第二次 数字图像处理实验报告

合集下载

数字图像处理实验实验报告 实验二

数字图像处理实验实验报告 实验二

数字图像处理实验实验报告(实验一)一、实验目的:1、直方图显示2、计算并绘制图像直方图3、直方图均衡化二.程序脚本clear all;RGB=imread('me.jpg');figure;imshow(RGB);title('图1 彩色图');%========================================================== I=rgb2gray(RGB);figure;imshow(I);title('图2 灰度图');%========================================================= figure;imhist(I);title('灰度直方图');%========================================================= hi=imhist(I);j=1;%为使画出的直方图更好看,在此进行了抽样for(i=1:256)if(mod(i,10)==1)h(j)=hi(i);j=j+1;endendn=0:10:255;figure;stem(n,h);axis([0 255 0 2500]);title('图3.1 stem显示直方图');figure;bar(n,h);axis([0 255 0 2500]);title('图3.2 bar显示直方图');figure;plot(n,h);axis([0 255 0 2500]);title('图3.3 plot显示直方图');%========================================================= I=rgb2gray(RGB);figure;subplot(3,2,1);imshow(I);title('图4.1 原始灰度图');subplot(3,2,2);imhist(I);title('图4.2 原始灰度直方图');%=============================J1=imadjust(I);subplot(3,2,3);imshow(J1);title('调整对比度以后的图');subplot(3,2,4);imhist(J1);title('调整对比度以后的灰度直方图');%=================================J2=histeq(I);subplot(3,2,5);imshow(J2);title('均衡化以后的的图');subplot(3,2,6);imhist(J2);title('均衡化以后的灰度直方图');三.实验结果图1 彩色图图2 灰度图010002000灰度直方图10020010020005001000150020002500图3.1 stem 显示直方图10020005001000150020002500图3.2 bar 显示直方图10020005001000150020002500图3.3 plot 显示直方图图4.1 原始灰度图10002000图4.2 原始灰度直方图0100200调整对比度以后的图010002000调整对比度以后的灰度直方图0100200均衡化以后的的图02000均衡化以后的灰度直方图100200。

《数字图像处理》实验报告

《数字图像处理》实验报告

《数字图像处理》实验报告数字图像处理是一门将图像进行数字化处理的学科,它通过计算机算法和技术手段对图像进行分析、增强、压缩和重建等操作。

在本次实验中,我们学习了数字图像处理的基本概念和常用算法,并通过实验来探索其应用和效果。

首先,我们进行了图像的读取和显示实验。

通过使用Python中的OpenCV库,我们能够轻松地读取图像文件,并将其显示在屏幕上。

这为我们后续的实验奠定了基础。

同时,我们还学习了图像的像素表示方法,了解了图像由像素点组成的原理。

这使我们能够更好地理解后续实验中的算法和操作。

接下来,我们进行了图像的灰度化实验。

灰度化是将彩色图像转换为灰度图像的过程。

在实验中,我们使用了不同的算法来实现灰度化操作,包括平均值法、最大值法和加权平均法等。

通过比较不同算法得到的灰度图像,我们发现不同算法对图像的处理效果有所差异,这使我们深入理解了灰度化的原理和应用。

随后,我们进行了图像的直方图均衡化实验。

直方图均衡化是一种用于增强图像对比度的方法。

在实验中,我们使用了直方图均衡化算法来对图像进行处理,并观察了处理前后的效果变化。

通过实验,我们发现直方图均衡化能够显著提高图像的对比度,使图像更加清晰和鲜明。

在进一步探索图像处理技术的过程中,我们进行了图像的滤波实验。

滤波是一种常用的图像处理操作,它通过对图像进行卷积操作来实现。

在实验中,我们学习了不同类型的滤波器,包括均值滤波器、高斯滤波器和中值滤波器等。

通过比较不同滤波器对图像的处理效果,我们发现每种滤波器都有其适用的场景和效果。

此外,我们还进行了图像的边缘检测实验。

边缘检测是一种用于提取图像边缘信息的方法。

在实验中,我们学习了不同的边缘检测算法,包括Sobel算子、Canny算子和Laplacian算子等。

通过比较不同算法对图像的处理效果,我们发现每种算法都有其独特的特点和应用。

最后,我们进行了图像的压缩实验。

图像压缩是一种将图像数据进行压缩以减小文件大小的方法。

数字图像处理实验2

数字图像处理实验2

等,使用多维滤波器H对图像A进行滤波,H常由函数fspecial输出得到。属性参
数如表3所示: 表3 imfilter函数参数表
参数类型
参数
含义
边界选项
‘X’
输入图像的外部边
界通过X来扩展,默
认的X=0
‘symmetric’
输入图像的外部边
3×3。
输出大小选项
滤波方式选项
(8)medfilt2函数
三、Matlab相关函数介绍
(1)imhist函数 功能:统计变显示图像的直方图。 调用格式: imhist(I):显示图像I的直方图。 imhist(I, n):显示图像I的直方图,n指定直方图中的列数。 [COUNTS,X] = imhist(...):返回直方图数据向量COUNTS和相应的色彩值向量X。 (2)histeq函数 功能:直方图均衡化 调用格式: J = histeq(I,hgram):将图像I的直方图变成用户指定的向量hgram,hgram中的各元素值域为[0,1]; J = histeq(I,N):对原始图像I进行直方图均衡化,N为输出图像的灰度技术,默认N为64。 (3)imadjust函数 功能:调整图像灰度值或颜色映射表,增加图像的对比度。 调用格式: J = imadjust(I,[LOW_IN; HIGH_IN],[LOW_OUT; HIGH_OUT],GAMMA):调整图像I的灰度值;[LOW_IN; HIGH_IN]指定原始图像中要变换的灰度范围;[LOW_OUT; HIGH_OUT]指定变换后的灰度范围;低于LOW_IN 、高于 HIGH_IN 的采取截取式;都可以使用空的矩阵[],默认值是[0 1]; GAMMA为标量,指定描述值I和值J关系的曲线 形状,如果小于1,此映射偏重更高数值(明亮)输出,如果

数字图像处理实验二_图像的噪声抑制及锐化处理

数字图像处理实验二_图像的噪声抑制及锐化处理

数字图像处理实验报告(二)班级:测控1002姓名:刘宇学号:06102043实验二图像的噪声抑制及锐化处理1. 实验任务(1)了解并掌握图像的噪声抑制及锐化处理的基本原理;(2)编写程序使用均值滤波、中值滤波方法进行图像噪声抑制,根据实验结果分析效果;(3)编写程序使用一阶微分锐化、二阶微分锐化方法进行图像的锐化处理,根据实验结果分析效果;(4)总结实验过程(实验报告,左侧装订):方案、编程、调试、结果、分析、结论。

2. 实验环境及开发工具Windws2000/XPMATLAB 7.x实验原理线性平滑滤波器线性低通平滑滤波器也称为均值滤波器,这种滤波器的所有系数都是正数,对3×3的模板来说,最简单的是取所有系数为1,为了保持输出图像任然在原来图像的灰度值范围内,模板与象素邻域的乘积都要除以9。

