高考数学专题复习之圆锥曲线的中点弦问题
高考圆锥曲线中点弦问题 讲义--高三数学一轮复习
圆锥曲线中点弦问题题型识别:弦中点,斜率积用点差若),(11y x A ,),(22y x B 是椭圆)(012222>>=+b a by a x 上不重合的两点,点)(00,y x M 为AB 的中点,OM AB k k .的值为定值么? 答题模版第一步:若),(11y x A ,),(22y x B 是椭圆)(012222>>=+b a by a x 上不重合的两点,则⎪⎪⎩⎪⎪⎨⎧=+=+11222222221221b y a x by a x , 第二步:两式相减得0))(((2212122121=-++-+by y y y a x x x x ))(, 第三步:2121x x y y --是直线AB 的斜率k ,)(2,22121y y x x ++是线段AB 的中点)(00,y x ,化简可得2221212121a b x x y y x x y y -=--⋅++2200ab k x y -=⋅⇒类型1 求中点弦直线斜率或方程典例1:已知椭圆E :22142x y +=,O 为坐标原点,作斜率为k 的直线交椭圆E 于A ,B两点,线段AB 的中点为M ,直线OM 与AB 的夹角为θ,且tan 22θ=则k =( ) A .22±B .2±C .22D 2 【答案】A【解析】由题意知0k ≠,设()11,A x y ,()22,B x y ,()00,M x y ,则0122x x x =+,0122y y y =+,将A ,B 两点坐标代入椭圆方程22112222142142x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩,两式相减得22012121222121212012y y y y y y y k x x x x x x x -+-=-=-⨯=--+-,则0012OM y k x k ==-,设直线OM 的倾斜角为α,则1tan α2k=-,设直线AB 的倾斜角为β,则tan k β=,则()()()1tan αtan π2tan tan απ221tan αtan π12k k k kβθββ--+-=+-===---22k =±.对点训练1.已知(2,1)-是直线l 被椭圆221369x y +=所截得线段的中点,则直线l 的方程是( )A .20x y -=B .240x y -+=C .230x y ++=D .2310x y --=2.已知双曲线2212x y -=与不过原点O 且不平行于坐标轴的直线l 相交于,M N 两点,线段MN 的中点为P ,设直线l 的斜率为1k ,直线OP 的斜率为2k ,则12k k =( )A .12 B .12- C .2 D .2-3.已知双曲线2213y x -=上存在两点M,N 关于直线y x m =+对称,且MN 的中点在抛物线29y x =上,则实数m 的值为( )A .4B .-4C .0或4D .0或-4类型2 求曲线的标准方程典例2:已知椭圆2221(02)4x y b b+=<<的左右焦点分别为12,F F ,过左焦点1F 作斜率为2的直线与椭圆交于,A B 两点,AB 的中点是P ,O 为坐标原点,若直线OP 的斜率为14-,则b 的值是( )A .2B 3C .32D 2 【答案】D【解析】设A (x 1,y 1),B (x 2,y 2),则2211214x y b +=,222224x y b+=1,两式相减可得14(x 1﹣x 2)(x 1+x 2)21b +(y 1﹣y 2)(y 1+y 2)=0,∵P 为线段AB 的中点,∴2x p =x 1+x 2,2y p =y 1+y 2,∴1212y y x x --•212124y y b x x +=-+,又1212y y x x -=-k AB =2,121214y y x x +=-+∴2124b -=-,即22b =,∴2b =对点训练1.椭圆221ax by +=与直线12y x =-交于A 、B 两点,过原点与线段AB 中点的直线的斜2,则ab的值为( ) A 2 B 3 C .22 D .32.若双曲线的中心为原点,(0,2)F -是双曲线的焦点,过F 的直线l 与双曲线相交于M ,N两点,且MN 的中点为(3,1)P 则双曲线的方程为( )A .2213x y -=B .2213x y -=C .2213y x -=D .2213y x -=3.已知抛物线C 的顶点为原点,焦点在x 轴上,直线y =x 与抛物线C 交于A ,B 两点,若P(2,2)为AB 的中点,则抛物线C 的方程为( )B .y 2=4x B .y 2=−4xC .x 2=4yD .y 2=8x类型三 点差法求离心率典例3:已知A ,B 是椭圆E :22221(0)x y a b a b+=>>的左、右顶点,M 是E 上不同于A ,B 的任意一点,若直线AM ,BM 的斜率之积为49-,则E 的离心率为( )A .23 B .33 C .23 D .53【答案】D【解析】由题意方程可知,(,0),(,0)A a B a -,设00(,)M x y ,0000,,AM BM y y k k x a x a∴==+-则000049y y x a x a ⋅=-+- ,,整理得:2022049y x a =--,①又2200221x y a b +=,得2222002()b y a x a =-,即2202220y b x a a =--,②联立①②,得2249b a -=-,即22249a c a -=,解得5e =.对点训练1.设椭圆()222210x y a b a b+=>>的两焦点为12,F F ,若椭圆上存在点P ,使012120F PF ∠=,则椭圆的离心率e 的取值范围为( ). A .3] B .3(0,]4 C .3D .3[,1)42.经过双曲线22221(00)x y a b a b-=>>,的右焦点,倾斜角为60的直线与双曲线的右支有且只有一个交点,则此双曲线离心率的取值范围是( )A .[2,+∞)B .(1,2)C .(1,2]D .(2,+∞)3.已知双曲线2222:1x y C a b-=的两条渐近线分别为1l 与2l ,A 与B 为1l 上关于原点对称的两点,M 为2l 上一点且AM BM k k e ⋅=,则双曲线离心率e 的值为( ) A 5 B 51+ C .2 D 2 综合训练1.已知 m,n,s,t ∈R ∗,m +n =3,m s+nt=1,其中m ,n 是常数且m <n ,若s +t 的最小值是3+2√2,满足条件的点(m,n )是椭圆 x 24+y 216=1一弦的中点,则此弦所在的直线方程为( )A. x −2y +3=0B. 4x −2y −3=0C. x +y −3=0D. 2x +y −4=02.已知椭圆22221(0)x y a b a b +=>>的右焦点为F ,离心率22,过点F 的直线l 交椭圆于,A B 两点,若AB 中点为(1,1),则直线l 的斜率为( )A .2B .2-C .12- D .123.已知双曲线22184x y -=上有不共线的三点、、A B C ,且AB BC AC 、、的中点分别为D E F 、、,若OD OE OF 、、的斜率之和为-2,则111AB BC ACk k k ++= ( ) A .-4 B .23- C .4 D .64.若双曲线的中心为原点,()2,0F -是双曲线的焦点,过F 直线l 与双曲线交于M ,N 两点,且MN 的中点为()1,3P ,则双曲线的方程为( )A .2213x y -=B .2213x y -=C .2213y x -=D .2213y x -=5.椭圆mx 2+ny 2=1与直线y =1-x 交于M ,N 两点,过原点与线段MN 中点所在直线的斜2,则m n 的值是( )A .22B 23C 92D 236.中心为原点,一个焦点为F (2)的椭圆,截直线y =3x -2所得弦中点的横坐标为12,则该椭圆方程为( )A .222217525x y +=B .2217525x y +=C .2212575x y +=D .222212575x y +=7.已知椭圆2222:1(0)x y C a b a b+=>>的左、右顶点分别为A ,B ,点M 为椭圆C 上异于A ,B 的一点,直线AM 和直线BM 的斜率之积为14-,则椭圆C 的离心率为( ) A .14 B .12 C .3 D .1548.已知椭圆()222210x y a b a b+=>>,的一条弦所在的直线方程是30x y -+=,弦的中点坐标是(2,1)M -,则椭圆的离心率是( ) A 5B 3C 2D .12圆锥曲线中点弦问题解析题型识别:弦中点,斜率积用点差若),(11y x A ,),(22y x B 是椭圆)(012222>>=+b a by a x 上不重合的两点,点)(00,y x M 为AB 的中点,OM AB k k .的值为定值么? 答题模版第一步:若),(11y x A ,),(22y x B 是椭圆)(012222>>=+b a by a x 上不重合的两点,则⎪⎪⎩⎪⎪⎨⎧=+=+11222222221221b y a x by a x , 第二步:两式相减得0))(((2212122121=-++-+by y y y a x x x x ))(, 第三步:2121x x y y --是直线AB 的斜率k ,)(2,22121y y x x ++是线段AB 的中点)(00,y x ,化简可得2221212121a b x x y y x x y y -=--⋅++2200ab k x y -=⋅⇒类型1 求中点弦直线斜率或方程典例1:已知椭圆E :22142x y +=,O 为坐标原点,作斜率为k 的直线交椭圆E 于A ,B两点,线段AB 的中点为M ,直线OM 与AB 的夹角为θ,且tan 22θ=则k =( ) A .22±B .2±C .22D 2 【答案】A【解析】由题意知0k ≠,设()11,A x y ,()22,B x y ,()00,M x y ,则0122x x x =+,0122y y y =+,将A ,B 两点坐标代入椭圆方程22112222142142x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩,两式相减得22012121222121212012y y y y y y y k x x x x x x x -+-=-=-⨯=--+-,则0012OM y k x k ==-,设直线OM 的倾斜角为α,则1tan α2k=-,设直线AB 的倾斜角为β,则tan k β=,则()()()1tan αtan π2tan tan απ221tan αtan π12k k k kβθββ--+-=+-===---22k =±.对点训练1.已知(2,1)-是直线l 被椭圆221369x y +=所截得线段的中点,则直线l 的方程是( )A .20x y -=B .240x y -+=C .230x y ++=D .2310x y --= 【答案】B【解析】设直线和圆锥曲线交点为1(A x ,1)y ,2(B x ,2)y ,其中点坐标为(2,1)-,当斜率不存在时,显然不成立,设y kx m =+,分别代入圆锥曲线的解析式22111369x y +=,22221369x y +=并作差,利用平方差公式对结果进行因式分解,得12121212936y y y y x x x x -+=--+,得19236k =--,12k =,所以1(2)12y x =++,即:240x y -+=.2.已知双曲线2212x y -=与不过原点O 且不平行于坐标轴的直线l 相交于,M N 两点,线段MN 的中点为P ,设直线l 的斜率为1k ,直线OP 的斜率为2k ,则12k k =( )A .12 B .12- C .2 D .2- 【答案】A 【解析】设直线l 的方程为1y k x b =+,代入双曲线方程2212x y -=,得到2221112102k x bk x b ⎛⎫----= ⎪⎝⎭,得到11221212k bx x k +=-,设()()111212,,,M x k x b N x k x b ++,则()11212,22k x x x x N b ⎛⎫+++ ⎪⎝⎭,则21121212b k k x x k =+=+,故1212k k ⋅=,故选A .3.已知双曲线2213y x -=上存在两点M,N 关于直线y x m =+对称,且MN 的中点在抛物线29y x =上,则实数m 的值为( )A .4B .-4C .0或4D .0或-4 【答案】D【解析】∵MN 关于y=x+m 对称∴MN 垂直直线y=x+m ,MN 的斜率﹣1,MN 中点P (x 0,x 0+m )在y=x+m 上,且在MN 上设直线MN :y=﹣x+b ,∵P 在MN 上,∴x 0+m=﹣x 0+b ,∴b=2x 0+m由2213y x b y x =+⎧⎪⎨-=⎪⎩﹣消元可得:2x 2+2bx ﹣b 2﹣3=0△=4b 2﹣4×2(﹣b 2﹣3)=12b 2+12>0恒成立,∴M x +N x =﹣b ,∴x 0=﹣2b ,∴b=2m∴MN 中点P (﹣4m ,34m )∵MN 的中点在抛物线y 2=9x 上, ∴299164mm =-∴m=0或m=﹣4类型2 求曲线的标准方程典例2:已知椭圆2221(02)4x y b b+=<<的左右焦点分别为12,F F ,过左焦点1F 作斜率为2的直线与椭圆交于,A B 两点,AB 的中点是P ,O 为坐标原点,若直线OP 的斜率为14-,则b 的值是( )A .2B 3C .32D 2 【答案】D【解析】设A (x 1,y 1),B (x 2,y 2),则2211214x y b +=,222224x y b+=1,两式相减可得14(x 1﹣x 2)(x 1+x 2)21b +(y 1﹣y 2)(y 1+y 2)=0,∵P 为线段AB 的中点,∴2x p =x 1+x 2,2y p =y 1+y 2,∴1212y y x x --•212124y y b x x +=-+,又1212y y x x -=-k AB =2,121214y y x x +=-+∴2124b -=-,即22b =,∴2b =对点训练1.椭圆221ax by +=与直线12y x =-交于A 、B 两点,过原点与线段AB 中点的直线的斜2,则ab的值为( ) A .24 B .36C .22D .3【答案】C【解析】设点()11,A x y ,()22,B x y ,联立22112ax by y x⎧+=⎨=-⎩,得:()24410a b x bx b +-+-=,()()()244414164b a b b a b ab ∆=--+-=+- .12124414b x x a b b x x a b ⎧+=⎪⎪+⎨-⎪=⎪+⎩⇒12224x x b a b +=+,∴()121212*********x x y y x x -++-+-===()1241144b a x x a b a b -+=-=++.设M 是线段AB 的中点,∴M (2,44b a a b a b++).∴直线OM 的斜率为42224aa ab b b a b+==+则22ab=代入①满足△>0(a >0,b >0).2.若双曲线的中心为原点,(0,2)F -是双曲线的焦点,过F 的直线l 与双曲线相交于M ,N两点,且MN 的中点为(3,1)P 则双曲线的方程为( )A .2213x y -=B .2213x y -=C .2213y x -=D .2213y x -=【答案】B【解析】由题意设该双曲线的标准方程为22221(0,0)y x a b a b-=>>,1122(,),(,)M x y N x y ,则2211221y x a b -=且2222221y x a b-=,则1212121222()()()()y y y y x x x x a b +-+-=,即1212222()6()y y x x a b --=,则21221261(2)1230y y a x x b ---===--,即223b a =,则2244c a ==,所以221,3a b ==,即该双曲线的方程为2213x y -=.3.已知抛物线C 的顶点为原点,焦点在x 轴上,直线y =x 与抛物线C 交于A ,B 两点,若P(2,2)为AB 的中点,则抛物线C 的方程为( )B .y 2=4x B .y 2=−4xC .x 2=4yD .y 2=8x 【答案】A【解析】设抛物线方程为y 2=2px ,直线与抛物线方程联立求得x 2−2px =0,∴x A +x B =2p ,∵x A +x B =2×2=4,∴p=2,∴抛物线C 的方程为y 2=4x .类型三 点差法求离心率典例3:已知A ,B 是椭圆E :22221(0)x y a b a b +=>>的左、右顶点,M 是E 上不同于A ,B 的任意一点,若直线AM ,BM 的斜率之积为49-,则E 的离心率为( )A 2B 3C .23D 5【答案】D【解析】由题意方程可知,(,0),(,0)A a B a -,设00(,)M x y ,0000,,AM BM y y k k x a x a∴==+-则000049y y x a x a ⋅=-+- ,,整理得:2022049y x a =--,①又2200221x y a b +=,得2222002()b y a x a =-,即2202220y b x a a =--,②联立①②,得2249b a -=-,即22249a c a -=,解得5e =.对点训练1.设椭圆()222210x y a b a b+=>>的两焦点为12,F F ,若椭圆上存在点P ,使012120F PF ∠=,则椭圆的离心率e 的取值范围为( ). A .3(0,]2 B .3(0,]4 C .32D .3[,1)4【答案】C【解析】当P 是椭圆的上下顶点时,12F PF ∠最大,121120180,6090,F PF F PO ∴︒≤∠<︒∴︒≤∠<︒12sin 60sin sin 90,F PF ∴︒≤∠<︒113,,1c F P a F O c a ==≤<则椭圆的离心率e 的取值范围为32⎫⎪⎪⎣⎭.2.经过双曲线22221(00)x y a b a b-=>>,的右焦点,倾斜角为60的直线与双曲线的右支有且只有一个交点,则此双曲线离心率的取值范围是( )A .[2,+∞)B .(1,2)C .(1,2]D .(2,+∞) 【答案】A【解析】已知双曲线()2222100x y a b a b-=>,>的右焦点为F ,若过点F 且倾斜角为60°的直线与双曲线的右支有且只有一个交点,则该直线的斜率的绝对值小于等于渐近线的斜率b a ,∴3b a ≥e 2222224c a b a a+==≥,∴e ≥2,故选:A3.已知双曲线2222:1x y C a b-=的两条渐近线分别为1l 与2l ,A 与B 为1l 上关于原点对称的两点,M 为2l 上一点且AM BM k k e ⋅=,则双曲线离心率e 的值为( ) A 5 B 51+ C .2 D 2 【答案】B【解析】设直线1l 的方程为b y x a =,则直线2l 的方程为b y x a =-,设点11,b A x x a ⎛⎫ ⎪⎝⎭、22,b M x x a ⎛⎫- ⎪⎝⎭,则点11,b B x x a ⎛⎫-- ⎪⎝⎭,()1212AM bx x ak x x +=-,()12121212MBb b b x x x x a a a k x x x x -+-==--+,22AM BM b k k e a ∴⋅==,即21e e -=,即210e e --=,1e >,解得512e =,故选:B.综合训练1.已知 m,n,s,t ∈R ∗,m +n =3,ms +nt =1,其中m ,n 是常数且m <n ,若s +t 的最小值是3+2√2,满足条件的点(m,n )是椭圆 x 24+y 216=1一弦的中点,则此弦所在的直线方程为( )A. x −2y +3=0B. 4x −2y −3=0C. x +y −3=0D. 2x +y −4=0 【答案】D【解析】因为 m ,n ,s ,t 为正数,m +n =3,ms +nt =1,s +t 的最小值是 3+2√2,所以 (s +t )(ms +nt ) 的最小值是 3+2√2,所以 (s +t )(ms +nt )=m +n +mt s+ns t≥m +n +2√mn ,满足mt s =ns t时取最小值,此时最小值为 m +n +2√mn =3+2√2,得:mn =2,又:m +n =3,所以,m =1,n =2.设以 (1,2) 为中点的弦交椭圆 x 24+y 216=1 于A (x 1,y 1),B (x 2,y 2),由中点坐标公式知 x 1+x 2=2,y 1+y 2=4,把 A (x 1,y 1),B (x 2,y 2)分别代入 4x 2+y 2=16,得 {4x 12+y 12=16,4x 22+y 22=16,两式相减得 2(x 1−x 2)+(y 1−y 2)=0,所以 k =y 2−y 1x 2−x 2=−2.