控制电机课后答案
控制电机(第四版)陈隆昌 阎治安 课后参考答案
第二章1.为什么直流发电机电枢绕组元件的电势是交变电势而电刷电势是直流电势? 答:电枢连续旋转,导体ab和cd轮流交替地切割N极和S极下的磁力线,因而ab和cd中的电势及线圈电势是交变的。
由于通过换向器的作用,无论线圈转到什么位置,电刷通过换向片只与处于一定极性下的导体相连接,如电刷A始终与处在N极下的导体相连接,而处在一定极性下的导体电势方向是不变的,因而电刷两端得到的电势极性不变,为直流电势。
2. 如果图 2 - 1 中的电枢反时针方向旋转,试问元件电势的方向和A、 B电刷的极性如何?答:在图示瞬时,N极下导体ab中电势的方向由b指向a,S极下导体cd中电势由d指向c。
电刷A通过换向片与线圈的a端相接触,电刷B与线圈的d端相接触,故此时A电刷为正,B电刷为负。
当电枢转过180°以后,导体cd处于N极下,导体ab处于S极下,这时它们的电势与前一时刻大小相等方向相反,于是线圈电势的方向也变为由a到d,此时d为正,a为负,仍然是A刷为正,B刷为负。
4. 为什么直流测速机的转速不得超过规定的最高转速? 负载电阻不能小于给定值? 答:转速越高,负载电阻越小,电枢电流越大,电枢反应的去磁作用越强,磁通被削弱得越多,输出特性偏离直线越远,线性误差越大,为了减少电枢反应对输出特性的影响,直流测速发电机的转速不得超过规定的最高转速,负载电阻不能低于最小负载电阻值,以保证线性误差在限度的范围内。
而且换向周期与转速成反比,电精心整理精心整理机转速越高,元件的换向周期越短;eL 正比于单位时间内换向元件电流的变化量。
基于上述分析,eL 必正比转速的平方,即eL ∝n2。
同样可以证明ea ∝n2。
因此,换向元件的附加电流及延迟换向去磁磁通与n2成正比,使输出特性呈现非线性。
所以,直流测速发电机的转速上限要受到延迟换向去磁效应的限制。
为了改善线性度,采用限制转速的措施来削弱延迟换向去磁作用,即规定了最高工作转速。
机电传动控制例题+课后习题答案+华科+第四版
TL T KtI a C
I a
I a E
E U I a Ra E E1
注意:从
U Ra C
不能判断E是如何变化的 E K en
52.5
T
3.15 解:(1) IN=PN/NUN=2200/0.8 ×110=25A (2)求IfN=Uf/Rf=110/82.7=1.33A (3)Pf= Uf IfN=110 ×1.33=0.146kw (4)TN=9.55 × PN/nN=9.55 ×2200/1500=14N.m (5)E= KeN nN=UN-INRa=110-25 ×0.4=100V (6)IST= UN/Ra=110/0.4=275A (7) IST=UN/(Ra+RST)2 IN RST UN/2 IN- Ra=110/2 ×25-0.4=1.8
• 例5-2 有一台三相四极的异步电动机, • 其额定技术数据为nN=1440r/min,R2,E20=20V, • 试求:(l)电动机的同步转速n0 :(2)电动机启动时的转子电流 I2st : • (3)电动机在额定转速时转子电动势的频率f2N; • (4)电动机在额定转速时的转子电流 I2N E20 20 • 解 (1) n0=60f1/P=60×50/2=1500r/min 242.5 A I 2 st 2 2 • (2) R2 X 20 0.022 0.082 •
(1)估算Ra
K e N U N I N RN / nN
5.5 103 PN U N Ra 0.51 I 0.51 220 31 0.71 UN IN N
机电传动控制第五版课后答案--最全版
机电传动控制第五版课后答案--最全版机电传动控制是一门涉及机械、电气和控制等多领域知识的重要学科,对于相关专业的学生和从业者来说,掌握这门课程的知识至关重要。
而课后习题的答案则是检验学习成果、加深理解的重要工具。
以下为您提供机电传动控制第五版的课后答案,希望能对您的学习有所帮助。
第一章绪论1、机电传动控制的目的是什么?答:机电传动控制的目的是将电能转变为机械能,实现生产机械的启动、停止、调速、反转以及各种生产工艺过程的要求,以满足生产的需要,提高生产效率和产品质量。
2、机电传动系统由哪些部分组成?答:机电传动系统通常由电动机、传动机构、生产机械、控制系统和电源等部分组成。
电动机作为动力源,将电能转化为机械能;传动机构用于传递动力和改变运动形式;生产机械是工作对象;控制系统用于控制电动机的运行状态;电源则为整个系统提供电能。
3、机电传动系统的运动方程式是什么?其含义是什么?答:运动方程式为 T M T L =J(dω/dt) 。
其中,T M 是电动机产生的电磁转矩,T L 是负载转矩,J 是转动惯量,ω 是角速度,dω/dt 是角加速度。
该方程式表明了机电传动系统中电动机的电磁转矩与负载转矩之间的平衡关系,当 T M > T L 时,系统加速;当 T M < T L 时,系统减速;当 T M = T L 时,系统以恒定速度运行。
第二章机电传动系统的动力学基础1、为什么机电传动系统中一般需要考虑转动惯量的影响?答:转动惯量反映了物体转动时惯性的大小。
在机电传动系统中,由于电动机的转速变化会引起负载的惯性力和惯性转矩,转动惯量越大,系统的加速和减速过程就越困难,响应速度越慢。
因此,在设计和分析机电传动系统时,需要考虑转动惯量的影响,以确保系统的性能和稳定性。
2、多轴传动系统等效为单轴系统的原则是什么?答:多轴传动系统等效为单轴系统的原则是:系统传递的功率不变,等效前后系统的动能相等。
3、如何计算机电传动系统的动态转矩?答:动态转矩 T d = T M T L ,其中 T M 是电动机的电磁转矩,TL 是负载转矩。
电机控制技术 罗文广课后习题答案
电机控制课后习题(部分答案)1-1.负载转矩的折算原则是什么?负载飞轮矩的折算是什么?答:负载转矩折算的原则是折算前后的功率不变;负载飞轮矩折算的原则是折算前后的动能不变。
1-2.什么是负载特性?什么是电动机的机械特性?答:电力拖动系统的负载转矩特性简称负载特性是指生产机械的负载转矩与转速的关系,典型的负载特性有恒转矩负载、通风机与泵类负载和恒功率负载等。
电动机的机械特性是电动机的输出扭矩与其转速之间的关系。
1-3. 电力传动系统稳定运行的充分必要条件是什么?答:为了保证电力系统稳定运行,电力系统必须满足以下要求:(1)为保持电力系统正常运行的稳定性和频率、电压的正常水平,系统应有足够的静态稳定储备和有功、无功备用容量,并有必要的调节手段。
在正常负荷波动和调节有功、无功潮流时,均不应发生自发振荡。
(2)要有合理的电网结构。
(3)在正常方式(包括正常检修方式)下,系统任意一个元件(发电机、线路设备、变压器、母线)发生单一故障时,不应导致主系统发生非同步运行,不应发生频率崩溃和电压崩溃。
(4)在事故后经调整的运行方式下,电力系统仍应有符合规定的静稳定储备,其他元件按规定的事故过负荷运行。
(5)电力系统发生稳定破坏时,必须有预定措施,以缩小事故范围减少事故损失。
2-1.分析并比较交、直流电动机的特点?答:课本38页,表3-12-2.直流电动机有哪些励磁方式?各种励磁方式分别有何特点?答;直流电动机的励磁方式有他励、并励、串励和复励等。
