锅炉APC先进过程优化控制解决方案

合集下载

先进控制系统(APC)开发及应用方案(二)

先进控制系统(APC)开发及应用方案(二)

先进控制系统(APC)开发及应用方案一、实施背景随着中国经济的快速发展,产业结构改革已成为推动经济持续增长的重要手段。

在此背景下,开发和应用先进控制系统(APC)具有至关重要的意义。

APC作为新一代信息技术的重要组成部分,对于提高企业生产效率、降低能耗、提升产品质量有着不可或缺的作用。

二、工作原理APC系统主要基于实时数据库进行数据采集、存储、分析和优化,通过数学模型和算法实现闭环控制。

其核心组件包括:1.数据采集与存储:通过现场传感器和数据采集设备,实时获取和处理生产过程中的各种数据。

2.数据分析与优化:利用先进的数据分析和机器学习算法,对采集到的数据进行处理,提取有价值的信息,为优化控制提供支持。

3.控制策略:根据分析结果,制定相应的控制策略,实现对生产过程的精确控制。

4.反馈与调整:通过对比预设的控制目标与实际生产数据,不断调整控制策略,以实现最佳生产效果。

三、实施计划步骤1.需求分析:明确APC系统的需求,包括需要控制的生产环节、需要采集的数据类型、需要优化的生产目标等。

2.系统设计:根据需求分析结果,设计APC系统的架构、功能模块和算法。

3.系统开发:依据设计文档,开发APC系统。

4.系统测试:在开发完成后,对APC系统进行全面的测试,确保其稳定性和性能。

5.系统部署:将APC系统部署到实际生产环境中,进行现场调试和优化。

6.系统维护与升级:对APC系统进行持续的维护和升级,以满足不断变化的业务需求。

四、适用范围APC系统适用于各种需要进行精细化生产控制的行业,如石油化工、制药、钢铁制造等。

在这些行业中,APC可以帮助企业实现生产过程的自动化、智能化和信息化,从而提高生产效率、降低能耗并提升产品质量。

五、创新要点1.实时数据采集与处理:APC系统采用高性能的实时数据库,能够实现数据的实时采集和高效处理。

2.基于机器学习的优化算法:通过机器学习算法对生产数据进行深度分析,找出最佳的控制策略,实现生产过程的智能化控制。

锅炉燃烧过程的优化与控制

锅炉燃烧过程的优化与控制

锅炉燃烧过程的优化与控制随着各种能源的需求不断增长,燃煤锅炉已成为很多地区的主要供暖设备。

但是,煤炭燃烧过程中会产生大量的废气和污染物,给环境和人类带来严重的危害。

因此,锅炉燃烧过程的优化与控制显得尤为重要。

一、优化锅炉燃烧过程的目的优化锅炉燃烧过程的目的是,通过调整锅炉的运行参数,使锅炉的燃烧过程更加完善,达到以下几个目标:1. 提高热效率,降低能源消耗优化锅炉燃烧过程,可以使得燃烧效率达到最大值,从而提高热效率,降低燃料消耗。

比如,控制燃烧温度和氧气含量,使其保持在适宜范围内,可以使煤的燃烧充分,大大提高热效率。

2. 改善排放水平,减少污染物排放优化锅炉燃烧过程还可以改善排放水平,减少污染物排放。

比如,控制炉内的温度和氧气含量,可以使得污染物的生成量降低,达到减排的效果。

3. 提高运行稳定性,降低维护成本通过优化锅炉燃烧过程,可以提高锅炉的运行稳定性,减少事故和维护成本。

比如,控制燃烧温度和氧气含量,可以避免火焰失稳和高温腐蚀等问题,延长锅炉寿命。

二、锅炉燃烧过程的优化方法1. 调整燃烧温度在锅炉的燃烧过程中,燃烧温度的高低对煤的燃烧效率、污染物的生成和排放等方面都有着很大的影响。

因此,合理调整燃烧温度是优化锅炉燃烧过程的重要手段。

一般来说,燃煤锅炉要求燃烧温度在850℃以上,但是也不能超过1200℃,过高的温度会使煤的表面氧化速度过快,导致煤的燃烧效率下降,同时也会增加污染物的生成量。

因此,控制燃烧温度在850℃~1100℃之间是比较合适的。

2. 调整氧气含量氧气是支持燃烧的气体之一,但是过多或者过少的氧气都会对锅炉燃烧过程产生不良的影响。

因此,调整氧气含量也是优化锅炉燃烧过程的一个重要方法。

一般来说,燃煤锅炉要求炉内氧气含量在3%~7%之间,如果氧气含量过高,煤的燃烧效率会下降,同时也会增加氮氧化物和一氧化碳等污染物的生成量;如果氧气含量过低,则会导致火焰失稳和不完全燃烧等问题。

3. 优化喷嘴结构喷嘴是锅炉燃烧过程中的一个重要组成部分,优化喷嘴结构可以改善燃烧效率和排放水平。

和利时锅炉优化与母管协调控制解决方案(20200218))_87

和利时锅炉优化与母管协调控制解决方案(20200218))_87

和利时锅炉优化与母管协调解决方案简介热电行业部——钱华2020年02月内容摘要1、锅炉优化与母管协调控制功能介绍目录2、锅炉优化与母管协调控制关键技术3、锅炉优化与母管协调控制典型应用4、锅炉优化与母管协调控制效益指标热电企业的现状和困扰DCS系统自动投入率低,运行人员劳动强度大,运行参数控制不稳定。

锅炉是否运行在高效率区域无法在线量化,只能凭司炉经验和感觉。

母管制机组多炉多机之间耦合复杂,容易出现“抢负荷”现象。

外界负荷变化时,特别是煤值变化,无法精准调节,导致工艺参数波动大。

环保排放指标控制不及时,容易导致排放超标被考核和利时凭借20多年实施电力项目的经验,在资深电力行业专家的技术指导下,针对母管制机组的工艺特殊性,将专家策略、人工智能、大数据技术与APC建模有机的结合起来,研发出具有和利时特色的HOLLiAS APC软件,有效的解决热电联产生产企业面临的困扰,解决锅炉燃烧优化与母管制多炉多机负荷分配和协调控制的问题,目前已成功应用上百套业绩。

