统计热力学基础PPT.ppt
合集下载
第六章统计热力学基础
量子统计
F-D统计
Fermi-Dirac
(费米-狄拉克统计)
B-E 统计
Bose-Einstein
(玻色-爱因斯坦统计)
量子力学按照全同粒子波函数重叠后呈现的不同特征将自然 界的微观粒子分为费米子和玻色子两类:费米子服从泡利不 相容原理;玻色子不受泡利原理的限制。
第六章 统计热力学初步
——统计体系分类
cba c
1 3h / 2 abc
b
0 h / 2
ab ac bc a
微观状态的编号 1 2 3 4 5
分布
Ⅰ
Ⅱ
各分布的微观 状态数
1
3
ba c cc a ab b 67 8
Ⅲ
6
ba ab cc 9 10
tX N !/ ni !
i
X tX
P Ⅲ=6/10
最概然分布(最可几分布)
6-第2 六麦章克斯韦统-计玻尔热兹力曼统学计初步
——玻兹曼统计
定位体系的最概然分布:
粒子数 N,体积 V,总能量 U 的孤立体系
能级 能量 简并度 分布x 分布y
1
1
g1
n1
n1’
…
2
2
g2
n2
n2’
…
...
…………
…
i
i
gi
ni
ni’
…
满足条件: ni N
i
nii U
i
别?
最概然分布的微观状态数随粒子数增加而 ,该
分布出现的概率随粒子数增加而
。(增大或者
减小)
课本P273,习题2. (排列组合)
第六章 统计热力学初步
统计热力学基础
能量守恒 : U = N ∑ Pε ,iε i 粒子数守恒 : N = ∑ ni
ni是布居在能级上的粒子数;Pε,i是粒子分布在各能级εi上的概率 概率; 概率
(4)分布的微态数WD与系统的总微态数 任何一种分布,只指出在每个能级(或状态)上有多少个粒子, 实现这一分布尚有不同的方式,每一种可区别的方式代表分布 (或系统)的一个可区别的微观状态,简称微态 微态。WD表示分布D 微态 的微态数,用表示系统总的微态数。 (5)分布的概率 计算分布的概率用古典概型的计算公式。 ①古典概型 古典概型又叫等概率模型,既是概率的定义,又是计算概率 古典概型 的基本公式,其特征是: (i)只有有限个基本事件; (ii)所有基本事件发生都是等概率的。
②振动配分函数 对一维谐振子
1 q = 1 e hv kT e hv 2 kT qv = 1 e hv kT
0 v
定义
Θ v
def
hν/ k
式中Θv——振动特征温度,代入上式,则
0 qv =
1 1 e Θ v T
e hv 2kT 1 e Θ v T
qv =
③转动配分函数 对于直线型双原子分子,转动配分函数为
i i
i
(ni + g i 1)! ≈ g in (g >> n ) 离域子系统: WD = ∏ ∏ n! i i n!×( g i 1)! i i i
i
(6)最概然分布与平衡分布 热力学概率最大的分布称为最概然分布 最概然分布。 最概然分布 对于热力学系统N≥1024,N,V,E确定的系统达平衡时(即系 统的热力学态),粒子的分布方式几乎将不随时间而变化,这种分 布称为平衡分布 平衡分布。 平衡分布 当系统的N→∞时,最概然分布可以代表平衡分布,从而最概 然分布的微观状态数可以代替系统的总微观状态数。这就是摘取 摘取 最大项原理。 最大项原理。
ni是布居在能级上的粒子数;Pε,i是粒子分布在各能级εi上的概率 概率; 概率
(4)分布的微态数WD与系统的总微态数 任何一种分布,只指出在每个能级(或状态)上有多少个粒子, 实现这一分布尚有不同的方式,每一种可区别的方式代表分布 (或系统)的一个可区别的微观状态,简称微态 微态。WD表示分布D 微态 的微态数,用表示系统总的微态数。 (5)分布的概率 计算分布的概率用古典概型的计算公式。 ①古典概型 古典概型又叫等概率模型,既是概率的定义,又是计算概率 古典概型 的基本公式,其特征是: (i)只有有限个基本事件; (ii)所有基本事件发生都是等概率的。
②振动配分函数 对一维谐振子
1 q = 1 e hv kT e hv 2 kT qv = 1 e hv kT
0 v
定义
Θ v
def
hν/ k
式中Θv——振动特征温度,代入上式,则
0 qv =
1 1 e Θ v T
e hv 2kT 1 e Θ v T
qv =
③转动配分函数 对于直线型双原子分子,转动配分函数为
i i
i
(ni + g i 1)! ≈ g in (g >> n ) 离域子系统: WD = ∏ ∏ n! i i n!×( g i 1)! i i i
i
(6)最概然分布与平衡分布 热力学概率最大的分布称为最概然分布 最概然分布。 最概然分布 对于热力学系统N≥1024,N,V,E确定的系统达平衡时(即系 统的热力学态),粒子的分布方式几乎将不随时间而变化,这种分 布称为平衡分布 平衡分布。 平衡分布 当系统的N→∞时,最概然分布可以代表平衡分布,从而最概 然分布的微观状态数可以代替系统的总微观状态数。这就是摘取 摘取 最大项原理。 最大项原理。
《统计热力学》课件
《统计热力学》PPT课件
欢迎来到《统计热力学》PPT课件!本课程将探索统计热力学的定义、原理、 应用领域,以及数学基础和研究方法。让我们开始这个精彩的学习之旅!