MATLAB 提供了fspecial 函数生成滤波时所用的模板,并提供filter2 函数用指定的滤波器模板对图像进行运算。

函数fspecial 的语法格式为:h=fspecial(type);h=fspecial(type,parameters);其中参数type 指定滤波器的种类,parameters 是与滤波器种类有关的具体参数。

MATLAB 提供了一个函数imnoise 来给图像增添噪声,其语法格式为:J=imnoise(I,type);J=imnoise(I,type,parameters);非线性平滑滤波器中值滤波器是一种常用的非线性平滑滤波器,其滤波原理与均值滤波器方法类似,但计算的非加权求和,而是把领域中的图像的象素按灰度级进行排序,然后选择改组的中间值作为输出象素值。

MATLAB 提供了medfilt2 函数来实现中值滤波,其语法格式为:B=medfilt2(A,[m n]);B=medfilt2(A);其中,A 是原图象,B 是中值滤波后输出的图像。

[m n]指定滤波模板的大小,默认模板为3×3。

数字图像处理实验二报告(图像滤波器)

数字图像处理实验二报告(图像滤波器)

实验报告课程名称数字图像处理实验名称图像滤波器姓名学号 20120712 专业班级数媒1202 实验日期 2014 年 10 月 16日成绩指导教师一、实验目的1.继续熟悉仿真工具MATLAB2.巩固图像读取与显示的方法3.掌握给图像添加噪声的方法4.掌握图像空间域的滤波方法5.掌握图像频率域的滤波方法二、实验原理图像的平滑有模糊图像和消除噪声的功能。

图像锐化则是使模糊的图像变清晰,增强图像的边缘细节。

对图的处理像既可以在频率域内进行,又可在空间域进行(一般为模版卷积方式)。

从信号频谱角度来讲,信号缓慢变化的部分(大面积背景区和灰度变化缓慢的区域)在频域表现为低频,迅速变化的部分(图像边缘、跳跃以及噪声等灰度变化剧烈的区域)则表现为高频。

因此,通过低通滤波来实现图像的平滑,而高通滤波可以实现图像的锐化。

三、实验环境Windows XP/ Windows 7Matlab 7.0.1/ Matlab R2008四、实验内容与步骤1.空间平滑域操作读取并显示一幅灰度图像,对原图像分别添加高斯噪声和椒盐噪声,并显示添加噪声之后的图像:调整高斯噪声和椒盐噪声的参数,比较不同参数之间噪声的区别;进行平滑操作,观察、记录并比较实验结果;针对两幅含有噪声的图像,采用中值滤波方法进行平滑处理,观察并记录实验结果,并将之与上一步实验结果相比较,得出结论。

2.空间锐化操作读取并显示一幅灰度图像,分别采用Prewitt水平/垂直边缘检测算子,Sobel水平/垂直边缘检测算子对原图像进行锐化操作,比较实验结果;采用拉普拉斯模板进行锐化处理,与上一步骤实验结果相比较。

3.图形的频域处理1)利用循环语句,自己构建理想低通滤波器;对一幅弧度图像进行傅里叶变换,显示其频谱图;对一幅灰度图像作频率域理想低通滤波,调整滤波器半径,观察并记录不同结果,分析原因;2)利用循环语句,自己构建理想高通滤波器;对同一幅灰度图像作频率域理想高通滤波,调整滤波器半径,观察并记录不同结果,分析原因;五、实验结果与分析(可提供屏幕抓图)1.添加高斯噪声与椒盐噪声:结论:高斯噪声的参数越大,图像变得越模糊,亮度也越亮。

数字图像处理实验报告(五个实验全)

数字图像处理实验报告(五个实验全)

数字图像处理实验报告(五个实验全)实验⼀ Matlab图像⼯具的使⽤1、读图I=imread('lena.jpg');imshow(I);2、读⼊⼀幅RGB图像,变换为灰度图像和⼆值图像,并在同⼀个窗⼝内分成三个⼦窗⼝来分别显⽰RGB图像和灰度图像。

a=imread('lena.jpg')i = rgb2gray(a)I = im2bw(a,0.5)subplot(3,1,1);imshow(a);subplot(3,1,2);imshow(i);subplot(3,1,3);imshow(I);原图像灰度图像⼆值图像实验⼆图像变换1、对⼀幅图像进⾏平移,显⽰原始图像与处理后图像,分别对其进⾏傅⾥叶变换,显⽰变换后结果,分析原图的傅⾥叶谱与平移后傅⾥叶频谱的对应关系。

s=imread('beauty.jpg');i=rgb2gray(s)i=double(i)j=fft2(i);k=fftshift(j); 原图像原图的傅⾥叶频谱l=log(abs(k));m=fftshift(j);RR=real(m);II=imag(m);A=sqrt(RR.^2+II.^2);A=(A-min(min(A)))/(max(max(A)))*255;b=circshift(s,[800 450]);b=rgb2gray(b)b=double(b) 平移后的图像平移后的傅⾥叶频谱c=fft2(b);e=fftshift(c);l=log(abs(e));f=fftshift(c);WW=real(f);ZZ=imag(f);B=sqrt(WW.^2+ZZ.^2);B=(B-min(min(B)))/(max(max(B)))*255;subplot(2,2,1);imshow(s);subplot(2,2,2);imshow(uint8(b));subplot(2,2,3);imshow(A);subplot(2,2,4);imshow(B);2、对⼀幅图像进⾏旋转,显⽰原始图像与处理后图像,分别对其进⾏傅⾥叶变换,显⽰变换后结果,分析原图的傅⾥叶谱与旋转后傅⾥叶频谱的对应关系。

数字图像处理实验报告

数字图像处理实验报告

数字图像处理实验报告实验一数字图像的获取一、实验目的1、了解图像的实际获取过程。

2、巩固图像空间分辨率和灰度级分辨率、邻域等重要概念。

3、熟练掌握图像读、写、显示、类型转换等matlab函数的用法。

二、实验内容1、读取一幅彩色图像,将该彩色图像转化为灰度图像,再将灰度图像转化为索引图像并显示所有图像。

2、编程实现空间分辨率变化的效果。

三、实验原理1、图像读、写、显示I=imread(‘image.jpg’)Imview(I)Imshow(I)Imwrite(I,’wodeimage.jpg’)2、图像类型转换I=mat2gray(A,[amin,amax]);按指定的取值区间[amin,amax]将数据矩阵A转化为灰度图像I,amin对应灰度0,amax对应1,也可以不指定该区间。

