嘌呤核苷酸D、黄嘌呤核苷酸E、黄嘌呤核苷6、嘧啶核苷酸补救途径的主要酶是A、尿苷激酶B、嘧啶磷酸核糖转移酶C、胸苷激酶D、胞苷激酶E、氨基甲酰磷酸合成酶7、6-巯基嘌呤、5-氟尿嘧啶具有抗肿瘤作用的可能机制是A、抑制嘌呤的补救合成B、抑制RNA聚合酶C、抑制DNA聚合酶D、碱基错配E、抑制蛋白质合成8、有关tRNA的结构特点叙述错误的是A、tRNA分子均是单链多核苷酸B、tRNA分子中含有较多的稀有碱基,每一分子常含有7~15个稀有碱基C、tRNA的三级结构呈倒L形D、5′-端和3′-端7对碱基组成的螺旋区称氨基酸臂,能直接与氨基酸结合E、L型的拐角处是DHU环和TΨC环,各环的核苷酸序列差别不大9、转录就是A、DNA依赖的DNA聚合酶催化B、DNA依赖的RNA聚合酶催化C、RNA依赖的DNA聚合酶催化D、RNA依赖的RNA聚合酶催化E、DNA为模板合成RNA的过程10、mRNA约占总RNA的A、9%B、8%C、7%D、5%E、3%11、细胞内含量最多的RNA是A、tRNAB、rRNAC、miRNAD、mRNAE、hnRNA12、携带蛋白质合成所需的氨基酸,并按mRNA上的密码顺序,将其转运到mRNA分子上的是A、DNAB、miRNAC、rRNAD、tRNAE、密码子13、决定合成蛋白质的氨基酸排列顺序的是A、mRNAB、18S rRNAC、28S rRNAD、tRNAE、全部RNA14、RNA主要分为A、信使RNA(mRNA)B、转运RNA(tRNA)C、核糖体RNA(rRNA)D、miRNAE、以上都包括15、核酸的基本组成单位是A、嘌呤B、戊糖C、磷酸D、碱基E、核苷酸16、关于DNA二级结构的结构要点错误的是A、DNA分子由两条反向平行互补的多核苷酸链,组成一条链走向5′→3′,另一条链3′→5′B、两条多核苷酸链通过碱基之间的氢键连接在一起.A与T、G与C配对。

生物化学(查锡良,人卫七版)

生物化学(查锡良,人卫七版)