他励式的特点是励磁绕组单独接其他直流电源,这样励磁电流由该电源供给;并励式的特点是励磁绕组和电枢绕组并联,接同一个直流电源,励磁绕组上的电压就等于电枢绕组的端电压;串励式的特点是励磁绕组与电枢绕组串联连接,这样励磁绕组的电流就等于电枢绕组的电流;复励方式的特点是有两套励磁绕组:一套是与电枢绕组并联的并励绕组,另一套是与电枢绕组串联的串励绕组。
若串励绕组产生的磁动势与并励绕组产生的磁动势方向相同,就称为积复励式;若方向相反,则称为差复励式。
控制电机与特种电机课后答案第4章
控制电机与特种电机课后答案第4章思考题与习题1. 旋转变压器由_________两大部分组成。
( )A.定子和换向器B.集电环和转子C.定子和电刷D.定子和转子2. 与旋转变压器输出电压呈一定的函数关系的是转子( )。
A.电流B. 转角C.转矩D. 转速3(旋转变压器的原、副边绕组分别装在________上。
( )A(定子、转子 B.集电环、转子 C.定子、电刷 D. 定子、换向器4(线性旋转变压器正常工作时,其输出电压与转子转角在一定转角范围内成________。
5、试述旋转变压器变比的含义, 它与转角的关系怎样?6、旋转变应器有哪几种?其输出电压与转子转角的关系如何,7、旋转变压器在结构上有什么特点?有什么用途。
8、一台正弦旋转变压器,为什么在转子上安装一套余弦绕组?定子上的补偿绕组起什么作用? 9、说明二次侧完全补偿的正余弦旋转变压器条件,转子绕组产生的合成磁动势和转子转角α有何关系。
10、用来测量差角的旋转变压器是什么类型的旋转变压器?11、试述旋转变压器的三角运算和矢量运算方法.12、简要说明在旋转变压器中产生误差的原因和改进方法。
答案1. D2. B3. A4. 正比5.旋转变压器的工作原理和一般变压器基本相似,从物理本质来看,旋转变压器可以看成是一种能转动的变压器。
区别在于对于变压器来说,其原、副边绕组耦合位置固定,所以输出电压和输入电压之比是常数,而旋转变压器的原、副边绕组分别放置在定、转子上,由于原边、副边绕组间的相对位置可以改变,随着转子的转动,定、转子绕组间的电磁耦合程度将发生变化,电磁精确程度与转子的转角有关,因此,旋转变压器能将转角转换成与转角成某种函量关系的信号电压。
输出绕组的电压幅值与转子转角成正弦、余弦函数关系,或保持某一比例关系,或在一定转角范围内与转角成线性关系。
6.按着输出电压和转子转角间的函数关系,旋转变压器主要可以分:正、余弦旋转变压器(代号为XZ)和线性旋转变压器(代号为XX)、比例式旋转变压器(代号为XL),矢量旋转变压器(代号为XS)及特殊函数旋转变压器等。
控制电机课后练习题含答案
控制电机课后练习题含答案一、选择题1.下列哪一个模块可以用于控制电机的转速和方向?A. 蓝牙模块B. 光敏电阻模块C. 直流无刷电机驱动模块D. 温湿度传感器模块正确答案:C2.下列哪一个语句可以将电机停止转动?A. digitalWrite(IN1, HIGH);B. digitalWrite(IN2, HIGH);C. digitalWrite(IN1, HIGH); digitalWrite(IN2, LOW);D. digitalWrite(IN1, LOW); digitalWrite(IN2, LOW);正确答案:D3.控制电机转速的方法有哪些?A. 改变电机的电压B. 改变电机的电流C. 改变电机的载荷D. 改变电机内部的导体数量正确答案:A二、填空题1.请用代码实现使用直流无刷电机驱动模块控制电机逆时针旋转。
digitalWrite(IN1, HIGH);digitalWrite(IN2, LOW);2.请用代码实现使用直流无刷电机驱动模块控制电机转速为50。
analogWrite(EN, 50);3.控制电机转速的单位是________。
正确答案:千转每分钟(RPM)三、简答题1.请简述直流无刷电机驱动模块控制电机转速的原理。
直流无刷电机驱动模块通过模拟方式控制电机转速,具体过程如下:–通过控制电机的输入电压来改变电机的转速;–使用PWM调制技术控制电机的输入电压,在不同的电压下引起电机的负载不同,从而改变其转速;–调整占空比大小以改变电机的转速;2.对于一个电机,它的转速越快,那么其________会越大。
正确答案:反电动势。
3.在控制电机转速时,如何实现电机的平滑加速和减速?可以采用线性加速和减速的方式,根据一定规律逐步改变PWM信号的占空比。
四、编程题使用Arduino UNO板卡和直流无刷电机驱动模块控制一个电机完成以下功能:•每隔1秒钟逆时针旋转3秒;•每隔2秒钟顺时针旋转2秒。
电机与电器控制技术课后习题答案
第1章直流电机及电力拖动习题答案1.简述直流电动机的工作原理、主要结构及各部分的作用。
答:1)直流电动机的工作原理:直流电动机的工作原理是基于电磁力定律的。
若磁场B x与导体互相垂直,且导体中通以电流i,则作用于载流导体上电磁力f。
此电磁力与转子半径之积即为电磁转矩。
该电磁转矩使电动机旋转。
通过换向器和电刷的作用,流经线圈的电流方向改变,这样导体所受的电磁力方向不变,从而保持电动机沿着一个固定的方向旋转。
2)直流电机主要由定子和转子部分组成。
定子主要由主磁极、机座、换向磁极、电刷装置和端盖组成。
主磁极的作用是产生恒定、有一定空间分布形状的气隙磁通密度。
整体机座是用导磁效果较好的铸钢材料制成,该种机座能同时起到导磁和机械支撑作用。
换向极用来改善直流电机的换向。
电刷装置把电机电枢中的电流与外部静止电路相连或把外部电源与电机电枢相连。
电刷装置与换向片一起完成机械整流,把电枢中的交变电流变成电刷上的直流或把外部电路中的直流变换为电枢中的交流。
2.直流电机的电枢绕组的连接方式中单叠绕组和单波绕组各有何特点?答:单叠绕组的特点是相邻元件相互叠压,合成节距与换向节距均为1,即y=y k=1。
单叠绕组有以下特点:1)同一主磁极下的元件串联在一起组成一个支路,这样有几个主磁极就有几条支路,主磁极对数等于之路对数,p =a。
2)电刷数等于主磁极数,电刷位置应使支路感应电动势最大。
3)电刷间电动势等于并联支路电动势,即等于每条并联支路中每根导体电动势之和。
4)电枢电流等于各并联支路电流之和。
单波绕组:线圈连接呈波浪形,所以称作波绕组。
单波绕组直接相连的两个线圈的对应边不是在同一个主磁极下面,而是分别处于相邻两对主磁极中的同极性的磁极下面,合成节距约等于两个极距。
单波绕组只有一对并联支路,支路对数与磁极对数p无关,即a=1。
3.直流电机的励磁方式有几种?画图说明。
答:励磁方式分为他励、并励、串励和复励。
a)b)c)d)a)他励b)并励c)串励d)复励4.什么是电枢反应,对电机有何影响?答:电枢磁场对主磁场的影响称为电枢反应。
电机拖动自动控制课后答案
第三章习题与答案1.双闭环调速系统在突加给定的起动过程中,转速调节器为什么能迅速达到限幅值,其限幅值是如何整定的?电流调节器是否应达到限幅值,其限幅值是如何整定的?双闭环调速系统在突加给定时,由于电机的机械惯性,转速为零,使转速反馈电压fn U 为零,这时加在转速调节器输入端的偏差电压n U ∆很大,而转速调节器的积分时间常数较小,所以转速调节器的输出能迅速达到限幅值,其限幅值按所要限制的最大电流值来整定,dm gi I U β=。