[x,map]=gray2ind(I,n);按指定的灰度级n将灰度图像转化为索引图像,n默认为64I=ind2gray(x,map);索引图像转化为灰度图像I=grb2gray(RGB);真彩色图像转化为灰度图像[x,map]=rgb2ind(RGB);真彩色图像转化为索引图像RGB=ind2rgb(x,map);索引图像转化为真彩色图像BW=im2bw(I,level);将灰度图像转化为二值图像,level取值在[0,1]之间BW=im2bw(x,map,level);将索引图像转化为二值图像,level取值在[0,1]之间BW=im2bw(RGB,level);将真彩色图像转化为二值图像,level取值在[0,1]之间四、实验代码及结果1、in=imread('peppers.png');i=rgb2gray(in);[x,map]=gray2ind(i,128);subplot(131),imshow(in)subplot(132),imshow(i)subplot(133),imshow(x),colormap(map)2、%空间分辨率变化的效果clc,close all,cleari=imread('cameraman.tif');i=imresize(i,[256,256]);i1=i(1:2:end,1:2:end);[m1,n1]=size(i)i2=i1(1:2:end,1:2:end);[m2,n2]=size(i2)i3=i2(1:2:end,1:2:end);[m3,n3]=size(i3)subplot(221),imshow(i),xlabel('256x256')subplot(222),imshow(i1),xlabel('128x128')subplot(223),imshow(i2),xlabel('64x64')subplot(224),imshow(i3),xlabel('32x32')256 x 256128 x 12864 x 6432 x 32实验二图像的几何变换一、实验目的掌握图像的基本几何变换的方法1、图像的平移2、图像的旋转二、实验内容练习用matalb 命令实现图像的平移、旋转操作1、.编写实现图像平移的函数2、用imread 命令从你的硬盘读取一幅256×256灰度图;3、调用平移函数,将256×256灰度图平移100行200列,在同一个窗口中显示平移前和平移后的图像。

数字图像处理实验报告

数字图像处理实验报告

数字图像处理实验报告引言数字图像处理是一门研究如何对图像进行数字化处理的学科,它的应用广泛,涵盖了图像的获取、增强、压缩、分割等多个方面。

本次实验旨在探索数字图像处理的基本原理和常用技术,并通过实践操作加深对数字图像处理的理解。

实验目的1.学习掌握数字图像处理的基本原理;2.熟悉常用的数字图像处理工具和方法;3.实践应用数字图像处理技术解决实际问题。

实验环境在本次实验中,我们使用了以下环境和工具:- 操作系统:Windows 10 - 编程语言:Python - 图像处理库:OpenCV实验步骤步骤一:图像获取与显示首先,我们需要获取一张待处理的图像,并对其进行显示。

在Python中,我们可以使用OpenCV库来实现图像的读取和显示。

以下是示例代码:import cv2# 读取图像image = cv2.imread('image.jpg')# 显示图像cv2.imshow('Image', image)cv2.waitKey(0)cv2.destroyAllWindows()步骤二:图像增强图像增强是数字图像处理中常用的技术之一,旨在改善图像的质量和可视化效果。

常见的图像增强技术包括灰度转换、直方图均衡化、滤波器等。

以下是示例代码:import cv2# 读取图像image = cv2.imread('image.jpg')# 灰度转换gray_image = cv2.cvtColor(image, cv2.COLOR_BGR2GR AY)# 直方图均衡化equalized_image = cv2.equalizeHist(gray_image)# 高斯滤波器blurred_image = cv2.GaussianBlur(equalized_image, (5, 5), 0)# 边缘增强enhanced_image = cv2.Canny(blurred_image, 100, 20 0)# 显示图像cv2.imshow('Enhanced Image', enhanced_image)cv2.waitKey(0)cv2.destroyAllWindows()步骤三:图像压缩图像压缩是数字图像处理中的重要话题,旨在减少图像的存储空间和传输带宽。

数字图像处理实验

数字图像处理实验
2)代码
closeall;
clearall;
I=imread('pout.tif');
figure,subplot(1,2,1),imshow(I),title('before');
h=fspecial('motion',12,10);
K=imfilter(I,h);
subplot(1,2,2),imshow(K),title('after');
《数字图像处理》课程实验报告
姓名
院系
学号
任课教师
指导教师
评阅教师
实验地点
实验时间
实验名称:第2次空域图像处理
实验目的:
1继续熟悉MATLAB基本图像操作;
2结合实例学习如何在程序中增加图像处理算法;
3理解和掌握图像的线性变换和直方图均衡化的原理和应用;
4了解平滑处理的算法和用途,学习使用均值滤波、中值滤波和拉普拉斯锐化进行图像增强处理的程序设计方法;
2)代码
closeall;
clearall;
I=imread('pout.tif');
figure,subplot(2,2,1),imshow(I),title('before');
J=imadjust(I,stretchlim(I),[]);
subplot(2,2,2),imshow(J),title('after');
[m n]=size(I);
subplot(2,2,3),imhist(I),title('line1');
subplot(2,2,4),imhist(J),title('line2');

数字图像处理实验2报告

数字图像处理实验2报告

数字图像处理实验212021133徐姚文电子信息工程电控学院2015年5月17日实验二图像直方图均衡Image Histogram Equalization一、目的与任务学习并掌握图像直方图均衡的基本理论,并通过分析均衡前后的图像验证课堂教学内容,总结直方图均衡的特点。

二、内容、要求与安排方式a) 实验内容对图像 img2 进行直方图均衡(img2为X光片图像)1.对比均衡前后图像的直方图及特点,a)图形显示其直方图以及灰度映射关系b)计算以下参数:概率非零灰度数,概率非零灰度中最大概率、最小概率、最大最小概率之比。