生物化学(查锡良,人卫七版)绪论 (2)第一章蛋白质的结构与功能 (3)第二章核酸的结构与功能 (5)第三章酶 (7)第四章糖代谢 (9)第五章脂类代谢 (12)第六章生物氧化 (16)第七章氨基酸代谢 (18)第八章核苷酸代谢 (21)第九章物质代谢的联系与调节 (22)第十章DNA的生物合成 (24)第十一章RNA的生物合成 (26)第十二章蛋白质的生物合成 (28)第十三章基因表达调控 (31)第十四章基因重组与基因工程 (34)第十五章细胞信号转导 (36)第十六章血液的生物化学 (39)第十七章肝的生物化学 (42)第十八章维生素与无机物 (43)第十九章糖蛋白、蛋白聚糖和细胞外基质 (45)第二十章癌基因、抑癌基因与生长因子 (46)第二十一章常用分子生物学技术的原理及应用 (48)绪论第一节生物化学发展简史一、叙述生物化学阶段二、动态生物化学阶段三、分子生物学时期1.DNA双螺旋结构被发现2.DNA克隆使基因操作无所不能3.基因组学及其他组学的研究四、我国科学家对生物化学发展的贡献1.协和-吴宪-血液化学分析-血滤液的制备、血糖测定法、蛋白质变性学说2.刘思职-免疫化学-定量分析法研究抗原抗体反应机制3.1965年-人工合成-牛胰岛素-解出三方二锌猪胰岛素的晶体结构4.有机合成+酶促→酵母丙氨酰tRNA第二节当代生物化学研究的主要内容1.生物分子的结构与功能2.物质代谢及调节3.基因信息传递及其调控第三节生物化学与医学一、生物化学已成为生物学各学科之间、医学各学科之间相互联系的共同语言二、生物化学为推动医学各学科发展做出了重要的贡献第一章蛋白质的结构与功能第一节蛋白质的分子组成一、组成人体蛋白质的20种氨基酸属于L-α-氨基酸二、氨基酸可根据侧链结构和理化性质进行分类三、20种氨基酸具有相同或特异的理化性质(一)氨基酸具有两性解离的性质(二)含共轭双键的氨基酸具有紫外吸收性质(三)氨基酸与茚三酮反应生成蓝紫色化合物四、蛋白质是由许多氨基酸残基组成的多肽链(一)氨基酸通过肽键连接而形成肽(二)体内存在多种重要的生物活性肽1.谷胱甘肽2.多肽类激素及神经肽第二节蛋白质的分子结构一、氨基酸的排列顺序决定蛋白质的一级结构二、多肽链的局部主链构象为蛋白质二级结构(一)参与肽键形成的6个原子在同一平面上(二)α-螺旋结构是常见的蛋白质二级结构(三)β-折叠使多肽链形成片层结构(四)β-转角和无规卷曲在蛋白质分子中普遍存在(五)模体是具有特殊功能的超二级结构(六)氨基酸残基的侧链对二级结构形成的影响三、在二级结构基础上多肽链进一步折叠形成蛋白质三级结构(一)三级结构是指整条肽链中全部氨基酸残基的相对空间位置(二)结构域是三级结构层次上的局部折叠区(三)分子伴侣参与蛋白质折叠分子伴侣可分为3类:①热休克蛋白70(Hsp70)②伴侣蛋白③核质蛋白四、含有两条以上多肽链的蛋白质具有四级结构五、蛋白质的分类六、蛋白质组学(一)蛋白质组学基本概念(二)蛋白质组学研究技术平台1.双向电泳分离样品蛋白质2.蛋白质点的定位、切取3.蛋白质点得质谱分析(三)蛋白质组学研究的科学意义第三节蛋白质结构与功能的关系一、蛋白质一级结构是高级结构与功能的基础(一)一级结构是空间构象的基础(二)一级结构相似的蛋白质具有相似的高级结构与功能(三)氨基酸序列提供重要的生物进化信息(四)重要蛋白质的氨基酸序列改变可引起疾病二、蛋白质的功能依赖特定空间结构(一)血红蛋白亚基与肌红蛋白结构相似(二)血红蛋白亚基构象变化可影响亚基与氧结合(三)蛋白质构象改变可引起疾病第四节蛋白质的理化性质一、蛋白质具有两性电离性质二、蛋白质具有胶体性质三、蛋白质空间结构破坏而引起变性四、蛋白质在紫外光谱区有特征性吸收峰五、应用蛋白质呈色反应可测定蛋白质溶液含量1.茚三酮反应2.双缩脲反应第五节蛋白质的分离、纯化与结构分析一、透析及超滤法可去除蛋白质溶液中的小分子化合物二、丙酮沉淀、盐析及免疫沉淀是常用的蛋白质沉淀方法三、利用荷电性质可用电泳法将蛋白质分离四、应用相分配或亲和原理可将蛋白质进行层析分离五、利用蛋白质颗粒沉降行为不同可进行超速离心分离六、应用化学或反向遗传学方法可分析多肽链的氨基酸序列七、应用物理学、生物信息学原理可进行蛋白质空间结构测定1.同源模建2.折叠识别3.从无到有表格&示意图1.表格-氨基酸分类(结构式、英文名、三字符、一字符)2.芳香族氨基酸的紫外吸收3.GSH与GSSH之间的转换4.超二级结构与蛋白质模体(αα、βαβ、ββ、锌指结构、钙结合蛋白之螺旋-转角-螺旋)5.β-巯基乙醇及尿素对核糖核酸酶的作用6.肌红蛋白与血红蛋白的氧解离曲线7.PrP c转变为PrP sc的过程8.离子交换层析分离蛋白质9.凝胶过滤分离蛋白质肽的氨基酸末端测定法第二章核酸的结构与功能第一节核酸的化学组成及一级结构一、核苷酸是构成核酸的基本组成单位二、DNA是脱氧核苷酸通过3’,5’-磷酸二酯键连接形成的大分子三、RNA也是具有3’,5’-磷酸二酯键的线性大分子四、核酸的一级结构是核苷酸的排列顺序第二节DNA的空间结构与功能一、DNA的二级结构是双螺旋结构(一)DNA双螺旋结构的研究背景(二)DNA双螺旋结构模型要点1.DNA是反向平行、右手螺旋的双链结构2.DNA双链之间形成了互补碱基对3.疏水作用力和氢键共同维持着DNA双螺旋结构(三)DNA双螺旋结构的多样性(四)DNA的多链螺旋结构二、DNA高级结构是超螺旋结构(一)原核生物DNA的环状超螺旋结构(二)真核生物DNA高度有序和高度致密的结构三、DNA是遗传信息的物质基础第三节RNA的结构与功能一、mRNA 是蛋白质合成的模板1.大部分真核细胞mRNA的5’-末端都以7-甲基鸟嘌呤-三磷酸核苷(m7GpppN)为起始结构2.在真核生物mRNA的3’-末端,有一段由80~250个腺苷酸连接而成的多聚腺苷酸结构,称为多聚腺苷酸尾或多聚A尾3.mRNA依照自身的碱基顺序指导蛋白质氨基酸顺序的合成,也就是为氨基酸的生物合成提供模板4.mRNA的成熟过程是hnRNA 的剪接过程二、t RNA是蛋白合成的氨基酸载体1.t RNA含有多种稀有碱基2.t RNA具有茎环结构3.t RNA的3’-末端连有氨基酸4.t RNA的反密码子能够识别mRNA的密码子三、以rRNA为组分的核糖体是蛋白质合成的场所四、snmRNA参与了基因表达的调控五、核酸在真核细胞和原核细胞中表现了不同的时空特异性第四节核酸的理化性质一、核酸分子具有强烈的紫外吸收二、DNA变性是双链解离为单链的过程三、变性的核酸可以复性或形成杂交双链第五节核酸酶结构&流程图1.构成核苷酸的嘌呤和嘧啶的化学结构式2.构成核苷酸的核糖和脱氧核糖的化学结构式3.核苷和脱氧核苷的化学结构式4.核苷酸的化学结构(包括3’,5’-cAMP)5.多聚腺苷酸的化学结构式6.DNA双螺旋结构示意图(数据)7.封闭的环状DNA分子(形成超螺旋)8.真核生物DNA形成核小体的示意图9.双链DNA经历折叠、盘绕形成高度有序和高度致密染色体的示意图10.表格-真核细胞内主要RNA的种类和功能(5+3)11.成熟的真核mRNA的结构示意图12.mRNA的甲基化位点(2点)13.真核生物mRNA的帽结构及加帽过程14.真核生物mRNA多聚A尾结构的形成过程15.鸡卵清蛋白mRNA的成熟过程16.t RNA分子中含有的稀有碱基17.t RNA的二级结构和三级结构18.t RNA的反密码子与m RNA的密码子相互识别示意图19.表格-核糖体的组成(原核、真核)20.