2020年高考理科数学《立体几何》题型归纳与训练

合集下载

2020高考数学解答题核心素养题型《专题07 立体几何综合问题》+答题指导)(解析版)

2020高考数学解答题核心素养题型《专题07 立体几何综合问题》+答题指导)(解析版)

专题07 立体几何综合问题【题型解读】▶▶题型一 空间点、线、面的位置关系及空间角的计算(1)空间点、线、面的位置关系通常考查平行、垂直关系的证明,一般出现在解答题的第(1)问,解答题的第(2)问常考查求空间角,求空间角一般都可以建立空间直角坐标系,用空间向量的坐标运算求解.(2)利用向量求空间角的步骤:第一步:建立空间直角坐标系;第二步:确定点的坐标;第三步:求向量(直线的方向向量、平面的法向量)坐标;第四步:计算向量的夹角(或函数值);第五步:将向量夹角转化为所求的空间角;第六步:反思回顾.查看关键点、易错点和答题规范.【例1】 (2019·河南郑州高三联考)在如图所示的多面体中,四边形ABCD 是平行四边形,四边形BDEF是矩形,ED ⊥平面ABCD ,∠ABD =π6,AB =2AD . (1)求证:平面BDEF ⊥平面ADE ;(2)若ED =BD ,求直线AF 与平面AEC 所成角的正弦值.【答案】见解析【解析】(1)在△ABD 中,∠ABD =π6,AB =2AD ,由余弦定理,得BD =3AD ,从而BD 2+AD 2=AB 2,所以△ABD 为直角三角形且∠ADB =90°,故BD ⊥AD .因为DE ⊥平面ABCD ,BD ⊂平面ABCD ,所以DE ⊥BD .又AD ∩DE =D ,所以BD ⊥平面ADE .因为BD ⊂平面BDEF ,所以平面BDEF ⊥平面ADE .(2)由(1)可得,在Rt △ABD 中,∠BAD =π3,BD =3AD , 又由ED =BD ,设AD =1,则BD =ED = 3.因为DE ⊥平面ABCD ,BD ⊥AD ,所以可以点D 为坐标原点,DA ,DB ,DE 所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系,如图所示.则A (1,0,0),C (-1,3,0),E (0,0,3),F (0,3,3).所以AE →=(-1,0,3),AC →=(-2,3,0).设平面AEC 的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧ n ·A E →=0,n ·A C →=0,即⎩⎨⎧ -x +3z =0,-2x +3y =0,令z =1,得n =(3,2,1)为平面AEC 的一个法向量.因为A F →=(-1,3,3), 所以cos 〈n ,A F →〉=n ·A F →|n |·|A F →|=4214, 所以直线AF 与平面AEC 所成角的正弦值为4214. 【素养解读】本例问题(1)证明两平面垂直,考查了逻辑推理的核心素养;问题(2)计算线面所成的角时,考查了直观想象和数学运算的核心素养.【突破训练1】 (2018·北京卷)如图,在三棱柱ABC -A 1B 1C 1中,CC 1⊥平面ABC ,D ,E ,F ,G 分别为AA 1,AC ,A 1C 1,BB 1的中点,AB =BC = 5 ,AC =AA 1=2.(1)求证:AC ⊥平面BEF ;(2)求二面角B -CD -C 1的余弦值;(3)证明:直线FG 与平面BCD 相交.【答案】见解析【解析】(1)证明:在三棱柱ABC -A 1B 1C 1中,因为CC 1⊥平面ABC ,所以四边形A 1ACC 1为矩形.又E ,F 分别为AC ,A 1C 1的中点,所以AC ⊥EF .因为AB =BC .所以AC ⊥BE ,所以AC ⊥平面BEF .(2)由(1)知AC ⊥EF ,AC ⊥BE ,EF ∥CC 1.又CC 1⊥平面ABC ,所以EF ⊥平面ABC .因为BE ⊂平面ABC ,所以EF ⊥BE .如图建立空间直角坐称系Exyz .由题意得B (0,2,0),C (-1,0,0),D (1,0,1),F (0,0,2),G (0,2,1).所以CD →=(2,0,1),C B →=(1,2,0),设平面BCD 的法向量为n =(a ,b ,c ),所以⎩⎪⎨⎪⎧ n ·C D →=0,n ·C B →=0,所以⎩⎪⎨⎪⎧ 2a +c =0,a +2b =0.令a =2,则b =-1,c =-4,所以平面BCD 的法向量n =(2,-1,-4),又因为平面CDC 1的法向量为E B →=(0,2,0),所以cos 〈n ,E B →〉=n ·E B→|n ||EB →|=-2121. 由图可得二面角B -CD -C 1为钝二面角,所以二面角B -CD -C 1的余弦值为-2121. (3)证明:平面BCD 的法向量为n =(2,-1,-4),因为G (0,2,1),F (0,0,2),所以G F →=(0,-2,1),所以n ·G F →=-2,所以n 与G F →不垂直,所以GF 与平面BCD 不平行且不在平面BCD 内,所以GF 与平面BCD 相交. ▶▶题型二 平面图形折叠成空间几何体的问题1.先将平面图形折叠成空间几何体,再以其为载体研究其中的线、面间的位置关系与计算有关的几何量是近几年高考考查立体几何的一类重要考向,它很好地将平面图形拓展成空间图形,同时也为空间立体图形向平面图形转化提供了具体形象的途径,是高考深层次上考查空间想象能力的主要方向.2.(1)解决与折叠有关的问题的关键是搞清折叠前后的变化量和不变量.一般情况下,长度是不变量,而位置关系往往会发生变化,抓住不变量是解决问题的突破口.(2)在解决问题时,要综合考虑折叠前后的图形,既要分析折叠后的图形,也要分析折叠前的图形.(3)解决翻折问题的答题步骤第一步:确定折叠前后的各量之间的关系,搞清折叠前后的变化量和不变量;第二步:在折叠后的图形中确定线和面的位置关系,明确需要用到的线面;第三步:利用判定定理或性质定理进行证明.【例2】 (2018·全国卷Ⅰ)如图,四边形ABCD 为正方形,E ,F 分别为AD ,BC 的中点,以DF 为折痕把△DFC 折起,使点C 到达点P 的位置,且PF ⊥BF .(1)证明:平面PEF ⊥平面ABFD ;(2)求DP 与平面ABFD 所成角的正弦值.【答案】见解析【解析】(1)证明:由已知可得,BF ⊥PF ,BF ⊥EF ,所以BF ⊥平面PEF .又BF ⊂平面ABFD ,所以平面PEF ⊥平面ABFD .(2)作PH ⊥EF ,垂足为H .由(1)得,PH ⊥平面ABFD .以H 为坐标原点,HF →的方向为y 轴正方向,|B F →|为单位长,建立如图所示的空间直角坐标系Hxyz .由(1)可得,DE ⊥PE .又DP =2,DE =1,所以PE = 3.又PF =1,EF =2,故PE ⊥PF .可得PH =32,EH =32. 则H (0,0,0),P ⎝ ⎛⎭⎪⎫0,0,32,D ⎝ ⎛⎭⎪⎫-1,-32,0,D P →=⎝ ⎛⎭⎪⎫1,32,32,H P →=⎝ ⎛⎭⎪⎫0,0,32为平面ABFD 的法向量.设DP 与平面ABFD 所成角为θ,则sin θ=⎪⎪⎪⎪⎪⎪⎪⎪H P →·D P →|H P →|·|DP →|= 34 3=34. 所以DP 与平面ABFD 所成角的正弦值为34. 【素养解读】本例在证明或计算过程中都要考虑图形翻折前后的变化,因此综合考查了逻辑推理、数学运算、直观想象、数学建模的核心素养.【突破训练2】 如图1,在直角梯形ABCD 中,AD ∥BC ,∠BAD =π2,AB =BC =1,AD =2,E 是AD 的中点,O 是AC 与BE 的交点,将△ABE 沿BE 折起到△A 1BE 的位置,如图2.(1)证明:CD ⊥平面A 1OC ;(2)若平面A 1BE ⊥平面BCDE ,求平面A 1BC 与平面A 1CD 所成锐二面角的余弦值.【答案】见解析【解析】(1)证明:在题图1中,因为AB =BC =1,AD =2,E 是AD 的中点∠BAD =π2,所以BE ⊥AC .即在题图2中,BE ⊥OA 1,BE ⊥OC ,从而BE ⊥平面A 1OC .又CD ∥BE ,所以CD ⊥平面A 1OC .(2)由已知,平面A 1BE ⊥平面BCDE ,又由(1)知,BE ⊥OA 1,BE ⊥OC .所以∠A 1OC 为二面角A 1-BE -C 的平面角,所以∠A 1OC =π2. 如图,以O 为原点,OB →,OC →,OA 1→分别为x 轴、y 轴、z 轴正方向建立空间直角坐标系,因为A 1B =A 1E =BC =ED =1,BC ∥ED ,所以B ⎝ ⎛⎭⎪⎫22,0,0,E ⎝ ⎛⎭⎪⎫-22,0,0,A 1⎝ ⎛⎭⎪⎫0,0,22,C ⎝ ⎛⎭⎪⎫0,22,0, 得BC →=⎝ ⎛⎭⎪⎫-22,22,0,A 1C →=⎝ ⎛⎭⎪⎫0,22,-22, CD →=BE →=(-2,0,0).设平面A 1BC 的一个法向量n 1=(x 1,y 1,z 1),平面A 1CD 的一个法向量n 2=(x 2,y 2,z 2),平面A 1BC 与平面A 1CD 的夹角为θ,则⎩⎪⎨⎪⎧ n 1·BC →=0,n 1·A 1C →=0,得⎩⎪⎨⎪⎧ -x 1+y 1=0,y 1-z 1=0,取n 1=(1,1,1); 由⎩⎪⎨⎪⎧ n 2·CD →=0,n 2·A 1C →=0,得⎩⎪⎨⎪⎧x 2=0,y 2-z 2=0,取n 2=(0,1,1), 从而cos θ=|cos 〈n 1,n 2〉|=23×2=63, 即平面A 1BC 与平面A 1CD 所成锐二面角的余弦值为63. ▶▶题型三 线、面位置关系中的探索性问题是否存在某点或某参数,使得某种线、面位置关系成立问题,是近几年高考命题的热点,常以解答题中最后一问的形式出现,解决这类问题的基本思路类似于反证法,即“在假设存在的前提下通过推理论证,如果能找到符合要求的点(或其他的问题),就肯定这个结论,如果在推理论证中出现矛盾,就说明假设不成立,从而否定这个结论”.【例3】 (2018·全国卷Ⅱ)如图,在三棱锥P -ABC 中,AB =BC =2 2 ,PA =PB =PC =AC =4,O 为AC 的中点.(1)证明:PO ⊥平面ABC ; (2)若点M 在棱BC 上,且二面角M -PA -C 为30°,求PC 与平面PAM 所成角的正弦值.【答案】见解析【解析】(1)证明:因为AP =CP =AC =4,O 为AC 的中点,所以OP ⊥AC ,且OP =2 3.连接OB ,因为AB =BC =22AC ,所以△ABC 为等腰直角三角形,且OB ⊥AC ,OB =12AC =2. 由OP 2+OB 2=PB 2知PO ⊥OB .由OP ⊥OB ,OP ⊥AC 知PO ⊥平面ABC .(2)如图,以O 为坐标原点,OB →的方向为x 轴正方向,建立空间直角坐标系Oxyz .则O (0,0,0),B (2,0,0),A (0,-2,0),C (0,2,0),P (0,0,23),A P →=(0,2,23),取平面PAC 的一个法向量O B →=(2,0,0).设M (a,2-a,0)(0<a ≤2),则A M →=(a,4-a,0).设平面PAM 的法向量为n =(x ,y ,z ). 由A P →·n =0,A M →·n =0得⎩⎨⎧ 2y +23z =0,ax +(4-a)y =0,可取n =(3(a -4),3a ,-a ), 所以cos 〈O B →,n 〉=23(a -4)23(a -4)2+3a 2+a2.由已知得|cos 〈O B →,n 〉|=32. 所以23|a -4|23(a -4)2+3a 2+a2=32.解得a =-4(舍去),a =43. 所以n =⎝ ⎛⎭⎪⎫-833,433,-43.又P C →=(0,2,-23), 所以cos 〈P C →,n 〉=34.所以PC 与平面PAM 所成角的正弦值为34. 【素养解读】本例问题(1)中证明线面垂直直接考查了逻辑推理的核心素养;问题(2)中要探求点M 的位置,要求较高,它既考查了直观想象的核心素养,又考查了数学建模的核心素养.【突破训练3】 如图,在直三棱柱ABC -A 1B 1C 1中,平面A 1BC ⊥侧面ABB 1A 1,且AA 1=AB =2. (1)求证:AB ⊥BC ;(2)若直线AC 与平面A 1BC 所成的角为π6,请问在线段A 1C 上是否存在点E ,使得二面角A -BE -C 的大小为2π3,请说明理由.【答案】见解析【解析】(1)证明:连接AB 1交A 1B 于点D ,因为AA 1=AB ,所以AD ⊥A 1B ,又平面A 1BC ⊥侧面ABB 1A 1,平面A 1BC ⊂平面ABB 1A 1=A 1B ,所以AD ⊥平面A 1BC ,BC ⊂平面A 1BC ,所以AD ⊥BC .因为三棱柱ABC -A 1B 1C 1是直三棱柱,所以AA 1⊥底面ABC ,所以AA 1⊥BC ,又AA 1∩AD =A ,所以BC ⊥侧面ABB 1A 1,所以BC ⊥AB . (2)由(1)得AD ⊥平面A 1BC ,所以∠ACD 是直线AC 与平面A 1BC 所成的角,即∠ACD =π6,又AD =2,所以AC =22,假设存在适合条件的点E ,建立如图所示空间直角坐标系Axyz ,设A 1E →=λA 1C →(0≤λ≤1),则B (2,2,0),B 1(2,2,2),由A 1(0,0,2),C (0,22,0),得E (0,22λ,2-2λ),设平面EAB 的一个法向量m =(x ,y ,z ), 由⎩⎪⎨⎪⎧m ·AE →=0,m ·AB →=0,得⎩⎨⎧ 22λy +(2-2λ)z =0,2x +2y =0, 所以可取m =(1-λ,λ-1,2λ), 由(1)知AB 1⊥平面A 1BC ,所以平面CEB 的一个法向量n =(1,1,2), 所以12=⎪⎪⎪⎪⎪⎪cos 2π3=cos 〈m ,n 〉=m·n |m ||n |=2λ22(λ-1)2+2λ2,解得λ=12,故点E 为线段A 1C 中点时,二面角A -BE -C 的大小为2π3.。

2020高考数学题型整理分类《(8)立体几何》解析版(含历年真题)

2020高考数学题型整理分类《(8)立体几何》解析版(含历年真题)

(八) 大题考法——立体几何1.如图,AC 是圆O 的直径,点B 在圆O 上,∠BAC =30°,BM ⊥AC ,垂足为M .EA ⊥平面ABC ,CF ∥AE ,AE =3,AC =4,CF =1.(1)证明:BF ⊥EM ;(2)求平面BEF 与平面ABC 所成锐二面角的余弦值. 解:(1)证明:∵EA ⊥平面ABC ,∴BM ⊥EA , 又BM ⊥AC ,AC ∩EA =A ,∴BM ⊥平面ACFE , ∴BM ⊥EM .①在Rt △ABC 中,AC =4,∠BAC =30°,∴AB =23,BC =2, 又BM ⊥AC ,则AM =3,BM =3,CM =1.∵FM =MC 2+FC 2=2,EM =AE 2+AM 2=32, EF =42+(3-1)2=25,∴FM 2+EM 2=EF 2,∴EM ⊥FM . ② 又FM ∩BM =M ,③∴由①②③得EM ⊥平面BMF ,∴EM ⊥BF .(2)如图,以A 为坐标原点,过点A 垂直于AC 的直线为x 轴,AC ,AE 所在的直线分别为y 轴,z 轴建立空间直角坐标系.由已知条件得A (0,0,0),E (0,0,3),B (3,3,0),F (0,4,1), ∴BE ―→=(-3,-3,3),BF ―→=(-3,1,1). 设平面BEF 的法向量为n =(x ,y ,z ), 由⎩⎪⎨⎪⎧n ·BE ―→=0,n ·BF ―→=0,得⎩⎨⎧-3x -3y +3z =0,-3x +y +z =0,令x =3,得y =1,z =2,∴平面BEF 的一个法向量为n =(3,1,2). ∵EA ⊥平面ABC ,∴取平面ABC 的一个法向量为AE ―→=(0,0,3). 设平面BEF 与平面ABC 所成的锐二面角为θ, 则cos θ=|cos 〈n ,AE ―→〉|=622×3=22.故平面BEF 与平面ABC 所成的锐二面角的余弦值为22. 2.如图所示,在四棱锥P -ABCD 中,PA ⊥底面ABCD ,PA =2,∠ABC =90°,AB =3,BC =1,AD =23,∠ACD =60°,E 为CD 的中点.(1)求证:BC ∥平面PAE ;(2)求直线PD 与平面PBC 所成角的正弦值. 解:(1)证明:∵AB =3,BC =1,∠ABC =90°, ∴AC =2,∠BCA =60°.在△ACD 中,∵AD =23,AC =2,∠ACD =60°, ∴由余弦定理可得:AD 2=AC 2+CD 2-2AC ·CD ·cos ∠ACD ,∴CD =4, ∴AC 2+AD 2=CD 2,∴△ACD 是直角三角形. 又E 为CD 的中点,∴AE =12CD =CE =2,又∠ACD =60°,∴△ACE 是等边三角形, ∴∠CAE =60°=∠BCA ,∴BC ∥AE . 又AE ⊂平面PAE ,BC ⊄平面PAE , ∴BC ∥平面PAE .(2)由(1)可知∠BAE =90°,以点A 为坐标原点,以AB ,AE ,AP 分别为x 轴,y 轴,z 轴建立如图所示的空间直角坐标系,则P (0,0,2),B (3,0,0),C (3,1,0),D (-3,3,0),∴PB ―→=(3,0,-2),PC ―→=(3,1,-2),PD ―→=(-3,3,-2).设n =(x ,y ,z )为平面PBC 的法向量, 则⎩⎪⎨⎪⎧n ·PB ―→=0,n ·PC ―→=0,即⎩⎨⎧3x -2z =0,3x +y -2z =0,取x =1,则y =0,z =32,n =⎝⎛⎭⎫1,0,32,∴cos 〈n ,PD ―→〉=n ·PD ―→|n |·|PD ―→|=-2374·16=-217,∴直线PD 与平面PBC 所成角的正弦值为217.3.如图,在四棱锥S -ABCD 中,AB ∥CD ,BC ⊥CD ,侧面SAB 为等边三角形,AB =BC =2,CD =SD =1.(1)证明:SD ⊥平面SAB ;(2)求AB 与平面SBC 所成角的正弦值.解:(1)证明:以C 为坐标原点,射线CD 为x 轴正半轴建立如图所示的空间直角坐标系C -xyz ,则D (1,0,0),A (2,2,0),B (0,2,0).设S (x ,y ,z ),显然x >0,y >0,z >0,则AS ―→=(x -2,y -2,z ),BS ―→=(x ,y -2,z ),DS ―→=(x -1,y ,z ).由|AS ―→|=|BS ―→|,得 (x -2)2+(y -2)2+z 2=x 2+(y -2)2+z 2,解得x =1.由|DS ―→|=1,得y 2+z 2=1. ① 由|BS ―→|=2,得y 2+z 2-4y +1=0.②由①②,解得y =12,z =32.∴S ⎝⎛⎭⎫1,12,32,AS ―→=⎝⎛⎭⎫-1,-32,32,BS ―→=⎝⎛⎭⎫1,-32,32,DS ―→=⎝⎛⎭⎫0,12,32, ∴DS ―→·AS ―→=0,DS ―→·BS ―→=0,∴DS ⊥AS ,DS ⊥BS , 又AS ∩BS =S ,∴SD ⊥平面SAB .(2)设平面SBC 的法向量为n =(x 1,y 1,z 1), 则n ⊥BS ―→,n ⊥CB ―→,∴n ·BS ―→=0,n ·CB ―→=0. 又BS ―→=⎝⎛⎭⎫1,-32,32,CB ―→=(0,2,0),∴⎩⎪⎨⎪⎧x 1-32y 1+32z 1=0,2y 1=0,取z 1=2,得n =(-3,0,2). ∵AB ―→=(-2,0,0),∴cos 〈AB ―→,n 〉=AB ―→·n | AB ―→||n |=-2×(-3)2×7=217.故AB 与平面SBC 所成角的正弦值为217. 4.(2018·诸暨高三适应性考试)如图,四棱锥P -ABCD 中,平面PAD ⊥平面ABCD ,△PAD 是边长为2的等边三角形,底面ABCD 是直角梯形,∠BAD =∠CDA =90°,AB =2DC =22,E 是CD 的中点.(1)求证:AE ⊥PB ;(2)设F 是棱PB 上的点,EF ∥平面PAD ,求EF 与平面PAB 所成角的正弦值. 解:(1)证明:取AD 的中点G ,连接PG ,BG ,∵平面PAD ⊥平面ABCD ,平面PAD ∩平面ABCD =AD ,PG ⊥AD , ∴PG ⊥平面ABCD ,∵AE ⊂平面ABCD ,∴AE ⊥PG . 又∵tan ∠DAE =tan ∠ABG =24, ∴∠ABG +∠EAB =∠DAE +∠EAB =∠DAB =90°, ∴AE ⊥BG .∵BG ∩PG =G ,BG ⊂平面PBG ,PG ⊂平面PBG , ∴AE ⊥平面PBG , ∴AE ⊥PB .(2)法一:作FH ∥AB 交PA 于H ,连接DH ,则HF ∥DC . ∵EF ∥平面PAD ,平面FHDE ∩平面PAD =DH , ∴EF ∥DH ,∴四边形FHDE 为平行四边形, ∴HF =DE .易知DC ∥AB ,DC =12AB ,∴HF =14AB ,即H 为PA 的一个四等分点.取PA 的中点K ,连接DK ,则DK ⊥PA .∵平面PAD ⊥平面ABCD ,平面PAD ∩平面ABCD =AD ,AB ⊥AD , ∴AB ⊥平面PAD . ∵DK ⊂平面PAD , ∴AB ⊥DK , ∵PA ∩AB =A , ∴DK ⊥平面PAB .∴∠DHK 为EF 与平面PAB 所成的角, 由已知得DK =3,DH =DK 2+HK 2=132, ∴sin ∠DHK =DK DH =3132=23913,∴EF 与平面PAB 所成角的正弦值为23913.法二:以A 为坐标原点,AB ,AD 所在直线为x 轴,y 轴建立如图所示的空间直角坐标系.则A (0,0,0),B (22,0,0),P (0,1,3),E ⎝⎛⎭⎫22,2,0,PB ―→=(22,-1,-3),EP―→=⎝⎛⎭⎫-22,-1,3. 设PF ―→=λPB ―→,则EF ―→=EP ―→+λPB ―→=⎝⎛⎭⎫22λ-22,-1-λ,3-3λ.由(1)知PG ⊥平面ABCD ,∴PG ⊥AB . ∵AD ⊥AB ,PG ⊥AD =G , ∴AB ⊥平面PAD ,∴AB ―→=(22,0,0)为平面PAD 的一个法向量. ∵EF ∥平面PAD ,∴EF ―→·AB ―→=22×⎝⎛⎭⎫22λ-22=0,解得λ=14. ∴EF ―→=⎝⎛⎭⎫0,-54,334.设平面PAB 的一个法向量为n =(x ,y ,z ), 又AB ―→=(22,0,0),PB ―→=(22,-1,-3), 则⎩⎪⎨⎪⎧n ·AB ―→=0,n ·PB ―→=0,即⎩⎨⎧22x =0,22x -y -3z =0,取y =3,得z =-1,∴n =(0,3,-1). ∴|cos 〈n ,EF ―→〉|=⎪⎪⎪⎪-534-3342×132=23913,∴EF 与平面PAB 所成角的正弦值为23913.5.(2019届高三·镇海中学检测)如图,在三棱柱ABC -A 1B 1C 1中,平面A 1ACC 1⊥平面ABC ,AB =BC =2,∠ACB =30°,∠C 1CB =60°,BC 1⊥A 1C ,E 为AC 的中点,CC 1=2.(1)求证:A 1C ⊥平面C 1EB ;(2)求直线CC 1与平面ABC 所成角的余弦值. 解:(1)证明:因为AB =BC =2,E 为AC 的中点, 所以AC ⊥BE .又因为平面A 1ACC 1⊥平面ABC ,平面A 1ACC 1∩平面ABC =AC , 所以BE ⊥平面A 1ACC 1,所以BE ⊥A 1C .又因为BC 1⊥A 1C ,BC 1∩BE =B ,BC 1⊂平面C 1EB ,BE ⊂平面C 1EB , 所以A 1C ⊥平面C 1EB .(2)法一:因为平面A 1ACC 1⊥平面ABC , 所以直线CC 1与平面ABC 所成角为∠C 1CA . 因为∠ACB =30°,AB =BC =2,E 为AC 的中点, 所以EC =3,EB =1.因为CC 1=BC =2,∠C 1CB =60°,所以BC 1=2, 因为BE ⊥平面A 1ACC 1,所以BE ⊥EC 1,所以EC 1= 3. 在△CC 1E 中,根据余弦定理可知,cos ∠C 1CE =33. 所以直线CC 1与平面ABC 所成角的余弦值为33. 法二:以E 为坐标原点,EC 为x 轴,EB 为y 轴建立如图所示的空间直角坐标系.因为∠ACB =30°,AB =BC =2,E 为AC 的中点, 所以EC =3,EB =1.因为CC 1=CB =2,∠C 1CB =60°,所以BC 1=2, 因为BE ⊥平面AA 1CC 1,所以BE ⊥EC 1,所以EC 1= 3. 所以|CC 1―→|=2,|C 1E ―→|=3, 设C 1(x,0,y ),又C (3,0,0),所以⎩⎨⎧(x -3)2+y 2=4,x 2+y 2=3,解得⎩⎨⎧x =33,y =263,所以C 1⎝⎛⎭⎫33,0,263,则CC 1―→=⎝⎛⎭⎫-233,0,263, 易知平面ABC 的一个法向量为n =(0,0,1), 设直线CC 1与平面ABC 所成的角为α, 则sin α=|cos 〈CC 1―→,n 〉|=63,所以cos α=33.即直线CC 1与平面ABC 所成角的余弦值为33.6.如图所示,四棱锥P -ABCD 的底面ABCD 为矩形,PA ⊥平面ABCD ,点E 是PD 的中点,点F 是PC 的中点.(1)证明:PB ∥平面AEC ;(2)若底面ABCD 为正方形,探究在什么条件下,二面角C -AF -D 的大小为60°?解:易知AD ,AB ,AP 两两垂直,建立如图所示的空间直角坐标系A -xyz ,设AB =2a ,AD =2b ,AP =2c ,则A (0,0,0),B (2a,0,0),C (2a,2b,0),D (0,2b,0),P (0,0,2c ).连接BD 交AC 于点O ,连接OE ,则O (a ,b,0),又E 是PD 的中点,所以E (0,b ,c ).(1)证明:因为PB ―→=(2a,0,-2c ),EO ―→=(a,0,-c ), 所以PB ―→=2EO ―→,所以PB ―→∥EO ―→, 即PB ∥EO .因为PB ⊄平面AEC ,EO ⊂平面AEC , 所以PB ∥平面AEC .(2)因为四边形ABCD 为正方形,所以a =b ,则A (0,0,0),B (2a,0,0),C (2a,2a,0),D (0,2a,0),P (0,0,2c ),E (0,a ,c ),F (a ,a ,c ),因为z 轴⊂平面CAF ,所以设平面CAF 的一个法向量为n =(x,1,0),而AC ―→=(2a,2a,0),所以AC ―→·n =2ax +2a =0,得x =-1,所以n =(-1,1,0). 因为y 轴⊂平面DAF ,所以设平面DAF 的一个法向量为m =(1,0,z ), 而AF ―→=(a ,a ,c ),所以AF ―→·m =a +cz =0,得z =-a c ,所以m =⎝⎛⎭⎫1,0,-ac ∥m ′=(c,0,-a ). 所以cos 60°=|n ·m ′||n ||m ′|=c 2(a 2+c 2)=12,得a =c .故当AP 与正方形ABCD 的边长相等时,二面角C -AF -D 的大小为60°.。

(完整版)2020年高考理科数学《立体几何》题型归纳与训练,推荐文档

(完整版)2020年高考理科数学《立体几何》题型归纳与训练,推荐文档

2020年高考理科数学《立体几何》题型归纳与训练【题型归纳】题型一线面平行的证明例1如图,高为1的等腰梯形ABCD 中,AM =CD =AB =1.现将△AMD 沿MD 折起,使平面AMD ⊥13平面MBCD ,连接AB ,AC .试判断:在AB 边上是否存在点P ,使AD ∥平面MPC ?并说明理由【答案】当AP =AB 时,有AD ∥平面MPC .13理由如下:连接BD 交MC 于点N ,连接NP .在梯形MBCD 中,DC ∥MB ,==,DNNB DCMB 12在△ADB 中,=,∴AD ∥PN .APPB 12∵AD ⊄平面MPC ,PN ⊂平面MPC ,∴AD ∥平面MPC .【解析】线面平行,可以线线平行或者面面平行推出。

