第三章 微电子封装流程
微电子封装的技术ppt
后段封装流程
划片
装片
将制造好的半导体芯片从晶圆上分离出来, 成为独立的个体。
将独立的半导体芯片按照一定的顺序和方式 装入封装壳内。
引线键合
打胶
通过金属引线将半导体芯片的电极与封装壳 的引脚相连,实现电路连接。
用环氧树脂等材料将半导体芯片和引线进行 固定和密封,以保护内部的电路。
封装测试流程
功能测试
信号完整性
高速信号传输过程中需要考虑信号完整性,包括 信号幅度、时间、相位等因素。
时序优化
高速信号传输需要优化时序关系,确保信号传输 的稳定性和可靠性。
高性能化趋势
多核处理器
采用多核处理器技术,提高计 算速度和性能。
GPU加速
采用GPU加速技术,提高图像处 理、人工智能等应用的性能。
存储器集成
将存储器与处理器集成在同一封装 内,提高数据处理速度和性能。
陶瓷材料
具有高导热、高绝缘、高强度和化学稳定性等特点,是微电子封装中应用最广泛 的材料之一,包括氧化铝、氮化硅和碳化硅等。
塑料材料
具有成本低、易加工和重量轻等特点,是微电子封装中应用最广泛的材料之一, 包括环氧树脂、聚酰亚胺和聚醚醚酮等。
最新封装设备
自动测试设备
用于检测芯片的性能和质量,包括ATE(Automatic Test Equipment)和ETE(Electronic Test Equipment)等。
其他领域
医疗设备
微电子封装技术可以实现医疗设备的信号传输和处理,提高医 疗设备的性能和稳定性。
航空航天
微电子封装技术可以实现航空航天设备的信号传输和处理,提高 航空航天的性能和稳定性。
智能家居
微电子封装技术可以实现智能家居设备的信号传输和处理,提高 智能家居的性能和稳定性。
第3章微电子的封装技术
第3章微电子的封装技术微电子封装技术是指对集成电路芯片进行外包装和封封装的工艺技术。
封装技术的发展对于提高微电子产品的性能、减小体积、提高可靠性和降低成本具有重要意义。
封装技术的目标是实现对芯片的保护和有效连接,同时满足对尺寸、功耗、散热、信号传输等方面的要求。
封装技术的发展经历了多个阶段。
早期的微电子产品采用插入式封装,芯片通过引脚插入芯片座来连接电路板,这种封装方式容易受到环境的影响,连接不可靠,也无法满足小型化和高集成度的需求。
后来,绝缘层封装技术得到了广泛应用,通过在芯片上覆盖绝缘层,然后连接金属线路,再通过焊接或压力连接的方式实现芯片与电路板之间的连接。
这种封装方式提高了连接的可靠性,但由于绝缘层的存在,芯片的散热能力受到限制。
随着技术的进步,微电子封装技术也得到了快速发展。
现代微电子产品普遍采用半导体封装技术,具有体积小、功耗低、可靠性强和成本低等优点。
常见的半导体封装技术有裸片封装、焊接封装和微球栅阵列封装等。
裸片封装是将芯片裸露在外界环境中,并通过焊接或压力连接的方式与电路板相连。
这种封装方式具有体积小、重量轻和散热能力强的优点,但对芯片的保护较差,容易受到外界的机械和热力作用。
焊接封装是将芯片与封装底座通过焊接的方式连接起来。
常见的焊接技术有电离子焊接、激光焊接和超声波焊接等。
电离子焊接是利用高能电子束将封装底座和芯片焊接在一起,具有连接可靠、焊接速度快的优点。
激光焊接利用激光束对焊接点进行加热,实现焊接。
超声波焊接则是利用超声波的振动将焊接点熔化,并实现连接。
焊接封装具有连接可靠、工艺简单和尺寸小的优点,但要求焊接点的精度和尺寸控制较高。
微球栅阵列封装是一种先进的封装技术,其特点是将芯片中的引脚通过微小球连接到封装底座上。
这种封装方式不仅提高了信号传输的速度和可靠性,还可以实现更高的封装密度和更小的封装尺寸。
微球栅阵列封装需要使用高精度的装备和工艺,但具有很大的发展潜力。
除了封装技术的发展,微电子封装材料的研究也十分重要。
mems封装生产流程
mems封装生产流程Mems封装生产流程摘要:Mems(微机电系统)封装是一项关键技术,用于保护和连接微型机电系统芯片。
本文将详细介绍Mems封装生产流程的各个环节,并讨论其中的关键步骤和技术要点。
引言:Mems技术作为一种微型化的机电一体化技术,已经在多个领域中得到广泛应用。
而Mems芯片的封装过程,对其性能和稳定性起着至关重要的作用。
因此,掌握Mems封装生产流程是保证产品质量的关键。
一、芯片测试和分选在Mems封装生产流程中的第一步是对芯片进行测试和分选。
这一步旨在筛选出性能良好的芯片,并为后续的封装工艺提供可靠的基础。
测试的内容包括电学性能测试、机械性能测试等。
通过测试,可以排除不合格的芯片,提高封装的成功率。
二、基座制备基座是用来支撑和连接Mems芯片的重要组成部分。
在基座制备过程中,通常采用硅片作为基座材料,并进行切割、抛光等加工工艺,以得到符合要求的基座。
同时,还需要进行清洗和表面处理,以确保基座的平整度和清洁度。