由核糖体、mRNA和t RNA形成的复合体21.真核细胞和原核细胞基因表达的时空特异性22.DNA在解链过程中表现出得增色效应23.DNA解链温度曲线24.核酸分子复性和杂交的示意图第三章酶第一节酶的分子结构与功能一、酶的分子组成中常含有辅助因子二、酶的活性中心是酶分子中执行其催化功能的部位三、同工酶是催化相同化学反应但一级结构不同的一组酶第二节酶的工作原理一、酶反应特点(一)酶反应具有极高的效率(二)酶促反应具有高度的特异性1.绝对特异性2.相对特异性3.有些酶具有立体异构特异性(三)酶促反应具有可调节性二、酶通过促进底物形成过渡态而提高反应速率(一)酶比一般催化剂更有效地降低反应活化能(二)酶和底物的结合有利于底物形成过渡态1.诱导契合作用使酶与底物密切结合2.邻近效应与定向排列使诸底物正确定位于酶的活性中心3.表面效应使底物分子去溶剂化(三)酶的催化机制呈多元催化1.酸碱催化作用:酶是两性电离的蛋白质,活性中心可为质子供体,或质子受体,参与质子转移2.共价催化作用:酶的催化基团通过形成瞬间共价键而将底物激活3.亲核催化作用:中心基团属于亲核基团,可提供电子给带正电荷的过渡态中的中间物,加速产物生成第三节酶促反应动力学一、底物浓度对反应速率影响的作图呈矩形双曲线(一)米-曼氏方程式揭示单底物反应的动力学特性(二)Km与Vm是最有意义的酶促反应动力学参数1.Km值=酶促反应速率为最大速率一半时的底物浓度2.Km值愈小,酶对底物的亲和力愈大3.Km值是酶特性常数之一,只于酶的结构、底物和反应环境(T Ph 离子强度等)有关,与酶的浓度无关4.Vmax是酶完全被底物饱和时的反应速率,与酶的浓度呈正比(三)Km值和Vmax值可以通过作图法求取二、底物足够时酶浓度对反应速率的影响呈直线关系三、温度对反应速率的影响具有双重性四、P H通过改变酶和底物分子解离状态影响反应速率五、抑制剂可逆地或不可逆地降低酶促反应速率(一)不可逆性抑制剂主要与酶共价结合(二)可逆性抑制剂与酶和(或)酶-底物复合物非共价结合1.竞争性抑制作用的抑制剂与底物竞争结合酶的活性中心2.非竞争性抑制作用的抑制剂不改变酶对底物的亲和力3.反竞争性抑制作用的抑制剂仅与酶-底物复合物结合六、激活剂可加快酶促反应速率第四节酶的调节一、调节酶实现对酶促反应速率的快调节(一)变构酶通过变构调节酶的活性(二)酶的化学修饰调节是通过某些化学基团与酶共价结合与分离实现的(三)酶原的激活使无活性的酶原转变成有催化活性的酶二、酶含量的调节包括对酶合成与分解速率的调节(一)酶蛋白合成可被诱导或阻遏(二)酶的降解与一般蛋白质降解途径相同第五节酶的分类与命名一、酶可根据其催化的反应类型予以分类:1.氧化还原酶类2.转移酶类3.水解酶类4.裂解酶类(裂合酶类,synthase):合酶属此类5.异构酶类6.合成酶类(连接酶酶,ligases)二、每一种酶均有其系统名称和推荐名称第六节酶与医学的关系一、酶和疾病密切相关(一)酶的质、量与活性的异常均可引起某些疾病(二)酶的测定有助于对许多疾病的诊断1.酶活性测定和酶活性单位是定量酶的基础2.血清酶对某些疾病的诊断具有更重要的价值(三)酶和某些疾病的治疗关系密切二、酶在医学上的应用领域广泛(一)酶作为试剂用于临床检验和科学研究1.酶法分析是以酶作为工具对化合物和酶活性进行定量分析的一种方法2.酶标记测定法是酶学与免疫学相结合的一种测定方法3.工具酶广泛地应用于分子克隆领域(二)酶的分子工程是方兴未艾的酶工程学1.固定化酶是固相酶2.抗体酶是具有酶活性的抗体结构&流程示意图1.表格-某些辅酶(辅基)在催化中的作用2.表格-几种蛋白激酶的共有序列3.底物浓度对酶促反应速率的影响4.对氨基苯甲酸-磺胺类药物5.表格-各种可逆性抑制作用的比较第四章糖代谢第一节概述一、糖的主要生理功能是氧化供能二、糖的消化吸收主要是在小肠进行三、糖代谢的概况第二节糖的无氧代谢一、糖无氧氧化反应过程分为糖酵解途径和乳酸生成两个阶段(一)葡萄糖经糖酵解途径分解为两分子丙酮酸1.葡萄糖磷酸化为6-磷酸葡萄糖2.6-磷酸葡萄糖变为6-磷酸果糖3.6-磷酸果糖转变为1,6-二磷酸果糖4.磷酸己糖裂解为2分子磷酸丙糖5.磷酸二羟丙酮转变为3-磷酸甘油醛6.3-磷酸甘油醛氧化为1,3-二磷酸甘油酸7.1,3-二磷酸甘油酸转变为3-磷酸甘油酸8.3-磷酸甘油酸转变为2-磷酸甘油酸9.2-磷酸甘油酸脱水生成磷酸烯醇式丙酮酸10.磷酸烯醇式丙酮酸将高能磷酸基转移给ADP形成ATP和丙酮酸(二)丙酮酸被还原为乳酸二、糖酵解的调控是对3个关键酶活性的调节(一)6-磷酸果糖激酶-1对调节糖酵解途径的流量最重要(二)丙酮酸激酶是糖酵解的第二个重要调节点(三)己糖激酶受到反馈调节三、糖酵解的主要生理意义是机体缺氧的情况下快速功能第三节糖的有氧氧化一、糖有氧氧化的反应过程包括糖酵解途径、丙酮酸氧化脱羧、三羧酸循环及氧化磷酸化(一)葡萄糖循糖酵解途径分解为丙酮酸(二)丙酮酸进入线粒体氧化脱羧生成乙酰CoA1.丙酮酸脱羧形成羟乙基-TPP2.由二氢硫辛酰胺转乙酰酶E2→乙酰硫辛酰胺-E23.生成乙酰CoA,E2二硫键还原为两个巯基4.二氢硫辛酰胺脱氢酶E3,脱氢生成FADH2和硫辛酰胺5.FADH2→NADPH+H+二、三羧酸循环是以形成柠檬酸为起始物的循环反应系统(一)TCA循环由8步代谢反应组成1.乙酰CoA与草酰乙酸缩合成柠檬酸2.柠檬酸经顺乌头酸转变为异柠檬酸3.异柠檬酸氧化脱羧转变为α-酮戊二酸4.α-酮戊二酸氧化脱羧生成琥珀酰CoA5.琥珀酰CoA合成酶催化底物水平磷酸化反应6.琥珀酸脱氢生成延胡索酸7.延胡索酸加水生成苹果酸8.苹果酸脱氢生成草酰乙酸(二)TCA循环受底物、产物、关键酶活性的调节1.TCA循环中有3个关键酶2.TCA循环与上游和下游的反应相协调3.TCA循环是糖、脂肪、氨基酸代谢联系的枢纽三、糖有氧氧化是机体获得ATP的主要方式四、糖有氧氧化的调节是基于能量的需求五、巴斯德效应是指糖有氧氧化抑制糖酵解的现象第四节葡萄糖的其它代谢途径一、磷酸戊糖途径生成NADPH和磷酸戊糖(一)磷酸戊糖途径的反应过程分为两个阶段1.6-磷酸葡萄糖在氧化阶段生成磷酸戊糖和NADPH2.经过基团转移反应进入糖酵解途径(二)磷酸戊糖途径主要受NADPH/NADP+比值调节(三)磷酸戊糖途径的生理意义在于生成NADPH和5-磷酸核糖1.为核酸的生物合成提供核糖2.提供NADPH作为供氢体参与多种代谢反应二、糖醛酸途径可生成葡萄糖醛酸三、多元醇途径可生成木糖醇、山梨醇等第五节糖原的合成与分解一、糖原的合成代谢主要在肝和肌组织中进行二、糖原分解产物—葡萄糖可补充血糖三、糖原的合成与分解受到彼此相反的调节(一)糖原磷酸化酶是糖原分解的关键酶(二)糖原合酶是糖原合成的关键酶四、糖原累积症是由先天性没缺陷所致第六节糖异生一、糖异生途径不完全是糖酵解的逆反应(一)丙酮酸经丙酮酸羧化支路变为磷酸烯醇式丙酮(二)1,6-二磷酸果糖转变为6-磷酸果糖(三)6-磷酸葡萄糖水解为葡萄糖二、糖异生的调节是通过对两个底物循环的调节与糖酵解调节彼此协调(一)第一个底物循环:在6-磷酸果糖和1,6-二磷酸果糖之间进行(二)第二个底物循环:磷酸烯醇式丙酮酸和丙酮酸之间进行三、糖异生的生理意义主要在于维持血糖水平恒定(一)维持血糖水平的恒定是糖异生最主要的生理作用(二)糖异生是补充或恢复肝糖原储备的重要途径(三)肾糖异生增强有利于维持酸碱平衡四、肌中产生的乳酸运输至肝进行糖异生形成乳酸循环第七节其他单糖的代谢一、果糖被磷酸化后进入糖酵解途径二、半乳糖可转变为1-磷酸葡萄糖成为糖酵解的中间代谢产物三、甘露糖可转变为6-磷酸果糖进入糖酵解途径第八节血糖及其调节一、血糖的来源和去路是相对平衡的二、血糖水平的平衡主要是受激素调节(一)胰岛素是体内唯一降低血糖的激素(二)机体在不同状态下有相应的升高血糖的激素1.