电流调节器不应达到限幅值,否则将失去调节作用,其限幅值应大于最大的输出控制电压,s fz gdm e K km K R I n C U U +=>。
2.双闭环调速系统对电网及负载扰动,其调节过程的特点是什么?对电网电压的扰动无需等到电机转速发生变化,只要电枢回路电流发生变化时,由电流调节器调节即可,有效减小电机转速的变化。
负载扰动要电机的转速发生变化后,由转速调节器来调节。
3-1开环系统额定静态速降是由什么因素决定的? 开环系统的静态速降为e d C RI n =∆其中e C 为电机所固有的常数,因此开环系统额定静态速降主要由电机的额定电流、电枢回路总电阻决定。
3.转速负反馈系统能减小稳态速降的原因是什么?转速负反馈系统能减小稳态速降的原因是闭环系统的自动调节作用。
在开环系统中,当负载电流增大时,电枢电流Id 在电阻R 上的压降也增大,转速就要降下来。
现在引入了转速负反馈,转速稍有降落,反馈电压Un 就感觉出来了。
因给定电压Un*不变。
因此加到触发器上的控制电压Uc=Kp(Un*-Un)便会自动增加了,它可使晶闸管整流电压Ud0增加,电动机转速便相应回升。
由于电枢电压的增量ΔUd0,补偿ΔIdR 压降,就使转速基本维持不变。
4.有一V -M 调速系统,已知电动机的电势系数Ce =1.27(v/rpm),IN =15A ,nN =150转/分,电枢回路总电阻R =3Ω,晶闸管整流装置的放大倍数Ks =30,要求调速范围D =20,S =10%,(1)计算开环系统的静态速降和调速要求所允许的静态速降。
机电传动控制第三版课后答案
习题与思考题第二章机电传动系统的动力学基础2.1 说明机电传动系统运动方程中的拖动转矩,静态转矩和动态转矩。
拖动转矩是有电动机产生用来克服负载转矩,以带动生产机械运动的。
静态转矩就是由生产机械产生的负载转矩。
动态转矩是拖动转矩减去静态转矩。
2.2 从运动方程式怎样看出系统是处于加速,减速,稳态的和静态的工作状态。
TM-TL>0说明系统处于加速,TM-TL<0 说明系统处于减速,TM-TL=0说明系统处于稳态(即静态)的工作状态。
2.3 试列出以下几种情况下(见题2.3图)系统的运动方程式,并说明系统的运动状态是加速,减速,还是匀速?(图中箭头方向表示转矩的实际作用方向)TM TL TM TLNTM=TL TM< TLTM-TL>0说明系统处于加速。
TM-TL<0 说明系统处于减速TM TL TM TLTM> TL TM> TL系统的运动状态是减速系统的运动状态是加速TM TL TM TL TM= TL TM= TL系统的运动状态是减速系统的运动状态是匀速2.4 多轴拖动系统为什么要折算成单轴拖动系统?转矩折算为什么依据折算前后功率不变的原则?转动惯量折算为什么依据折算前后动能不变的原则?因为许多生产机械要求低转速运行,而电动机一般具有较高的额定转速。
这样,电动机与生产机械之间就得装设减速机构,如减速齿轮箱或蜗轮蜗杆,皮带等减速装置。
所以为了列出系统运动方程,必须先将各转动部分的转矩和转动惯量或直线运动部分的质量这算到一根轴上。
转矩折算前后功率不变的原则是P=Tω, p不变。
转动惯量折算前后动能不变原则是能量守恒MV=0.5Jω22.5为什么低速轴转矩大,高速轴转矩小?因为P= Tω,P不变ω越小T越大,ω越大T 越小。
2.6为什么机电传动系统中低速轴的GD2逼高速轴的GD2大得多?因为P=Tω,T=G∂D2/375. P=ωG∂D2/375. ,P不变转速越小GD2越大,转速越大GD2越小。
控制电机 第四版 陈隆昌 阎治安 课后答案
第二章1.为什么直流发电机电枢绕组元件的电势是交变电势而电刷电势是直流电势?答:电枢连续旋转,导体ab和cd轮流交替地切割N极和S极下的磁力线,因而ab和cd中的电势及线圈电势是交变的。
由于通过换向器的作用,无论线圈转到什么位置,电刷通过换向片只与处于一定极性下的导体相连接,如电刷A始终与处在N极下的导体相连接,而处在一定极性下的导体电势方向是不变的,因而电刷两端得到的电势极性不变,为直流电势。
2. 如果图 2 - 1 中的电枢反时针方向旋转,试问元件电势的方向和A、 B 电刷的极性如何?答:在图示瞬时,N极下导体ab中电势的方向由b指向a,S极下导体cd 中电势由d指向c。
电刷A通过换向片与线圈的a端相接触,电刷B与线圈的d端相接触,故此时A电刷为正,B电刷为负。
当电枢转过180°以后,导体cd处于N极下,导体ab处于S极下,这时它们的电势与前一时刻大小相等方向相反,于是线圈电势的方向也变为由a到d,此时d为正,a为负,仍然是A刷为正,B刷为负。
4. 为什么直流测速机的转速不得超过规定的最高转速? 负载电阻不能小于给定值?答:转速越高,负载电阻越小,电枢电流越大,电枢反应的去磁作用越强,磁通被削弱得越多,输出特性偏离直线越远,线性误差越大,为了减少电枢反应对输出特性的影响,直流测速发电机的转速不得超过规定的最高转速,负载电阻不能低于最小负载电阻值,以保证线性误差在限度的范围内。
而且换向周期与转速成反比,电机转速越高,元件的换向周期越短;eL正比于单位时间内换向元件电流的变化量。
基于上述分析,eL必正比转速的平方,即eL∝n2。
同样可以证明ea∝n2。
因此,换向元件的附加电流及延迟换向去磁磁通与n2成正比,使输出特性呈现非线性。
所以,直流测速发电机的转速上限要受到延迟换向去磁效应的限制。
为了改善线性度,采用限制转速的措施来削弱延迟换向去磁作用,即规定了最高工作转速。
5. 如果电刷通过换向器所连接的导体不在几何中性线上,而在偏离几何中性线α角的直线上,如图 2 - 29 所示,试综合应用所学的知识,分析在此情况下对测速机正、反转的输出特性的影响。
机电传动控制基础课后题答案
解:电机的额定电流:
PN UNIN
N
IN
PN
UNN
7.5100038.5 22088.5%
A
电机的转矩:
T N9.5n P 5 N N9.5 5 1 75 50 0 4.7 0 0 7N 5•m
其人为特性曲线如图3所示
(4)弱磁时的人为特性:
n 0 .8 U K N e N 9 .5 5 ( 0 .R 8 K a e N ) 2 T 0 .8 1 0 0 0 .1 3 2 9 .5 5 n( 0 0 . .1 1 9 3 6 2 2 0 .8 ) T 2 0 8 3 1 .8 4 T
解:(1)设能耗制动电阻为R1, 反接制动电阻为R2
K e N U N IN R a 2 2 0 3 1 0 .4 0 .2 0 8
n N
1 0 0 0
电动状态的稳态转速
n s K U e N N 9 .5 5 ( R K a e N ) 2 T L 0 2 .2 2 0 0 8 9 .5 0 5 .4 0 . 4 2 9 0 8 2 1 0 1 0 r m i n
3.8 一台他励直流电动机所拖动的负载转矩TL=常数,当电枢 电压或电枢附加电阻改变时,能否改变其稳定运行状态下电枢电流
的大小?为什么?这时拖动系统中哪些量必然要发生变化?