三、封装材料选择与涂覆封装材料的选择对Mems封装的性能和稳定性有着重要影响。
一般而言,封装材料需要具有良好的绝缘性能、导热性能和耐高温性能。
常用的封装材料包括环氧树脂、聚酰亚胺等。
在涂覆过程中,需要控制涂覆厚度和均匀性,以避免材料过厚或不均匀导致的封装问题。
四、芯片粘贴与对准粘贴是将Mems芯片与基座连接的关键步骤。
在粘贴过程中,需要控制粘合剂的用量和均匀性,并确保芯片与基座的对准精度。
粘贴后,还需要进行固化处理,常用的固化方法有热固化和紫外光固化等。
五、金线焊接金线焊接是将Mems芯片与封装基座之间的电连接的重要步骤。
通常使用金线焊接机器人进行自动化焊接,根据芯片上的金属引脚和基座上的引脚进行对应连接。
焊接过程需要控制焊接温度、焊点形状和焊接压力等参数,以确保焊接质量和可靠性。
六、封装密封和固化在金线焊接完成后,需要对Mems芯片进行密封和固化处理。
密封的目的是保护芯片免受外界环境的影响,固化则是增强封装的机械强度和稳定性。
微电子封装技术研究及应用
微电子封装技术研究及应用微电子封装技术是一门关键性技术,它将集成电路芯片载体、金属电路、封装芯片等元器件加工、组装、测试等工艺流程纳入其中,从而促进微电子器件的应用。
微电子封装技术的应用已经涵盖了现代工业、军事、航空航天、生物医药、环境监测等众多领域,并且逐渐成为一个新兴产业。
本文将从介绍微电子封装技术的发展历程、技术特点、封装工艺流程和应用等方面来论述微电子封装技术的研究与应用。
一、微电子封装技术的发展历程微电子封装技术始于20世纪70年代,当时工业界主要采用前后端分离的封装工艺,即半导体芯片与封装基板分别制造,然后通过钎焊、粘接等技术将芯片和基板之间连接在一起,并且使用塑料等材料进行封装。
早期的微电子封装技术主要采用贴片、线接触等手段封装电子元器件,其封装密度较低,封装的线宽较粗,设备自动化程度较低,生产效率和产品质量受制于环境温度等因素,这限制了其应用范围与质量。
随着人们对于微电子元器件性能和系统可靠性的需求不断提高,微电子封装技术也随之发展。
在1990年左右,随着微电子芯片的不断发展与完善,微电子封装技术也得到新的提升。
特别是向网络、通讯、数字多媒体等方面发展的需求,又催生了BGA(球栅式封装)等具有高密度、高性能、高可靠性的全新微电子封装。
此外,微电子封装技术在应用领域的不断扩展,使得它成为了维护现代电子产业发展的重要的技术支撑。
二、微电子封装技术的技术特点1、高密度:传统封装技术用于连接芯片和基板时,间距较大,因而封装密度偏低,无法满足复杂封装的需求。
而微电子封装技术采用了球栅封装,封装器件体积小、密度高,相应地塑性线也变细,不仅提高了封装的稳定性,同时增大了集成度。
2、高速度:现代微电子封装技术采用的是自动化生产线,这种生产线能够快速而准确地完成系统的加工,能够大大提高制造效率和生产速度,进而保证封装产品的稳定性。
3、高可靠性:随着封装器件精度的提高,封装工艺的稳定性也得到了保证。
微电子封装设计
微电子封装设计
的微电子封装设计流程
一、前期准备
1.封装类型的确定
首先需要决定所需封装类型,根据应用产品的性能特点以及封装类型
的优劣,确定适合的封装类型,有PIN封装,贴片封装,管式封装,电子
球面封装等多种类型可供选择。
2.封装特性确定
需要确定所需封装的特性,包括封装及芯片的尺寸、重量、表面温度、热导率等,从而确定系统的发热性以及封装的可行性。
二、封装设计
1.芯片设计
首先,根据产品要求与实际封装特性,设计芯片的形状、热特性和尺
寸等。
2.铜箔设计
根据芯片的尺寸及特性,确定钢箔的大小以及铺设方式,确保热量的
传导效率,并考虑厚度、配置、密度等因素,以达到最佳的散热效果。
3.塑料封装设计
选择适当的封装塑料材料,并设计外壳的外形及散热孔、电源引脚、
连接器等,以最大程度的满足客户需求。
4.封装效果预测
预测封装效果,测试封装热模型,计算各板件的温度,检查散热效果是否满足客户要求,保证封装结果合格。
简述微电子封装基本工艺流程
简述微电子封装基本工艺流程微电子封装听起来是不是特别高大上呀?其实呀,它的基本工艺流程就像一场奇妙的旅行呢。
一、芯片制备。
这可是整个微电子封装旅程的起点哦。
芯片的制备就像是精心打造一颗超级微小又无比强大的“心脏”。
先从硅晶圆开始,这个硅晶圆就像是一块神奇的“地基”,要在上面进行超级精细的加工。
比如说光刻啦,光刻就像是在硅晶圆上画画,不过这个画笔超级精细,能画出只有纳米级别的图案呢。
然后还有蚀刻,蚀刻就像是把不需要的部分去掉,只留下我们想要的电路图案。
这一道道工序就像打造艺术品一样,每一步都得小心翼翼,稍微出点差错,这颗“心脏”可能就不那么完美啦。
二、芯片贴装。
芯片做好了,接下来就要把它安置到合适的地方啦,这就是芯片贴装环节。
这时候就像给芯片找一个温暖的“小窝”。