胰高血糖素2.糖皮质激素可引起血糖升高3.肾上腺素是强有力的升高血糖激素三、血糖水平异常及糖尿病是最常见的糖代谢紊乱(一)低血糖是指血糖浓度低于3.0mmol/L(二)高血糖是指空腹血糖高于6.9 mmol/L(三)糖尿病是最常见的糖代谢紊乱疾病结构&流程示意图:1.糖酵解的代谢途径2.2,6-二磷酸果糖激酶-1的活性调节3.丙酮酸脱氢酶复合体作用机制4.三羧酸循环5.表格-葡萄糖有氧氧化生成的ATP6.三羧酸循环的调控7.磷酸戊糖途径8.糖醛酸途径9.分支酶的作用10.脱支酶的作用11.糖原合成、分解的共价修饰调节12.糖异生途径13.乳酸循环14.半乳糖的代谢15.甘露糖的代谢第五章脂类代谢第一节不饱和脂酸的命名及分类一、脂酸的系统命名遵循有机酸命名的原则二、脂酸主要根据其碳链长度和饱和度分类(一)脂酸根据其碳链长度分为短链、中链、长链脂酸(二)脂酸根据其碳链是否存在双键分为饱和脂酸和不饱和脂酸1.饱和脂酸的碳链不含双键2.不饱和脂酸的碳链含有一个或一个以上双键第二节脂类的消化吸收一、脂类的消化发生在脂-水界面,需要胆汁酸盐参与二、饮食脂肪在小肠被吸收第三节甘油三酯代谢一、甘油三酯是甘油的脂酸酯(一)甘油三酯是脂酸的主要储存形式(二)甘油三酯的主要作用是为机体提供能量1.甘油三酯是机体重要的能量来源2.甘油三酯是机体主要能量储存形式二、甘油三酯的分解代谢主要是脂酸的氧化(一)脂肪动员是甘油三酯分解的起始步骤(二)甘油经糖代谢途径代谢(三)脂酸经β-氧化分解功能1.脂酸的活化形式为脂酰CoA2.脂酰CoA经肉碱转运入线粒体3.脂酸的β-氧化的终产物主要是乙酰CoA(1)脱氢(2)加水(3)再脱氢(4)硫解4.脂酸氧化是体内能量的重要来源(四)脂酸的其他氧化方式1.不饱和脂酸的氧化2.过氧化物酶体的β-氧化3.奇数碳原子脂酸的氧化(五)酮体的生成及利用1.酮体在肝细胞中生成(1)2个乙酰辅酶A→乙酰乙酰辅酶A(2)乙酰乙酰辅酶A+乙酰辅酶A→HMG CoA(3)HMGCoA 裂解为乙酰乙酸和乙酰辅酶A2.酮体在肝外组织中利用3.酮体生成的生理意义4.酮体生成的调节(1)饱食及饥饿的影响(2)肝细胞糖原含量及代谢影响(3)丙二酰CoA抑制脂酰CoA进入线粒体三、脂酸在脂酸合成酶系的催化下合成(一)软脂酸的合成1.合成部位2.合成原料3.脂酸合成酶系及反应过程(1)丙二酰CoA的合成(2)脂酸合成(二)脂酸碳链的加长1.脂酸碳链在内质网中的延长2.脂酸碳链在线粒体中的延长(三)不饱和脂酸的合成(四)脂酸合成的调节1.代谢物的调节作用2.激素的调节作用四、甘油和脂酸合成甘油三酯(一)合成部位(二)合成原料(三)合成基本过程1.甘油一酯途径2.甘油二酯途径五、几种多不饱和脂酸衍生物具有重要生理功能(一)前列腺素、血栓烷、白三烯的化学结构和命名(二)PG、TX、LT的合成1.前列腺素及血栓烷的合成2.白三烯的合成(三)PG、TX、LT的生理功能1.PG的主要生理功能2.TX的主要生理功能3.LT的主要生理功能第四节磷脂代谢一、含磷酸的脂类被称为磷脂(一)由甘油构成的磷脂统称为甘油磷脂(二)由鞘氨醇或二氢鞘氨醇构成的磷脂称为鞘磷脂二、磷脂在体内具有重要的生理功能(一)磷脂是构成生物膜的重要成分1.卵磷脂存在于细胞膜中2.心磷脂是线粒体膜的主要脂质(二)磷脂酰肌醇是第二信使的前体(三)缩醛磷脂存在于脑和心组织中(四)神经鞘磷脂和卵磷脂在神经髓鞘中含量较高三、甘油磷脂的合成与降解(一)甘油磷脂的合成1.合成部位2.合成的原料及辅因子3.合成的基本过程(1)甘油二酯合成途径(2)CDP-甘油二酯合成途径(二)甘油磷脂的降解四、鞘磷脂的代谢(一)鞘氨醇的合成1.合成部位2.合成原料3.合成过程(二)神经鞘磷脂的合成(三)神经鞘磷脂的降解第五节胆固醇代谢一、胆固醇的合成原料为乙酰CoA和NADPH(一)合成部位(二)合成原料(三)合成基本过程1.甲羟戊酸的合成2.鲨烯的合成3.胆固醇的合成(四)胆固醇合成受多种因素调节1.限速酶2.饥饿与饱食3.胆固醇4.激素二、转变为胆汁酸及类固醇激素是体内胆固醇的主要去路(一)胆固醇可转变为胆汁酸(二)胆固醇可转变为类固醇激素(三)胆固醇可转化为维生素D3前体第六节血浆脂蛋白代谢一、血脂是血浆所含脂类的统称二、不同血浆脂蛋白其组成、结构均不同(一)血浆脂蛋白的分类1.电泳法2.超速离心法(二)血浆脂蛋白的组成(三)载脂蛋白(四)脂蛋白结构三、血浆脂蛋白是血脂的运输形式,但代谢和功能各异(一)乳糜微粒(二)极低密度脂蛋白(三)低密度脂蛋白(四)高密度脂蛋白四、血浆脂蛋白代谢异常导致血脂异常或高脂血症(一)高脂血症(二)动脉粥样硬化1.LDL和VLDL具有致AS作用2.HDL具有抗AS作用(三)遗传缺陷结构&流程示意图1.常见的脂酸2.甘油一酯途径3.脂肪动员4.长链脂酰CoA进入线粒体5.脂酸的β-氧化6.酮体在干细胞中的生成7.酮体的氧化8.柠檬酸-丙酮酸循环9.软脂酸的生物合成10.表格-体内几种重要的甘油磷脂11.磷脂酶对磷脂的水解12.胆固醇的生物合成13.血浆脂蛋白琼脂糖凝胶电泳示意图14.超速离心分离血浆脂蛋白示意图15.血浆脂蛋白结构示意图16.脂蛋白代谢示意图第六章生物氧化第一节生成ATP的氧化磷酸化体系一、氧化呼吸链是一系列有电子传递功能的氧化还原组分(一)氧化呼吸链由4种具有传递电子能力的复合体组成1.复合体Ⅰ作用是将NADPH+H+中的电子传递给泛醌2.复合体Ⅱ作用是将电子从琥珀酸传递到泛醌3.复合体Ⅲ作用是将电子从还原型泛醌传递给细胞色素C4.复合体Ⅳ将电子从细胞色素C传递给氧(二)氧化呼吸链组分按氧化还原电位由低到高的顺序排列二、氧化磷酸化将氧化呼吸链释能与ADP磷酸化生成ATP偶联(一)氧化磷酸化偶联部位在复合体Ⅰ、Ⅲ、Ⅳ内1.P/O比值2.自由能变化(二)氧化磷酸化偶联机制是产生跨线粒体内膜的质子梯度(三)质子顺梯度回流释放能量被ATP合酶利用催化ATP合成三、氧化磷酸化作用可受某些内外源因素影响(一)有3类氧化磷酸化抑制剂1.呼吸链抑制剂阻断氧化磷酸化的电子传递过程2.解偶联剂破坏电子传递建立的跨膜质子电化学梯度3.ATP合酶抑制剂同时抑制电子传递和ATP的生成(二)ADP是调节正常人体氧化磷酸化速率的主要因素(三)甲状腺激素刺激机体耗氧量和产热同时增加(四)线粒体DNA突变可影响机体氧化磷酸化功能四、ATP在能量的生成、利用、转移和储存中起核心作用五、线粒体内膜对各种物质进行选择性转运(一)胞质中NADH通过穿梭机制进入线粒体氧化呼吸链1.α-磷酸甘油穿梭主要存在于脑和骨骼肌中2.苹果酸-天冬氨酸穿梭主要存在于肝和心肌中(二)ATP-ADP转位酶促进ADP进入和ATP移出紧密偶联第二节其他不生成ATP的氧化体系一、抗氧化酶体系有清除反应活性氧类的功能二、微粒体细胞色素P450单加氧酶催化底物分子羟基化结构&流程示意图1.表格-人线粒体呼吸链复合体2.电子传递链各复合体位置示意图3.化学渗透假说示意图4.ATP合酶结构和质子的跨内膜流动机制模式图5.ATP合酶的工作机制6.不同底物和抑制剂对线粒体氧耗的影响。