此类题的难点就是如何构造辅助线。

构造完辅助线,证明过程只须注意规范的符号语言描述即可。

本题用到的是线线平行推出面面平行。

【易错点】不能正确地分析DN 与BN 的比例关系,导致结果错误。

【思维点拨】此类题有两大类方法:1.构造线线平行,然后推出线面平行。

此类方法的辅助线的构造须要学生理解线面平行的判定定理与线面平行的性质之间的矛盾转化关系。

在此,我们需要借助倒推法进行分析。

首先,此类型题目大部分为证明题,结论必定是正确的,我们以此为前提可以得到线面平行。

再次由线面平行的性质可知,过已知直线的平面与已知平面的交线必定平行于该直线,而交线就是我们要找的线,从而做出辅助线。

从这个角度上看我们可以看出线线平行推线面平行的本质就是过已知直线做一个平面与已知平面相交即可。

如本题中即是过AD 做了一个平面ADB 与平面MPC 相交于线PN 。

最后我们只须严格使用正确的符号语言将证明过程反向写一遍即可。

即先证AD 平行于PN ,最后得到结论。

构造交线的方法我们可总结为如下三个图形。

一一一一一一一一一2.构造面面平行,然后推出线面平行。

此类方法辅助线的构造通常比较简单,但证明过程较繁琐,一般做为备选方案。

2020高考数学(理)大一轮复习考点与题型全归纳:第八章 立体几何

2020高考数学(理)大一轮复习考点与题型全归纳:第八章 立体几何

第八章 立体几何第一节 空间几何体的结构特征、三视图和直观图一、基础知识1.简单几何体(1)多面体的结构特征①特殊的四棱柱 四棱柱――――→底面为平行四边形平行六面体――――→侧棱垂直于底面直平行六面体――→底面为矩形长方体――――→底面边长相等正四棱柱――――→侧棱与底面边长相等正方体 上述四棱柱有以下集合关系:{正方体}{正四棱柱}{长方体}{直平行六面体}{平行六面体}{四棱柱}.②多面体的关系:棱柱――→一个底面退化为一个点棱锥――→平行于底面的平面截得棱台(2)旋转体的结构特征▲球的截面的性质(1)球的任何截面是圆面;(2)球心和截面(不过球心)圆心的连线垂直于截面;(3)球心到截面的距离d 与球的半径R 及截面的半径r 的关系为r =R 2-d 2. 2.直观图(1)画法:常用斜二测画法. (2)规则:①原图形中x 轴、y 轴、z 轴两两垂直,直观图中,x ′轴、y ′轴的夹角为45°(或135°),z ′轴与x ′轴和y ′轴所在平面垂直.②原图形中平行于坐标轴的线段,直观图中仍平行于坐标轴.平行于x 轴和z 轴的线段在直观图中保持原长度不变,平行于y 轴的线段长度在直观图中变为原来的一半.3.三视图几何体的三视图包括正视图、侧视图、俯视图,分别是从几何体的正前方、正左方和正上方观察几何体画出的轮廓线.二、常用结论1.常见旋转体的三视图(1)球的三视图都是半径相等的圆.(2)底面与水平面平行放置的圆锥的正视图和侧视图为全等的等腰三角形. (3)底面与水平面平行放置的圆台的正视图和侧视图为全等的等腰梯形. (4)底面与水平面平行放置的圆柱的正视图和侧视图为全等的矩形. 2.斜二测画法中的“三变”与“三不变”“三变”⎩⎪⎨⎪⎧坐标轴的夹角改变,与y 轴平行的线段的长度变为原来的一半,图形改变.“三不变”⎩⎪⎨⎪⎧平行性不改变,与x 轴和z 轴平行的线段的长度不改变,相对位置不改变.考点一空间几何体的结构特征[典例]下列结论正确的是()A.侧面都是等腰三角形的三棱锥是正三棱锥B.六条棱长均相等的四面体是正四面体C.有两个侧面是矩形的棱柱是直棱柱D.用一个平面去截圆锥,底面与截面之间的部分叫圆台[解析]底面是等边三角形,且各侧面三角形全等,这样的三棱锥才是正三棱锥,所以A错;斜四棱柱也有可能两个侧面是矩形,所以C错;截面平行于底面时,底面与截面之间的部分才叫圆台,所以D错.[答案] B[题组训练]1.下列结论中错误的是()A.由五个面围成的多面体只能是三棱柱B.正棱台的对角面一定是等腰梯形C.圆柱侧面上的直线段都是圆柱的母线D.各个面都是正方形的四棱柱一定是正方体解析:选A由五个面围成的多面体也可以是四棱锥,所以A选项错误.B、C、D说法均正确.2.下列命题正确的是()A.两个面平行,其余各面都是梯形的多面体是棱台B.两个面平行且相似,其余各面都是梯形的多面体是棱台C.直角梯形以一条直角腰所在的直线为旋转轴,其余三边旋转形成的面所围成的旋转体是圆台D.用平面截圆柱得到的截面只能是圆和矩形解析:选C如图所示,可排除A、B选项.只要有截面与圆柱的母线平行或垂直,截得的截面才为矩形或圆,否则为椭圆或椭圆的一部分.考点二空间几何体的直观图[典例]已知等腰梯形ABCD,CD=1,AD=CB=2,AB=3,以AB所在直线为x轴,则由斜二测画法画出的直观图A′B′C′D′的面积为________.[解析]法一:如图,取AB的中点O为坐标原点,建立平面直角坐标系,y轴交DC 于点E,O,E在斜二测画法中的对应点为O′,E′,过E′作E′F′⊥x′轴,垂足为F′,因为OE =(2)2-12=1, 所以O ′E ′=12,E ′F ′=24.所以直观图A ′B ′C ′D ′的面积为 S ′=12×(1+3)×24=22.法二:由题中数据得等腰梯形ABCD 的面积S =12×(1+3)×1=2.由S 直观图=24S 原图形的关系,得S 直观图=24×2=22. [答案] 22[题组训练]1.用斜二测画法画一个水平放置的平面图形的直观图为如图所示的一个正方形,则原来的图形是( )解析:选A 由直观图可知,在直观图中多边形为正方形,对角线长为2,所以原图形为平行四边形,位于y 轴上的对角线长为2 2.故选A.2.已知正三角形ABC 的边长为2,那么△ABC 的直观图△A ′B ′C ′的面积为________.解析:如图,图①、图②分别表示△ABC 的实际图形和直观图. 从图②可知,A ′B ′=AB =2,O ′C ′=12OC =32,C ′D ′=O ′C ′sin 45°=32×22=64.所以S △A ′B ′C ′=12A ′B ′·C ′D ′=12×2×64=64.答案:64考点三 空间几何体的三视图考法(一) 由几何体识别三视图[典例] (2019·长沙模拟)如图是一个正方体,A ,B ,C 为三个顶点,D 是棱的中点,则三棱锥A -BCD 的正视图、俯视图是(注:选项中的上图为正视图,下图为俯视图)( )[解析] 正视图和俯视图中棱AD 和BD 均看不见,故为虚线,易知选A. [答案] A考法(二) 由三视图判断几何体特征[典例] (1)(2018·全国卷Ⅰ)某圆柱的高为2,底面周长为16,其三视图如图所示.圆柱表面上的点M 在正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为( )A .217B .2 5C .3D .2(2)(2019·武汉调研)已知某四棱锥的三视图如图所示,则该四棱锥的四个侧面中最小的面积为________.[解析] (1)先画出圆柱的直观图,根据题图的三视图可知点M ,N 的位置如图①所示.圆柱的侧面展开图及M ,N 的位置(N 为OP 的四等分点)如图②所示,连接MN ,则图中MN 即为M 到N 的最短路径.ON =14×16=4,OM =2,∴MN =OM 2+ON 2=22+42=2 5.(2)由三视图知,该几何体是在长、宽、高分别为2,1,1的长方体中,截去一个三棱柱AA 1D 1-BB 1C 1和一个三棱锥C -BC 1D 后剩下的几何体,即如图所示的四棱锥D -ABC 1D 1,其中侧面ADD 1的面积最小,其值为12.[答案] (1)B (2)12考法(三) 由三视图中的部分视图确定剩余视图[典例] (2018·唐山五校联考)如图是一个空间几何体的正视图和俯视图,则它的侧视图为( )[解析] 由正视图和俯视图可知,该几何体是由一个圆柱挖去一个圆锥构成的,结合正视图的宽及俯视图的直径可知侧视图应为A ,故选A.[答案] A[题组训练]1.如图1所示,是一个棱长为2的正方体被削去一个角后所得到的几何体,其中DD 1=1,AB=BC=AA1=2,若此几何体的俯视图如图2所示,则可以作为其正视图的是()解析:选C根据该几何体的直观图和俯视图知,其正视图的长应为底面正方形的对角线长,宽应为正方体的棱长,故排除B、D;而在三视图中看不见的棱用虚线表示,故排除A.故选C.2.(2017·全国卷Ⅰ)某多面体的三视图如图所示,其中正视图和侧视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形.该多面体的各个面中有若干个是梯形,这些梯形的面积之和为()A.10 B.12C.14 D.16解析:选B由三视图可知该多面体是一个组合体,下面是一个底面是等腰直角三角形的直三棱柱,上面是一个底面是等腰直角三角形的三棱锥,等腰直角三角形的腰长为2,直三棱柱的高为2,三棱锥的高为2,易知该多面体有2个面是梯形,这些梯形的面积之和为(2+4)×22×2=12,故选B.[课时跟踪检测]1.对于用“斜二测画法”画平面图形的直观图,下列说法正确的是()A.等腰三角形的直观图仍为等腰三角形B.梯形的直观图可能不是梯形C.正方形的直观图为平行四边形D.正三角形的直观图一定为等腰三角形解析:选C根据“斜二测画法”的定义可得正方形的直观图为平行四边形.2.一个几何体的三视图形状都相同、大小均相等,那么这个几何体不可以是() A.球B.三棱锥C.正方体D.圆柱解析:选D球、正方体的三视图的形状都相同,大小都相等,首先排除选项A和C.对于三棱锥,考虑特殊情况,如三棱锥C-OAB,当三条棱OA,OB,OC两两垂直,且OA =OB=OC时,正视图方向为AO方向,其三视图的形状都相同,大小都相等,故排除选项B.选项D,不论圆柱如何放置,其三视图的形状都不可能完全相同.3.(2019·福州模拟)一水平放置的平面图形,用斜二测画法画出它的直观图如图所示,此直观图恰好是一个边长为2的正方形,则原平面图形的面积为()A.2 3 B.2 2C.4 3 D.8 2解析:选D由斜二测画法可知,原平面图形是一个平行四边形,且平行四边形的一组对边长为2,在斜二测画法画出的直观图中,∠B′O′A′=45°且O′B′=22,那么在原图形中,∠BOA=90°且OB=4 2.因此,原平面图形的面积为2×42=82,故选D.4.给出下列几个命题:①在圆柱的上、下底面的圆周上各取一点,则这两点的连线是圆柱的母线;②底面为正多边形,且有相邻两个侧面与底面垂直的棱柱是正棱柱;③棱台的上、下底面可以不相似,但侧棱长一定相等.其中正确命题的个数是()A.0 B.1C.2 D.3解析:选B①错误,只有这两点的连线平行于轴时才是母线;②正确;③错误,棱台的上、下底面是相似且对应边平行的多边形,各侧棱延长线交于一点,但是侧棱长不一定相等.5.若某几何体的三视图如图所示,则这个几何体的直观图可以是()解析:选D由三视图知该几何体的上半部分是一个三棱柱,下半部分是一个四棱柱.故选D.6.用若干块相同的小正方体搭成一个几何体,该几何体的三视图如图所示,则搭成该几何体需要的小正方体的块数是()A .8B .7C .6D .5解析:选C 画出直观图可知,共需要6块.7.(2018·南宁二中、柳州高中联考)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的正视图和侧视图,且该几何体的体积为83,则该几何体的俯视图可以是( )解析:选C 若俯视图为选项C 中的图形,则该几何体为正方体截去一部分后的四棱锥P -ABCD ,如图所示,该四棱锥的体积V =13×(2×2)×2=83,符合题意.若俯视图为其他选项中的图形,则根据三视图易判断对应的几何体不存在,故选C.8.如图,在底面边长为1,高为2的正四棱柱ABCD -A1B 1C 1D 1(底面ABCD 是正方形,侧棱AA 1⊥底面ABCD )中,点P 是正方形A 1B 1C 1D 1内一点,则三棱锥P -BCD 的正视图与俯视图的面积之和的最小值为( )A.32 B .1 C .2D.54解析:选A 由题图易知,三棱锥P -BCD 的正视图面积为12×1×2=1.当顶点P 的投影在△BCD 内部或其边上时,俯视图的面积最小,为S △BCD =12×1×1=12.所以三棱锥P -BCD的正视图与俯视图的面积之和的最小值为1+12=32.故选A.9.设有以下四个命题:①底面是平行四边形的四棱柱是平行六面体; ②底面是矩形的平行六面体是长方体; ③直四棱柱是直平行六面体; ④棱台的相对侧棱延长后必交于一点. 其中真命题的序号是________.解析:命题①符合平行六面体的定义,故命题①是正确的;底面是矩形的平行六面体的侧棱可能与底面不垂直,故命题②是错误的;因为直四棱柱的底面不一定是平行四边形,故命题③是错误的;命题④由棱台的定义知是正确的.答案:①④10.一个圆台上、下底面的半径分别为3 cm 和8 cm ,若两底面圆心的连线长为12 cm ,则这个圆台的母线长为________cm.解析:如图,过点A 作AC ⊥OB ,交OB 于点C . 在Rt △ABC 中,AC =12(cm),BC =8-3=5 (cm). ∴AB =122+52=13(cm). 答案:1311.已知某几何体的三视图如图所示,正视图和侧视图都是矩形,俯视图是正方形,在该几何体上任意选择4个顶点,以这4个点为顶点的几何体的形状给出下列命题:①矩形;②有三个面为直角三角形,有一个面为等腰三角形的四面体;③两个面都是等腰直角三角形的四面体.其中正确命题的序号是________.解析:由三视图可知,该几何体是正四棱柱,作出其直观图为如图所示的四棱柱ABCD -A 1B 1C 1D 1,当选择的4个点是B 1,B ,C ,C 1时,可知①正确;当选择的4个点是B ,A ,B 1,C 时,可知②正确;易知③不正确.答案:①②12.如图,三棱锥A -BCD 中,AB ⊥平面BCD ,BC ⊥CD ,若AB =BC=CD =2,则该三棱锥的侧视图(投影线平行于BD )的面积为________.解析:因为AB ⊥平面BCD ,投影线平行于BD ,所以三棱锥A -BCD 的侧视图是一个以△BCD 的BD 边上的高为底,棱锥的高为高的三角形,因为BC ⊥CD ,AB =BC =CD =2, 所以△BCD 中BD 边上的高为2,故该三棱锥的侧视图的面积S =12×2×2= 2.答案: 2第二节空间几何体的表面积与体积一、基础知识1.圆柱、圆锥、圆台的侧面展开图及侧面积公式①几何体的侧面积是指(各个)侧面面积之和,而表面积是侧面积与所有底面面积之和.②圆台、圆柱、圆锥的转化当圆台的上底面半径与下底面半径相等时,得到圆柱;当圆台的上底面半径为零时,得到圆锥,由此可得:2.空间几何体的表面积与体积公式二、常用结论几个与球有关的切、接常用结论(1)正方体的棱长为a,球的半径为R,①若球为正方体的外接球,则2R=3a;②若球为正方体的内切球,则2R=a;③若球与正方体的各棱相切,则2R =2a .(2)若长方体的同一顶点的三条棱长分别为a ,b ,c ,外接球的半径为R ,则2R =a 2+b 2+c 2.(3)正四面体的外接球与内切球的半径之比为3∶1. 考点一 空间几何体的表面积[典例] (1)(2018·全国卷Ⅰ)已知圆柱的上、下底面的中心分别为O 1,O 2,过直线O 1O 2的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为( )A .122πB .12πC .82πD .10π(2)(2019·沈阳质检)某四棱锥的三视图如图所示,则该四棱锥的侧面积是( )A .4+4 2B .42+2C .8+4 2D.83[解析] (1)设圆柱的轴截面的边长为x , 则x 2=8,得x =22,∴S 圆柱表=2S 底+S 侧=2×π×(2)2+2π×2×2 2 =12π.故选B.(2)由三视图可知该几何体是一个四棱锥,记为四棱锥P -ABCD ,如图所示,其中P A ⊥底面ABCD ,四边形ABCD 是正方形,且P A =2,AB =2,PB =22,所以该四棱锥的侧面积S 是四个直角三角形的面积和,即S =2×⎝⎛⎭⎫12×2×2+12×2×22=4+42,故选A. [答案] (1)B (2)A [题组训练]1.(2019·武汉部分学校调研)一个几何体的三视图如图所示,则它的表面积为( )A .28B .24+2 5C .20+4 5D .20+2 5解析:选B 如图,三视图所对应的几何体是长、宽、高分别为2,2,3的长方体去掉一个三棱柱后的棱柱ABIE -DCMH ,则该几何体的表面积S =(2×2)×5+⎝⎛⎭⎫12×1×2×2+2×1+2×5=24+2 5.故选B.2.(2018·郑州第二次质量预测)某几何体的三视图如图所示,则该几何体的表面积是( )A .20+2πB .24+(2-1)πC .24+(2-2)πD .20+(2+1)π解析:选B 由三视图知,该几何体是由一个棱长为2的正方体挖去一个底面半径为1、高为1的圆锥后所剩余的部分,所以该几何体的表面积S =6×22-π×12+π×1×2=24+(2-1)π,故选B. 考点二 空间几何体的体积[典例] (1)(2019·开封高三定位考试)某几何体的三视图如图所示,其中俯视图为扇形,则该几何体的体积为( )A .4πB .2π C.4π3D .π(2)(2018·天津高考)如图,已知正方体ABCD -A 1B 1C 1D 1的棱长为1,则四棱锥A 1-BB 1D 1D 的体积为________.[解析] (1)直接法由题意知该几何体的直观图如图所示,该几何体为圆柱的一部分,设底面扇形的圆心角为α,由tan α=31=3,得α=π3,故底面面积为12×π3×22=2π3,则该几何体的体积为2π3×3=2π.(2)法一:直接法连接A 1C 1交B 1D 1于点E ,则A 1E ⊥B 1D 1,A 1E ⊥BB 1,则A 1E ⊥平面BB 1D 1D ,所以A 1E 为四棱锥A 1-BB 1D 1D 的高,且A 1E =22, 矩形BB 1D 1D 的长和宽分别为2,1, 故V A 1-BB 1D 1D =13×(1×2)×22=13. 法二:割补法连接BD1,则四棱锥A 1-BB 1D 1D 分成两个三棱锥B -A 1DD 1与B -A 1B 1D 1,所以V A 1-BB 1D 1D =V B -A 1DD 1+V B -A 1B 1D 1=13×12×1×1×1+13×12×1×1×1=13. [答案] (1)B (2)13[题组训练]1.(等体积法)如图所示,已知三棱柱ABC -A 1B 1C 1的所有棱长均为1,且AA 1⊥底面ABC ,则三棱锥B 1-ABC 1的体积为( )A.312B.34C.612D.64解析:选A 三棱锥B 1-ABC 1的体积等于三棱锥A -B 1BC 1的体积,三棱锥A -B 1BC 1的高为32,底面积为12,故其体积为13×12×32=312. 2.(割补法)某几何体的三视图如图所示,则这个几何体的体积是( )A .13B .14C .15D .16解析:选C 所求几何体可看作是将长方体截去两个三棱柱得到的几何体,在长方体中还原该几何体,如图中ABCD -A ′B ′C ′D ′所示,长方体的长、宽、高分别为4,2,3,两个三棱柱的高为2,底面是两直角边长分别为3和1.5的直角三角形,故该几何体的体积V =4×2×3-2×12×3×32×2=15,故选C.3.(直接法)一个由半球和四棱锥组成的几何体,其三视图如图所示,则该几何体的体积为( )A.13+23π B.13+23π C.13+26π D .1+26π 解析:选C 由三视图知,四棱锥是底面边长为1,高为1的正四棱锥,结合三视图可得半球半径为22,从而该几何体的体积为13×12×1+12×4π3×⎝⎛⎭⎫223=13+26π. 考点三 与球有关的切、接问题考法(一) 球与柱体的切、接问题[典例] (2017·江苏高考)如图,在圆柱O 1O 2内有一个球O ,该球与圆柱的上、下底面及母线均相切.记圆柱O 1O 2的体积为V 1,球O 的体积为V 2,则V 1V 2的值是________.[解析] 设球O 的半径为R ,因为球O 与圆柱O 1O 2的上、下底面及母线均相切,所以圆柱的底面半径为R 、高为2R ,所以V 1V 2=πR 2·2R 43πR 3=32.[答案] 32考法(二) 球与锥体的切、接问题[典例] (2018·全国卷Ⅲ)设A ,B ,C ,D 是同一个半径为4的球的球面上四点,△ABC 为等边三角形且其面积为93,则三棱锥D -ABC 体积的最大值为( )A .123B .18 3C .24 3D .54 3[解析] 由等边△ABC 的面积为93,可得34AB 2=93,所以AB =6,所以等边△ABC 的外接圆的半径为r =33AB =2 3.设球的半径为R ,球心到等边△ABC 的外接圆圆心的距离为d ,则d =R 2-r 2=16-12=2.所以三棱锥D -ABC 高的最大值为2+4=6,所以三棱锥D -ABC 体积的最大值为13×93×6=18 3.[答案] B[题组训练]1.(2018·福建第一学期高三期末考试)已知圆柱的高为2,底面半径为3,若该圆柱的两个底面的圆周都在同一个球面上,则这个球的表面积等于( )A .4π B.163πC.323π D .16π解析:选D 如图,由题意知圆柱的中心O 为这个球的球心, 于是,球的半径r =OB =OA 2+AB 2= 12+(3)2=2. 故这个球的表面积S =4πr 2=16π.故选D.2.三棱锥P -ABC 中,AB =BC =15,AC =6,PC ⊥平面ABC ,PC =2,则该三棱锥的外接球表面积为________.解析:由题可知,△ABC 中AC 边上的高为15-32=6,球心O 在底面ABC 的投影即为△ABC 的外心D ,设DA =DB =DC =x ,所以x 2=32+(6-x )2,解得x =564,所以R 2=x 2+⎝⎛⎭⎫PC 22=758+1=838(其中R 为三棱锥外接球的半径),所以外接球的表面积S =4πR 2=832π. 答案:832π[课时跟踪检测]1.(2019·深圳摸底)过半径为2的球的一条半径的中点,作垂直于该半径的平面,则所得截面的面积与球的体积的比值为( )A.932 B.916 C.38D.316解析:选A 由题意知所得截面为圆,设该圆的半径为r ,则22=12+r 2,所以r 2=3,所以所得截面的面积与球的体积的比值为π×343π×23=932,故选A.2.如图是某一几何体的三视图,则这个几何体的体积为( )A .4B .8C .16D .20解析:选B 由三视图知,此几何体是一个三棱锥,底面为一边长为6,高为2的三角形,三棱锥的高为4,所以体积为V =13×12×6×2×4=8.故选B.3.《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有( )A .14斛B .22斛C .36斛D .66斛解析:选B 设米堆的底面半径为r 尺,则π2r =8,所以r =16π,所以米堆的体积为V =14×13π×r 2×5=π12×⎝⎛⎭⎫16π2×5≈3209(立方尺).故堆放的米约有3209÷1.62≈22(斛). 4.(2018·贵阳摸底考试)某实心几何体是用棱长为1 cm 的正方体无缝粘合而成的,其三视图如图所示,则该几何体的体积为( )A .35 cm 3B .40 cm 3C .70 cm 3D .75 cm 3解析:选A 结合题中三视图可得,该几何体是个组合体,该组合体从下到上依次为长、宽、高分别为5 cm,5 cm,1 cm 的长方体,长、宽、高分别为3 cm,3 cm,1 cm 的长方体,棱长为1 cm 的正方体,故该组合体的体积V =5×5×1+3×3×1+1×1×1=35(cm 3).故选A.5.(2019·安徽知名示范高中联考)某几何体的三视图如图所示,则该几何体的体积为( )A .1 B.12 C.13D.14解析:选C 法一:该几何体的直观图为四棱锥S -ABCD ,如图,SD ⊥平面ABCD ,且SD =1,四边形ABCD 是平行四边形,且AB =DC =1,连接BD ,由题意知BD ⊥DC ,BD ⊥AB ,且BD =1,所以S 四边形ABCD =1,所以V S -ABCD =13S 四边形ABCD·SD =13,故选C.法二:由三视图易知该几何体为锥体,所以V =13Sh ,其中S 指的是锥体的底面积,即俯视图中四边形的面积,易知S =1,h 指的是锥体的高,从正视图和侧视图易知h =1,所以V =13Sh =13,故选C.6.(2019·重庆调研)某简单组合体的三视图如图所示,则该组合体的体积为( )A.83π3+833B.43π3+833C.43π3+433D.83π3+433解析:选B 由三视图知,该组合体是由一个半圆锥与一个三棱锥组合而成的,其中圆锥的底面半径为2、高为42-22=23,三棱锥的底面是斜边为4、高为2的等腰直角三角形,三棱锥的高为23,所以该组合体的体积V =12×13π×22×23+13×12×4×2×23=43π3+833,故选B. 7.(2019·湖北八校联考)已知一几何体的三视图如图所示,它的侧视图与正视图相同,则该几何体的表面积为( )A .16+12πB .32+12πC .24+12πD .32+20π解析:选A 由三视图知,该几何体是一个正四棱柱与半球的组合体,且正四棱柱的高为2,底面对角线长为4,球的半径为2,所以该正四棱柱的底面正方形的边长为22,该几何体的表面积S =12×4π×22+π×22+22×2×4=12π+16,故选A.8.(2019·福州质检)已知正三棱柱ABC -A 1B 1C 1中,底面积为334,一个侧面的周长为63,则正三棱柱ABC -A 1B 1C 1外接球的表面积为( )A .4πB .8πC .16πD .32π解析:选C 如图所示,设底面边长为a ,则底面面积为34a 2=334,所以a = 3.又一个侧面的周长为63,所以AA 1=2 3.设E ,D 分别为上、下底面的中心,连接DE ,设DE 的中点为O ,则点O 即为正三棱柱ABC -A 1B 1C 1的外接球的球心,连接OA 1,A 1E ,则OE =3,A 1E =3×32×23=1.在直角三角形OEA 1中,OA 1=12+(3)2=2,即外接球的半径R =2,所以外接球的表面积S =4πR 2=16π,故选C.9.(2017·天津高考)已知一个正方体的所有顶点在一个球面上,若这个正方体的表面积为18,则这个球的体积为________.解析:由正方体的表面积为18,得正方体的棱长为 3. 设该正方体外接球的半径为R ,则2R =3,R =32,所以这个球的体积为43πR 3=4π3×278=9π2.答案:9π210.某四棱柱的三视图如图所示,则该四棱柱的体积为________.解析:由题意知该四棱柱为直四棱柱,其高为1,底面为上底长为1,下底长为2,高为1的等腰梯形,所以该四棱柱的体积为V =(1+2)×12×1=32.答案:3211.一个圆锥的表面积为π,它的侧面展开图是圆心角为2π3的扇形,则该圆锥的高为________.解析:设圆锥底面半径是r ,母线长为l ,所以πr 2+πrl =π,即r 2+rl =1,根据圆心角公式2π3=2πr l ,即l =3r ,所以解得r =12,l =32,那么高h =l 2-r 2= 2.答案: 212.(2017·全国卷Ⅰ)已知三棱锥S -ABC 的所有顶点都在球O 的球面上,SC 是球O 的直径.若平面SCA ⊥平面SCB ,SA =AC ,SB =BC ,三棱锥S -ABC 的体积为9,则球O 的表面积为________.解析:如图,连接AO ,OB ,∵SC 为球O 的直径, ∴点O 为SC 的中点, ∵SA =AC ,SB =BC , ∴AO ⊥SC ,BO ⊥SC ,∵平面SCA ⊥平面SCB ,平面SCA ∩平面SCB =SC , ∴AO ⊥平面SCB , 设球O 的半径为R , 则OA =OB =R ,SC =2R . ∴V S -ABC =V A -SBC =13×S △SBC ×AO =13×⎝⎛⎭⎫12×SC ×OB ×AO ,即9=13×⎝⎛⎭⎫12×2R ×R ×R ,解得 R =3, ∴球O 的表面积S =4πR 2=4π×32=36π. 答案:36π13.如图是一个以A 1B 1C 1为底面的直三棱柱被一平面所截得到的几何体,截面为ABC ,已知A 1B 1=B 1C 1=2,∠A 1B 1C 1=90°,AA 1=4,BB 1=3,CC 1=2,求:(1)该几何体的体积; (2)截面ABC 的面积.解:(1)过C 作平行于A 1B 1C 1的截面A 2B 2C ,交AA 1,BB 1分别于点A 2,B 2.由直三棱柱性质及∠A 1B 1C 1=90°可知B 2C ⊥平面ABB 2A 2,则该几何体的体积V =VA 1B 1C 1-A 2B 2C +VC -ABB 2A 2=12×2×2×2+13×12×(1+2)×2×2=6. (2)在△ABC 中,AB =22+(4-3)2=5, BC =22+(3-2)2=5, AC =(22)2+(4-2)2=2 3.则S △ABC =12×23×(5)2-(3)2= 6.14.如图,四边形ABCD 为菱形,G 为AC 与BD 的交点,BE ⊥平面ABCD .(1)证明:平面AEC ⊥平面BED ;(2)若∠ABC =120°,AE ⊥EC ,三棱锥E -ACD 的体积63,求该三棱锥E -ACD 的侧面积.解:(1)证明:因为四边形ABCD 为菱形,所以AC ⊥BD . 因为BE ⊥平面ABCD ,AC ⊂平面ABCD , 所以BE ⊥AC .因为BD ∩BE =B ,BD ⊂平面BED ,BE ⊂平面BED , 所以AC ⊥平面BED . 又AC ⊂平面AEC , 所以平面AEC ⊥平面BED .(2)设AB=x,在菱形ABCD中,由∠ABC=120°,可得AG=GC=32x,GB=GD=x2.因为AE⊥EC,所以在Rt△AEC中,可得EG=3 2x.由BE⊥平面ABCD,知△EBG为直角三角形,可得BE=2 2x.由已知得,三棱锥E-ACD的体积V三棱锥E-ACD=13·12AC·GD·BE=624x3=63,故x=2.从而可得AE=EC=ED= 6.所以△EAC的面积为3,△EAD的面积与△ECD的面积均为 5. 故三棱锥E-ACD的侧面积为3+2 5.第三节 空间点、直线、平面之间的位置关系一、基础知识1.平面的基本性质(1)公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内. (2)公理2:过不在一条直线上的三点, 有且只有一个平面.(3)公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.2.空间中两直线的位置关系 (1)空间中两直线的位置关系⎩⎪⎨⎪⎧共面直线⎩⎪⎨⎪⎧平行相交异面直线:不同在任何一个 平面内(2)异面直线所成的角①定义:设a ,b 是两条异面直线, 经过空间任一点O 作直线a ′∥a ,b ′∥b ,把a ′与b ′所成的 锐角(或直角)叫做异面直线a 与b 所成 的角(或夹角). ②范围:⎝⎛⎦⎤0,π2. (3)公理4:平行于同一条直线的两条直线互相平行.(4)定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补. 3.空间中直线与平面、平面与平面的位置关系(1)直线与平面的位置关系有相交、平行、在平面内三种情况.直线l 和平面α相交、直线l 和平面α平行统称为直线l 在平面α外,记作l ⊄α.(2)平面与平面的位置关系有平行、相交两种情况.二、常用结论1.公理2的三个推论推论1:经过一条直线和这条直线外一点有且只有一个平面.推论2:经过两条相交直线有且只有一个平面.推论3:经过两条平行直线有且只有一个平面.2.异面直线判定的一个定理过平面外一点和平面内一点的直线,与平面内不过该点的直线是异面直线.3.唯一性定理(1)过直线外一点有且只有一条直线与已知直线平行.(2)过直线外一点有且只有一个平面与已知直线垂直.(3)过平面外一点有且只有一个平面与已知平面平行.(4)过平面外一点有且只有一条直线与已知平面垂直.考点一平面的基本性质及应用[典例]如图所示,在正方体ABCD-AB1C1D1中,E,F分别是AB和AA1的中点.求证:(1)E,C,D1,F四点共面;(2)CE,D1F,DA三线共点.[证明](1)如图,连接EF,CD,A1B.1∵E,F分别是AB,AA1的中点,∴EF∥A1B.又A1B∥D1C,∴EF∥CD1,∴E,C,D1,F四点共面.(2)∵EF∥CD1,EF<CD1,∴CE与D1F必相交,设交点为P,如图所示.则由P∈CE,CE⊂平面ABCD,得P∈平面ABCD.同理P∈平面ADD1A1.又平面ABCD∩平面ADD1A1=DA,∴P∈DA,∴CE,D1F,DA三线共点.。