通常会用到一些特殊的材料,比如黏合剂之类的。
把芯片稳稳地粘在封装基板上,这个过程可不能马虎哦。
要保证芯片和基板之间的连接非常牢固,就像盖房子时把柱子稳稳地立在地基上一样。
如果贴装得不好,芯片在后续的使用过程中可能就会出问题,就像房子的柱子不稳,那房子可就危险啦。
三、引线键合。
这可是个很有趣的环节呢。
它就像是在芯片和封装基板之间搭建起一座座“小桥”。
通过金属丝,比如说金线之类的,把芯片上的电极和封装基板上的引脚连接起来。
这个过程就像绣花一样精细,要把每一根金属丝都准确无误地连接好。
想象一下,那么多微小的连接点,就像在微观世界里编织一张精密的网。
如果有一根金属丝连接错了或者没连接好,那信号可就不能正常传输啦,就像桥断了,路就不通了呀。
四、灌封。
灌封就像是给整个芯片和连接部分穿上一层保护“铠甲”。
会用一些特殊的封装材料,把芯片、金属丝这些都包裹起来。
这个封装材料就像一个温柔的“保护罩”,它能防止芯片受到外界的干扰,比如湿气啦、灰尘啦之类的。
就像给我们珍贵的东西放在一个密封的盒子里一样,让它在里面安安稳稳的。
而且这个保护罩还能起到一定的散热作用呢,芯片在工作的时候会发热,如果热量散不出去,就像人在一个闷热的房间里一样,会很不舒服,时间长了还会出问题呢。
微电子封装技术的基本工艺流程
微电子封装技术的基本工艺流程下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。
文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by theeditor. I hope that after you download them,they can help yousolve practical problems. The document can be customized andmodified after downloading,please adjust and use it according toactual needs, thank you!In addition, our shop provides you with various types ofpractical materials,such as educational essays, diaryappreciation,sentence excerpts,ancient poems,classic articles,topic composition,work summary,word parsing,copy excerpts,other materials and so on,want to know different data formats andwriting methods,please pay attention!微电子封装技术的基本工艺流程微电子封装技术是将微电子器件封装成标准的电子元器件,以便于在电子系统中使用。
微电子封装工艺流程
微电子封装工艺流程微电子封装工艺是指将微电子器件封装起来,以保护器件内部结构并方便与外部电路连接交互的工艺流程。
下面是一个简要的微电子封装工艺流程。
首先,需要准备好封装基板。
封装基板通常由高热传导性材料制成,例如陶瓷或金属,以确保器件在工作时能够迅速散热。
基板需要经过清洗和表面处理,以便后续工艺步骤的顺利进行。
接下来是芯片粘接。
将芯片粘接到基板上是封装过程中的重要一步。
通常采用粘合剂将芯片固定在基板上。
粘接剂需要具有良好的粘附力和导热性能,以确保芯片与基板之间能够有效传递热量。
接着是线缆连接。
线缆连接是将芯片内部的电连接到外部电路的关键步骤。
常用的线缆连接方式有焊接和微焊接。
焊接是通过加热导线和焊盘使其相互熔接,形成可靠的电连接。
微焊接则是采用微小尺寸的焊盘和导线进行连接,以满足封装器件的小尺寸要求。
紧接着是封装密封。
为了保护器件内部结构免受外部环境的侵蚀和损坏,需要对器件进行密封。
常用的密封方式有环氧树脂封装和金属封装。
环氧树脂封装将芯片包裹在保护层中,形成一个紧密的密封结构,以防止封装器件受到潮湿、灰尘等外部因素的影响。
金属封装则是利用金属外壳将芯片封装起来,提供更高的机械保护和散热性能。
最后是封装测试。
在封装完成后,需要对封装器件进行功能性测试和可靠性测试,以确保器件的性能和质量。
功能性测试包括电性能测试和信号测试,可靠性测试则是针对器件在不同环境和工作条件下的长期稳定性进行测试。
综上所述,微电子封装工艺流程包括准备封装基板、芯片粘接、线缆连接、封装密封和封装测试等步骤。
这些步骤都需要严格的操作和控制,以确保封装器件的质量和可靠性。
随着技术的不断进步,微电子封装工艺也在不断演进,逐渐实现更小尺寸、更高性能和更可靠的封装方案。
第三章 微电子封装流程.