和利时针对母管制机组的解决方案1、如何提高自动回路投入率,减低操作员劳动强度?2、如何让重要参数控制更加稳定,甚至压红线运行?3、如何实现锅炉从最低负荷到满负荷的全自动运行?4、如何提高锅炉效率,达到节能减排的目的?5、如何提高锅炉寿命,减少误操作?1、如何实现锅炉风水煤及机组协调全自动运行?2、如何实现多炉同时全自动,克服“跷跷板”现象?3、如何快速消除锅炉产汽与外界用汽的不平衡?4、如何实现外界负荷突变时所有锅炉免干预自动运行?5、如何优化、协调、分配锅炉负荷,降低机组热耗?HOLLiAS APC母管协调控制燃烧优化控制和利时燃烧优化与母管协调发明专利和利时HOLLiAS APC鉴定报告与验收报告和利时HOLLiAS APC在电力行业应用范围循环流化床锅炉优化控制解决方案 直吹式煤粉锅炉优化控制解决方案 中储式煤粉锅炉优化控制解决方案 燃气锅炉优化控制解决方案垃圾焚烧发电优化控制解决方案 蒸汽链条炉优化控制解决方案热水链条炉优化控制解决方案 生物质发电优化控制解决方案水泥余热发电优化控制解决方案烧结余热发电优化控制解决方案脱硝环保排放优化控制解决方案脱硫环保排放优化控制解决方案汽轮机发电机组优化控制解决方案 多炉多机智能母管协调控制解决方案和利时HOLLiAS APC 系统网络架构操作员站工程师站控制站……APC 系统标准通讯接口(OPC )通讯站优化控制站HOLLiAS-APCDCS 系统优化通讯方式比较•原DCS系统软硬件为和利时自有系统:无缝连接,用和利时DCS的内部协议直接进行数据交换,最简单,实时性和安全性最高。

先进过程控制(APC)

先进过程控制(APC)

先进过程控制(APC)随着我国经济体制的转变,国内的众多石化企业日益感受到国际间竞争所带来的活力和挑战。

因此,积极开发和应用先进控制和实时优化,提高企业经济效益,进而增强自身的竞争力是过程工业迎接挑战重要对策。

先进过程控制是对那些不同于常规单回路控制,并具有比常规PID控制更好的控制效果的控制策略的统称,而非专指某种计算机控制算法。

由于先进控制的内涵丰富,同时带有较强的时代特征。

因此,至今对先进控制还没有严格的、统一的含义。

尽管如此,先进控制的任务都是明确的,即用来处理那些采用常规控制效果不好,甚至无法控制的复杂工业过程控制的问题。

先进控制应用得当可带来显著的经济效益。

在石化工业中,一个先进控制项目的年经济效益在百万元以上,其投资回收期一般在一年以内。

丰厚的回报而引入注目。

通过实施先进控制,可以改善过程动态控制的性能,减少过程变量的波动幅度,使之能更接近其优化目标值,从而将生产装置推至更接近其约束边界条件下运行,最终达到增强装置运行的稳定性和安全性、保证产品质量的均匀性、提高目标产品收率、增加装置处理量、降低运行成本、减少环境污染等目的。

从60年代初现代控制理论迅速发展以来,出现了一系列的优化控制和多变量控制算法,以及更晚些时候出现的自适应控制算法和鲁捧控制算法等,这些都属于先进控制。

人们曾经希望开创一户现代控制理论应用的新时代,但自70年代以来,理论成果虽多,在过程控制的应用却不理想,原因有两个方面:(1)模型问题。

像高斯干扰下的线性二次型控制(LQG)等现代控制理论的杰作都是基于模型的算法。

尽管建模技术已有很大发展,白色、黑色、灰色的方法都有,但精确可靠的动态数学模型依然难得。

对象往往具有不确定性,使精确建模无法做到。

(2)认识问题。

一个装置的控制,有各种可供选择的策略和算法,如果你的算法能得到合格的结果,那还要问一问,你的算法是否比其他算法更好?同时,控制效果即使提高,是否能产生实际效益?这样一比,许多新算法的优越性都不见了。

聚乙烯装置APC先进控制系统优化应用

聚乙烯装置APC先进控制系统优化应用

聚乙烯装置APC先进控制系统优化应用摘要:在各类聚乙烯装置中,UNIPOL气相法已经在全世界得到广泛应用,并取得业界一致认可。

UNIPOL工艺流程复杂,生产装置反应速度较快,物料易燃易爆,要求对过程变量进行高精度的控制,反应器排料系统顺序控制复杂,反应器杀死系统的逻辑控制要求可靠性较高,因此聚乙烯装置需要高水平的控制系统来保证装置的安全生产和优良运行。

如今先进控制系统(APC)在聚乙烯装置中的应用与优化已成为化工企业研究的重点。

关键词:聚乙烯;先进控制系统;优化1 引言先进控制系统也称为先进过程控制(Advanced Process Control),简称APC,一般包括模型预测控制(MPC)、统计质量控制(SQC)、内模控制(IMC)、自适控制、专家控制、神经控制器、模糊控制、最优控制、非线性控制、鲁棒控制等。

就目前来讲,应用比较广泛并且取得了良好效果的是模型预测控制,所以在现阶段人们讨论APC时,很多时候实际上是指MPC。

APC相对于经典PID控制具有以下优势:首先,APC与经典PID控制器的最大区别是不再只是单个变量的控制,而是对被控对象的整体进行多个变量的控制,这样就消除了多个回路之间的相互影响。

其次,APC相较于经典PID控制器具有预测功能。

可以根据目前多个回路的工况进行分析,从而对控制器内每一个回路的未来进行预测,根据预测的结果对回路进行调节,进而可以让控制效果最大可能的得到优化。

三是,APC相较于经典PID控制器具有更强的适应能力和更好的鲁棒性。

适合于处理过程的大滞后、强耦合特性,并能有效地解决过程可测干扰。

还有就是相较于经典PID控制器,APC策略采用多变量优化算法,适合处理多层次、多目标和多约束控制问题,能够更方便地让生产过程控制反应生产过程的经济指标。

2 聚乙烯装置简介2.1 聚乙烯装置流程本文所涉及到的聚乙烯装置采用美国UNIVATION公司UNIPOL PE气相法技术,以乙烯为原料,以丁烯-1或己烯-1作为共聚单体,在一定温度和压力下进行聚合反应,生产聚乙烯产品。