所以此弦所在的直线方程为 y −2=−2(x −1),即 2x +y −4=0.2.已知椭圆22221(0)x y a b a b +=>>的右焦点为F ,离心率22,过点F 的直线l 交椭圆于,A B 两点,若AB 中点为(1,1),则直线l 的斜率为( )A .2B .2-C .12- D .12【答案】C 【解析】由题得2222222242,4()2,2c c a a b a a b a =∴=∴-=∴=.设1122(,),(,)A x y B x y ,由题得1212+=2+=2x x y y ,,所以2222221122222222b x a y a b b x a y a b ⎧+=⎨+=⎩,两式相减得2212121212()()a ()()0b x x x x y y y y +-++-=,所以2212122()2a ()0b x x y y -+-=,所以221212()240()y y b bx x -+=-,所以1120,2k k +=∴=-.3.已知双曲线22184x y -=上有不共线的三点、、A B C ,且AB BC AC 、、的中点分别为D E F 、、,若OD OE OF 、、的斜率之和为-2,则111AB BC ACk k k ++= ( ) A .-4 B .23- C .4 D .6 【答案】A【解析】设112200(,),(,),(,)A x y B x y D x y ,则1201202,2x x x y y y +=+=,2211184x y -=,2222184x y -=,两式相减,得12121212()()()()84x x x x y y y y +-+-=,即0121202y y y x x x -=-,即12OD AB k k =,同理,得112,2OE OF BC AC k k k k ==,所以1112()4OD OE OF AMBC ACk k k k k k ++=++=-. 4.若双曲线的中心为原点,()2,0F -是双曲线的焦点,过F 直线l 与双曲线交于M ,N 两点,且MN 的中点为()1,3P ,则双曲线的方程为( )A .2213x y -=B .2213x y -=C .2213y x -=D .2213y x -=【答案】D【解析】根据题意,()2,0F -是双曲线的焦点,则双曲线的焦点在x 轴上,设双曲线的方程为22221x y a b-=,且()11,M x y ,()22,N x y ,直线MN 过焦点F ,则()30112MNK -==--,则有12121y y x x -=-,变形可得1212y y x x -=-,2211222222221,1,x y a b x y a b ⎧-=⎪⎪⎨⎪-=⎪⎩①②,-①②,2222121222x x y y a b--=,又由1212y y x x -=-,且122x x +=,126y y +=,变形可得:223b a =,又由2c =,则224a b +=,解可得:21a =,23b =,则要求双曲线的方程为:2213y x -=.5.椭圆mx 2+ny 2=1与直线y =1-x 交于M ,N 两点,过原点与线段MN 中点所在直线的斜率为22,则m n 的值是( )A .22B 23C .922D 23【答案】A【解析】设()()1122,,,M x y N x y ,设MN 中点为1212,22x x y y A ++⎛⎫⎪⎝⎭,直线MN 的斜率为1-,直线OA 的斜率为12121212222y y x x x x y y ++==++.由于,M N 在椭圆上,故2211222211mx ny mx ny ⎧+=⎨+=⎩,两式相减得()()222212120m x x n y y -+-=,化简为12121212x x y y m n y y x x +--⋅=+-,即221,2m m n n -=-=. 6.中心为原点,一个焦点为F (2)的椭圆,截直线y =3x -2所得弦中点的横坐标为12,则该椭圆方程为( )A .222217525x y +=B .2217525x y +=C .2212575x y +=D .222212575x y +=【答案】C【解析】由已知得c =2,设椭圆的方程为2222150x ya a +=-,联立得222215032x y a a y x ⎧+=⎪-⎨⎪=-⎩,消去y 得(10a 2-450)x 2-12(a 2-50)x +4(a 2-50)-a 2(a 2-50)=0,设直线y =3x -2与椭圆的交点坐标分别为(x 1,y 1),(x 2,y 2),由根与系数关系得x 1+x 2=()22125010450a a --,由题意知x 1+x 2=1,即()22125010450a a --=1,解得a 2=75,所以该椭圆方程为2212575x y +=.7.已知椭圆2222:1(0)x y C a b a b+=>>的左、右顶点分别为A ,B ,点M 为椭圆C 上异于A ,B 的一点,直线AM 和直线BM 的斜率之积为14-,则椭圆C 的离心率为( ) A .14 B .12 C .3 D 15 【答案】C【解析】由已知得(,0),(,0)A a B a -,设()00,x y ,由题设可得,2200221x y a b+=,所以()222202b y a x a=-.因为()222220200022222000014A MM B b a x y y y b a k k x a x a x a x a a -⋅=⋅===-=-+---,所以2214b a =,则22222222314c a b b e a a a -===-=,所以3e =8.已知椭圆()222210x y a b a b+=>>,的一条弦所在的直线方程是30x y -+=,弦的中点坐标是(2,1)M -,则椭圆的离心率是( ) A 5B 3C .22D .12 【答案】C【解析】显然(2,1)M - 在椭圆内,设直线30x y -+=与椭圆的交点为112212(,),(,)()A x y B x y x x ≠,由M 是,A B 的中点有:12124,2x x y y +=-+=,将,A B 两点的坐标代入椭圆方程得:2211221x y a b +=, 2222221x y a b+=。
中点弦在圆锥曲线规律
中点弦在圆锥曲线规律
中点弦定理是圆锥曲线中的一个基本定理,它描述了圆锥曲线上一点到两个焦点的距离之差等于它到一个定点(中点弦所在直线与圆锥曲线的交点)的距离的两倍。
具体来说,对于椭圆、双曲线和抛物线,中点弦定理可以分别表示为:
椭圆:设M为椭圆上一点,F1和F2为椭圆的两个焦点,N为MF1的中点,则MF2=2FN。
双曲线:设M为双曲线上一点,F1和F2为双曲线的两个焦点,N为MF1的中点,则MF2=-2FN。
抛物线:设M为抛物线上一点,F为抛物线的焦点,T 为MF的中点,则MT=PF,其中P为抛物线的顶点。
中点弦定理在圆锥曲线的研究中有着广泛的应用。
例如,在椭圆的应用中,中点弦定理可以用于计算椭圆上一点的速度和加速度等物理量;在双曲线的应用中,中点弦定理可以用于计算双曲线上一点的切线和法线等几何量;在抛物线的应用中,中点弦定理可以用于计算抛物线上一点的切线和法线等几何量。
中点弦问题(基础知识)
圆锥曲线的中点弦问题一:圆锥曲线的中点弦问题:遇到中点弦问题常用“韦达定理”或“点差法”求解.①在椭圆中,以为中点的弦所在直线的斜率;②在双曲线中,以为中点的弦所在直线的斜率;③在抛物线中,以为中点的弦所在直线的斜率。
注意:因为Δ>0是直线与圆锥曲线相交于两点的必要条件,故在求解有关弦长、对称问题时,务必别忘了检验Δ>0!1、以定点为中点的弦所在直线的方程例1、过椭圆141622=+y x 内一点)1,2(M 引一条弦,使弦被M 点平分,求这条弦所在直线的方程。
例2、已知双曲线1222=-y x ,经过点)1,1(M 能否作一条直线l ,使l 与双曲线交于A 、B ,且点M 是线段AB 的中点。
若存在这样的直线l ,求出它的方程,若不存在,说明理由。
策略:这是一道探索性习题,一般方法是假设存在这样的直线 ,然后验证它是否满足题设的条件。
本题属于中点弦问题,应考虑点差法或韦达定理。
2、 过定点的弦和平行弦的中点坐标和中点轨迹例3、已知椭圆1257522=+x y 的一条弦的斜率为3,它与直线21=x 的交点恰为这条弦的中点M ,求点M 的坐标。
例4、已知椭圆1257522=+x y ,求它的斜率为3的弦中点的轨迹方程。
3、 求与中点弦有关的圆锥曲线的方程例5、已知中心在原点,一焦点为)50,0(F 的椭圆被直线23:-=x y l 截得的弦的中点的横坐标为21,求椭圆的方程。
∴所求椭圆的方程是1257522=+x y 4、圆锥曲线上两点关于某直线对称问题例6、已知椭圆13422=+y x ,试确定的m 取值范围,使得对于直线m x y +=4,椭圆上总有不同的两点关于该直线对称。
五、注意的问题(1)双曲线的中点弦存在性问题;(2)弦中点的轨迹应在曲线内。
利用点差法求解圆锥曲线中点弦问题,方法简捷明快,结构精巧,很好地体现了数学美,而且应用特征明显,是训练思维、熏陶数学情感的一个很好的材料,利于培养学生的解题能力和解题兴趣。
高考数学专题复习圆锥曲线中点弦问题
关于圆锥曲线的中点弦问题直线与圆锥曲线相交所得弦中点问题, 是解析几何中的重要内容之一,也是高考的一个热点问题.这类问题一般有以下三种类型:(1)求中点弦所在直线方程问题; (2)求弦中点的轨迹方程问题;(3)求弦中点的坐标问题.其解法有代点相减法、设而不求法、参数法、待定系数法 及中央对称变换法等.一、求中点弦所在直线方程问题在的直线方程. 解法一:设所求直线方程为 y-1=k(x-2)22 _ _ 2(4k1)x8( 2k k)x又设直线与椭圆的交点为 A(x 1,y 1),B (x 2,y 2),那么x 1,x 2是方程的两个根,于是8(2k 2 k)x 1 x2—TT~2一"一,4k 1 2又M 为AB 的中点,所以 工一9 4^2一s 2 ,2 4k 1-1解得k-, 2故所求直线方程为 x 2y 4 0.2 2x y 例2过椭圆—— —1上一点P (-8, 0)作直线交椭圆于 Q 点,求PQ 中点的轨迹万 6436x 2例1过椭圆一 16 2y-1 内一点 M (2, 41)引一条弦,使弦被点 M 平分,求这条弦所,代入椭圆方程并整理得: _ 2 一4(2k 1)16 0解法二:设直线与椭圆的交点为 A(x 1, 所以 x 1 x 2 4 , y 1 y 2 2,22又A 、B 两点在椭圆上,那么 x 1 4 y l.... 1 . (2)222两式相减得(x 1 x 2 ) 4( y 1 y 2 )所以Li- X21,即x 〔 x 2 4( y 〔 y 2) 2故所求直线方程为 x 2y 4 0. 解法三:设所求直线与椭圆的一个交点为 那么另一个交点为 B(4- x ,2 y ), 由于A 、B 两点在椭圆上,所以有(4两式相减得x 2y 4 0, 由于过A 、B 的直线只有一条, 故所求直线方程为 x 2y 4 0.、求弦中点的轨迹方程问题 %), B (x 2,y 2), M (2, 1)为 AB 的中点,22_16 , x 2 4 y 2 16 ,0 ,k1kAB八,2A( x , y ),由于中点为M (2, 1),22x 24y 216 2-2x)24(2 y)2 16程.解法一:设弦PQ中点M ( x, y),弦端点P ( Xi, yi) , Q ( X2, y2),2 2那么有9X1216y12576,两式相减得9(x12 x22)9X2 16y2 576三、弦中点的坐标问题例3求直线y x 1被抛物线y2 4x截得线段的中点坐标.解:解法一:设直线y x 1与抛物线y2 4x交于A(x1, y1), B(x2, y2),其中点y x 1P(x0,y o),由题意得2,y 4x消去y 得(x 1)2 4x,即x2 6x 1 0 ,所以x.六3, y. x. 1 2,即中点坐标为(3,2).解法二:设直线y x 1与抛物线y2 4x交于人(为」),B(x2,y2),其中点P(x0,y0),由题意得"24",两式相减得y22 y: 4(x2 x1),y2 4x2所以(y2 y1)(y2 y1)416(y:2、y2 ) 0,又由于x1 x2 2x, y1 y22y,所以9 2x(x1x2) 16 2y(y1 y2) 0,y1y29x 工所以—————,而k PQx1x216y化简可得9x2 72x 16y2 0 (x 8).解法二:设弦中点M(x,y) , Q ( x1, y1),由x W 2y, x1 8 y1 广八八-一,y 工可得x1 2x 8 ,2 22 又由于Q在椭圆上,所以卫64 1 ,即4(x“ 36 64 鱼136所以PQ中点M的轨迹方程为(x 4)16x 8).所以y i y 24,即y o 2 , X 0 y 0 1 3,即中点坐标为〔3,2〕.上面我们给出了解决直线与圆锥曲线相交所得弦中点问题的一些根本解法.下面我们 看一个结论 2 2弓।理 设A 、B 是二次曲线C :A X Cy D X Ey F弦AB 的中点,那么 0上的两点,p 〔X0,y0〕为 kAB E 0) 2 设 A (X I ,V I )、B (X 2, y 2)贝u Axi 2 AX 22Cy i 2Cy 2 D X I Ey i F 0……(i) DX 2 Ey 2 F ⑴(2)得 A(X i .2A X 0 (x i X 2 ) X 2)(X i X 2) C(y i y 2)(y i v2 D(X i X 2) 2) E(y i V2) 0 . (2AX 0 D)(x i •• 2Cy 0 〔说明:当A2A X 0 酝B D E ) 2推论i 设圆X 2X 0 D 2y 0 k AB 推论2b \X--- -• ----------k AB 设点 2Cy o (y i y 2)D(X 1 X 2) X 2) (2Cy ° E)(y i y ?) .X i X 2y i y X i X 2 时,上面的结论就是过二次曲线 〔假设点设椭圆a2・a y0.〔注:对丫?血2・a V .〕推论3 设双曲线bi?及 2 ■ E(y i y 2) 2AX 0 2Cy ° E 即 k AB2AX 0 D 2C V ^~~ED X Ey F 0的弦 P 在圆上时,那么过点 2匕b 2a< b C 上的点P 〔X0,y .〕的切线斜率公式, AB 的中点为 p 〔X0,y0〕〔y .0〕,那么 k P 的切线斜率2X 0 D2y .E为) i的弦AB也成立.假设点2y b 2a y 0.〔假设点p 在双曲线上,的中点为P〔X0,y.〕y 00),那么P 在椭圆上, 那么过点P 的切线斜率为i的弦AB 的中点为那么过 P 点的切线斜率为2推论4设抛物线y2Px 的弦AB 的中点为P 〔x0,y0〕〔k 卫〕P 在抛物线上,那么过点 P 的切线斜率为y0P (x 0 , y 0 ) y 00)那么y.bl?a 2 ■a V .)k AB0)那么P y0.(假我们可以直接应用上面这些结论解决有关问题,下面举例说明.例1、求椭圆252L 116 斜率为3的弦的中点轨迹方程.解:设P (x,V)是所求轨迹上的任一点,那么有c 16 cx3 — ?一25 y,故所示的轨迹方程为( 16x+75y=075,2412x;1)…,,一2例2、椭圆a2y 1(a b 0),A、2 ,2a bB是椭圆上两点,线段AB的垂直平分线l2 ,2a bP(x0,0),求证:证实:设AB的中点为T(x i,y i),由题设可知AB与x轴不垂直,,y i 0b2 a2 aQy i --- Z-■''.•.l的方程为:2ax1 ~ 1T2a b2 ,2a b -.l±AB2 土?〞(xb x1• . | x1 | ab2a2例3、抛物线C: y x ,直线在关于l对称的两点,k的取值范围是什么?解:设中点为C上两点A、P(x0 , y0 )(k AB 12y0令y=02*?t(x.x1)2a-2""ab-?x01l:y k(x 1) 1,要使抛物线C上存B两点关于l对称,AB的0)1k2 k(x0 1)•• P在抛物线内_ 2(k 2)( k1,1k24y0. PC1 kl y°k(x°J 1 1 I、P( ,- k)2 k 21) 1,k3» 0,4k与抛物线有关的弦的中点的问题〔1〕中点弦问题:y =3+ 1与/+_/+分-了= 1交于两点,且这两点关于直缥+ y = 0对称,那么笳+5 = 7〔上题麻烦了.是圆不用中点法〕争两交点是〔工1,乃、〔电1?都满足二i■太曲线方程.?〔1〕•㈡〕有〔局一/〕3 +/〕+〔>[-M〕C X1+⑷土中.「占〕-〔>-以〕=.小同时除出一々〕有区+引+33〔乃+打〕〞一"建二0」〔占一修〕〔七一刍〕空生就是直线的斜率E 〔西十两〕,乃〕就是交点中点坐标的两倍,由关于另〔占-%〕直线对称,所以逐=-1,且交点的中点就是两直线交点为〔」,当,所以, 2 2占十勺二1 j【十乃二1,所以又有1+ 〔1〕+匕・31〕=.得到g/p例1由点〔2,0〕向抛物线y2 4x弓|弦,求弦的中点的轨迹方程.分析:解决问题的关键是找到弦的端点A、B在直线上的性质和在抛物线上的性质的内在联系.解法1:利用点差法. 2 2设漏点为A〔x i,yj , B〔x2,y2〕,那么y i 4x i, y4x2,2 2 ., 、两式相减得y2y1 4〔 x2x1〕, ①①式两边同时除以x2 x1,得〔y2 y i〕 y—y1 4, ②x2x1设弦的中点坐标为〔x, y〕,那么x1 x2 2x, y1 y2 2y, ③又点〔x, y〕和点〔2,0〕在直线AB上,所以有」一 y 2y1. ④瓯'+短+㈣-乃= 1.〕*、婚+W+6电-打二1⑵2 x2x1y i y 22 2一代入(i)得 y 2 2(x 2)k2 2故得所求弦中点的轨迹万程是y 2(x 2)在抛物线y 4x 内部的局部.评注:(i )求点的轨迹方程即是求曲线上的点的横、纵坐标所满足的关系式,此题所给 (x, y)与条件的内在联系,列关于 x, y 的关系式,进而求出轨迹的方程.(2)弦中点轨迹问题与中点的关系,要学会推导,并能运用.将③、④代入②得2y y 4, x 22整理得y 2(x 2).故得中点的轨迹方程是 y 2 2(x 2)在抛物线y 2 4x 内部的局部. 解法2:设弦AB 所在直线的方程为y k(x 2),由方程组y k(x 2)4x消去x 并整理得ky 2 4y 8k 0, (3)(x i , y i )、 B (x 2,y 2)、 '\ ' (x, y),对于方程(3),由根与系数的关系,有y i V2 2出的两种方法,都是找动点 设抛物线y 22 Px (0)的弦 AB ,A (x i ,y i ) ,B(x 2,y 2),弦 AB 的中点 C (x o ,y 0),2,y i 那么有 2 y 22px i2 Px 2⑴(2)(i) — ( 2)2y i 2y 22p(x i x 2),.y i y 2x i x 22P y i y 2将 y i y 2y 1y 2q _yi 72,代入上式,并整理得x i x 2k AB—,这就是弦的斜率 y .例2抛物线y22x ,过点Q(2,i)作一条直线交抛物线于A,B两点,试求弦AB的中点轨迹方程.解:如图,设弦AB的中点为A、B、M点坐标分别为(x[,y i),2 -(x,y),根据题意设有y i2x 1 ,①2 -公y2 2x 2 ,② x 1 x 2 2x , ③ y iy 2 2y,④ rd,⑤x 1 x 2 x 2y i y 2i x 1 x 2, -------- -,x i X2y2-i 2 7 ⑥代入⑤得,y 丫*2,即(丫3)x -o2y 2 2x ,利用根与系数的关系,求出弦中点的轨迹方程.专题:直线与抛物线的位置关系及中点弦问题(1)位置关系:Q 直线/:, =必+皿用=0) r 抛物线y 2 = 2px(p>0)联立解CJ tky~ -2/?y + 2^ = 0 @假设k 二 (L 直战与抛物战的对称轴平行或重合,直线与抛物线相交于一点:假设k HU , △真线与抛物线相交,有阴个交点;A = 0n 亢浅与抛物浅相切,有一个交点;宜线与抛物线相离,无交点二(2)相交弦长:宜城与圆世曲线相交的茂长公式设直线圆锥曲线才Fi.r4)=O .它HI 的交点为Pi (xi»yi)- Pj 口?而,[Fix. v) = 0 且由1 ,Ti 消去了得到那苏十H.r+p=0『mHO), △=/ 一4川p*[,二心 + H设马・力3 那么弦长公式为;那么I AE 匕J1 +/那么 +//一4而/ 假设联立消去不得y 的一元二次方程:町/十fry + f/ = 0(m * 0)S 小阳,为yJ 『Ml AB 1= j + Jjbi +y 万 一4%力 {3)典洌分析:④代入①—②得,2 y(y iy 2) 2(x 1评注:此题还有其他解答方法,如设AB 的方程为y k(x 2) i ,将方程代入例1抛物线的方程为y2=4x,直线1过定点斜率为k,k为柯值时,直线1与抛物线y 2 = 4x :只有一个公共点;有两个公共点;没有公共点?