高考年理科数学复习总结立体几何大题解析版

高考年理科数学复习总结立体几何大题解析版

1. 【2020 年高考全国 1 卷理数 18】如图, D 为圆锥的顶点,O 是圆锥底面的圆心, AE 为底面直径, AE AD . AB C 是 6底面的内接正三角形, P 为 DO 上一点, P O (1)证明: PA 平面 PBC ; D O . 6(2)求二面角 BPC E 的余弦值.2 5【答案】(1)证明见解析;(2) .5 【解析】 【分析】 (1)要证明 PA 平面 PBC ,只需证明 PA PB ,PA PC即可;(2)以 O 为坐标原点,OA 为 x 轴,O N 为 y 轴建立如图所示的空间直角坐标系,分别算n m出平面 PCB 的法向量为 n ,平面 PCE 的法向量为 m ,利用公式cos m,n 计 | n || m |算即可得到答案.【详解】(1)由题设,知△D A E 为等边三角形,设 AE 1, 1 1 6 2 3 则 D O,C O BO AE ,所以 PO D O ,2 2 2 6 46 6 PC PO 2 OC 2,PB PO 2 OB 2, 4 4BA 3 又 AB C 为等边三角形,则2OA ,所以 BA, s in 60 23PA 2 PB 2AB 2 ,则 APB 90 ,所以 4PA PB ,同理 PA PC ,又 PC PB P ,所以 PA 平面PBC ;(2)过 O 作O N ∥BC 交 AB 于点 N ,因为 PO平面ABC ,以 O 为坐标原点,O A 为 x 轴,O N 为 y 轴建立如图所示的空间直角坐标系,12 13 1 3 则 E( ,0,0),P(0, 0,),B( , , 0),C( , 4 4 4, 0) , 24 4 PC ( , , ), PB ( , 4 4 ), PE ( ,0, 1 3 2 1 3 2 1 2, ) ,4 4 4 42 4 设平面 PCB 的一个法向量为 n (x , y , z ), 1 1 1n PC 0x 3y 2z 0 11 1 由 n PB 0 ,得 ,令 x2 1 z 1, y 0 ,得 , 1 1x 3y 2z 0 1 1 1所以 n ( 2,0,1),设平面 PCE 的一个法向量为 m (x , y , z )2 2 2m PC 0x 3y 2z 0 22 23 x 1 ,令 ,得 z 2, y 2由,得 , m PE 02x 2z 0 2 232 23 所以 m (1, , 2)3n m 2 2 2 5cos m,n故| n || m |10 35 , 32 5设二面角 B PC E 的大小为 ,则 cos 2. 【2019 年高考全国 1 卷理数 18】. 5如图,直四棱柱 ABC D –A B C D 的底面是菱形,AA =4,AB=2,∠BA D=60° 1 1 1 1 1 E ,M ,N 分别是 BC ,BB ,A D 的中点. 1 1 (1)证明:M N ∥平面 C D E ; 1(2)求二面角 A −M A −N 的正弦值. 1 解:(1)连结B C ,M E . 1因为M ,E 分别为BB ,BC 的中点, 1 1所以M E ∥B C ,且M E= B C . 1 121又因为N 为A D 的中点,所以N D= A D . 1 12D C ,可得B C A D ,故ME N D ,11由题设知A B 1 1 因此四边形M N D E 为平行四边形,M N ∥E D . 又M N 平面E D C ,所以M N ∥平面C DE . 1 1 (2)由已知可得DE ⊥D A . 以D 为坐标原点,DA的方向为x 轴正方向,建立如图所示的空间直角坐标系D −xyz ,则A(2, 0, 0) N(1, 0, 2),, A (2 , 0 , 4) , M (1, 3, 2) , 1 A A (0, 0,4) , A M (1, 3,2) , A N (1,0,2) , 1 1 1M N (0, 3, 0) .m A M 0m (x , y , z ) 1 设 为平面A M A 的法向量,则, 1 m A A 01 ,x 3y 2z 0 所以可取 m ( 3,1, 0). 4z 0., n MN 0n (p ,q ,r) 设 为平面A M N 的法向量,则1 A N 0n . 1 ,3q 0 n (2, 0,1) . 所以可取 p 2r 0.m n 2 3 15于是 cos m ,n, | m ‖n | 2 5 510 5A MA N 所以二面角的正弦值为 .1 3. 【2018 年高考全国 1 卷理数 18】如图,四边形 AB C D 为正方形,E ,F 分别为 A D ,BC 的中点,以 DF 为折痕把△DF C 折起,使点 C 到达点 P 的位置,且 PF ⊥BF.(1)证明:平面 PEF ⊥平面 ABF D ; (2)求 DP 与平面 ABF D 所成角的正弦值. 【答案】见解析。

(word完整版)2020年高考理科数学《立体几何》题型归纳与训练,推荐文档

(word完整版)2020年高考理科数学《立体几何》题型归纳与训练,推荐文档

2020年高考理科数学《立体几何》题型归纳与训练【题型归纳】题型一线面平行的证明1例1如图,高为1的等腰梯形ABCD中,AM=CD=3AB=1.现将△AMD 沿MD 折起,使平面AMD⊥平面MBCD ,连接AB,AC.试判断:在AB边上是否存在点解析】线面平行,可以线线平行或者面面平行推出。

此类题的难点就是如何构造辅助线。

构造完辅助线,证明过程只须注意规范的符号语言描述即可。

本题用到的是线线平行推出面面平行。

易错点】不能正确地分析DN 与BN 的比例关系,导致结果错误。

思维点拨】此类题有两大类方法:1. 构造线线平行,然后推出线面平行。

此类方法的辅助线的构造须要学生理解线面平行的判定定理与线面平行的性质之间的矛盾转化关系。

在此,我们需要借助倒推法进行分析。

首先,此类型题目大部分为证明题,结论必定是正确的,我们以此为前提可以得到线面平行。

再次由线面平行的性质可知,过已知直线的平面与已知平面的交线必定平行于该直线,而交线就是我们要找的线,从而做出辅助线。

从这个角度上看我们可以看出线线平行推线面平行的本质就是过已知直线做一个平面与已知平面相交即可。

如本题中即是过AD 做了一个平面ADB 与平面MPC 相交于线PN。

最后我们只须严格使用正确的符号语言将证明过程反向1【答案】当AP=3AB 时,有AD ∥平面MPC.理由如下:连接BD 交MC 于点N,连接NP.在梯形MBCD 中,DC∥MB,DNNBDCMB1,2,AP 1在△ADB 中,P AP B=12,∴AD∥PN.∵AD? 平面MPC ,PN ? 平面MPC ,∴ AD∥平面MPC.P,使AD ∥平面MPC ?并说明理由写一遍即可。

即先证AD 平行于PN,最后得到结论。

构造交线的方法我们可总结为如下三个图形。

2. 构造面面平行,然后推出线面平行。

此类方法辅助线的构造通常比较简单,但证明过程较繁琐,一般做为备选方案。

辅助线的构造理论同上。

我们只须过已知直线上任意一点做一条与已知平面平行的直线即可。

2020全国ii卷数学立体几何

2020全国ii卷数学立体几何

2020全国II卷数学立体几何一、概述2020年全国II卷数学考试立体几何部分是考察学生空间想象、几何推理能力的重要部分。

立体几何一直是考试的重点内容,掌握好这部分知识对于取得好成绩至关重要。

下面我们将针对2020年全国II 卷数学立体几何部分的考题进行分析和解答,帮助同学们更好地复习和备考。

二、考点分析2020年全国II卷数学立体几何考察的主要考点有:多面体的表面积和体积、空间平面图形的性质、空间几何体的性质等。

三、题目解析题目一:已知四面体$ABCD$的底面$ABC$是等边三角形,$AD=AB=6$,$CD=3$,以$AD$和$BC$为直径的球相交于点$E$,求四面体$ABCD$的体积。

解析:根据题意可知$AD=AB=6$,$CD=3$,所以四边形$ABCD$的高度为$3$。

因为$ABCD$是等边三角形,所以$AB=BC=AC=6$。

由此可得四面体$ABCD$的底面积为$\frac{\sqrt{3}}{4} \times 6^2=9\sqrt{3}$,所以四面体$ABCD$的体积为$\frac{1}{3} \times 3 \times 9\sqrt{3}=9\sqrt{3}$。

题目二:四棱锥$ABCD-A_1$的底面$ABC$是等边三角形,$AB=3$,$BC=AD=2\sqrt{6}$,$A_1$是$ABC$所在平面的重心,求四棱锥$ABCD-A_1$的体积。

解析:根据题意可知$AB=3$,$BC=AD=2\sqrt{6}$,所以四棱锥$ABCD-A_1$的底面积为$\frac{\sqrt{3}}{4} \times 3^2=\frac{9\sqrt{3}}{4}$,所以四棱锥$ABCD-A_1$的体积为$\frac{1}{3} \times 2\sqrt{6} \times \frac{9\sqrt{3}}{4}=3\sqrt{2}$。

题目三:空间四边形$ABCD$是正方形,$AB=BC=4$,$AE=2\sqrt{3}$,$AF=2$,$E,F$分别在$AB,BC$平分线上,求四边形$EFGH$的面积。

2020年高考数学(理)热点专练08 立体几何(解析版)

2020年高考数学(理)热点专练08  立体几何(解析版)

热点08 立体几何【命题趋势】立体几何一直在高中数学中占有很大的分值,未来的高考中立体几何也会持续成为高考的一个热点,理科高考中立体几何主要考查三视图的相关性质利用,简单几何体的体积,表面积以及外接圆问题.另外选择部分主要考查在点线面位置关系,简单几何体三视图.选择题主要还是以几何体的基本性质为主,解答题部分主要考查平行,垂直关系以及二面角问题.本专题针对高考高频知识点以及题型进行总结,希望通过本专题的学习,能够掌握高考数学中的立体几何的题型,将高考有关的立体几何所有分数拿到. 【满分技巧】基础知识点考查:一般来说遵循三短一长选最长.要学会抽象问题具体会,将题目中的直线转化成显示中的具体事务,例如立体坐标系可以看做是一个教室的墙角有关外接圆问题:一般图形可以采用补形法,将几何体补成正方体或者是长方体,再利用不在同一个平面的四点确定一个立体平面原理,从而去求. 内切圆问题:转化成正方体的内切圆去求. 求点到平面的距离问题:采用等体积法.求几何体的表面积体积问题:应注意巧妙选取底面积与高.对于二面角问题应采用建立立体坐标系去求.但是坐标系要注意采用左手系务必要标记准确对应点以及法向量对应的坐标. 【考查题型】选择,填空,解答题【限时检测】(建议用时:45分钟)1.(2019·安徽高考模拟(理))已知,m n 是两条不同的直线,,,αβγ是三个不同的平面,则下列命题正确的是( ) A .若//,//m n αα,则//m n B .若,αγβγ⊥⊥,则//αβC .若//,//m n αα,且,m n ββ⊂⊂,则//αβD .若,m n αβ⊥⊥,且αβ⊥,则m n ⊥【答案】D 【解析】 【分析】根据空间中直线和平面的位置关系分别去判断各个选项,,,A B C 均可举出反例;D 可证明得出. 【详解】若//m α,//n α,则//m n 或m 与n 异面或m 与n 相交,故选项A 错误; 若αγ⊥,βγ⊥,则α与β可能相交,故选项B 错误; 若直线,m n 不相交,则平面,αβ不一定平行,故选项C 错误;αβ⊥Q ,m α⊥ //m β∴或m β⊂,又n β⊥ m n ∴⊥,故选项D 正确.本题正确选项:D 【名师点睛】本题考查空间中直线、平面之间位置关系有关命题的判断,考查学生的空间想象能力和对定理的掌握程度.2.(2019·四川射洪中学高三月考(理))已知某几何体的三视图如图所示,则该几何体的最大边长为( )A B C D .【答案】B 【解析】根据三视图作出原几何体(四棱锥P ABCD -)的直观图如下:可计算PB PD BC PC ====.【名师点睛】:思考三视图还原空间几何体首先应深刻理解三视图之间的关系,遵循“长对正,高平齐,宽相等”的基本原则,其内涵为正视图的高是几何体的高,长是几何体的长;俯视图的长是几何体的长,宽是几何体的宽;侧视图的高是几何体的高,宽是几何体的宽.由三视图画出直观图的步骤和思考方法:1、首先看俯视图,根据俯视图画出几何体地面的直观图;2、观察正视图和侧视图找到几何体前、后、左、右的高度;3、画出整体,然后再根据三视图进行调整.3.(2019·安徽高考模拟(理))当动点P 在正方体1111ABCD A B C D -的体对角线1A C 上运动时,异面直线BP 与1AD 所成角的取值范围是( ) A .,64ππ⎡⎤⎢⎥⎣⎦B .,63ππ⎡⎤⎢⎥⎣⎦C .,43ππ⎡⎤⎢⎥⎣⎦D .,32ππ⎡⎫⎪⎢⎣⎭【答案】B 【解析】 【分析】以D 为原点,DA 为x 轴,DC 为y 轴,DD 1为z 轴,建立空间直角坐标系,利用向量法能求出BP 与AD 1所成角的取值范围. 【详解】以D 为原点,DA u u u v ,DC u u uv ,1DD u u u u v 分别为x ,y ,z 轴正向,建立空间直角坐标系D xyz -,则()11,0,1AD =-u u u u v ,()11,1,1CA =-u u u v ,设1CP CA λ=u u u v u u u v ,则[]0,1λ∈, (),,CP λλλ∴=-u u u v ,()1,,BP u u u vλλλ∴=--,故1cos ,AD BP u u u u v u u u v 11··AD BPAD BP=u u u u v u u u vu u u u v u u u v=对于函数()2321h x λλ=-+ 212333λ⎛⎫=-+ ⎪⎝⎭,[]0,1λ∈有:()min 1233h x h ⎛⎫== ⎪⎝⎭,()()max 12h x h ==,故11cos ,2AD BP ⎡∈⎢⎣⎦u u u u v u u u v ,又[]1,0,AD BP π∈u u u u v u u u v ,故1,,63AD BP u u u u v u u u v ππ⎡⎤∈⎢⎥⎣⎦.故选B .【名师点睛】本题考查异面直线所成角的取值范围的求法,考查异面直线所成角的概念等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.4.(2019·湖南高三期末(理))设a ,b 是空间中不同的直线,α,β是不同的平面,则下列说法正确的是( ) A .a b ∥,b α⊂,则a P αB .a α⊂,b β⊂,αβ∥,则a b ∥C .a α⊂,b α⊂,a β∥,b β∥,则αβ∥D .αβ∥,a α⊂,则a β∥【答案】D 【解析】分析:在A 中,a ∥α或a ⊂α;在B 中,a 与b 平行或异面;在C 中,α与β相交或平行;在D 中,由面面平行的性质定理得a ∥β.详解:由a ,b 是空间中不同的直线,α,β是不同的平面,知:在A 中,a ∥b ,b ⊂α,则a ∥α或a ⊂ α,故A 错误; 在B 中,a ⊂α,b ⊂ β,α∥β,则a 与b 平行或异面,故B 错误; 在C 中,a ⊂α,b ⊂ α,α∥β,b ∥β,则α与β相交或平行,故C 错误; 在D 中,α∥β,a ⊂α,则由面面平行的性质定理得a ∥β,故D 正确. 故选:D .【名师点睛】:本题考查线面位置关系的判断,考查空间想象能力,解题时要认真审题,注意空间中线线、线面、面面间的位置关系的合理运用.5.(2019·贵州高考模拟(理))如图在正方体1111ABCD A B C D -中,点O 为线段BD 的中点. 设点P 在线段1CC 上,直线OP 与平面1A BD 所成的角为α,则sin α的取值范围是( )A.[,1]3 B.[3C.3D.[,1]3【答案】B 【解析】 【详解】设正方体的棱长为1,则11111A C A C A O OC OC ======所以1111332122cos ,sin 33322AOC AOC +-∠==∠=⨯,11313cos 33AOC AOC +-∠==-∠=. 又直线与平面所成的角小于等于90o ,而1A OC ∠为钝角,所以sin α的范围为,选B. 【考点定位】空间直线与平面所成的角.6.(2019·宁夏吴忠中学高考模拟(理))已知直三棱柱111C C AB -A B 中,C 120∠AB =o ,2AB =,1C CC 1B ==,则异面直线1AB 与1C B 所成角的余弦值为( )ABCD【答案】C 【解析】如图所示,补成直四棱柱1111ABCD A B C D -,则所求角为1111,BC D BC BD C D AB ∠=====Q易得22211C D BD BC =+,因此111cos BC BC D C D ∠===C .平移法是求异面直线所成角的常用方法,其基本思路是通过平移直线,把异面问题化归为共面问题来解决,具体步骤如下:①平移:平移异面直线中的一条或两条,作出异面直线所成的角; ②认定:证明作出的角就是所求异面直线所成的角; ③计算:求该角的值,常利用解三角形;④取舍:由异面直线所成的角的取值范围是(0,]2π,当所作的角为钝角时,应取它的补角作为两条异面直线所成的角.求异面直线所成的角要特别注意异面直线之间所成角的范围.7.(2019·广东高考模拟(理))已知三棱锥P ABC -的底面ABC 是边长为2的等边三角形,PA ⊥平面ABC ,且2PA =,则该三棱锥外接球的表面积为( ) A .683πB .20πC .48πD .283π【答案】D【解析】 【分析】由于球中球心与球的小圆圆心的连线垂直于这个小圆,利用PA 也垂直于这个小圆,即可利用球心与小圆圆心建立起直角三角形,1'12d OO PA ===,根据题意可求出r 是底面三角形的外接圆的半径,利用d =R 即可,最后即可求出球的表面积.【详解】 由已知得,作下图PA ABC ⊥平面,连结PO ,延长至圆上交于H , 过O 作'OO PA P 交ABC 平面于'O ,则PAH ∆为Rt ∆,所以,O 为斜边PH 的中点,所以,'OO 为PAH ∆的中位线,'O 为小圆圆心,则'O 为AH 的中点,则''12OO O H PA AH ==,则''O H AO ===,1'12OO PA ==,则球的半径R OH ====球的表面积为22843R ππ= 答案选D.【名师点睛】本题考查计算球的表面积,关键在于利用222d R r =-进行计算R ,难点在于构造三要素相关的直角三角形进行求解,难度属于中等.8.(2019·河南高考模拟(理))如图,点P 在正方体1111ABCD A B C D -的面对角线1BC上运动,则下列四个结论:①三棱锥1A D PC -的体积不变;1//A P ②平面1ACD ; 1DP BC ⊥③;④平面1PDB ⊥平面1ACD .其中正确的结论的个数是( )A .1个B .2个C .3个D .4个【答案】C 【解析】 【分析】利用空间中线线、线面、面面间的位置关系求解. 【详解】对于①,由题意知11//AD BC ,从而1//BC 平面1AD C ,故BC 1上任意一点到平面1AD C 的距离均相等,所以以P 为顶点,平面1AD C 为底面,则三棱锥1A D PC -的体积不变,故①正确; 对于②,连接1A B ,11A C ,111//AC AD 且相等,由于①知:11//AD BC ,所以11//BA C 面1ACD ,从而由线面平行的定义可得,故②正确; 对于③,由于DC ⊥平面11BCB C ,所以1DC BC ⊥, 若1DP BC ⊥,则1BC ⊥平面DCP ,1BC PC ⊥,则P 为中点,与P 为动点矛盾,故③错误;对于④,连接1DB ,由1DB AC ⊥且11DB AD ⊥,可得1DB ⊥面1ACD ,从而由面面垂直的判定知,故④正确. 故选:C .【名师点睛】本题考查命题真假的判断,解题时要注意三棱锥体积求法中的等体积法、线面平行、垂直的判定,要注意使用转化的思想.9.(2019·河北高考模拟(理))正方体1111ABCD A B C D -的棱上(除去棱AD)到直线1A B 与1CC 的距离相等的点有3个,记这3个点分别为,,E F G ,则直线1AC 与平面EFG 所成角的正弦值为( )A B C D 【答案】D 【解析】 【分析】正方体ABCD ﹣A 1B 1C 1D 1的棱上到直线A 1B 与CC 1的距离相等的点分别为:D 1,BC 的中点,B 1C 1的四等分点(靠近B 1),假设D 1与G 重合,BC 的中点为E ,B 1C 1的四等分点(靠近B 1)为F ,以D 为坐标原点,DA ,DC ,DD 1所在直线分别为x ,y ,z 轴,建立空间直角坐标系,利用向量法能求出直线AC 1与平面EFG 所成角的正弦值. 【详解】解:正方体ABCD ﹣A 1B 1C 1D 1的棱上到直线A 1B 与CC 1的距离相等的点分别为: D 1,BC 的中点,B 1C 1的四等分点(靠近B 1),假设D 1与G 重合,BC 的中点为E ,B 1C 1的四等分点(靠近B 1)为F ,以D 为坐标原点,DA ,DC ,DD 1所在直线分别为x ,y ,z 轴,建立空间直角坐标系,设AB =2,则E (1,2,0),F (32,2,2),G (0,0,2),A (2,0,0),C 1(0,2,2),∴EF =u u u r (1022,,),GF u u u r =(3202,,),1AC =u u u u r (﹣2,2,2), 设平面EFG 的法向量n =r(x ,y ,z ),则00n EF n GF ⎧⋅=⎪⎨⋅=⎪⎩u u u r r u u u r r ,即12023202x z x y ⎧+=⎪⎪⎨⎪+=⎪⎩,取x =4,得n =r (4,﹣3,﹣1). 设直线AC 1与平面EFG 所成角为θ,则直线AC 1与平面EFG 所成角的正弦值为sinθ=|cos 1n AC u u u u r r <,>|=. 故选:D .【名师点睛】本题考查线面角的正弦值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题.10.(2019·湖北高考模拟(理))如图,已知四面体ABCD 为正四面体,2,AB E F =, 分别是,AD BC 中点.若用一个与直线EF 垂直,且与四面体的每一个面都相交的平面α去截该四面体,由此得到一个多边形截面,则该多边形截面面积最大值为( ).A .1 BCD .2【答案】A【解析】 【分析】通过补体,在正方体内利用截面为平行四边形MNKL ,有2NK KL +=,进而利用基本不等式可得解. 【详解】补成正方体,如图.,EF α⊥Q∴截面为平行四边形MNKL ,可得2NK KL +=, 又//,//,MN AD KL BC 且,AD BC KN KL ⊥∴⊥ 可得L MNK S NK KL =⋅四边形2()1,2NK KL +≤=当且仅当NK KL =时取等号,选A. 【名师点睛】本题主要考查了线面的位置关系,截面问题,考查了空间想象力及基本不等式的应用,属于难题.二、填空题11.(2019·重庆南开中学高考模拟(理))三棱锥P ABC -的4的球面上,PA ⊥平面ABC ,V ABC A 到平面PBC 的距离为______. 【答案】65【解析】 【分析】由题意,球心在三棱锥各顶点的距离相等,球心到底面的距离等于三棱锥的高PA 的一半,求出PA,,然后利用等体积求点A 到平面PBC 的距离 【详解】△ABC 的正三角形,可得外接圆的半径2r asin60==︒2,即r =1.∵PA ⊥平面ABC ,PA =h ,球心到底面的距离d 等于三棱锥的高PA 的一半即h2,那么球的半径R ==,解得h=2,又PBC S ∆=由P ABC A PBC V V --= 知'113?2=?33 ,得'65d = 故点A 到平面PBC 的距离为65故答案为65. 【名师点睛】本题考查外接球问题,锥的体积,考查计算求解能力,是基础题 12.(2019·广东高考模拟(理))《九章算术》中对一些特殊的几何体有特定的称谓,例如:将底面为直角三角形的直三棱柱称为堑堵,将一堑堵沿其一顶点与相对的棱刨开, 得到一个阳马(底面是长方形,且有一条侧棱与底面垂直的四棱锥)和一个鳖臑(四个面均为直角三角形的四面体).在如图所示的堑堵111ABC A B C -中,15,3,4AA AC AB BC ====,则阳马111C ABB A -的外接球的表面积是_________________【答案】50S π= 【解析】 【分析】根据堑堵定义以及长方体性质可得阳马111C ABB A -的外接球的直径为1A C ,再根据球的表面积公式求结果. 【详解】由于1CB,,BA BB 两两相互垂直,所以阳马111C ABB A -的外接球的直径为1A C ,即2R ==2450R ππ=.【名师点睛】若球面上四点,,,P A B C 构成的三条线段,,PA PB PC 两两互相垂直,且,,PA a PB b PC c ===,一般把有关元素“补形”成为一个球内接长方体,利用22224R a b c =++求解.13.(2019·山东高考模拟(理))如图所示,平面BCC 1B 1⊥平面ABC ,∠ABC =120︒,四边形BCC 1B 1为正方形,且AB =BC =2,则异面直线BC 1与AC 所成角的余弦值为_____.【答案】4【解析】 【分析】将AC 平移到和1BC 相交的位置,解三角形求得线线角的余弦值. 【详解】过B 作//BD AC ,过C 作//CD AB ,画出图像如下图所示,由于四边形ABCD 是平行四边形,故//BD AC ,所以1C BD ∠是所求线线角或其补角.在三角形1BC D 中,11BC C D BD ===1cos C BD ∠==.【名师点睛】本小题主要考查空间两条直线所成角的余弦值的计算,考查数形结合的数学思想方法,属于中档题.14.(2018·栖霞市第一中学高考模拟(理))如图在四面体ABCD 中,若截面PQMN 是正方形,则在下列命题中正确的有______.(填上所有正确命题的序号)AC BD ⊥①, AC BD =②, //AC ③截面PQMN ,④异面直线PM 与BD 所成的角为45o .【答案】①③④ 【解析】 【分析】由截面PQMN 是正方形出发,利用线面平行的判定和性质,可以推出////PQ AC MN ,////PN BD MQ ,从而得到//AC 平面PQMN ,异面直线PM 与BD 所成的角和PM 与PN 所成角相等为45o ,AC BD ⊥,M N P Q 、、、不一定是中点从而AC BD ,不一定相等.【详解】解:在四面体ABCD 中,Q 截面PQMN 是正方形,//PQ MN ∴,PQ ⊄平面ACD ,MN ⊂平面ACD ,//PQ ∴平面ACD .Q 平面ACB ⋂平面ACD AC =,//PQ AC ∴,可得//AC 平面PQMN .同理可得//BD 平面PQMN ,//BD PN .PN PQ ⊥Q ,AC BD ∴⊥.由//BD PN ,MPN ∴∠是异面直线PM 与BD 所成的角,且为45o .由上面可知://BD PN ,//PQ AC .PN AN BD AD ∴=,MN DNAC AD=, 而AN DN ≠,PN MN =,BD AC ∴≠.综上可知:①③④都正确. 故答案为:①③④.利用线面平行与垂直的判定定理和性质定理、正方形的性质、异面直线所成的角即可得出. 【名师点睛】本题考查了线面平行与垂直的判定定理和性质定理、正方形的性质、异面直线所成的角,属于基础题.15.(2019·深圳市高级中学高考模拟(理))在三棱锥P ABC -中,平面PAB ⊥平面ABC ,ABC △是边长为6的等边三角形,PAB △是以AB 为斜边的等腰直角三角形,则该三棱锥外接球的表面积为_______. 【答案】48π 【解析】 【分析】在等边三角形ABC 中,取AB 的中点F ,设其中心为O ,则23AO BO CO CF ====,再利用勾股定理可得OP =O 为棱锥P ABC -的外接球球心,利用球的表面积公式可得结果.【详解】如图,在等边三角形ABC 中,取AB 的中点F , 设其中心为O ,由6AB =,得23AO BO CO CF ====, PAB ∆Q 是以AB 为斜边的等腰角三角形,PF AB ∴⊥,又因为平面PAB ⊥平面ABC ,PF ∴⊥平面 ABC ,PF OF ∴⊥,OP =则O 为棱锥P ABC -的外接球球心,外接球半径R OC ==∴该三棱锥外接球的表面积为(2448ππ⨯=,故答案为48π. 【名师点睛】本题考查主要四面体外接球表面积,考查空间想象能力,是中档题. 要求外接球的表面积和体积,关键是求出球的半径,求外接球半径的常见方法有:①若三条棱两垂直则用22224R a b c =++(,,a b c 为三棱的长);②若SA ⊥面ABC (SA a =),则22244R r a =+(r 为ABC ∆外接圆半径);③可以转化为长方体的外接球;④特殊几何体可以直接找出球心和半径.三、解答题16.(2019·山东高考模拟(理))如图所示的多面体是由一个直平行六面体被平面AEFG 所截后得到的,其中45BAE GAD ∠=∠=︒,22AB AD ==,60BAD ∠=︒.(1)求证:平面BDG ⊥平面ADG ; (2)求直线GB 与平面AEFG 所成角的正弦值.【答案】(1)见解析(2)7【解析】 【分析】(1)在BAD ∆中,由余弦定理可得BD =AD DB ⊥,在直平行六面体中,GD ⊥平面ABCD ,则可得GD DB ⊥,由此说明BD ⊥平面ADG ,即可证明平面BDG ⊥平面ADG ;(2)以D 为原点建立空间直角坐标系D xyz -,表示出各点的坐标,求出平面AEFG 的法向量,由直线与平面所成角正弦值的公式即可得到直线GB 与平面AEFG 所成角的正弦值. 【详解】(1)证明:在BAD ∆中,因为22AB AD ==,60BAD ∠=︒. 由余弦定理得,2222cos60BD AD AB AB AD =+-⋅︒,解得BD =∴222AB AD DB =+,∴AD DB ⊥, 在直平行六面体中,GD ⊥平面ABCD ,DB ⊂平面ABCD , ∴GD DB ⊥ 又AD GD D ⋂=, ∴BD ⊥平面ADG ,∴平面BDG ⊥平面ADG . (2)解:如图以D 为原点建立空间直角坐标系D xyz -,因为45BAE GAD ∠=∠=︒,22AB AD ==, 所以()1,0,0A,()B,()E ,()0,0,1G ,()AE →=-,()1,0,1AG →=-,()1GB →=-.设平面AEFG 的法向量(),,n x y z →=,200n AE x z n AG x z ⎧⋅=-++=⎪⎨⋅=-+=⎪⎩u u u v r u u uv r , 令1x =,得y =1z =,∴1,n →⎛⎫= ⎪ ⎪⎝⎭.设直线GB 和平面AEFG 的夹角为θ,所以sin cos ,7GB n GB n GB n θ→→→→→→⋅====⋅, 所以直线GB 与平面AEFG 所成角的正弦值为7. 【名师点睛】本题考查面面垂直的证明,以及利用空间向量求线面所成角的正弦值,熟练掌握面面垂直的判定以及线面所成角的公式是解题关键,考查学生基本的算能力,属于中档题. 17.(2019·辽宁高考模拟(理))如图,等腰梯形ABCD 中,//AB CD ,1AD AB BC===,2CD =,E 为CD 中点,以AE 为折痕把ADE ∆折起,使点D 到达点P 的位置(P ∉平面ABCE ).(Ⅰ)证明:AE PB ⊥;(Ⅰ)若直线PB 与平面ABCE 所成的角为4π,求二面角A PE C --的余弦值.【答案】(I )见解析;(II ). 【解析】 【分析】(I )先证明AE POB ⊥平面,再证明AE PB ⊥;(II )在平面POB 内作PQ ⊥OB,垂足为Q ,证明OP ⊥平面ABCE ,以O 为原点,OE 为x 轴,OB 为y 轴,OP 为z 轴,建立空间直角坐标系,利用向量法求二面角A PE C --的余弦值. 【详解】(I )证明:在等腰梯形ABCD 中,连接BD ,交AE 于点O ,∵AB||CE,AB=CE ,∴四边形ABCE 为平行四边形,∴AE=BC=AD=DE , ∴△ADE 为等边三角形,∴在等腰梯形ABCD 中,3C ADE π∠=∠=,23DAB ABC π∠=∠=, ∴在等腰ADB ∆中,6ADB ABD π∠=∠=∴2362DBC πππ∠=-=,即BD ⊥BC , ∴BD ⊥AE ,翻折后可得:OP ⊥AE,OB ⊥AE ,又,,OP POB OB POB OP OB O ⊂⊂=Q I 平面平面,AE POB ∴⊥平面,,PB POB AE PB ⊂∴⊥Q 平面;(II )解:在平面POB 内作PQ ⊥OB,垂足为Q , 因为AE ⊥平面POB ,∴AE ⊥PQ ,因为OB ⊂平面ABCE, AE ⊂平面ABCE,AE∩OB=O∴PQ ⊥平面ABCE ,∴直线PB 与平面ABCE 夹角为4PBQ π∠=,又因为OP=OB ,∴OP ⊥OB ,∴O 、Q 两点重合,即OP ⊥平面ABCE ,以O 为原点,OE 为x 轴,OB 为y 轴,OP 为z 轴,建立空间直角坐标系,由题意得,各点坐标为111(,0,0),(,0,(222P E C PE EC ∴==u u u r u u u r , 设平面PCE 的一个法向量为1(,,)n x y z =u r,则111002,,0102x z PE n EC n x y ⎧=⎪⎧⋅=⎪⎪∴⎨⎨⋅=⎪⎩⎪+=⎪⎩u u u v u v u u u v u v设x =y=-1,z=1,∴1n =u r,由题意得平面PAE 的一个法向量2(0,1,0)n =u u r, 设二面角A -EP -C 为α,1212|||cos |=||||n n n n α⋅==u r u u rur u u r . 易知二面角A -EP -C为钝角,所以cos α.【名师点睛】本题主要考查空间几何元素位置关系的证明,考查二面角的求法,意在考查学生对这些知识的理解掌握水平和空间想象转化分析推理能力.18.(2019·江苏高考模拟)直三棱柱111ABC A B C -中,AB AC ⊥,2AB =,4AC =,12AA =,BD DC λ=u u u r u u u r.(1)若1λ=,求直线1DB 与平面11AC D 所成角的正弦值;(2)若二面角111B AC D --的大小为60︒,求实数λ的值.【答案】(1(21 【解析】【详解】试题分析:(1)直接按照求直线与平面所成角的步骤来求即可;直线与平面α所成角θ 可先求出平面α的法向量n 与直线的方向向量,则sin cos a n a n a nθ⋅=〈⋅〉=r r r r r r ;(2)根据求二面角的步骤,列出关于实数λ的方程来求;求出二面角l αβ--的大小,可先求出两个半平面α与β的法向量12n n u r u u r ,,若二面角l αβ--所成的角θ为锐角,则1212cos cos cos n n n n θ〈〉=〈〉u r u u r u r u u r =,,;若二面角l αβ--所成的角θ钝角,则1212cos cos cos n n n n θ〈⋅〉=-〈⋅〉u r u u r u r u u r =-.试题解析:解:分别以1,,AB AC AA 所在直线为,,x y z 轴建立空间直角坐标系.则(0,0,0)A ,(2,0,0)B ,(0,4,0)C ,1(0,0,2)A ,1(2,0,2)B ,1(0,4,2)C(1)当1λ=时,D 为BC 的中点,所以(1,2,0)D ,1(1,2,2)DB =-u u u u r ,11(0,4,0)AC =u u u u r ,1(1,2,2)AD =-u u u u r ,设平面11AC D 的法向量为1(,,)n x y z =u r 则40{20y x z =-=,所以取1(2,0,1)n =u r,又111111cos ,DB n DB n DB n ⋅===u u u u r u r u u u u r u r u u u u r u r 所以直线1DB 与平面11AC D. (2)BD DC λ=u u u r u u u r Q ,24(,,0)11D λλλ∴++,11(0,4,0)AC =u u u u r Q ,124(,,2)11A D λλλ=-++u u u u r , 设平面11AC D 的法向量为1(,,)n x y z =u r ,则40{2201y x z λ=-=+, 所以取1(1,0,1)n λ=+u r .又平面111A B C 的一个法向量为2(0,0,1)n =u u r ,由题意得121cos ,2n n =u r u u r ,12=,解得1λ=-或1λ=-(不合题意,舍去), 所以实数λ1.考点:二面角;直线与平面所成角的方法.19 (2019·山东高考模拟(理))如图,在多面体ABCDEF 中,四边形ABCD 的菱形,60BCD ∠=︒,AC 与BD 交于点O ,平面FBC ⊥平面ABCD ,//EF AB ,FB FC =,3EF =.(1)求证:OE ⊥平面ABCD ;(2)若FBC ∆为等边三角形,点Q 为AE 的中点,求二面角Q BC A --的余弦值.【答案】(1)见证明;(2)13【解析】【分析】 (1)可证FH BC ⊥,再利用平面FBC ⊥平面ABCD 证得FH ⊥平面ABCD ,通过证明//OE FH ,可得要求证的线面垂直.(2)建立空间直角坐标系,求出平面BCQ 的法向量和平面ABC 的一个法向量后可求二面角Q BC A --的余弦值.【详解】(1)证明:取BC 的中点H ,连结OH 、FH 、OE ,因为FB FC =,所以FH BC ⊥,因为平面FBC ⊥平面ABCD ,平面FBC I 平面ABCD BC =,FH⊂平面FBC , 所以FH ⊥平面ABCD ,因为H 、O 分别为BC 、AC 的中点,所以//OH AB 且123OH AB ==.又//EF AB,EF =,所以//EF OH ,所以四边形OEFH 为平行四边形, 所以//OE FH ,所以OE ⊥平面ABCD .(2)解:因为菱形ABCD ,所以2OA OC OE FH ====.所以OA ,OB ,OE 两两垂直,建立空间直角坐标系O xyz -,如图所示,则(2,0,0)A,(0,3B ,(2,0,0)C -,(0,0,2)E , 所以(1,0,1)Q ,所以(2,BC =-u u u r ,(3,0,1)CQ =u u u r , 设平面BCQ 的法向量为(,,)m x y z =u r ,由00BC m CQ m ⎧⋅=⎨⋅=⎩u u u v v u u u v v得2030x y x z ⎧--=⎪⎨⎪+=⎩, 取1x =,可得(1,3)m =-u r ,平面ABC 的一个法向量为(0,0,1)n =r ,设二面角Q BC A --的平面角为θ,则cos 13m n m n θ⋅-===u r r u r r , 因为二面角Q BC A --的平面角为锐角,所以二面角Q BC A -- 【名师点睛】线线垂直的判定可由线面垂直得到,也可以由两条线所成的角为2π得到,而线面垂直又可以由面面垂直得到,解题中注意三种垂直关系的转化. 空间中的角的计算,可以建立空间直角坐标系把角的计算归结为向量的夹角的计算,也可以构建空间角,把角的计算归结平面图形中的角的计算.。