先进控制技术在CFB锅炉燃烧优化上的应用及效果

先进控制技术在CFB锅炉燃烧优化上的应用及效果

杨 志 刚 ( 中石化 股份 有 限公 司天津 分公 司热 电部 , 天津 3 0 0 2 7 0 )
摘 要
介 绍 了先 进 控 制 技 术 ( AP C) 的算法 、 技 术 特 点 及 其 在 OV A T I ON 控 制 系统 中 的 实 现 方 法 , 分 析 了 OP C技 术 在 跨 系 统 中的 功 能 特 点 和 设 置 方 法 , 并 阐 述 了 AP C在 C F B锅 炉 燃 烧 控 制 系统 和 辅助 控 制 系统 中的 应 用 效 果 。
《 工业 控 制 计 算 机 } 2 0 1 3年 第 2 6卷第 1 O期

先进控制技术在 C F B锅炉燃烧优化上的应用及效果
Ad v a n c e d Co n t r ol T e c h n o l o g y i n CF B B o i l e r Co mb u s t i o n Op t i mi z a t i o n
s ys t e m.
Ke y wor ds : CF B, b oi l er , a d va nc ed co n t r ol , c ombus t i on op t i mi z a t i on , ap pl i ca t i on
某 厂热 电部二电站有 3台 4 6 5 t / h 的 循 环 流 化 床 锅 炉
t r ol s ys t em ar e i n t r o duc ed, a nd t h e f un c t i on al c h ar ac t er i s t i cs a nd s e t t i ng me t h od o f OPC t e ch n ol og y i n t h e s y s t e m a r e an a— l y z ed. F i n al l y i t i s de s cr i be d a ppl i c at i o n e fe c t i n t h e AP C c o m bu s t i on o f CF B bo i l er c on t r o l s y s t em a nd t h e a ux i l i a r y c on t r o l

和利时母管制机组APC优化方案及其应用

和利时母管制机组APC优化方案及其应用

和利时母管制机组APC优化方案及其应用刘德成;李福军;赵立军【摘要】针对母管制机组一直存在的蒸汽母管压力难以稳定控制的问题,本文提出了一种基于和利时DCS控制系统的APC协调控制方案。

该方案可以解耦影响锅炉燃烧的主要因素,优化分配锅炉负荷,快速平衡锅炉产汽与外界用汽之间的能量差,达到稳定蒸汽母管压力的目的。

现场的实际应用证明了该方案的可行性。

%Aiming at unstable steam pressure of header system unit, an APC coordinated control scheme is proposed on the basis of the Hollysys control system in this paper. In order to stabilize header steam pressure, this scheme is able to decouple the main factors affecting the boiler combustion, optimize distribution of the load, and balance steamy energy difference between production and use. Feasibility of the scheme is proved by the practical application.【期刊名称】《自动化博览》【年(卷),期】2014(000)003【总页数】3页(P68-70)【关键词】母管制;优化分配;APC;效益;节能减排【作者】刘德成;李福军;赵立军【作者单位】杭州和利时自动化有限公司,北京100176;杭州和利时自动化有限公司,北京100176;杭州和利时自动化有限公司,北京100176【正文语种】中文【中图分类】TP273相比单元机组,母管制机组除了锅炉自身燃烧工况变化引起的各种扰动外,还存在着锅炉之间的相互扰动。

先进过程控制(APC)

先进过程控制(APC)
但是,预测控制中的优化与通常的离散最优控制算法有很大的差别。这主要表现在预测控制中的优化不是采用一个不变的全局优化目标,而是采用滚动式的有限时段的优化策略。在每一采样时刻,优化性能指标只涉及到从该时刻到末来有限的时间,而到下一采样时刻,这一优化时段同时向前推移。因此,预测控制在每一时刻有一个相对于该时刻的优化性能指标。不同时刻优化性能指标的相对形式是相同的,但其绝对形式,即所包含的时间区域,则是不同的。因此,在预测控制中,优化不是一次离线进行,而是反复在线进行的,这就是滚动优化的含义,也是预测控制区别于传统最优控制的根本点。这种有限时段优化目标的局限性是其在理想情况下只能得到全局的次优解,但优化的滚动实施却能顾及由于模型失配、时变、干扰等引起的不确定性,及时进行弥补,始终把新的优化建立在实际的基础上,使控制保持实际上的最优。对于实际的复杂工业过程来说,模型失配、时变、干扰等引起的不确定性是不可避免的,因此建立在有限时段上的滚动优化策略反而更加有效。
3、反馈校正
预测控制算法在进行滚动优化时,优化的基点应与系统实际一致。但作为基础的预测模型,只是对象动态特性的粗略描述,由于实际系统中存在的非线性、时变、模型失配、干扰等因素,基于不变模型的预测不可能和实际情况完全相符,这就需用要用附加的预测手段补充模型预测的不足,或者对基础模型进行在线修正。滚动优化只有建立在反馈校正的基础上,才能体现出其优越性。因此,预测控制算法在通过优化确定了一系列末来的控制作用后,为了防止模型失配或环境干扰引起控制对理想状态的偏离,并不是把这些控制作用逐一全部实施,而只是实现本时刻的控制作用。到下一采样时刻,则首先检测对象的实际输出,并利用这一实时信息对基于模型的预测进行修正,然后再进行新的优化。
二、自整定控制
自整定控制能适应过程特性,整定出较理想的PID参数值,保证工艺参数的自调精确度。目前已商品化的自整定控制器主要采用临界振荡法,其自整定工作过程是这样的:当控制器设置AT(自整定)为ON时,控制器启动自整定,Bang-Bang控制开始起作用,使被控对象输出产生类似正弦波的等幅振荡,并且振荡幅度控制在设定值上下波动允许范围内;从所得到的振荡曲线中计算出临界振荡周期Tc和临界增益Kc,再用ziegler-Nichols分式求出一组较佳的PID参数,然后把这组参数值送至PID算法块;当控制的设置AT为OFF时,自整定结束,控制器投入正常调节运行。目前,自整定控制器已在石化过程控制中得到普通应用。