解:由题意,设直绷的方程为y-l = Ar(x+2)由方程组e;:::(x+2)ffl ky2 - 4y + 4 (2k +1) - O (1)(1)当k = O时,由方程(1)得y = l将y = 1 代入y2 = 4x,得x =这时直线,与抛物线只有V个公共点g ,1)(2)当kHO时,方程⑴的判别式为©A = T6 冲+"I)⑴当A = 0时,即2k2 + k・l = 0,解得k = ・l,或k =;于是当k=-l,或k=T时,方程(1)只有一个解,从而方程组只有一个解.此时直线1与抛物线有一个交点.(2)当A>0时即2尸+J <0,解得—1<上< —2于是当时,方程⑴有两个解,从而方程组有两个解.此时直线1与抛物线有两个交点.(3)当A <0时,即+解得k<-l或幺>-于是当k<-l或k>不时,方程(1)没有肝,从而方程组没有解.此时直线I与制物线没有交点.绿上所述:当・l<k<g且k*0时,直缭口抛物线有网个交点;当k7或或k・0时,直蝴抛物线有一个交点;2当k<-l或k>:时,直缭口抛物线没有交点.例2、抛物线C:J=4x,设直线与抛物线两交点为A、B,且线段AB中点为M 〔2, 1〕,求直线/的方程.解由即意可知,亘线1斜率一定存在,故可设庆〔勺,?〕,13@2,%〕〔乂1工乂2〕,Mx l + x2 = 4,y1+y2 = 2曲[曰=4% =2!L^=_1_=2 gp k = 2I月=4七3一出乂+»2 2止匕由f直线/的方程为y-l = 2〔x-2〕,艮P2x-y-3 = 0由y - 4x 消x彳号y2・2y-6 = 0 n△ > 02x-y-3 = 0所以直线/的方程为y・l = 2〔x-2〕RU2x・y・3 = 0说明:中点弦问鹿的常见解决方法,点差法例3抛物线的顶点在原点,焦点在x釉的正半轴上,百线y = -4x + ]被抛物线所截得的弦AB的中点的纵坐标为- 2 .〔I〕求抛物线的方程:〔2〕是否存在异于原点的定点H,使得过〃的动直线与抛物线相交于A Q两点,且以PQ为直径的圆过原点?解〔1〕:由条件可设抛物线方程为:r =2px〔p>o〕联立直线y = -4x+l化简得:2y2+〃y - 〃 =〔〕设43],必〕,8〔/2,丫2〕那么?+〕'2 =-^ = -4.,./? = 8抛物纹方程为:y 2 =]6工〔2〕设存在满足条件的定点内.设动直线方程为〕& + 0〕联立抛物线方程化简得:02-16丁 + 161=0设.〔再,必〕,..2,/2〕那么有用/ + 丫.2 =〔〕即:b = -16k 故动电线方程为丁=6-164 = Z:〔x-16〕,恒过定点〔16. 0〕当直线斜率不存在时,设宜线方程为/ = %,易触得% = 16.粽匕存在异于原点的定止〃(16, 1J)满足条件0例4直线『过定点人43且与‘抛物线.:5'22#(2>0)交]子,Q两点,假设以PQ 为直径的阿枇过原点..求尸的伍解:可设直线/的方程为f = my+4代入« =2『工得y L-2/JW1V-8/J = 0»设代百,X )◎0,%)•那么九力=—8/,斯与=?- * =竽匕=16+2P 2p 4p由题总如,OPLOQ. Wl OP OQ = 0即丹马+耳为= 16 —8p = 0; p 二2此时,抛物线的方程为f = 4K.例5在抛物战y? = 64十上求一点,使到电战4K十3y+46 = 0的距嘉最短,并求出最短距瓦解;设与百线4#+ 3y +用=0平行且与楠制相切的直建方程为:x-y + m = 0联立化筒群/ +48v-48w = 0 L)由A = 0解得旧=-12,故切线方程为:4工+ 3, —12 = 0代人双曲线方程解得f 9-24 )最短师离d = 2例6求直线y x 1被抛物线y2 4x截得线段的中点坐标.解:解法一:设直线y x 1与抛物线y2 4x交于A(x1,y1), B(x2,y2),其中点y x 1P(x0,y0),由题意得2,y 4x消去y 得(x 1)2 4x,即x2 6x 1 0,所以x.3, y0 x. 1 2,即中点坐标为(3,2).解法二:设直线y x 1与抛物线y2 4x交于A(x1,y) , B(x2,y2),其中点2P(x0,y0),由题意得y124x1,两式相减得\2 y: 43x1), y2 4x2所以(y2 y1)(y2 y1)4,所以y〔y2 4,即y0 2 , x0y 1 3,即中点坐标为(3,2).。
圆锥曲线中点弦典型例题及解析
01
总结词
这类问题主要考察了圆锥曲线与切线相关的性质和定理,需要利用切线
性质和圆锥曲线的定义来解决。
02
详细描述
在解决与切线相关的问题时,我们需要利用圆锥曲线的切线性质和定义,
结合题目给出的条件,推导出与中点弦相关的方程或不等式,进而求解。
03
示例
已知抛物线C的方程为y^2 = 2px (p > 0),过其焦点F作直线与C交于A、
数形结合
将代数问题与几何图形相结合 ,利用几何意义求解。
THANKS
感谢观看
特殊情况
当点$P$为圆锥曲线的焦点时, 中点弦称为焦点弦。
中点弦的性质
垂直性质
角度性质
中点弦所在的直线与过点$P$的切线 垂直。
中点弦与切线之间的夹角等于该弦所 对的圆周角。
长度性质
中点弦的长度与过点$P$的切线长度 成反比。
中点弦的几何意义
中点弦是连接圆锥曲 线上的两个对称点的 线段。
中点弦的长度等于圆 锥曲线上的两个对称 点到点$P$的距离之 和的一半。
详细描述
在解决椭圆的中点弦问题时,需要注意中点 弦的特殊性质。例如,当直线过椭圆中心时, 中点弦即为椭圆本身;当直线的斜率为0或 无穷大时,中点弦的长度为椭圆的长轴或短 轴的长度。这些特殊性质可以帮助我们快速 判断中点弦的性质和范围。
双曲线的中点弦问题
总结词
双曲线的性质和方程
详细描述
双曲线的中点弦问题主要考察了双曲线的性质和方程。解决这类问题需要利用双曲线的 性质,如对称性、开口方向等,以及双曲线的方程,如标准方程、参数方程等。通过联 立直线和双曲线的方程,消元化简,可以得到关于中点弦的方程,进一步求解得到中点
专题9圆锥曲线中的中点弦-学生版
7.(2013•浙江)设F为抛物线C:y2=4x的焦点,过点P(﹣1,0)的直线l交抛物线C于两点A,B,点Q为线段AB的中点,若|FQ|=2,则直线l的斜率等于_________.
三、解答题
8.已知椭圆 ,求以点P(2,-1)为中点的弦所在的直线方程.
A. B.
C. D.
二、填空题
4.已知椭圆C的焦点 (-2 ,0)、 (2 ,0),且长轴长为6,设直线 交椭圆C于A、B两点,求线段AB的中点坐标
5.设已知抛物线 的顶点在坐标原点,焦点为F(1,0),直线 与抛物线 相交于A,B两点.若AB的中点为(2,2),则直线 的方程为_____________.
Step2:代入点坐标:即 ;
Step3:作差得出结论:(1)-(2)得: 。(作为公式记住,在小题中直接用。)
同理可推出以下三个重要结论:
ⅱ. ;
ⅲ. ;
ⅳ. .
方法二步骤规范模板:
①设直线 的方程;
②直线与曲线联立,整理成关于 (或 )的一元二次方程;
③写出根与系数的关系;
④利用 ,把根与系数的关系代入。
14.设椭圆方程为 ,过点 的直线l交椭圆于点A,B,O是坐标原点,点P满足 ,点N的坐标为 ,当l绕点M旋转时,求:
(1)动点P的轨迹方程;
(2) 的最小值与最大值.
15.若直线 过抛物线 的焦点,与抛物线交于 两点,且线段 的中点的横坐标为2,求线段 的长.
16.已知点 在抛物线 上, 的重心与此抛物线的焦点 重合(如图).
Step2:代入点坐标:即 ; ,
Step3:作差得出结论:(1)-(2)得: 。(作为公式记住,在小题中直接用。)
用“点差法”解圆锥曲线的中点弦问题
用“点差法”解圆锥曲线的中点弦问题一、求以定点为中点的弦所在直线的方程例1、过椭圆内一点引一条弦,使弦被点平分,求这条弦所在直线的方程。
解:设直线与椭圆的交点为、为的中点又、两点在椭圆上,则,两式相减得于是即,故所求直线的方程为,即。
例2、已知双曲线,经过点能否作一条直线,使与双曲线交于、,且点是线段的中点。
若存在这样的直线,求出它的方程,若不存在,说明理由。
解:设存在被点平分的弦,且、则,,两式相减,得故直线由消去,得这说明直线与双曲线不相交,故被点平分的弦不存在,即不存在这样的直线。
策略:本题如果忽视对判别式的考察,将得出错误的结果,请务必小心。
由此题可看到中点弦问题中判断点的位置非常重要。
(1)若中点在圆锥曲线内,则被点平分的弦一般存在;(2)若中点在圆锥曲线外,则被点平分的弦可能不存在。
二、求弦的中点坐标和中点轨迹方程例3、已知椭圆的一条弦的斜率为3,它与直线的交点恰为这条弦的中点,求点的坐标。
解:设弦端点、,弦的中点,则,又,两式相减得即,即点的坐标为。
例4、已知椭圆,求它的斜率为3的弦中点的轨迹方程。
解:设弦端点、,弦的中点,则,又,两式相减得即,即,即由,得点在椭圆内它的斜率为3的弦中点的轨迹方程为三、求与中点弦有关的圆锥曲线的方程例5、已知中心在原点,一焦点为的椭圆被直线截得的弦的中点的横坐标为,求椭圆的方程。
解:设椭圆的方程为,则┅┅①设弦端点、,弦的中点,则,,又,两式相减得即┅┅②联立①②解得,所求椭圆的方程是四、求圆锥曲线上两点关于某直线对称的问题例6、已知椭圆,试确定的取值范围,使得对于直线,椭圆上总有不同的两点关于该直线对称。
解:设,为椭圆上关于直线的对称两点,为弦的中点,则,两式相减得,即,,这就是弦中点轨迹方程。
它与直线的交点必须在椭圆内联立,得则必须满足,即,解得例7、已知抛物线C: 和直线为使抛物线上存在关于对称的两点,求的取值范围。
解:设抛物线C上存在不同的两点关于直线对称,线段的中点为,则,①,②① -②可得:=,即由于,所以,故,即,即。
高中数学圆锥曲线中,如何解决中点弦的问题?
高中数学圆锥曲线中,如何解决中点弦的问题?
答:
一·中点弦问题
1.中点弦问题是圆锥曲线中一类典型的问题,是高考命题的热点。
2.中点弦问题即可以考查小题,也可以作为大题出现,常常涉及求直线方程、求直线斜率、求曲线方程、求曲线离心率等知识点。
3.下面以椭圆为例,处理中点弦问题常常有以下三种方法:韦达定理、点差法和椭圆的垂径定理。
二·典例剖析
三·失误提醒
1.值得说明的是,以上各种方法皆体现了“设而不求”的数学思想。
另外,法3其实是法2的结论的变形。
2.在选择、填空题中,三种方法皆可,不过采用椭圆的垂径定理更为快捷。
但是在解答题中,最好使用韦达定理或者点差法,避免因过程不严密而失分。
以上。
圆锥曲线中点弦问题
圆锥曲线中点弦问题
点弦问题在微积分领域中是重要的一项研究,它涉及坐标几何、微积分和数学分析学。
本
文旨在深入研究圆锥曲线上的点弦问题。
圆锥曲线是二维坐标系中最重要的曲线,它的几何形状是圆锥面截面形式的曲线,其形状
随其参数的变化而变化。
点弦问题可以理解为寻找并定义由固定的一系列点组成的半弦曲线,具体点的位置和形状
受其中的点的影响。
如果在一个圆锥曲线上,这些点按一定的规则排列,半弦曲线的形状
和位置就可以推导出来,这就是所谓的“点弦问题”,也可以称为“半弦曲线构造问题”。
在解决圆锥曲线上点弦问题时,首先讨论的是构成曲线的点的位置,其次是参数的估计和
形状的推算。
采用曲面的本地坐标系,将点坐标改写成相对曲面的相对点,通过微分几何
计算求解曲线等价参数。
在定义曲线形状之前,要求由曲面本身和控制点确定的曲线,该
曲线必须能与控制点重合,同时满足曲线的连续条件。
最后,圆锥曲线上点弦问题的解决可以采用数值解法,有效地计算构成曲线的点,根据不
同的输入参数得到不同的曲线结果。
总之,研究圆锥曲线上的点弦问题是十分重要的,它不仅涉及坐标几何、微积分和数学分
析学,而且还可以有助于深入了解圆锥曲线上的数学知识。
研究者需要运用有关的数学理
论和实践技术来解决这一问题,从而使其在教学和科学研究方面都得到正确地解释和应用。
专题12 圆锥曲线的中点弦问题 -高中数学必备考试技能之二级结论提高速度原创精品(原卷版)
1.在椭圆E:x2a2+y2b2=1(a>b>0)中:(1)如图①所示,若直线y=kx(k≠0)与椭圆E交于A,B两点,过A,B两点作椭圆的切线l,l',有l∥l',设其斜率为k0,则k·k=-b2a2.(2)如图②所示,若直线y=kx与椭圆E交于A,B两点,P为椭圆上异于A,B的点,若直线PA,PB的斜率存在,且分别为k1,k2,则k1·k2=-b2a2.(3)如图③所示,若直线y=kx+m(k≠0且m≠0)与椭圆E交于A,B两点,P为弦AB的中点,设直线PO的斜率为k0,则k·k=-b2a2.2.在双曲线E:x2a2-y2b2=1(a>0,b>0)中,类比上述结论有:(1)k0·k=b2a2. (2)k1·k2=b2a2. (3)k·k=b2a2.4.已知椭圆2222:1(0)x y E a b a b+=>>的右焦点为()3,0F ,过点F 的直线交椭圆于,A B 两点,若AB 的中点坐标为()1,1-,则椭圆E 的方程为( )A .2214536x y += B .2213627x y += C .2212718x y += D .221189x y += 5.设椭圆的方程为2222x y a b+=1,直线AB 不经过原点,而且与椭圆相交于A ,B 两点,M 为AB 的中点.若直线AB 的斜率为1,则直线OM 的斜率不可能是( )A .43-B .916-C .14-D .﹣1 6.已知直线l 与圆222x y r +=交于A 、B 两点,P 线段AB 的中点,则1AB OP k k ⋅=-.试用类比思想,对椭圆写出结论:______.8.已知AB 为抛物线24x y =的一条长度为8的弦,当弦AB 的中点离x 轴最近时,直线AB 的斜率为___________.9.已知双曲线()2222:10,0x y C a b a b-=>>的右焦点为F ,虚轴的上端点为B ,点P ,Q 为C 上两点,点()2,1M -为弦PQ 的中点,且//PQ BF ,记双曲线的离心率为e ,则2e =______.。
专题03 圆锥曲线中的中点弦问题(解析版)
专题03 圆锥曲线中的中点弦问题一、单选题1.已知椭圆22134x y +=的弦被点(1,1)平分,那么这条弦所在的直线方程为( )A .4370x y +-=B .4370x y --=C .3410x y +-=D .3410x y --=【答案】A 【分析】设出这条弦与椭圆的交点,将点代入椭圆方程,两式作差求出直线的斜率,再利用点斜式即可求解. 【详解】设这条弦与椭圆22134x y +=交于()11,P x y ,()22,Q x y ,由(1,1)在椭圆内,由中点坐标公式知122x x +=,122y y +=,把()11,P x y ,()22,Q x y 代入22134x y +=,可得221122221,341,34x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩①② , ①-①可得()()1212860x x y y -+-=,121243y y k x x -∴==--,∴这条弦所在的直线方程为()4113y x -=--, 即为4370x y +-=.则所求直线方程为4370x y +-=. 故选:A2.已知椭圆22:143x y C +=,过点()11P ,的直线l 与椭圆C 交于,A B 两点,若点P 恰为弦AB 中点,则直线l 斜率是( ) A .3- B .13-C .34-D .43-【答案】C 【分析】设出,A B 的坐标代入椭圆方程后,作差变形,根据斜率公式和中点坐标公式可得解. 【详解】设1122(,),(,)A x y B x y ,则12122,2x x y y +=+=,则2211143x y +=,2222143x y +=, 两式相减得2222121243x x y y =---, 所以1212121233234424y y x x x x y y -+=-⨯=-⨯=--+,即直线l 斜率是34-. 故选:C 【点睛】方法点睛:一般涉及到弦的中点和弦所在直线的斜率时,使用点差法解决.3.直线1y kx =+与椭圆2214x y +=相交于,A B 两点,若AB 中点的横坐标为1,则k =( )A .2-B .1-C .12-D .1【答案】C 【分析】代入消元得关于x 一元二次方程,再用韦达定理即可. 【详解】设()()1122,,,A x y B x y把1y kx =+代入2214x y +=得()221480k x kx ++=,122814kx x k +=-+,因为AB 中点的横坐标为1, 所以24114k k -=+,解得12k =-. 故选:C 【点睛】用韦达定理解决直线与圆锥曲线交点问题是常用的方法,需要注意直线与圆锥曲线是否有交点,可用∆判断.4.已知抛物线2:4C y x =,以()1,1为中点作C 的弦,则这条弦所在直线的方程为( ) A .210x y --= B .210x y -+= C .230x y +-= D .230x y ++=【答案】A 【分析】设过点()1,1的直线交抛物线C 于()11,A x y 、()22,B x y 两点,可得出121222x x y y +=⎧⎨+=⎩,利用点差法可求得直线AB 的斜率,利用点斜式可得出直线AB 的方程. 【详解】设过点()1,1的直线交抛物线C 于()11,A x y 、()22,B x y 两点. 若直线AB 垂直于x 轴,则线段AB 的中点在x 轴上,不合乎题意. 所以,直线AB 的斜率存在,由于点()1,1为线段AB 的中点,则121222x x y y +=⎧⎨+=⎩,由于点()11,A x y 、()22,B x y 在抛物线C 上,可得21122244y x y x ⎧=⎨=⎩,两式作差得()()()22121212124y y y y y y x x -=+⋅-=-,所以,直线AB 的斜率为12121242AB y y k x x y y -===-+,因此,直线AB 的方程为()121y x -=-,即210x y --=.【点睛】本题考查抛物线的中点弦问题,考查点差法的应用,同时也可以利用直线与抛物线方程联立,结合韦达定理求解,考查计算能力,属于中等题.5.已知椭圆G :22221x y a b+=(0a b >>)的右焦点为()3,0F ,过点F 的直线交椭圆于A ,B 两点.若AB的中点坐标为()1,1-,则G 的方程为( )A .2214536x y +=B .2213627x y +=C .2212718x y +=D .221189x y +=【答案】D 【分析】先设()11,A x y ,()22,B x y ,代入椭圆方程,两式作差整理,得到2121221212y y y y b a x x x x +--=⋅+-,根据弦中点坐标,将式子化简整理,得到222a b =,根据222a b c =+且3c =,即可求出结果. 【详解】设()11,A x y ,()22,B x y ,则22112222222211x y a bx y a b ⎧+=⎪⎪⎨⎪+=⎪⎩, 两式相减并化简得2121221212y y y y b a x x x x +--=⋅+-,又过点F 的直线交椭圆于A ,B 两点,AB 的中点坐标为()1,1-,所以121222x x y y +=⎧⎨+=-⎩,()12120131AB y y k x x ---==--,即()22222201111213122b b a b a a ----=⨯=-⇒=⇒=-,由于222a b c =+且3c =,由此可解得218a =,29b =,故椭圆E 的方程为221189x y +=.【点睛】本题主要考查求椭圆的方程,考查中点弦问题,属于常考题型.6.在平面直角坐标系xOy 中,F 是抛物线26y x =的焦点,A 、B 是抛物线上两个不同的点.若AF BF +5=,则线段AB 的中点到y 轴的距离为( )A .12B .1C .32D .2【答案】B 【分析】本题先设11(,)A x y ,22(,)B x y 两点,并判断线段AB 的中点到y 轴的距离为122x x +,再求12x x +,最后求解. 【详解】解:设11(,)A x y ,22(,)B x y ,则线段AB 的中点到y 轴的距离为:122x x +, 根据抛物线的定义:12AF BF x x p +=++, 整理得:12532x x AF BF p +=+-=-=, 故线段AB 的中点到y 轴的距离为:1212x x +=, 故选:B. 【点睛】本题考查抛物线的定义,是基础题.7.过椭圆2222:1(0)x y C a b a b+=>>的右焦点(2,0)F 的直线与C 交于A ,B 两点,若线段AB 的中点M的坐标为95,77⎛⎫-⎪⎝⎭,则C 的方程为( ) A .22195x y +=B .2215x y +=C .22162x y +=D .221106x y +=【答案】A 【分析】设,A B 以及AB 中点M 坐标,利用“点差法”得到,AB MO k k 之间的关系,从而得到22,a b 之间的关系,结合()2,0F 即可求解出椭圆的方程.