2020年高考数学试题分项版—立体几何(解析版)

2020年高考数学试题分项版—立体几何(解析版)

2020年高考数学试题分项版——立体几何(解析版)一、选择题1.(2020·全国Ⅰ理,3)埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥.以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为( )A.5-14 B.5-12 C.5+14 D.5+12答案 C解析 设正四棱锥的底面正方形的边长为a ,高为h , 侧面三角形底边上的高(斜高)为h ′, 则由已知得h 2=12ah ′.如图,设O 为正四棱锥S -ABCD 底面的中心,E 为BC 的中点,则在Rt △SOE 中,h ′2=h 2+⎝⎛⎭⎫a 22, ∴h ′2=12ah ′+14a 2,∴⎝⎛⎭⎫h ′a 2-12·h ′a -14=0,解得h ′a =5+14(负值舍去).2.(2020·全国Ⅰ理,10)已知A ,B ,C 为球O 的球面上的三个点,⊙O 1为△ABC 的外接圆,若⊙O 1的面积为4π,AB =BC =AC =OO 1,则球O 的表面积为( ) A .64π B .48π C .36π D .32π 答案 A解析 如图,设圆O 1的半径为r ,球的半径为R ,正三角形ABC 的边长为a .由πr 2=4π,得r =2, 则33a =2,a =23,OO 1=a =2 3. 在Rt △OO 1A 中,由勾股定理得R 2=r 2+OO 21=22+(23)2=16,所以S 球=4πR 2=4π×16=64π.3.(2020·全国Ⅱ理,7)如图是一个多面体的三视图,这个多面体某条棱的一个端点在正视图中对应的点为M ,在俯视图中对应的点为N ,则该端点在侧视图中对应的点为( )A .EB .FC .GD .H 答案 A解析 由三视图还原几何体,如图所示,由图可知,所求端点在侧视图中对应的点为E .4.(2020·全国Ⅱ理,10)已知△ABC 是面积为934的等边三角形,且其顶点都在球O 的球面上.若球O 的表面积为16π,则O 到平面ABC 的距离为( ) A. 3 B.32 C .1 D.32答案 C 解析如图所示,过球心O 作OO 1⊥平面ABC ,则O 1为等边三角形ABC 的外心.设△ABC 的边长为a , 则34a 2=934,解得a =3, ∴O 1A =23×32×3= 3.设球O 的半径为r ,则由4πr 2=16π,得r =2,即OA =2. 在Rt △OO 1A 中,OO 1=OA 2-O 1A 2=1, 即O 到平面ABC 的距离为1.5.(2020·全国Ⅲ理,8)下图为某几何体的三视图,则该几何体的表面积是( )A .6+4 2B .4+4 2C .6+2 3D .4+2 3答案 C解析 如图,该几何体为三棱锥,且其中有三个面是腰长为2的等腰直角三角形,第四个面是边长为22的等边三角形,所以该几何体的表面积为3×12×2×2+12×22×22×32=6+2 3.6.(2020·新高考全国Ⅰ,4)日晷是中国古代用来测定时间的仪器,利用与晷面垂直的晷针投射到晷面的影子来测定时间.把地球看成一个球(球心记为O ),地球上一点A 的纬度是指OA 与地球赤道所在平面所成角,点A 处的水平面是指过点A 且与OA 垂直的平面.在点A 处放置一个日晷,若晷面与赤道所在平面平行,点A 处的纬度为北纬40°,则晷针与点A 处的水平面所成角为( )A .20°B .40°C .50°D .90° 答案 B解析 如图所示,⊙O 为赤道平面,⊙O 1为A 点处的日晷面所在的平面,由点A处的纬度为北纬40°可知∠OAO1=40°,又点A处的水平面与OA垂直,晷针AC与⊙O1所在的面垂直,则晷针AC与水平面所成角为40°.7.(2020·新高考全国Ⅱ,4)日晷是中国古代用来测定时间的仪器,利用与晷面垂直的晷针投射到晷面的影子来测定时间.把地球看成一个球(球心记为O),地球上一点A的纬度是指OA与地球赤道所在平面所成角,点A处的水平面是指过点A且与OA垂直的平面.在点A 处放置一个日晷,若晷面与赤道所在平面平行,点A处的纬度为北纬40°,则晷针与点A处的水平面所成角为()A.20°B.40°C.50°D.90°答案 B解析如图所示,⊙O为赤道平面,⊙O1为A点处的日晷面所在的平面,由点A处的纬度为北纬40°可知∠OAO1=40°,又点A处的水平面与OA垂直,晷针AC与⊙O1所在的面垂直,则晷针AC与水平面所成角为40°.8.(2020·北京,4)某三棱柱的底面为正三角形,其三视图如图所示,该三棱柱的表面积为()A.6+ 3 B.6+2 3 C.12+ 3 D.12+2 3答案 D解析 由三视图还原几何体,该几何体为底面是边长为2的正三角形,高为2的直三棱柱, S 底=2×34×22=2 3. S 侧=3×2×2=12,则三棱柱的表面积为23+12.9.(2020·北京,10)2020年3月14日是全球首个国际圆周率日(π Day).历史上,求圆周率π的方法有多种,与中国传统数学中的“割圆术”相似.数学家阿尔·卡西的方法是:当正整数n 充分大时,计算单位圆的内接正6n 边形的周长和外切正6n 边形(各边均与圆相切的正6n 边形)的周长,将它们的算术平均数作为2π的近似值.按照阿尔·卡西的方法,π的近似值的表达式是( ) A .3n ⎝⎛⎭⎫sin 30°n +tan 30°n B .6n ⎝⎛⎭⎫sin 30°n +tan 30°n C .3n ⎝⎛⎭⎫sin 60°n +tan 60°n D .6n ⎝⎛⎭⎫sin 60°n+tan 60°n 答案 A解析 设内接正6n 边形的周长为C 1,外切正6n 边形的周长为C 2,如图(1)所示,sin 360°12n =BC 1, ∴BC =sin 30°n,∴AB =2sin 30°n ,C 1=12n sin 30°n.如图(2)所示,tan 360°12n =B ′C ′1,∴B ′C ′=tan 30°n,∴A ′B ′=2tan 30°n ,C 2=12n tan 30°n .∴2π=C 1+C 22=6n ⎝⎛⎭⎫sin 30°n +tan 30°n , ∴π=3n ⎝⎛⎭⎫sin 30°n+tan 30°n . 10.(2020·天津,5)若棱长为23的正方体的顶点都在同一球面上,则该球的表面积为( )A .12πB .24πC .36πD .144π 答案 C解析 由题意知,正方体的体对角线就是球的直径 ∴2R =(23)2+(23)2+(23)2=6, ∴R =3,∴S 球=4πR 2=36π.11.(2020·浙江,5)某几何体的三视图(单位:cm)如图所示,则该几何体的体积(单位:cm 3)是( )A.73B.143 C .3 D .6 答案 A解析 如图,三棱柱的体积V 1=12×2×1×2=2,三棱锥的体积V 2=13×12×2×1×1=13,因此,该几何体的体积V =V 1+V 2=2+13=73.12.(2020·浙江,6)已知空间中不过同一点的三条直线l ,m ,n ,“l ,m ,n 共面”是“l ,m ,n 两两相交”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件 答案 B解析 如图,直线l ,m ,n 不过同一点,且l ,m ,n 共面有三种情况:①同一平面内三线平行;②两平行线与另一线相交;③三线两两相交.因此,“l ,m ,n 两两相交”是“l ,m ,n 共面”的一种情况,即“l ,m ,n 共面”是“l ,m ,n 两两相交”的必要不充分条件.13.(2020·全国Ⅰ文,3)埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥.以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为( )A.5-14 B.5-12 C.5+14 D.5+12答案 C解析 设正四棱锥的底面正方形的边长为a ,高为h , 侧面三角形底边上的高(斜高)为h ′, 则由已知得h 2=12ah ′.如图,设O 为正四棱锥S -ABCD 底面的中心,E 为BC 的中点,则在Rt △SOE 中,h ′2=h 2+⎝⎛⎭⎫a 22, ∴h ′2=12ah ′+14a 2,∴⎝⎛⎭⎫h ′a 2-12·h ′a -14=0,解得h ′a =5+14(负值舍去).14.(2020·全国Ⅰ文,12)已知A ,B ,C 为球O 的球面上的三个点,⊙O 1为△ABC 的外接圆.若⊙O 1的面积为4π,AB =BC =AC =OO 1,则球O 的表面积为( ) A .64π B .48π C .36π D .32π 答案 A解析 如图,设圆O 1的半径为r ,球的半径为R ,正三角形ABC 的边长为a . 由πr 2=4π,得r =2, 则33a =2,a =23, OO 1=a =2 3.在Rt △OO 1A 中,由勾股定理得R 2=r 2+OO 21=22+(23)2=16,所以S 球=4πR 2=4π×16=64π.15.(2020·全国Ⅱ文,11)已知△ABC 是面积为934的等边三角形,且其顶点都在球O 的球面上.若球O 的表面积为16π,则O 到平面ABC 的距离为( ) A. 3 B.32 C .1 D.32答案 C解析 如图所示,过球心O 作OO 1⊥平面ABC ,则O 1为等边三角形ABC 的外心. 设△ABC 的边长为a , 则34a 2=934,解得a =3, ∴O 1A =23×32×3= 3.设球O 的半径为r ,则由4πr 2=16π,得r =2,即OA =2. 在Rt △OO 1A 中,OO 1=OA 2-O 1A 2=1, 即O 到平面ABC 的距离为1.16.(2020·全国Ⅲ文,9)下图为某几何体的三视图,则该几何体的表面积是( )A .6+4 2B .4+4 2C .6+2 3D .4+2 3答案 C解析 如图,该几何体为三棱锥,且其中有三个面是腰长为2的等腰直角三角形,第四个面是边长为22的等边三角形,所以该几何体的表面积为3×12×2×2+12×22×22×32=6+2 3.二、填空题1.(2020·全国Ⅱ理,16)设有下列四个命题:p 1:两两相交且不过同一点的三条直线必在同一平面内; p 2:过空间中任意三点有且仅有一个平面; p 3:若空间两条直线不相交,则这两条直线平行; p 4:若直线l ⊂平面α,直线m ⊥平面α,则m ⊥l . 则下述命题中所有真命题的序号是________. ①p 1∧p 4;②p 1∧p 2;③23p p ⌝∨;④34p p ⌝∨⌝. 答案 ①③④解析 p 1是真命题,两两相交且不过同一点的三条直线必定有三个交点,且这三个交点不在同一条直线上,由平面的基本性质“经过不在同一直线上的三个点,有且只有一个平面”,可知p 1为真命题;p 2是假命题,因为当空间中三点在一条直线上时,有无数个平面过这三个点;p 3是假命题,因为空间两条直线不相交时,它们可能平行,也可能异面;p 4是真命题,因为一条直线垂直于一个平面,那么它垂直于平面内的所有直线.由以上结论知綈p 2,綈p 3,綈p 4依次为真命题、真命题、假命题,从而①③④中命题为真命题,②中命题为假命题.2.(2020·全国Ⅲ理,15)已知圆锥的底面半径为1,母线长为3,则该圆锥内半径最大的球的体积为________. 答案23π 解析 圆锥内半径最大的球即为圆锥的内切球,设其半径为r .作出圆锥的轴截面P AB ,如图所示,则△P AB 的内切圆为圆锥的内切球的大圆.在△P AB 中,P A =PB =3,D 为AB 的中点,AB =2,E 为切点,则PD =22,△PEO ∽△PDB ,故PO PB =OE DB ,即22-r 3=r 1,解得r =22, 故内切球的体积为43π⎝⎛⎭⎫223=23π.3.(2020·新高考全国Ⅰ,16)已知直四棱柱ABCD -A 1B 1C 1D 1的棱长均为2,∠BAD =60°.以D 1为球心,5为半径的球面与侧面BCC 1B 1的交线长为________. 答案2π2解析 如图,设B 1C 1的中点为E ,球面与棱BB 1,CC 1的交点分别为P ,Q , 连接DB ,D 1B 1,D 1P ,D 1E ,EP ,EQ ,由∠BAD =60°,AB =AD ,知△ABD 为等边三角形, ∴D 1B 1=DB =2,∴△D 1B 1C 1为等边三角形, 则D 1E =3且D 1E ⊥平面BCC 1B 1,∴E 为球面截侧面BCC 1B 1所得截面圆的圆心, 设截面圆的半径为r ,则r =R 2球-D 1E 2=5-3= 2. 又由题意可得EP =EQ =2,∴球面与侧面BCC 1B 1的交线为以E 为圆心的圆弧PQ . 又D 1P =5,∴B 1P =D 1P 2-D 1B 21=1, 同理C 1Q =1,∴P ,Q 分别为BB 1,CC 1的中点, ∴∠PEQ =π2,知PQ 的长为π2×2=2π2,即交线长为2π2.4.(2020·新高考全国Ⅱ,13)棱长为2的正方体ABCD -A 1B 1C 1D 1中,M ,N 分别为棱BB 1,AB 的中点,则三棱锥A 1-D 1MN 的体积为________. 答案 1解析 如图,由正方体棱长为2,得S △A 1MN =2×2-2×12×2×1-12×1×1=32,又易知D 1A 1为三棱锥D 1-A 1MN 的高,且D 1A 1=2, ∴1111A D MN D A MN V V --==13·1A MN S △·D 1A 1=13×32×2=1. 5.(2020·江苏,9)如图,六角螺帽毛坯是由一个正六棱柱挖去一个圆柱所构成的.已知螺帽的底面正六边形边长为2 cm ,高为2 cm ,内孔半径为0.5 cm ,则此六角螺帽毛坯的体积是________cm 3.答案 ⎝⎛⎭⎫123-π2 解析 螺帽的底面正六边形的面积 S =6×12×22×sin 60°=63(cm 2),正六棱柱的体积V 1=63×2=123(cm 3), 圆柱的体积V 2=π×0.52×2=π2(cm 3),所以此六角螺帽毛坯的体积 V =V 1-V 2=⎝⎛⎭⎫123-π2cm 3. 6.(2020·浙江,14)已知圆锥的侧面积(单位:cm 2)为2π,且它的侧面展开图是一个半圆,则这个圆锥的底面半径(单位:cm)是________. 答案 1解析 如图,设圆锥的母线长为l ,底面半径为r ,则圆锥的侧面积S 侧=πrl =2π, ∴r =12l .又圆锥侧面展开图为半圆, ∴12πl 2=2π, ∴l =2,∴r =1.7.(2020·全国Ⅱ文,16)设有下列四个命题:p 1:两两相交且不过同一点的三条直线必在同一平面内; p 2:过空间中任意三点有且仅有一个平面; p 3:若空间两条直线不相交,则这两条直线平行; p 4:若直线l ⊂平面α,直线m ⊥平面α,则m ⊥l . 则下述命题中所有真命题的序号是________. ①p 1∧p 4;②p 1∧p 2;③23p p ⌝∨;④34p p ⌝∨⌝. 答案 ①③④解析 p 1是真命题,两两相交且不过同一点的三条直线必定有三个交点,且这三个交点不在同一条直线上,由平面的基本性质“经过不在同一直线上的三个点,有且只有一个平面”,可知p 1为真命题;p 2是假命题,因为当空间中三点在一条直线上时,有无数个平面过这三个点;p 3是假命题,因为空间两条直线不相交时,它们可能平行,也可能异面;p 4是真命题,因为一条直线垂直于一个平面,那么它垂直于平面内的所有直线.由以上结论知綈p 2,綈p 3,綈p 4依次为真命题、真命题、假命题,从而①③④中命题为真命题,②中命题为假命题.8.(2020·全国Ⅲ文,16)已知圆锥的底面半径为1,母线长为3,则该圆锥内半径最大的球的体积为________. 答案23π 解析 圆锥内半径最大的球即为圆锥的内切球,设其半径为r .作出圆锥的轴截面P AB ,如图所示,则△P AB 的内切圆为圆锥的内切球的大圆.在△P AB 中,P A =PB =3,D 为AB 的中点,AB =2,E 为切点,则PD =22,△PEO ∽△PDB ,故PO PB =OE DB ,即22-r 3=r 1,解得r =22, 故内切球的体积为43π⎝⎛⎭⎫223=23π.三、解答题1.(2020·全国Ⅰ理,18)如图,D 为圆锥的顶点,O 是圆锥底面的圆心,AE 为底面直径,AE =AD .△ABC 是底面的内接正三角形,P 为DO 上一点,PO =66DO .(1)证明:P A ⊥平面PBC ; (2)求二面角B -PC -E 的余弦值.(1)证明 由题设,知△DAE 为等边三角形,设AE =1, 则DO =32,CO =BO =12AE =12, 所以PO =66DO =24, PC =PO 2+OC 2=64,PB =PO 2+OB 2=64, 又△ABC 为等边三角形,则BAsin 60°=2OA , 所以BA =32, P A =PO 2+OA 2=64, P A 2+PB 2=34=AB 2,则∠APB =90°,所以P A ⊥PB ,同理P A ⊥PC , 又PC ∩PB =P ,所以P A ⊥平面PBC . (2)解 过O 作ON ∥BC 交AB 于点N ,因为PO ⊥平面ABC ,以O 为坐标原点,OA 所在直线为x 轴,ON 所在直线为y 轴,OD 所在直线为z 轴,建立如图所示的空间直角坐标系,则E ⎝⎛⎭⎫-12,0,0,P ⎝⎛⎭⎫0,0,24, B ⎝⎛⎭⎫-14,34,0,C ⎝⎛⎭⎫-14,-34,0,PC →=⎝⎛⎭⎫-14,-34,-24,PB →=⎝⎛⎭⎫-14,34,-24,PE →=⎝⎛⎭⎫-12,0,-24,设平面PCB 的一个法向量为n =(x 1,y 1,z 1), 由⎩⎪⎨⎪⎧n ·PC →=0,n ·PB →=0,得⎩⎨⎧-x 1-3y 1-2z 1=0,-x 1+3y 1-2z 1=0,令x 1=2,得z 1=-1,y 1=0, 所以n =(2,0,-1),设平面PCE 的一个法向量为m =(x 2,y 2,z 2), 由⎩⎪⎨⎪⎧m ·PC →=0,m ·PE →=0,得⎩⎨⎧-x 2-3y 2-2z 2=0,-2x 2-2z 2=0,令x 2=1,得z 2=-2,y 2=33, 所以m =⎝⎛⎭⎫1,33,-2,故cos 〈m ,n 〉=m ·n|m |·|n |=223×103=255, 所以二面角B -PC -E 的余弦值为255.2.(2020·全国Ⅱ理,20)如图,已知三棱柱ABC -A 1B 1C 1的底面是正三角形,侧面BB 1C 1C 是矩形,M ,N 分别为BC ,B 1C 1的中点,P 为AM上一点.过B 1C 1和P 的平面交AB 于E ,交AC 于F .(1)证明:AA 1∥MN ,且平面A 1AMN ⊥平面EB 1C 1F ;(2)设O 为△A 1B 1C 1的中心,若AO ∥平面EB 1C 1F ,且AO =AB ,求直线B 1E 与平面A 1AMN 所成角的正弦值.(1)证明 因为侧面BB 1C 1C 是矩形,且M ,N 分别为BC ,B 1C 1的中点, 所以MN ∥CC 1.又由已知得AA 1∥CC 1,故AA 1∥MN . 因为△A 1B 1C 1是正三角形,所以B 1C 1⊥A 1N . 又B 1C 1⊥MN ,故B 1C 1⊥平面A 1AMN . 所以平面A 1AMN ⊥平面EB 1C 1F .(2)解 由已知得AM ⊥BC .以M 为坐标原点,MA →的方向为x 轴正方向,|MB →|为单位长度,建立如图所示的空间直角坐标系,则AB =2,AM = 3.连接NP ,则四边形AONP 为平行四边形, 故PM =233,E ⎝⎛⎭⎫233,13,0.由(1)知平面A 1AMN ⊥平面ABC ,作NQ ⊥AM ,垂足为Q ,则NQ ⊥平面ABC . 