①滴涂成型法
用滴管把液体树脂滴涂到键合后的芯片上,经加热 后固化成型,又称软封装。
滴涂法工艺操作简单,成本低,不需要专用的封装设备 和模具,适用于多品种小批量生产,但封装的可靠性差, 封装外形尺寸不一致,不适合大批量生产,其工艺流程是
②浸渍涂敷法成型 把元、器件待封装部位浸渍到树脂溶液中,使树脂包 封在其表面,经加热固化成型。
芯片
金属化布线
粘接剂
芯片
黏结方法:
1.共晶黏结法。 2.玻璃胶黏结法。 3.高分子胶黏结法。 4.焊接黏结法 。
共晶黏结法。
原理:利用金-硅和金在3wt%金。363˚C时产生的共晶(Eutectic)反应特性进行IC晶
片的粘结固定。
实现步骤:1.将IC晶片置于已镀有金膜的基板晶片座上,加热到425˚C,然后
2. 基板的晶片座上植入预型片(Perform).厚度约25mm,面积约为晶片的三分之一 的金-2wt%硅合金薄片。用于弥补基板孔洞平整度不佳造成的不完全结合。用于 大面积晶片的结合。 3. 由于预型片成分并非金硅完全互溶的合金,硅团块仍会有氧化现象,所以还必须 有交互摩擦的动作,还必须在氮气环境下反应。 4.预型片不能过量使用,否则会造成材料溢流,降低可靠度 5.预型片也能用不易氧化的纯金片。不过结合温度较高。
优点:高分子胶中可填入银等金属以提高热传导性;胶材可以制成固体膜状再热压结合;成
本低又能配合自动化生产。 缺点:热稳定性较差 ,易导致有机成分泄漏而影响封装可靠度
焊接黏结法。
另一种利用合金反应进行晶片粘结的方法,也在热氮气环境中进行
常见的焊料:金-硅;金-锡;金-锗等硬性合金 与 铅-锡;铅-银-铟等软质合金
Cure
封模
Molding
wafer封装流程
wafer封装流程Wafer封装流程一、引言Wafer封装是半导体制造过程中的重要环节,它将芯片从硅片上剥离并封装在一个小型的封装器件中,以保护芯片并方便其与外部电路的连接。
本文将介绍Wafer封装的流程及其各个环节的工作原理和操作步骤。
二、Wafer封装流程概述Wafer封装流程主要包括芯片切割、背面研磨、背面腐蚀、芯片封装、引线焊接和封装测试等环节。
1. 芯片切割在Wafer封装流程中,首先需要将硅片上的芯片切割成单个的晶圆片。
这一步骤通常使用切割机进行,通过切割机的刀片将硅片切割成一片一片的芯片。
2. 背面研磨切割好的芯片需要进行背面研磨,目的是为了减小芯片的厚度,使其更加薄小。
通过背面研磨,可以减少芯片与封装器件之间的高度差,提高封装的可靠性。
3. 背面腐蚀经过背面研磨后,芯片的背面通常会进行腐蚀处理,以去除背面的残留杂质和氧化层,提高芯片的表面平整度和粘接性能。
腐蚀液的选择和处理时间需要根据具体芯片的要求进行调整。
4. 芯片封装芯片封装是Wafer封装流程中的核心环节。
这一步骤将单个的芯片封装在一个小型的封装器件中,以保护芯片并方便其与外部电路的连接。
封装过程中,需要将芯片放置在封装器件的中心位置,并使用粘合剂将其固定在器件上。
5. 引线焊接在芯片封装完成后,需要对芯片进行引线焊接。
引线是连接芯片与封装器件外部电路的重要桥梁,它们通常由金属材料制成。
通过焊接设备,将引线与芯片的金属引脚进行焊接,形成电气连接。
6. 封装测试芯片封装完成后,需要进行封装测试,以确保芯片的质量和功能正常。
封装测试通常包括外观检查、电气性能测试和可靠性测试等环节。
只有通过了封装测试的芯片才能进入下一步的生产和销售环节。
三、结论Wafer封装是半导体制造中不可或缺的一环,它将芯片从硅片上剥离并封装在一个小型的封装器件中,以保护芯片并方便其与外部电路的连接。
本文简要介绍了Wafer封装的流程,包括芯片切割、背面研磨、背面腐蚀、芯片封装、引线焊接和封装测试等环节。
微电子封装工艺流程
微电子封装工艺流程
《微电子封装工艺流程》
微电子封装是指将芯片封装成能够在特定环境下正常工作的封装件,是整个微电子产业链中的重要环节。
微电子封装工艺流程涉及到多个环节,包括封装设计、封装材料选取、封装工艺流程和封装设备等。
首先,封装设计是微电子封装工艺流程的第一步,它涉及到封装形式的选择、封装结构的设计以及封装布线等。
设计的好坏直接影响到封装件的性能和可靠性。
其次,封装材料的选取也是封装工艺流程中关键的一环。
封装材料应具有良好的导热性、电绝缘性、化学稳定性和机械强度,以确保封装件在工作环境下的可靠性和稳定性。
封装工艺流程是微电子封装的核心环节,包括芯片粘合、导线连接、封装材料注射、固化和切割等多个步骤。
这些步骤需要严格控制工艺参数,以确保封装件的质量和性能。
最后,封装设备也是微电子封装工艺流程中至关重要的一部分。
现代化的封装设备能够提高生产效率和封装件的一致性,从而降低生产成本和提高产品质量。
总之,微电子封装工艺流程是一个复杂而严谨的工程,它的每一个环节都需要精密的设计和严格的控制,以确保封装件具有良好的性能和可靠性。
随着微电子技术的不断发展,封装工艺
流程也在不断演进和改进,为微电子产业的发展提供了坚实的保障。
电子产品封装工艺流程
电子产品封装工艺流程电子产品封装工艺流程一、引言随着电子科技的迅速发展,电子产品在人们生活中扮演着越来越重要的角色。