【详解】设()()1122,,,A x y B x y ,则12x x ≠AB 的中点95,77M ⎛⎫- ⎪⎝⎭,所以5071927AB MFk k ⎛⎫-- ⎪⎝⎭===-, 又2222221122222222b x a y a b b x a y a b ⎧+=⎨+=⎩,所以()()2222221212b x x a y y -=--, 即2121221212y y y y b x x x x a-+⋅=--+, 而12121AB y y k x x -==-,121252579927y y x x ⎛⎫⨯- ⎪+⎝⎭==-+⨯, 所以2255199b a =⨯=,又2c =,所以22222254499c a b a a a =-=-==,所以2295a b ==, 椭圆方程为:22195x y +=.故选:A. 【点睛】本题考查了已知焦点、弦中点求椭圆方程,应用了韦达定理、中点坐标公式,属于基础题.8.已知椭圆2222:1(0)x y G a b a b+=>>的右焦点为F (3,0),过点F 的直线交椭圆于A ,B 两点.若AB 的中点坐标为(1,-1),则G 的方程为( )A .2214536x y +=B .2213627x y +=C .2212718x y +=D .221189x y +=【答案】D【分析】设出,A B 两点的坐标,利用点差法求得,a b 的关系式,结合222a b c =+求得22,a b ,进而求得椭圆E 的方程. 【详解】设()()1122,,,A x y B x y ,则22112222222211x y a b x y ab ⎧+=⎪⎪⎨⎪+=⎪⎩,两式相减并化简得2121221212y y y y b a x x x x +--=⋅+-, 即()22222201111213122b b a b a a ----=⨯=-⇒=⇒=-,由于222a b c =+且3c =,由此可解得2218,9a b ==,故椭圆E 的方程为221189x y +=.故选:D. 【点睛】本小题主要考查点差法解决椭圆中的中点弦问题,属于基础题.9.直线l 过点(1,1)P 与抛物线24y x =交于,A B 两点,若P 恰为线段AB 的中点,则直线l 的斜率为( )A .2B .2-C .12D .12-【答案】A 【分析】利用点差法,21122244y x y x ⎧=⎨=⎩两式相减,利用中点坐标求直线的斜率.【详解】设()()1122,,,A x y B x y ,21122244y x y x ⎧=⎨=⎩,两式相减得()2212124y y x x -=-,即()()()1212124y y y y x x +-=-, 当12x x ≠时,()1212124y y y y x x -+=-,因为点()1,1P 是AB 的中点,所以122y y +=,24k =, 解得:2k = 故选:A 【点睛】本题考查中点弦问题,重点考查点差法,属于基础题型.10.已知椭圆22221(0)x y a b a b +=>>的右焦点为FF 的直线l 交椭圆于,A B 两点,若AB 中点为(1,1),则直线l 的斜率为( )A .2B .2-C .12-D .12【答案】C 【分析】先根据已知得到222a b =,再利用点差法求出直线的斜率. 【详解】由题得222222242,4()2,2c c a a b a a b a =∴=∴-=∴=. 设1122(,),(,)A x y B x y ,由题得1212+=2+=2x x y y ,,所以2222221122222222b x a y a b b x a y a b⎧+=⎨+=⎩, 两式相减得2212121212()()a ()()0b x x x x y y y y +-++-=, 所以2212122()2a ()0b x x y y -+-=,所以221212()240()y y b bx x -+=-,所以1120,2k k +=∴=-.故选:C 【点睛】本题主要考查椭圆离心率的计算,考查直线和椭圆的位置关系和点差法,意在考查学生对这些知识的理解掌握水平,属于中档题.11.已知椭圆2222:1x y M a b+=(0)a b >>,过M 的右焦点(3,0)F 作直线交椭圆于A ,B 两点,若AB 中点坐标为(2,1),则椭圆M 的方程为( )A .22196x y +=B .2214x y +=C .221123x y +=D .221189x y +=【答案】D 【分析】设,A B 以及AB 中点P 坐标,利用“点差法”得到,AB PO k k 之间的关系,从而得到22,a b 之间的关系,结合()3,0F 即可求解出椭圆的方程.【详解】设()()1122,,,A x y B x y ,AB 的中点()2,1P,所以01132ABPF kk -===--, 又2222221122222222b x a y a b b x a y a b⎧+=⎨+=⎩,所以()()2222221212b x x a y y -=--,即2121221212y y y y b x x x x a -+⋅=--+, 而12121AB y y k x x -==--,1212211222y y x x +⨯==+⨯,所以2212b a =,又3c =, ①22189a b ⎧=⎨=⎩,即椭圆方程为:221189x y +=.故选:D. 【点睛】本题考查了已知焦点、弦中点求椭圆方程,应用了韦达定理、中点坐标公式,属于基础题.12.已知椭圆2217525+=y x 的一条弦的斜率为3,它与直线12x =的交点恰为这条弦的中点M ,则M 的坐标为( )A .11,2⎛⎫⎪⎝⎭B .11,22⎛⎫⎪⎝⎭C .11,22⎛⎫-⎪⎝⎭D .11,22⎛⎫-⎪⎝⎭ 【答案】C 【分析】由题意知:斜率为3的弦中点01(,)2M y ,设弦所在直线方程3y x b =+,结合椭圆方程可得122b x x +=-即可求b ,进而求M 的坐标. 【详解】由题意,设椭圆与弦的交点为1122(,),(,)A x y B x y ,:3AB y x b =+, 则将3y x b =+代入椭圆方程,整理得:22126750x bx b ++-=,①22123648(75)02b b b x x ⎧∆=-->⎪⎨+=-⎪⎩,而121x x =+,故2b =-, ①:32AB y x =-,又01(,)2M y 在AB 上,则012y =-, 故选:C 【点睛】本题考查了求椭圆的弦中点坐标,应用了韦达定理、中点坐标公式,属于基础题.13.已知椭圆E :()222210x y a b a b+=>>,过点()4,0的直线交椭圆E 于A ,B 两点.若AB 中点坐标为()2,1-,则椭圆E 的离心率为( )A .12BC .13D【答案】B 【分析】设()()1122,,,A x y B x y ,代入椭圆方程,利用点差法得到22221212220x x y y a b--+=,然后根据AB 中点坐标为()2,1-,求出斜率代入上式,得到a ,b 的关系求解. 【详解】设()()1122,,,A x y B x y ,则22112222222211x y a b x y a b ⎧+=⎪⎪⎨⎪+=⎪⎩, 两式相减得:22221212220x x y y a b--+=, 因为AB 中点坐标为()2,1-,所以12124,2x x y y +=+=-, 所以()()2212122212122x x b y y b x x y y a a +-=-=-+, 又1212011422AB y y k x x -+===--, 所以22212b a =, 即2a b =,所以c e a ===, 故选:B【点睛】本题主要考查椭圆的方程,点差法的应用以及离心率的求法,还考查了运算求解的能力,属于中档题. 14.已知椭圆2222:1(0)x y C a b a b +=>>的离心率为2,直线l 与椭圆C 交于,A B 两点,且线段AB 的中点为()2,1M -,则直线l 的斜率为( )A .13B .32C .12D .1【答案】C【分析】由椭圆的离心率可得a ,b 的关系,得到椭圆方程为22244x y b +=,设出A ,B 的坐标并代入椭圆方程,利用点差法求得直线l 的斜率.【详解】解:由c e a ==2222234c a b a a -==, 224a b ∴=,则椭圆方程为22244x y b +=,设1(A x ,1)y ,2(B x ,2)y ,则124x x +=-,122y y +=,把A ,B 的坐标代入椭圆方程得:22211222224444x y b x y b ⎧+=⎨+=⎩①②, ①-①得:12121212()()4()()x x x x y y y y -+=--+, ∴12121212414()422y y x x x x y y -+-=-=-=-+⨯. ∴直线l 的斜率为12. 故选:C .【点睛】 本题考查椭圆的简单性质,训练了利用“点差法”求中点弦的斜率,属于中档题.二、多选题15.已知椭圆C :22148x y +=内一点M (1,2),直线l 与椭圆C 交于A ,B 两点,且M 为线段AB 的中点,则下列结论正确的是( )A .椭圆的焦点坐标为(2,0)、(-2,0)B .椭圆C的长轴长为C .直线l 的方程为30x y +-=D.3AB = 【答案】CD【分析】 由椭圆方程22148x y +=可得焦点在y轴上,且2,2a b c ===,即可判断AB ;利用点差法可求出直线斜率,即可得出方程,判断C ;联立直线与椭圆方程,利用弦长公式求出弦长即可判断D.【详解】由椭圆方程22148x y +=可得焦点在y轴上,且2,2a b c ===, ∴椭圆的焦点坐标为()()0,2,0,2--,故A 错误;椭圆C的长轴长为2a =,故B 错误;可知直线l 的斜率存在,设斜率为k ,()()1122,,,A x y B x y , 则22112222148148x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩,两式相减得()()()()12121212048x x x x y y y y -+-++=, ()()121224048x x y y --∴+=,解得12121y y k x x -==--, 则直线l 的方程为()21y x -=--,即30x y +-=,故C 正确; 联立直线与椭圆2230148x y x y +-=⎧⎪⎨+=⎪⎩,整理得23610x x -+=, 121212,3x x x x ∴+==,3AB ∴==,故D 正确. 故选:CD.【点睛】易错点睛:已知椭圆方程,在求解当中,一定要注意焦点的位置,本题的焦点在y 轴上,在做题时容易忽略焦点位置,判断错误.三、填空题16.ABC 的三个顶点都在抛物线E :y 2=2x 上,其中A (2,2),ABC 的重心G 是抛物线E 的焦点,则BC 边所在直线的方程为________.【答案】4x +4y +5=0【分析】设B (x 1,y 1),C (x 2,y 2),边BC 的中点为M (x 0,y 0),先求出点M 的坐标,再求出直线BC 的斜率,即得解.【详解】设B (x 1,y 1),C (x 2,y 2),边BC 的中点为M (x 0,y 0),易知1(,0)2G , 则12122132203x x y y ++⎧=⎪⎪⎨++⎪=⎪⎩从而12012012412x x x y y y +⎧==-⎪⎪⎨+⎪==-⎪⎩,即1(,1)4M --, 又2211222,2y x y x ==,两式相减得(y 1+y 2)(y 1-y 2)=2(x 1-x 2),则直线BC 的斜率1212120022112BC y y k x x y y y y -=====--+ 故直线BC 的方程为y -(-1)=1()4x -+,即4x +4y +5=0.故答案为:4x +4y +5=0【点睛】方法点睛:圆锥曲线里与弦有关的问题常用点差法:先设出弦的端点坐标,再代入圆锥曲线的方程,再作差化简即得弦的中点坐标和弦的斜率的关系. 17.设A 、B 是椭圆22336x y +=上的两点,点(1,3)N 是线段AB 的中点,直线AB 的的方程为__________.【答案】40x y +-=【分析】设出A ,B 点坐标,根据两点在椭圆上,代入椭圆方程,作差,利用中点坐标公式,即可化简,求出直线AB 的斜率,再根据斜率和直线上的定点坐标,写出点斜式方程.【详解】设1(A x ,1)y ,2(B x ,2)y ,则22111212121222223363()()()()0336x y x x x x y y y y x y ⎧+=⎪∴-++-+=⎨+=⎪⎩,依题意,1212123(),AB x x x x k y y +≠∴=-+. (1,3)N 是AB 的中点, 122x x ∴+=,126y y +=,从而1AB k =-.所以直线AB 的方程为3(1)y x -=--,即40x y +-=.故答案为:40x y +-=【点睛】方法点睛:圆锥曲线里与中心弦有关的问题,常用点差法:首先设弦的端点坐标1(A x ,1)y ,2(B x ,2)y ,再把点的坐标代入圆锥曲线的方程,再作差化简即得弦的中点和直线的斜率的关系式.18.已知椭圆2222:1(0)x y E a b a b+=>>,过点(4,0)的直线交椭圆E 于,A B 两点.若AB 中点坐标为(2,﹣1),则椭圆E 的离心率为_______【分析】设()()1122,,,A x y B x y ,代入椭圆方程,两式作差,利用离心率公式即可求解.【详解】设()()1122,,,A x y B x y , 则2211221x y a b+=,① 2222221x y a b+=,① ①-①可得()()()()12121212220x x x x y y y y a b +-+-+=, 因为AB 中点坐标为(2,﹣1),则124x x +=,122y y +=-,所以()2122120121422y y b x x a ---===--, 所以224a b =,因为222b a c =-,所以2234a c =,所以2c e a ==.19.已知双曲线方程是2212y x -=,过定点(2,1)P 作直线交双曲线于12,P P 两点,并使P 为12PP 的中点,则此直线方程是__________________.【答案】47y x =-【分析】设111222(,),(,),P x y P x y 得221122222222x y x y ⎧-=⎪⎨-=⎪⎩,两式相减化简得直线的斜率,即得直线的方程. 【详解】由题得2222x y -=,设111222(,),(,),P x y P x y所以221122222222x y x y ⎧-=⎪⎨-=⎪⎩, 两式相减得121212122()()()()0x x x x y y y y +--+-=,由题得12124,2x x y y +=+=,所以12128()2()0x x y y ---=,因为12x x ≠,所以12124y y k x x -==-, 所以直线的方程为14(2),y x -=-即47y x =-.故答案为:47y x =-【点睛】方法点睛:点差法:圆锥曲线里遇到与弦的中点有关的问题,常用点差法.先设弦的端点111222(,),(,),P x y P x y 再代点的坐标到圆锥曲线的方程,再两式相减得到直线的斜率和弦的中点的关系式. 再化简解题.20.已知椭圆E :221189x y +=过椭圆内部点()1,1C -的直线交椭圆于M ,N 两点,且MC CN =则直线MN 的方程为_____________.【答案】230x y --=【分析】由已知条件得到C 为MN 的中点,利用中点坐标公式得到122x x +=,设出直线的方程与椭圆的方程联立,利用韦达定理得到21224412k k x x k++=+即可得出结果. 【详解】由MC CN =,可知C 为MN 的中点,又()1,1C -,不妨设直线MN 的方程为:()11y k x +=-,设点()()1122,,,M x y N x y ,则122x x +=,①将直线MN 的方程代入椭圆的方程消y 得:()22211180x k x +---=⎡⎤⎣⎦, 化简整理得:()()2222124424160k x k k x k k +-+++-=, 由韦达定理得:21224412k k x x k++=+,① 由①①得:12k =, 所以直线MN 的方程为:()1112y x +=-, 即直线MN 的方程为:230x y --=. 故答案为:230x y --=.【点睛】关键点睛:确定C 为MN 的中点以及直线与椭圆的方程联立利用韦达定理求解是解决本题的关键.21.已知双曲线2214x y -=和点()3,1P -,直线l 经过点P 且与双曲线相交于A 、B 两点,当P 恰好为线段AB 的中点时,l 的方程为______.【答案】3450x y +-=【分析】设点()11,A x y 、()22,B x y ,利用点差法可求得直线l 的方程,进而可得出直线l 的方程.【详解】设点()11,A x y 、()22,B x y ,若直线l x ⊥轴,则A 、B 两点关于x 轴对称,则点P 在x 轴上,不合乎题意.由于()3,1P -为线段AB 的中点,则12123212x x y y +⎧=⎪⎪⎨+⎪=-⎪⎩,可得121262x x y y +=⎧⎨+=-⎩, 将点A 、B 的坐标代入双曲线的方程可得221122221414x y x y ⎧-=⎪⎪⎨⎪-=⎪⎩, 上述两式相减得222212124x x y y -=-,可得2212221214y y x x -=-,即1212121214y y y y x x x x -+⋅=-+, 所以,12121134y y x x -⎛⎫⋅-= ⎪-⎝⎭,所以,直线l 的斜率为121234y y x x -=--, 因此,直线l 的方程为()3134y x +=--,即3450x y +-=. 故答案为:3450x y +-=.【点睛】 利用弦的中点求直线的方程,一般利用以下两种方法求解:(1)点差法:设弦的两个端点坐标分别为()11,x y 、()22,x y ,代点作差求得直线的斜率,进而利用点斜式可求得直线的方程;(2)设直线的点斜式方程,将直线方程与圆锥曲线方程联立,利用韦达定理求得直线的斜率,进而可求得直线的方程.22.已知抛物线2:4,C x y =AB 为过焦点F 的弦,过,A B 分别作抛物线的切线,两切线交于点P ,设112200(,),(,),(,)A x y B x y P x y ,则下列结论正确的有________.①若直线AB 的斜率为-1,则弦8AB =;①若直线AB 的斜率为-1,则02x =;①点P 恒在平行于x 轴的直线1y =-上;①若点(,)M M M x y 是弦AB 的中点,则0M x x =.【答案】①①①【分析】设P A ①方程()1124x x y k x -=-与抛物线方程24x y =联立,利用判别式求出12x k =,可得P A ①方程,同理可得PB ①方程,联立PA 与PB 的方程求出点P 的坐标,可知①正确;①直线AB 的方程为1y tx =+,与抛物线方程24x y =联立,当1t =-时,利用韦达定理求出0x 与0y 可知①错误,①正确;当1t =-时,利用抛物线的定义和韦达定理可得弦长||8AB =,可知①正确.【详解】 设P A 方程()1124x x y k x -=-与抛物线方程24x y =联立得2211440x kx kx x -+-=① 由2211Δ161640k kx x =-+=得12x k =, PA ∴方程为2111()42x x y x x -=-,同理得PB 方程2222()42x x y x x -=-, 联立21112222()42()42x x y x x x x y x x ⎧-=-⎪⎪⎨⎪-=-⎪⎩,解得121224x x x x x y +⎧=⎪⎪⎨⎪=⎪⎩, 所以交点P 1212,24x x x x +⎛⎫ ⎪⎝⎭,即1202M x x x x +==,所以①正确; 根据题意直线AB 的斜率必存在①①直线AB 的方程为1y tx =+,联立21040y tx x y --=⎧⎨-=⎩,消去y 并整理得2440x tx --=,由韦达定理得121244x x t x x +=⎧⎨⋅=-⎩①12014x x y ∴==-,所以①正确; 当t =-1时,12022x x x +==-,所以①错误, 当t =-1时,根据抛物线的定义可得1212||(2()2)p AB y y y y p p =+---=-++ ()12121124448x x x x =-+-++=-++=+=,所以①正确.故答案为:①①①【点睛】关键点点睛:设出切线方程,利用判别式等于0,求出切线方程,联立切线方程求出交点P 的坐标是解题关键.23.已知椭圆2222:1(0)x y E a b a b+=>>的半焦距为c,且=c ,若椭圆E 经过,A B 两点,且AB 是圆222:(2)(1)M x y r ++-=的一条直径,则直线AB 的方程为_________.【答案】240x y -+=【分析】设1122(,),(,)A x y B x y ,代入椭圆方程做差,根据直线的斜率公式及AB 的中点M ,求出直线斜率,即可得到直线方程.