设Q (a,0,0), 则NQ =4-⎝⎛⎭⎫233-a 2,B 1⎝⎛⎭⎪⎫a ,1,4-⎝⎛⎭⎫233-a 2, 故B 1E →=⎝ ⎛⎭⎪⎫233-a ,-23,-4-⎝⎛⎭⎫233-a 2,|B 1E →|=2103.又n =(0,-1,0)是平面A 1AMN 的一个法向量,故sin ⎝⎛⎭⎫π2-〈n ,B 1E →〉=cos 〈n ,B 1E →〉 =n ·B 1E →|n ||B 1E →|=1010.所以直线B 1E 与平面A 1AMN 所成角的正弦值为1010. 3.(2020·全国Ⅲ理,19)如图,在长方体ABCD -A 1B 1C 1D 1中,点E ,F 分别在棱DD 1,BB 1上,且2DE =ED 1,BF =2FB 1.(1)证明:点C 1在平面AEF 内;(2)若AB =2,AD =1,AA 1=3,求二面角A -EF -A 1的正弦值.(1)证明 设AB =a ,AD =b ,AA 1=c ,如图,以C 1为坐标原点,C 1D 1—→,C 1B 1—→,C 1C —→的方向分别为x 轴,y 轴,z 轴正方向,建立空间直角坐标系C 1-xyz .连接C 1F ,则C 1(0,0,0),A (a ,b ,c ), E ⎝⎛⎭⎫a ,0,23c ,F ⎝⎛⎭⎫0,b ,13c , EA →=⎝⎛⎭⎫0,b ,13c ,C 1F →=⎝⎛⎭⎫0,b ,13c , 所以EA →=C 1F →,所以EA ∥C 1F , 即A ,E ,F ,C 1四点共面, 所以点C 1在平面AEF 内.(2)解 由已知得A (2,1,3),E (2,0,2),F (0,1,1),A 1(2,1,0), 则AE →=(0,-1,-1),AF →=(-2,0,-2), A 1E →=(0,-1,2),A 1F →=(-2,0,1). 设n 1=(x 1,y 1,z 1)为平面AEF 的法向量, 则⎩⎪⎨⎪⎧n 1·AE →=0,n 1·AF →=0,即⎩⎪⎨⎪⎧-y 1-z 1=0,-2x 1-2z 1=0,可取n 1=(-1,-1,1).设n 2=(x 2,y 2,z 2)为平面A 1EF 的法向量, 则⎩⎪⎨⎪⎧n 2·A 1E →=0,n 2·A 1F →=0,即⎩⎪⎨⎪⎧-y 2+2z 2=0,-2x 2+z 2=0,同理可取n 2=⎝⎛⎭⎫12,2,1. 因为cos 〈n 1,n 2〉=n 1·n 2|n 1|·|n 2|=-77,所以二面角A -EF -A 1的正弦值为427. 4.(2020·新高考全国Ⅰ,20)如图,四棱锥P -ABCD 的底面为正方形,PD ⊥底面ABCD .设平面P AD 与平面PBC 的交线为l .(1)证明:l ⊥平面PDC ;(2)已知PD =AD =1,Q 为l 上的点,求PB 与平面QCD 所成角的正弦值的最大值. (1)证明 在正方形ABCD 中,AD ∥BC , 因为AD ⊄平面PBC ,BC ⊂平面PBC , 所以AD ∥平面PBC ,又因为AD ⊂平面P AD ,平面P AD ∩平面PBC =l , 所以AD ∥l ,因为在四棱锥P -ABCD 中,底面ABCD 是正方形, 所以AD ⊥DC ,所以l ⊥DC ,且PD ⊥平面ABCD ,所以AD ⊥PD ,所以l ⊥PD , 因为DC ∩PD =D , 所以l ⊥平面PDC .(2)解 以D 为坐标原点,DA →的方向为x 轴正方向,如图建立空间直角坐标系D -xyz ,因为PD =AD =1,则有D (0,0,0),C (0,1,0),A (1,0,0),P (0,0,1),B (1,1,0), 设Q (m,0,1),则有DC →=(0,1,0),DQ →=(m,0,1),PB →=(1,1,-1), 设平面QCD 的法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧DC →·n =0,DQ →·n =0,即⎩⎪⎨⎪⎧y =0,mx +z =0,令x =1,则z =-m ,所以平面QCD 的一个法向量为n =(1,0,-m ), 则cos 〈n ,PB →〉=n ·PB →|n ||PB →|=1+0+m 3·m 2+1. 根据直线的方向向量与平面法向量所成角的余弦值的绝对值即为直线与平面所成角的正弦值,所以直线PB 与平面QCD 所成角的正弦值等于 |cos 〈n ,PB →〉|=|1+m |3·m 2+1=33·1+2m +m 2m 2+1=33·1+2m m 2+1≤33·1+2|m |m 2+1≤33·1+1=63,当且仅当m =1时取等号,所以直线PB 与平面QCD 所成角的正弦值的最大值为63. 5.(2020·新高考全国Ⅱ,20)如图,四棱锥P -ABCD 的底面为正方形,PD ⊥底面ABCD .设平面P AD 与平面PBC 的交线为l .(1)证明:l ⊥平面PDC ;(2)已知PD =AD =1,Q 为l 上的点,QB =2,求PB 与平面QCD 所成角的正弦值. (1)证明 在正方形ABCD 中,AD ∥BC , 因为AD ⊄平面PBC ,BC ⊂平面PBC , 所以AD ∥平面PBC ,又因为AD ⊂平面P AD ,平面P AD ∩平面PBC =l , 所以AD ∥l ,因为在四棱锥P -ABCD 中,底面ABCD 是正方形,所以AD ⊥DC ,所以l ⊥DC ,且PD ⊥平面ABCD ,所以AD ⊥PD ,所以l ⊥PD , 因为DC ∩PD =D , 所以l ⊥平面PDC .(2)解 以D 为坐标原点,DA →的方向为x 轴正方向,建立如图所示的空间直角坐标系D -xyz ,则D (0,0,0),C (0,1,0), B (1,1,0),P (0,0,1),DC →=(0,1,0),PB →=(1,1,-1).由(1)设Q (a,0,1),则BQ →=(a -1,-1,1). 由题意知(a -1)2+2=2, ∴a =1,∴DQ →=(1,0,1).设n =(x ,y ,z )是平面QCD 的一个法向量, 则⎩⎪⎨⎪⎧n ·DQ →=0,n ·DC →=0,即⎩⎪⎨⎪⎧x +z =0,y =0,可取n =(1,0,-1),∴cos 〈n ,PB →〉=n ·PB →|n |·|PB →|=63,故PB 与平面QCD 所成角的正弦值为63. 6.(2020·北京,16)如图,在正方体ABCD -A 1B 1C 1D 1中,E 为BB 1的中点.(1)求证:BC 1∥平面AD 1E ;(2)求直线AA 1与平面AD 1E 所成角的正弦值. (1)证明 在正方体ABCD -A 1B 1C 1D 1中, AB ∥A 1B 1且AB =A 1B 1,A 1B 1∥C 1D 1且A 1B 1=C 1D 1, ∴AB ∥C 1D 1且AB =C 1D 1,∴四边形ABC 1D 1为平行四边形,则BC 1∥AD 1, ∵BC 1⊄平面AD 1E ,AD 1⊂平面AD 1E , ∴BC 1∥平面AD 1E .(2)解 以点A 为坐标原点,AD ,AB ,AA 1所在直线分别为x ,y ,z 轴建立如图所示的空间直角坐标系A -xyz ,设正方体ABCD -A 1B 1C 1D 1的棱长为2, 则A (0,0,0),A 1(0,0,2),D 1(2,0,2),E (0,2,1), AD 1→=(2,0,2),AE →=(0,2,1),AA 1→=(0,0,2), 设平面AD 1E 的法向量为n =(x ,y ,z ), 由⎩⎪⎨⎪⎧n ·AD 1→=0,n ·AE →=0,得⎩⎪⎨⎪⎧2x +2z =0,2y +z =0,令z =-2,得x =2,y =1,则n =(2,1,-2). cos 〈n ,AA 1→〉=n ·AA 1→|n |·|AA 1→|=-43×2=-23.因此,直线AA 1与平面AD 1E 所成角的正弦值为23.7.(2020·天津,17)如图,在三棱柱ABC -A 1B 1C 1中,CC 1⊥平面ABC ,AC ⊥BC ,AC =BC =2,CC 1=3,点D ,E 分别在棱AA 1和棱CC 1上,且AD =1,CE =2,M 为棱A 1B 1的中点.(1)求证:C 1M ⊥B 1D ;(2)求二面角B -B 1E -D 的正弦值;(3)求直线AB 与平面DB 1E 所成角的正弦值.(1)证明 依题意,以C 为坐标原点,分别以CA →,CB →,CC 1→的方向为x 轴,y 轴,z 轴的正方向建立空间直角坐标系(如图),可得C (0,0,0),A (2,0,0),B (0,2,0),C 1(0,0,3),A 1(2,0,3),B 1(0,2,3),D (2,0,1),E (0,0,2),M (1,1,3).则C 1M →=(1,1,0),B 1D →=(2,-2,-2), ∵C 1M →·B 1D →=2-2+0=0,∴C 1M ⊥B 1D .(2)解 依题意,CA →=(2,0,0)是平面BB 1E 的一个法向量,EB 1→=(0,2,1),ED →=(2,0,-1). 设n =(x ,y ,z )为平面DB 1E 的法向量, 则⎩⎪⎨⎪⎧n ·EB 1→=0,n ·ED →=0,即⎩⎪⎨⎪⎧2y +z =0,2x -z =0.不妨设x =1,可得n =(1,-1,2).∴cos 〈CA →,n 〉=CA →·n |CA →||n |=66,∴sin 〈CA →,n 〉=1-16=306. ∴二面角B -B 1E -D 的正弦值为306. (3)解 依题意,AB →=(-2,2,0),由(2)知,n =(1,-1,2)为平面DB 1E 的一个法向量, ∴cos 〈AB →,n 〉=AB →·n |AB →||n |=-33,∴直线AB 与平面DB 1E 所成角的正弦值为33. 8.(2020·江苏,15)在三棱柱ABC -A 1B 1C 1中,AB ⊥AC ,B 1C ⊥平面ABC ,E ,F 分别是AC ,B 1C 的中点.(1)求证:EF ∥平面AB 1C 1; (2)求证:平面AB 1C ⊥平面ABB 1.证明 (1)因为E ,F 分别是AC ,B 1C 的中点, 所以EF ∥AB 1.又EF ⊄平面AB 1C 1,AB 1⊂平面AB 1C 1, 所以EF ∥平面AB 1C 1.(2)因为B 1C ⊥平面ABC ,AB ⊂平面ABC , 所以B 1C ⊥AB .又AB ⊥AC ,B 1C ⊂平面AB 1C ,AC ⊂平面AB 1C , B 1C ∩AC =C , 所以AB ⊥平面AB 1C . 又因为AB ⊂平面ABB 1, 所以平面AB 1C ⊥平面ABB 1.9.(2020·江苏,22)在三棱锥A -BCD 中,已知CB =CD =5,BD =2,O 为BD 的中点,AO ⊥平面BCD ,AO =2,E 为AC 的中点.(1)求直线AB 与DE 所成角的余弦值;(2)若点F 在BC 上,满足BF =14BC ,设二面角F -DE -C 的大小为θ,求sin θ的值.解 (1)如图,连接OC ,因为CB =CD ,O 为BD 的中点,所以CO ⊥BD .又AO ⊥平面BCD ,所以AO ⊥OB ,AO ⊥OC .以{OB →,OC →,OA →}为基底,建立空间直角坐标系O -xyz . 因为BD =2,CB =CD =5,AO =2, 所以B (1,0,0),D (-1,0,0),C (0,2,0),A (0,0,2). 因为E 为AC 的中点,所以E (0,1,1). 所以AB →=(1,0,-2),DE →=(1,1,1),所以|cos 〈AB →,DE →〉|=|AB →·DE →||AB →|·|DE →|=|1+0-2|5×3=1515.因此,直线AB 与DE 所成角的余弦值为1515. (2)因为点F 在BC 上,BF =14BC ,BC →=(-1,2,0).所以BF →=14BC →=⎝⎛⎭⎫-14,12,0. 又DB →=(2,0,0),故DF →=DB →+BF →=⎝⎛⎭⎫74,12,0.设n 1=(x 1,y 1,z 1)为平面DEF 的一个法向量, 则⎩⎪⎨⎪⎧ DE →·n 1=0,DF →·n 1=0,即⎩⎪⎨⎪⎧x 1+y 1+z 1=0,74x 1+12y 1=0,令x 1=2,得y 1=-7,z 1=5,所以n 1=(2,-7,5). 设n 2=(x 2,y 2,z 2)为平面DEC 的一个法向量, 又DC →=(1,2,0),则⎩⎪⎨⎪⎧DE →·n 2=0,DC →·n 2=0,即⎩⎪⎨⎪⎧x 2+y 2+z 2=0,x 2+2y 2=0,令x 2=2,得y 2=-1,z 2=-1, 所以n 2=(2,-1,-1). 故|cos θ|=|n 1·n 2||n 1|·|n 2|=|4+7-5|78×6=1313. 所以sin θ=1-cos 2θ=23913. 10.(2020·浙江,19)如图,在三棱台ABC -DEF 中,平面ACFD ⊥平面ABC ,∠ACB =∠ACD =45°,DC =2BC .(1)证明:EF ⊥DB ;(2)求直线DF 与平面DBC 所成角的正弦值.(1)证明 如图(1),过点D 作DO ⊥AC ,交直线AC 于点O ,连接OB .由∠ACD =45°,DO ⊥AC ,得CD =2CO . 由平面ACFD ⊥平面ABC ,得DO ⊥平面ABC , 所以DO ⊥BC .由∠ACB =45°,BC =12CD =22CO ,得BO ⊥BC .所以BC ⊥平面BDO ,故BC ⊥DB . 由ABC -DEF 为三棱台, 得BC ∥EF ,所以EF ⊥DB .(2)解 方法一 如图(2),过点O 作OH ⊥BD ,交直线BD 于点H ,连接CH .由ABC -DEF 为三棱台,得DF ∥CO ,所以直线DF 与平面DBC 所成角等于直线CO 与平面DBC 所成角. 由BC ⊥平面BDO ,得OH ⊥BC , 故OH ⊥平面DBC ,所以∠OCH 为直线CO 与平面DBC 所成角. 设CD =22,则DO =OC =2,BO =BC =2, 得BD =6,OH =233,所以sin ∠OCH =OH OC =33.因此,直线DF 与平面DBC 所成角的正弦值为33. 方法二 由ABC -DEF 为三棱台,得DF ∥CO ,所以直线DF 与平面DBC 所成角等于直线CO 与平面DBC 所成角,记为θ.如图(3),以O 为原点,分别以射线OC ,OD 为y ,z 轴的正半轴,建立空间直角坐标系O-xyz .设CD =22,由题意知各点坐标如下:O (0,0,0),B (1,1,0),C (0,2,0),D (0,0,2).因此OC →=(0,2,0),BC →=(-1,1,0),CD →=(0,-2,2). 设平面DBC 的一个法向量为n =(x ,y ,z ),由⎩⎪⎨⎪⎧n ·BC →=0,n ·CD →=0,即⎩⎪⎨⎪⎧-x +y =0,-2y +2z =0,可取n =(1,1,1),所以sin θ=|cos 〈OC →,n 〉|=|OC →·n ||OC →|·|n |=33.因此,直线DF 与平面DBC 所成角的正弦值为33. 11.(2020·全国Ⅰ文,19)如图,D 为圆锥的顶点,O 是圆锥底面的圆心,△ABC 是底面的内接正三角形,P 为DO 上一点,∠APC =90°.(1)证明:平面P AB ⊥平面P AC ;(2)设DO =2,圆锥的侧面积为3π,求三棱锥P -ABC 的体积. (1)证明 ∵D 为圆锥顶点,O 为底面圆心, ∴OD ⊥平面ABC ,∵P 在DO 上,OA =OB =OC , ∴P A =PB =PC ,∵△ABC 是圆内接正三角形, ∴AC =BC ,△P AC ≌△PBC ,∴∠APC =∠BPC =90°,即PB ⊥PC ,P A ⊥PC , P A ∩PB =P ,∴PC ⊥平面P AB ,PC ⊂平面P AC ,∴平面P AB ⊥平面P AC .(2)解 设圆锥的母线为l ,底面半径为r ,圆锥的侧面积为πrl =3π,rl =3,OD 2=l 2-r 2=2,解得r =1,l =3,AC =2r sin 60°=3, 在等腰直角三角形APC 中, AP =22AC =62, 在Rt △P AO 中,PO =AP 2-OA 2=64-1=22, ∴三棱锥P -ABC 的体积为V P -ABC =13PO ·S △ABC =13×22×34×3=68.12.(2020·全国Ⅱ文,20)如图,已知三棱柱ABC -A 1B 1C 1的底面是正三角形,侧面BB 1C 1C 是矩形,M ,N 分别为BC ,B 1C 1的中点,P 为AM 上一点.过B 1C 1和P 的平面交AB 于E ,交AC 于F .(1)证明:AA 1∥MN ,且平面A 1AMN ⊥平面EB 1C 1F ;(2)设O 为△A 1B 1C 1的中心.若AO =AB =6,AO ∥平面EB 1C 1F ,且∠MPN =π3,求四棱锥B-EB 1C 1F 的体积.(1)证明 因为侧面BB 1C 1C 是矩形,且M ,N 分别为BC ,B 1C 1的中点, 所以MN ∥CC 1.又由已知得AA 1∥CC 1,故AA 1∥MN . 因为△A 1B 1C 1是正三角形,所以B 1C 1⊥A 1N . 又B 1C 1⊥MN ,故B 1C 1⊥平面A 1AMN . 所以平面A 1AMN ⊥平面EB 1C 1F .(2)解 因为AO ∥平面EB 1C 1F ,AO ⊂平面A 1AMN , 平面A 1AMN ∩平面EB 1C 1F =PN , 所以AO ∥PN ,又AP ∥ON ,故四边形APNO 是平行四边形,所以PN =AO =6,AP =ON =13AM =3,PM =23AM =23,EF =13BC =2.因为BC ∥平面EB 1C 1F ,所以四棱锥B -EB 1C 1F 的顶点B 到底面EB 1C 1F 的距离等于点M 到底面EB 1C 1F 的距离. 如图,作MT ⊥PN ,垂足为T ,则由(1)知,MT ⊥平面EB 1C 1F , 故MT =PM sin ∠MPN =3. 底面EB 1C 1F 的面积为12(B 1C 1+EF )·PN =12×(6+2)×6=24. 所以四棱锥B -EB 1C 1F 的体积为13×24×3=24.13.(2020·全国Ⅲ文,19)如图,在长方体ABCD -A 1B 1C 1D 1中,点E ,F 分别在棱DD 1,BB 1上,且2DE =ED 1,BF =2FB 1.证明:(1)当AB =BC 时,EF ⊥AC ; (2)点C 1在平面AEF 内. 证明 (1)如图,连接BD ,B 1D 1. 因为AB =BC ,所以四边形ABCD 为正方形,故AC ⊥BD .又因为BB 1⊥平面ABCD ,AC ⊂平面ABCD , 于是AC ⊥BB 1.又BD ∩BB 1=B ,BD ,BB 1⊂平面BB 1D 1D , 所以AC ⊥平面BB 1D 1D .又因为EF ⊂平面BB 1D 1D ,所以EF ⊥AC .(2)如图,在棱AA 1上取点G ,使得AG =2GA 1,连接GD 1,FC 1,FG , 因为ED 1=23DD 1,AG =23AA 1,DD 1∥AA 1且DD 1=AA 1,所以ED 1∥AG 且ED 1=AG , 所以四边形ED 1GA 为平行四边形, 故AE ∥GD 1.因为B 1F =13BB 1,GA 1=13AA 1,BB 1∥AA 1且BB 1=AA 1,所以B 1F ∥GA 1,且B 1F =GA 1, 所以四边形B 1FGA 1是平行四边形, 所以FG ∥A 1B 1且FG =A 1B 1, 所以FG ∥C 1D 1且FG =C 1D 1, 所以四边形FGD 1C 1为平行四边形, 故GD 1∥FC 1. 所以AE ∥FC 1.所以A ,E ,F ,C 1四点共面,即点C 1在平面AEF 内.。

专题04 2020版立体几何(解析版)

专题04 2020版立体几何(解析版)