T K t I a
Ia
T K t
T TL T0
TL 常 数
T 常数 TL Kt 常数 不变 电枢电压或电枢附加电阻改变时 I 不变
T’L JL ωL
JM
M
ωM T
(a) 旋转运动
机电传动控制课后习题答案完整版
PN=UNIaNηN Uf= RfIfN
2200=110*IaN*0.8 IfN=110/82.7 =1.33A
IaN=25A
③ Pf= UfIfN =146.3W ④额定转矩 TN=9.55 PN/ nN =14Nm ⑤ 额定电流时的反电势 EN=UN-INRa=110V-0.4*25=100V ⑥ 直接启动时的启动电流 Ist=UN/Ra =110/0.4=275A ⑦ 启动电阻 2IN> UN/ (Ra+Rst) Rst>1.68Ω 启动转矩 Ia= UN/ (Ra+Rst) =52.9A Keφ=(UN-INRa)/nN =0.066 T=KtIaφ =9.55*0.066*52.9 =33.341500r/min, η
试求该电机的额定电流和转矩。 PN=UNINηN 7500W=220V*IN*0.885 IN=38.5A
TN=9.55PN/nN=47.75Nm 3.7 一台他励直流电动机: PN=15KW, U N=220V, I N=63.5A, 载特性为: U 0/ V I f/A 115 0.442 184 0.802 230 1.2 253 1.686 265 2.10 n N=2850r/min,Ra =0.25Ω, 其空
异步电动机的转子没有直流电流励磁它所需要的全部磁动势均由定子电流产生所以一部电动机必须从三相交流电源吸取滞后电流来建立电动机运行时所需要的旋转磁场它的功率因数总是小于1的同步电动机所需要的磁动势由定子和转子共同产生的当外加三相交流电源的电压一定时总的磁通不变在转子励磁绕组中通以直流电流后同一空气隙中又出现一个大小和极性固定极对数与电枢旋转磁场相同的直流励磁磁场这两个磁场的相互作用使转子北电枢旋转磁场拖动着一同步转速一起转动
电机与运动控制系统第二版罗应立课后答案
2-1安培环路定律P11;磁路的欧姆定律P12;电磁感应定律P19不一定可以;因为磁路是非线性的;存在饱和现象..2-2磁阻和磁导与磁路的磁导率、长度和截面积有关;其中磁导率取决于磁路的饱和程度;即磁通密度的大小.. 2-3Φ2>Φ1 B2=B1Φ2=Φ1 B1>B22-4 1如果工作时进入磁饱和区;设备发热加剧;影响设备正常运行..P15 P1622-5 P242-6 1P2322-7 P242-8 1瞬态值2平均值2-9无功功率铁心损耗P372-101P35 P392P422-11 P39 重置前后磁动势不变P402-12 P37 大好2-13 因素:①铁芯材质;磁路结构②磁感应强度③原边和副边的绕线方式;顺序④线圈结构2-142-15 增大2-16 P422-172-18E1=-j444fW1ΦmE2 =-j444fW2Φm2-192-20 N1=W1 N2=W23-11换向器在直流电机中起什么作用答:在直流发电机中; 换向器起整流作用; 即把电枢绕组里的交流电整流为直流电; 在正、负电刷两端输出..在直流电动机中;换向器起逆变作用; 即把电刷外电路中的直流电经换向器逆变为交流电输入电枢元件中..2直流电机的主磁路由哪几部分组成磁路未饱和时;励磁磁通势主要消耗在哪一部分上答:直流电机的主磁路由以下路径构成: 主磁极N 经定、转子间的空气隙进入电枢铁心; 再从电枢铁心出来经定、转子间的空气隙进入相邻的主磁极S; 经定子铁心磁轭到达主磁极N; 构成闭合路径..励磁磁通势主要消耗在空气隙上..3-2直流电机的铭牌上的额定功率是指什么功率答:对于直流发电机;是指输出的电功率;对于直流电动机;是指输出的机械功率..3-33-4直流发电机的损耗主要有哪些铁损耗存在于哪一部分; 它随负载变化吗电枢铜损耗随负载变化吗答:直流发电机的损耗主要有: 1 励磁绕组铜损耗; 2 机械摩擦损耗; 3 铁损耗; 4 电枢铜损耗; 5 电刷损耗; 6 附加损耗..铁损耗是指电枢铁心在磁场中旋转时硅钢片中的磁滞和涡流损耗..这两种损耗与磁密大小以及交变频率有关..当电机的励磁电流和转速不变时; 铁损耗也几乎不变..它与负载的变化几乎没有关系..电枢铜损耗由电枢电流引起; 当负载增加时; 电枢电流同时增加; 电枢铜损耗随之增加..电枢铜损耗与电枢电流的平方成正比..3-5 P55页电枢电流;励磁电流3-6 P57页电动:n Te 同方向发电:n Te 反方向1.3电动2.4发电1.2.3.4为罗马数字为各量的实际运动方向提供参考3-7 1.略2.是3-8略3-93-10 1.先励磁再电枢2.一般的他励直流电动机为什么不能直接启动采用什么启动方法比较好答:他励直流电动机启动时由于电枢感应电动势Ea =CeΦn = 0 ; 最初启动电流IS =URa; 若直接启动; 由于Ra 很小; IS 会十几倍甚至几十倍于额定电流; 无法换向; 同时也会过热; 因此不能直接启动..比较好的启动方法是降低电源电压启动; 只要满足T≥ 1 .1~1 .2 TL 即可启动; 这时IS ≤Iamax ..启动过程中; 随着转速不断升高逐渐提高电源电压; 始终保持Ia ≤Iamax 这个条件; 直至U = UN ; 启动便结束了..如果通过自动控制使启动过程中始终有Ia = Iama x 为最理想..3-113-12他励直流电动机启动前; 励磁绕组断线; 启动时; 在下面两种情况下会有什么后果:1 空载启动;2 负载启动; TL = TN ..答:他励直流电动机励磁绕组断线; 启动过程中磁通则为剩磁磁通; 比ΦN 小很多..1 空载启动当最初启动电流IS ≤Iamax 时; 启动转矩TS 就会比空载转矩M0 大很多; 因此电动机可以启动; 但启动过程结束后的稳态转速则非常高; 因为稳定运行时要满足Ea≈UN ; Ea = CeΦn ; Φ很小; n就很高; 机械强度不允许; 电动机会损坏..2 负载启动; TL = TN当Ia ≤Iama x 时; 电磁转矩比负载转矩TL 小; 电动机不启动..这样如果采用降压启动时; 电源电压继续上升; 电枢电流继续增大; 电磁转矩T 继续增大; 从动转矩来讲会达到大于1 .1 TN ; 但是由于Φ很小; 会使电枢电流远远超过Iamax ; 不能换向; 同时也会由于过热而损坏电动机..当然; 用电枢串电阻启动的结果也相同..3-13 略3-14略3-15用电动机惯例时;他励直流电动机电磁功率PM=EaIa=TΩ<0;说明了电动机电能量转换的方向是机械功率转换成电功率;那么是否可以认为该电动机运行于回馈制动状态;或者说是一台他励直流发电机为什么答:1他励直流电动机运行时PM<0;说明T与n方向相反;因此电动机运行于制动状态..2制动运行状态包括回馈制动运行、能耗制动运行、反接制动过程及倒拉反转等制动状态;而直流发电机状态仅仅是回馈制动运行这一种..3因此;仅仅从PM<0说明电动机是一台发电机的看法是错误的..4运行于回馈制动运行状态的条件是:① PM<0;②P1=UIa<0;也就是说;机械功率转变成电功率后还必须回送给电源.. 3-163-173-18略 3-19一台他励直流电动机的P N =17kW;U N =110V;I N =185A;n N =1000r/min;已知电动机最大允许电流I max =1.8I N;电动机拖动T L =0.8T N 负载电动运行..