在电子产品的制造过程中,封装工艺是不可或缺的一环。
电子产品封装工艺流程的正确与否,直接关系到产品的质量和性能。
本文将介绍一个典型的电子产品封装工艺流程。
二、工艺流程1. 设计与样片制作电子产品封装工艺流程的第一步是设计与样片制作。
设计人员根据产品的功能要求和市场需求,设计出产品的外观和内部电路。
然后制作出少量的样片,用于测试和评估产品的性能。
2. 原料准备在封装工艺流程中,需要准备好各种原材料,包括半导体芯片、电子元器件、导线、焊料等。
这些原材料要经过严格的检测和筛选,以确保其质量和可靠性。
3. 印制电路板(PCB)的制作印制电路板是电子产品封装工艺流程中的一个关键环节。
制作PCB的过程包括布线设计、板材选择、印制图形、镀金等步骤。
制作好的PCB将提供给后续的元器件焊接和装配工作。
4. 元器件的焊接元器件的焊接是封装工艺流程中的核心工作。
焊接分为手工焊接和机器焊接两种方式。
手工焊接通常是在较小的规模和对焊接质量要求不高的情况下采用,而机器焊接则适用于大规模生产和对焊接质量有严格要求的情形。
5. 外壳的组装焊接完成后,电子产品的外壳组装也是封装工艺流程中一个重要的环节。
外壳的材质通常有塑料、金属等,其选择与产品的用途和设计要求有关。
外壳组装包括固定板、按钮、接口等部件的安装。
6. 功能测试与调试外壳组装完成后,需要进行产品的功能测试与调试。
这是封装工艺流程中的最后一步,通过对产品进行严格的测试和调试,确保产品的性能和质量达到要求。
三、工艺控制电子产品封装工艺流程中,工艺控制是至关重要的。
只有严格控制每个环节的质量和流程,才能保证产品的质量和性能。
以下是一些常见的工艺控制手段:1. 温度控制:焊接过程中需要控制焊接温度,以确保焊接质量和元器件的不受损。
同时,也需要控制产品的工作温度范围。
微电子封装
传统装配与封装
硅片测试和拣选
分片
贴片
引线键合
微电子材料与制程
塑料封装
Figure 20.1
最终封装与测试
互连技术
主要的电路互连方法
引线键合 卷带自动键合(TAB) 倒装芯片连接
引线键合是将芯片表面的铝压点和引线框架上的电极 内端(有时称为柱)进行电连接最常用的方法(见下图 )。引线键合放置精度通常是+5µm。键合线或是金或 是铝,因为它在芯片压点和引线框架内端压点都形成良 好键合,通常引线直径是25~75µm之间。三种基本引线 键合的叫法各取自在引线端点工艺中使用的能量类型。 三种引线键合方法是:
倒装芯片技术使用的凸点--通常有5%Sn和95%pb 组成的锡/铅焊料,以互连基座和芯片键合压点(见下图) 。通常用的焊料凸点工艺被称为C4(可调整芯片支撑的工 艺)。
微电子材料与制程
倒装芯片封装
连接管座
基座
通孔 金属互连
硅芯片
微电子材料与制程
Figure 20.20
压点上的焊 料凸点
硅片压点上的C4焊料凸点
Figure 20.13
卷带式自动键合 TAB技术
微电子材料与制程
卷带式自动键合 (TAB)
铜引线
聚合物条带
微电子材料与制程
Figure 20.26
倒装芯片
倒装芯片是将芯片的有源面(具有表面键合压点)面 向基座的粘贴封装技术。这是目前从芯片器件到基座之间 最短路径的一种封装设计,为高速信号提供了良好的电连 接。由于它不使用引线框架或塑料管壳,所以重量和外形 尺寸也有所减小。
封装技术简介
最终装配由要求粘贴芯片到集成电路底座上的操作构 成。由于制造的大部分成本已经花在芯片上。因此在最终 装配过程中成品率是至关重要的。在20世纪90年代后期 ,所有集成电路装配中估计有95%采用了传统的最终装 配,并由下面4步构成:
第3章微电子的封装技术
第3章微电子的封装技术
微电子的封装技术是集成电路行业中重要的技术之一,它是将微电子器件封装在一定的结构或材料形式中,使微电子器件具有完整的功能和稳定的性能的技术。
封装技术有助于提高微电子器件的可靠性和功能,并且可以实现对器件的封装封装,封装和测试,以及开发更先进的封装技术,有助于改善元器件的可靠性和功能。
封装技术包括单层封装技术、多层封装技术、全封装技术、焊接封装技术等。
单层封装技术是根据微电子器件的物理结构和电气特性,在其表面涂布一层化学稳定的涂层,使其功能更加稳定可靠的技术。
多层封装技术是根据微电子器件的结构和电气特性,在其表面使用多层封装技术,使其功能更加稳定可靠。
全封装技术是将微电子器件封装于一种全封装材料中,以保护微电子器件免受污染和外界环境的攻击,从而保证其功能的技术。
焊接封装技术是将微电子器件封装在一定的结构中,以保护微电子器件免受环境中的外界物质影响,以及改善器件的可靠性和可靠性的技术。
mcu封装流程
mcu封装流程MCU(Microcontroller Unit)封装流程指的是将MCU芯片进行封装的过程。
MCU芯片是一种集成了中央处理器、存储器和各种输入输出接口的微型计算机。
封装是将裸片封装成可用的电子元器件的过程,使其能够在电路板上进行焊接和连接。
下面将详细介绍MCU封装流程。
一、封装设计对MCU芯片的封装进行设计。