【详解】设1122(,),(,)A x y B x y , 代入椭圆方程可得:2211221x y a b +=①,2222221x y a b+=①, ①-①得:2212122121()()y y b x x x x a y y -+=--+,由=c 可得22223a b c b -==,即2214b a =, 又AB 的中点M (2,1)-,所以2212122121()11(2)()42ABy y b x x k x x a y y -+==-=-⨯-=-+ 所以直线AB 的方程为11(2)2y x -=+, 即240x y -+=. 故答案为:240x y -+= 【点睛】方法点睛:点差法是解决涉及弦的中点与斜率问题的方法,首先设弦端点的坐标,代入曲线方程后做差,可得出关于弦斜率与弦中点的方程,代入已知斜率,可研究中点问题,代入已知中点可求斜率.24.椭圆221164x y +=的弦AB 中点为(1,1)M ,则直线AB 的方程___________【答案】450x y +-= 【分析】设出,A B 的坐标,利用点差法求解出直线AB 的斜率,然后根据直线的点斜式方程求解出直线AB 的方程,最后转化为一般式方程. 【详解】设()()1122,,,A x y B x y ,所以22112222416416x y x y ⎧+=⎨+=⎩,所以1212121214x x y y y y x x +--⋅=+-, 又因为1212122122x x y y +=⨯=⎧⎨+=⨯=⎩,所以12121242AB y y k x x --⋅==-,所以1=4AB k -, 所以()1:114AB l y x -=--,即450x y +-=, 故答案为:450x y +-=. 【点睛】思路点睛:已知椭圆中一条弦的中点坐标,求解该弦所在直线方程的思路:(1)可以通过先设出弦所在直线与椭圆的交点坐标,将坐标代入椭圆方程中并将两个方程作差; (2)得到中点和坐标原点连线的斜率与直线斜率的关系,从而根据直线的点斜式方程可求解出直线方程.25.已知点P (1,2)是直线l 被椭圆22148x y +=所截得的线段的中点,则直线l 的方程是_____.【答案】30x y +-=【分析】设出直线与椭圆的交点,采用点差法进行分析,由此可求得直线的斜率,再根据直线的点斜式方程则直线l 的方程可求. 【详解】设直线l 与椭圆交于,A B 两点,()()1122,,,A x y B x y ,所以22112222148148x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩,所以222212124488x x y y ⎛⎫-=-- ⎪⎝⎭, 所以121212122x x y y y y x x +--⋅=+-,且121222,24P P x x x y y y +==+==,所以12122214l y y k x x -==-⋅=--,所以():21l y x -=--即30x y +-=,故答案为:30x y +-=. 【点睛】关键点点睛:本题考查椭圆中点弦所在直线方程的求法,难度一般.已知椭圆中一条弦的中点坐标,求解该弦所在直线方程时,可以通过先设出弦所在直线与椭圆的交点坐标,将坐标代入椭圆方程中并将两个方程作差,由此可得中点和坐标原点连线的斜率与直线斜率的关系,从而根据直线的点斜式方程可求解出直线方程.四、解答题26.已知椭圆22:143x y C +=的左、右顶点分别为A 、B ,直线l 与椭圆C 交于M 、N 两点.(1)点P 的坐标为1(1,)3,若MP PN =,求直线l 的方程;(2)若直线l 过椭圆C 的右焦点F ,且点M 在第一象限,求23(MA NB MA k k k -、NB k 分别为直线MA 、NB 的斜率)的取值范围. 【答案】(1)931412y x =-+;(2)[3,0).4-【分析】(1)利用点差法,求直线的斜率,再求直线方程;(2)直线的斜率不存在时,求点,M N 的坐标,得到NBMAk k 的值,以及当斜率存在时,直线与曲线方程联立,利用根与系数的关系求NBMAk k 的值,并将23MA NB k k -表示为MA k 的二次函数,并求取值范围. 【详解】解:(1)设1(M x ,1)y ,2(N x ,2)y , 由题意可得P 为线段MN 的中点,由22112222143143x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩两式相减可得 12121212()()()()043x x x x y y y y -+-++=,而1(1,)3P ,即有122x x +=,1223y y +=, 则12122()2()049x x y y --+=,可得121294y y x x -=--, 故直线l 的方程为19(1)34y x -=--, 即931412y x =-+; (2)由题意可得(2,0)A -,(2,0)B ,(1,0)F ,当直线l 的斜率不存在时,3(1,)2M ,3(1,)2N -,12MA k =,332M NB A k k ==.当直线l 的斜率存在时,则l 的斜率不为0,设直线l 的方程为(1)y k x =-,0k ≠,与椭圆方程223412x y +=联立, 可得2222(34)84120k x k x k +-+-=,则2122834kx x k +=+,212241234k x x k-=+,所以2121121212112121212(1)(2)2()23·2(1)(2)()2NB MA k y x k x x x x x x x k x y k x x x x x x x +-+++--===----++- 22211222222112224128121822333434343412846()2343434k k k x x k k k k k k x x k k k---+⋅---+++===----+--+++, 所以3NB MA k k =,因为M在第一象限,所以MA k ∈, 所以2221333333()[244MA NB MA MA MA k k k k k -=-=--∈-,0). 【点睛】思路点睛:1.一般涉及中点弦问题时,采用点差法求解;2.直线与圆锥曲线相交问题时,有时需要考查斜率不存在和存在两种情况,斜率存在的情况经常和曲线方程联立,利用根与系数的关系解决几何问题. 27.已知动圆M 过点(2,0)F ,且与直线2x =-相切. (①)求圆心M 的轨迹E 的方程;(①)斜率为1的直线l 经过点F ,且直线l 与轨迹E 交于点,A B ,求线段AB 的垂直平分线方程.【答案】(①)28y x =;(①)100x y +-=.【分析】(①)由题意得圆心M 到点(2,0)F 等于圆心到直线2x =-的距离,利用两点间距离公式,列出方程,即可求得答案.(①)求得直线l 的方程,与椭圆联立,利用韦达定理,可得1212,x x x x +的值,即可求得AB 中点00(,)P x y 的坐标,根据直线l 与直线AB 垂直平分线垂直,可求得直线AB 垂直平分线的斜率,利用点斜式即可求得方程. 【详解】(①)设动点(,)M x y|2|x =+, 化简得轨迹E 的方程:28y x =;(①)由题意得:直线l 的方程为:2y x =-,由28y x⎨=⎩,得21240x x -+=,2124140∆=-⨯⨯>, 设1122(,),(,)A x y B x y ,AB 中点00(,)P x y 则121212,4x x x x +==, 所以12062x x x +==,0024y x =-=, 又AB 垂直平分线的斜率为-1,所以AB 垂直平分线方程为100x y +-=. 【点睛】本题考查抛物线方程的求法,抛物线的几何性质,解题的关键是直线与曲线联立,利用韦达定理得到1212,x x x x +的表达式或值,再根据题意进行化简和整理,考查计算求值的能力,属基础题.28.已知椭圆222:1(1)x E y a a +=>的离心率为2.(1)求椭圆E 的方程;(2)若直线:0l x y m -+=与椭圆交于E F 、两点,且线段EF 的中点在圆22+1x y =,求m 的值.【答案】(1)2212x y +=;(2)5±. 【分析】(1)根据条件解关于,a c 的方程组即可得结果;(2)设()11,E x y ,()22,F x y ,联立直线方程与椭圆方程,根据韦达定理,可求得中点坐标,代入圆方程解得m 的值. 【详解】(1)由题意,得2221c a a c ⎧=⎪⎨⎪=+⎩,解得1a c ⎧=⎪⎨=⎪⎩ 故椭圆的标准方程为2212x y +=.(2)设()11,E x y ,()22,F x y ,线段EF 的中点为()00,M x y .联立2212x y ⎪⎨+=⎪⎩,消去y 得,2234220x mx m ++-= 120223x x m x +==-,003m y x m =+=,即2,33m m M ⎛⎫- ⎪⎝⎭,()()22443220m m m ∆=-⨯⨯->⇒<又因为点M 在圆221x y +=上,所以222133m m ⎛⎫⎛⎫-+= ⎪ ⎪⎝⎭⎝⎭,解得5m =±,满足题意. 【点睛】关键点睛:本题考查弦中点问题以及椭圆标准方程,解题的关键是熟悉中点坐标公式,本题中直线方程代入椭圆方程整理后应用韦达定理求出12x x +,求出中点坐标,再将其代入圆中求解,考查了学生的基本分析转化求解能力,属中档题.30.已知直线l 与抛物线2:5C y x =交于,A B 两点. (1)若l 的方程为21y x =-,求AB ; (2)若弦AB 的中点为()6,1-,求l 的方程.【答案】(1;(2)52280x y +-=. 【分析】(1)联立直线与抛物线方程,写出韦达定理,利用弦长公式即可求解; (2)利用点差法求出直线斜率,即可求出直线方程. 【详解】设,A B 两点的坐标分别为()()1122,,,x y x y .(1)联立25,21,y x y x ⎧=⎨=-⎩得24910,0x x -+=∆>,因此121291,44x x x x +==,故||4AB ===. (2)因为,A B 两点在C 上,所以2112225,5,y x y x ⎧=⎨=⎩两式相减,得()2221215y y x x -=-,因为12122y y +=-⨯=-,所以212112552AB y y k x x y y -===--+,因此l 的方程为5(1)(6)2y x --=--,即52280x y +-=. 【点睛】方法点睛:解决中点弦问题常用点差法求解,即将两交点设点代入曲线方程,两式相减利用平方差公式化简,将中点坐标代入即可得出弦所在直线斜率.31.坐标平面内的动圆M 与圆1C 22:(4)1x y ++=外切,与圆222:(4)81C x y -+=内切,设动圆M 的圆心M 的轨迹是曲线E ,直线0l :45400x y -+=. (1)求曲线E 的方程;(2)当点M 在曲线E 上运动时,它到直线0l 的距离最小?最小值距离是多少?(3)一组平行于直线0l 的直线,当它们与曲线E 相交时,试判断这些直线被椭圆所截得的线段的中点是否在同一条直线上,若在同一条直线上,求出该直线的方程;若不在同一条直线上,请说明理由?【答案】(1)221259x y +=;(2)点9(4,)5M -到直线0l的距离最小,;(3)在同一直线,直线为:9200x y +=. 【分析】(1)利用两个圆外切与内切的性质可得12||||10MC MC +=,再利用椭圆的定义即可求得曲线的方程;(2)设与0l 平行的直线l 的方程为450x y m -+=,代入221259x y +=,整理可得222582250x mx m ++-=,当222500360m ∆=-=,直线l 与曲线E 相切,此时点9(4,)5M -到直线0l 的距离最小,利用点到线距离公式求得最小值.(3)设两个交点为1122(,),(,)A x y B x y ,利用点差法化简得12121212925y y x x x x y y -+=-⋅-+,即49525xy=-⋅,整理得9200x y +=. 【详解】解:(1)设动圆M 的半径为r ,由题意可知12||1,||9MC r MC r =+=-,则1212||||10||8MC MC C C +=>=,根据椭圆的定义可知曲线E 是以12,C C 为焦点,长轴长为10的椭圆,其中210,28a c ==,即5,4,3a c b ====所以曲线E 的方程为:221259x y +=.(2)设与0l 平行的直线l 的方程为450x y m -+=,即455m y x =+,代入221259x y +=,可得224925()22555m x x ++=,整理得222582250x mx m ++-=, 22264100(225)2250036m m m ∆=--=-,当0∆=时,此时25m =±直线l 与曲线E 相切,根据图形可知当25m =时,点9(4,)5M -到直线0l的距离最小,min9|4(4)540|41d⨯--⨯+==. (3)这些直线被椭圆所截得的线段的中点在同一条直线上设与0l 平行的直线与曲线E 的两交点坐标为1122(,),(,)A x y B x y ,中点(,)N x y ,2211222212591259x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩, 两式作差得222212120259x x y y --+=,整理可得:12121212925y y x x x x y y -+=-⋅-+,即49525x y =-⋅,整理得9200x y +=,即所有弦的中点均在直线9200x y +=上.【点睛】思路点睛:本题考查求椭圆的标准方程,椭圆上点到直线的最近距离,点差法的应用,解决直线与椭圆的位置关系的相关问题,其常规思路是先把直线方程与椭圆方程联立,消元、化简,然后应用根与系数的关系建立方程,解决相关问题.涉及弦中点的问题时用“点差法”解决,往往会更简单.32.已知椭圆22122:1(0x y C a b a b +=>>)的长轴长为8,一条准线方程为x =与椭圆1C 共焦点的双曲线2,C 其离心率是椭圆1C 的离心率的2倍. (1)分别求椭圆1C 和双曲线2C 的标准方程;(2)过点M (4,1)的直线l 与双曲线2,C 交于P ,Q 两点,且M 为线段PQ 的中点,求直线l 的方程.【答案】(1)221169x y +=;22143x y -=;(2)3110x y --= 【分析】(1)根据椭圆的长轴长以及准线方程求出4a =,c =进而求出3b ==,即求椭圆的方程,求出椭圆的离心率,可得双曲线的离心率,结合与椭圆共焦点即可求出双曲线的标准方程. (2)设()11,P x y ,()22,Q x y ,利用点差法求出直线的斜率即可求解. 【详解】(1)椭圆22122:1(0x y C a b a b+=>>)的长轴长为28a =,则4a =,一条准线方程为x =,则27a c =,解得c =所以3b ==,所以椭圆1C 的标准方程为221169x y +=,离心率14c e a ==设双曲线的标准方程为()2211221110,0x y a b a b -=>>,则222117c a b ==+,1=,解得12a =,所以1b ===所以双曲线2C 的标准方程为22143x y -=. (2)设()11,P x y ,()22,Q x y ,22112222143143x y x y ⎧-=⎪⎪⎨⎪-=⎪⎩ ,两式作差可得()()()()1212121211043x x x x y y y y +--+-=, ()()12121182043x x y y ⨯⨯--⨯⨯-=, 即12123y y x x -=-, 所以直线l 的斜率为3,所以直线l 的方程为()134y x -=-, 即3110x y --=. 【点睛】关键点点睛:根据中点弦求直线方程,关键是利用“点差法”求出直线的斜率,考查了计算求解能力.33.椭圆C:(222212x y m m m+=>,直线l 过点()1,1P ,交椭圆于A 、B 两点,且P 为AB 的中点. (1)求直线l 的方程;(2)若AB OP =,求m 的值. 【答案】(1)230x y +-=;(2)m 【分析】(1)设()11,A x y ,()22,B x y ,利用点差法求直线的斜率;(2)根据(1)的结果,联立方程,利用弦长公式AB =m 的值.【详解】(1)222113122m m m +=<,(m >,∴点P 在椭圆里面, 设()11,A x y ,()22,B x y , 则2211222222221212x y m m x y m m ⎧+=⎪⎪⎨⎪+=⎪⎩,两式相减可得222212122202x x y y m m --+=, 变形为()()()()121212122202x x x x y y y y m m +-+-+=,① 点()1,1P 是线段AB 的中点,12122,2x x y y ∴+=+=,并且有椭圆对称性可知120x x -≠,由①式两边同时除以12x x -,可得,1222122202y y m m x x -+⋅=-, 设直线AB 的斜率为k ,120k ∴+=, 解得:12k =-, 所以直线l 的方程()1112302y x x y -=--⇒+-=; (2)OP ==222212230x y m m x y ⎧+=⎪⎨⎪+-=⎩,22612920y y m -+-=, 可得122y y +=,212926m y y -=,AB ===,且m >解得:m【点睛】方法点睛:点差法是解决涉及弦的中点与斜率问题的方法,首先设弦端点的坐标,可得出关于弦斜率与弦中点的方程,代入已知斜率,可研究中点问题,代入已知中点可求斜率.34.在平面直角坐标系xOy 中,已知双曲线C的焦点为(0,、,实轴长为(1)求双曲线C 的标准方程;(2)过点()1,1Q 的直线l 与曲线C 交于M ,N 两点,且恰好为线段MN 的中点,求线段MN 长度.【答案】(1)2212y x -=;(2【分析】(1)根据双曲线的定义c =,a =(2)先根据点差法求直线l 的方程,再根据弦长公式即可求出.【详解】(1)双曲线C的焦点为(0,、,实轴长为则a =c =而222321b c a =-=-=, ∴双曲线C 的标准方程2212y x -=; (2)设点1(M x ,1)y ,2(N x ,2)y ,点()1,1Q 恰好为线段MN 的中点,即有122x x +=,122y y +=, 又221122221212y x y x ⎧-=⎪⎪⎨⎪-=⎪⎩,两式相减可得121212121()()()()2y y y y x x x x -+=-+, ∴12122y y x x --=, ∴直线l 的斜率为2k =,其方程为12(1)y x -=-,即21y x =-,由222122y x y x =-⎧⎨-=⎩,即22410x x --=,可得1212x x =-,则MN ===【点睛】本题考查了双曲线的方程,直线与双曲线的位置关系,考查了运算求解能力,属于中档题.35.已知双曲线2212y x -=. (1)倾斜角45°且过双曲线右焦点的直线与此双曲线交于M ,N 两点,求MN .(2)过点(2,1)A 的直线l 与此双曲线交于1P ,2P 两点,求线段12PP 中点P 的轨迹方程;(3)过点(1,1)B 能否作直线m ,使m 与此双曲线交于1Q ,2Q 两点,且点B 是线段12Q Q 的中点?这样的直线m 如果存在,求出它的方程;如果不存在,说明理由.【答案】(1)8(2)22240x y x y --+=(3)不存在,理由见解析【分析】(1)直线斜率为1,写出直线方程与双曲线联立,由韦达定理即弦长公式求解;(2)设11(P x ,1)y ,22(P x ,2)y ,(,)P x y ,则221122x y -=,222222x y -=,两式相减,利用P 是中点及斜率相等可求P 得轨迹方程,从而得到其轨迹;(3)假设直线l 存在.由已知条件利用点差法求出直线l 的方程为210x y --=,联立方程组2222210x y x y ⎧-=⎨--=⎩,得22430x x -+=,由80∆=-<,推导出直线m 不存在. 【详解】(1)由双曲线2212y x -=知,右焦点为,由直线倾斜角45°可知直线斜率为1,所以直线方程为:y x =联立2212y x y x ⎧=⎪⎨-=⎪⎩可得250x +-=, 设1122(,),(,)M x y N x y ,则0∆>且12x x +=-125x x ⋅=-,所以12||||8MN x x =-==(2)设11(P x ,1)y ,22(Px ,2)y ,(,)P x y , 则122x x x +=,122y y y +=,221122x y -=,222222x y -=, 12124()2()0x x x y y y ∴---=,∴直线12PP 的斜率12122y y x k x x y-==-, 12AP y k x -=-,A ,P ,1P ,2P 共线, ∴122y x x y -=-, 22240x y x y ∴--+=,即线段12PP 的中点P 的轨迹方程是22240x y x y --+=. (3)假设直线m 存在.设(1,1)B 是弦12Q Q 的中点,且11(Q x ,1)y ,22(Q x ,2)y ,则122x x +=,122y y +=.1Q ,2Q 在双曲线上,∴221122222222x y x y ⎧-=⎨-=⎩, 121212122()()()()0x x x x y y y y ∴+---+=,12124()2()x x y y ∴-=-,12122y x y k x -∴==-, ∴直线m 的方程为12(1)y x -=-,即210x y --=,联立方程组2222210x y x y ⎧-=⎨--=⎩,得22430x x -+= ①1643280∆=-⨯⨯=-<,∴直线m 与双曲线无交点,直线m不存在.【点睛】关键点点睛:在直线与双曲线相交问题中,涉及弦及弦中点的问题,可以采用“点差法”,可以简化运算,降低运算难度.。