和利时优化控制方案2--HOLLiAS APC优化控制系统

和利时优化控制方案2--HOLLiAS APC优化控制系统

【HOLLiAS APC优化控制系统】和利时公司专注于工业控制已超过20年,公司研发与工程团队在先进控制及优化领域有着深厚的技术积累与丰富的现场经验,基于多年对工业控制先进技术的掌握,可以发现和分析生产工艺过程中出现的控制问题,从而有针对性地提供专业的先进控制与优化解决方案。

我们与用户操作人员及过程工程师共同协作,利用和利时公司自主研发的HOLLiAS APC优化控制系统,可以有效解决复杂流程工业关键环节控制难题,简化复杂控制过程的工程调试和运行维护工作,实现生产企业长期“安全、稳定、连续、自动、优化”运行,达到“改进生产、节能增效”之目的。

【经济效益】HOLLiAS APC优化控制系统能在以下方面为生产企业创造可观的经济效益: 提高产量和高价值产品收率;最大化过程质量;增加利润空间;提高安全和环保操作;减少设备损耗;降低能耗;减轻运行操作劳动强度;提高运行效率等。

【技术特点】采用多变量预测控制技术、智能优化控制技术与专家经验相结合;对过程输入和输出扰动进行估算;利用辅助的过程变量增强不可测量的前馈扰动估算;友好的模型处理界面;根据过程条件对模型和参数进行在线调整;操作员/工程师界面客户端支持程序;采用先进的模型辨识技术;离线控制器设计分析工具;模型测试仿真模拟器。

【应用领域】HOLLiAS APC优化控制系统适用于电力、化工、石化、炼油、造纸、冶金、建材、食品、医药、新能源等行业具有滞后大、动态响应慢、非线性严重、控制回路关联性强、操作难度大等特点的复杂工艺过程。

【应用案例】1.化工行业优化HOLLiAS APC优化控制系统已在化工行业获得了突破性的成功应用。

典型应用案例:化工精馏塔优化控制应用效果:综合考虑进料量、采出量、回流量、加热量等对温度、压力、液位、纯度等的相互影响;同时兼顾温度、压力、液位、纯度等控制指标,实时预测、优化调整;有效克服进料流量、温度、组分波动造成的干扰;塔顶产品纯度稳定提高;塔顶温度平稳变化,塔顶压力保持稳定;塔釜温度保持稳定,塔釜液位保持稳定;2.电力行业优化HOLLiAS APC优化控制系统广泛应用于国内电力行业各种单元制发电机组、母管制供热及热电联产机组方面众多应用项目。

锅炉APC先进过程优化控制解决方案

锅炉APC先进过程优化控制解决方案

专业服务,创造价值循环流化床锅炉APC先进过程优化控制解决方案2013-11-131 公司简介集团(中控)始创于是中国领先的自动化与信息化技术、产品、解决方案供应商,业务涉及工厂自动化、公用工程信息化、装备自动化等领域。

公司是中控科技集团的核心成员企业,致力于工厂自动化领域的现场总线与控制系统以及流程模拟仿真系统的研究开发、生产制造、市场营销及工程服务。

2 行业背景2.1 行业现状循环流化床(CFB)燃烧技术是最近几十年发展起来的一种新型燃烧技术,由于循环流化床锅炉具有燃料适应性广、燃烧效率高、高效脱硫的特点,因此近年来有了很大的发展,我国的循环流化床也经历了小型、中型、大型三个发展阶段,循环流化床能够解决我国燃烧锅炉存在包括环境问题在内的诸多现实问题,因此中国将成为循环流化床锅炉最大的商业市场。

2.2 行业难点由于循环流化床锅炉燃料是在流化状态下燃烧,锅炉燃烧系统惯性大,各个变量之间相互影响,加上有飞灰循环等影响因素,因此CFB锅炉燃烧系统是一个大滞后、强耦合,多干扰的复杂非线性系统,自动燃烧优化控制难度较大,是业内公认的控制难点。

鉴于循环流化床锅炉燃烧的复杂性和特殊性,对一般煤粉锅炉和其他过程控制对象行之有效的常规控制方法,已难保证循环流化床锅炉各项控制指标的实现。

有别于常规控制,中控锅炉APC先进控制解决方案采用多变量模型预测控制、专家规则控制等智能控制策略,能够更好地结合专家经验的同时克服系统大滞后、强耦合、多干扰等控制难点,可以较好地实现CFB锅炉系统安全高效率的燃烧自动控制,各项指标稳定度大幅提升,经济效益比较可观。

3 项目可行性分析3.1 现场概述贵公司炉机系统属中小型循环流化床多炉多机系统,实行母管制运行方式。

一次检测仪表性能良好,风机调节为挡板和变频控制,主汽温度挡板调节,除挡板调节死区稍大外,其余执行器调节死区小于1%,即执行器死区情况基本满足优化控制需求。

流化床控制系统采用中控DCS系统,DCS上配置传统的PID自动控制回路中,汽包水位控制回路、给煤控制、一次风控制、二次风控制、引风控制、减温水控制等大部分回路,现场均由操作人员手动操作。

循环流化床锅炉APC优化控制的研究与应用

循环流化床锅炉APC优化控制的研究与应用

循环流化床锅炉APC优化控制的研究与应用摘要:目前,循环流化床燃烧控制技术已经成为了一种相对完善并且得到实用的燃烧技术。

但国内现阶段使用中的循环流化床锅炉,其自动化程度相对较低。

通过APC(Advanced Process Control先进过程控制)锅炉燃烧优化自动控制的系统,对锅炉燃烧过程中的煤量和风量进行优化,有效地解决CFB(循环流化床锅炉)燃烧系统问题,实现锅炉的全自动免干预运行(50%--100%负荷),保证运行参数压红线运行,实现降低劳动强度、减员增效,最主要的是可以提高锅炉的经济效益1.0%以上,实现节能减排。

1引言齐鲁石化热电厂二化动力站#1锅炉是240t/h CFB锅炉,DCS 系统采用霍尼韦尔的DCS系统,优化前存在以下问题:(1)、一部分控制回路处于手动控制,运行人员劳动强度大,工艺参数控制不稳定;(2)、运行人员操作技能不同,锅炉的调整方式不同,特别是在夜间,操作频次减少,参数控制精度较差,锅炉效率得不到保证(3)、给水母管采用母管制给水方式,变负荷时母管压力调节不及时,存在抢水的问题;(4)、化工装置负荷波动时母管压力产生波动,锅炉负荷亦随着波动;(5)、无法保证最优的风煤配比以及最佳一二次风配比,煤种发生变化引起配风失调导致锅炉效率不高。