概述
介绍统计热力学的基本概念和作用。了解热力学与统计力学的关系以及统计热力学在物理、化学和生物等领域 的重要性。
定义
探索统计热力学的准确定义,包括如何描述微观粒子的状态、能量分布和统计规律。理解宏观热力学参数与微 观粒子行为之间的关系。
生物化学
探索统计热力学在生物大分子结构和功能研究中的重要性。
能源研究
研究统计热力学在能源转化、储存和优化中的应用及挑战。
数学基础
了解统计热力学所需的数学基础,包括概率论、统计学和微积分。探索数学 模型和统计方法在统计热力学中的应用。
研究方法
了解统计热力学的研究方法,包括计算模拟、实验技术和数据分析。探索如 何收集、处理和解释实验和模拟数据。
未来发展
展望统计热力学的未来发展方向,包括新的应用领域、研究技术和理论突破。让我们一起探索统计热力学的无 限可能!基本原理 Nhomakorabea1
统计力学
了解统计力学的基本原理,包括概率分布、平衡态和非平衡态,以及微正则、正 则和巨正则系综。
2
热力学基本定律
探索统计热力学与热力学基本定律的关系,包括熵增原理和热力学基本方程。
3
统计热力学的统一性
理解统计热力学与热力学之间的统一性,揭示宏观现象的微观基础。
应用领域
材料科学
了解统计热力学在材料制备、相变和材料性能预测中的应用。
欢迎来到《统计热力学》PPT课件!本课程将探索统计热力学的定义、原理、 应用领域,以及数学基础和研究方法。让我们开始这个精彩的学习之旅!
概述
介绍统计热力学的基本概念和作用。了解热力学与统计力学的关系以及统计热力学在物理、化学和生物等领域 的重要性。
定义
探索统计热力学的准确定义,包括如何描述微观粒子的状态、能量分布和统计规律。理解宏观热力学参数与微 观粒子行为之间的关系。
生物化学
探索统计热力学在生物大分子结构和功能研究中的重要性。
能源研究
研究统计热力学在能源转化、储存和优化中的应用及挑战。
数学基础
了解统计热力学所需的数学基础,包括概率论、统计学和微积分。探索数学 模型和统计方法在统计热力学中的应用。
研究方法
了解统计热力学的研究方法,包括计算模拟、实验技术和数据分析。探索如 何收集、处理和解释实验和模拟数据。
未来发展
展望统计热力学的未来发展方向,包括新的应用领域、研究技术和理论突破。让我们一起探索统计热力学的无 限可能!基本原理 Nhomakorabea1
统计力学
了解统计力学的基本原理,包括概率分布、平衡态和非平衡态,以及微正则、正 则和巨正则系综。
2
热力学基本定律
探索统计热力学与热力学基本定律的关系,包括熵增原理和热力学基本方程。
3
统计热力学的统一性
理解统计热力学与热力学之间的统一性,揭示宏观现象的微观基础。
应用领域
材料科学
了解统计热力学在材料制备、相变和材料性能预测中的应用。
物理化学第七章统计热力学基础
热力学第二定律的实质是揭示了热量 传递和机械能转化之间的方向性。
VS
它指出,热量传递和机械能转化的过 程是有方向的,即热量只能自发地从 高温物体传向低温物体,而机械能只 能通过消耗其他形式的能量才能转化 为内能。
热力学第二定律的应用
在能源利用领域,热力学第二定律指导我们合理利用能源,提高能源利用效率。
优势
统计热力学从微观角度出发,通过统计方法描述微观粒子的运动状态和相互作用,能够 更深入地揭示热现象的本质和内在规律。
局限性
统计热力学涉及到大量的微观粒子,计算较为复杂,需要借助计算机模拟等技术手段。
统计热力学与宏观热力学的关系
统计热力学和宏观热力学是相互补充的 关系,宏观热力学提供整体的、宏观的 视角,而统计热力学提供更微观、更具 体的视角。
03
热力学第一定律
热力学第一定律的表述
热力学第一定律的表述为
能量不能无中生出,也不能消失,只能从一种形式转化为另一种 形式。
也可以表述为
封闭系统中,热和功的总和是守恒的,即Q+W=ΔU。其中Q表示传 给系统的热量,W表示系统对外做的功,ΔU表示系统内能的变化。
热力学第一定律的实质
热力学第一定律实质是能量守恒定律在封闭系统中的具体表现。 它表明了在能量转化和传递过程中,能量的总量保持不变,即能 量守恒。
掌握理想气体和实际气 体的统计描述,理解气 体定律的微观解释。
了解相变和化学反应的 统计热力学基础,理解 热力学第二定律和熵的 概念。
02
统计热力学基础概念
统计热力学简介
统计热力学是研究热力学系统 在平衡态和近平衡态时微观粒 子运动状态和宏观性质之间关 系的学科。
它基于微观粒子的运动状态和 相互作用,通过统计方法来描 述系统的宏观性质,揭示了微 观结构和宏观性质之间的联系 。
06章_统计热力学基础
若气体反应为
2D + E = G
不难证明在平衡后有如下关系若气体反应为
' qG = '2 ' KN = 2 * ( N D ) N E* qD ⋅ qE * NG
∆ε 0 fG KC = = 2 exp − 2 * * ( CD ) CE fD fE kT
* CG
在配分函数中,浓度C的单位是:m −3 若单位用 mol ⋅ dm −3 ,平衡常数值必须作 相应的换算 。
* ' NG qG = ' ' = KN * * N D N E qD qE
q ' = q ⋅ exp(−
ε0
kT
)
K N 是用分子数目表示的平衡常数,q是将零点
能分出以后的总配分函数。 如果将平动配分函数中的V再分出,则配分函数 用 f 表示
q ' = V ⋅ f ⋅ exp(−
ε0
kT
)