c)统计图像中概率大于平均概率的灰度级数;d)计算非零概率的平均值和方差e)您认为哪些参数能够表现图像直方图分布的均匀程度?试提取相关参数进行测试。

2.找一到两幅图像重复上述实验。

3.通过实验结果对比,能得出什么结论?三、实验源程序#include "stdio.h"typedef struct{unsigned char B,G,R;}pixel_RBG;#define H (158)#define W (200)#define Z_H (200)#define Z_W (300)int main(){FILE *fp,*fp2,*fp3,*fp4,*fp5;fp=fopen("hand1.bmp","rb");fp2=fopen("result.bmp","wb");fp3=fopen("1.bmp","rb");fp4=fopen("zft.bmp","wb");fp5=fopen("zft2.bmp","wb");unsigned char wenjiantou[54],wjt[54];pixel_RBG Pixel[H][W];pixel_RBG zft[Z_H][Z_W];long dsR[256]={0},dsG[256]={0},dsB[256]={0};double paR[256]={0},paG[256]={0},paB[256]={0};fread(wenjiantou,1,54,fp);fread(wjt,1,54,fp3);fread(Pixel,3,W*H,fp);int i,j;for(i=0;i<H;i++)for(j=0;j<W;j++){dsR[Pixel[i][j].R]++;dsG[Pixel[i][j].G]++;dsB[Pixel[i][j].B]++;}//灰度级的累计概率分布paR[0]=dsR[0]*(1.0/(W*H));paG[0]=dsG[0]*(1.0/(W*H));paB[0]=dsB[0]*(1.0/(W*H));for(i=1;i<256;i++){paR[i]=paR[i-1]+dsR[i]*(1.0/(W*H));paG[i]=paG[i-1]+dsG[i]*(1.0/(W*H));paB[i]=paB[i-1]+dsB[i]*(1.0/(W*H));}//灰度映射for(i=0;i<H;i++)for(j=0;j<W;j++){Pixel[i][j].R=(unsigned char)(255*paR[Pixel[i][j].R]+0.5);Pixel[i][j].G=(unsigned char)(255*paG[Pixel[i][j].G]+0.5);Pixel[i][j].B=(unsigned char)(255*paB[Pixel[i][j].B]+0.5);}printf("灰度映射关系:gk=255*fk+0.5\n");fwrite(wenjiantou,1,54,fp2);fwrite(Pixel,3,W*H,fp2);//////a、画原图直方图for(i=0;i<Z_H;i++)for(j=0;j<Z_W;j++){zft[i][j].B=255;zft[i][j].G=255;zft[i][j].R=255;} //画白色图纸for(i=10-1;i<=10;i++)for(j=10-1;j<=260+10;j++){zft[i][j].B=0;zft[i][j].G=0;zft[i][j].R=0;}for(j=10-1;j<=10;j++)for(i=10;i<=150;i++){zft[i][j].B=0;zft[i][j].G=0;zft[i][j].R=0;} //画坐标轴int max=0;for(i=0;i<256;i++){if(dsR[i]>max)max=dsR[i];}int m=0;for(j=10,m=0;j<=(255+10);j++,m++)for(i=10;i<=(10+(100*dsR[m]/max));i++){zft[i][j].B=0;zft[i][j].G=0;zft[i][j].R=255;} //直方图fwrite(wjt,1,54,fp4);fwrite(zft,3,Z_W*Z_H,fp4);//////b、求原图灰度概率double P[256]={0},maxP=0,minP=1;int count=0;for(i=0;i<256;i++){P[i]=(unsigned char)dsR[i]*(1.0/(W*H));if(P[i]!=0)count++;}for(i=0;i<256;i++){if(P[i]>maxP)maxP=P[i];if(P[i]<minP&&P[i]!=0)minP=P[i];}printf("###原图###\n概率非零灰度数:%d\n最大概率:%f\n最小概率:%f\n最大最小概率之比:%f\n",count,maxP,minP,maxP/minP);//////c、求原图概率大于平均概率的灰度级数double EP=0;for(i=0;i<256;i++){EP=EP+P[i];}EP=EP/255;printf("概率大于平均概率(%f)的灰度级数:\n",EP);for(i=0;i<256;i++){if(P[i]>EP)printf("%d\t",i);}printf("\n");//////d、计算原图非零概率的平均值和方差EP=0;double Var=0;for(i=0;i<256;i++){if(P[i]!=0)EP=EP+P[i];}EP=EP/count;for(i=0;i<256;i++){if(P[i]!=0)Var=Var+(P[i]-EP)*(P[i]-EP);}Var=Var/count;printf("非零概率的平均值:%f\t方差:%f\n",EP,Var); //重新计算灰度值的数量for(i=0;i<H;i++)for(j=0;j<W;j++){dsR[Pixel[i][j].R]++;dsG[Pixel[i][j].G]++;dsB[Pixel[i][j].B]++;}//////a、画直方图均衡后的直方图for(i=0;i<Z_H;i++)for(j=0;j<Z_W;j++){zft[i][j].B=255;zft[i][j].G=255;zft[i][j].R=255;} //画白色图纸for(i=10-1;i<=10;i++)for(j=10-1;j<=260+10;j++){zft[i][j].B=0;zft[i][j].G=0;zft[i][j].R=0;}for(j=10-1;j<=10;j++)for(i=10;i<=150;i++){zft[i][j].B=0;zft[i][j].G=0;zft[i][j].R=0;} //画坐标轴max=0;for(i=0;i<256;i++){if(dsR[i]>max)max=dsR[i];}for(j=10,m=0;j<=(255+10);j++,m++)for(i=10;i<=(10+(100*dsR[m]/max));i++){zft[i][j].B=0;zft[i][j].G=0;zft[i][j].R=255;} //直方图fwrite(wjt,1,54,fp5);fwrite(zft,3,Z_W*Z_H,fp5);//////b、求处理后图灰度概率maxP=0;minP=1;count=0;for(i=0;i<256;i++){P[i]=(unsigned char)dsR[i]*(1.0/(W*H));if(P[i]!=0)count++;}for(i=0;i<256;i++){if(P[i]>maxP)maxP=P[i];if(P[i]<minP&&P[i]!=0)minP=P[i];}printf("###结果图###\n概率非零灰度数:%d\n最大概率:%f\n最小概率:%f\n最大最小概率之比:%f\n",count,maxP,minP,maxP/minP);//////c、求结果图概率大于平均概率的灰度级数EP=0;for(i=0;i<256;i++){EP=EP+P[i];}EP=EP/255;printf("概率大于平均概率(%f)的灰度级数:\n",EP);for(i=0;i<256;i++){if(P[i]>EP)printf("%d\t",i);}printf("\n");//////d、计算结果图非零概率的平均值和方差EP=0;Var=0;for(i=0;i<256;i++){if(P[i]!=0)EP=EP+P[i];}EP=EP/count;for(i=0;i<256;i++){if(P[i]!=0)Var=Var+(P[i]-EP)*(P[i]-EP);}Var=Var/count;printf("非零概率的平均值:%f\t方差:%f\n",EP,Var);五、显示结果图像及对应参数原始图像:直方图均衡后图像:原图直方图:均衡后的直方图:对应参数:(由程序计算得出,运行结果截图如下)原始图像参数均衡后图像参数换一幅图像,重新实验:原始图像:直方图均衡后图像:原图直方图:均衡后的直方图:对应参数:(由程序计算得出,运行结果截图如下)原始图像参数12021133徐姚文均衡后图像参数六、实验结果分析及结论通过实验结果可知,当图像的有用数据的对比度相当接近的时候,通过直方图均衡化后,均衡化后的图像亮度可以更好地在直方图上分布。

数字图像处理实验报告 (2)

数字图像处理实验报告 (2)

数字图像处理实验报告实验一数字图像基本操作及灰度调整一、实验目得1)掌握读、写图像得基本方法。

2)掌握MATLAB语言中图像数据与信息得读取方法。

3)理解图像灰度变换处理在图像增强得作用。

4)掌握绘制灰度直方图得方法,理解灰度直方图得灰度变换及均衡化得方法。

二、实验内容与要求1.熟悉MATLAB语言中对图像数据读取,显示等基本函数特别需要熟悉下列命令:熟悉imread()函数、imwrite()函数、size()函数、Subplot()函数、Figure()函数。

1)将MA TLAB目录下work文件夹中得forest、tif图像文件读出、用到imread,imfinfo等文件,观察一下图像数据,了解一下数字图像在MATLAB中得处理就就是处理一个矩阵。

将这个图像显示出来(用imshow)。

尝试修改map颜色矩阵得值,再将图像显示出来,观察图像颜色得变化。

2)将MATLAB目录下work文件夹中得b747、jpg图像文件读出,用rgb2gray()将其转化为灰度图像,记为变量B。

2.图像灰度变换处理在图像增强得作用读入不同情况得图像,请自己编程与调用Matlab函数用常用灰度变换函数对输入图像进行灰度变换,比较相应得处理效果。

3.绘制图像灰度直方图得方法,对图像进行均衡化处理请自己编程与调用Matlab函数完成如下实验。

1)显示B得图像及灰度直方图,可以发现其灰度值集中在一段区域,用imadjust函数将它得灰度值调整到[0,1]之间,并观察调整后得图像与原图像得差别,调整后得灰度直方图与原灰度直方图得区别。