为响应国家节能减排号召,解决燃烧系统自动控制存在的问题,2020年由烟台锐控自动化控制工程公司采用外挂APC的方式对#1锅炉的相关自动控制回路进行调试与优化,降低单位蒸汽量的燃煤、厂用电耗的形成,实现节能目标。

2先进控制方案2.1系统架构APC控制系统与原DCS系统采用通讯外挂的方式来实现信号通讯。

除了接口程序外(改动量很小),原DCS系统组态不做任何修改,以保证原DCS系统的完整性与安全性。

APC控制系统所有需要的信号全部来自DCS系统,不需要再增加任何现场仪表。

为了提高通讯的实时性和优化控制系统的可靠性,通讯服务器与优化控制服务器为同一台服务器。

apc先进控制应用场景

apc先进控制应用场景

apc先进控制应用场景APC(先进过程控制)是一种应用于工业生产过程中的先进控制技术,它能够实时地监测和调整生产过程的各项参数,以提高生产效率、降低能耗和减少产品质量变异。

APC技术的应用场景非常广泛,下面将从工业生产的不同领域来介绍几个典型的APC应用场景。

在石油化工行业,APC技术被广泛应用于炼油、化工和石化生产过程中。

例如,在炼油厂中,通过对生产过程中的温度、压力、流量等参数进行实时监测和调整,APC系统能够自动控制反应器的温度和压力,以提高产品的质量和产量,并减少能耗。

在化工生产中,APC系统可以优化反应过程的控制策略,使得产品的纯度和收率达到最佳状态。

在石化生产中,APC系统可以控制裂解炉的温度和反应物料比例,以提高乙烯和丙烯的产量。

在电力行业,APC技术被应用于发电厂的燃煤锅炉控制。

燃煤锅炉的燃烧控制涉及到燃料供给、空气供给、炉内温度分布等多个参数的调节。

通过使用APC系统,可以实时地监测和调整这些参数,以实现燃烧的稳定和高效。

同时,APC系统还可以根据不同负荷的需求,自动调整锅炉的运行模式,以提高燃煤锅炉的运行效率和降低污染物的排放。

在制药行业,APC技术可以应用于药物生产过程的控制。

药物生产过程中,温度、压力、pH值等参数的控制对于药物的质量和收率至关重要。

通过使用APC系统,可以实时地监测和调整这些参数,以控制反应的进程和产物的质量。

同时,APC系统还可以根据生产需求,自动调整反应的工艺参数,以提高药物生产的效率和稳定性。

在钢铁行业,APC技术可以应用于高炉和转炉的控制。

高炉和转炉是钢铁生产过程中的关键设备,其燃烧过程和冶炼过程对于钢铁的质量和产量有着重要影响。

通过使用APC系统,可以实时地监测和调整高炉和转炉的温度、氧气含量、燃料供给等参数,以控制燃烧的稳定和冶炼的效果。

同时,APC系统还可以根据不同的钢种和规格要求,自动调整冶炼的工艺参数,以提高钢铁的质量和生产效率。

除了以上几个典型的应用场景,APC技术还可以应用于化肥生产、食品加工、纸浆造纸等多个领域。

APC先进控制

APC先进控制

先进过程控制对于氧化铝冶炼的益处摘要先进性控制,特别是多变量预测控制技术(MPC)已在石化行业得到了普遍应用。

在最近过去的十年内,这项技术在催化裂化装置上的应用,已给(石化行业)带来了超过2%的可观利润。

MPC (譬如Honeywell RMPCT) 可被看作一个使过程变量保持在设定点的工具,即做为单回路控制器的集成MPC可很好的完成单回路控制器很难解决的相互作用的变量的控制任务。

但是MPC的真正的价值是,它把整个过程视为单一个体而不是一个个被隔绝的控制回路集成。

MPC可做为在生产过程中保持操作限制的整个绩效考核的工具。

一个典型的铝土精炼厂有很大数量互动的生产过程:譬如原料磨制、溶出、洗涤、热交换等。

这些(过程)的滞后时间合并起来相当可观,通常这意味着单一回路控制器不能充分(调节)使操作时偏离了真实值。

通过多变量预测控制的应用将获取极大的效益。

典型应用达到每年几百万美元。

本文提出在氧化铝厂之内先进性控制对各生产过程应用的依据,以即获得的效益。

作者:Neil Freeman -矿物处理和控制技术专家简介对任一个氧化铝厂都有相同的挑战,即在考虑安全和环境的条件下将每吨氧化铝的生产成本降到最低。

这种追求最大氧化铝生产量与每吨氧化铝最小生产能源消耗。

在维持碱液生产同时保证母液的浓度。

另外碱液浓度和浪涌容量必须被维持在各个限值内。

同样赤泥洗涤过滤(?)时必须精细地控制加碱使碱液的稀释减到最小。

拜尔法提出独特的控制方法。

补充能源和苟性碱对拜尔冶炼是必须的。

这结果是(拜尔法)存在大量的相互作用的生产过程。

这导致使用常规控制方法会存在大量的滞后时间。

先进性控制技术以多变量预测控制的形式,譬如Honeywell Hi-Spec’s RMPCT来解决这些问题。

这种新型控制器结合了大量不同的专家经验作为控制模型,处理不同的变量例如液位波动或原料储量的变化。

这种控制每次考虑一个完整过程, 譬如压煮或热交换。

这样那些生产过程成为了控制目标。

某公司先进控制(APC)应用概况

某公司先进控制(APC)应用概况
初始条件给定,同时给定目标函数。 然后寻找一个可行的控制方法使系统从输出状态 过渡到目标状态,并达到最优的性能指标。
动态规划、最大值原理和变分法是最优控制理论 的基本内容和常用方法。庞特里亚金极大值原理 和贝尔曼动态规划是在约束条件下获得最优解的 两个强有力的工具,应用于大部分最优控制问题。
然而设计这样的控制系统会遇到许多困难, 特别是复杂工业过程往往具有不确定性(环境结 构和参数的未知性、时变性、随机性、突变性)、 机理复杂性、非线性、分布参数系统、变量间的 关联性以及信息的不完全性和大纯滞后性等,要 想获得精确的数学模型是十分困难的。