艾德KRAS试剂盒说明书

艾德KRAS试剂盒说明书

【产品名称】通用名称:人类KRAS基因7种突变检测试剂盒(荧光PCR法)英文名称:Human KRAS Gene 7 Mutations Fluorescence Polymerase ChainReaction (PCR) Diagnostic Kit【包装规格】12测试/盒【预期用途】KRAS基因是人体肿瘤中常见的致癌基因。

该基因的突变常见于多种恶性肿瘤,在肺癌患者中的突变率为15~30%,在结直肠癌患者中的突变率为20~50%。

导致KRAS处于激活状态的突变主要位于第12和13密码子上。

KRAS基因突变一般会使肺癌患者对EGFR酪氨酸激酶抑制剂产生耐药,使结直肠癌患者对抗EGFR抗体类药物产生耐药。

但是,2010年10月的最新研究发现第13密码子上的Gly13Asp(G13D)突变亦对抗EGFR抗体类药物有治疗反应性(参见:De Roock. W. JAMA. 2010;304(16):1812-1820)。

因此,KRAS基因突变检测能提高肿瘤临床治疗的针对性,降低治疗费用,节省宝贵的治疗时间。

大部分肿瘤的突变都是体细胞突变,突变细胞往往与野生型细胞混杂在一起,因此所提取的DNA常带有大量野生型DNA,所以对体细胞突变检测需要较高的特异性,而目前广泛使用的直接测序法检测能力有限,不能完全满足临床需要。

本试剂盒用于检测人类KRAS基因的12和13密码子上7种热点体细胞突变(见表1),试剂盒以DNA为检测样本,提供突变状态的定性评估。

辅助临床医生筛选出可受益于肿瘤靶向药物的大肠癌等癌症患者。

该产品用于组织中提取DNA的KRAS基因7种突变的检测,为临床医生对大肠癌或肺癌患者选择肿瘤靶向药物治疗提供参考。

表1 人类KRAS基因的12和13密码子上7种热点体细胞突变突变名称氨基酸变化碱基变化Cosmic ID 公司命名Gly12Asp 甘氨酸到天门冬氨酸GGT>GAT 521 12-2-A Gly12Ala 甘氨酸到丙氨酸GGT>GCT 522 12-2-C Gly12Val 甘氨酸到缬氨酸GGT>GTT 520 12-2-T Gly12Ser 甘氨酸到丝氨酸GGT>AGT 517 12-1-A Gly12Arg 甘氨酸到精氨酸GGT>CGT 518 12-1-C Gly12Cys 甘氨酸到胱氨酸GGT>TGT 516 12-1-T Gly13Asp甘氨酸到天门冬氨酸GGC>GAC 53213-2-A【检测原理】本试剂盒基于实时PCR平台结合了特异引物和双环探针两种技术,检测DNA样品中含有的突变基因。

生物化学-生化知识点_第八章 核酸的降解和核苷酸的代谢

生物化学-生化知识点_第八章  核酸的降解和核苷酸的代谢

第八章核酸的降解和核苷酸的代谢下册 P3878-1 核酸和核苷酸的分解代谢核酸在核酸酶(磷酸二酯酶)作用下降解成核苷酸,核苷酸在核苷酸酶(磷酸单酯酶)作用下分解成核苷与磷酸,然后再在核苷磷酸化酶作用下可逆生成碱基(嘌呤和嘧啶)和戊糖-1-磷酸。

一一一嘌呤碱的分解代谢: P390 图33-2首先在各种脱氨酶作用下水解脱去氨基(脱氨也可以在核苷或核苷酸的水平上进行),腺嘌呤脱氨生成次黄嘌呤(I),鸟嘌呤脱氨生成黄嘌呤(X),I和X在黄嘌呤氧化酶作用下氧化生成尿酸。