封装设计需要考虑芯片的尺寸、引脚数量和排列方式等因素。
根据芯片的功能和应用场景,选择合适的封装方式,如裸片封装、贴片封装、球栅阵列封装等。
封装设计还需要考虑芯片的散热和防静电等问题,确保封装后的芯片能够稳定可靠地工作。
二、封装材料准备在进行MCU封装之前,需要准备好相关的封装材料。
主要包括封装基板、导线、焊料、封装胶水等。
这些材料需要具备良好的导电性、导热性和机械强度,以保证封装后的芯片能够正常工作并抵抗外界环境的影响。
三、封装工艺流程1. 接触焊接:将MCU芯片放置在封装基板上,并使用导线将芯片的引脚与基板上的焊盘连接起来。
接触焊接可以使用手工焊接或者自动焊接机完成。
焊接时需要控制好焊接温度和焊接时间,以避免芯片损坏或引脚断裂。
2. 焊料固化:在焊接完成后,需要对焊接点进行固化处理,以提高焊点的机械强度和耐热性。
固化常用的方法是加热或使用紫外线照射,使焊料快速固化。
3. 封装胶水涂覆:为了保护芯片和焊点,防止外界的机械冲击和湿气侵入,需要在封装基板上涂覆一层封装胶水。
封装胶水需要具备良好的粘附性和耐高温性能,以确保芯片在工作过程中不受到外界环境的干扰。
4. 硅胶灌封:对于一些对环境要求较高的应用场景,还需要对整个MCU芯片进行硅胶灌封。
硅胶具有优异的抗震动、防水防尘性能,可以保护芯片免受机械冲击和湿气侵入。
硅胶灌封需要在封装胶水固化之后进行,确保芯片和焊点不受到硅胶的污染。
四、封装质量检测封装完成后,需要对封装质量进行检测。
主要包括焊接点的接触性能、焊盘的焊接质量、封装胶水的粘附性能等方面。
集成电路封装技术(3)
集成电路封装技术
前言 第一章 电子封装工程概述 第二章 封装工艺流程 第三章 厚薄膜技术
前言
一、微电子封装的作用和意义 1、从与人们日常生活直接相关的事说起——着装
随着科技的进步和社会文明程度的提高,服装的种类、式样、所用的材料、 制作工艺都在不断的进步,所起的作用不仅限于御寒和美观上。
元器件与电路板连接
封胶材料与技术
陶瓷封装
塑料封接
气密性封装 封装过程中的缺陷分析
封装可靠性工程
第一章 电子封装工程概述
1.3.1 20世纪电子封装技术发展的回顾
第一章 电子封装工程概述
1.3.2 发展趋势 1、半导体集成电路的发展迅速
芯片尺寸越来越大
工作频率越来越高
发热量日趋增大
引脚越来越多
第一章 电子封装工程概述
随着封装技术的进步,引线节距和封装厚度不断地减小 引线节距从2.54mm(PDIP)降至0.65mm(PQFP) 封装厚度从3.6 mm(PDIP)降至2.0mm(PQFP)和
第一章 电子封装工程概述
1.2.3封装技本术与课封装程材所料 涉及的工艺技术
芯片封装工艺流程 焊接材料
厚膜/薄膜技术 印制电路板
第一章 电子封装工程概述
1.2 封装技术
1.2.1封装工程的技术层次
1.2.1封装工程的技术层次
层次1 它是指半导体集成电路元件(芯片)。芯片由半导体厂商提供,分二类,一 类系列标准芯片,另一类是针对系统用户的专用芯片。由于芯片为厂家提供, 如何确保芯片质量就成为关键问题。将其列为1个层次是指集成电路元器件间 的连线工艺。
封装的发展趋势已初见端倪。 (1)高性能CSP封装 以其超小型、轻重量化为特色,如果能在高速、多功能低 价格两个方面兼得,CSP在LSI封装中将会迅速得到普及。 (2)以芯片叠层式封装为代表的三维封装 三维立体封装包括封装层次的三维封 装、芯片层次的三维封装和硅圆片层次的三维封装等三种。 (3)全硅圆片型封装 其特点是在完成扩散工序的硅圆片上进行封装布线、布置 引线端子、贴附焊球、完成封装,最后再切分一个一个的封装件。 (4)球形半导体 涉及到半导体前工程、后工程等许多基本工序的变革,能否在 技术上突破并发展为实用的封装形式,还要经过实践检验。
微电子器件封装流程
去框 (Singulation)
去框(Singulation)的目的: 將已完成盖印(Mark)制程 的Lead Frame,以沖模的方 式将Tie Bar切除,使 Package与Lead Frame分开, 方便下一个制程作业。
Tie Bar
成型 Forming
成型(Forming)的目的: 將已去框的Package的Out Lead以连续冲模的方式,将 产品的脚弯曲成所要求之形状。
Mold Cycle-1
封胶的过程为将导线架预热, 再将框架置于压铸机上的封装 模具上,再以半溶化后之树脂 (Compound)挤入模中,待树脂 硬化后便可开模取出成品。
Mold Cycle-2
空模
放入L/F
合模
开模
开模
注胶
切脚成型 (Trim/Form)
目的:将导线架上已封装完成的晶粒, 剪切分离并将不需要的连接用材料切除。
去胶/去纬前
去胶/ (Dejunk)
去胶(Dejunk)的目的:所谓去胶,是指利用机械模具将脚尖 的费胶去除;亦即利用冲压的刀具(Punch)去除掉介于胶体 (Package)与(Dam Bar)之間的多余的溢胶。
Dam Bar
去胶位置
去纬 (Trimming)
去纬(Trimming)的目的: 去纬是指利用机械模具将脚间金属连接杆切除。