试求:1采用能耗制动停车;电枢应串入多大电阻 2采用电压反接制动停车;电枢应串入多大电阻解:1065.018510171851103232232=⨯-⨯=-=N N N N a I P I U R 1.01000065.0185110=⨯-=-=ΦN a N N N e n R I U Cmin /10041858.01.0065.01.0110r I C R C U n a N e a N e N =⨯⨯-=Φ-Φ=N B a N e B a a B I R R n C R R E I =+Φ=+=11 1858.1065.010011.01⨯=+⨯B RΩ=24.01B R 2N B a N e B a a B I R R n C U R R E U I 8.122=+Φ+=++=1858.1065.010011.01102⨯=+⨯+B RΩ=56.02B R3-203-21 略4-1为什么加负载后直流电动机的转速会降低;它的实质是什么 答:当负载电流增大后;电枢电阻上压降增大;使E 减小;导致转速n 必然下降..实质是电枢电阻的存在导致压降增大..4-2什么叫调速范围、静差率 它们之间有什么关系 怎样才能扩大调速范围①调速范围——电动机在额定负载下调速时;允许的最高转速max n 与最低转速min n 之比叫做调速范围;用D 表示;即minmaxn n D =②静差率——当系统在某一转速下运行时;负载由理想空载增加到额定值所对应的转速降落N n ∆与理想空载转速0n 之比;称作静差率S ;即0Nn n S ∆=③直流变压调速系统中调速范围、静差率和额定速降之间的关系为)1(s n s n D N N -∆=④采用闭环控制方式;使转速降落N n ∆能够大幅度下降;才能在保证静差率S 不变的前提下扩大调速范围..4-3直流电动机为PN=74kW;UN=220V;IN=378A;nN=1430r/min;Ra=0.023Ω..相控整流器内阻Rrec=0.022Ω..采用降压调速..当生产机械要求s=20%时;求系统的调速范围..解:()(2203780.023)14300.1478N N a N Ce U I R n V rpm =-=-⨯=378(0.0230.022)0.1478115N n I R Ce rpm ∆==⨯+=[(1)]14300.2[115(10.2)] 3.1N D n S n s =∆-=⨯⨯-=就是公式的转换 4-4:4-54-61234-74-8 某调速系统的开环放大系数为15时;额定负载下电动机的速降为8 r/min;如果将开环放大系数提高到30;它的转速降为多少 在同样静差率要求下;调速范围可以扩大多少倍解:根据 Kn n +∆=∆1opcl ;在K = 15时;求出1288)151()1(cl op =+=∆+=∆n K n r/min 当K 2=30时;求得min r/13.430112812op cl2=+=+∆=∆K n n再根据)1(s n s n D N N -∆=;在同样静差率要求下94.113.4822==∆∆=n n D D cl cl 答:如果开环放大系数提高到30;它的转速降为4.13r/min ;在同样静差率要求下;调速范围可以扩大到1.94倍..4-10 略4-114-12 4-134.144-152.抑制负载转矩3.可以..4-16区别是有无独立的加速度环和补偿的方式不同;前者是前馈补偿;后者是转速环的补偿.. 因为扰动计算机的原理是加入了前馈补偿所以是前馈方法..4-17 略4-18 略5-1同步电机与异步电机在结构上有什么不同和相同之处与他励直流电动机的结构有何不同同步电机和异步电机的定子绕组是相同的;主要区别在于转子的结构..同步电机的转子上有直流励磁绕组;所以需要外加励磁电源;通过滑环引入电流;而异步电机的转子是短路的绕组;靠电磁感应产生电流..相比之下;同步电机较复杂;造价高..他励直流电动机是利用换向器来自动改变线圈中的电流方向;从而使线圈受力方向一致而连续旋转的..同步与异步电机由定子和转子组成;定子就是电磁铁;转子就是线圈..而定子和转子是采用同一电源的;所以;定子和转子中电流的方向变化总是同步的;即线圈中的电流方向变了;同时电磁铁中的电流方向也变5-21鼠笼式异步电机的鼠笼式转子如何产生感应电流从而变成磁铁的当电动机的三相定子绕组各相差120度电角度;通入三相对称交流电后;将产生一个旋转磁场;该旋转磁场切割转子绕组;从而在转子绕组中产生感应电流转子绕组是闭合通路;载流的转子导体在定子旋转磁场作用下将产生电磁力;从而变成磁铁..2鼠笼式异步电机能否工作在发电状态该电机被原动机拖动旋转并在定子电端口接上无缘负载时电机是否可以发出电来可以工作在发电状态..不能发出点电;缺少励磁电流..3用原动机拖动永磁同步机电动机旋转;电端口接无缘负载;此时电动机能否做发电机用为什么可以原动机拖动转子旋转给电机输入机械能;极性相间的励磁磁场随轴一起旋转并顺次切割定子各相绕组相当于绕组的导体反向切割励磁磁场..由于电枢绕组与主磁场之间的相对切割运动;电枢绕组中将会感应出大小和方向按周期性变化的三相对称交变电势..通过引出线;即可提供交流电源..5-31异步电动机的俩种转子结构和同步电动机的俩种转子结构异步分为鼠笼式笼型转子和绕线型转子..鼠笼式笼型转子是在转子铁芯槽中镶入铜条组成;工艺较简单;功率因数较低..绕线型转子是用绝缘导线做成三相绕组嵌入转子槽中;可以通过串接电阻降低启动电流和调速..功率因数较高..同步由定子和转子两大部分组成.. 两种结构主要区别在转子上面有凸极式和隐极式同步电动机的定子同步电动机的定子与异步电动机的定子结构基本相同;由机座、定子铁芯、电枢绕组等组成.. 于大型同步电动机;由于尺寸太大;硅钢片常制成扇形;然后对成圆形..同步电动机的转子由磁极、转轴、阻尼绕组、滑环、电刷等组成;在电刷和滑环通入直流电励磁;产固定磁极.. 根据容量大小和转速高低转子结构分凸极和隐极两种..凸极特点:气隙不均匀;有明显的磁极;转子铁芯短粗;适用于转速低于1000r/min;极对数p≥3的电动机隐极特点:气隙均匀;无明显的磁极;转子铁芯长细;适用于转速高于1500r/min;极对数p≤2的电动机..(2)发电和电动状态下绕组的相轴是否变化不知道3电机的电角度和机械角度有什么关系电角频率和机械角频率有什么关系电角度=机械角度×极对数电角度就是定子电流频率角速度相当于机械频率电角频率w=np机械角频率Ω5-4 1略2略5-51单相整距线圈流过正弦电流产生的磁动势是一个在空间呈矩形波分布的脉振磁动势它既是时间函数又是空间函数即:矩形波的振幅随时间以正弦电流的频率按正弦规律变化而在任一时刻该矩形波本身又是在空间分布的是空间位置的函数..单相整距线圈流过正弦电流产生的磁动势是一个在空间呈矩形波分布的脉振磁动势;它既是时间函数又是空间函数;即:矩形波的振幅随时间以正弦电流的频率按正弦规律变化;而在任一时刻该矩形波本身又是在空间分布的;是空间位置的函数..5-6--------5-9 略5-105-11略5-125-131同时连过定子、转子两个绕组的磁通为主磁通;仅连过定子绕组或仅连过转子绕组的磁通为漏磁通.. 2略35-141转子绕组开路时;定子电流是励磁电流I0;其值较小..转子堵转时;短路的转子绕组中的电流产生磁动势F2;相应地;定子磁动势中出现与之平衡的分量-F2;使F1的数值增大;即满足磁动势平衡关系F1+F2=F0..因此;定子电流I1要比I0大2堵转时;气隙旋转磁场相对转子绕组运动;在转子绕组中产生电动势和电流..转子电流与气隙磁场相互作用;产生电磁转矩..根据右手定则;可以确定转子电流的方向;再利用左手定则;就可判断出电磁转矩的方向与气隙旋转磁场的转向相同..此时;转子是由于被堵住而不能旋转起来..5-15 略5-16 1具体内容:频率折算;绕组折算;电流折算;电动势折算;阻抗折算2线电压5-17略5-185-19 5-205-215-22 略6-1.P230 换向器换向能力差6-2.P232三相异步电动机的7种转速方式三相异步电动机转速公式为:n=60f/p1-s变极对数调速方法; 变频调速方法; 串级调速方法; 绕线式电动机转子串电阻调速方法; 定子调压调速方法; 电磁调速电动机调速方法;液力耦合器调速方法.