人和猿及鸟类等为排尿酸动物,以尿酸作为嘌呤碱代谢最终产物;其他生物还能进一步分解尿酸形成尿囊素、尿囊酸、尿素及氨等不同代谢产物。

尿酸过多是痛风病起因,病人血尿酸 > 7mg%,为嘌呤代谢紊乱引起的疾病。

可服用别嘌呤醇,结构见P389,与次黄嘌呤相似。

别嘌呤醇在体内先被黄嘌呤氧化酶氧化成别黄嘌呤,别黄嘌呤与酶活性中心的Mo(Ⅳ)牢固结合,使Mo(Ⅳ)不易转变成Mo(Ⅵ),黄嘌呤氧化酶失活,使I和X不能生成尿酸,血尿酸含量下降。

一一一嘧啶碱的分解代谢:见P391 图33-3C:胞嘧啶先脱氨成尿嘧啶U,U再还原成二氢尿嘧啶后水解成β-丙氨酸。

T:胸腺嘧啶还原成二氢胸腺嘧啶后水解成β-氨基异丁酸。

8-2 核苷酸的生物合成一一一核糖核苷酸的生物合成一1一从头合成:从一些简单的非碱基前体物质合成核苷酸。

1.嘌呤核苷酸:从5-磷酸核糖焦磷酸(5-PRPP)开始在一系列酶催化下先合成五元环,后合成六元环,共十步生成次黄嘌呤核苷酸。

然后再生成A、G等嘌呤核苷酸。

2.嘧啶核苷酸:先合成嘧啶环(乳清酸),再与5-PRPP(含核糖、磷酸部分)反应生成乳清苷酸,失羧生成尿嘧啶核苷酸(UMP),再转变成其他嘧啶核苷酸。

一2一补救途径:利用已有的碱基、核苷合成核苷酸,更经济,可利用已有成分。

特别在从头合成受阻时(遗传缺陷或药物中毒)更为重要。

外源或降解产生的碱基和核苷可通过补救途径被生物体重新利用。

生物化学习题与解析--核苷酸代谢

生物化学习题与解析--核苷酸代谢

核苷酸代谢一、选择题(一) A 型题1 .下列关于嘌呤核苷酸从头合成的叙述正确的是A .嘌呤环的氮原子均来自于氨基酸的α - 氨基B .氨基甲酰磷酸为嘌呤环提供甲酰基C .次黄嘌呤鸟嘌呤磷酸核糖转移酶催化 IMP 转变成 GMPD .由 IMP 合成 AMP 和 GMP 均有 ATP 供能E .合成过程中不会产生自由嘌呤碱2 . 体内进行嘌呤核苷酸从头合成的是A .胸腺B .骨髓C .肝D .脾E .小肠粘膜3 .嘌呤核苷酸从头合成时首先生成的是A . AMPB . GMPC . IMPD . ATPE . GTP4 .人体内嘌呤核苷酸的分解代谢的主要终产物是A .尿素B .尿酸C .肌酸D .肌酸酐E .β - 丙氨酸5 .胸腺嘧啶的甲基来自A . N 10 -CHO-FH 4B . N 5 , N 10 =CH-FH 4C . N 5 , N 10 -CH 2 -FH 4D . N 5 -CH 3 -FH 4E . N 5 -CH=NH-FH 46 .哺乳动物嘧啶核苷酸从头合成的主要调节酶是A .天冬氨酸氨基甲酰转移酶B .二氢乳清酸酶C .二氢乳清酸脱氢酶D .乳清酸磷酸核糖转移酶E .氨基甲酰磷酸合成酶 II7 .嘧啶核苷酸生物合成时 CO 2 中 C 原子进入嘧啶哪个部位?A . C 6B .C 4 C . C 5D . C 2E .没有进入8 .痛风症患者血中含量升高的物质是A .尿酸B .肌酸C .尿素D .胆红素E . NH 49 .不属于嘌呤核苷酸从头合成直接原料的是A . CO 2B .谷氨酸C .甘氨酸D .一碳单位E .天冬氨酸10 . dTMP 合成的直接前体是A . dCMPB . dUDPC . dUMPD . UMPE . UDP11 .嘌呤核苷酸与嘧啶核苷酸合成的共同原料是A .丙氨酸B .谷氨酸C .甘氨酸D .天冬酰胺E .天冬氨酸12 .嘌呤核苷酸分解代谢的共同中间产物是A . IMPB . XMPC .黄嘌呤D .次黄嘌呤E .尿酸13 .下面分别表示嘌呤环结构中各原子的编号,谷氨酰胺提供哪些原子A . C 2 、 C 8B .C 4 、 C 5 、 N 7 C . N 1D . N 3 、 N 9E . C 414 .哺乳类动物体内直接催化尿酸生成的酶是A .核苷酸酶B .黄嘌呤氧化酶C .鸟嘌呤脱氨酶D .腺苷脱氨酶E .尿酸氧化酶15 .最直接联系核苷酸合成与糖代谢的物质是A . 5- 磷酸核糖B . 1- 磷酸葡萄糖C . 6- 磷酸葡萄糖D . 1 , 6- 二磷酸葡萄糖E .葡萄糖16 . HGRPT (次黄嘌呤 - 鸟嘌呤磷酸核糖转移酶)参与下列哪种反应A .嘌呤核苷酸从头合成B .嘧啶核苷酸从头合成C .嘌呤核苷酸补救合成D .嘧啶核苷酸补救合成E .嘌呤核苷酸分解代谢17 .下列哪种物质不是嘌呤核苷酸从头合成的直接原料A .甘氨酸B .谷氨酸C .天冬氨酸D . CO 2E .一碳单位18 .体内直接还原生成脱氧核苷酸是A .核糖B .核糖核苷C .一磷酸核苷D .二磷酸核苷E .三磷酸核苷19 .嘧啶核苷酸合成中,生成氨基甲酰磷酸的部位是A .胞浆B .微粒体C .溶酶体D .线粒体E .细胞核20 .下列对嘌呤核苷酸的生物合成不产生直接反馈抑制作用的化合物是A . IMPB . AMPC . ADPD . GMPE . TMP21 .氮杂丝氨酸干扰核苷酸合成,因为它是下列哪种化合物的类似物A .天冬氨酸B .谷氨酰胺C .天冬酰胺D .丝氨酸E .甘氨酸22 .催化 dUMP 转变为 dTMP 的酶是A .核糖核苷酸还原酶B .胸苷酸合酶C .核苷酸激酶D .甲基转移酶E .脱氧胸苷激酶23 .下列化合物中作为合成 IMP 和 UMP 的共同原料是A .天冬酰胺B .磷酸核糖C .甘氨酸D .甲硫氨酸E .一碳单位24 . dTMP 合成的直接前体是A . TMPB . TDPC . dUMPD . dUDPE . dCMP25 .能在体内分解产生β - 氨基异丁酸的核苷酸是A . CMPB . AMPC . IMPD . UMPE . TMP26 .别嘌呤醇治疗痛风症是因为能抑制A .尿酸氧化酶B .核苷酸氧化酶C .鸟嘌呤氧化酶D .腺苷脱氢酶E .黄嘌呤氧化酶27 . 5- 氟尿嘧啶抗癌作用的机理是A .抑制胞嘧啶的合成B .抑制胸苷酸的合成C .抑制尿嘧啶的合成D .抑制二氢叶酸还原酶E .