焊线 (Wire Bond)
目的:将晶粒上的接点用金线或者铝线铜 线连接到导线架上之内引脚,从而将IC晶 粒之电路讯号传输到外界。
焊线时,以晶粒上之接点为第一焊点,内 引脚上之接点为第二焊点。先将金线之端 点烧成小球,再将小球压焊在第一焊点上。 接着依设计好之路径拉金线,将金线压焊 在第二点上完成一条金线之焊线动作。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
塑模(Molding) 作用: 将晶片与外界隔绝 避免上面的金线被破坏 防止湿气进入产生腐蚀 避免不必要的讯号破坏 有效地将晶片产生的热排出到外界 步骤: 能够用手拿 1.导线架或基板放到框架上预热 2.框架放于压膜机内的封装模上 3.压模机关闭模穴,压模,将半融化的树脂挤入模具中 4.树脂填充完毕,硬化,开模完成。
Marking (Laser/ink)
ABC
World Leading Wafer FAB
Marking
印字(Mark)机台
8、植球:Sold ball attach
Solder Ball Attach
贴锡球
Solder Ball
PBGA结构:
EMC
Wire Adhesive Die
Organic Substrate
Die
打线&打金线
Wire Bonding
Wafer Wafer
Wire
塑模
Molding
贴锡球
Solder Ball Attach
单颗化
Singulation
Solder Ball Molding Compound
Packing
Final Test
Wafer Sawing 1、划片 划片就是把已制有电路图形的集成电路圆片切割分离成 具有单个图形(单元功能)的芯片,常用的方法有金刚刀划片、 砂轮划片和激光划片等几种:金刚刀划片质量不够好,也 不便于自动化生产,但设备简单便宜,目前已很少使用; 激光划片属于新技术范踌,正在推广试用阶段。目前使用 最多的是砂轮划片,质量和生产效率都能满足一般集成电 路制作的要求。
④浇铸法成型 把元器件待封装部位放入铸模内,用液体树脂灌满, 经加热固化成型
浇铸法成型工艺操作简单,成本低,封装外形尺寸一 致,防潮性能较好,但封接后不易脱模,生产效率 低.可靠性也差,其工艺流程是
⑤递模成型
塑料包封机上油缸压力,通过注塑杆和包封模的注塑 头、传送到被预热的模塑料上,使模塑料经浇道、浇口缓 促的挤入型腔,并充满整个腔体,把芯片包封起来。此方 法称为递模成型法
芯片
金属化布线
粘接剂
芯片
黏结方法:
Байду номын сангаас
1.共晶黏结法。 2.玻璃胶黏结法。 3.高分子胶黏结法。 4.焊接黏结法 。
共晶黏结法。
原理:利用金-硅和金在3wt%金。363˚C时产生的共晶(Eutectic)反应特性进行IC晶
片的粘结固定。
实现步骤:1.将IC晶片置于已镀有金膜的基板晶片座上,加热到425˚C,然后
①滴涂成型法
用滴管把液体树脂滴涂到键合后的芯片上,经加热 后固化成型,又称软封装。
滴涂法工艺操作简单,成本低,不需要专用的封装设备 和模具,适用于多品种小批量生产,但封装的可靠性差, 封装外形尺寸不一致,不适合大批量生产,其工艺流程是
②浸渍涂敷法成型 把元、器件待封装部位浸渍到树脂溶液中,使树脂包 封在其表面,经加热固化成型。
优点:有优良的热传导性
硬性合金:良好的抗疲劳(Fatigue)与抗潜变(Creep)特性;但易产生热膨胀系数差异引起 应力破坏问题 软性合金:软质焊料能改善硬性合金的缺点,但是使用前必须在晶片背面先镀上多层金属 薄膜以促进焊料的润湿。
5、引线键合
最早的办法是采用拉丝焊、合金焊和点焊。直到1964年 集成电路才开始采用热压焊和超声焊。 集成电路的芯片与封装外壳的连接方式,目前可分为有 引线控合结构和无引线键合结构两大类。有引线镀合结构就 是我们通常所说的丝焊法,即用金丝或铝丝实行金—金 键合,金—铝银键合或铝—铝键合。由于它们都是在一定压 力下进行的焊接,所以又称键合为压焊。
设计对Mold质量的影响:芯片的设计;衬板的设计;封装的设计;
金线长度;金线的直径
7、印字(Mark)
目的:用于适当的辨别IC元件 内容:生产的记号,如商品的规格,制造者,机种,批号等 要求:印字清晰且不脱落
方式:按印式-像印章一样直接印字在胶体上
转印式-pad print,使用转印头,从字模上沾印再印字在胶体上 雷射式-laser mark,用laser光印字
Die attach
3、基板的金属化布线
在基板的表面形成与外界通信的薄膜型金属互连线
4、芯片装片
Die attach
把集成电路芯片核接到外壳底座(如多层陶瓷封装) 或带有引线框架的封装基板上的指定位置,为丝状引线 的连接提供条件的工艺,称之为装片。由于装片内涵多 种工序,所以从工艺角度习惯上又称为粘片、烧结、芯 片键合和装架。根据目前各种封装结构和技术要求,装 片的方法可归纳为导电胶粘接法、银浆或低温玻璃烧结 法和低熔点合金的焊接法等几种,可根据产品的具体要 求加以选择。 芯片
第三章
微电子封装工艺流程