同步电动机的转速恒等于同步转速;所以同步电动机的调速方法只有变频调速一种方法..6-36-4.36-5 VSI:C存在;C的作用是滤波和吸收无功功率;适合感性负载CSL:L存在;L的作用是滤波和吸收无功功率;适合容性负载6-6略6-7略6-836-106-11略6-126-136-14---------6-20 略8-110极电机的极对数为5;18极为9;同步的是:转速=60频率/极对数;异步的是:转速=60频率1-转差率/极对8-2 1交轴也叫q轴;直轴也叫d轴;他们实际上是坐标轴;而不是实际的轴在永磁同步电机控制中;为了能够得到类似直流电机的控制特性;在电机转子上建立了一个坐标系;此坐标系与转子同步转动;取转子磁场方向为d轴;垂直于转子磁场方向为q轴;将电机的数学模型转换到此坐标系下;可实现d轴和q轴的解耦;从而得到良好控制特性..要用双反应理论;即把电枢反应磁动势分解成垂直和平行于电动势^E0的两个分量~Fad和~Faq;它们分别产生直轴电枢反应磁通ψad和交轴电枢反应磁通ψaq;相应的电流也分解成两个分量..因此或 Ead=IdXad Xd=Ead/Id Id∝Fad∝ψad∝Ead 或 Eaq=IqXaq Xq=Eaq/Iq Iq∝Faq∝ψaq∝Eaq;由于直轴磁路的磁导比交轴磁路的磁导要大得多;同样大小的电流产生的磁通和相应的电动势也大的多;所以电抗Xd>Xq..23 从原理上讲永磁同步电机分隐极和凸极;凸极电机交直轴电感不等;比如说插入式结构的电机;转子永磁磁钢的磁导率跟空气磁导率接近;插入永磁体部分的这一段气隙磁路的磁阻大部分为气隙宽度加磁体厚度这部分对应于空气磁导率的磁路提供;即D轴;而没有磁体的部分磁路就是气隙的空气磁导率对应的磁阻;即Q轴..因此Lq大些..8-3略8-41238-5 略8-6一台励磁式隐极同步电动机增大励磁电流时;最大电磁转矩是否增大否;其最大电磁功率是否增大是8-7P335 a图8-8 这种情况下电机的转速是不会降低的;仍为同步转速空载运行..因为在这种情况下;虽然失去励磁使励磁电磁功率为零;但还有凸极电磁功率及相对应的电磁转矩;这个电磁转矩足能维持电动机的空载运行..8-9 磁链方程:磁链和电机的电感;电流有关;从电机的结果和磁材料的饱和特性上说;还和磁路的饱和程度有关;转矩方程:转子产生机械功率;旋转磁场对转子做功:电压矩阵方程:8-10组成:变压变频器;永磁或磁阻式同步电动机;转子位置传感器用于探知转子的位置..传感器的控制单元必须知道转子的准确位置;以便计算出环绕的定子磁场所需要的相电压电子传感器控制的整流8-11控制原动力的转速8-13正弦波永磁同步电动机谐波少转矩的精度高;多用于伺服系统和高性能的调速系统;梯形波永磁同步电动机由于各项电流是方波;逆变器的电压只需按直流PWN的方法进行控制..。
机电传动控制第五版课后答案--最全版
机电传动控制第五版课后答案--最全版机电传动控制第五版课后答案最全版机电传动控制是一门涉及电机、电气控制、自动化等多个领域的重要课程。
对于学习这门课程的同学来说,课后答案的准确性和完整性至关重要。
以下是为大家整理的机电传动控制第五版的课后答案,希望能对大家的学习有所帮助。
一、第一章绪论1、机电传动控制的目的是什么?答:机电传动控制的目的是将电能转换为机械能,实现生产机械的启动、停止、调速、反转和制动等动作,以满足生产工艺的要求,提高生产效率和产品质量。
2、机电传动系统的发展经历了哪几个阶段?答:机电传动系统的发展经历了成组拖动、单电机拖动和多电机拖动三个阶段。
3、机电传动系统的运动方程式中,各物理量的含义是什么?答:T 为电动机产生的电磁转矩,T L 为负载转矩,J 为转动惯量,ω 为角速度。
当 T>T L 时,系统加速;当 T<T L 时,系统减速;当T = T L 时,系统匀速运转。
二、第二章机电传动系统的动力学基础1、转动惯量的物理意义是什么?它与哪些因素有关?答:转动惯量是物体转动时惯性的度量,反映了物体抵抗转动状态变化的能力。
其大小与物体的质量、质量分布以及转轴的位置有关。
2、飞轮转矩的概念是什么?它与转动惯量有何关系?答:飞轮转矩 G D 2 是指转动惯量 J 与角速度ω平方的乘积。
飞轮转矩越大,系统储存的动能越大,系统的稳定性越好。
3、如何根据机电传动系统的运动方程式判断系统的运行状态?答:当 T T L > 0 时,系统加速;当 T T L < 0 时,系统减速;当T T L = 0 时,系统匀速运行。
三、第三章直流电机的工作原理及特性1、直流电机的工作原理是什么?答:直流电机是基于电磁感应定律和电磁力定律工作的。
通过电刷和换向器的作用,使电枢绕组中的电流方向交替变化,从而在磁场中产生持续的电磁转矩,驱动电机旋转。
2、直流电机的励磁方式有哪几种?答:直流电机的励磁方式有他励、并励、串励和复励四种。
控制电机第二版杨渝钦主编习题解答
(1) n s
60 f p
60 50 1
3000
U c U cN 110 V
2ns
F(p)
( p)
1
/
K
' e
60U c
2.73
U C ( p ) m S 1 0.1047 Jn s p 1 0.025 p 1
Tko
5.7 (2) F ( p ) U C 55 0.03 p 1
• 1-6答:优点:(1)机械特性更接近线性化
•
(2)能防自转
•
缺点: (1)机电时间常数增加
•
(2)效率和材料利用率降低
• 1-7答:若转子电阻较小,两相伺服电动机的机械特性 如图(a)当电动机正向旋转,即S<l时, TemT1T20
只要负载转矩小于最大电磁转矩,转子仍能继续运 转,并不会因控制电压的消失而停转。这种现象称作 “自转”现象。 措施见教材p44
• 1-13解:
n
Ua Ke
Ra KeKt
Tem
0 4406
Ra KeKt
0.1006
Ra KeKt
44060m
Ra J KeKt
440606.228106
24ms 30ms,满足要求
• 1-16解:
(1)幅值控制时,圆形旋转
磁场,堵转转矩
T ko 1
9 .55 2
ns
U
2 1
Z
2 ck
E 2c E cos ( 2 120 )
Ea
E2b
E 1a
2 Esin
1
2 120
2
sin
120 2
E
b
E2c
E 1b
控制电机课后习题答案
控制电机课后习题答案第2章直流测速发电机1.为什么直流发电机电枢绕组元件的电势为交流电势和电刷电势直流电势?答:电枢连续旋转,导体ab和cd轮流交替地切割n极和s极下的磁力线,因而ab和cd中的电势及线圈电势是交变的。
由于换向器的作用,无论线圈转到何处,电刷都只能通过换向器在一定极性下与导体连接。
例如,电刷a始终与N极下的导体连接,且导体在某一极性下的电位方向不变。
因此,电刷两端获得的电势极性不变,即直流电势。
2.如果图2-1中的电枢逆时针旋转,那么元件电势的方向以及电刷a和B的极性如何?A:在图中所示的时刻,N极下导线AB中的电势方向从B指向A,S极下导线CD中的电势方向从D指向C。
电刷A通过换向器与线圈A端接触,电刷B与线圈D端接触。
因此,电刷a为正极,电刷B为负极。
当电枢转过180°以后,导体cd处于n极下,导体ab处于s极下,这时它们的电势与前一时刻大小相等方向相反,于是线圈电势的方向也变为由a到d,此时d为正,a为负,仍然是a刷为正,b刷为负。
4.为什么直流转速表的速度不能超过规定的最大速度?负载电阻不能小于给定值?答:转速越高,负载电阻越小,电枢电流越大,电枢反应的去磁作用越强,磁通被削弱得越多,输出特性偏离直线越远,线性误差越大,为了减少电枢反应对输出特性的影响,直流测速发电机的转速不得超过规定的最高转速,负载电阻不能低于最小负载电阻值,以保证线性误差在限度的范围内。
而且换向周期与转速成反比,电机转速越高,元件的换向周期越短;el正比于单位时间内换向元件电流的变化量。
