高考数学专题复习之圆锥曲线的中点弦问题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考数学专题复习之圆锥曲线的中点弦问题
直线与圆锥曲线相交所得弦中点问题,是解析几何中的重要内容之一,也是高考的一个热点问题。这类问题一般有以下三种类型:
(1)求中点弦所在直线方程问题;
(2)求弦中点的轨迹方程问题;
(3)求弦中点的坐标问题。其解法有代点相减法、设而不求法、参数法、待定系数法及中心对称变换法等。
一、求中点弦所在直线方程问题
例1 过椭圆14
162
2=+y x 内一点M (2,1)引一条弦,使弦被点M 平分,求这条弦所在的直线方程。
解法一:设所求直线方程为y-1=k(x-2),代入椭圆方程并整理得:
016)12(4)2(8)14(2222=--+--+k x k k x k
又设直线与椭圆的交点为A(11,y x ),B (22,y x ),则21,x x 是方程的两个根,于是
1
4)2(82221+-=+k k k x x , 又M 为AB 的中点,所以21
4)2(422221=+-=+k k k x x , 解得2
1-=k , 故所求直线方程为042=-+y x 。
解法二:设直线与椭圆的交点为A(11,y x ),B (22,y x ),M (2,1)为AB 的中点, 所以421=+x x ,221=+y y ,
又A 、B 两点在椭圆上,则1642121=+y x ,1642
222=+y x ,
两式相减得0)(4)(22212221=-+-y y x x , 所以21)(421212121-=++-=--y y x x x x y y ,即2
1-=AB k , 故所求直线方程为042=-+y x 。
解法三:设所求直线与椭圆的一个交点为A(y x ,),由于中点为M (2,1), 则另一个交点为B(4-y x -2,),
因为A 、B 两点在椭圆上,所以有⎩⎨⎧=-+-=+16
)2(4)4(1642222y x y x , 两式相减得042=-+y x ,
由于过A 、B 的直线只有一条,
故所求直线方程为042=-+y x 。
二、求弦中点的轨迹方程问题
例2 过椭圆136
642
2=+y x 上一点P (-8,0)作直线交椭圆于Q 点,求PQ 中点的轨迹方程。
解法一:设弦PQ 中点M (y x ,),弦端点P (11,y x ),Q (22,y x ),
则有⎩⎨⎧=+=+576
16957616922222121y x y x ,两式相减得0)(16)(922212221=-+-y y x x , 又因为x x x 221=+,y y y 221=+,所以0)(216)(292121=-⋅+-⋅y y y x x x , 所以y x x x y y 1692121=--,而)
8(0---=x y k PQ ,故8169+=x y y x 。 化简可得01672922=++y x x (8-≠x )。
解法二:设弦中点M (y x ,),Q (11,y x ),由281-=x x ,2
1y y =可得821+=x x ,y y 21=,
又因为Q 在椭圆上,所以136642
121=+y x ,即136464)4(42
2=++y x , 所以PQ 中点M 的轨迹方程为19
16)4(2
2=++y x (8-≠x )。 三、弦中点的坐标问题
例3 求直线1-=x y 被抛物线x y 42
=截得线段的中点坐标。
解:解法一:设直线1-=x y 与抛物线x y 42=交于),(11y x A , ),(22y x B ,其中点),(00y x P ,由题意得⎩
⎨⎧=-=x y x y 412, 消去y 得x x 4)1(2=-,即0162=+-x x , 所以32
210=+=x x x ,2100=-=x y ,即中点坐标为)2,3(。 解法二:设直线1-=x y 与抛物线x y 42=交于),(11y x A , ),(22y x B ,其中点
),(00y x P ,由题意得⎩⎨⎧==2
2212144x y x y ,两式相减得)(4122122x x y y -=-, 所以4))((1
21212=-+-x x y y y y ,
所以421=+y y ,即20=y ,3100=+=y x ,即中点坐标为)2,3(。
上面我们给出了解决直线与圆锥曲线相交所得弦中点问题的一些基本解法。下面我们看一个结论
引理 设A 、B 是二次曲线C :
022=++++F Ey Dx Cy Ax 上的两点,P ),(00y x 为弦AB 的中点,则
)02(22000≠+++-=E Cy E Cy D Ax k AB 。
设A ),(11y x 、B ),(22y x 则0112121=++++F Ey Dx Cy Ax (1)
0222222=++++F Ey Dx Cy Ax (2)
)2()1(-得0)()())(())((212121212121=-+-+-++-+y y E x x D y y y y C x x x x A ∴0)()()(2)(22121210210=-+-+-+-y y E x x D y y Cy x x Ax
∴0))(2())(2(210210=-++-+y y E Cy x x D Ax
∵020≠+E Cy ∴21x x ≠ ∴E Cy D Ax x x y y ++-=--00212122即
E Cy D Ax k AB ++-=0022。(说明:当B A −→−时,上面的结论就是过二次曲线C 上的点P ),(00y x 的切线斜率公式,即E Cy D Ax k ++-
=0022)
推论1 设圆022=++++F Ey Dx y x 的弦AB 的中点为P ),(00y x ()00≠y ,则
E y D x k AB ++-
=0022。(假设点P 在圆上时,则过点P 的切线斜率为)
推论 2 设椭圆122
22=+b y a x 的弦AB 的中点为P ),(00y x ()00≠y ,则
0022y x a b k AB •-=。(注:对a≤b 也成立。假设点P 在椭圆上,则过点P 的切线斜率为0022y x a b k •-=)
推论3 设双曲线122
22=-b y a x 的弦AB 的中点为P ),(00y x ()00≠y 则
0022y x a b k AB •=。(假设点P 在双曲线上,则过P 点的切线斜率为
0022y x a b k •=) 推论4 设抛物线px y 22=的弦AB 的中点为P ),(00y x ()00≠y 则0y p
k AB =。(假
设点P 在抛物线上,则过点P 的切线斜率为
)0y p k =
我们可以直接应用上面这些结论解决有关问题,下面举例说明。
E y D x k ++-=0022