G D E ε0 − ε0 − ε0 N fG V = ⋅ exp − * * N D N E f D f E V ⋅V kT * G
C fG ∆ε 0 Kc = * * = exp(− ) CD CE f D f E kT
* G
求出各配分函数 f 值,可得到平衡常数 KC 值 对于理想气体,
p = CkT
∑ν B = f G ⋅ exp − ∆ε 0 ⋅ ( kT )∑ν B K p = K C ( kT ) B B fD fE kT
从自由能函数计算平衡常数
自由能函数(free energy function) 因为 所以
q G = − NkT ln + U 0 N
第六章统计热力学课件二
1.平动配分函数的计算
平动能表示式为:
i ,t
h2 8m
(
nx2 a2
ny2 b2
nz2 c2
)
式中h是普朗克常数,nx , ny , nz 分别是 x, y, z 轴上的 平动量子数,其数值为 1,2,,的正整数。
平动配分函数:
Qt
i
gi,t
exp(
i ,t
kT
)
将
i,t 代入:
1
Iz) 2
I x,I y
和
I
分别为三个轴上的转动惯量。
z
例题:已知N2分子的转动惯量 I 1.3941046 kg m2 试求N2的转动特征温度及298.15K时N2分子的转 动配分函数。
解:
r
h2
8 2Ik
6.6261034 2
r 8 3.142 1.3941046 1.3811023 2.89K
i
Ni Nj
g ei /kT i
g e j /kT j
gi gj
exp( i j )
kT
系统微观可及状态数是宏观状态的函数:
N,U,V
热力学函数熵S是系统混乱度的量度,也是宏观 状态的函数:
S S N,U,V
自发过程熵增加,系统的微观状态数增加。
如果将单组份均相系统(N, U, V)分割为宏观参数 为(N1, U1, V1)和(N2, U2, V2)两个子系统:
1、系统的总微态数:
定域子系统
(U,V , N)
N!
g Ni i
j
i Ni !
离域子系统
(U,V , N) j
g Ni i
i Ni !
求和的限制条件为:
高中物理竞赛课件 第七章 热力学基础 (共67张PPT)
E i RT dE i RdT
2
2
CP
dQP dT
dQP
dE
PdV
i 2
RdT
RdT
PV RT d(PV) PdV VdP PdV RdT
14
单原子:i 3 双原子:i 5 多原子:i 6 二、三种等值过程
5
3
7
5
8
6
1.等容过程 特征:dV 0 dA 0
p
过程方程:
(1)状态d的体积Vd; (2)整个过程对外所做的功;
(3)整个过程吸收的热量.
p
2p1
c
解: (1)由绝热过程方程:
TcVc 1 TdVd 1
p1
ab
d
1
得:Vd
Tc Td
1
Vc
根据题意:
Td
Ta
p1V1 R
o v1 2v1
v
Vc 2V1
Tc
pcVc R
4 p1V1 R
4Ta
5
3
27
(2)整个过程对外所做的功;
真空
T
T0
2V0
∵绝热过程
(E E0) A 0
而 A=0
V0 1T0 (2V0) 1T T P0V0 P(2V0) P
E E0 (T T0)
始末两态满足 P0V0 P(2V0)
状态方程
T0
T
P
1 2
P0
26
例7-4 1mol单原子理想气体,由状态a(p1,V1)先等压加热至体积增大1倍,再等体加热至压 力增大1倍,最后再经绝热膨胀,使其温度降至初始温度,如图所示,试求:
i 2 1
1
i
《统计热力学基础》课件
分布函数的定义
分布函数是描述系统微观状态分布的函数,它表示在某一时刻, 系统中的粒子在各个状态上的概率分布情况。
微观状态数的概念
微观状态数是描述系统内部可能的状态数量的一个概念,它与系统 的宏观状态和微观状态有关。
分布函数的应用
通过分析分布函数,可以了解系统的微观结构和性质,从而更好地 理解系统的宏观行为和变化规律。
02
概率分布
概率分布用于描述粒子集合中不同微观状态的概率分布情况。最常见的
概率分布有玻尔兹曼分布和麦克斯韦-玻尔兹通过概率分布可以计算各种物理量的平均值,如粒子的平均速度和平均
动能。同时,涨落描述了粒子集合中物理量的偏离平均值的情况。
统计热力学的发展历程
早期发展
经典统计热力学
统计热力学的重要性
在科学研究和工程应用中,统计热力学提供了理解和预测物质性质、能量转换 和热力学过程的基础理论框架。它对于化学工程、材料科学、环境科学等领域 具有重要意义。
统计热力学的基本概念
01
微观状态和宏观状态
微观状态是指单个粒子的状态,如位置和速度;宏观状态是指大量粒子
集合的整体状态,如温度、压力和体积。
05
02
详细描述
热力学的第二定律指出,在一个封闭系统中 ,自发过程总是向着熵增加的方向进行,即 熵总是向着增加的方向变化。
04
详细描述
根据热力学的第二定律,热机的效率 不可能达到百分之百,因为总会有一 些能量以热的形式散失到环境中。
06
详细描述
热力学的第二定律还排除了第二类永动机的存 在,即不能从单一热源吸收热量并将其完全转 化为机械功而不产生其他影响。
熵的概念和性质
1 2
熵的定义
统计热力学基础.ppt
N
qN
lnq
S kBln
N! NkBT (
T
)
V, N
(定位) (非定位)
G
kBTln q N
NkBTV
lnq ()
V T, N
G
kBTln
qN N!