专题04 立体几何2020真题汇编1.【2020年高考全国Ⅰ卷理数】埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥.以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为A .14B .12C .14D .12【答案】C【解析】如图,设,CD a PE b ==,则PO ==由题意得212PO ab =,即22142a b ab -=,化简得24()210b b a a -⋅-=,解得14b a =(负值舍去). 故选C .【点晴】本题主要考查正四棱锥的概念及其有关计算,考查学生的数学计算能力,是一道容易题. 2.【2020年高考全国Ⅱ卷理数】如图是一个多面体的三视图,这个多面体某条棱的一个端点在正视图中对应的点为M,在俯视图中对应的点为N,则该端点在侧视图中对应的点为A.E B.F C.G D.H【答案】A【解析】根据三视图,画出多面体立体图形,14D D 上的点在正视图中都对应点M ,直线34B C 上的点在俯视图中对应的点为N,∴在正视图中对应M ,在俯视图中对应N 的点是4D ,线段34D D ,上的所有点在侧试图中都对应E ,∴点4D 在侧视图中对应的点为E .故选A.【点睛】本题主要考查了根据三视图判断点的位置,解题关键是掌握三视图的基础知识和根据三视图能还原立体图形的方法,考查了分析能力和空间想象,属于基础题.3.【2020年高考全国II 卷理数】已知△ABC O 的球面上.若球O 的表面积为16π,则O 到平面ABC 的距离为AB .32C .1D 【答案】C【解析】设球O 的半径为R ,则2416R π=π,解得:2R =. 设ABC △外接圆半径为r ,边长为a ,ABC △21224a ∴⨯=,解得:3a =,2233r ∴===,∴球心O 到平面ABC 的距离1d ===.故选:C .【点睛】本题考查球的相关问题的求解,涉及到球的表面积公式和三角形面积公式的应用;解题关键是明确球的性质,即球心和三角形外接圆圆心的连线必垂直于三角形所在平面. 4.【2020年高考全国Ⅲ卷理数】如图为某几何体的三视图,则该几何体的表面积是A.B .C.D .【答案】C【解析】根据三视图特征,在正方体中截取出符合题意的立体图形根据立体图形可得:12222ABC ADC CDB S S S ===⨯⨯=△△△根据勾股定理可得:AB AD DB ===∴ADB △是边长为根据三角形面积公式可得:211sin 6022ADB S AB AD =⋅⋅︒==△∴该几何体的表面积是:632=⨯++故选:C .【点睛】本题主要考查了根据三视图求立体图形的表面积问题,解题关键是掌握根据三视图画出立体图形,考查了分析能力和空间想象能力,属于基础题.5.【2020年高考全国Ⅰ卷理数】已知,,A B C 为球O 的球面上的三个点,⊙1O 为ABC △的外接圆,若⊙1O 的面积为4π,1AB BC AC OO ===,则球O 的表面积为 A .64π B .48πC .36πD .32π【答案】A【解析】设圆1O 半径为r ,球的半径为R ,依题意,得24,2r r π=π=∴,ABC 为等边三角形,由正弦定理可得2sin 60AB r =︒=,1OO AB ∴==1OO ⊥平面ABC ,11,4OO O A R OA ∴⊥====, ∴球O 的表面积2464S R ππ==.故选:A.【点睛】本题考查球的表面积,应用球的截面性质是解题的关键,考查计算求解能力,属于基础题.6.【2020年高考天津】若棱长为 A .12π B .24πC .36πD .144π【答案】C【解析】这个球是正方体的外接球,其半径等于正方体的体对角线的一半,即3R ==,所以,这个球的表面积为2244336S R πππ==⨯=.故选:C .【点睛】本题考查正方体的外接球的表面积的求法,求出外接球的半径是本题的解题关键,属于基础题.求多面体的外接球的面积和体积问题,常用方法有:(1)三条棱两两互相垂直时,可恢复为长方体,利用长方体的体对角线为外接球的直径,求出球的半径;(2)直棱柱的外接球可利用棱柱的上下底面平行,借助球的对称性,球心为上下底面外接圆的圆心连线的中点,再根据勾股定理求球的半径;(3)如果设计几何体有两个面相交,可过两个面的外心分别作两个面的垂线,垂线的交点为几何体的球心. 7.【2020年高考北京】某三棱柱的底面为正三角形,其三视图如图所示,该三棱柱的表面积为A .6B .6+C .12+D .12+【答案】D【解析】由题意可得,三棱柱的上下底面为边长为2的等边三角形,侧面为三个边长为2的正方形,则其表面积为:()1322222sin 60122S ⎛⎫=⨯⨯+⨯⨯⨯⨯︒=+ ⎪⎝⎭故选:D .【点睛】(1)以三视图为载体考查几何体的表面积,关键是能够对给出的三视图进行恰当的分析,从三视图中发现几何体中各元素间的位置关系及数量关系.(2)多面体表面积是各个面的面积之和;组合体的表面积应注意重合部分的处理.(3)圆柱、圆锥、圆台的侧面是曲面,计算侧面积时需要将这个曲面展为平面图形计算,而表面积是侧面积与底面圆的面积之和.8.【2020年高考浙江】某几何体的三视图(单位:cm)如图所示,则该几何体的体积(单位:cm3)是A.73B.143C.3D.6【答案】A【解析】由三视图可知,该几何体是上半部分是三棱锥,下半部分是三棱柱,且三棱锥的一个侧面垂直于底面,且棱锥的高为1,棱柱的底面为等腰直角三角形,棱柱的高为2,所以几何体的体积为11117 2112122 32233⎛⎫⎛⎫⨯⨯⨯⨯+⨯⨯⨯=+=⎪ ⎪⎝⎭⎝⎭.故选:A 的【点睛】本小题主要考查根据三视图计算几何体的体积,属于基础题.9.【2020年高考浙江】已知空间中不过同一点的三条直线l ,m ,n .“l ,m ,n 共面”是“l ,m ,n 两两相交”的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件 【答案】B【解析】依题意,,m n l 是空间不过同一点的三条直线,当,,m n l 在同一平面时,可能////m n l ,故不能得出,,m n l 两两相交.当,,m n l 两两相交时,设,,m n A m l B n l C ⋂=⋂=⋂=,根据公理2可知,m n 确定一个平面α,而,B m C n αα∈⊂∈⊂,根据公理1可知,直线BC 即l α⊂,所以,,m n l 在同一平面.综上所述,“,,m n l 在同一平面”是“,,m n l 两两相交”的必要不充分条件.故选:B【点睛】本小题主要考查充分、必要条件的判断,考查公理1和公理2的运用,属于中档题.10.【2020年新高考全国Ⅰ卷】日晷是中国古代用来测定时间的仪器,利用与晷面垂直的晷针投射到晷面的影子来测定时间.把地球看成一个球(球心记为O ),地球上一点A 的纬度是指OA 与地球赤道所在平面所成角,点A 处的水平面是指过点A 且与OA 垂直的平面.在点A 处放置一个日晷,若晷面与赤道所在平面平行,点A 处的纬度为北纬40°,则晷针与点A 处的水平面所成角为A .20°B .40°C .50°D .90°【答案】B【解析】画出截面图如下图所示,其中CD 是赤道所在平面的截线;l 是点A 处的水平面的截线,依题意可知OA l ⊥;AB 是晷针所在直线.m 是晷面的截线,依题意依题意,晷面和赤道平面平行,晷针与晷面垂直,根据平面平行的性质定理可得可知//m CD 、根据线面垂直的定义可得AB m ⊥.. 由于40,//AOC m CD ∠=︒,所以40OAG AOC ∠=∠=︒, 由于90OAG GAE BAE GAE ∠+∠=∠+∠=︒,所以40BAE OAG ∠=∠=︒,也即晷针与点A 处的水平面所成角为40BAE ∠=︒. 故选:B【点睛】本小题主要考查中国古代数学文化,考查球体有关计算,涉及平面平行,线面垂直的性质,属于中档题.11.【2020年高考全国Ⅱ卷理数】设有下列四个命题:p 1:两两相交且不过同一点的三条直线必在同一平面内. p 2:过空间中任意三点有且仅有一个平面. p 3:若空间两条直线不相交,则这两条直线平行. p 4:若直线l ⊂平面α,直线m ⊥平面α,则m ⊥l . 则下述命题中所有真命题的序号是__________. ①14p p ∧ ②12p p ∧③23p p ⌝∨④34p p ⌝∨⌝【答案】①③④【解析】对于命题1p ,可设1l 与2l 相交,这两条直线确定的平面为α;若3l 与1l 相交,则交点A 在平面α内, 同理,3l 与2l 的交点B 也在平面α内,所以,AB α⊂,即3l α⊂,命题1p 为真命题;对于命题2p ,若三点共线,则过这三个点的平面有无数个, 命题2p 为假命题;对于命题3p ,空间中两条直线相交、平行或异面, 命题3p 为假命题;对于命题4p ,若直线m ⊥平面α, 则m 垂直于平面α内所有直线, 直线l ⊂平面α,∴直线m ⊥直线l , 命题4p 为真命题.综上可知,,为真命题,,为假命题,14p p ∧为真命题,12p p ∧为假命题,23p p ⌝∨为真命题,34p p ⌝∨⌝为真命题.故答案为:①③④.【点睛】本题考查复合命题的真假,同时也考查了空间中线面关系有关命题真假的判断,考查推理能力,属于中等题.12.【2020年高考全国Ⅲ卷理数】已知圆锥的底面半径为1,母线长为3,则该圆锥内半径最大的球的体积为_________.【解析】易知半径最大球为圆锥的内切球,球与圆锥内切时的轴截面如图所示, 其中2,3BC AB AC ===,且点M 为BC 边上的中点, 设内切圆的圆心为O ,由于AM ==122S =⨯⨯=△ABC 设内切圆半径为r ,则:ABC AOB BOC AOC S S S S =++△△△△111222AB r BC r AC r =⨯⨯+⨯⨯+⨯⨯()13322r =⨯++⨯=解得:22r,其体积:3433V r =π=π.. 【点睛】与球有关的组合体问题,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截面图,如球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径;球外接于正方体,正方体的顶点均在球面上,正方体的体对角线长等于球的直径.13.【2020年高考浙江】已知圆锥的侧面积(单位:cm 2)为2π,且它的侧面展开图是一个半圆,则这个圆锥的底面半径(单位:cm )是_______. 【答案】1【解析】设圆锥底面半径为r ,母线长为l ,则21222r l r l ππππ⨯⨯=⎧⎪⎨⨯⨯=⨯⨯⨯⎪⎩,解得1,2r l ==. 故答案为:1【点睛】本小题主要考查圆锥侧面展开图有关计算,属于基础题.14.【2020年高考江苏】如图,六角螺帽毛坯是由一个正六棱柱挖去一个圆柱所构成的.已知螺帽的底面正六边形边长为2 cm ,高为2 cm ,内孔半轻为0.5 cm ,则此六角螺帽毛坯的体积是 ▲ cm.【答案】2π【解析】正六棱柱体积为262⨯, 圆柱体积为21()222ππ⋅=,所求几何体体积为2π.故答案为:2π【点睛】本题考查正六棱柱体积、圆柱体积,考查基本分析求解能力,属基础题.15.【2020年新高考全国Ⅰ卷】已知直四棱柱ABCD –A 1B 1C 1D 1的棱长均为2,∠BAD =60°.以1D 为半径的球面与侧面BCC 1B 1的交线长为________.【答案】2. 【解析】如图:取11B C 的中点为E ,1BB 的中点为F ,1CC 的中点为G ,因为BAD ∠=60°,直四棱柱1111ABCD A B C D -的棱长均为2,所以△111D B C 为等边三角形,所以1D E=111D E B C ⊥,又四棱柱1111ABCD A B C D -为直四棱柱,所以1BB ⊥平面1111D C B A ,所以111BB B C ⊥, 因为1111BB B C B =,所以1D E ⊥侧面11B C CB ,设P 为侧面11B C CB 与球面的交线上的点,则1D E EP ⊥,1D E =,所以||EP ===所以侧面11B C CB 与球面的交线上的点到E ,因为||||EF EG ==11B C CB 与球面的交线是扇形EFG 的弧FG ,因为114B EFC EG π∠=∠=,所以2FEG π∠=,所以根据弧长公式可得22FG π==.故答案为:2. 【点睛】本题考查了直棱柱的结构特征,考查了直线与平面垂直的判定,考查了立体几何中的轨迹问题,考查了扇形中的弧长公式,属于中档题.16.【2020年高考全国Ⅰ卷理数】如图,D 为圆锥的顶点,O 是圆锥底面的圆心,AE 为底面直径,AE AD =.ABC △是底面的内接正三角形,P 为DO 上一点,PO =.(1)证明:PA ⊥平面PBC ; (2)求二面角B PC E --的余弦值.【解析】(1)设DO a =,由题设可得,,PO AO a AB a ===,PA PB PC ===. 因此222PA PB AB +=,从而PA PB ⊥. 又222PA PC AC +=,故PA PC ⊥.所以PA ⊥平面PBC .(2)以O 为坐标原点,OE 的方向为y 轴正方向,||OE 为单位长,建立如图所示的空间直角坐标系O xyz -.由题设可得1(0,1,0),(0,1,0),(,0),(0,0,22E A C P -.所以31(,,0),(0,2EC EP =--=-. 设(,,)x y z =m 是平面PCE 的法向量,则00EP EC ⎧⋅=⎪⎨⋅=⎪⎩m m ,即02102y z x y⎧-+=⎪⎪⎨⎪-=⎪⎩,可取(3=-m . 由(1)知(0,1,2AP =是平面PCB 的一个法向量,记AP =n ,则cos ,|||5⋅==n m n m n m |.所以二面角B PC E --的余弦值为5. 【点晴】本题主要考查线面垂直的证明以及利用向量求二面角的大小,考查学生空间想象能力,数学运算能力,是一道容易题.17.【2020年高考全国Ⅱ卷理数】如图,已知三棱柱ABC -A 1B 1C 1的底面是正三角形,侧面BB 1C 1C 是矩形,M ,N 分别为BC ,B 1C 1的中点,P 为AM 上一点,过B 1C 1和P 的平面交AB 于E ,交AC 于F .(1)证明:AA 1∥MN ,且平面A 1AMN ⊥平面EB 1C 1F ;(2)设O 为△A 1B 1C 1的中心,若AO ∥平面EB 1C 1F ,且AO =AB ,求直线B 1E 与平面A 1AMN 所成角的正弦值.【解析】(1)因为M ,N 分别为BC ,B 1C 1的中点,所以1MN CC ∥.又由已知得AA 1∥CC 1,故AA 1∥MN . 因为△A 1B 1C 1是正三角形,所以B 1C 1⊥A 1N .又B 1C 1⊥MN ,故B 1C 1⊥平面A 1AMN . 所以平面A 1AMN ⊥平面11EB C F .(2)由已知得AM ⊥BC .以M 为坐标原点,MA 的方向为x 轴正方向, MB 为单位长,建立如图所示的空间直角坐标系M -xyz ,则AB =2,AM连接NP ,则四边形AONP 为平行四边形,故1,0)3PM E =.由(1)知平面A 1AMN ⊥平面ABC ,作NQ ⊥AM ,垂足为Q ,则NQ ⊥平面ABC .设(,0,0)Q a,则1(NQ B a =, 故21123223210(,,4()),||33B E a a B E =-----=. 又(0,1,0)=-n 是平面A 1AMN 的法向量,故1111π10sin(,)cos ,2||B E B E B E B E⋅-===⋅n n n |n |所以直线B 1E 与平面A 1AMN .18.【2020年高考全国Ⅱ卷理数】如图,在长方体1111ABCD A B C D -中,点,E F 分别在棱11,DD BB 上,且12DE ED =,12BFFB =.(1)证明:点1C 在平面AEF 内;(2)若2AB =,1AD =,13AA =,求二面角1A EF A --的正弦值.【解析】设AB a =,AD b =,1AA c =,如图,以1C 为坐标原点,11C D 的方向为x 轴正方向,建立空间直角坐标系1C xyz -.(1)连结1C F ,则1(0,0,0)C ,(,,)A a b c ,2(,0,)3E a c ,1(0,,)3F b c ,1(0,,)3EA b c =,11(0,,)3C F b c =,得1EA C F =.因此1EA C F ∥,即1,,,A E F C 四点共面,所以点1C 在平面AEF 内. (2)由已知得(2,1,3)A ,(2,0,2)E ,(0,1,1)F ,1(2,1,0)A ,(0,1,1)AE =--,(2,0,2)AF =--,1(0,1,2)A E =-,1(2,0,1)A F =-.设1(,,)x y z =n 为平面AEF 的法向量,则110,0,AE AF ⎧⋅=⎪⎨⋅=⎪⎩n n 即0,220,y z x z --=⎧⎨--=⎩可取1(1,1,1)=--n . 设2n 为平面1A EF 的法向量,则22110,0,A E A F ⎧⋅=⎪⎨⋅=⎪⎩n n 同理可取21(,2,1)2=n .因为121212cos ,||||⋅〈〉==⋅n n n n n n ,所以二面角1A EF A --.19.【2020年高考江苏】在三棱柱ABC -A 1B 1C 1中,AB ⊥AC ,B 1C ⊥平面ABC ,E ,F 分别是AC ,B 1C的中点.(1)求证:EF ∥平面AB 1C 1; (2)求证:平面AB 1C ⊥平面ABB 1.【解析】因为,E F 分别是1,AC B C 的中点,所以1EF AB ∥.又/EF ⊂平面11AB C ,1AB ⊂平面11AB C ,所以EF ∥平面11AB C .(2)因为1B C ⊥平面ABC ,AB ⊂平面ABC ,所以1B C AB ⊥.又AB AC ⊥,1B C ⊂平面11AB C ,AC ⊂平面1AB C ,1,B CAC C =所以AB ⊥平面1AB C .又因为AB ⊂平面1ABB ,所以平面1AB C ⊥平面1ABB .【点睛】本小题主要考查线面平行的证明,考查面面垂直的证明,属于中档题.20.【2020年高考浙江】如图,在三棱台ABC —DEF 中,平面ACFD ⊥平面ABC ,∠ACB =∠ACD =45°,DC =2BC . (Ⅰ)证明:EF ⊥DB ;(Ⅱ)求直线DF 与平面DBC 所成角的正弦值.【解析】(Ⅰ)如图,过点D 作DO AC ⊥,交直线AC 于点O ,连结OB .由45ACD ∠=︒,DO AC ⊥得CD =,由平面ACFD ⊥平面ABC 得DO ⊥平面ABC ,所以DO BC ⊥.由45ACB ∠=︒,12BC CD ==得BO BC ⊥.所以BC ⊥平面BDO ,故BC ⊥DB .由三棱台ABC DEF -得BC EF ∥,所以EF DB ⊥.(Ⅱ)方法一:过点O 作OH BD ⊥,交直线BD 于点H ,连结CH .由三棱台ABC DEF -得DF CO ∥,所以直线DF 与平面DBC 所成角等于直线CO 与平面DBC 所成角. 由BC ⊥平面BDO 得OH BC ⊥,故OH ⊥平面BCD ,所以OCH ∠为直线CO 与平面DBC 所成角.设CD =.由2,DO OC BO BC ===,得BD OH =所以sin OH OCH OC ∠==,因此,直线DF 与平面DBC . 方法二:由三棱台ABC DEF -得DF CO ∥,所以直线DF 与平面DBC 所成角等于直线CO 与平面DBC 所成角,记为θ.如图,以O 为原点,分别以射线OC ,OD 为y ,z 轴的正半轴,建立空间直角坐标系O xyz -.设CD =.由题意知各点坐标如下:(0,0,0),(1,1,0),(0,2,0),(0,0,2)O B C D .因此(0,2,0),(1,1,0),(0,2,2)OC BC CD ==-=-. 设平面BCD 的法向量(,,z)x y =n .由0,0,BC CD ⎧⋅=⎪⎨⋅=⎪⎩n n 即0220x y y z -+=⎧⎨-+=⎩,可取(1,1,1)=n .所以|sin |cos ,||||OC OC OC θ⋅===⋅n |n n |.因此,直线DF 与平面DBC . 【点睛】本题主要考查空间点、线、面位置关系,线面垂直的判定定理的应用,直线与平面所成的角的求法,意在考查学生的直观想象能力和数学运算能力,属于基础题.21.【2020年高考天津】如图,在三棱柱111ABC A B C -中,1CC ⊥平面,,2ABC AC BC AC BC ⊥==,13CC =,点,D E 分别在棱1AA 和棱1CC 上,且2,1,AD CE M ==为棱11A B 的中点.(Ⅰ)求证:11CM B D ⊥;(Ⅱ)求二面角1B B E D --的正弦值;(Ⅲ)求直线AB 与平面1DB E 所成角的正弦值.【解析】依题意,以C 为原点,分别以1,,CA CB CC 的方向为x 轴,y 轴,z 轴的正方向建立空间直角坐标系(如图),可得1(0,0,0),(2,0,0),(0,2,0),(0,0,3)C A B C ,11(2,0,3),(0,2,3),(2,0,1),(0,0,2)A B D E ,(1,1,3)M .(Ⅰ)证明:依题意,1(1,1,0)C M =,1(2,2,2)B D =--,从而112200C M B D ⋅=-+=,所以11C M B D ⊥.(Ⅱ)解:依题意,(2,0,0)CA =是平面1BB E 的一个法向量,1(0,2,1)EB =,(2,0,1)ED =-.设(,,)x y z =n 为平面1DB E 的法向量,则10,0,EB ED ⎧⋅=⎪⎨⋅=⎪⎩n n 即20,20.y z x z +=⎧⎨-=⎩不妨设1x =,可得(1,1,2)=-n .因此有|||cos ,6|A CA C CA⋅〈〉==n n n ,于是sin ,6CA 〈〉=n .所以,二面角1B B E D --的正弦值为6. (Ⅲ)解:依题意,(2,2,0)AB =-.由(Ⅱ)知(1,1,2)=-n 为平面1DB E 的一个法向量,于是cos,||||AB AB AB ⋅==n n n .所以,直线AB 与平面1DB E 所成角的正弦值为3.2020模拟汇编1.【2020·广东省高三一模(理)】已知直三棱柱111ABC A B C -的体积为V ,若P Q ,分别在11AA CC ,上,且111133AP AA CQ CC ==,,则四棱锥B APQC -的体积是 A .16VB .29VC .13VD .79V【答案】B【解析】在棱1BB 上取一点H ,使113BH BB =,连接PH 、QH , 由题意PHQ ABC S S =△△,BH ⊥平面PHQ ,所以111113339B PHQ PHQ ABC V S BH S BB V -=⋅=⋅=△△,11133ABC PHQ ABC ABC V S BH S BB V -=⋅=⋅=△△, 所以112399B APQC ABC PHQ B PHQ V V V V V V ---=-=-=.故选:B .【点睛】本题考查了直三棱柱的特征及几何体体积的求解,考查了空间思维能力,属于基础题. 2.【2020·全国高三(理)】在正方体1111ABCD A B C D -中,点E 是棱11B C 的中点,点F 是线段1CD 上的一个动点.有以下三个命题:①异面直线1AC 与1B F 所成的角是定值;②三棱锥1B A EF -的体积是定值;③直线1A F 与平面11B CD 所成的角是定值. 其中真命题的个数是 A .3 B .2C .1D .0【答案】B【解析】以A 点为坐标原点,AB,AD,1AA 所在直线为x 轴,y 轴,z 轴建立空间直角坐标系,设正方体棱长为1,可得B (1,0,0),C (1,1,O ),D (0,1,0),1A (0,0,1),1B (1,0,1),1C (1,1,1),1D (0,1,1),设F (t ,1,1-t ),(0≤t ≤1), 可得1AC =(1,1,1),1B F =(t -1,1,-t ),可得11AC B F =0,故异面直线1AC 与1B F 所的角是定值,故①正确;三棱锥1B A EF -的底面1A BE 面积为定值,且1CD ∥1BA ,点F 是线段1CD 上的一个动点,可得F 点到底面1A BE 的距离为定值,故三棱锥1B A EF -的体积是定值,故②正确;可得1A F =(t ,1,-t ),1B C =(0,1,-1),11B D =(-1,1,0),可得平面11B CD 的一个法向量为n =(1,1,1),可得1cos ,A F n 不为定值,故③错误;故选B .【点睛】本题主要考查空间角的求解及几何体体积的求解,建立直角坐标系,是解题的关键. 3.【2020·六盘山高级中学高三其他(理)】已知点 M N P Q ,,,在同一个球面上,34,5MN NP MP ===, ,若四面体MNPQ 体积的最大值为 10,则这个球的表面积是A .254πB .62516πC .22516πD .1254π【答案】B【解析】由34,5MN NP MP ===,,可知90PNM ∠=, 则球心O 在过PM 中点'O 与面MNP 垂直的直线上, 因为MNP 面积为定值,所以高最大时体积最大, 根据球的几何性质可得,当'O Q 过球心时体积最大, 因为四面体Q MNP -的最大体积为10,所以111'34'10332MNP S O Q O Q ⨯⨯=⨯⨯⨯⨯=△, 可得'5O Q =,在'OO P ∆中,222''OP OO O P =+,()222554R R ∴=-+,得258R =, ∴球的表面积为2256254816ππ⎛⎫⨯=⎪⎝⎭,故选B .【点睛】本题主要考查三棱锥外接球表面积的求法,属于难题.要求外接球的表面积和体积,关键是求出球的半径,求外接球半径的常见方法有:①若三条棱两垂直则用22224R a b c =++(,,a b c 为三棱的长);②可以转化为长方体的外接球; ③特殊几何体可以直接找出球心和半径;④设球心(在过底面多边形外接圆圆心与底面垂直的直线上),利用待定系数法求半径.4.【2020·六盘山高级中学高三其他(理)】对于直线m ,n 和平面α,β,αβ⊥的一个充分条件是A .m n ⊥,//m α,//n βB .m n ⊥,m αβ=,n ⊂αC .//m n ,n β⊥,m α⊂D .//m n ,m α⊥,n β⊥【答案】C【解析】A 选项中,根据m n ⊥,//m α,βn//,得到αβ⊥或αβ∥,所以A 错误;B 选项中,m n ⊥,m αβ=,n β⊂,不一定得到αβ⊥,所以B 错误;C 选项中,因为//m n ,n β⊥,所以m β⊥, 又m α⊂,从而得到αβ⊥,所以C 正确;D 选项中,根据//m n ,m α⊥,所以n α⊥,而n β⊥,所以得到αβ∥,所以D 错误. 故选:C .【点睛】本题考查空间中线面关系有关命题的判断,面面关系有关命题的判断,属于简单题.5.【2020·河南省南阳中学高三月考(理)】某简单几何体的三视图(俯视图为等边三角形)如图所示(单位:cm ),则该几何体的体积(单位:cm 3)为A .18B .C .D .【答案】C【解析】由题意可知几何体是底面为正三角形的三棱柱,底面边长为2,高为3, 所以几何体的体积为2234⨯⨯=C .【点睛】本题考查三视图求解几何体的体积,考查转化思想以及空间想象能力.6.【2020·福建省福州第一中学高三其他(理)】已知某几何体的三视图如图所示,则该几何体的体积为A .83πB .103πC .6πD .3π【答案】D【解析】该几何体是一个底面半径为1、高为4的圆柱被一个平面分割成两部分中的一个部分,故其体积为221141232V πππ=⨯⨯-⨯⨯⨯= . 本题选择D 选项.7.【2020·广西壮族自治区高三其他(理)】三个几何体组合的正视图和侧视图均为如下图所示,则下列图中能作为俯视图的个数为A .1B .2C .3D .4【答案】D【解析】对于①,由三个圆柱组合而成,其正视图和侧视图相同,符合要求;对于②,最底层是圆柱,中间是底面为正方形的直棱柱,最上面是小的圆柱,其正视图和侧视图相同,符合要求;对于③,最底层是圆柱,中间是底面为正方形的直棱柱,最上面是底面为正方形的小的直棱柱,其正视图和侧视图相同,符合要求;对于④,最底层是圆柱,中间是圆柱,最上面是底面为正方形的直棱柱,其正视图和侧视图相同,符合要求;所以四个图都可能作为俯视图. 故选:D .【点睛】考查由正视图和侧视图判断几何体的俯视图;基础题.8.【2020·辽宁省高三二模(理)】已知一个圆柱的侧面积等于表面积的一半,且其轴截面的周长是18,则该圆柱的体积是______. 【答案】27π【解析】设圆柱的底面圆的半径为r ,高为h .由题意可得()22π12π2π22218rhr rh r h ⎧=⎪+⎨⎪+=⎩,解得3r h ==,则该圆柱的体积是2π27πr h =. 故答案为:27π.【点睛】本题考查了圆柱体积的求解,考查了圆柱的侧面积.本题的关键是求出圆柱底面圆的半径和高.本题的难点在于轴截面的周长这一条件的理解.9.【2020·重庆南开中学高三期中(理)】正三棱柱111ABC A B C -中,2AB =,1AA =D 为棱11A B 的中点,则异面直线AD 与1CB 成角的大小为_______.【答案】6π 【解析】如图,1111111122AD AA A D AA A B AA AB =+=+=+,111CB CA AB BB AA AC AB =++=-+,且12,AB AC BC AA ====,侧棱和底面垂直, ∴1111()2AD CB AA AB AA AC AB ⎛⎫⋅=+⋅-+ ⎪⎝⎭2211122AA AB AC AB =-⋅+11182249222=-⨯⨯⨯+⨯=,13,AD CB ===∴1cos ,AD CB <>==[]1,0,AD CB π<>∈, ∴1,6AD CB π<>=,∴异面直线AD 与1CB 成角的大小为6π. 故答案为:6π.【点睛】解答本题时还可以建立空间直角坐标系,用坐标形式下的向量运算求解.10.【2020·四川省高三三模(理)】如图,平行六面体1111ABCD A B C D -中,5AB =,3AD =,17AA =,3BAD π∠=,114BAA DAA π∠=∠=,则1AC 的长为_____.【解析】平行六面体1111ABCD A B C D -中,5AB =,3AD =,17AA =,3BAD π∠=,114BAA DAA π∠=∠=,11AC AB BC CC =++,则()211221AC AC AB BC CC ==++2221112cos2cos2cos344AB BC CC AB BC BC CC AB CC πππ=+++⋅+⋅⋅+⋅12594925323725798222=+++⨯⨯⨯+⨯⨯⨯+⨯⨯⨯=+1198AC AC ∴==..【点睛】本题考查利用空间向量法求线段长,解答的关键就是选择合适的基底表示向量,考查计算能力,属于中等题.11.【2020·六盘山高级中学高三其他(理)】如图,在四棱锥中P ABCD -,PA ⊥平面ABCD ,AD BC ∥,AD CD ⊥,且AD CD ==BC =2PA =(1)求证:AB PC ⊥;(2)在线段PD 上,是否存在一点M ,使得二面角M AC D --的大小为45,如果存在,求BM 与平面MAC 所成的角的正弦值,如果不存在,请说明理由.【答案】(1)证明见解析;(2)存在,9. 【解析】(1)如图,由已知得四边形ABCD 是直角梯形,由已知AD CD ==,BC =可得ABC 是等腰直角三角形,即AB AC ⊥, 又PA ⊥平面ABCD ,则PA AB ⊥, 所以AB ⊥平面P AC , 所以AB PC ⊥.(2)假设存在符合条件的点M ,过点M 作MN AD ⊥于N ,则//MN PA ,MN ∴⊥平面ABCD ,MN AC ∴⊥.过点M 作MG AC ⊥于G ,连接NG ,则AC ⊥平面MNG , AC NG ∴⊥,即MGN ∠是二面角M AC D --的平面角.若45MGN ∠=︒,则NG MN =,又AN ==,1MN ∴=,即M 是线段PD 的中点.∴存在点M 使得二面角M AC D --的大小为45︒.在三棱锥M ABC -中,11184413323M ABC ABCV SMN -==⨯⨯⨯⨯=,设点B 到平面MAC 的距离是h ,则13B MAC MAC V S h -∆=,2MG =11422MACSAC MG ∴==⨯,∴1833h ⨯=,解得h =在ABN 中,4AB =,AN =135BAN ∠=︒,BN ∴=,BM ∴=BM ∴与平面MAC 所成角的正弦值为h BM =【点睛】本题考查了项目垂直的判定与性质,空间角与空间距离的计算,属于中档题.12.【2020·辽河油田第二高级中学高三月考(理)】如图,AB 是半圆O 的直径,C 是半圆O 上除A ,B 外的一个动点,DC 垂直于半圆O 所在的平面,DC ∥EB ,DC =EB =1,AB =4.(1)证明:平面ADE⊥平面ACD;(2)当C点为半圆的中点时,求二面角D﹣AE﹣B的余弦值.-【答案】(1)证明见解析(2)6【解析】(1)证明:∵AB是圆O的直径,∴AC⊥BC,∵DC⊥平面ABC,BC⊂平面ABC,∴DC⊥BC,又DC∩AC=C,∴BC⊥平面ACD,∵DC∥EB,DC=EB,∴四边形DCBE是平行四边形,∴DE∥BC,∴DE⊥平面ACD,又DE⊂平面ADE,∴平面ACD⊥平面ADE.(2)当C点为半圆的中点时,AC=BC=,以C为原点,以CA,CB,CD为坐标轴建立空间坐标系如图所示:则D(0,0,1),E(0,,1),A(,0,0),B(0,,0),∴AB=(﹣,0),BE=(0,0,1),DE=(0,,0),DA=(,0,﹣1),设平面DAE的法向量为m=(x1,y1,z1),平面ABE的法向量为n=(x2,y2,z2),则00m DA m DE ⎧⋅=⎨⋅=⎩,00n AB n BE ⎧⋅=⎨⋅=⎩,即11100z ⎧-=⎪⎨=⎪⎩,22200z ⎧-+=⎪⎨=⎪⎩,令x 1=1得m =(1,0,22),令x 2=1得n =(1,1,0).∴cos 632m n m n m n ⋅===⨯<,>.∵二面角D ﹣AE ﹣B 是钝二面角,∴二面角D ﹣AE ﹣B 的余弦值为6-.【点睛】本题考查了面面垂直的判定,空间向量与二面角的计算,属于中档题.13.【2020·湖北省高三其他(理)】如图所示,多面体是由底面为ABCD 的直四棱柱被截面AEFG 所截而得到的,该直四棱柱的底面为菱形,其中2AB =,5CF=,1BE =,60BAD ∠=.(1)求BG 的长;(2)求平面AEFG 与底面ABCD 所成锐二面角的余弦值.【答案】(1) (2)4【解析】因为多面体是由底面为ABCD 的直四棱柱被截面AEFG 所截而得到的, 所以平面ADG //平面BCFE ,又平面ADG平面AEFG AG =,平面BCFE ⋂平面AEFG EF =,所以//AG EF ,同理//AE GF ,所以四边形AEFG 是平行四边形,连结AC ,BD 交于O ,以O 为原点,,OB OC 所在直线分别为x 轴,y 轴建立如图所示的空间直角坐标系O xyz -,则(0,A ,(1,0,0)B ,(1,0,1)E ,F ,所以(4)AG EF ==-,(1,AB =,所以(2,0,4)BG AG AB =-=-,所以||(BG =-=所以BG 的长为(2)根据题意可取平面ABCD 的一个法向量为(0,0,1)m =,由(1)知(4)AG =-,(1,AE =,设平面AEFG 的法向量为(,,)n x y z =,则由00n AE n AG ⎧⋅=⎨⋅=⎩,得040x z x z ⎧++=⎪⎨-+=⎪⎩,即32y z x z ⎧=⎪⎪⎨⎪=⎪⎩,令23z =,则x =,5y =-,所以(33,5,n =-,所以cos ,4||||1m n m n mn ⋅〈〉===⋅⨯,所以平面AEFG 与底面ABCD 所成锐二面角的余弦值为4. 【点睛】本题主要考查面面平行的性质定理,线段长的求法及二面角的余弦值的求法,考查运算求解能力,属于中档题.14.【2020·广东省高三其他(理)】已知几何体ABCDEF 中,//AB CD ,//FC EA ,AD AB ⊥,AE ⊥面ABCD ,2AB AD EA ===,4CD CF ==.(1)求证:平面⊥BDF 平面BCF ;(2)求二面角E -BD-F 的余弦值.【答案】(1)证明见解析;(2)13. 【解析】(1)证明:在直角梯形ABCD 中由已知可得BD BC ==222,BD BC CD BD BC ∴+=∴⊥//FC EA ,且AE ⊥面ABCD , FC ∴⊥平面ABCD ,BC ⊂面ABCD ,BD FC ∴⊥, FCBC C =,BC ⊂面BCF ,FC ⊂面BCF∴BD ⊥面BCF且BD ⊂面BDF ,故面⊥BDF面BCF ;(2)分别以DA 、DC 所在直线为x 轴、y 轴,以D 为垂足作面DAC 的垂线DZ 为z 轴,建系如图(0,0,0),(2,2,0),(2,0,2)(0,4,4)D B E F , 则(2,2,0),(2,0,2),(0,4,4)DB DEDF ===,设面DEB 的法向量为(,,)m x y z =,则22002200x y m DB x z m DE ⎧+=⎧⋅=⇒⎨⎨+=⋅=⎩⎩,取1x =,则1y z ==-,故(1,1,1)m =--设面DBF 的法向量为(,,)n x y z =,则22004400x y n DB y z n DF ⎧+=⎧⋅=⇒⎨⎨+=⋅=⎩⎩,取1x =,则1,1y z =-=,故(1,1,1)n =-则1cos ,3||||3m n m n m n ⋅<>===⋅⨯,由图可得二面角E -BD -F 的余弦值为13. 【点睛】本题考查面面垂直的证明,考查用空间向量法求二面角,解题关键是建立空间直角坐标系,把求二面角问题化为纯粹的计算.15.【2020·福建省福州第一中学高三其他(理)】如图,组合体由半个圆锥S O -和一个三棱锥S ACD -构成,其中O 是圆锥S O -底面圆心,B 是圆弧AC 上一点,满足BOC ∠是锐角,2===AC CD DA .(1)在平面SAB 内过点B 作//BP 平面SCD 交SA 于点P ,并写出作图步骤,但不要求证明;(2)在(1)中,若P 是SA 中点,且SO =BP 与平面SAD 所成角的正弦值.【答案】(1)答案见解析;(2.【解析】(1)①延长AB 交DC 的延长线于点Q ;②连接SQ ;③过点B 作//BP QS 交SA 于点P .(2)若P 是SA 中点,则B 是AQ 中点,又因为CB AQ ⊥,所以CA CQ =,所以90QAD ∠=,从而30BAC ∠=.依题意,,,OS OC OD 两两垂直,分别以OC ,OD ,OS 为x ,y ,z 轴建立空间直角坐标系,则()()(111,0,0,,,,,22A D S P B ⎛⎛⎫-- ⎪⎝⎭⎝⎭, 从而()()1,3,0,1,0,3,AD AS BP ⎛===- ⎝⎭,设平面SAD 的法向量为(),,n x y z =,则0,0,AS n AD n ⎧⋅=⎨⋅=⎩即0,0,x x ⎧+=⎪⎨+=⎪⎩取x =)1,1=--n .则cos ,1n BP n BP n BP⋅====+, 所以直线BP 与平面SAD .16.【2020·广西壮族自治区高三其他(理)】如图,直三棱柱111ABC A B C -中,底面ABC 为等腰直角三角形,90ACB ∠=,12AA AC =,P 是侧棱1CC 上的点.。