因此,对于过程系统的设计,已不能采用单一
基于定量的数学模型的传统控制理论和控制技术,
㈢对系统结构假设;㈣实际应用中,模型的收敛 性和系统稳定性无法保证。
另外,传统自适应控制方法中假设系统结构的信 息,在处理非线性、变结构或大时间延迟时很难。
• ②鲁棒控制
• 鲁棒控制是一个着重控制算法可靠性研究的控制 器设计方法。鲁棒性一般定义为在实际环境中为 保证安全要求控制系统最小必须满足的要求。一 旦设计好这个控制器,它的参数不能改变而且控 制性能保证。
– 从控制角度讲,只要CV在范围内,且预测值表 明,在不远的未来也没有超界的可能,则控制 器的动作会很小或甚至没有,以避免频繁调整 或不必要的操作调整,提高了装置操作的平稳 性。单回路PID控制无法做到。
– 如果某MV没有自由度时(无调节余地),多变 量控制器可以用其余的MV进行调整;而采用给
定点控制时,若某个变量饱和,就不得不降低
• 多变量模型预估控制器,其功能可分为两大部分: 一是控制过程的动态;另一个是控制过程的准稳 态
– 控制过程的动态,依赖于过程的动态模型,预 测在今后若干步中受控变量(CV)的轨迹,用 多变量解耦和前馈手段,优化各步中各操纵变 量(MV)的动作,从而使过程的CV控制在合 理的范围内 。

先进过程控制策略

先进过程控制策略

先进过程控制策略先进过程控制(APC)是基于先进的算法和策略,对工业过程进行实时监测、优化和控制的一种技术。

APC技术能够提高生产过程的稳定性、能源效率和产品质量,减少生产成本和环境污染。

本文将介绍几种常用的APC策略和相关方法。

1. 模型预测控制(Model Predictive Control, MPC)MPC是一种基于数学模型的预测控制方法。

其核心思想是建立一个数学模型来描述工业过程,并通过优化方法对未来一段时间内的状态进行预测。

在控制过程中,MPC会优化控制变量的赋值,以使预测的过程状态尽可能接近预设目标。

MPC具有较强的鲁棒性和灵活性,适用于复杂的工业过程控制。

2. 多变量控制(Multivariable Control)多变量控制是指对多个输入和输出变量进行联合优化和控制。

相比于传统的单变量控制,多变量控制能够考虑不同变量之间的相互影响,提供更全面的控制策略。

多变量控制方法包括传统的PID控制、线性二次调节控制(LQR)以及先进的模型预测控制。

3. 最优控制(Optimal Control)最优控制是通过优化方法寻找最佳控制策略的一种方法。

最优控制目标包括最小化能耗、最大限度地提高生产质量和产量等。

最优控制方法可以通过建立系统的数学模型,利用最优化算法来寻找最佳控制策略。

4. 自适应控制(Adaptive Control)自适应控制是一种能够根据系统变化自动调整控制参数的控制策略。

自适应控制方法可以通过对系统进行实时建模和参数估计,来调整控制策略以适应系统的变化。

自适应控制常用于对复杂、非线性和变化的系统进行控制。

5. 鲁棒控制(Robust Control)鲁棒控制是一种能够在系统参数变化或外部扰动的情况下保持控制性能的控制策略。

鲁棒控制方法通过对不确定性进行建模,并采用鲁棒优化技术来设计系统的稳定性和鲁棒性。

总之,先进过程控制策略是应用先进的算法和方法来对工业过程进行实时优化和控制。

和利时优化控制案例2--水泥行业熟料烧成APC系统案例

和利时优化控制案例2--水泥行业熟料烧成APC系统案例

【项目简介】本APC项目即是为江山南方水泥有限公司2500吨熟料生产线, 对其烧成系统部分的分解炉温度以及篦冷机压力两个部分做了优化控制。

【工艺简介】新型干法水泥生产线的烧成系统生产工艺过程主要包括窑外预热分解、窑内煅烧、熟料冷却、废气处理等工序。

生料经过五级预热、分解炉加热、回转窑煅烧、篦冷机冷却形成水泥生产的关键中间产品——水泥熟料,储存到熟料库中供后续工段制备水泥。

其中,窑尾分解炉温度和篦冷机篦下压力两个参数尤为重要。

一旦这两个主要过程量控制稳定,则烧成系统的其他过程参数都会相应稳定下来,进而整个熟料生产过程也就相应稳定。

【技术难点】分解炉温度控制难点:1)影响多:如分解炉喂煤量、煤粉质量、入窑生料量、生料质量、系统风量、三次风温、O2含量等都会对分解炉温度产生影响;2)反应慢:如喂料的变化,约有3-5分钟才会影响分解炉温度的变化,要更长的时间才能使温度平稳;3)干扰强:入窑生料量的变化及煤质的变化都会对分解炉温度产生强烈的干扰。

篦冷机篦下压力控制难点:1)影响多:如篦床转速、进入篦床的料量、料的质量、各风机风量、回转窑转速等都对篦下压力产生影响;2)反应慢:如进入回转窑的料量的变化,需要半小时甚至1小时才能反映到篦冷机压力的变化;3)随机干扰强:如掉窑皮、塌料等位置不同、大小不同,反映到篦冷机压力的变化时间和变化程度有很强的随机性。

【控制方案】根据烧成系统生产工艺,将烧成控制系统分为三部分:1)分解炉温度APC优化控制方案:被控量:分解炉出口温度;氧含量。

控制量:窑尾分解炉给煤量;高温风机频率给定;扰动量:生料量;分解炉中部温度;三次风温;烟室压力;烟室温度;窑头罩温度等。

2)篦冷机一段风机出口压力APC优化控制方案:被控量:篦冷机一段2室风机出口压力;控制量:篦冷机一段转速;扰动量:窑主电机电流;烟室压力;烟室温度。

3)入窑生料APC优化控制方案:被控量:入窑提升机电流;稳流仓仓重。

控制量:入窑给料阀控制,稳流仓阀门控制;【控制效果】图1水泥烧成系统流程图图2分解炉温度APC控制与手动控制效果对比图3篦冷机一段2室风机出口压力APC控制与手动控制效果对比。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专业服务,创造价值循环流化床锅炉APC先进过程优化控制解决方案2013-11-131 公司简介集团(中控)始创于是中国领先的自动化与信息化技术、产品、解决方案供应商,业务涉及工厂自动化、公用工程信息化、装备自动化等领域。