NkBTV
lnq ()
V T, N
(定位) (非定位)
2020-6-17
谢谢阅读
18
U
NkBT
2 (lnq ) T V,
N
(定位或非定位)
H
NkBT
分布为最概然分布;
2020-6-17
谢谢阅读
7
通过摘取最大相原理可证明:在粒子数 N 很大 (N 1024)时,玻尔兹曼分布的微观状态数 (tmax) 几乎可以代表体系的全部微观状态数 ();
故玻尔兹曼分布即为宏观平衡分布。
在 A、B 两个能级上粒子数之比:
A / kBT
N g e A
A
量在第 i 个微态中的取值。
2020-6-17
谢谢阅读
6
七、玻尔兹曼分布
玻尔兹曼分布是自然界最重要的规律之一,其数 学表达为:
Ni
N
g ei / kBT i g ei / kBT i
i
(定位或非定位)
玻尔兹曼分布是微观状态数最多(由求 ti 极大值
得到)的一种分布;根据等概率原理,玻尔兹曼
可计算体系的熵。
2020-6-17
谢谢阅读
2
三、分布(构型、布居)
一种分布: 指 N 个粒子在许可能级上的一种分配;
每一种分布的微观状态数(ti)可用下列公式计算:
• 定位体系: ti N!
傅献彩第五版物理化学ppt课件第07章统计热力学基础[1]
物理化学电子教案—第七章
第七章 统计热力学基础
§7.1 概论 §7.2 Boltzmann 统计 §7.4 配分函数 §7.5 各配分函数的求法及其对热力学函数的贡献 §7.7 分子的全配分函数 §7.8 用配分函数计算rGm 和反应的平衡常数
§7.1 概 论
统计热力学的研究方法和目的
统计热力学是宏观热力学与量子化学的桥梁。通过系统 粒子的微观性质(分子质量、分子几何构型、分子内及分子 间作用力等),利用分子的配分函数计算系统的宏观性质。 由于热力学是对大量粒子组成的宏观系统而言,这决定统计 热力学也是研究大量粒子组成的宏观系统,对这种大样本系 统,最合适的研究方法就是统计平均方法。
j
基态
3
2
第一激发态
1 2
第二激发态 5 2
ge 2 j 1 4 2 6
hc
/
cm1
0.00
404.0
102406.5
计算基态、第一、第二激发态的分数。
qe
ge,0
exp
e,0 kT
ge,1
exp
系统中一个粒子的所有可能状态的Boltzmann因子求和;
或者:系统中所有可及能级的有效状态数总和,因此q又称 为状态和。
配分函数q是属于一个粒子的,与其余粒子无关,故称 为粒子的配分函数。
§7.4
配分函数的定义
配分函数
Ni N
g ei / kT i g ei / kT i
i
g ei / kT i
g ei / kT i
g e j / kT j
(2)在经典力学中不考 虑简并度,则上式成为
Ni*
N
* j
ei / kT e j / kT
第七章 统计热力学基础
§7.1 概论 §7.2 Boltzmann 统计 §7.4 配分函数 §7.5 各配分函数的求法及其对热力学函数的贡献 §7.7 分子的全配分函数 §7.8 用配分函数计算rGm 和反应的平衡常数
§7.1 概 论
统计热力学的研究方法和目的
统计热力学是宏观热力学与量子化学的桥梁。通过系统 粒子的微观性质(分子质量、分子几何构型、分子内及分子 间作用力等),利用分子的配分函数计算系统的宏观性质。 由于热力学是对大量粒子组成的宏观系统而言,这决定统计 热力学也是研究大量粒子组成的宏观系统,对这种大样本系 统,最合适的研究方法就是统计平均方法。
j
基态
3
2
第一激发态
1 2
第二激发态 5 2
ge 2 j 1 4 2 6
hc
/
cm1
0.00
404.0
102406.5
计算基态、第一、第二激发态的分数。
qe
ge,0
exp
e,0 kT
ge,1
exp
系统中一个粒子的所有可能状态的Boltzmann因子求和;
或者:系统中所有可及能级的有效状态数总和,因此q又称 为状态和。
配分函数q是属于一个粒子的,与其余粒子无关,故称 为粒子的配分函数。
§7.4
配分函数的定义
配分函数
Ni N
g ei / kT i g ei / kT i
i
g ei / kT i
g ei / kT i
g e j / kT j
(2)在经典力学中不考 虑简并度,则上式成为
Ni*
N
* j
ei / kT e j / kT
统计热力学基础
实际上:
微观构造与运动形态 影响 物质旳宏观性质
物质旳形成过程与时间 影响 物质旳宏观性质
对大量粒子旳微观力学性质(P646表)进行统计
处理得到由大量粒子构成旳宏观体系旳平衡性质
——统计热力学
微观
微观到宏观
宏观
量子 力学
统计力学
统计力学有两个基本出发点:
化学热力学 化学动力学
一是:宏观物质由大量旳粒子构成;
x
在某一数值附近。