基于上述分析,el必正比转速的平方,即el∝n2。
同样可以证明ea∝n2。
因此,换向元件的附加电流及延迟换向去磁磁通与n2成正比,使输出特性呈现非线性。
所以,直流测速发电机的转速上限要受到延迟换向去磁效应的限制。
为了改善线性度,采用限制转速的措施来削弱延迟换向去磁作用,即规定了最高工作转速。
第三章1.直流电动机的电磁转矩和电枢电流由什么决定?答复直流电机的电枢电流不仅取决于施加的电压及其自身的内阻,还取决于与速度成正比的反电动势(当?=恒定时)根据转矩平衡方程式,当负载转矩不变时,电磁转矩不变;加上励磁电流if不变,磁通φ不变,所以电枢电流ia也不变,直流电动机的电磁转矩和电枢电流由直流电动机的总阻转矩决定。
最新电机与运动控制系统(第二版)罗应立课后答案
2-1安培环路定律P11,磁路的欧姆定律P12,电磁感应定律P19不一定可以,因为磁路是非线性的,存在饱和现象。
2-2磁阻和磁导与磁路的磁导率、长度和截面积有关,其中磁导率取决于磁路的饱和程度,即磁通密度的大小。
2-3Φ2>Φ1 B2=B1Φ2=Φ1 B1>B22-4 (1)如果工作时进入磁饱和区,设备发热加剧,影响设备正常运行。
P15 P16(2)2-5 P242-6(1)P23(2)2-7 P242-8 (1)瞬态值(2)平均值2-9无功功率铁心损耗P372-10(1)P35 P39(2)P422-11 P39 重置前后磁动势不变P402-12 P37 大好2-13 因素:①铁芯材质,磁路结构②磁感应强度③原边和副边的绕线方式,顺序④线圈结构2-142-15 增大2-16 P422-172-18E1=-j4*44fW1ΦmE2 =-j4*44fW2Φm2-192-20 N1=W1 N2=W23-1(1)换向器在直流电机中起什么作用?答:在直流发电机中, 换向器起整流作用, 即把电枢绕组里的交流电整流为直流电, 在正、负电刷两端输出。
在直流电动机中,换向器起逆变作用, 即把电刷外电路中的直流电经换向器逆变为交流电输入电枢元件中。
(2)直流电机的主磁路由哪几部分组成?磁路未饱和时,励磁磁通势主要消耗在哪一部分上?答:直流电机的主磁路由以下路径构成: 主磁极N 经定、转子间的空气隙进入电枢铁心, 再从电枢铁心出来经定、转子间的空气隙进入相邻的主磁极S, 经定子铁心磁轭到达主磁极N, 构成闭合路径。
励磁磁通势主要消耗在空气隙上。
3-2直流电机的铭牌上的额定功率是指什么功率?答:对于直流发电机,是指输出的电功率;对于直流电动机,是指输出的机械功率。
3-33-4直流发电机的损耗主要有哪些? 铁损耗存在于哪一部分, 它随负载变化吗? 电枢铜损耗随负载变化吗?答:直流发电机的损耗主要有: (1 ) 励磁绕组铜损耗; ( 2 ) 机械摩擦损耗; ( 3) 铁损耗; ( 4 )电枢铜损耗; ( 5 ) 电刷损耗; ( 6 ) 附加损耗。
电机拖动自动控制课后答案
第三章习题与答案1.双闭环调速系统在突加给定的起动过程中,转速调节器为什么能迅速达到限幅值,其限幅值是如何整定的?电流调节器是否应达到限幅值,其限幅值是如何整定的?双闭环调速系统在突加给定时,由于电机的机械惯性,转速为零,使转速反馈电压fn U 为零,这时加在转速调节器输入端的偏差电压n U ∆很大,而转速调节器的积分时间常数较小,所以转速调节器的输出能迅速达到限幅值,其限幅值按所要限制的最大电流值来整定,dm gi I U β=。
电流调节器不应达到限幅值,否则将失去调节作用,其限幅值应大于最大的输出控制电压,s fz gdm e K km K R I n C U U +=>。
2.双闭环调速系统对电网及负载扰动,其调节过程的特点是什么?对电网电压的扰动无需等到电机转速发生变化,只要电枢回路电流发生变化时,由电流调节器调节即可,有效减小电机转速的变化。
负载扰动要电机的转速发生变化后,由转速调节器来调节。
3-1开环系统额定静态速降是由什么因素决定的? 开环系统的静态速降为e d C RI n =∆其中e C 为电机所固有的常数,因此开环系统额定静态速降主要由电机的额定电流、电枢回路总电阻决定。
3.转速负反馈系统能减小稳态速降的原因是什么?转速负反馈系统能减小稳态速降的原因是闭环系统的自动调节作用。
在开环系统中,当负载电流增大时,电枢电流Id 在电阻R 上的压降也增大,转速就要降下来。
现在引入了转速负反馈,转速稍有降落,反馈电压Un 就感觉出来了。
因给定电压Un*不变。
因此加到触发器上的控制电压Uc=Kp(Un*-Un)便会自动增加了,它可使晶闸管整流电压Ud0增加,电动机转速便相应回升。
由于电枢电压的增量ΔUd0,补偿ΔIdR 压降,就使转速基本维持不变。
4.有一V -M 调速系统,已知电动机的电势系数Ce =1.27(v/rpm),IN =15A ,nN =150转/分,电枢回路总电阻R =3Ω,晶闸管整流装置的放大倍数Ks =30,要求调速范围D =20,S =10%,(1)计算开环系统的静态速降和调速要求所允许的静态速降。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章直流测速发电机1. 为什么直流发电机电枢绕组元件的电势是交变电势而电刷电势是直流电势? 答:电枢连续旋转,导体ab和cd轮流交替地切割N极和S极下的磁力线,因而ab和cd中的电势及线圈电势是交变的。
由于通过换向器的作用,无论线圈转到什么位置,电刷通过换向片只与处于一定极性下的导体相连接,如电刷A 始终与处在N极下的导体相连接,而处在一定极性下的导体电势方向是不变的,因而电刷两端得到的电势极性不变,为直流电势。
2. 如果图2 - 1 中的电枢反时针方向旋转,试问元件电势的方向和A、B电刷的极性如何? 答:在图示瞬时,N极下导体ab中电势的方向由b指向a,S极下导体cd中电势由d指向c。
电刷A通过换向片与线圈的a端相接触,电刷B 与线圈的d端相接触,故此时A电刷为正,B电刷为负。
当电枢转过180°以后,导体cd处于N极下,导体ab处于S极下,这时它们的电势与前一时刻大小相等方向相反,于是线圈电势的方向也变为由a到d,此时d为正,a为负,仍然是A刷为正,B刷为负。
4. 为什么直流测速机的转速不得超过规定的最高转速? 负载电阻不能小于给定值? 答:转速越高,负载电阻越小,电枢电流越大,电枢反应的去磁作用越强,磁通被削弱得越多,输出特性偏离直线越远,线性误差越大,为了减少电枢反应对输出特性的影响,直流测速发电机的转速不得超过规定的最高转速,负载电阻不能低于最小负载电阻值,以保证线性误差在限度的范围内。
而且换向周期与转速成反比,电机转速越高,元件的换向周期越短;eL正比于单位时间内换向元件电流的变化量。
基于上述分析,eL必正比转速的平方,即eL∝n2。
同样可以证明ea∝n2。
因此,换向元件的附加电流及延迟换向去磁磁通与n2成正比,使输出特性呈现非线性。
所以,直流测速发电机的转速上限要受到延迟换向去磁效应的限制。
为了改善线性度,采用限制转速的措施来削弱延迟换向去磁作用,即规定了最高工作转速。
第三章1. 直流电动机的电磁转矩和电枢电流由什么决定? 答;直流电动机的电枢电流不仅取决于外加电压和本身的内阻,而且还取决于与转速成正比的反电势(当Ø=常数时)根据转矩平衡方程式,当负载转矩不变时,电磁转矩不变;加上励磁电流If不变,磁通Φ不变,所以电枢电流Ia也不变,直流电动机的电磁转矩和电枢电流由直流电动机的总阻转矩决定。
3. 一台他励直流电动机,如果励磁电流和被拖动的负载转矩都不变,而仅仅提高电枢端电压,试问电枢电流、转速变化怎样? 答:答:当直流伺服电动机负载转矩、励磁电流不变时,仅将电枢电压增大,此时由于惯性,转速来不及变化,Ea=Ceφn,感应电势不变,电枢电压增大,由电压平衡方程式:Ia=(Ua-Ea)/Ra=(Ua-Ceφn)/Ra可知,电枢电流Ia突然增大;又T=CTφIa,电磁转矩增大;此时,电磁转矩大于负载转矩,由T=TL+Tj=TL+JdΩ/dt知道,电机加速;随着转速n的增加,感应电势Ea增加,为保持电压平衡,电枢电流Ia将减少,电磁转矩T也将减少,当电磁转矩减小到等于总的负载阻转矩时,电机达到新的稳态,相对提高电枢电压之前状态,此时电机的转速增加、电磁转矩、电枢电流不变。