高考数学二级结论快速解题:专题15 圆锥曲线的中点弦问题(原卷版)
专题15圆锥曲线的中点弦问题一、结论1.在椭圆C :22221(0)x y a b a b中:(特别提醒此题结论适用x 型椭圆)(1)如图①所示,若直线(0)y kx k 与椭圆C 交于A ,B 两点,过A ,B 两点作椭圆的切线l ,l ,有l l ,设其斜率为0k ,则202bk k a.(2)如图②所示,若直线(0)y kx k 与椭圆C 交于A ,B 两点,P 为椭圆上异于A ,B 的点,若直线PA ,PB 的斜率存在,且分别为1k ,2k ,则2122b k k a.(3)如图③所示,若直线(0,0)y kx b k m 与椭圆C 交于A ,B 两点,P 为弦AB 的中点,设直线PO 的斜率为0k ,则202b k k a.2.在双曲线C :22221(0,0)x y a b a b中,类比上述结论有:(特别提醒此题结论适用x 型双曲线)(1)202b k k a .(2)2122b k k a .(3)202b k k a.3.在抛物线C :22(0)y px p 中类比1(3)的结论有00(0)pk y y.特别提醒:圆锥曲线的中点弦问题常用点差法,但是注意使用点差法后要检验答案是否符合题意;另外也可以通过联立+韦达定理求解.二、典型例题1.(2022·内蒙古·海拉尔第二中学高三期末(文))设椭圆的方程为22124x y ,斜率为k的直线不经过原点O ,而且与椭圆相交于A ,B 两点,M 为线段AB 的中点,下列结论正确的是()A .直线AB 与OM 垂直;B .若直线方程为22y x ,则ABC .若直线方程为1y x ,则点M 坐标为1433,D .若点M 坐标为 1,1,则直线方程为230x y ;【答案】D 【详解】不妨设,A B 坐标为 1122,,,x y x y ,则2211124x y ,2222124x y ,两式作差可得:121212122y y y y x x x x ,设 00,M x y ,则002y k x .对A :02AB OM y k k k x,故直线,AB OM 不垂直,则A 错误;对B :若直线方程为22y x ,联立椭圆方程2224x y ,可得:2680x x ,解得1240,3x x ,故1222,3y y ,则AB,故B 错误;对C :若直线方程为y =x +1,故可得12y x ,即002y x ,又001y x ,解得0012,33x y ,即12,33M,故C 错误;此题对C 另解,直接利用二级结论,由于本题椭圆方程为22124x y ,是y 型椭圆,所以:202422a k k b ,故可得0012y x ,即002y x ,又001y x ,解得0012,33x y ,即12,33M,故C 错误;对D :若点M 坐标为 1,1,则121k ,则2AB k ,又AB 过点 1,1,则直线AB 的方程为 121y x ,即230x y ,故D 正确.故选:D .【反思】本题考察椭圆中弦长的求解,以及中点弦问题的处理方法;解决问题的关键是利用点差法,再使用二级结论时,注意先判断椭圆是x 型还是y 型,再利用结论求解.2.(2021·安徽·淮北师范大学附属实验中学高二期中)已知椭圆 2222:10x y E a b a b的右焦点F 与抛物线212y x 的焦点重合,过点F 的直线交E 于A 、B 两点,若AB 的中点坐标为 1,1 ,则E 的方程为()A .2214536x yB .2213627x yC .2212718x yD .221189x y【答案】D 【详解】解:设 11,A x y 、 22,B x y ,若AB x 轴,则A 、B 关于x 轴对称,不合乎题意,将A 、B 的坐标代入椭圆方程得22112222222211x y a b x y a b ,两式相减得22221212220x x y y a b ,可得12121222120x x y y y y a x x b,因为线段AB 的中点坐标为 1,1 ,所以,122x x ,122y y ,因为抛物线212y x 的焦点为 3,0,所以 3,0F ,又直线AB 过点 3,0F ,因此1212101132AB y y k x x,所以,2221202a b,整理得222a b,又3c 218a ,29b ,因此,椭圆E 的方程为221189x y ,故选:D.另解:设 11,A x y 、 22,B x y ,若AB x 轴,则A 、B 关于x 轴对称,不合乎题意,因为抛物线212y x 的焦点为 3,0,所以 3,0F ,所以3c ,设线段AB 的中点坐标为 1,1M ,利用二级结论2222220(1)131OM ABOM FM b b b k k k k a a a 2212b a ,又因为229a b ,解得218a ,29b ,因此,椭圆E 的方程为221189x y,故选:D.【反思】在圆锥曲线中,涉及到中点弦问题,小题中,常用点差法,也可以直接使用二级结论,但是在解答题中,不建议直接使用二级结论,即使使用点差法,也需检验答案是否符合题意,否则,最后还是需要联立直线与圆锥曲线,再求解.3.(2021·湖北·高二阶段练习)已知斜率为1的直线与双曲线 2222:10,0x y C a b a b相交于A 、B 两点,O 为坐标原点,AB 的中点为P ,若直线OP 的斜率为2,则双曲线C 的离心率为()AB .2CD .3【答案】A 【详解】设 11,A x y 、 22,B x y 、 00,P x y ,则22112222222211x y a b x y a b ,两式相减得2222121222x x y y a b ,所以2121221212y y x x b x x a y y .因为1202x x x ,1202y y y ,所以21202120y y b x x x a y .因为12121ABy y k x x ,002 OP y k x ,所以2212b a ,故222b a ,故ce a.故选:A.另解:直接利用双曲线中的二级结论,2222222202221223b b k k b a c a a e e a a.【反思】注意使用二级结论的公式,一定要先判断,第一判断曲线是椭圆,还是双曲线,还是抛物线,第二判断圆锥曲线是x 型,还是y 型,第三,根据判断选择合适的二级结论,代入计算.4.(四川省蓉城名校联盟2021-2022学年高二上学期期末联考理科数学试题)已知抛物线 220x py p ,过其焦点且斜率为1的直线交抛物线于A ,B 两点,若线段AB 的中点的横坐标为3,则该抛物线的准线方程为()A .3y B .32yC .3x D .32x【答案】B【详解】解:根据题意,设 1122,,,A x y B x y ,所以2112x py ①,2222x py ②,所以,① ②得: 1212122x x x x p y y ,即1212122AB y y x x k x x p,因为直线AB 的斜率为1,线段AB 的中点的横坐标为3,所以121212312AB y y x x k x x p p,即3p ,所以抛物线26x y ,准线方程为32y .故选:B【反思】在抛物线C :22(0)y px p 中类比1(3)的结论有00(0)pk y y,注意到本题的抛物线方程是 220x py p ,此时中点弦二级结论有0x k p,直接代入313p p,小题都可以用二级结论直接求解,但是注意先判断适用条件.5.(2021·江西·南昌市新建区第一中学高二期末(理))已知斜率为(0)k k 的直线l 与抛物线2:4C y x 交于,A B 两点,O 为坐标原点,M 是线段AB 的中点,F 是C 的焦点,OFM 的面积等于3,则k ()A .14B .13C .12D.3【答案】B 【详解】由抛物线2:4C y x 知:焦点 1,0F 设 112200,,,,,,A x yB x y M x y 因为M 是线段AB 的中点,所以01201222x x x y y y将2114y x 和2224y x 两式相减可得: 2212124y y x x ,即121202y y k x x y∵000k y ∴00113,62OFM S y y ,022163k y.故选:B另解:因为抛物线方程2:4C y x ,设AB 的中点00(,)M x y ,由中点弦二级结论,可知:00(0)p k y y代入:02k y ,另焦点 1,0F ,因为面积3OFM S ,可知00113,62OFM S y y ,再代入0213k k y.【反思】中点弦,最典型的方法就是点差法,在判断条件满足二级结论时,可直接使用二级结论.6.(2022·湖北·武汉市第十五中学高二期末)已知椭圆C 的中心在原点,焦点在x 轴上,长轴长为4,且点)2在椭圆上.(1)经过点M (1,12)作一直线1l 交椭圆于AB 两点,若点M 为线段AB 的中点,求直线1l 的斜率;【答案】(1)12;.(1)解:由题设椭圆的方程为222+1,4x y b因为椭圆经过点(1,2,所以213+1,1,44b b 所以椭圆的方程为22+14x y .设1122(,),(,)A x y B x y ,所以22112222+44+44x y x y ,所以12121212()()4()()=0x x x x y y y y ,由题得12x x ,所以12121212()4()=0y y x x y y x x ,所以1212241=0y y x x,所以1241=0,=2AB AB k k ,所以直线1l 的斜率为12 ,经检验1l 的斜率等于12复合题意.【反思】在圆锥曲线中,涉及中点弦常用点差法,注意使用点差法,最后需检验,特别是多个答案时,更应该检验,最后保留下符合题意的答案。
圆锥曲线专题:中点弦及点差法的7种常见考法高二数学上学期同步讲与练(选择性必修第一册)(解析版)
圆锥曲线专题:中点弦及点差法的7种常见考法一、椭圆与双曲线的中点弦与点差法1、根与系数关系法:联立直线方程和椭圆方程构成方程组,消去一个未知数,利用一元二次方程根与系数的关系以及中点坐标公式解决;2、点差法:利用交点在曲线上,坐标满足方程,将交点坐标分别代入椭圆方程,然后作差,构造出中点坐标和斜率的关系,具体如下:直线l (不平行于y 轴)过椭圆12222=+by a x (0>>b a )上两点A 、B ,其中AB 中点为)(00y x P ,,则有22ab k k OPAB -=⋅。
证明:设)(11y x A ,、)(22y x B ,,则有⎪⎪⎩⎪⎪⎨⎧=+=+11222222221221b y a x by a x ,上式减下式得02222122221=-+-b y y a x x ,∴2222212221a b x x y y -=--,∴220021210021212121212122a b x y x x y y x y x x y y x x y y x x y y -=⋅--=⋅--=++⋅--,∴22a b k k OP AB -=⋅。
焦点在y 轴:直线l (存在斜率)过椭圆12222=+bx a y (0>>b a )上两点A 、B ,线段AB 中点为)(00y x P ,,则有22ba k k OPAB -=⋅。
3、双曲线的用点差法同理,可得220220()AB AB OP x b b k k k a y a=⋅⋅=二、抛物线的中点弦与点差法设直线与曲线的两个交点)(11y x A ,、)(22y x B ,,中点坐标为)(00y x P ,代入抛物线方程,2112=y px ,2222=y px ,将两式相减,可得()()()1212122-+=-y y y y p x x ,整理可得:12121202-===-+AB y y p pk x x y y y三、点差法在圆锥曲线中的结论AB AB M AB AB M AB AB AB AB b e x a y k k k x ab e b e x a y k k k x a y b e pk y pk y x k px k p222002222220222011-y 1111⎧-=-⇔⎪⎪==⎨⎪=⇔⎪-⎩⎧=-⇔⎪⎪==⎨⎪=⇔⎪-⎩⎧=⇔⎪⎪⎪⎪=-⇔⎪⎨⎪=⇔⎪⎪⎪=-⇔⎪⎩gg gg 焦点在轴椭圆:焦点在轴焦点在轴双曲线:焦点在轴开口向右开口向左抛物线:开口向上开口向下题型一中点弦所在直线的斜率与方程【例1】已知椭圆22195x y +=的弦被点()1,1平分,则这条弦所在的直线方程为______.【答案】59140x y +-=【解析】已知椭圆22195x y +=的弦被点()1,1平分,设这条弦的两个端点分别为()11,A x y 、()22,B x y ,则12121212x x y y +⎧=⎪⎪⎨+⎪=⎪⎩,得121222x x y y +=⎧⎨+=⎩,由于点A 、B 均在椭圆22195x y +=上,则22112222195195x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩,两式相减得22221212095x x y y --+=,可得2212221259y y x x -=--,即()()()()1212121259y y y y x x x x -+=--+,所以直线AB 的斜率为121259AB y y k x x -==--,因此,这条弦所在直线的方程为()5119y x -=--,即59140x y +-=.故答案为:59140x y +-=.【变式1-1】已知椭圆2222:1(0)x y C a b a b +=>>,直线l 与椭圆C 交于A ,B 两点,直线12y x =-与直线l 的交点恰好为线段AB 的中点,则直线l 的斜率为()A.12B.14C.1D.4【答案】C【解析】由题意可得2c e a ==,整理可得a =.设()11,A x y ,()22,B x y ,则2211221x y a b +=,2222221x y a b+=两式相减可得()()()()12121212220x x x x y y y y a b -+-++=.因为直线12y x =-与直线l 的交点恰好为线段AB 的中点,所以121212y y x x +=-+,则直线l 的斜率21212212121(2)12y y x x b k x x a y y -+==-⋅=-⨯-=-+.故选:C 【变式1-2】已知双曲线22142x y -=被直线截得的弦AB ,弦的中点为M (4,2),则直线AB 的斜率为()A.1D.2【答案】A【解析】设交点坐标分别为1(A x ,1)y ,2(B x ,2)y ,则128x x +=,124y y +=,2211142x y -=,2222142x y -=两式相减可得22221212042x x y y ---=,即()()()()1212121242x x x x y y y y +-+-=,所以()()121212122248144AB x x y y k x x y y +-⨯====-+⨯,即直线AB 的斜率为1;故选:A.【变式1-3】过点(2,1)M 的直线交抛物线24y x =于,A B 两点,当点M 恰好为AB 的中点时,直线AB 的方程为()A.250x y +-=B.210x y --=C.250x y +-=D.230x y --=【答案】D【解析】设()()1122,,,A x y B x y ,所以2211224,4y x y x ==,两式相减得,()()()1212124y y y y x x +-=-,因为点(2,1)M 为AB 的中点,所以122y y +=,所以12122y y x x --=,故直线AB 的斜率为2,所以直线AB 的方程为()122y x -=-,即230x y --=,联立22304x y y x--=⎧⎨=⎩,所以241690x x -+=,()2164490∆=--⨯⨯>,故斜率为2符合题意,因此直线AB 的方程为230x y --=,故选:D.【变式1-4】已知斜率为1k ()10k ≠的直线l 与椭圆2214yx +=交于A ,B 两点,线段AB 的中点为C ,直线OC (O 为坐标原点)的斜率为2k ,则12k k ⋅=()A.14-B.4-C.12-D.2-【答案】B【解析】设()11,A x y ,()22,B x y ,AB 的中点()00,C x y ,则1202x x x +=,1202y y y +=.因为A ,B 两点在椭圆上,所以221114y x +=,222214y x +=.两式相减得:()22222112104x y x y -+=-,()()()()11112222104x x y y x x y y +-+-+=,()()0122011202x y x y y x --+=,()()2102011202y y y x x x --+=,即121202k k +⋅=,解得124k k ⋅=-.故选:B【变式1-5】椭圆()222210x y a b a b +=>>离心率为3,直线20x y b -+=与椭圆交于P ,Q 两点,且PQ 中点为E ,O 为原点,则直线OE 的斜率是_______.【答案】43-【解析】因为椭圆()222210x y a b a b +=>>所以3c e a ==,所以2223b a =设()11,P x y ,()22,Q x y ,所以121212PQ y y k x x -==-,1212,22x x y y E ++⎛⎫⎪⎝⎭,因为P ,Q 在椭圆上,所以22112222222211x y a b x y ab ⎧+=⎪⎪⎨⎪+=⎪⎩,两式作差得22221212220x x y y a b --+=,即2221222212y y b x x a -=--,即()()()()1212121223y y y y x x x x -+-=-+,即23PQ OE k k ⋅=-,所以43OE k =-,故答案为:43-【变式1-6】已知离心率为12的椭圆()222210y x a b a b+=>>内有个内接三角形ABC ,O 为坐标原点,边AB BC AC 、、的中点分别为D E F 、、,直线AB BC AC 、、的斜率分别为123k k k ,,,且均不为0,若直线OD OE OF 、、斜率之和为1,则123111k k k ++=()A.43-B.43C.34-D.34【答案】C【解析】由题意可得12c a =,所以2243,b a =不妨设为22143y x +=.设1(A x ,1)y ,2(B x ,2)y ,3(C x ,3)y ,222211221,14343y x y x +=+=,两式作差得21212121()()()()34x x x x y y y y -+-+=-,则21212121()3()()4()x x y y y y x x +-=-+-,134OD AB k k =-,同理可得1313,44OF OE AC BC k k k =-=-,所以12311133()44OD OE OF k k k k k k ++=-++=-,故选:C .题型二求圆锥曲线的方程问题【例2】过椭圆2222:1(0)x y C a b a b+=>>的右焦点(2,0)F 的直线与C 交于A ,B 两点,若线段AB 的中点M 的坐标为95,77⎛⎫- ⎪⎝⎭,则C 的方程为()A.22195x y +=B.2215x y +=C.22162x y +=D.221106x y +=【答案】A【解析】设()()1122,,,A x y B x y ,则12x x ≠AB 的中点95,77M ⎛⎫- ⎪⎝⎭,所以5071927AB MFk k ⎛⎫-- ⎪⎝⎭===-,又2222221122222222b x a y a b b x a y a b ⎧+=⎨+=⎩,所以()()2222221212b x x a y y -=--,即2121221212y y y y b x x x x a-+⋅=--+,而12121ABy y k x x -==-,121252579927y y x x ⎛⎫⨯- ⎪+⎝⎭==-+⨯,所以2255199b a =⨯=,又2c =,所以22222254499c a b a a a =-=-==,所以2295a b ==,椭圆方程为:22195x y +=.故选:A.【变式2-1】已知双曲线E 的中心为原点,(30)F ,是E 的焦点,过F 的直线l 与E 相交于A 、B 两点,且AB 的中点为(1215)N --,,求双曲线E 的方程.