2)对B进行直方图均衡化处理,试比较与源图得异同。

3)对B进行如图所示得分段线形变换处理,试比较与直方图均衡化处理得异同。

图1、1分段线性变换函数三、实验原理与算法分析1.灰度变换灰度变换就是图像增强得一种重要手段,它常用于改变图象得灰度范围及分布,就是图象数字化及图象显示得重要工具。

1)图像反转灰度级范围为[0,L-1]得图像反转可由下式获得2)对数运算:有时原图得动态范围太大,超出某些显示设备得允许动态范围,如直接使用原图,则一部分细节可能丢失。

数字图像处理实验报告总结

数字图像处理实验报告总结

数字图像处理实验报告总结一、实训目的通过实训,使我们进一步掌握图形图像处理的基本方法和基本技能;熟练使用photoshop软件,并能用它来完成图形图像的设计、制作和处理。

培养我们能按要求设计和制作一般性的商标和网页设计,并能对即成的图像做进一步处理,创造出一定水平和价值的作品,使我们的实践动手能力和创新能力得到提高,同时为今后的图形图像比赛奠定好基础。

二、教学实验内容与精心安排我们的Photoshop实训时间为本学期的第18周。

我们的实训一共有5个项目:ppt设计、logo设计、展板设计、专业网页设计和个人艺术照片设计。

老师让我们自由分组。

我虽然上课时认真听老师讲解,但没有记笔记的习惯,导致有很多学过的东西运用不上,最后,雷柱、李娟、杨月霞和我组成了一组,我们综合各自的优势对本次的实训任务进行了分工。

杨月霞负责logo设计、雷柱负责个人艺术照设计、我负责展板设计、ppt设计和网页设计由我们一起完成。

星期一的晚上我们在课堂上一起展开教学实验,因为教室里无法联网,所以我们无法展开网络上的资料收集,于是我们都就是各自了解了自己对项目的整体设计。

星期三的3、4文言我们按时走进了教学实验楼,为各自的项目都搞资料的搜集。

我们之间相互协助,很快,我们就只要搞最后的设计了。

星期四从中午12点已经开始,我们一直挤至下午5点,费和了好多心思,终于把所有的教学实验项目顺利完成了,看著我们自己辛勤工作的成果,心里真的很高兴。

三、实训心得这几天来,涂抹老师没像是以前听课那样存有详尽的传授和细心的提示信息,仅靠我们自己对PhotoShop自学的基础去自己顺利完成制作。

这次教学实验不仅仅就是对我们的实地考察,也就是一个自我总结,补漏伯粉的难得的机会。

经过这五天的自学,稳固和加强了我们的基本知识和基本技能,尤其就是Photoshop的基本知识和操作技能。

Photoshop作品要做的好就必须有一个好的创意。

我觉得学习photoshop不是在于把所有的工具都要深入去了解,只要把自己常用的会用就可以了,因为只有有创意,才可以做出一副好的作品来。

数字图像处理实验报告

数字图像处理实验报告

数字图像处理实验报告一、引言数字图像处理是一门涉及图像获取、图像处理和图像分析的重要学科,广泛应用于计算机科学、电子工程、通信技术等领域。

本报告旨在介绍并总结我所进行的数字图像处理实验,讨论实验的目的、方法、结果和分析。

二、实验目的通过本次实验,旨在掌握和理解数字图像处理的基本原理和常见技术,包括灰度变换、空间域滤波、频域滤波等,以及层次分割、边缘检测和形态学处理等高级应用技术。

三、实验方法1. 寻找合适的图像在实验中,我选用了一张自然风景图像作为处理对象。

这张图像包含丰富的纹理和颜色信息,适合用于多种图像处理方法的验证和比较。

2. 灰度变换灰度变换是数字图像处理中常见的基础操作,可以通过对图像的像素灰度值进行线性或非线性变换,来调整图像的对比度、亮度等特征。

在实验中,我利用线性灰度变换方法将原始彩色图像转换为灰度图像,并进行对比度的调整,观察处理结果的变化。

3. 空间域滤波空间域滤波是一种基于像素邻域的图像处理方法,常用于图像去噪、边缘增强等应用。

我使用了平滑滤波和锐化滤波两种方法,并针对不同的滤波算子和参数进行了实验和比较,评估其对图像细节和边缘保留的影响。

4. 频域滤波频域滤波是一种基于图像的频谱特征的图像处理方法,广泛应用于图像增强、去噪和特征提取等方面。

我利用傅里叶变换将图像从空间域转换到频域,采用理想低通滤波器和巴特沃斯低通滤波器进行图像的模糊处理,并进行了实验对比和分析。

5. 高级应用技术在实验中,我还研究了数字图像处理中的一些高级应用技术,包括层次分割、边缘检测和形态学处理。

通过应用不同的算法和参数,我实现了图像区域分割、提取图像边缘和形态学形状变换等效果,评估处理结果的准确性和稳定性。

四、实验结果与分析通过对以上实验方法的实施,我获得了一系列处理后的图像,并进行了结果的比较和分析。

在灰度变换实验中,我发现线性变换对图像的对比度有较大影响,但对图像的细节变化不敏感;在空间域滤波实验中,平滑滤波可以有效降噪,但会导致图像细节损失,而锐化滤波可以增强图像的边缘效果,但也容易引入噪声;在频域滤波实验中,理想低通滤波对图像的模糊效果明显,而巴特沃斯低通滤波器可以在一定程度上保留图像的高频细节信息;在高级应用技术实验中,边缘检测和形态学处理对提取图像边缘和形状变换非常有效,但参数的选择会对结果产生较大影响。

电子科技大学数字图像处理实验报告2

电子科技大学数字图像处理实验报告2

电子科技大学数字图像处理实验报告实验名称彩色图像处理实验序号学生姓名学生学号指导教师提交日期摘要本实验利用MATLAB软件,对彩色图像作了一些简单处理。

通过访问数字图像RGB三个通道的对应矩阵,改变数字图像的色彩,得到了原图像的补色图像。

并编写了图像的RGB模型与HSI模型相互转换的程序,实现了两个模型之间的互相转换。

为了得到HSI模型的补色,可将HSI模型转换为RGB模型,用RGB的反色来近似HSI的反色。

然后对彩色图像加入高斯与椒盐噪声,观察了加入噪声后RGB三个通道的图像效果,并通过算术均值滤波与中值滤波分别对三个通道进行去噪,达到对整个彩色图像的去噪。

最后证明了单个通道的噪声会通过到HSI的转换扩散到所有HSI图像上。

实验原理:1、三基色原理:人的眼睛就像一个三色接收器的体系,大多数的颜色可以通过红、绿、蓝三色按照不同的比例合成产生。

同样绝大多数单色光也可以分解成红(red)绿(green)蓝(blue)三种色光。

这是色度学的最基本原理,即三基色原理。

三种基色是相互独立的,任何一种基色都不能由其它两种颜色合成。

红绿蓝是三基色,这三种颜色合成的颜色范围最为广泛。

红绿蓝三基色按照不同的比例相加合成混色称为相加混色。

人眼接收色彩的方法:加法混色。

光色(红色+绿色)=黄色(yellow)光色(红色+蓝色)=紫红(magenta)光色(蓝色+绿色)=青色(cyan)印刷四色:减法呈色颜料(黄色+青色)=白色-红色-蓝色=绿色颜料(紫红+青色)=白色-红色-绿色=蓝色颜料(黄色+紫红)=白色-绿色-蓝色=红色颜料色另外会附加一个黑色,即cyan、magenta、yellow、black四色(cmyk)。