2020高考—立体几何(解答+答案)

2020高考—立体几何(解答+答案)

2020年高考——立体几何1.(20全国Ⅰ文19)(12分)如图,D为圆锥的顶点,O是圆锥底面的圆心,ABC△是底面的内接正三角形,P为DO 上一点,∠APC=90°.(1)证明:平面PAB⊥平面PAC;(2)设DO=2,圆锥的侧面积为3π,求三棱锥P−ABC的体积.2.(20全国Ⅰ理18)(12分)如图,D为圆锥的顶点,O是圆锥底面的圆心,AE为底面直径,AE AD=.ABC△是底面的内接正三角形,P为DO上一点,66PO DO=.(1)证明:PA⊥平面PBC;(2)求二面角B PC E--的余弦值.3.(20全国Ⅱ文20)(12分)如图,已知三棱柱ABC–A1B1C1的底面是正三角形,侧面BB1C1C是矩形,M,N分别为BC,B1C1的中点,P为AM上一点.过B1C1和P的平面交AB于E,交AC于F.(1)证明:AA1//MN,且平面A1AMN⊥平面EB1C1F;(2)设O为△A1B1C1的中心,若AO=AB=6,AO//平面EB1C1F,且∠MPN=π3,求四棱锥B–EB1C1F的体积.4.(20全国Ⅱ理20)(12分)如图,已知三棱柱ABC -A 1B 1C 1的底面是正三角形,侧面BB 1C 1C 是矩形,M ,N 分别为BC ,B 1C 1的中点,P 为AM 上一点,过B 1C 1和P 的平面交AB 于E ,交AC 于F .(1)证明:AA 1∥MN ,且平面A 1AMN ⊥EB 1C 1F ;(2)设O 为△A 1B 1C 1的中心,若AO ∥平面EB 1C 1F ,且AO =AB ,求直线B 1E 与平面A 1AMN 所成角的正弦值.5.(20全国Ⅲ文 19)(12分)如图,在长方体1111ABCD A B C D -中,点E ,F 分别在棱1DD ,1BB 上,且12DE ED =,12BF FB =.证明:(1)当AB BC =时,EF AC ⊥; (2)点1C 在平面AEF 内.6.(20全国Ⅲ理19)(12分)如图,在长方体1111ABCD A B C D -中,点,E F 分别在棱11,DD BB 上,且12DE ED =,12BF FB =.(1)证明:点1C 在平面AEF 内;(2)若2AB =,1AD =,13AA =,求二面角1A EF A --的正弦值.7.(20新高考Ⅰ20)(12分)如图,四棱锥P-ABCD的底面为正方形,PD⊥底面ABCD.设平面PAD与平面PBC的交线为l.(1)证明:l⊥平面PDC;(2)已知PD=AD=1,Q为l上的点,求PB与平面QCD所成角的正弦值的最大值.8.(20天津17)(本小题满分15分)如图,在三棱柱111ABC A B C -中,1CC ⊥平面,,2ABC AC BC AC BC ⊥==,13CC =,点,D E 分别在棱1AA 和棱1CC 上,且2,1,AD CE M ==为棱11A B 的中点.(Ⅰ)求证:11C M B D ⊥;(Ⅱ)求二面角1B B E D --的正弦值;(Ⅲ)求直线AB 与平面1DB E 所成角的正弦值.9.(20浙江19)(本题满分15分)如图,在三棱台ABC —DEF 中,平面ACFD ⊥平面ABC ,∠ACB =∠ACD =45°,DC =2BC . (Ⅰ)证明:EF ⊥DB ;(Ⅱ)求直线DF 与平面DBC 所成角的正弦值.10.(20江苏15)(本小题满分14分)在三棱柱ABC-A1B1C1中,AB⊥AC,B1C⊥平面ABC,E,F分别是AC,B1C的中点.(1)求证:EF∥平面AB1C1;(2)求证:平面AB1C⊥平面ABB1.11.(20江苏22)(本小题满分10分)在三棱锥A —BCD 中,已知CB =CD =5,BD =2,O 为BD 的中点,AO ⊥平面BCD ,AO =2,E 为AC 的中点.(1)求直线AB 与DE 所成角的余弦值; (2)若点F 在BC 上,满足BF =14BC ,设二面角F —DE —C 的大小为θ,求sin θ的值.12.(20北京16)(本小题13分)如图,在正方体1111ABCD A B C D 中,E 为1BB 的中点.(Ⅰ)求证:1//BC 平面1AD E ;(Ⅱ)求直线1AA 与平面1AD E 所成角的正弦值.参考答案:1.解:(1)由题设可知,PA =PB = PC .由于△ABC 是正三角形,故可得△PAC ≌△PAB . △PAC ≌△PBC .又∠APC =90°,故∠APB =90°,∠BPC =90°.从而PB ⊥PA ,PB ⊥PC ,故PB ⊥平面PAC ,所以平面PAB ⊥平面PAC . (2)设圆锥的底面半径为r ,母线长为l . 由题设可得rl =3,222l r -=. 解得r =1,l =3,从而3AB =.由(1)可得222PA PB AB +=,故62PA PB PC ===. 所以三棱锥P -ABC 的体积为3111166()323228PA PB PC ⨯⨯⨯⨯=⨯⨯=.2.解:(1)设DO a =,由题设可得63,,63PO a AO a AB a ===,22PA PB PC a ===. 因此222PA PB AB +=,从而PA PB ⊥. 又222PA PC AC +=,故PA PC ⊥. 所以PA ⊥平面PBC .(2)以O 为坐标原点,OE 的方向为y 轴正方向,||OE 为单位长,建立如图所示的空间直角坐标系O xyz -.由题设可得312(0,1,0),(0,1,0),(,0),(0,0,)222E A C P --. 所以312(,,0),(0,1,)222EC EP =--=-. 设(,,)x y z =m 是平面PCE 的法向量,则00EP EC ⎧⋅=⎪⎨⋅=⎪⎩m m ,即20231022y z x y ⎧-+=⎪⎪⎨⎪--=⎪⎩,可取3(2)=m . 由(1)知2(0,1,2AP =是平面PCB 的一个法向量,记AP =n , 则25cos ,|||5⋅==n m n m n m |.所以二面角B PC E --的余弦值为255.3.解:(1)因为M ,N 分别为BC ,B 1C 1的中点,所以MN ∥CC 1.又由已知得AA 1∥CC 1,故AA 1∥MN .因为△A 1B 1C 1是正三角形,所以B 1C 1⊥A 1N .又B 1C 1⊥MN ,故B 1C 1⊥平面A 1AMN . 所以平面A 1AMN ⊥平面EB 1C 1F .(2)AO ∥平面EB 1C 1F ,AO ⊂平面A 1AMN ,平面A 1AMN ⋂平面EB 1C 1F = PN , 故AO ∥PN ,又AP ∥ON ,故四边形APNO 是平行四边形,所以PN =AO =6,AP = ON =13AM =3,PM =23AM =23,EF =13BC =2.因为BC ∥平面EB 1C 1F ,所以四棱锥B -EB 1C 1F 的顶点B 到底面EB 1C 1F 的距离等于点M 到底面EB 1C 1F 的距离.作MT ⊥PN ,垂足为T ,则由(1)知,MT ⊥平面EB 1C 1F ,故MT =PM sin ∠MPN =3.底面EB 1C 1F 的面积为1111()(62)624.22B C EF PN ⨯+⨯=+⨯=所以四棱锥B -EB 1C 1F 的体积为1243243⨯⨯=.4.解:(1)因为M ,N 分别为BC ,B 1C 1的中点,所以MN ∥CC .又由已知得AA 1∥CC 1,故AA 1∥MN .因为△A 1B 1C 1是正三角形,所以B 1C 1⊥A 1N .又B 1C 1⊥MN ,故B 1C 1⊥平面A 1AMN . 所以平面A 1AMN ⊥平面EB 1CF .(2)由己知得AM ⊥BC .以M 为坐标原点,MA 的方向为x 轴正方向, MB 为单位长,建立如图所示的空间直角坐标系M -xyz ,则AB =2,AM =3. 连接NP ,则四边形AONP 为平行四边形,故23231,(,,0)333PM E =.由(1)知平面A 1AMN ⊥平面ABC ,作NQ ⊥AM ,垂足为Q ,则NQ ⊥平面ABC . 设(,0,0)Q a ,则22123234(),(,1,4())33NQ a B a a =----, 故21123223210(,,4()),||3333B E a a B E =-----=. 又(0,1,0)=-n 是平面A 1AM 的法向量,故1111,π10sin(,)cos ,210||B E B E B E B E -===⋅n n n |n |.所以直线B 1E 与平面A 1AMN 所成角的正弦值为1010.5.解:(1)如图,连结BD ,11B D .因为AB BC =,所以四边形ABCD 为正方形,故AC BD ⊥.又因为1BB ⊥平面ABCD ,于是1AC BB ⊥.所以AC ⊥平面11BB D D . 由于EF ⊂平面11BB D D ,所以EF AC ⊥.(2)如图,在棱1AA 上取点G ,使得12AG GA =,连结1GD ,1FC ,FG ,因为1123D E DD =,123AG AA =,11DD AA =∥,所以1ED AG =∥,于是四边形1ED GA 为平行四边形,故1AE GD ∥.因为1113B F BB =,1113AG AA =,11BB AA =∥,所以11FG A B =∥,11FG C D =∥,四边形11FGD C 为平行四边形,故11GD FC ∥.于是1AE FC ∥.所以1,,,A E F C 四点共面,即点1C 在平面AEF 内.6.解:设AB a =,AD b =,1AA c =,如图,以1C 为坐标原点,11C D 的方向为x 轴正方向,建立空间直角坐标系1C xyz -.(1)连结1C F ,则1(0,0,0)C ,(,,)A a b c ,2(,0,)3E a c ,1(0,,)3F b c ,1(0,,)3EA b c =,11(0,,)3C F b c =,得1EA C F =.因此1EA C F ∥,即1,,,A E F C 四点共面,所以点1C 在平面AEF 内. (2)由已知得(2,1,3)A ,(2,0,2)E ,(0,1,1)F ,1(2,1,0)A ,(0,1,1)AE =--,(2,0,2)AF =--,1(0,1,2)A E =-,1(2,0,1)A F =-.设1(,,)x y z =n 为平面AEF 的法向量,则 110,0,AE AF ⎧⋅=⎪⎨⋅=⎪⎩n n 即0,220,y z x z --=⎧⎨--=⎩可取1(1,1,1)=--n . 设2n 为平面1A EF 的法向量,则 22110,0,A E A F ⎧⋅=⎪⎨⋅=⎪⎩n n 同理可取21(,2,1)2=n .因为1212127cos ,||||7⋅〈〉==-⋅n n n n n n ,所以二面角1A EF A --的正弦值为427.7.解:(1)因为PD ⊥底面ABCD ,所以PD AD ⊥.又底面ABCD 为正方形,所以AD DC ⊥,因此AD ⊥底面PDC . 因为AD BC ∥,AD ⊄平面PBC ,所以AD ∥平面PBC . 由已知得l AD ∥.因此l ⊥平面PDC . (2)以D 为坐标原点,DA 的方向为x 轴正方向,建立如图所示的空间直角坐标系D xyz -.则(0,0,0),(0,1,0),(1,1,0),(0,0,1)D C B P ,(0,1,0)DC =,(1,1,1)PB =-. 由(1)可设(,0,1)Q a ,则(,0,1)DQ a =.设(,,)x y z =n 是平面QCD 的法向量,则0,0,DQ DC ⎧⋅=⎪⎨⋅=⎪⎩n n 即0,0.ax z y +=⎧⎨=⎩ 可取(1,0,)a =-n . 所以2cos ,||||31PB PB PB a⋅-〈〉==⋅+n n n . 设PB 与平面QCD 所成角为θ,则22332sin 1311aa a θ==+++ 2326131a a ++当且仅当1a =时等号成立,所以PB 与平面QCD 所成角的正6.8.依题意,以C 为原点,分别以1,,CA CB CC 的方向为x 轴,y 轴,z 轴的正方向建立空间直角坐标系(如图),可得1(0,0,0),(2,0,0),(0,2,0),(0,0,3)C A B C ,11(2,0,3),(0,2,3),(2,0,1),(0,0,2)A B D E ,(1,1,3)M .(Ⅰ)证明:依题意,1(1,1,0)C M =,1(2,2,2)B D =--,从而112200C M B D ⋅=-+=,所以11C M B D ⊥.(Ⅱ)解:依题意,(2,0,0)CA =是平面1BB E 的一个法向量,1(0,2,1)EB =,(2,0,1)ED =-.设(,,)x y z =n 为平面1DB E 的法向量,则10,0,EB ED ⎧⋅=⎪⎨⋅=⎪⎩n n 即20,20.y z x z +=⎧⎨-=⎩不妨设1x =,可得(1,1,2)=-n . 因此有|||6cos ,|A CA C CA ⋅〈〉==n n n 30sin ,6CA 〈〉=n . 所以,二面角1B B E D --30(Ⅲ)解:依题意,(2,2,0)AB =-.由(Ⅱ)知(1,1,2)=-n 为平面1DB E 的一个法向量,于是3cos ,||||AB AB AB ⋅==n n n . 所以,直线AB 与平面1DB E 39.(Ⅰ)如图,过点D 作DO AC ⊥,交直线AC 于点O ,连结OB .由45ACD ∠=︒,DO AC ⊥得2CD CO =,由平面ACFD ⊥平面ABC 得DO ⊥平面ABC ,所以DO BC ⊥. 由45ACB ∠=︒,122BC CD ==得BO BC ⊥.所以BC ⊥平面BDO ,故BC ⊥DB .由三棱台ABC DEF -得BC EF ∥,所以EF DB ⊥. (Ⅱ)方法一:过点O 作OH BD ⊥,交直线BD 于点H ,连结CH .由三棱台ABC DEF -得DF CO ∥,所以直线DF 与平面DBC 所成角等于直线CO 与平面DBC 所成角.由BC ⊥平面BDO 得OH BC ⊥,故OH ⊥平面BCD ,所以OCH ∠为直线CO 与平面DBC 所成角. 设22CD =.由2,2DO OC BO BC ====,得26,33BD OH = 所以3sin OH OCH OC ∠==, 因此,直线DF 与平面DBC 3. 方法二:由三棱台ABC DEF -得DF CO ∥,所以直线DF 与平面DBC 所成角等于直线CO 与平面DBC 所成角,记为θ.如图,以O 为原点,分别以射线OC ,OD 为y ,z 轴的正半轴,建立空间直角坐标系O xyz -.设22CD =.由题意知各点坐标如下:(0,0,0),(1,1,0),(0,2,0),(0,0,2)O B C D .因此(0,2,0),(1,1,0),(0,2,2)OC BC CD ==-=-. 设平面BCD 的法向量(,,z)x y =n .由0,0,BC CD ⎧⋅=⎪⎨⋅=⎪⎩n n 即0220x y y z -+=⎧⎨-+=⎩,可取(1,1,1)=n .所以|3sin |cos ,|3|||OC OC OC θ⋅===⋅n |n n |.因此,直线DF 与平面DBC 所成角的正弦值为33.10.证明:因为,E F 分别是1,AC B C 的中点,所以1EF AB ∥.又/EF ⊂平面11AB C ,1AB ⊂平面11AB C , 所以EF ∥平面11AB C .(2)因为1B C ⊥平面ABC ,AB ⊂平面ABC ,所以1B C AB ⊥.又AB AC ⊥,1B C ⊂平面11AB C ,AC ⊂平面1AB C ,1,B C AC C =所以AB ⊥平面1AB C .又因为AB ⊂平面1ABB ,所以平面1AB C ⊥平面1ABB .11.解:(1)连结OC ,因为CB =CD ,O 为BD 中点,所以CO ⊥B D .又AO ⊥平面BCD ,所以AO ⊥OB ,AO ⊥O C .以{}OB OC OA ,,为基底,建立空间直角坐标系O –xyz . 因为BD =2,CB CD ==,AO =2,所以B (1,0,0),D (–1,0,0),C (0,2,0),A (0,0,2). 因为E 为AC 的中点,所以E (0,1,1). 则AB =(1,0,–2),DE =(1,1,1),所以|||1||||||5cos AB DE AB DE AB DE +=⋅⋅==<>,.因此,直线AB 与DE . (2)因为点F 在BC 上,14BF BC =,BC =(–1,2,0). 所以111(,,0)442BF BC ==-. 又20,0DB =(,), 故71(,,0)42DF DB BF =+=.设1111()x y z =,,n 为平面DEF 的一个法向量, 则1100,DE DF ⎧⎪⎨⎪⎩⋅=⋅=,n n 即111110710,42x y z x y +⎧+=⎪+=⎪⎨⎩, 取12x =,得1–7y =,15z =,所以1(275)n =-,,. 设2222()x y z =,,n 为平面DEC 的一个法向量,又DC =(1,2,0),则2200,DE DC ⎧⎪⎨⎪⎩⋅=⋅=,n n 即22222020,x y z x y ++=+=⎧⎨⎩,取22x =,得2–1y =,2–1z =,所以2(211)n =--,,. 故2112|||475|13|||||co |13786s θ+-⋅===⋅⨯n n n n .所以22391cos s n 13i θθ=-=.12.。

2020高考数学总复习——立体几何专项训练(附解析)

2020高考数学总复习——立体几何专项训练(附解析)