▲ 相空间(τ空间)
px
N个粒子有N个子相空间,由N个子相空间构成
旳空间称为相空间(τ空间),有2Nf 维。
3.粒子微观状态旳量子力学描述
◆ 量子态
粒子旳多种运动是量子化旳,运动状态由波
函数描述,体系旳微观状态由体系旳波函数描
述,即,一种微观状i态t 相r v应e 一n 套量子态。不计
离域粒子体系:粒子能够在整个空间运动,且 没有拟定旳平衡点。如理想气体为离域独立子 体系,而实际气体为离域相倚子体系。 3. 玻色子体系和费米子体系(P658) 玻色子:不受泡利原理限制旳量子气体(光 子及含电子、中子和质子旳总数为偶数旳分子 或原子) 费米子:受泡利原理限制旳量子气体
三、几种常用术语(P648) 1.自由度、广义坐标与广义动量 ▲自由度:拟定体系中粒子位置旳独立参量
发展间史:气体分子运动学说为起点
1875年,克劳修斯提出:气体分子均方速度、 平均自由程和分子碰撞数等主要概念; 1860年,麦克斯韦导出分子速度分布定律; 1868年,玻尔兹曼将重力场引入分子速度分布 定律,得到熵旳统计意义,形成麦克斯韦-玻尔 兹曼统计法,这是建立在经典力学基础上旳,亦 称经典统计;主要用于分子间无相互作用旳体系 ——如低压气体,稀溶液旳溶质等;
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
独立子体系 体系中粒子之间的相互作用可以忽 略不计,粒子之间没有作用势能,体系的内能是 体系中每个粒子所具有的能量之和
U nii
i
Page 7
2019年8月24日星期六 扬州大学化学化工学院
WH Introduction
统计体系的分类
根据体系中的粒子之间是否存在相互作用,可将 统计体统分为“独立子体系”和“相依子体系”
Page 10
2019年8月24日星期六 扬州大学化学化工学院
WH 9.1 粒子各种运形式的能级及能级的简并度
微观粒子的不同运动形式
微观粒子的运动不同于宏观物质的运动,可以用量 子力学来描述微观粒子的运动状态。微观粒子的有 多种不同的运动形式。
例如,分子具有5种不同的运动形式,分别是: 分子整体在空间中的平动(t) 分子绕其质心的转动(r) 分子内原子在平衡位置附近的振动(v) 原子内部电子的运动(e) 原子核运动(n)
在统计热力学中,把构成宏观物质体系的各种不同
子 的微观粒子,统称为:“ ”
Page 5
2019年8月24日星期六 扬州大学化学化工学院
WH Introduction
统计体系的分类
根据体系中的每个粒子是否可以分辨,可将统计体统 分为“定域子体系”和“离域子体系”,或者分别 “定位体系”和“非定位体系” 定域子体系 体系中每个粒子是可以分辨的,可以设
物质微粒的微观结构
2019年8月24日星期六 扬州大学化学化工学院
WH Introduction
统计热力学研究的目的
寻求物质的微观结构、微观运动规律与由大量微粒构 成的宏观物质体系之间的联系,沟通物质体系的宏观 与微观,使我们对物质宏观体系的性质及变化规律, 不仅“知其然”,而且“知其所以然”
统计热力学研究的方法
WH 9.1 粒子各种运形式的能级及能级的简并度
三维平动子的能级
t
h2 8m
nx2 a2
ny2 b2
nz2 c2
微观粒子的每一个量子状态都有一个特定的能量值, 但是,不同的量子状态的能量值可能是相等的,也就 是说,一个能级可以对应的不同的量子状态,某一个 能级所对应的量子状态数,称为这个能级的简并度
Page 16
2019年8月24日星期六 扬州大学化学化工学院
WH 9.1 粒子各种运形式的能级及能级的简并度
三维平动子的能级
在统计力学中,将在空间作三维平动的粒子称为
“三维平动子”。平动子具有的“平动能”(t)是量
b 子t化的8hm2
nx2 a2
ny2 b2
nz2 c2
Page 19
2019年8月24日星期六 扬州大学化学化工学院
WH 9.1 粒子各种运形式的能级及能级的简并度
能级 基态 第一激发态
第二激发态 第三激发态
能级对应的量子状态
nx、ny、nz
(1 , 1 , 1)
(2 , 1 , 1) (1 , 2 , 1) (1 , 1 , 2) (2 , 2 , 1) (2 , 1 , 2) (1 , 2 , 2)
U
i
ni
i
N ni
i
(n0 , n1, n2 ,, ni , )I I) (n0 , n1, n2 ,, ni , )II
(n0 , n1, n2 ,, ni , )III
粒子在能级上可以有不同
的分布方式I、II、III、 、
想,把体系中每个粒子分别编号而不会 混淆 例如晶体体系
离域子体系 体系中每个粒子是无法彼此分辨 例如粒子作无序运动的气体体系
Page 6
2019年8月24日星期六 扬州大学化学化工学院