【答案】22145x y -=【解析】设双曲线的方程为22221x y a b-=(0a >,0b >),由题意知3c =,229a b +=,设11()A x y ,、22()B x y ,则有:2211221x y a b -=,2222221x y a b -=,两式作差得:22121222121245y y x x b b x x a y y a-+=⋅=-+,又AB 的斜率是1501123--=--,∴2254b a =,代入229a b +=得,24a =,25b =,∴双曲线标准方程是22145x y -=.【变式2-2】已知双曲线C 的中心在坐标原点,焦点在x 轴上,离心率等于32,点()5-在双曲线C 上,椭圆E 的焦点与双曲线C 的焦点相同,斜率为12的直线与椭圆E 交于A 、B 两点.若线段AB 的中点坐标为()1,1-,则椭圆E 的方程为()A.2214536x y +=B.2213627x y +=C.2212718x y +=D.221189x y +=【答案】D【解析】设双曲线方程为22221(0,0)x y m n m n-=>>,则223224251m mn =⎪⎪⎨⎪-=⎪⎩,解得2245m n ⎧=⎨=⎩,故双曲线方程为22145x y -=,焦点为()3,0±;设椭圆方程为22221x y a b+=,则椭圆焦点为焦点为()3,0±,故22a b 9-=,设1122(,),(,)A x y B x y ,则2222112222221,1x y x y a b a b+=+=,两式相减得22221212220x x y y a b --+=,整理得2121221212y y x x b x x a y y -+=-⋅-+,即221121b a =-⋅-,解得222a b =,故2218,9a b ==,椭圆方程为221189x y +=.故选:D.【变式2-3】斜率为1的直线交抛物线()2:20C y px p =>于A ,B 两点,且弦AB 中点的纵坐标为2.求抛物线C 的标准方程;【答案】24y x=【解析】设()()1122,,,A x y B x y ,12122,42y y y y +=+=,21122222y px y px ⎧=⎨=⎩,两式相减并化简得1212122y y p x x y y -=-+,21,24pp ==,所以抛物线方程为24y x =.【变式2-4】设()11,A x y 、()22,B x y 是抛物线()2:20C x py p =>上不同的两点,线段AB 的垂直平分线为y x b =+,若1212x x +=-,则p =______.【答案】14【解析】由题知,2112x py =,2222x py =,两式相减得()()()1212122x x x x p y y -+=-,所以1212122AB y y x x k x x p-+==-,由题知1AB k =-,所以12122x x p +=-=-,所以14p =.故答案为:14.题型三求圆锥曲线的离心率问题【例3】过点()1,1M 作斜率为12-的直线与椭圆C :22221x y a b+=(0a b >>)相交于A 、B 两点,若M 是线段AB 的中点,则椭圆C 的离心率等于()A.22B.3C.12D.13【答案】A【解析】设1122(,),(,)A x y B x y ,则12122,2x x y y +=+=,121212AB y y k x x -==--,所以22112222222211x y a b x y a b ⎧+=⎪⎪⎨⎪+=⎪⎩,作差得1212121222()()()()0x x x x y y y y a b -+-++=,所以1212222()2()0x x y y a b --+=,即21221212y y b a x x -=-=-,所以该椭圆的离心率2c e a ==【变式3-1】已知直线3y x m =-与椭圆()2222:10x y C a b a b+=>>相交于P ,Q 两点,若PQ 中点的横坐标恰好为2m ,则椭圆C 的离心率为______.【答案】2【解析】设()11,P x y ,()22,Q x y ,代入椭圆方程得2211221x y a b +=,2222221x y a b+=,两式作差得22221212220x x y y a b --+=,整理得122122121222y y y y b x x x x a +-⋅=-+-,因为1222x x m +=,所以12123322y y x m x mm +-+-==-,又因为12121PQ y y k x x -==-,所以2212m b m a -⨯=-,所以2212b a =,所以ce a======2212c a=.故答案为:2.【变式3-2】已知椭圆2222:1(0)x y C a b a b+=>>的左、右顶点分别为A ,B ,点M 为椭圆C上异于A ,B 的一点,直线AM 和直线BM 的斜率之积为14-,则椭圆C 的离心率为()A.14B.12C.2D.4【答案】C【解析】由已知得(,0),(,0)A a B a -,设()00,x y ,由题设可得,2200221x y a b+=,所以()222202b y a x a=-.因为()222220200022222000014A MM B b a x y y y b a k k x a x a x a x a a -⋅=⋅===-=-+---,所以2214b a =,则22222222314c a b b e a a a -===-=,所以2e =.【变式3-3】已知斜率为1的直线l 与双曲线C :()222210,0x y a b a b-=>>相交于B ,D 两点,且BD 的中点为()1,3M ,则C 的离心率是______.【答案】2【解析】设1122(,),(,)B x y D x y ,则22112222222211x y a b x y a b ⎧-=⎪⎪⎨⎪-=⎪⎩,两式作差可得:2222121222x x y a b y =--,即1212121222()()()()x x x x y y y y a b -+-+=,因为()1,3M 为BD 中点,所以12122,6x x y y +=+=,又直线BD 斜率为1,所以12121y y x x -=-,代入可得,223b a=,所以C的离心率2e ==.故答案为:2【变式3-4】已知直线l :30x y -+=与双曲线C :22221x y a b-=(0a >,0b >)交于A ,B两点,点()1,4P 是弦AB 的中点,则双曲线C 的离心率为()A.43B.2C.2【答案】D【解析】设()()1122,,,A x y B x y 点()1,4P 是弦AB 的中点根据中点坐标公式可得:12122,8x x y y +=⎧⎨+=⎩A ,B 两点在直线l :30x y -+=根据两点斜率公式可得:12121y y x x -=-,A B 两点在双曲线C 上∴22112222222211x y a b x y a b ⎧-=⎪⎪⎨⎪-=⎪⎩∴222212122210x x y y a b ---=,即()()()()2221212122221212128142y y y y y y b a x x x x x x +--===⨯=-+-解得:2b a =∴c e a ===题型四弦中点的坐标问题【例4】已知直线:1l y x =+,椭圆22:13xC y +=.若直线l 与椭圆C 交于A ,B 两点,则线段AB 的中点的坐标为()A.13,44⎛⎫- ⎪⎝⎭B.31,44⎛⎫- ⎪⎝⎭C.13,22⎛⎫ ⎪⎝⎭D.31,22⎛⎫-- ⎪⎝⎭【答案】B【解析】由题意知,22113y x x y =+⎧⎪⎨+=⎪⎩,消去y ,得2230x x +=,则9810∆=-=>,32A B x x +=-,所以A 、B 两点中点的横坐标为:13()24A B x x +=-,所以中点的纵坐标为:31144-=,即线段AB 的中点的坐标为31()44-,.故选:B【变式4-1】求直线1-=x y 被抛物线x y 42=截得线段的中点坐标。
运用点差法解答圆锥曲线中点弦问题的步骤
思路探寻中点弦问题是指与圆锥曲线的弦的中点有关的问题.这类问题通常要求我们求弦的中点的坐标、弦所在直线的方程、圆锥曲线的方程,侧重于考查一元二次方程的根与系数的关系、线段中点的坐标公式、直线的斜率公式的应用,以及直线与圆锥曲线的位置关系.解答圆锥曲线中点弦问题,通常运用点差法.若直线与椭圆x 2a 2+y 2b2=1(a >b >0)相交于点A (x 1,y 1)、B (x 2,y 2),且AB 的中点M (x 0,y 0),运用点差法解答中点弦问题的步骤为:1.把A 、B 两点的坐标代入椭圆的方程,得:x 12a 2+y 12b 2=1①,x 22a 2+y 22b2=1②;2.将①②两式作差,得x 12-x 22a 2+y 12-y 22b 2=1,即()x1-x 2()x 1+x 2a 2+()y1-y 2()y 1+y 2b 2=1,可得y 1-y 2x 1-x 2=()-b 2a 2(x 1+x 2y 1+y 2)=()-b 2a 2æèççççöø÷÷÷÷x 1+x 22y 1+y 22=()-b 2a2(x 0y 0)③;3.根据线段中点的坐标公式可得x 0=x 1+x 22,y 0=y 1+y 22,将其代入③得y 1-y 2x 1-x 2=()-b 2a 2()x 0y 0,即为直线AB 的斜率.类似地,对于焦点在y 轴上的椭圆y 2a 2+x 2b2=1(a >b >0),运用点差法可得直线AB 的斜率k AB =()-a 2b 2()x 0y 0;对于焦点在x 轴上的双曲线x 2a 2-y 2b2=1(a >0,b >0),由点差法可得直线AB 的斜率k AB =()b 2a 2()x 0y 0;焦点在y 轴上的双曲线y 2a 2-x2b2=1(a >0,b >0),由点差法可得直线AB 的斜率k AB =()a 2b 2()x 0y 0.利用点差法,由弦AB 所在直线的斜率和圆锥曲线的方程,可以得到弦AB 中点的横坐标x 0与纵坐标y 0之间的关系式.例1.在直角坐标系xOy 中,曲线C 的参数方程为ìíîx =2cos θ,y =4sin θ,其中θ为参数,直线l 的参数方程为ìíîx =1+t cos θ,y =2+t sin θ,其中t 为参数.若曲线C 截直线l 所得线段的中点为(1,2),求直线l 的斜率.解:由ìíîïïïïx2=cos θ,y 4=sin θ,可得曲线C 的直角坐标方程是y 216+x 24=1,当直线l 的倾斜角θ≠π2时,由ìíîx -1=t cos θ,y -2=t sin θ,得y -2x -1=tan θ,则直线l 的直角坐标方程是y =x tan θ+2-tan θ.当直线l 的倾斜角θ=π2时,直线l 的斜率不存在,其方程是x =1,设直线l 与曲线C 相交于点A (x 1,y 1)、B (x 2,y 2),因为AB 的中点的坐标为(1,2),所以x 1+x 22=2,y 1+y 22=4,把A 、B 两点的坐标代入椭圆的方程中,得x 1216+y 124=1①,x 2216+y 224=1②,将①②两式作差得x 12-x 2216+y 12-y 224=1,可得直线l 的斜率k AB=()-164()x 1+x 2y 1+y 2=()-164×()12=-2.运用点差法,由弦的中点坐标和曲线的方程,可以直接通过整体代换,快速求得弦所在直线的斜率,这样可以大大减少运算量.例2.已知双曲线x 2-y 22=1,那么过点P (1,1)能否45思路探寻作一条直线l 与双曲线交于A ,B 两点,且点P 是线段AB的中点.解:设直线l 与双曲线相交于点A (x 1,y 1)、B (x 2,y 2),因为AB 的中点的坐标为(1,1),所以x 1+x 22=2,y 1+y 22=2,把A 、B 两点的坐标代入双曲线的方程,得x 12+y 122=1①,x 22+y 222=1②,将①②两式作差得()x 12-x 22+y 12-y 222=1,可得k AB =2()x 1+x 2y 1+y 2=2.得直线l 的方程为y -1=2(x -1),即y =2x -1.联立直线与双曲线的方程,得ìíîïïy =2x -1,x 2-y 22=1,消去y ,得2x 2-4x +3=0,所以△=16-24=-8<0,则方程无解.所以直线l :y =2x -1与双曲线x 2-y 22=1相离,故不存在直线l 与双曲线交于A ,B 两点,且点P 是线段AB 的中点.本题涉及了双曲线的弦、中点,属于中点弦问题,需运用点差法求解.将直线与双曲线的两个交点的坐标分别代入双曲线的方程中,并作差,从而求得弦所在直线的斜率和方程.最后还需构造出一元二次方程,根据方程的判别式来判断直线与双曲线是否有两个交点,检验所求的直线方程是否满足题意.例3.已知椭圆x 22+y 2=1上的两点A 、B 关于直线y =mx +12对称,求实数m 的取值范围.解:设A (x 1,y 1)、B (x 2,y 2),把A 、B 两点的坐标代入椭圆的方程,得x 122+y 12=1①,x 222+y 22=1②,将①②两式作差得()x12-x 222+()y 12-y 22=1,可得-1m =()-12()x 1+x 2y 1+y 2.设弦AB 的中点M (x 0,y 0),则y 0=mx 0+12③,可得-1m =(-12)(x 0y 0)④,由③④可得ìíîïïïïx 0=-1m,y 0=-12,即M (-1m ,-12),因为弦AB 的中点M 必在椭圆内部,所以()-1m22+()-122<1,解得mm <由于A 、B 两点关于直线对称,所以A 、B 两点的中点在直线上.本题实质上是中点弦问题,需运用点差法求解.先将两点的坐标代入椭圆的方程中,并作差,即可求出直线的斜率;然后建立关于AB 中点坐标的方程组,求得中点的坐标;再将其代入椭圆的方程中,根据椭圆与点的位置关系,求得参数m 的取值范围.例4.已知直线AB 与椭圆x 2a 2+y 2b2=1交于A 、B 两点,B 与B '关于原点O 对称,证明:直线AB 与直线AB '的斜率之积为定值.证明:设A (x 1,y 1)、B (x 2,y 2),把A 、B 两点的坐标代入椭圆的方程中,得:x 12a 2+y 12b 2=1①,x 22a 2+y 22b2=1②,将①②两式作差,得x 12-x 22a 2+y 12-y 22b 2=1,即y 1-y 2x 1-x 2=()-b 2a2(x 1+x 2y 1+y 2),变形得y 1-y 2x 1-x 2⋅y 1-(-y 2)x 1-(-x 2)=-b 2a2,而直线AB 的斜率为k AB =y 1-y 2x 1-x 2,直线AB '的斜率为k AB '=y 1-(-y 2)x 1-(-x 2),所以k AB ⋅k AB '=y 1-y 2x 1-x 2⋅y 1-(-y 2)x 1-(-x 2)=-b 2a2.解答本题,需灵活运用点差法和直线的斜率公式,建立关于直线AB 和直线AB '的斜率的关系式,从而证明结论.运用点差法解题,只需通过简单的整体代换,即可求得直线的斜率、弦中点的坐标,这样可以有效地提升解题的效率.但是点差法的适用范围较窄,只适用于求解中点弦问题,且其中的x 1、x 2、y 1、y 2不一定是实数,有可能是虚数,因此在运用点差法解题时,还需检验所得的结果是否满足题意.(作者单位:陕西省宝鸡市岐山县蔡家坡高级中学)46。
专题01 圆锥曲线中心弦与中点弦的性质(文)(解析版)
专题01 圆锥曲线中心弦与中点弦的性质溯本求源推广延伸推广1:如图,已知椭圆)0(>>b a ,为经过对称中心)0,0(O 的弦,为椭圆上异于,的点,直线,斜率存在,则.【证明】设,()11,y x A ,则, ,1222-=-=∴e ab k k PBPA .推广2:如图,已知椭圆)0(>>b a ,为经过对称中心)0,0(O 的弦,为椭圆上异于,的点,直线,斜率存在,则.【证明】证明方法同推广1,此处不再赘述.归纳统一已知二次曲线,为经过对称中心)0,0(O 的弦,为该曲线上异于,的点,直线,斜率存在,则. 【证明】证明方法同推广1,此处不再赘述.类比联想中点弦性质:如图,设二次曲线:,,为该曲线上的两点,为弦中点,为坐标原点,则.【证明】方法1:(代数证明)设),(11y x A ,),(22y x B , 则中点. ,,m nx x y y x x y y k k ABOM -=--⋅++=⋅∴2121212122. 方法2:(几何证明)如下图,由于OM AP ∥,易知, ∵为中心弦,∴, ∴.经典赏析类型1:直抒胸臆型【例1】(2014江西)过点作斜率为的直线与椭圆:相交于两点,若是线段的中点,则椭圆的离心率等于______________. 【答案】【解析】由椭圆中点弦性质可得1222-=-=⋅e ab k k ABOM ,则,故.【例2】(2013新课标1)已知椭圆x 2a 2+y 2b 2=1(a >b >0)的右焦点为F (3,0),过点F 的直线交椭圆于A 、B 两点.若AB 的中点坐标为(1,-1),则E 的方程为 A .x 245+y 236=1B .x 236+y 227=1C .x 227+y 218=1D .x 218+y 29=1【答案】D 【解析】,得,∴=,又9==,解得=9,=18, ∴椭圆方程为, 故选D . 类型2:共线转化型【例3】(2018浙江)已知点,椭圆()上两点,满足2AP PB =,则当=______________时,点横坐标的绝对值最大.【答案】5【解析】设),(11y x B ,由2AP PB =,,得,即, 故中点为,由,得, 所以.当时,最大值为4.故. 类型3:参数范围型【例4】(2018全国卷Ⅲ节选)已知斜率为的直线与椭圆:交于,两点,线段的中点为(1,)M m .证明:.【答案】证明见解析. 【解析】设,,则,, 上述两式相减,则. 由题设知,,故,于是. 由得,故.【注意】解答题使用中点弦性质必须点差法证明. 类型4:几何转化型【例5】已知椭圆:的左右顶点分别为,,,点在上,在轴上的射影为的右焦点,且. (1)求椭圆的方程;(2)若,是上异于的不同两点,满足BN BM ⊥,直线,交于点,求证:在定直线上. 【答案】(1);(2)证明见解析. 【解析】(1),,,椭圆:.(2)如图,设),(11y x M ,直线,,的斜率,,.,.由BN BM ⊥,得. 所以,故设直线:,设直线:()241-=x k y ,则,则两直线的交点横坐标为. 故点在定直线上.【注意】解答题欲用中心弦性质,切记必须先证明.【例6】已知椭圆:内一点,过点的两条直线分别与椭圆交于,和,两点,且满足MC AM λ=,MD BM λ=(其中且),若变化时直线的斜率总是为,则椭圆的离心率为A .B .C .D .【答案】D【解析】如图,分别取,的中点为,,连接,.,MQ MD MC MB MA PM λλ-=+-=+-=∴)(21)(21,故,,三点共线,由于MC AM λ=,MD BM λ=得CD MC MD BA AM BM λλ=-==-)(,平行于, 由中点弦性质知:1222-=-=⋅e ab k k AB OP ,得,所以.故选D .【例7】已知椭圆:的焦距为,椭圆上任意一点到椭圆两个焦点的距离之和为. (1)求椭圆的方程;(2)设直线2:-=kx y l 与椭圆交于,两点,,且,求直线的方程. 【答案】(1);(2). 【解析】(1),,, 故椭圆的方程.(2)如图,设()11,y x A ,()22,y x B ,中点为),(00y x M .则,,又2110000-=-=-⋅kx y x y k 且, ,直线的方程为:.【注意】解答题欲用中点弦性质,切记必须先用点差法证明.寄语特别感谢周立政老师、邹书生老师、西瓜老师、兰琦老师以及本门弟子u ,范慕杺贡献集体智慧,在此深表感谢,致以崇高敬意.推动读者对该性质的深刻理解,望后来者继往开来,不忘初心,砥砺前行.综上所述,送君千里,终须一别.掌握圆锥曲线中心弦与中点弦性质,挥洒自如,需不断总结.只有与传统方法计算前后对比,方能珍惜其优越.若有不妥之处,敬请谅解,请批评指正.以下为研修经典巩固练习,望同学们且学且珍惜.往事如梦1.(2020年湖北高二期末)如图,已知椭圆,斜率为﹣1的直线与椭圆C 相交于A ,B 两点,平行四边形OAMB (O 为坐标原点)的对角线OM 的斜率为,则椭圆的离心率为A .B .C .D .【答案】B【解析】方法1:设直线方程为,设1122(,),(,)A x y B x y ,由得:22222222()20a b x a nx a n a b +-+-=,∴,,设,∴OAMB 是平行四边形,∴OM OA OB =+,∴1212,x x x y y y =+=+, ∴, ∴,∴. 故选B .方法2:(秒杀解)⎪⎩⎪⎨⎧<<-=-⇒-=-=⋅1031112222e e e a b k k OMAB ,得.故选B .【评析】方法1与方法2对比,繁简立分.2.(2019年重庆云阳江口中学高二月考)已知椭圆 ,点M ,N 为长轴的两个端点,若在椭圆上存在点H ,使 ,则离心率e 的取值范围为 A .B .C .D .【答案】A【解析】由题意00M a N a -(,),(,). 