2、彩色图像表示方法:RGB图像:一幅RGB图像就是彩色像素的一个M×N×3数组,其中每一个彩色像素点都是在特定空间位置的彩色图像相对应的红绿蓝三个分量。

RGB图像可以看成是一个有三幅灰度图像形成的“堆”,形成一幅RGB图像的三个图像常称为红、绿或蓝分量图像。

数字图像处理实验报告

数字图像处理实验报告

数字图象处理实验报告主要是图象的几何变换的编程实现,详细包括图象的读取、改写,图象平移,图象的镜像,图象的转置,比例缩放,旋转变换等.详细要求如下:1.编程实现图象平移,要求平移后的图象大小不变;2.编程实现图象的镜像;3.编程实现图象的转置;4.编程实现图象的比例缩放,要求分别用双线性插值和最近邻插值两种方法来实现,并比较两种方法的缩放效果;5.编程实现以任意角度对图象发展旋转变换,要求分别用双线性插值和最近邻插值两种方法来实现,并比较两种方法的旋转效果.本实验的目的是使学生熟悉并掌握图象处理编程环境,掌握图象平移、镜像、转置和旋转等几何变换的方法,并能通过程序设计实现图象文件的读、写操作,及图象平移、镜像、转置和旋转等几何变换的程序实现.3.1 实验所用编程环境:Visual C++(简称VC)是微软公司提供的基于C/C++的应用程序集成开辟工具.VC拥有丰富的功能和大量的扩展库,使用它能有效的创立高性能的Windows应用程序和Web应用程序.VC除了提供高效的C/C++编译器外,还提供了大量的可重用类和组件,包括著名的微软根抵类库(MFC)和活动模板类库(ATL),因此它是软件开辟人员不可多得的开辟工具.VC丰富的功能和大量的扩展库,类的重用特性以及它对函数库、DLL库的支持能使程序更好的模块化,并且通过向导程序大大简化了库资源的使用和应用程序的开辟,正由于VC具有明显的优势,于是我选择了它来作为数字图象几何变换的开辟工具.在本程序的开辟过程中,VC的核心知识、消息映射机制、对话框控件编程等都得到了生动的表达和灵便的应用.3.2 实验处理的对象:256色的BMP(BIT MAP )格式图象BMP(BIT MAP )位图的文件构造:详细组成图: BITMAPFILEHEADER位图文件头(只用于BMP文件) bfType=”BM” bfSize bfReserved1bfReserved2bfOffBitsbiSizebiWidthbiHeightbiPlanesbiBitCountbiCompressionbiSizeImagebiXPelsPerMeterbiYPelsPerMeterbiClrUsedbiClrImportant单色DIB有2个表项16色DIB有16个表项或者更少256色DIB有256个表项或者更少真彩色DIB没有调色板每一个表项长度为4字节(32位)像素按照每行每列的顺序罗列每一行的字节数必须是4的整数倍BITMAPINFOHEADER 位图信息头 Palette 调色板 DIBPixels DIB图象数据1. BMP文件组成BMP文件由文件头、位图信息头、颜色信息和图形数据四部份组成.2. BMP文件头BMP文件头数据构造含有BMP文件的类型(必须为BMP)、文件大小(以字节为单位)、位图文件保存字(必须为0)和位图起始位置(以相对于位图文件头的偏移量表示)等信息.3. 位图信息头BMP位图信息头数据用于说明位图的尺寸(宽度,高度等都是以像素为单位,大小以字节为单位, 水平和垂直分辨率以每米像素数为单位) ,目标设备的级别,每一个像素所需的位数, 位图压缩类型(必须是 0)等信息.4. 颜色表颜色表用于说明位图中的颜色,它有假设干个表项,每一个表项是一个RGBQUAD类型的构造,定义一种颜色.详细包含蓝色、红色、绿色的亮度(值范围为0-255)位图信息头和颜色表组成位图信息5. 位图数据位图数据记录了位图的每一个像素值,记录顺序是在扫描行内是从左到右,扫描行之间是从下到上.Windows一个扫描行所占的字节数必须是 4的倍数(即以long为单位),缺乏的以0填充.3.3 BMP(BIT MAP )位图的显示:①普通显示方法:1. 申请内存空间用于存放位图文件2. 位图文件读入所申请内存空间中3. 在函数中用创立显示用位图, 用函数创立兼容DC,用函数选择显示删除位图但以上方法的缺点是: 1)显示速度慢; 2) 内存占用大; 3) 位图在缩小显示时图形失真大,(可通过安装字体平滑软件来解决); 4) 在低颜色位数的设备上(如256显示模式)显示高颜色位数的图形(如真彩色)图形失真严重.②BMP位图缩放显示 :用视频函数来显示位图,内存占用少,速度快,而且还可以对图形发展淡化(Dithering )处理.淡化处理是一种图形算法,可以用来在一个支持比图象所用颜色要少的设备上显示彩色图象.BMP位图显示方法如下:1. 翻开视频函数,普通放在在构造函数中2. 申请内存空间用于存放位图文件3. 位图文件读入所申请内存空间中4. 在 函数中 显示位图5. 关闭视频函数 ,普通放在在析构函数中以上方法的优点是: 1)显示速度快; 2) 内存占用少; 3) 缩放显示时图形失真小,4) 在低颜色位数的设备上显示高颜色位数的图形图形时失真小; 5) 通过直接处理位图数据,可以制作简单动画.3.4 程序中用到的访问函数Windows支持一些重要的DIB访问函数,但是这些函数都还没有被封装到MFC中,这些函数主要有:1. SetDIBitsToDevice函数:该函数可以直接在显示器或者打印机上显示DIB. 在显示时不发展缩放处理.2. StretchDIBits函数:该函数可以缩放显示DIB于显示器和打印机上.3. GetDIBits函数:还函数利用申请到的内存,由GDI位图来构造DIB.通过该函数,可以对DIB的格式发展控制,可以指定每一个像素颜色的位数,而且可以指定是否发展压缩.4. CreateDIBitmap函数:利用该函数可以从DIB出发来创立GDI位图.5. CreateDIBSection函数:该函数能创立一种特殊的DIB,称为DIB项,然后返回一个GDI位图句柄.6. LoadImage函数:该函数可以直接从磁盘文件中读入一个位图,并返回一个DIB句柄.7. DrawDibDraw函数:Windows提供了窗口视频(VFW)组件,Visual C++支持该组件.VFW中的DrawDibDraw函数是一个可以替代StretchDIBits的函数.它的最主要的优点是可以使用颤动颜色,并且提高显示DIB的速度,缺点是必须将VFW代码连接到进程中.3.5 图象的几何变换图象的几何变换,通常包括图象的平移、图象的镜像变换、图像的转置、图象的缩放和图象的旋转等.实验目的:本实验内容旨在让学生通过用VC等高级语言编写数字图象处理的一些根本算法程序,来稳固和掌握图象处理技术的根本技能,提高实际动手能力,并通过实际编程了解图象处理软件的实现的根本原理。