公司是中控科技集团的核心成员企业,致力于工厂自动化领域的现场总线与控制系统以及流程模拟仿真系统的研究开发、生产制造、市场营销及工程服务。

2 行业背景2.1 行业现状循环流化床(CFB)燃烧技术是最近几十年发展起来的一种新型燃烧技术,由于循环流化床锅炉具有燃料适应性广、燃烧效率高、高效脱硫的特点,因此近年来有了很大的发展,我国的循环流化床也经历了小型、中型、大型三个发展阶段,循环流化床能够解决我国燃烧锅炉存在包括环境问题在内的诸多现实问题,因此中国将成为循环流化床锅炉最大的商业市场。

2.2 行业难点由于循环流化床锅炉燃料是在流化状态下燃烧,锅炉燃烧系统惯性大,各个变量之间相互影响,加上有飞灰循环等影响因素,因此CFB锅炉燃烧系统是一个大滞后、强耦合,多干扰的复杂非线性系统,自动燃烧优化控制难度较大,是业内公认的控制难点。

鉴于循环流化床锅炉燃烧的复杂性和特殊性,对一般煤粉锅炉和其他过程控制对象行之有效的常规控制方法,已难保证循环流化床锅炉各项控制指标的实现。

有别于常规控制,中控锅炉APC先进控制解决方案采用多变量模型预测控制、专家规则控制等智能控制策略,能够更好地结合专家经验的同时克服系统大滞后、强耦合、多干扰等控制难点,可以较好地实现CFB锅炉系统安全高效率的燃烧自动控制,各项指标稳定度大幅提升,经济效益比较可观。

3 项目可行性分析3.1 现场概述贵公司炉机系统属中小型循环流化床多炉多机系统,实行母管制运行方式。

一次检测仪表性能良好,风机调节为挡板和变频控制,主汽温度挡板调节,除挡板调节死区稍大外,其余执行器调节死区小于1%,即执行器死区情况基本满足优化控制需求。

流化床控制系统采用中控DCS系统,DCS上配置传统的PID自动控制回路中,汽包水位控制回路、给煤控制、一次风控制、二次风控制、引风控制、减温水控制等大部分回路,现场均由操作人员手动操作。

3.2 优化空间3.2.1 数据分析对现场DCS数据进行取样分析,以#炉为例,数据包选取年10月1日至年10月20日,总计20天的数据,进行离线统计分析,主要分析主汽压力、主汽温度、烟氧含量、炉膛负压、床层温度、床层压差六个指标的平均值与平均波动幅度两项特性值。

如下表所示:通过数据统计结果分析可知,由于现场燃煤的挥发分较高,氧量平均值较低,同时床温已经较高,因此燃烧效率本身提高空间就有限了,但各指标的平稳度还是有提升空间的,同时通过综合调整,可适当提高锅炉的传热效率,从而进一步提升锅炉的燃烧效率。

3.2.2 优化空间通过现场数据分析,包括与领导、相关技术人员、DCS技术人员的技术交流沟通,评估现场发现存在如下可提升的空间:(1)各指标的稳定性可进一步提升,波动幅度可减少30%以上;(2)各指标的经济运行匹配有待于进一步优化,提高锅炉效率降低煤耗,实现经济运行之目的;即,贵方现场锅炉燃烧系统存在可观的优化空间。

3.3 项目可行性分析现场的现有设备,仪表,控制系统条件是否满足优化控制系统需求呢?通过现场考察分析发现,一次检测元件的性能良好,保证了测量信号的质量,在改善风量挡板调节精度后,可为优化控制提供了良好的控制手段,DCS系统可以提供实时运行数据库。

综上所述,我们可以得出如下结论:(1)现场存在较大的优化空间,具备经济效益挖潜空间。

(2)现场设备、仪表、系统条件良好,满足优化控制系统需求条件。

暨在对现场外围硬件设备不进行大幅改造或追加投资的情况下,现场满足实施锅炉自动燃烧控制技术的条件,能够通过对控制系统的优化提升,使得循环流化床能够全自动运行,降低运行人员劳动强度的同时,又能提高机组的经济运行能力,达到节能降耗的目的。

4 中控锅炉燃烧优化控制方案4.1 PCO过程优化控制平台简介PCO平台软件是基于行业领先的技术和经验优势以及雄厚的软件研发实力和深刻的业务理解开发的一套优化软件体系,是浙江中控优化解决方案的重要组成部分。

它继承了浙江中控组态软件易用高效的特点,并在优化控制领域进行了深入研究。

能够帮助用户减少人工操作、提高控制效果,从而达到节能、减排、增效的最终目的。

PCO平台软件可以与中控AdvTrol Pro 2.5、AdvTrol Pro 2.65及Visual Field 组态软件进行底层的数据通信,无需通过OPC即可进行数据的采集及写出,减少了OPC传输可能带来的安全和稳定的问题,同时也可与其他厂商系统通过OPC进行通信,做到了兼容性和稳定性的统一;严格的用户权限和操作记录功能,可以使用户方便地进行管理;与组态软件共享的流程图及报警界面,让操作员在组态软件和优化软件间无缝连接;严密的安全机制,可以确保在断电或其它预料外情况下自动及时切成手动操作,保证现场的安全;精确到秒的投运率合格率统计,使用户能准确地了解当前生产状况和PCO软件带来的效益提升。

PCO平台内置了功能强大的控制器和成熟的通用控制算法库,可以由工程人员根据现场项目实际情况进行配置开发,形成项目定制的专用控制模块,能够实现从回路级到设备级再到全工艺过程的全方位优化,实现从单回路优化控制到全装置的先进控制与实时优化。