4. 已知一台直流电动机,其电枢额定电压Ua=110 V,额定运行时的电枢电流Ia=0.4 A,转速n=3600 r/min, 它的电枢电阻Ra=50 Ω,空载阻转矩T0=15 mN·m。
试问该电动机额定负载转矩是多少? 解:由Ea=Ua-IaRa…………(1)Ea=Ceφn............(2)CT=60*Ce/(2*π) (3)T=Ts=T0+TL…………(4)T=CTφIa…………(5)联立5个式子,可得到TL=80.5mN·m6. 一台直流电动机,额定转速为3000 r/min。
如果电枢电压和励磁电压均为额定值,试问该电机是否允许在转速n=2500 r/min下长期运转? 为什么? 答:不能,因为根据电压平衡方程式,若电枢电压和励磁电压均为额定值,转速小于额定转速的情况下,电动机的电枢电流必然大于额定电流,电动机的电枢电流长期大于额定电流,必将烧坏电动机的电枢绕组7. 直流电动机在转轴卡死的情况下能否加电枢电压? 如果加额定电压将会有什么后果? 答:不能,因为电动机在转轴卡死的情况小,加额定的电枢电压,则电压将全部加载电枢绕组上,此时的电枢电流为堵转电流,堵转电流远远大于电枢绕组的额定电流,必将烧坏电动机的电枢绕组。
8. 并励电动机能否用改变电源电压极性的方法来改变电动机的转向? 答:不能,改变电动机的转向有两种方法:改变磁通的方向和改变电枢电流的方向,如果同时改变磁通的方向和电枢电流的方向,则电动机的转向不变。
并励电动机若改变电源电压的极性,将同时改变磁通的方向和电枢电流的方向,则电动机的转向不变。
9. 当直流伺服电动机电枢电压、励磁电压不变时,如将负载转矩减少,试问此时电动机的电枢电流、电磁转矩、转速将怎样变化? 并说明由原来的稳态到达新的稳态的物理过程。
答:此时,电动机的电枢电流减小,电磁转矩减小,转速增大。
由原来的稳态到达新的稳态的物理过程分析如下:开始时,假设电动机所加的电枢电压为Ua1,励磁电压为Uf,电动机的转速为n1,产生的反电势为Ea1,电枢中的电流为Ia1,根据电压平衡方程式:Ua1=Ea1+Ia1Ra=Ce Φn1+Ia1Ra 则此时电动机产生的电磁转矩T=CTΦIa1,由于电动机处于稳态,电磁转矩T和电动机轴上的总阻转矩Ts平衡,即T=Ts。
当保持直流伺服电动机的励磁电压不变,则Φ不变;如果负载转矩减少,则总的阻转矩Ts=TL+T0将减少,因此,电磁转矩T将大与总的阻转矩,而使电动机加速,即n将变大;n增大将使反电势Ea变增大。
为了保持电枢电压平衡(Ua=Ea+IaRa),由于电枢电压Ua保持不变,则电枢电流Ia必须减少,则电磁转矩也将跟着变小,直到电磁转矩小到与总阻转矩相平衡时,即T=Ts,才达到新的稳定状态。
与负载转矩减少前相比,电动机的电枢电流减小,电磁转矩减小,转速增大。
12. 一台直流伺服电动机带动一恒转矩负载(负载阻转矩不变),测得始动电压为4V,当电枢电压Ua=50V时,其转速为1500 r/min。
若要求转速达到3000 r/min,试问要加多大的电枢电压? 解:Ea=Ceφn, Ua-Ua0=Ea,当负载转矩不变时,Ua0不变,则n1/n2=(Ua1-Ua0)/(Ua2-Ua0),即1500/3000=(50-4)/(Ua2-4),得到Ua2=96V,所以要加96V的电枢电压,转速才会到达3000r/min第四章变压器(P75)1. 某台变压器,额定电压U1n/U2n=220/110(V),额定频率fn=50 Hz,问原边能否接到下面的电源上?试分析原因。
(1)交流380V,50Hz;(2)交流440V;100Hz;(3)直流220V。
答:(1)不可以。
由U=E=4.44Wfφm,在电源频率均为50Hz 的条件下,主磁通φm决定于外加电压U,380V的电压比额定的原边电压220V 大很多,则加电后必然导致铁心严重饱和,变压器主磁通一般就设计的比较饱和,增加很小的磁通将引起空载电流I0急剧增加,即使变压器不带负载,变压器也会因此损坏。
(2)可以。
由U=E=4.44Wfφm,电压增加一倍,频率也增加一倍,则主磁通φm基本不变,因此,对变压器的影响很小。
但不是最理想。
(3)不可以。
变压器对于直流电源相当于短路,因此,一旦接上直流220V,变压器将很快烧毁。
3. 某台单相变压器原边有两个额定电压为110 V的线圈,如图4 - 27 所示,图中副边绕组未画。
若电源电压为交流220 V和110 V两种,问这两种情况分别将1 , 2 , 3 , 4 这四个端点如何联接,接错时会产生什么后果? 答:(1)220V 电压可以接在1,4两端,而把2和3两端相连;110V电压可以接在1,2两端及3,4两端(2)若220V电压按110V的接法,则变压器原边电压将超过额定电压,变压器空载电流I0就会急剧增加,若超过不允许的的电流值,会导致变压器过热烧毁;若110V电压按220V接法,原边电压将低于额定电压,接负载工作时若负载要求电压比副边能够提供的电压高,则变压器不能正常工作。
5. 变压器归算后的等值电路是如何得来的? 归算的目的和条件是什么? 各参数的物理意义是什么? 答:按照电磁转换及能量平衡的关系,将实际分离的原边电路与副边电路,合并成一个等效的交流电路。
归算的目的:将变压器的原副边的磁耦合简化成一个电路来等效,可以比较方便地分析变压器内部的电磁关系。
折合计算的原则(1)电流折合:按磁势不变原则(2)电动势、电压折算:按功率不变原则(3)电阻与电抗的折算:按功率不变的原则第七章1. 单相绕组通入直流电、交流电及两相绕组通入两相交流电各形成什么磁场? 它们的气隙磁通密度在空间怎样分布,在时间上又怎样变化? 答:单相绕组通入直流电会形成恒定的磁场,单相绕组通入交流电会形成脉振磁场;两相绕组通入两相交流电会形成脉振磁场或旋转磁场。
恒定磁场在磁场内部是一个匀强磁场,不随时间变化。
脉振磁场的幅值位置不变,其振幅永远随时间交变;对某瞬时来说,磁场的大小沿定子内圆周长方向作余弦分布,对气隙中某一点而言,磁场的大小随时间作正弦变化。
圆形旋转磁场的特点是:它的磁通密度在空间按正弦规律分布,其幅值不变并以恒定的速度在空间旋转。
2. 何为对称状态? 何为非对称状态? 交流伺服电动机在通常运行时是怎样的磁场? 两相绕组通上相位相同的交流电流能否形成旋转磁场? 答:一般地,当两相绕组产生圆形旋转磁场时,这时加在定子绕组上的电压分别定义为额定励磁电压和额定控制电压,并称两相交流伺服电动机处于对称状态。
当两相绕组产生椭圆形旋转磁场时,称两相交流伺服电动机处于非对称状态。
两相绕组通上相位相同的交流电流不能形成旋转磁场,只能形成脉振磁场3. 当两相绕组匝数相等和不相等时,加在两相绕组上的电压及电流应符合怎样条件才能产生圆形旋转磁场? 答:当两相绕组匝数相等时,加在两相绕组上的电压及电流值应相等才能产生圆形旋转磁场。
当两相绕组有效匝数不等时,若要产生圆形旋转磁场,电流值应与绕组匝数成反比,电压值应与绕组匝数成正比。
4. 改变交流伺服电动机转向的方法有哪些? 为什么能改变? 答:把励磁与控制两相绕组中任意一相绕组上所加的电压反相(即相位改变180°),就可以改变旋转磁场的转向。
因为旋转磁场的转向是从超前相的绕组轴线(此绕组中流有相位上超前的电流)转到落后相的绕组轴线,而超前的相位刚好为90°。
5. 什么叫作同步速”如何决定? 假如电源频率为60 Hz,电机极数为6,电机的同步速等于多少? 答:旋转磁场的转速常称为同步速,以ns表示。