合成错误的 DNA28 . dNTP 直接由何种物质转变而来A . ATPB . TMPC . UMPD . NDPE . NMP29 . IMP 转变成 GMP 时,发生了A .还原反应B .硫化反应C .氧化反应D .生物氧化E .脱水反应30 .干扰 dUMP 转变成 dTMP 的是A .别嘌呤醇B .阿糖胞苷C . 6- 巯基嘌呤D .氮杂丝氨酸E .甲氨蝶呤31 .动物体内嘧啶代谢的终产物不包括A . CO 2B . NH 3C .β - 丙氨酸D .尿酸E .β - 氨基异丁酸32 .需要谷氨酰胺提供酰胺基的是A . TMP 上的 2 个氮原子B . UMP 上的 2 个氮原子C .嘧啶环上的 2 个氮原子D .嘌呤环上的 2 个氮原子E .腺嘌呤 C-6 上的氨基33 .嘧啶环中的两个氮原子来自A .谷氨酸、氨基甲酰磷酸B .谷氨酰胺、天冬酰胺C .谷氨酰胺D .天冬氨酸、谷氨酰胺E .甘氨酸、丝氨酸34 .参与嘌呤合成的氨基酸是A .组氨酸B .甘氨酸C .腺苷酸D .胸苷酸E .胞苷酸35 .氨基蝶呤和甲氨蝶呤抑制嘌呤合成,因为它们抑制A . ATP 磷酸键能的转移B .天冬氨酸的氮转移C .谷氨酰胺的酰胺氮的转移D . CO 2 加到新生环中E .二氢叶酸还原成四氢叶酸36 . dNDP 直接由何种物质转变而来A . dNMPB . dNTPC . ATPD . NDPE . UMP37 .与核苷酸从头合成直接有关的维生素包括A .叶酸B .硫胺素C .泛酸D .维生素 AE .磷酸吡哆醛38 .嘌呤核苷酸从头合成的特点是A .先合成嘌呤碱,再与磷酸核糖结合B .先合成嘌呤碱,再与氨基甲酰磷酸结合C .在磷酸核糖焦磷酸的基础上逐步合成嘌呤核苷酸D .在氨基甲酰磷酸基础上逐步合成嘌呤核苷酸E .不耗能39 . DNA 合成的底物分子 dNTP 在细胞内的合成方式为A .NMP → dNMP → dNDP → dNTPB .NDP → dNDP → dNTPC .NTP → dN TPD .NMP → dNMP → dNTPE .UTP → dTTP (二) B 型题A .参与 DNA 合成的原料B .参与 RNA 合成的原料C .参与 NAD + 组成 D .参与供给能量E .参与细胞信息传递1 . cGMP2 . dGTP3 . AMPA .参与嘌呤核苷酸从头合成B .参与嘌呤核苷酸补救合成C .参与嘧啶核苷酸从头合成D .参与嘌呤核苷酸分解E .参与嘧啶核苷酸分解4 .一碳单位5 . HGPRT6 .黄嘌呤氧化酶A .抑制嘌呤核苷酸从头合成B .抑制NDP → dNDPC .抑制UMP → UDPD .抑制尿酸生成E .抑制嘧啶核苷酸分解7 .氮杂丝氨酸8 . 6MP9 . MTX10 .别嘌呤醇A .抑制 PRPP 酰胺转移酶B .抑制氨基甲酰磷酸合成酶C .抑制核苷酸还原酶D .促进 PRPP 合成酶E .抑制黄嘌呤氧化酶11 . UMP12 . IMP13 . 5- 磷酸核糖A . AMP 类似物B .嘧啶类似物C .叶酸类似物D .谷氨酰胺类似物E .次黄嘌呤类似物14 . 5-FU15 . MTX16 .别嘌呤醇A .肝素B .尿酸C .尿素D .β - 丙氨酸E .β - 氨基异丁酸17 . AMP 分解的终产物是18 . GMP 分解的终产物是19 . CMP 分解的终产物是20 . TMP 分解的终产物是A . C 6B . N 7 、 N 5 、 N 4C . N 1D . N 3 、 N 9E . C 2 、 C 821 .甘氨酸提供嘌呤环的22 .谷氨酰胺提供嘌呤环的23 .一碳单位提供嘌呤环的24 . CO 2 提供嘌呤环的A . UMPB . UTPC . ATPD . IMPE . GTP25 .能生成 CTP26 .生成 AMP 和 GMP 的前体27 .生成 CTP 和 TMP 的前体(三) X 型题1 .嘌呤核苷酸从头合成的原料包括A . 5- 磷酸核糖B . CO 2C .一碳单位D .谷氨酰胺E .天冬氨酸2 . PRPP 参与的代谢途径A .嘌呤核苷酸的从头合成B .嘧啶核苷酸的从头合成C .嘌呤核苷酸的补救合成D .嘧啶核苷酸的补救合成E .NMP → NDP → NTP3 .对嘌呤核苷酸合成产生反馈抑制作用的化合物有A . IMPB . AMPC . GMPD .尿酸E .尿素4 .尿酸是下列哪些化合物分解的终产物A . AMPB . UMPC . IMPD . TMPE . GMP5 .嘧啶核苷酸分解代谢产物有A . NH 3B .尿酸C . CO 2D .β - 氨基酸E . GTP6 .嘌呤核苷酸合成的限速步骤是合成A . 5- 磷酸核糖胺B .次黄嘌呤核苷酸C . PRPPD . AMPE . GMP7 .别嘌呤醇的作用A .是次黄嘌呤的类似物B .抑制黄嘌呤氧化酶C .可降低痛风患者体内尿酸水平D .增加尿酸水平E .使痛风患者尿中次黄嘌呤和黄嘌呤的排泄量减少8 .嘧啶合成的反馈抑制作用是由于控制了下列哪些酶的活性A .氨基甲酰磷酸合成酶 IIB .二氢乳清酸酶C .天冬氨酸氨基甲酰转移酶D .乳清酸核苷酸脱羧酶E .酰胺转移酶9 .参与嘌呤核苷酸合成的氨基酸有A .甘氨酸B .谷氨酰胺C .丙氨酸D .天冬氨酸E .谷氨酸10 .合成嘌呤核苷酸和嘧啶核苷酸的共同物质有A .甘氨酸B .谷氨酰胺C . 5- 磷酸核糖D .天冬氨酸E .脯氨酸11 .下列哪些情况可能与痛风症的产生有关A .嘧啶核苷酸合成增强B .嘌呤核苷酸分解增强C .嘧啶核苷酸分解增强D .嘌呤核苷酸代谢酶缺陷E .尿酸排泄障碍12 .嘌呤核苷酸从头合成途径受抑制的反应有A . 5- 氟尿嘧啶B .氮杂丝氨酸C .甲氨蝶呤D . 6- 巯基嘌呤E .阿糖胞苷二、是非题1 .在嘌呤核苷酸的从头合成中, C2 、 C 8 原子来源于一碳单位。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