WH Introduction
统计体系的分类
根据体系中的粒子之间是否存在相互作用,可将 统计体统分为“独立子体系”和“相依子体系”
粒子的能量
粒子的每种运动形式都具有相应的能量,粒子所具 有的能量就等于各运动形式的能量之和
t r v e n
微观运动形式能量的量子化 量子力学的研究指出:粒子微观形式的能量都是量 子化的,能量值从低到高是不连续的,就象阶梯或 台阶一样。每一个能量值称之为一个能级,量子力 学给出了每一种运动形式的能级表达式
随着人们对物质结构层次认识的深入,知识了原子内部 还有其他的运动形式,例如“夸克”和“层子”的运动 形式等,但是对于系统在宏观过程中发生的一般物理化 学变化,涉及不到这些运动形式,因此,这里,我们主 要考虑上述5种运动形式
Page 15
2019年8月24日星期六 扬州大学化学化工学院
WH 9.1 粒子各种运形式的能级及能级的简并度
r
J
J
1
h2
8 2
I
(J 0, 1, 2, )
转动能级的简并度为: gr 2J 1
Page 22
2019年8月24日星期六 扬州大学化学化工学院
WH 9.1 粒子各种运形式的能级及能级的简并度
简谐振子的振动能级
粒子的振动可以用简谐振子的振动进行描述,一个 双原子分子,沿着化学键方向的振动可以看作是一 维简谐振子
ny2 b2
nz2 c2
根据量子力学,平动量子nx、ny、nz的值只能取正整数(1, 2,3, ),所以三维平动子的能量()肯定是一些不 连续的值,就构成了一个一个的能级
在能级公式,h是一个常数,称为Planck常数
h 6.6261034 J s
Page 18
2019年8月24日星期六 扬州大学化学化工学院
(2 , 2 , 2)
能级的能量值 ε
3h2
2
8mV 3
3h2
2
4mV 3
9h2
2
8mV 3
3h2
2
2mV 3
简并度 g
1 3
3 1
Page 20
2019年8月24日星期六 扬州大学化学化工学院
WH 9.1 粒子各种运形式的能级及能级的简并度
刚性转子的能级
粒子的转动可以用刚性转子的转动进行描述,一个 双原子分子,近似认为两原子之间的距离不变时, 可以看作是刚性转子
Page 28
2019年8月24日星期六 扬州大学化学化工学院
WH 9.2 能级分布的微态数及系统的总微态数
系统状态分布 例如,一个定域子系统中有三个不同的粒子A、 B、C,系统的内能U = 3能量单位,粒子的能级
分别是0,1,2,3,…,i能量单位,各能级
简并度都为1的情况
4=3
n4=0 分布1具有1
X,每一种分布方式称为一 个能级分布(简称分布)
(n0 ,
n1,
n2 ,, ni ,
) X
Page 27
2019年8月24日星期六 扬州大学化学化工学院
WH 9.2 能级分布的微态数及系统的总微态数
系统状态分布
实现一个能级分布可以有不同的方式,每一种方式 都对应着系统的一个微观状态,系统的微观状态是 指系统中每一个微观粒子都确定了的量子状态
WH 9.2 能级分布的微态数及系统的总微态数
系统中粒子的能级分布
对于一处于热力
0 , 1, 2 ,, i ,
学平衡状态的系
(n0 , n1, n2 ,, ni , )I
统,N,U,V都 具有确定的数值,
(n0 , n1, n2 ,, ni , )II
WH
Page 1
2019年8月24日星期六 扬州大学化学化工学院
WH
统计热力学基础
Page 2
2019年8月24日星期六 扬州大学化学化工学院
WH Introduction
1 统计热力学的研究目的和方法
统计热力学是联系物质体系的宏观性质和微观性质
的桥梁
物质体系的宏观性质
统计热力学的研究内容
Page 3
平动量子数 nx、ny、nz的值只能取
m
正整数(1,2,3, ),一组(nx、 ny、nz)就规定了三维平动子的一
a
c
个量子状态
Page 17
2019年8月24日星期六 扬州大学化学化工学院
WH 9.1 粒子各种运形式的能级及能级的简并度
三维平动子的能级
t
h2 8m
nx2 a2
统计热力学从微观粒子的结构信息和运动规律出发, 利用统计的方法,得到由大量微观粒子构成的宏观物 质体系的宏观规律性
Page 4
2019年8月24日星期六 扬州大学化学化工学院
WH Introduction
统计热力学研究的对象
统计热力学研究时,虽然是从单个物质微粒的性质 (例如分子的振动频率、分子的转动惯量、分子能谱 等等)出发,但是,统计热力学研究的对象却不是单 个的分子,或者原子,其研究的对象和热力学的研究 对象一样,也是由大量的分子、原子、或者离子等基 本粒子构成的宏观物质体系
F
速度和动能可以连续变化
但是,微观的物质微粒的运动则需要用量子力学规 律来描述!!!