一、塑料封装工艺流程
以PBGA为例介绍一下封装制程
PBGA:
TOP VIEW
BOTTOM VIEW
PBGA的详细制程(Package process)
贴片
Taping
晶圆植入
Wafer Mount
晶圆切割
Die Saw
晶片黏结
Die Attach
印记
Marking
烘烤
Saw Blade
Wafer
Water Nozzle
Wafer
Wafer Feeding Direction Wafer Mount Tape Tape Speed
2、绷片和分片
绷片:经划片后仍粘贴在塑料薄膜上的圆片,如需要分离成 单元功能芯片而又不许脱离塑料薄膜时,则可采用绷片机进 行绷片,即把粘贴在薄膜上的圆片连同框架一起放在绷片机 上用一个圆环顶住塑料薄膜,并用力把它绷开,粘在其上的 圆片也就随之从划片槽处分裂成分离的芯片。这样就可将已 经分离的但仍与塑料薄膜保持粘连的芯片.连同框架一起送 入自动装片机上进行芯片装片。现在装片机通常附带有绷片 机构。 分片:当需人工装片时,则需要进行手工分片,即把已经经 过划片的圆片倒扣在丝绒布上,背面垫上一张滤纸,再用有 机玻璃棒在其上面进行擀压,则圆片由于受到了压应力而沿 着划片槽被分裂成分离的芯片。然后仔细地把圆片连同绒布 和滤纸一齐反转过来,揭去绒布,芯片就正面朝上地排列在 滤纸上,这时便可用真空气镊子将单个芯片取出,并存放在 芯片分居盘中备用。
塑模 Molding
影响mold质量的几个主要因素
Mold 参数的影响:预热情况;Mold的温度;压模时间;压模压强
Mold 芯片的影响:模道的设计;Gate的设计;芯片表面情况;
Gate的位置 Mold 材料的影响:密度;黏性;凝胶时间;湿度
Mold 操作面影响:OP的训练熟练度;对工作知识的了解
金丝 芯片 金属化布线
粘接剂
芯片
Wire Bonding
6、封模
密封技术就是指在集成电路制作过程中经过组装和检 验合格后对其实行最后封盖,以保证所封闭的空腔中能具 有满意的气密性,并且用质谱仪或放射性气体检漏装置来 进行测定,判断其漏气速率是否达到了预定的指标。通常 都是以金属、玻璃和陶瓷为主进行密封,并称它们为气密 性封装;而塑料封袭则称非气密性封装。
用EMC塑模的过程(EMC Molding Process)
预热
递模成型工艺操作简单,劳动强度低,封装后外形一致性 好,成品率高,且耐湿性能好,适合大批量工业化生产,但 一次性投资多,占用生产场地大,当更换封装品种时,需要 更换专用的包封模具和辅助工具。递模成型法是集成电路的 主要封装形式,其工艺流程是
由金-硅之间的相互扩散作用完成结合。 2.通常在热氮气的环境中进行,防止硅高温氧化。 3. 基板与晶片反应前先相互磨擦(Scrubbing),以除去氧化层,加 反映界面的润湿性,否则会导致孔洞 (void ) 产生而使结合强度 与热传导性降低。同时也造成应力不均匀而导致IC晶片破裂损坏。
优化步骤:1. IC晶片背面镀有一薄层的金
胶中有机成分必须完全除去,否则有害封装时结构的稳定性和可靠度。
高分子胶黏结法。
高分子材料与铜引脚材料的热膨胀系数相近,是塑料封装的常用晶片粘结法
3种涂胶的方法:
1.戳印(stamping) 2.网印(Screen Printing) 3.点胶(Syringe Transfer)
高分子胶材料:环氧树脂(Epoxy)或聚亚硫胺 步骤:放置IC晶片,加热完成粘结
晶圆粘片
Wafer Mount
晶元切割前首先必须在晶元背面贴上胶带(Blue Tape), 并固定在钢制的框架上,完成晶元粘片(Wafer Mount & tape Mount)的动作,然后再送进晶元切割机上进行切割。
晶圆切割
Die Saw
切割是为了分离Wafer上的晶粒(die),切割完后,一颗颗 晶粒就井然有序的排列在胶带上。同时由于框架的支撑可避 免胶带皱褶而使晶粒互相碰撞,并且还可以支撑住胶带以便于 搬运。
Solder Ball
9、单颗化:Singulation
Punch
Saw Singulation
Router
ABC
27 Dec
ABC
27 Dec
ABC
27 Dec
ABC
27 Dec
PBGA
wafer
钢制框 架
Au膜互连线
Si芯片
Wafer Sawing
DI water 去离子水
割刀
蓝色胶带
•水的冲洗速度 : 80~100 mm/sec • 切割方法: : 单步切割(single) 分步切割 (step ) 斜角切割 (bevel)
* DI Water(去离子水的作用): 洗去硅的残留碎片 电阻系数 : 16~18 Mohm
2. 基板的晶片座上植入预型片(Perform).厚度约25mm,面积约为晶片的三分之一 的金-2wt%硅合金薄片。用于弥补基板孔洞平整度不佳造成的不完全结合。用于 大面积晶片的结合。 3. 由于预型片成分并非金硅完全互溶的合金,硅团块仍会有氧化现象,所以还必须 有交互摩擦的动作,还必须在氮气环境下反应。 4.预型片不能过量使用,否则会造成材料溢流,降低可靠度 5.预型片也能用不易氧化的纯金片。不过结合温度较高。