数字图像处理实验报告第二次

数字图像处理实验报告第二次

中国地质大学(武汉)机电学院电信专业
数字图像处理上机实习
(专题1—专题3)
学生姓名:
班级:071123
学号:
指导老师:傅华明
一 、实验题目
1:图象灰度变换【24号做的是(0)和(4)】
(0)显示灰度图象p02-01~p02-06及直方图;
(1)对灰度图象p02-01进行直方图均衡化;
(2)对灰度图象p02-02进行平方的灰度变换;
(3)对灰度图象p02-03进行平方根的灰度变换;
(4)对灰度图象p02-04的灰度范围进行适当展宽;
(5)对灰度图象p02-05取反;
(6)对灰度图像p02-06的偏黑部分实施灰度展宽,对偏亮的部分实施灰度压缩;
2:图象平滑【24号做的是(4)】
(4)对p02-04jy 、p02-04gs 进行5*5方形窗口的最大均匀性平滑滤波,并比较其效果; ## 对灰度图像p1~p6等添加椒盐噪声,完成后图象分别记为p1jy~p6jy 等;对灰度图像p1~p6等添加高斯噪声,完成后图象分别记为p1gs~p6gs 等;采用直接调用Matlab 函数的方法实现。

3:图象锐化【24号做的是(4)】
(4)利用3*3的Krisch 算子对p02-04实施图象锐化,二维梯度模板为:
H1=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----3333*03555, H2=⎥⎥⎥⎦
⎤⎢⎢⎢⎣⎡-----5335*03533 H3=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----5553*03333, H4=⎥⎥⎥⎦
⎤⎢⎢⎢⎣⎡-----3353*05335。

《数字图像处理》实验报告

《数字图像处理》实验报告

《数字图像处理》实验报告数字图像处理是计算机科学与技术领域中的一个重要分支,它涉及到对图像进行获取、处理、分析和显示等一系列操作。

在本次实验中,我们将学习和探索数字图像处理的基本概念和技术,并通过实验来加深对这些概念和技术的理解。

首先,我们需要了解数字图像的基本概念。

数字图像是由像素组成的二维矩阵,每个像素代表图像中的一个点,像素的灰度值或颜色值决定了该点的亮度或颜色。

在实验中,我们将使用灰度图像进行处理,其中每个像素的灰度值表示了该点的亮度。

在数字图像处理中,最基本的操作之一是图像的获取和显示。

我们可以通过摄像头或者从文件中读取图像数据,然后将其显示在计算机屏幕上。

通过这种方式,我们可以对图像进行观察和分析,为后续的处理操作做好准备。

接下来,我们将学习一些常见的图像处理操作。

其中之一是图像的灰度化处理。

通过将彩色图像转换为灰度图像,我们可以减少图像数据的维度,简化后续处理的复杂度。

灰度化处理的方法有多种,例如将彩色图像的RGB三个通道的像素值取平均值,或者使用加权平均值的方法来计算灰度值。

另一个常见的图像处理操作是图像的平滑处理。

图像平滑可以减少图像中的噪声,并使得图像更加清晰。

常用的图像平滑方法包括均值滤波和高斯滤波。

均值滤波通过计算像素周围邻域像素的平均值来平滑图像,而高斯滤波则使用一个高斯核函数来加权平均邻域像素的值。

除了平滑处理,图像的锐化处理也是数字图像处理中的一个重要操作。

图像的锐化可以增强图像的边缘和细节,使得图像更加清晰和鲜明。

常用的图像锐化方法包括拉普拉斯算子和Sobel算子。

这些算子通过计算像素周围邻域像素的差异来检测边缘,并增强边缘的灰度值。

此外,我们还将学习一些图像的变换操作。

其中之一是图像的缩放和旋转。

通过缩放操作,我们可以改变图像的尺寸,使其适应不同的显示设备或应用场景。

而旋转操作可以将图像按照一定的角度进行旋转,以达到某种特定的效果。

最后,我们将学习一些图像的特征提取和分析方法。

数字图像处理实验报告

数字图像处理实验报告

数字图像处理实验报告数字图像处理实验报告第一章总论数字图像处理是计算机图形学、数字信号处理等学科交叉的一门学科。

它是基于数字计算机对图像信号进行数字处理的一种方法。

数字图像处理技术已广泛应用于医学影像诊断、遥感图像处理、图像识别、安防监控等领域,在当今社会中具有不可替代的重要作用。

本次实验主要介绍了数字图像处理的基本方法,包括图像采集、图像增强、图像恢复、图像分割、图像压缩等几个方面。

在实验过程中,我们采用了一些常用的数字图像处理方法,并通过 Matlab 图像处理工具箱进行实现和验证。

第二章实验过程2.1 图像采集在数字图像处理中,图像采集是一个重要的步骤。

采集到的图像质量直接影响到后续处理结果的准确性。

本次实验使用的图像是一张 TIF 格式的彩色图像,通过 Matlab 读取图像文件并显示,代码如下:```Matlabim = imread('test.tif');imshow(im);```执行代码后,可以得到如下图所示的图像:![image_1.png](./images/image_1.png)2.2 图像增强图像增强是指利用某些方法使图像具有更好的视觉效果或者变得更适合某种应用。

本次实验我们主要采用直方图均衡化、灰度变换等方法进行图像增强。

2.2.1 直方图均衡化直方图均衡化是一种常用的增强方法,它可以增加图像的对比度和亮度,使图像更加清晰。

代码实现如下:```Matlabim_eq = histeq(im);imshow(im_eq);```执行代码后,会得到直方图均衡化后的图像,如下图所示:![image_2.png](./images/image_2.png)可以看出,经过直方图均衡化处理后,图像的对比度和亮度得到了明显提高。

2.2.2 灰度变换灰度变换是一种用于调整图像灰度级别的方法。

通过变换某些像素的灰度级别,可以增强图像的视觉效果。

本次实验我们采用对数变换和幂函数变换两种方法进行灰度变换。

数字图像处理-实验报告

数字图像处理-实验报告

《数字图象处理》实验报告一、数字图像处理设计主要内容数字图象处理课程设计要求使学生掌握数字图像处理的基本算法的计算机实现,从而培养学生运用数字信号处理的原理解决生物医学、电子工程领域的实际问题的能力。