Page 9
2019年8月24日星期六 扬州大学化学化工学院
WH 9.1 粒子各种运形式的能级及能级的简并度
微观粒子的运动状态和能量都量子化的
量子化学的研究表明: 微观粒子的运动状态只能特 定的量子状态,而不能是任 意的运动状态 微观粒子所具有的能量也是 量子化的,只能是某一个能 级的能量值,而不能是任意 值
v
1 2
h
( 0, 1, 2, 3)
是简谐振子的振动频率
一维简谐振子的振动能级的简并度都等于1
Page 23
U nii
i
Page 7
2019年8月24日星期六 扬州大学化学化工学院
WH Introduction
统计体系的分类
根据体系中的粒子之间是否存在相互作用,可将 统计体统分为“独立子体系”和“相依子体系”
Page 10
2019年8月24日星期六 扬州大学化学化工学院
WH 9.1 粒子各种运形式的能级及能级的简并度
微观粒子的不同运动形式
微观粒子的运动不同于宏观物质的运动,可以用量 子力学来描述微观粒子的运动状态。微观粒子的有 多种不同的运动形式。
例如,分子具有5种不同的运动形式,分别是: 分子整体在空间中的平动(t) 分子绕其质心的转动(r) 分子内原子在平衡位置附近的振动(v) 原子内部电子的运动(e) 原子核运动(n)
在统计热力学中,把构成宏观物质体系的各种不同
子 的微观粒子,统称为:“ ”
Page 5
2019年8月24日星期六 扬州大学化学化工学院
WH Introduction
统计体系的分类
根据体系中的每个粒子是否可以分辨,可将统计体统 分为“定域子体系”和“离域子体系”,或者分别 “定位体系”和“非定位体系” 定域子体系 体系中每个粒子是可以分辨的,可以设
物质微粒的微观结构
2019年8月24日星期六 扬州大学化学化工学院
WH Introduction
统计热力学研究的目的
寻求物质的微观结构、微观运动规律与由大量微粒构 成的宏观物质体系之间的联系,沟通物质体系的宏观 与微观,使我们对物质宏观体系的性质及变化规律, 不仅“知其然”,而且“知其所以然”
统计热力学研究的方法
WH 9.1 粒子各种运形式的能级及能级的简并度
三维平动子的能级
t
h2 8m
nx2 a2
ny2 b2
nz2 c2
微观粒子的每一个量子状态都有一个特定的能量值, 但是,不同的量子状态的能量值可能是相等的,也就 是说,一个能级可以对应的不同的量子状态,某一个 能级所对应的量子状态数,称为这个能级的简并度
Page 16
2019年8月24日星期六 扬州大学化学化工学院
WH 9.1 粒子各种运形式的能级及能级的简并度
三维平动子的能级
在统计力学中,将在空间作三维平动的粒子称为
“三维平动子”。平动子具有的“平动能”(t)是量
b 子t化的8hm2
nx2 a2
ny2 b2
nz2 c2
Page 19
2019年8月24日星期六 扬州大学化学化工学院
WH 9.1 粒子各种运形式的能级及能级的简并度
能级 基态 第一激发态
第二激发态 第三激发态
能级对应的量子状态
nx、ny、nz
(1 , 1 , 1)
(2 , 1 , 1) (1 , 2 , 1) (1 , 1 , 2) (2 , 2 , 1) (2 , 1 , 2) (1 , 2 , 2)
U
i
ni
i
N ni
i
(n0 , n1, n2 ,, ni , )I I) (n0 , n1, n2 ,, ni , )II
(n0 , n1, n2 ,, ni , )III
粒子在能级上可以有不同
的分布方式I、II、III、 、
想,把体系中每个粒子分别编号而不会 混淆 例如晶体体系
离域子体系 体系中每个粒子是无法彼此分辨 例如粒子作无序运动的气体体系
Page 6
2019年8月24日星期六 扬州大学化学化工学院
WH Introduction
统计体系的分类
根据体系中的粒子之间是否存在相互作用,可将 统计体统分为“独立子体系”和“相依子体系”
粒子的能量
粒子的每种运动形式都具有相应的能量,粒子所具 有的能量就等于各运动形式的能量之和
t r v e n
微观运动形式能量的量子化 量子力学的研究指出:粒子微观形式的能量都是量 子化的,能量值从低到高是不连续的,就象阶梯或 台阶一样。每一个能量值称之为一个能级,量子力 学给出了每一种运动形式的能级表达式
随着人们对物质结构层次认识的深入,知识了原子内部 还有其他的运动形式,例如“夸克”和“层子”的运动 形式等,但是对于系统在宏观过程中发生的一般物理化 学变化,涉及不到这些运动形式,因此,这里,我们主 要考虑上述5种运动形式