CO2
Glycine 甘氨酸
Aspartate 天冬氨酸
formate 一碳单位
C
N |1
6 5C ||
2
C3
4C
N
formate
N
一碳单位
7
8C
9
N
Glutamine 谷氨酰胺(酰胺基)
7
3. Synthesis process 过程
Aspartate 天冬氨酸
Glutamine 谷氨酰胺
Glycine 甘氨酸
thymus胸腺
2. Raw materials 原料:
Aspartate, glutamine, glycine, CO2, one carbon unit
天冬氨酸、谷氨酰胺、甘氨酸、CO2、一碳单位、
R-5-P
6
Figure 8-2 element source of purine ring 嘌呤碱合成的元素来源
N | R-5’-P 5氨基咪唑4羧酸 核苷酸(CAIR)
16
O || N HO-C-C
|| CH H2N-C
N | R-5’-P 5氨基咪唑4羧酸 核苷酸(CAIR)
Asp ATP,Mg2+
合成酶
HOOC
|
H2C O | ||
HC-HN-C N
|
C
HOOC
|| CH
H2N-C N
|
R-5’-P 5氨基咪唑4琥珀酸甲酰胺
•raw material for synthesis of nucleic acids 核酸合成的原料
• energy compounds 构成能量物质
•regulation of metabolism 参与代谢调节
CAMP、CGMP
• coenzyme 组成辅酶
NAD+、FAD、FMN、辅酶A
• activated metabolic products 活化中间代谢物
酰胺转移酶
H2N-1-R-5-P 1氨基5磷酸核苷(PRA)
9
P-O-CH2 |O
P-O-CH2 O--P--P |O
PRPP 合成酶
ATP
AMP
R-5-P
Phosphoribosyl pyrophosphate 1-焦磷酸-5-磷酸核糖
PRPP
10
P-O-CH2 O—NH2 |O
1氨基5磷酸核苷 (PRA)
HN=C NH
AIR合成酶 -H2O
|
R-5’-P 甲酰甘氨脒
核苷酸(FGAM)
HC—— N
|| ||
H2N-C CH N
|
R-5’-P 5氨基咪唑核苷酸
(AIR)
15
HC—— N
|| ||
H2N-C CH
CO2
N
|
R-5’-P
5氨基咪唑核苷酸 (AIR)
O || N HO-C-C
|| CH H2N-C
H2N-C 4 N
C || CH H2N-C
5N
| R-5’-P 5氨基咪唑4甲酰胺 核苷酸(AICAR)
N10甲酰FH4 FH4
转甲酰基酶
O
||
H2N-C 4 N
C
|| CH
O=C-N-C
H5 N
|
R-5’-P 5甲酰胺基咪唑4甲酰胺 核苷酸(FAICAR)
19
O
||
H2N-C
N
C
|| CH
O=C-N-C
胰核酸酶(核糖核酸酶,脱氧核糖核酸酶) (磷酸二酯酶)
nucleotides 单核苷酸
肠胰核苷酸酶 (磷酸单酯酶)
phosphoric acid 磷酸
nucleosides核苷
核苷酶 (水解或磷酸解)
bases 碱基
ribose or deoxyribose 戊糖
4
Functions of nucleotides 核苷酸的功能:
HH N
|
R-5’-P
5甲酰基咪唑4甲酰胺 核苷酸(FAICAR)
H2O 环水解酶
O
||
C
N
HN
C
|
|| CH
HC
C
NH
H2C
CHO
|
O=C
NH
|
R-5’-P
甲酰甘氨酰胺
核苷酸(FGAR)
13
NH
H2C |
O=C
CHO
gln谷氨酰胺
glu谷氨酸
NH
ATP,Mg2+
|
R-5’-P 甲酰甘氨酰胺
核苷酸(FGAR)
NH
H2C
CHO
|
HN=C
NH
|
R-5’-P 甲酰甘氨咪
核苷酸(FGAM)
14
NH
H2C |
CHO
ATP,Mg2+,K+
2
Digestion and absorption of nucleotides
核苷酸的消化吸收
Nucleotides are not nutritional substances 核苷酸不属于营养必需物质
3
nuclear protein 食物核蛋白
and DNA
Chapter 8
Metabolism of Nucleotides
核苷酸代谢
1
本章要求
•熟记嘌呤碱和嘧啶碱合成的原料 •掌握嘌呤核苷酸从头合成的关键产物和关键酶 •熟记嘌呤碱和嘧啶碱分解代谢的主要产物 •掌握CTP和TMP的合成过程 •掌握脱氧核苷酸的生成过程 •结合本章内容了解抗代谢物的作用机理和临床意义
IMP
CO2 One carbon unit一碳单位
AMP GMP
Key enzyme 关键酶: PRPP合成酶、 amidotransferase酰胺转移酶
8
R-5-P 5磷酸核糖
(1) synthesis of IMP
ATP PRPP合成酶
AMP
Gln谷氨酰胺 Glu谷氨酸
PP-1-R-5-P 1-焦磷酸-5-磷酸核糖(PRPP)
11
H2C-NH2 |
O=C-OH Gly甘氨酸
+
H2N-1-R-5-P 1氨基5磷酸核苷(PRA)
ATP,Mg2+ GAR合成酶
NH2 H2C
|
O=C
NH
|
R-5’-P
甘氨酰胺核苷酸(GAR)
12
NH2
H2C
| O=C
N10-甲酰FH4
FH4
NH
转甲酰基酶
|
R-5’-P
甘氨酰胺核苷酸
(GAR)
核苷酸(SAICAR)
17
HOOC
|
H2C O | ||
HC-HN-C N
|
C
HOOC
|| CH
H2N-C N
|
R-5’-P
5氨基咪唑4琥珀酸甲酰胺 核苷酸(SAICAR)
延胡索酸 裂解酶
O
||
H2N-C
N
C
|| CH
H2N-C N
|
R-5’-P 5氨基咪唑4甲酰胺 核苷酸(AICAR)
18
O ||
UDPG、CDP-二酰基甘油、SAM
5
Section 1. Metabolism of purine nucleotides 嘌呤核苷酸代谢
A. Biosynthesis of purine nucleotides 嘌呤核苷酸的合成代谢
(A)de novo synthesis 从头合成
1. Organs 部位: Cytosol 胞液 liver肝、intestine mucous membrane小肠黏膜 and
相关文档
最新文档