设 ,则222202()b y a x a=-.,可得:222211(0)(1)22c a e e a -=-∈-∴∈,,故选A .3.(2014浙江)设直线与双曲线22221(0,0)x y a b a b-=>>的两条渐近线分别交于点,,若点(,0)P m 满足,则该双曲线的离心率是______________. 【答案】【解析】方法1:联立直线方程与双曲线渐近线方程, 可解得交点为,,而,由||||PA PB =, 可得的中点与点连线的斜率为-3, 可得,所以.方法2:如图,由题意设中点为),(00y x Q ,),(11y x A ,),(22y x B .则,且, 得, 所以,故.4.(2019全国II21节选)已知点A (−2,0),B (2,0),动点M (x ,y )满足直线AM 与BM 的斜率之积为−.记M 的轨迹为曲线C .求C 的方程,并说明C 是什么曲线. 【答案】见解析.【解析】(1)由题设得,化简得,所以C 为中心在坐标原点,焦点在x 轴上的椭圆,不含左右顶点. 【注意】逆用中心弦性质求轨迹,切记恒等变形.5.(2017北京)已知椭圆的两个顶点分别为(2,0)A -,,焦点在轴上,离心率为.(1)求椭圆的方程;(2)点为轴上一点,过作轴的垂线交椭圆于不同的两点,,过作的垂线交于点.求证:BDE ∆与BDN ∆的面积之比为4:5.)0,(m P【答案】(1);(2)见解析.【解析】方法1:(1)设椭圆的方程为22221(0,0)x y a b a b+=>>.由题意得解得,所以2221b a c =-=. 所以椭圆的方程为.(2)设(,)M m n ,且,则(,0),(,)D m N m n -.直线的斜率,由AM DE ⊥,则1AM DE k k ⋅=-, 故直线的斜率,所以直线的方程为. 直线的方程为.联立,解得点的纵坐标222(4)4E n m y m n-=--+. 由点在椭圆上,得2244m n -=,所以. 又12||||||||25BDE E S BD y BD n =⋅=⋅△,1||||2BDN S BD n =⋅△, 所以BDE △与BDN △的面积之比为.方法2:(1)设椭圆的方程为22221(0,0)x y a b a b+=>>.由题意得解得,所以2221b a c =-=. 所以椭圆的方程为.(2)设(,)M m n ,且,则(,0),(,)D m N m n -.,得,由AM DE ⊥,则1AM DE k k ⋅=-,且, 故直线的斜率为,则,,,所以直线的方程为,直线的方程为)2(--=x k y . 联立,解得点的纵坐标,,. ,所以BDE △与BDN △的面积之比为.【注意】解答题欲用中心弦性质,切记必须先证明. 6.(2016上海高三)已知椭圆上两个不同的点、关于直线()102y mx m =+≠对称. (1)若已知,为椭圆上动点,证明:; (2)求实数的取值范围.【答案】(1)见解析;(2). 【解析】(1)设,则,得,于是MC ====, 因,所以当时,,即.(2)方法1:由题意知,可设直线的方程为.由消去,得222222102m bx x b m m+-+-=. 因为直线与椭圆有两个不同的交点, 所以,,即,∴ 由韦达定理得,()22122212b m x x m -=+,,所以,线段的中点将中点 代入直线方程,解得∴, 将∴代入∴得,化简得.解得或,因此,实数的取值范围是.方法2:设),(11y x A ,),(22y x B ,线段中点为. 得,则. 又,故,直线为. 得,由于在椭圆内. .实数的取值范围是.7.(2015新课标2)已知椭圆C :(),直线不过原点O 且不平行于坐标轴,l 与C 有两个交点A ,B ,线段AB 的中点为M .(1)证明:直线OM 的斜率与的斜率的乘积为定值;(2)若l 过点,延长线段OM 与C 交于点P ,四边形OAPB 能否为平行四边行?若能,求此时l 的斜率;若不能,说明理由. 【答案】(1)见解析;(2). 【解析】(1)设直线:l y kx b =+,,,. 将代入得, 故,299M M by kx b k =+=+. 于是直线的斜率,即.所以直线的斜率与的斜率的乘积为定值. (2)四边形OAPB 能为平行四边形. 因为直线过点,所以不过原点且与有两个交点的充要条件是,. 由(1)得的方程为. 设点的横坐标为. 由得,即.将点的坐标代入直线的方程得,因此2(3)3(9)M mk k x k -=+.四边形OAPB 为平行四边形当且仅当线段与线段互相平分,即. 于是.解得,. 因为0,3i i k k >≠,,,所以当的斜率为或时,四边形OAPB 为平行四边形.。
高考数学复习考点题型专题讲解 题型32 圆锥曲线中的中点弦(解析版)
高考数学复习考点题型专题讲解 题型:圆锥曲线中的中点弦【高考题型一】:圆、椭圆、双曲线的中点弦问题。
『解题策略』:注:方程:221mx ny +=,①当0,>n m 且n m ≠时,表示椭圆;②当0,>n m 且n m =时,表示圆;③当n m ,异号时,表示双曲线。
点差法:答题规范模板:步骤1:设直线与曲线 :设直线:l y kx t =+与曲线:221mx ny +=交于两点A 、B ,AB 中点为),(中中y x P ,则有,A B 既在直线上又在曲线上,设),(11y x A ,),(22y x B ;步骤2:代入点坐标:即1122y kx t y kx t =+⎧⎨=+⎩;22112222 1 (1)1 (2)mx ny mx ny ⎧+=⎪⎨+=⎪⎩;步骤3:作差得出结论:(1)-(2)得:..AB AB OP y mk k k x n =-=中中。
(作为公式记住,在小题中直接用。
)【题型1】:求值,利用结论求k 或斜率乘积定值。
1.(2013年新课标全国卷I10)已知椭圆2222:1(0)x y G a b a b+=>>的右焦点为()0,3F ,过点F 的直线交椭圆于B A ,两点,若AB 的中点坐标为()11-,,则E 的方程为 ( ) A.1364522=+y x B.1273622=+y x C.1182722=+y x D.191822=+y x【解析】:由结论可得:222111ab -=⨯-,得222b a =,3=c ,选D 。
2.(2010年新课标全国卷12)已知双曲线E 的中心为原点,()3,0F 是E 的焦点,过F的直线l 与E 相交于,A B 两点,且AB 的中点为()12,15N --,则E 的方程为 ( )A.22136x y -=B.22145x y -=C.22163x y -=D.22154x y -=【解析】:由结论可得:()()221231501215ab =----⨯--,得2245b a =,3=c ,选B 。
中学数学利用点差法处理圆锥曲线的“中点弦问题”
专题复习:利用点差法处理圆锥曲线的“中点弦问题”【知识要点】已知直线与圆锥曲线交于,A B 两点,点00(,)P x y 为弦AB 的中点,由点差法可得出以下公式:1. 椭圆:(1)焦点x 在轴上:22221x y a b += 2020AB x b k a y =-⋅(2)焦点y 在轴上:22221y x a b += 2020AB x a k b y =-⋅2. 双曲线:(1)焦点x 在轴上:22221x y a b -= 2020AB x b k a y =⋅(2)焦点y 在轴上:22221y x a b -= 2020AB x a k b y =⋅3. 抛物线: (1)焦点x 在轴上:2y mx = 02AB mk y =(2)焦点y 在轴上:2x my = 02AB m k x =【例题分析】类型1:已知曲线及弦的中点,求直线【例1】 已知直线l 与椭圆22164x y +=交于过点,A B 两点,若线段AB 的中点恰好为点(21)P ,, 则直线l 的方程为 .【实战演练】(2009新课标全国卷)已知抛物线C 的顶点在坐标原点,焦点为(1,0)F ,直线l 与抛物线C 相交于,A B 两点,若AB 的中点为(2,2),则直线l 的方程为 .类型2:已知直线及弦的中点,求曲线【例2】已知双曲线中心在原点且一个焦点为F 0),直线1y x =-与其相交于M 、N 两点,MN 中点的横坐标为23-,则此双曲线的方程为 .【实战演练1】(2014江西高考)过点(1,1)M 作斜率为12-的直线与椭圆22221(0)x y a b a b +=>>交于,A B 两点,若M 是的中点,则椭圆的离心率为 .【实战演练2】(2013新课标全国I 卷)已知椭圆E :22221(0)x y a b a b+=>>的右焦点为(3,0)F ,过点F 的直线交E 于,A B 两点,若AB 的中点为(1,1)-,则E 的方程为 . 类型3:已知曲线及直线,求弦的中点【例3】已知直线3y x =-+与抛物线22y x =交于,A B 两点,则AB 中点坐标为 . 【实战演练】(2013浙江高考)设F 为抛物线2:4C y x =的焦点,过点(1,0)P -的直线l 交抛物线于,A B 两点,点Q 为AB 的中点,若2FQ =,则直线l 的斜率为 .【题型强化训练】1.(1)若椭圆2212x y +=的弦被点)21,21(-平分,则这条弦所在直线方程为 . (2)若直线1y x =+与椭圆22142x y +=相交于,A B 两点,则AB 中点坐标为 . 2. 已知中心在原点,一焦点为)50,0(F 的椭圆被直线23:-=x y l 截得的弦的中点横坐标为21,则该椭圆的方程为 .3.已知直线3y x =-+与椭圆22221(0)x y a b a b+=>>交于,A B 两点,若AB 中点为(2,1),则该椭圆的离心率为 .4. 直线():50l ax y a --+=(a 是参数)与抛物线()2:1f y x =+的相交弦是AB ,则弦AB 的中点轨迹方程是 .5.已知抛物线2:4C y x =,直线l 与抛物线C 交于,A B 两点,若线段AB 的中点坐标为(2,2),则直线l 的方程为 .6. 已知直线l 与抛物线28y x =交于,A B 两点,点(2,2)M 为AB 中点,则AOB S ∆= .7.过抛物线22(0)y px p =>的焦点F ,且倾斜角为4π的直线与抛物线交于,A B 两点,若弦AB 的垂直平分线过点(0,2),则AOB ∆的面积AOB S ∆= .8. 已知椭圆13422=+y x 上总有不同的两点关于直线m x y +=4对称,则实数m 的取值范围为 .9.已知椭圆C: 22221x y a b+= (0a b >>)的右焦点为F(2,0),且过点). 直线l 过点F 且交椭圆C 于A 、B 两点.若线段AB 的垂直平分线与x 轴的交点为M(1,02),则直线l 的方程为 . 11.已知双曲线2222:1(0,0)x y T a b a b-=>>的右焦点为(2,0)F,且经过点(3R ,ABC ∆的三顶点都在双曲线T 上,O 为坐标原点,设ABC ∆三条边,,AB BC AC 的中点分别为,,M N P ,且三条边所在直线的斜率分别为123,,k k k ,若1OM ON OP k k k++=-,则123111k k k ++= . 12. 已知ABC ∆的三个顶点都在抛物线232y x =上,其中()2,8A ,且ABC ∆的重心G 是抛物线的焦点,求直线BC 的方程.13.过点()0,2的直线l 与中心在原点,焦点在x轴上且离心率为2的椭圆C 相交于A 、B 两点,直线12y x =过线段AB 的中点,同时椭圆C 上存在一点与右焦点关于直线l 对称. (1)求直线l 的方程; (2)求椭圆C 的方程.14.已知椭圆221259x y +=上三点()()11229,,4,,,5A x y B C x y ⎛⎫ ⎪⎝⎭与焦点()4,0F 的距离成等差数列.(1)求证:128x x +=;(2)若线段AC 的垂直平分线与x 轴交于点T ,求直线BT 的斜率k .15. 已知椭圆22221(0)x y a b a b+=>>的左右焦点分别为12,F F,离心率为2,短轴长为2。
圆锥曲线中点弦公式
圆锥曲线是一个平面上的曲线,其中的点到给定点(焦点)和给定直线(直角直径)的距离的比例是常数。
圆、椭圆、抛物线和双曲线都是圆锥曲线的特例。
中点弦公式是圆锥曲线上任意两点的弦的中点的坐标表示。
具体来说,对于圆锥曲线上两点P1(x1,y1)和P2(x2,y2),它们的中点M的坐标可以通过以下公式计算:
M(x1+x2
2
,
y1+y2
2
)
这个公式的推导基于平面几何中的中点公式,即两点连线的中点坐标等于这两点坐标的平均值。
对于圆锥曲线的特定情况,比如圆,这个中点弦公式同样适用。
在圆的情况下,给定两点P1和P2在圆上,它们的弦的中点M的坐标同样由上述公式给出。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考数学专题复习之圆锥曲线的中点弦问题
直线与圆锥曲线相交所得弦中点问题,是解析几何中的重要内容之一,也是高考的一个热点问题。
这类问题一般有以下三种类型:
(1)求中点弦所在直线方程问题;
(2)求弦中点的轨迹方程问题;
(3)求弦中点的坐标问题。
其解法有代点相减法、设而不求法、参数法、待定系数法及中心对称变换法等。
一、求中点弦所在直线方程问题
例1 过椭圆14
162
2=+y x 内一点M (2,1)引一条弦,使弦被点M 平分,求这条弦所在的直线方程。
解法一:设所求直线方程为y-1=k(x-2),代入椭圆方程并整理得:
016)12(4)2(8)14(2222=--+--+k x k k x k
又设直线与椭圆的交点为A(11,y x ),B (22,y x ),则21,x x 是方程的两个根,于是
1
4)2(82221+-=+k k k x x , 又M 为AB 的中点,所以21
4)2(422221=+-=+k k k x x , 解得2
1-=k , 故所求直线方程为042=-+y x 。
解法二:设直线与椭圆的交点为A(11,y x ),B (22,y x ),M (2,1)为AB 的中点, 所以421=+x x ,221=+y y ,
又A 、B 两点在椭圆上,则1642121=+y x ,1642
222=+y x ,
两式相减得0)(4)(22212221=-+-y y x x , 所以21)(421212121-=++-=--y y x x x x y y ,即2
1-=AB k , 故所求直线方程为042=-+y x 。
解法三:设所求直线与椭圆的一个交点为A(y x ,),由于中点为M (2,1), 则另一个交点为B(4-y x -2,),
因为A 、B 两点在椭圆上,所以有⎩⎨⎧=-+-=+16
)2(4)4(1642222y x y x , 两式相减得042=-+y x ,
由于过A 、B 的直线只有一条,
故所求直线方程为042=-+y x 。
二、求弦中点的轨迹方程问题
例2 过椭圆136
642
2=+y x 上一点P (-8,0)作直线交椭圆于Q 点,求PQ 中点的轨迹方程。
解法一:设弦PQ 中点M (y x ,),弦端点P (11,y x ),Q (22,y x ),
则有⎩⎨⎧=+=+576
16957616922222121y x y x ,两式相减得0)(16)(922212221=-+-y y x x , 又因为x x x 221=+,y y y 221=+,所以0)(216)(292121=-⋅+-⋅y y y x x x , 所以y x x x y y 1692121=--,而)
8(0---=x y k PQ ,故8169+=x y y x 。
化简可得01672922=++y x x (8-≠x )。
解法二:设弦中点M (y x ,),Q (11,y x ),由281-=x x ,2
1y y =可得821+=x x ,y y 21=,
又因为Q 在椭圆上,所以136642
121=+y x ,即136464)4(42
2=++y x , 所以PQ 中点M 的轨迹方程为19
16)4(2
2=++y x (8-≠x )。
三、弦中点的坐标问题
例3 求直线1-=x y 被抛物线x y 42
=截得线段的中点坐标。
解:解法一:设直线1-=x y 与抛物线x y 42=交于),(11y x A , ),(22y x B ,其中点),(00y x P ,由题意得⎩
⎨⎧=-=x y x y 412, 消去y 得x x 4)1(2=-,即0162=+-x x , 所以32
210=+=x x x ,2100=-=x y ,即中点坐标为)2,3(。
解法二:设直线1-=x y 与抛物线x y 42=交于),(11y x A , ),(22y x B ,其中点
),(00y x P ,由题意得⎩⎨⎧==2
2212144x y x y ,两式相减得)(4122122x x y y -=-, 所以4))((1
21212=-+-x x y y y y ,
所以421=+y y ,即20=y ,3100=+=y x ,即中点坐标为)2,3(。
上面我们给出了解决直线与圆锥曲线相交所得弦中点问题的一些基本解法。
下面我们看一个结论
引理 设A 、B 是二次曲线C :
022=++++F Ey Dx Cy Ax 上的两点,P ),(00y x 为弦AB 的中点,则
)02(22000≠+++-=E Cy E Cy D Ax k AB 。
设A ),(11y x 、B ),(22y x 则0112121=++++F Ey Dx Cy Ax (1)
0222222=++++F Ey Dx Cy Ax (2)
)2()1(-得0)()())(())((212121212121=-+-+-++-+y y E x x D y y y y C x x x x A ∴0)()()(2)(22121210210=-+-+-+-y y E x x D y y Cy x x Ax
∴0))(2())(2(210210=-++-+y y E Cy x x D Ax
∵020≠+E Cy ∴21x x ≠ ∴E Cy D Ax x x y y ++-=--00212122即
E Cy D Ax k AB ++-=0022。
(说明:当B A −→−时,上面的结论就是过二次曲线C 上的点P ),(00y x 的切线斜率公式,即E Cy D Ax k ++-
=0022)
推论1 设圆022=++++F Ey Dx y x 的弦AB 的中点为P ),(00y x ()00≠y ,则
E y D x k AB ++-
=0022。
(假设点P 在圆上时,则过点P 的切线斜率为)
推论 2 设椭圆122
22=+b y a x 的弦AB 的中点为P ),(00y x ()00≠y ,则
0022y x a b k AB •-=。
(注:对a≤b 也成立。
假设点P 在椭圆上,则过点P 的切线斜率为0022y x a b k •-=)
推论3 设双曲线122
22=-b y a x 的弦AB 的中点为P ),(00y x ()00≠y 则
0022y x a b k AB •=。
(假设点P 在双曲线上,则过P 点的切线斜率为
0022y x a b k •=) 推论4 设抛物线px y 22=的弦AB 的中点为P ),(00y x ()00≠y 则0y p
k AB =。
(假
设点P 在抛物线上,则过点P 的切线斜率为
)0y p k =
我们可以直接应用上面这些结论解决有关问题,下面举例说明。
E y D x k ++-=0022
例1、求椭圆1162522=+y x 斜率为3的弦的中点轨迹方程。
解:设P (x ,y )是所求轨迹上的任一点,则有
y x •-=25163,故所示的轨迹方程为16x+75y=0
)2417524175(<<-x 例2、已知椭圆),0(122
22>>=+b a b y a x A 、B 是椭圆上两点,线段AB 的垂直平分线l
与x 轴相交于P )0,(0x ,求证:
a b a x a b a 2
2022-<<--。
证明:设AB 的中点为T ),(11y x ,由题设可知AB 与x 轴不垂直,∴01≠y ,
∴
1122y x a b k AB •-= ∵l ⊥AB ∴1122x y b a k l •= ∴l 的方程为:)(111221x x x y b a y y -•=- 令y=0 得)(01011221x x x y b a y -•=-
∴02221x b a a x •-= ∵a x <||1 ∴a x b a a <•-||0222
∴
a b a x a b a 2
2022-<<-- 例3、已知抛物线C :x y =2
,直线 ,1)1(:+-=x k y l 要使抛物线C 上存
在关于l 对称的两点,k 的取值范围是什么?
解:设C 上两点A 、B 两点关于l 对称,AB 的
中点为P ),(00y x ()00≠y
∴
k y y p k AB 121
00-=== ∴k y 210-=∵P ∈l ∴,1)1(00+-=x k y ∴,1)1(210+-=-x k k ∴
k x 1210-= ∴)21,121(k k P -- ∵P 在抛物线内 ,∴k k 121412-< ∴,04423<+-k k k
∴,04)22)(2(2<+-+k k k k ∴.02<<-k。