Page 15
2019年8月24日星期六 扬州大学化学化工学院
WH 9.1 粒子各种运形式的能级及能级的简并度
r
J
J
1
h2
8 2
I
(J 0, 1, 2, )
转动能级的简并度为: gr 2J 1
Page 22
2019年8月24日星期六 扬州大学化学化工学院
WH 9.1 粒子各种运形式的能级及能级的简并度
简谐振子的振动能级
粒子的振动可以用简谐振子的振动进行描述,一个 双原子分子,沿着化学键方向的振动可以看作是一 维简谐振子
ny2 b2
nz2 c2
根据量子力学,平动量子nx、ny、nz的值只能取正整数(1, 2,3, ),所以三维平动子的能量()肯定是一些不 连续的值,就构成了一个一个的能级
在能级公式,h是一个常数,称为Planck常数
h 6.6261034 J s
Page 18
2019年8月24日星期六 扬州大学化学化工学院
(2 , 2 , 2)
能级的能量值 ε
3h2
2
8mV 3
3h2
2
4mV 3
9h2
2
8mV 3
3h2
2
2mV 3
简并度 g
1 3
3 1
Page 20
2019年8月24日星期六 扬州大学化学化工学院
WH 9.1 粒子各种运形式的能级及能级的简并度
刚性转子的能级
粒子的转动可以用刚性转子的转动进行描述,一个 双原子分子,近似认为两原子之间的距离不变时, 可以看作是刚性转子
Page 28
2019年8月24日星期六 扬州大学化学化工学院
WH 9.2 能级分布的微态数及系统的总微态数
系统状态分布 例如,一个定域子系统中有三个不同的粒子A、 B、C,系统的内能U = 3能量单位,粒子的能级
分别是0,1,2,3,…,i能量单位,各能级
简并度都为1的情况
4=3
n4=0 分布1具有1
X,每一种分布方式称为一 个能级分布(简称分布)
(n0 ,
n1,
n2 ,, ni ,
) X
Page 27
2019年8月24日星期六 扬州大学化学化工学院
WH 9.2 能级分布的微态数及系统的总微态数
系统状态分布
实现一个能级分布可以有不同的方式,每一种方式 都对应着系统的一个微观状态,系统的微观状态是 指系统中每一个微观粒子都确定了的量子状态
WH 9.2 能级分布的微态数及系统的总微态数
系统中粒子的能级分布
对于一处于热力
0 , 1, 2 ,, i ,
学平衡状态的系
(n0 , n1, n2 ,, ni , )I
统,N,U,V都 具有确定的数值,
(n0 , n1, n2 ,, ni , )II
WH
Page 1
2019年8月24日星期六 扬州大学化学化工学院
WH
统计热力学基础
Page 2
2019年8月24日星期六 扬州大学化学化工学院
WH Introduction
1 统计热力学的研究目的和方法
统计热力学是联系物质体系的宏观性质和微观性质
的桥梁
物质体系的宏观性质
统计热力学的研究内容
Page 3
平动量子数 nx、ny、nz的值只能取
m
正整数(1,2,3, ),一组(nx、 ny、nz)就规定了三维平动子的一
a
c
个量子状态
Page 17
2019年8月24日星期六 扬州大学化学化工学院
WH 9.1 粒子各种运形式的能级及能级的简并度
三维平动子的能级
t
h2 8m
nx2 a2
统计热力学从微观粒子的结构信息和运动规律出发, 利用统计的方法,得到由大量微观粒子构成的宏观物 质体系的宏观规律性
Page 4
2019年8月24日星期六 扬州大学化学化工学院
WH Introduction
统计热力学研究的对象
统计热力学研究时,虽然是从单个物质微粒的性质 (例如分子的振动频率、分子的转动惯量、分子能谱 等等)出发,但是,统计热力学研究的对象却不是单 个的分子,或者原子,其研究的对象和热力学的研究 对象一样,也是由大量的分子、原子、或者离子等基 本粒子构成的宏观物质体系
F
速度和动能可以连续变化
但是,微观的物质微粒的运动则需要用量子力学规 律来描述!!!
Page 9
2019年8月24日星期六 扬州大学化学化工学院
WH 9.1 粒子各种运形式的能级及能级的简并度
微观粒子的运动状态和能量都量子化的
量子化学的研究表明: 微观粒子的运动状态只能特 定的量子状态,而不能是任 意的运动状态 微观粒子所具有的能量也是 量子化的,只能是某一个能 级的能量值,而不能是任意 值
v
1 2
h
( 0, 1, 2, 3)
是简谐振子的振动频率
一维简谐振子的振动能级的简并度都等于1
Page 23