使用户不用了解复杂的控制方案和控制理论,不用进行繁琐的文件配置,仅关注由中控专家提炼出来的一些参数设置,就可以达到良好的控制效果。

图1 PCO软件构架图4.2 循环流化床锅炉APC先进过程优化控制方案锅炉APC先进过程控制解决方案是基于PCO优化控制平台,将先进控制技术用于循环流化床锅炉燃烧过程控制,使锅炉装置在优化条件下实现节能、高效、安全、稳定运行,是集现状评估分析、方案设计、系统配置选型与成套、专业软件提供、优化控制组态与调试、技术培训于一体的“交钥匙型”优化控制整体解决方案。

循环流化床锅炉优化控制系统包含上下位机两部分。

图2 锅炉APC先进过程控制方案框图上位机实时优化控制系统基于中控PCO过程优化控制平台,包含PCO锅炉燃烧优化控制与性能计算两部分,从而构成上位机的实时优化与在线评估计算系统;下位机为现场DCS监控系统上所做的安全联锁切换,通过OPC客户/服务器功能实现与上位机的安全互动,现场执行器操作权限的在线切换。

4.2.1 PCO先控平台——MCC母管协调控制主蒸汽母管压力控制目标为:◆主蒸汽母管压力控制系统协调本台锅炉与其它并列运行锅炉的运行◆使主蒸汽母管压力控制达到最佳状态,快速、准确和稳定的响应机侧热、电负荷指令的变化传统的主蒸汽母管压力控制方式常面临如下问题:◆锅炉本身容易发生燃烧振荡◆锅炉之间互扰严重◆锅炉与汽机之间藕合关系复杂由于这些难点的困扰,使得蒸汽母管压力难以控制,供热品质很难保证,蒸汽母管压力的波动对供热品质形成极大的威胁,甚至波及到热用户的设备安全运行,所以为了保证机组安全,提高供热品质,运行人员只能频繁手动调节锅炉负荷以实现稳定蒸汽母管压,但是劳动强度大,且效果又不是很好。

针对这一不足,中控MCC母管压力控制系统采用如下方法克服传统方式的不足:(1)系统内外部扰动的在线区分内扰是指锅炉燃烧率的扰动,其特征是锅炉主汽压力与锅炉主汽流量同向反应,外扰是指汽机电热负荷或邻炉对本炉的扰动,其特征是锅炉主汽压力与锅炉主汽流量反向反应。

图3 母管协调能力平衡原理图(2)并行锅炉负荷调整权重的动态分配母管并行运行的锅炉可根据自身情况和负荷调衡能力大小,选择“定压运行”(带固定负荷)或“调压运行”(母管协调)两种方式。

MCC模块实时跟踪控制母管压力,计算出并行锅炉总体负荷调整量,结合人工设置的初始权重,并根据参与“调压运行”的锅炉数量,考虑到参与调节的锅炉负荷余量以及负荷跟踪能力,动态计算出每台“调压运行”锅炉的负荷权重,进而计算出每台“调压运行”锅炉的负荷调整量,并及时调整输出的各台锅炉的负荷设定值上。

为克服母管制运行方式的蓄热惯性,应使锅炉控制尽快跟随汽机需要,即克服母管压力控制的外部扰动,对应汽机侧调峰机组的能量量信号要进入锅炉侧参与控制。

4.2.2 PCO先控平台——PCO锅炉燃烧优化控制PCO锅炉燃烧优化控制是基于锅炉过程机理,同时结合锅炉燃烧行业专家经验与高效的操作经验而制定的先控方案,采用了专家规则控制,非线性控制等技术手段,将整个锅炉系统分割成若干控制段,各控制段间既相互联系又可独立投切,方便灵活,实现给煤、配风自动控制、燃烧优化控制、动态适应汽机端负荷需求,同时保证系统最大的燃烧效率,烟气指标满足排放标准。

(1)多变量锅炉燃烧控制多变量锅炉燃烧控制的主要目标是,在保证锅炉燃烧效率的前提下快速匹配负荷变化需求,实现锅炉系统稳定与经济运行。

多变量锅炉燃烧系统为四入输入四输出系统,四个控制目标为主汽压力、烟氧含量、床层温度与床层压差,四个控制手段为一次风、二次风、给煤与排渣,采用专家规则与非线性控制相结合的控制方法,根据锅炉负荷变化同时调整给煤量、一次风量、二次风量与排渣,从而保证锅炉燃烧效率的基础上快速匹配负荷需求。

风煤比、一二次风配比通过目标优化得到当前负荷下的最佳量,同时接受人工调整量,综合结果用于控制输出。

床层压差此处指料层高度,根据锅炉动力场试验结果,结合现场炉膛下部风室压力,通过床层压差与布风板阻力计算,同时考虑到燃料密度等信息综合计算出实时料层高度信息,以此作为该回路的控制目标,控制手段为排渣,实时接收来自燃烧调节前馈的处理结果,采用非线性控制算法,从而实现料层高度的快速精确稳定控制。

为克服系统滞后的影响,将来自汽机端的负荷需求DEB信号变化作为系统DV,快速响应系统负荷变化,从而实现主汽压力、床层温度、床层压差、烟氧含量随系统负荷变化的精确稳定控制。

(2)炉膛负压控制炉膛负压回路控制目标为炉膛负压,控制手段为引风,实时接收来自一二次风变化前馈的处理结果,采用非线性控制算法,从而实现炉膛负压的快速精确稳定控制。

(3)主汽温度控制主汽温度回路控制目标为主汽温度以及减温器出口汽温,控制手段为减温水,实时接收来自燃烧调节前馈的处理结果,采用非线性控制算法,从而实现主汽温度的快速精确稳定控制。

图4 PCO锅炉APC先进过程控制软件4.2.3 PCO先控平台——系统性能计算锅炉系统性能计算软件包含锅炉燃烧及对许多不能直接测量的机组和主要设备的性能指标测算,具体如下:(1)机组性能如机组热耗率、汽耗率、循环热效率、厂用电率、发电煤耗、供电煤耗等。

(2)锅炉性能如燃烧效率、排烟热损失和其他各项燃烧损失等。

(3)空预器性能如空预器漏风率、烟气侧效率、空气侧效率等。

当机组处于稳定运行工况时,计算出来的运行性能值具有较高的精确度。

相关文档
最新文档