进一步提高程序设计及调试能力,初步掌握进行科学研究工作的主要步骤和方法,学习和掌握科学研究资料检索的方法,学习对已有资料进行消化总结的方法,学习撰写科学报告的基本方法。

二、前期工作1.查阅资料,对数字信号处理和图象处理基本理论和实践作一全面了解;2.根据实验内容和要求确定实验思路,熟悉Matlab语言,理解对数字信号处理进行计算机仿真原理;三、设计工作1.图像平滑a.利用二个低通邻域平均模板(3×3和9×9)对一幅图象进行平滑,验证模板尺寸对图象的模糊效果的影响。

b.利用一个低通模板对一幅有噪图象(GAUSS白噪声)进行滤波,检验两种滤波模板(分别使用一个5×5的线性邻域平均模板和一个非线性模板:3×5中值滤波器)对噪声的滤波效果。

c.选择一个经过低通滤波器滤波的模糊图象,利用sobel水平边缘增强高通滤波器(模板)对其进行高通滤波图象边缘增强,验证模板的滤波效果。

d.选择一幅灰度图象分别利用一阶Sobel算子和二阶Laplacian算子对其进行边缘检测,验证检测效果。

2.图像增强a.直方图均衡化增强图像对比度的MATLAB程序。

b.采用线性变换进行图像增强的MATLAB程序。

c.采用边界锐化算法增强图像的MATLAB程序。

四、程序设计1.利用二个低通邻域平均模板(3×3和9×9)对一幅图象进行平滑,验证模板尺寸对图象的模糊效果的影响。

程序如下:l=imread('E:/matlab/test1/sample.jpg');L=rgb2gray(l);subplot(1,3,1);imshow(L);title('原图');j=fspecial('average');j1=filter2(j,L)/255;subplot(1,3,2);imshow(j1);title('3*3 滤波');k=fspecial('average',9);k1=filter2(k,L)/255;subplot(1,3,3);imshow(k1);title('9*9 滤波');仿真结果如下图:原图3*3 滤波9*9 滤波2.利用一个低通模板对一幅有噪图象(GAUSS白噪声)进行滤波,检验两种滤波模板(分别使用一个5×5的线性邻域平均模板和一个非线性模板:3×5中值滤波器)对噪声的滤波效果。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、实验目的
1.熟悉图像点运算和代数运算的实现方法
2.了解图像几何运算的简单应用
3.了解图像的邻域操作
二、实验环境
1、机器硬件配置:
CPU :英特尔酷睿i5-2410M 2.30GHz
内存: 4.00GB
显卡: NVIDIA GeForce GT 550M+Intel GMA HD 主硬盘:750GB SATA
2、操作系统版本:windows 7
3、软件版本、配置: matlab7.0
三、实验内容
1.图像点运算
2.图像的代数运算
3.图像的集合运算
4.图像的领域运算
5.思考题
四、实验内容
1.图像点运算
读入图像‘rice.png’,通过图像点运算改变对比度。

rice=imread('rice.png');
subplot(131),imshow(rice)
I=double(rice); %转换为双精度类型
J=I*0.43+60;
rice2=uint8(J); %转换为uint8
subplot(132),imshow(rice2)
J=I*1.5-60;
rice3=uint8(J); %转换为uint8
subplot(133),imshow(rice3)
2.图像的代数运算
A)图像加法运算
I=imread('rice.png');
imshow(I)
J=imread('cameraman.tif');
figure,imshow(J)
K=imadd(I,J);
figure,imshow(K)
K2=imadd(I,J,'uint16');
figure,imshow(K2,[])
RGB=imread('flowers.tif');
RGB2=imadd(RGB,50);
imshow(RGB)
figure,imshow(RGB2)
RGB3=imadd(RGB,100);
figure,imshow(RGB3)
RGB=imread('autumn.tif'); RGB2=imadd(RGB,50);
imshow(RGB)
figure,imshow(RGB2)
RGB3=imadd(RGB,100);
figure,imshow(RGB3)
I=imread('rice.png');
imshow(I)
background = imopen(I,strel('disk',15)); %估计背景图像figure, imshow(background);
I2=imsubtract(I,background); %从原始图像中减去背景图像figure, imshow(I2)
B)图像乘法运算
I=imread('moon.tif');
J=immultiply(I,1.2);
K=immultiply(I,0.5);
imshow(I)
figure,imshow(J)
figure,imshow(K)
3.图像的几何运算
C)图像缩放
读入图像‘trees.tif’,改变图像大小,分别将原图像放大1.5倍和缩小0.5倍。

I=imread('trees.tif');
J=imresize(I,1.25);
K=imresize(I,0.8);
imshow(I)
figure,imshow(J)
figure,imshow(K)
Y=imresize(I,[100,150]);
figure,imshow(Y)
在matlab环境中,程序首先读取图像,然后调用图像缩放函数,设置相关参数,再输出处理后的图像。

I = imread('cameraman.tif');
figure,imshow(I);
scale = 0.5;
J = imresize(I,scale);
figure,imshow(J);
D)图像旋转
将上述图像顺时针和逆时针旋转任意角度,观察显示效果。

I=imread('trees.tif');
J=imrotate(I,30,'bilinear');
J1=imrotate(I,30,'bilinear','crop');
imshow(I)
figure,imshow(J)
figure,imshow(J1)
J2=imrotate(I,-15,'bilinear');
figure,imshow(J2)
在matlab环境中,程序首先读取图像,然后调用图像旋转函数,设置相关参数,再输出处理后的图像。

I = imread('cameraman.tif');
figure,imshow(I);
theta = 30;
K = imrotate(I,theta); % Try varying the angle, theta.
figure, imshow(K)
E)图像剪切
通过交互式操作,从一幅图像中剪切一个矩形区域。

I=imread('autumn.tif');
imshow(I);
I1=imcrop;
figure,imshow(I1)
I2=imcrop(I,[30 60 120 160]);
figure,imshow(I2)
4.图像的邻域操作
读入图像‘tire.tif’,分别使用函数nlfilter和blkproc对图像进行滑动邻域操作和分离邻域操作。

I=imread('tire.tif');
f=inline('max(x(:))'); %构造复合函数
I2=nlfilter(I,[3 3],f); %滑动邻域操作
imshow(I)
figure,imshow(I2)
I=imread('tire.tif');
f=inline('uint8(round(mean2(x)*ones(size(x))))'); %构造复合函数
I2=blkproc(I,[8 8],f); %滑动邻域操作
imshow(I)
figure,imshow(I2)
5.思考题
1.点运算和代数运算的实现方法各是怎样的?
答:点运算是通过对图像中每个像素值进行计算,改善图像显示效果的操作,也称对比度增强,对比度拉伸,灰度变换,可以表示为B(x,y)=f(A(x,y))。

进行逐点运算,输入映射为输出,不改变图像像素的空间关系。

代数运算是指对两幅输入图像进行点对点的加、减、乘或除运算而得到输出图像的运算。

对于相加和相乘的情形,可能不止有两幅图像参加运算。

相关文档
最新文档