2020高考数学总复习——立体几何专项训练(附解析)空间几何体的结构特征、表面积与体积[基础保分练]1.给出下列4个命题:①各侧面都是全等四边形的棱柱一定是正棱柱; ②对角面是全等矩形的六面体一定是长方体;③若棱锥的侧棱长与底面多边形的边长相等,则该棱锥可能是正六棱锥; ④长方体一定是正四棱柱. 其中真命题的个数是( ) A .0B .1C .2D .32.母线长为1的圆锥的侧面展开图的圆心角等于43π,则该圆锥的体积为( )A.2281πB.881πC.4581πD.1081π 3.用平面α截球O 所得圆的半径为1,球心O 到平面α的距离为2,则此球的体积为( ) A.6π B .43π C .46πD .63π4.如图所示,已知三棱柱ABC -A 1B 1C 1的所有棱长均为1,且AA 1⊥底面ABC ,则三棱锥B 1-ABC 1的体积为( )A.312B.34C.612D.645.给出下列4个命题:①在圆柱的上、下底面的圆周上各取一点,则这两点的连线是圆柱的母线; ②底面为正多边形,且有相邻两个侧面与底面垂直的棱柱是正棱柱; ③直角三角形绕其任意一边所在直线旋转一周所形成的几何体都是圆锥; ④棱台的上、下底面可以不相似,但侧棱长一定相等. 其中真命题的个数是( ) A .0B .1C .2D .36.设三棱柱ABC-A1B1C1的体积为V,P,Q分别是侧棱AA1,CC1上的点,且PA=QC1,则四棱锥B-APQC的体积为( )A.16V B.14V C.13V D.12V7.在梯形ABCD中,∠ABC=π2,AD∥BC,BC=2AD=2AB=2.将梯形ABCD绕AD所在的直线旋转一周而形成的曲面所围成的几何体的体积为( )A.2π3B.4π3C.5π3D.2π8.现有橡皮泥制作的底面半径为5、高为4的圆锥和底面半径为2、高为8的圆柱各一个.若将它们重新制作成总体积与高均保持不变,但底面半径相同的新的圆锥和圆柱各一个,则新的底面半径为( )A.2B.6C.7D.39.圆柱形容器内盛有高度为8cm的水,若放入三个相同的球(球的半径与圆柱的底面半径相同)后,水恰好淹没最上面的球(如图所示),则球的半径是________cm.10.已知圆柱M的底面半径与球O的半径相同,且圆柱M与球O的表面积相等,则它们的体积之比V圆柱∶V球=________.[能力提升练]1.圆锥的轴截面是边长为2的正三角形,则圆锥的表面积为( )A.(3+1)πB.4πC.3πD.5π2.已知三棱锥P—ABC的所有顶点都在球O的球面上,△ABC满足AB=22,∠ACB=90°,PA为球O的直径且PA=4,则点P到底面ABC的距离为( )A.2B.22C.3D.2 33.(2019·珠海摸底)如图,圆锥顶点为P,底面圆心为O,过轴PO的截面△PAB,C为PA中点,PA=43,PO=6,则从点C经圆锥侧面到点B的最短距离为( )A.215 B.215-6 2C .6D .215-6 34.(2019·湛江调研)点A ,B ,C ,D 在同一个球的球面上,AB =BC =AC =3,若四面体ABCD 体积的最大值为3,则这个球的表面积为( ) A.169π16 B.289π16 C.25π16D .8π 5.已知正四面体P -ABC 的棱长为2,若M ,N 分别是PA ,BC 的中点,则三棱锥P -BMN 的体积为________.6.已知正方体ABCD -A 1B 1C 1D 1的棱长为2,线段EF ,GH 分别在AB ,CC 1上移动,且EF +GH =12,则三棱锥F -HGE 的体积最大值为________.答案精析基础保分练1.A 2.C 3.B 4.A 5.B 6.C 7.C 8.C 9.4 10.34能力提升练1.C [∵圆锥的轴截面是边长为2的正△ABC ,∴圆锥的底面半径r =1, 母线长l =2,表面积S =πr 2+12×2πr ×l =π+2π=3π.]2.B [取AB 的中点O 1,连接OO 1,如图,在△ABC 中,AB =22,∠ACB =90°,所以△ABC 所在小圆O 1是以AB 为直径的圆,所以O 1A =2,且OO 1⊥AO 1,又球O 的直径PA =4,所以OA =2,所以OO 1=OA 2-O 1A 2=2,且OO 1⊥底面ABC ,所以点P 到平面ABC 的距离为PB =2OO 1=2 2.] 3.A [先作出圆锥的侧面展开图如图所示,由题得圆锥底面圆的半径为32-62=23,所以AA 1=2π·23=43π, 所以∠APA 1=43π43=π,所以∠APB =π2,所以BC =32+32=215.]4.B [根据题意知,△ABC 是一个等边三角形,其面积为334,外接圆的半径为1,小圆的圆心为Q ,由于底面积S △ABC 不变,高最大时体积最大,所以DQ 与面ABC 垂直时体积最大,最大值为13S △ABC ×DQ =3,∴DQ =4,设球心为O ,半径为R ,则在Rt△AQO 中,OA 2=AQ 2+OQ 2,即R 2=12+(4-R )2,∴R =178,则这个球的表面积为S =4π⎝ ⎛⎭⎪⎫1782=289π16.] 5.26解析 连接AN ,作MD ⊥PN ,交PN 于D ,∵正四面体P -ABC 的棱长为2,M ,N 分别是PA ,BC 的中点, ∴AN ⊥BC ,PN ⊥BC ,MN ⊥AP ,且AN =PN =3, ∵AN ∩PN =N ,AN ,PN ⊂平面PNA , ∴BC ⊥平面PNA ,∵MD ⊂平面PNA ,∴MD ⊥BC , ∵BC ∩PN =N ,BC ,PN ⊂平面PBN , ∴MD ⊥平面PBN ,MN =PN 2-PM 2=2,∵12PN ·MD =12PM ·MN , ∴MD =PM ·MN PN =1×23=63, ∴三棱锥P -BMN 的体积V P -BMN =V M -PBN =13×S △PBN ×MD =13×12×1×3×63=26. 6.148解析 连接CE ,CF ,C 1E ,C 1F ,HE ,HF ,GE ,GF ,设EF =m ,GH =n (m >0,n >0), 则m +n =12.因为S △HGE ∶S △C 1CE =n ∶2, 所以V 三棱锥F -HGE ∶1F C CE V 三棱锥-=n ∶2.又因为1F C CE V 三棱锥-=1C CEF V 三棱锥-=13×2×12×2×m =23m , 所以V 三棱锥F -HGE =13mn .因为m +n =12,所以m ·n ≤m +n24=116, 故V 三棱锥F -HGE ≤148⎝ ⎛⎭⎪⎫当且仅当m =n =14时“=”成立.空间点、线、面的位置关系[基础保分练]1.若空间三条直线a ,b ,c 满足a ⊥b ,b ∥c ,则直线a 与c ( ) A .一定平行 B .一定相交 C .一定是异面直线D .一定垂直2.已知a ,b ,c 为三条不同的直线,且a ⊂平面α,b ⊂平面β,α∩β=c . ①若a 与b 是异面直线,则c 至少与a ,b 中的一条相交; ②若a 不垂直于c ,则a 与b 一定不垂直; ③若a ∥b ,则必有a ∥c ; ④若a ⊥b ,a ⊥c ,则必有α⊥β. 其中正确的命题的个数是( ) A .0B .1C .2D .33.已知E ,F ,G ,H 是空间内四个点,条件p :E ,F ,G ,H 四点不共面,条件q :直线EF 和GH 不相交.则p 是q 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件4.如图,ABCD -A 1B 1C 1D 1是长方体,O 是BD 的中点,直线AC 1与平面A 1BD 相交于点M ,则下列结论正确的是( )A .A 1,M ,O 三点共线B .A ,O ,M ,A 1不共面C .A 1,M ,C 1,O 不共面D .B 1,B ,O ,M 共面5.如图所示,在空间四边形ABCD 中,点E ,H 分别是边AB ,AD 的中点,点F ,G 分别是边BC ,CD 上的点,且CF CB =CG CD =23,则下列说法正确的是( )A.EF与GH平行B.EF与GH异面C.EF与GH的交点M可能在直线AC上,也可能不在直线AC上D.EF与GH的交点M一定在直线AC上6.已知正四棱柱ABCD-A1B1C1D1中,AA1=2AB,则CD与平面BDC1所成角的正弦值等于( )A.23B.33C.23D.137.如图,在四面体ABCD中,截面PQMN是正方形,且PQ∥AC,QM∥BD,则下列命题中,错误的是( )A.AC⊥BDB.AC∥截面PQMNC.AC=BDD.异面直线PM与BD所成的角为45°8.如图所示,在正方体ABCD-A1B1C1D1中,E,F分别为BC,BB1的中点,则下列直线中与直线EF相交的是( )A.直线AA1B.直线A1B1C.直线A1D1D.直线B1C19.平行六面体ABCD-A1B1C1D1中既与AB共面又与CC1共面的棱有________条.10.给出下列四个说法:①经过三点确定一个平面;②梯形可以确定一个平面;③两两相交的三条直线最多可以确定三个平面;④若两个平面有三个公共点,则这两个平面重合.其中正确说法的是________.(填序号)[能力提升练]1.在正方体ABCD-A1B1C1D1中,E,F分别为棱AA1,CC1的中点,则在空间中与三条直线A1D1,EF,CD都相交的直线( )A.不存在B.有且只有两条C.有且只有三条D.有无数条2.在正方体ABCD-A1B1C1D1中,P,Q,R分别是AB,AD,B1C1的中点,那么过P,Q,R的平面被正方体所截得的图形是( )A.三角形B.四边形C.五边形D.六边形3.设四面体的六条棱的长分别为1,1,1,1,2和a,且长为a的棱与长为2的棱异面,则a 的取值范围是( )A.(0,2) B.(0,3) C.(1,2) D.(1,3)4.如图是正方体或四面体,P,Q,R,S分别是所在棱的中点,则这四个点不共面的一个图是( )5.如图所示,正方体的底面与正四面体的底面在同一平面α上,且AB∥CD,正方体的六个面所在的平面与直线CE,EF相交的平面个数分别记为m,n,那么m+n=________.6.如图,在三棱锥A-BCD中,AB=AC=BD=CD=3,AD=BC=2,点M,N分别为AD,BC的中点,则异面直线AN,CM所成的角的余弦值是________.答案精析基础保分练1.D 2.C 3.A 4.A 5.D 6.A 7.C8.D 9.5 10.②③能力提升练1.D [如图所示,在EF上任意取一点M,则直线A1D1与M确定一个平面,这个平面与CD有且仅有一个交点N,当M取不同的位置时就确定不同的平面,从而与CD有不同的交点N,而直线MN与这三条异面直线都有交点.] 2.D [如图所示,连接QP并延长与CB的延长线交于M,连接MR交BB1于E,连接PE,则PE,RE为截面的两条边.作RG∥PQ交C1D1于G,同理延长PQ交CD的延长线于N,连接NG交DD1于F,连接QF.故截面为六边形PQFGRE.]3.A [此题相当于一个正方形沿着对角线折成一个四面体,易知a大于0且小于 2.] 4.D [A,B,C中四点一定共面,D中四点不共面.]5.8解析观察知,直线CE与正方体的前后左右四个面所在的平面相交,所以m=4;直线EF与正方体的上下前后四个面所在的平面相交,所以n=4.所以m+n=8.6.7 8解析如图所示,连接DN,取线段DN的中点K,连接MK,CK.∵M为AD的中点,∴MK∥AN,∴∠KMC为异面直线AN,CM所成的角.∵AB=AC=BD=CD=3,AD=BC=2,N为BC的中点,由勾股定理易求得AN=DN=CM=22,∴MK= 2.在Rt△CKN中,CK=22+12= 3.在△CKM中,由余弦定理,得cos∠KMC=22+22-322×2×22=78.平行的判定与性质[基础保分练]1.若a,b表示直线,α表示平面,且b⊂α,则“a∥b”是“a∥α”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件2.在空间四边形ABCD中,E,F分别为AB,AD上的点,且AE∶EB=AF∶FD=1∶4,H,G分别为BC,CD的中点,则( )A.BD∥平面EFG,且四边形EFGH是平行四边形B.EF∥平面BCD,且四边形EFGH是梯形C.HG∥平面ABD,且四边形EFGH是平行四边形D.EH∥平面ADC,且四边形EFGH是梯形3.下列四个正方体图形中,A,B为正方体的两个顶点,M,N,P分别为其所在棱的中点,能得出AB∥平面MNP的图形的序号是( )A.①③B.②③C.①④D.②④4.如图,正方体ABCD-A1B1C1D1中,E,F分别为棱AB,CC1的中点,在平面ADD1A1内且与平面D1EF平行的直线( )A.不存在B.有1条C.有2条D.有无数条5.下列说法正确的是( )A.若直线l⊥平面α,直线l⊥平面β,则α∥βB.若直线l∥平面α,直线l∥平面β,则α∥βC.若两直线l1,l2与平面α所成的角相等,则l1∥l2D.若直线l上两个不同的点A,B到平面α的距离相等,则l∥α6.有下列命题:①若直线l平行于平面α内的无数条直线,则直线l∥α;②若直线a在平面α外,则a∥α;③若直线a∥b,b∥α,则a∥α;④若直线a∥b,b∥α,则a平行于平面α内的无数条直线.其中真命题的个数是( )A.1B.2C.3D.47.直线a∥平面α,则a平行于平面α内的( )A.一条确定直线B.所有直线C.无数条平行直线D.任意一条直线8.已知直线l∥平面α,P∈α,那么过点P且平行于直线l的直线( )A.只有一条,不在平面α内B.只有一条,且在平面α内C.有无数条,不一定在平面α内D.有无数条,一定在平面α内9.如图所示是某长方体被一平面所截得的几何体,四边形EFGH为截面,则四边形EFGH的形状为________.第9题图第10题图10.如图是一个正方体的表面展开图,B,N,Q都是所在棱的中点,则在原正方体中有以下命题:①AB与CD相交;②MN∥PQ;③AB∥PE;④MN与CD异面;⑤MN∥平面PQC.其中为真命题的是________.(填序号)[能力提升练]1.下列说法中正确的是( )①如果一条直线和一个平面平行,那么它和这个平面内的无数条直线平行;②一条直线和一个平面平行,它就和这个平面内的任何直线无公共点;③过直线外一点,有且仅有一个平面和已知直线平行.A.①②③B.①③C.②③D.①②2.如图,下列正三棱柱ABC-A1B1C1中,若M,N,P分别为其所在棱的中点,则不能得出AB∥平面MNP的是( )3.已知直线a,b异面,给出以下命题:①一定存在平行于a的平面α使b⊥α;②一定存在平行于a的平面α使b∥α;③一定存在平行于a的平面α使b⊂α;④一定存在无数个平行于a的平面α与b交于一定点.则其中正确的命题是( )A.①④B.②③C.①②③D.②③④4.在四棱锥S-ABC中,△ABC是边长为6的正三角形,SA=SB=SC=15,平面DEFH分别与AB,BC,SC,SA交于D,E,F,H,D,E分别是AB,BC的中点,如果直线SB∥平面DEFH,那么四边形DEFH的面积为( )A.452B.4532C.45D.45 35.α,β,γ是三个平面,a,b是两条直线,有下列三个条件:①a∥γ,b⊂β;②a∥γ,b∥β;③b∥β,a⊂γ.如果命题“α∩β=a,b⊂γ,且________,则a∥b”为真命题,则可以在横线处填入的条件是________.(把所有正确条件的序号都填上)6.已知平面α∥平面β,P是α,β外一点,过点P的直线m与α,β分别交于点A,C,过点P的直线n与α,β分别交于点B,D,且PA=6,AC=9,PD=8,则BD=________.答案精析基础保分练1.D 2.B 3.C 4.D 5.A 6.A 7.C 8.B 9.平行四边形 10.①②④⑤ 能力提升练1.D [由线面平行的性质定理知①正确;由直线与平面平行的定义知②正确;③错误,经过直线外一点可作一条直线与已知直线平行,而经过这条直线可作无数个平面与原直线平行.] 2.C [在A ,B 中,易知AB ∥A 1B 1∥MN ,所以AB ∥平面MNP ;在D 中,易知AB ∥PN ,所以AB ∥平面MNP ,故选C.]3.D [对于①,若存在平面α使得b ⊥α,则有b ⊥a ,而直线a ,b 未必垂直,因此①不正确;对于②,注意到过直线a ,b 外一点M 分别引直线a ,b 的平行线a 1,b 1,显然由直线a 1,b 1可确定平面α,此时平面α与直线a ,b 均平行,因此②正确;对于③,注意到过直线b上的一点B 作直线a 2与直线a 平行,显然由直线b 与a 2可确定平面α,此时平面α与直线a 平行,且b ⊂α,因此③正确;对于④,在直线b 上取一定点N ,过点N 作直线c 与直线a平行,经过直线c 的平面(除由直线a 与c 所确定的平面及直线c 与b 所确定的平面之外)均与直线a 平行,且与直线b 相交于一定点N ,因此④正确.] 4.A [如图所示,取AC 的中点G ,连接SG ,BG .易知SG ⊥AC ,BG ⊥AC , 故AC ⊥平面SGB , 所以AC ⊥SB .因为SB ∥平面DEFH ,SB ⊂平面SAB ,平面SAB ∩平面DEFH =HD , 则SB ∥HD .同理SB ∥FE .又D ,E 分别为AB ,BC 的中点,则H ,F 也为AS ,SC 的中点,从而得HF ∥AC 且HF =12AC ,DE ∥AC 且DE =12AC ,所以四边形DEFH 为平行四边形. 又AC ⊥SB ,SB ∥HD ,DE ∥AC ,所以DE ⊥HD ,所以四边形DEFH 为矩形,其面积S =HF ·HD =⎝ ⎛⎭⎪⎫12AC ·⎝ ⎛⎭⎪⎫12SB =452.]5.①③解析 ①中,由b ⊂β,b ⊂γ,得β∩γ=b ,又a ∥γ,a ⊂β,所以a ∥b (线面平行的性质定理).③中,由α∩β=a ,a ⊂γ得β∩γ=a ,又b ∥β,b ⊂γ,所以a ∥b (线面平行的性质定理). 6.24或245解析 设BD =x ,由α∥β可得AB ∥CD ,则△PAB ∽△PCD ,即PB PA =PDPC. ①当点P 在两平面之间时,如图(1)所示,则有x -86=89-6,∴x =24;②当点P 在两平面外侧时,如图(2),则有8-x 6=89+6,∴x =245.垂直的判定与性质[基础保分练]1.已知α,β是两个不同的平面,l ,m ,n 是不同的直线,下列命题不正确的是( ) A .若l ⊥m ,l ⊥n ,m ⊂α,n ⊂α,则l ⊥α B .若l ∥m ,l ⊄α,m ⊂α,则l ∥αC .若α⊥β,α∩β=l ,m ⊂α,m ⊥l ,则m ⊥βD .若α⊥β,m ⊥α,n ⊥β,则m ⊥n 2.已知两个平面垂直,下列命题:①一个平面内的任意一条直线必垂直于另一个平面内的任意一条直线; ②一个平面内的任意一条直线必垂直于另一个平面内的无数条直线; ③一个平面内的任意一条直线必垂直于另一个平面;④过一个平面内任意一点作交线的垂线,则此垂线必垂直于另一个平面. 其中正确的个数是( ) A .3B .2C .1D .03.在Rt△ABC中,∠ABC=90°,P为△ABC所在平面外一点,PA⊥平面ABC,则四面体P-ABC中共有直角三角形个数为( )A.4B.3C.2D.14.“直线l垂直于平面α”的一个必要不充分条件是( )A.直线l与平面α内的任意一条直线垂直B.过直线l的任意一个平面与平面α垂直C.存在平行于直线l的直线与平面α垂直D.经过直线l的某一个平面与平面α垂直5.已知直线l,m和平面α,则下列结论正确的是( )A.若l∥m,m⊂α,则l∥αB.若l⊥α,m⊂α,则l⊥mC.若l⊥m,l⊥α,则m⊥αD.若l∥α,m⊂α,则l∥m6.设m,n是两条不同的直线,α,β是两个不同的平面,则下列命题正确的是( )①若m⊥α,α⊥β,则m∥β;②若m⊥α,α∥β,n⊂β,则m⊥n;③若m⊂α,n⊂β,m∥n,则α∥β;④若n⊥α,n⊥β,m⊥β,则m⊥α.A.①②B.③④C.①③D.②④7.(2019·沈阳东北育才学校联考)设m,n是两条不同的直线,α,β为两个不同的平面,则下列四个命题中不正确的是( )A.m⊥α,n⊥β且α⊥β,则m⊥nB.m∥α,n⊥β且α⊥β,则m∥nC.m⊥α,n∥β且α∥β,则m⊥nD.m⊥α,n⊥β且α∥β,则m∥n8.已知在正四面体P-ABC中,D,E,F分别是AB,BC,CA的中点,则下面四个结论中不正确的是( )A.BC∥平面PDF B.DF⊥平面PAEC.平面PDF⊥平面ABC D.平面PAE⊥平面ABC9.如图,PA⊥⊙O所在平面,AB是⊙O的直径,C是⊙O上一点,AE⊥PC,AF⊥PB,给出下列结论:①AE⊥BC;②EF⊥PB;③AF⊥BC;④AE⊥平面PBC.其中真命题的序号是________.10.设a,b为不重合的两条直线,α,β为不重合的两个平面,给出下列命题:①若a∥α且b∥α,则a∥b;②若a⊥α且a⊥β,则α∥β;③若α⊥β,则一定存在平面γ,使得γ⊥α,γ⊥β;④若α⊥β,则一定存在直线l,使得l⊥α,l∥β.上面命题中,所有真命题的序号是________.[能力提升练]1.已知平面α,β,γ和直线l,m,且l⊥m,α⊥γ,α∩γ=m,β∩γ=l,给出下列四个结论:①β⊥γ;②l⊥α;③m⊥β;④α⊥β.其中正确的是( )A.①④B.②④C.②③D.③④2.如图所示,O为正方体ABCD-A1B1C1D1的底面ABCD的中心,则下列直线中与B1O垂直的是( )A.A1D B.AA1C.A1D1D.A1C13.已知在空间四边形ABCD中,AD⊥BC,AD⊥BD,且△BCD是锐角三角形,则必有( ) A.平面ABD⊥平面ADCB.平面ABD⊥平面ABCC.平面ADC⊥平面BDCD.平面ABC⊥平面BDC4.已知矩形ABCD中,AB=1,BC= 2.将△ABD沿矩形的对角线BD所在直线进行翻折,在翻折过程中( )A.存在某个位置,使得直线AC与直线BD垂直B.存在某个位置,使得直线AB与直线CD垂直C.存在某个位置,使得直线AD与直线BC垂直D.对任意位置,三对直线“AC与BD”“AB与CD”“AD与BC”均不垂直5.已知α,β是两个不同的平面,m,n是两条不同的直线,给出下列命题:①若m⊥α,m⊂β,则α⊥β;②若m⊥α,n⊂α,m∥β,n∥β,则α∥β;③如果m⊂α,n⊄α,m,n是异面直线,那么n与α相交;④若α∩β=m,n∥m,且n⊄α,n⊄β,则n∥α且n∥β. 其中的真命题是________.(填序号)6.如图,平面α⊥平面β,A∈α,B∈β,AB与两平面α,β所成的角分别为π4和π6,过A,B分别作两平面交线的垂线,垂足为A′,B′,则AB∶A′B′=________.答案精析基础保分练1.A 2.B 3.A 4.D 5.B 6.D 7.B8.C 9.①②④10.②③④能力提升练1.B 2.D3.C [∵AD⊥BC,AD⊥BD,BC∩BD=B,BC,BD⊂平面BDC,∴AD⊥平面BDC,又AD⊂平面ADC,∴平面ADC⊥平面BDC.]4.B [在矩形ABCD中,作AE⊥BD于E,连接CE.在翻折过程中,AE⊥BD,假设存在某个位置使AC⊥BD,则BD⊥平面AEC,则BD⊥CE,由条件知BD与CE不垂直,故A错误;对于C,在翻折过程中,若AD⊥BC,则AD⊥平面ABC,得AD⊥AC,从而△ACD为直角三角形,得∠CAD =90°,而CD<AD,这种情况是不可能的,故C错误;若AB⊥CD,由BC⊥CD,可得CD⊥平面ACB,则CD⊥AC,则AB=CD=1,BC=AD=2,可得AC=1,那么存在AC=1这样的位置,使得AB⊥CD成立,故B正确,D错误.]5.①④解析若m⊥α,m⊂β,由线面垂直的相关性质可得面面垂直,即α⊥β,①正确;若m⊥α,n⊂α,m∥β,n∥β,由线面垂直与线面平行的相关性质可得α⊥β,②错误;如果m⊂α,n⊄α,m,n是异面直线,也可出现n与α平行,③错误;α∩β=m,n∥m,且n⊄α,n⊄β,由线面平行的相关性质可得n∥α且n∥β,④正确.6.2∶1解析 由已知条件可知∠BAB ′=π4,∠ABA ′=π6,设AB =2a ,则BB ′=2a sin π4=2a ,A ′B =2a cos π6=3a ,∴在Rt△BB ′A ′中,得A ′B ′=a , ∴AB ∶A ′B ′=2∶1.向量求解平行和垂直问题[基础保分练]1.已知a =(λ+1,0,2),b =(6,2μ-1,2λ),若a ∥b ,则λ与μ的值可以分别是( ) A .2,12B .-13,12C .-3,2D .2,22.若平面α1,α2垂直,则下列向量可以是这两个平面的法向量的是( ) A .n 1=(1,2,1),n 2=(-3,1,1) B .n 1=(1,1,2),n 2=(-2,1,1) C .n 1=(1,1,1),n 2=(-1,2,1) D .n 1=(1,2,1),n 2=(0,-2,-2)3.如图所示,在平行六面体ABCD -A 1B 1C 1D 1中,AM =12MC ,A 1N =2ND .设AB →=a ,AD →=b ,AA 1→=c ,MN →=x a +y b +z c ,则x +y +z 等于( )A.34B.14C.23D.134.已知空间四边形ABCD 的每条边和对角线的长都等于a ,点E ,F 分别是BC ,AD 的中点,则AE →·AF →的值为( ) A .a 2B.12a 2C.14a 2D.34a 25.已知AB →=(1,5,-2),BC →=(3,1,z ),若AB →⊥BC →,BP →=(x -1,y ,-3),且BP ⊥平面ABC ,则x +y 的值为( ) A.257B.67C.187D.4076.设A ,B ,C ,D 是空间不共面的四点,且满足AB →·AC →=0,AC →·AD →=0,AB →·AD →=0,M 为BC 的中点,则△AMD 是( ) A .钝角三角形 B .锐角三角形 C .直角三角形D .不确定7.已知直线l 的方向向量为a ,平面α的法向量为n ,能使l ∥α的是( ) A .a =(1,0,0),n =(-2,0,0) B .a =(1,3,5),n =(1,0,1) C .a =(0,2,1),n =(-1,0,-1) D .a =(1,-1,3),n =(0,3,1)8.已知a =(-2,1,3),b =(-1,2,1),若a ⊥(a -λb ),则实数λ的值为( ) A .-2B .-143C.145D .29.已知空间三点A (0,2,3),B (-2,1,6),C (1,-1,5).若|a |=3,且a 分别与AB →,AC →垂直,则向量a =________.10.已知平面α和平面β的法向量分别为a =(1,1,2),b =(x ,-2,3),且α⊥β,则x =________.[能力提升练]1.空间内四点A (2,3,6),B (4,3,2),C (0,0,1),D (2,0,2)的位置关系是( ) A .共线 B .共面 C .不共面D .无法确定2.O 为空间内任意一点,若OP →=34OA →+18OB →+18OC →,则A ,B ,C ,P 四点( )A .一定不共面B .一定共面C .不一定共面D .无法判断3.已知A (1,0,0),B (0,1,0),C (0,0,1)三点,向量n =(1,1,1),则以n 为方向向量的直线l 与平面ABC 的关系是( )A .垂直B .不垂直C .平行D .以上都有可能4.设ABCD -A 1B 1C 1D 1是棱长为a 的正方体,则有( ) A.AB →·C 1A —→=a 2 B.AB →·A 1C 1—→=2a 2 C.BC →·A 1D —→=a 2D.AB →·C 1A 1—→=a 25.同时垂直于a =(2,2,1)和b =(4,5,3)的单位向量是____________________________. 6.平面α的一个法向量为n =(0,1,-1),若直线l ⊥平面α,则直线l 的单位方向向量是________.答案精析基础保分练1.A 2.A 3.D 4.C 5.A 6.C 7.D 8.D 9.(1,1,1)或(-1,-1,-1) 10.-4解析 ∵a ·b =x -2+6=0,∴x =-4. 能力提升练 1.C 2.B3.A [易知AB →=(-1,1,0), AC →=(-1,0,1),∴AB →·n =-1×1+1×1+0=0,AC →·n =-1×1+0×1+1×1=0,则AB →⊥n ,AC →⊥n ,即直线AB ⊥l ,直线AC ⊥l ,又AB 与AC 是平面ABC 内两条相交直线, ∴l ⊥平面ABC .]4.C [AB →·C 1A —→=AB →·(C 1C —→+CB →+BA →)=AB →·BA →=-a 2,AB →·A 1C 1—→=AB →·AC →=AB →·(AB →+BC →)=AB →·AB →=a 2,BC →·A 1D —→=BC →·(A 1A —→+AD →)=BC →·BC →=a 2,AB →·C 1A 1—→=-AB →·A 1C 1—→=-a 2, 故选C.]5.⎝ ⎛⎭⎪⎫13,-23,23或⎝ ⎛⎭⎪⎫-13,23,-23解析 设与a =(2,2,1)和b =(4,5,3)同时垂直的单位向量是c =(p ,q ,r ),则⎩⎪⎨⎪⎧p 2+q 2+r 2=1,2p +2q +r =0,4p +5q +3r =0,解得⎩⎪⎨⎪⎧ p =13,q =-23,r =23或⎩⎪⎨⎪⎧p =-13,q =23,r =-23,即同时垂直于a ,b 的单位向量为⎝ ⎛⎭⎪⎫13,-23,23或⎝ ⎛⎭⎪⎫-13,23,-23.6.±⎝ ⎛⎭⎪⎫0,22,-22 解析 直线l 的方向向量平行于平面α的法向量,故直线l 的单位方向向量是±⎝ ⎛⎭⎪⎫0,22,-22.向量法求解空间角和距离问题[基础保分练]1.平行六面体ABCD -A 1B 1C 1D 1中,向量AB →,AD →,AA 1→两两的夹角均为60°,且|AB →|=1,|AD →|=2,|AA 1→|=3,则|AC 1→|等于( ) A .5B .6C .4D .82.在正方体ABCD -A 1B 1C 1D 1中,E 是C 1D 1的中点,则异面直线DE 与AC 所成的角的余弦值为( )A.120B.1010C .-1010D .-1203.在空间直角坐标系O -xyz 中,平面OAB 的一个法向量为n =(2,-2,1),已知点P (-1,3,2),则点P 到平面OAB 的距离d 等于( ) A .4B .2C .3D .14.方向向量为s =(1,1,1)的直线l 经过点A (1,0,0),则坐标原点O (0,0,0)到该直线的距离是( ) A.3B.2C.62D.635.平面α的一个法向量为n =(1,-3,0),则y 轴与平面α所成的角的大小为( ) A.π6B.π3C.π4D.5π66.如图所示,在空间四边形OABC 中,OA =8,AB =6,AC =4,BC =5,∠OAC =45°,∠OAB =60°,则异面直线OA 与BC 的夹角的余弦值为( )A.3-25 B.3+25 C.3-225D.2+257.已知正方体ABCD -A 1B 1C 1D 1的棱长为a ,点M 在AC 1上,且AM →=12MC 1—→,N 为B 1B 的中点,则|MN →|为( ) A.216a B.66a C.156a D.153a 8.P 是二面角α-AB -β棱上的一点,分别在α,β平面上引射线PM ,PN ,如果∠BPM =∠BPN =45°,∠MPN =60°,那么二面角α-AB -β的大小为( ) A .60°B.70°C.80°D.90°9.三棱锥的三条侧棱两两互相垂直,长度分别为6,4,4,则其顶点到底面的距离为________. 10.如图所示,已知空间四边形OABC 中OB =OC ,且∠AOB =∠AOC =π3,则cos 〈OA →,BC →〉的值为________.[能力提升练]1.已知三棱柱ABC -A 1B 1C 1的侧棱长与底面边长都相等,A 1在底面ABC 内的射影为△ABC 的中心,则AB 1与底面ABC 所成角的正弦值等于( ) A.13B.23C.33D.232.已知正四棱锥S -ABCD 的侧棱长与底面边长都相等,E 是SB 的中点,则AE 与SD 所成的角的余弦值为( )A.13B.23C.33D.233.已知空间向量a ,b 满足|a |=|b |=1,且a ,b 的夹角为π3,O 为空间直角坐标系的原点,点A ,B 满足OA →=2a +b ,OB →=3a -b ,则△OAB 的面积为( ) A.523B.543C.743D.1144.过正方形ABCD 的顶点A ,引PA ⊥平面ABCD .若PA =BA ,则平面ABP 和平面CDP 所成二面角的大小是( )A .30°B.45°C.60°D.90°5.已知∠AOB =90°,过O 点引∠AOB 所在平面的斜线OC ,与OA ,OB 分别成45°,60°角,则以OC 为棱的二面角A -OC -B 的余弦值为________.6.如图所示,正三棱柱ABC -A 1B 1C 1的各棱长(包括底面边长)都是2,E ,F 分别是AB ,A 1C 1的中点,则EF 与侧棱C 1C 所成角的余弦值是________.答案精析基础保分练1.A 2.B 3.B 4.D 5.B 6.C7.A [以D 为坐标原点建立如图所示的空间直角坐标系D -xyz ,则A (a,0,0),C 1(0,a ,a ),N ⎝ ⎛⎭⎪⎫a ,a ,a 2.设M (x ,y ,z ),因为点M 在AC 1上,且AM →=12MC 1→,则(x -a ,y ,z )=12(-x ,a -y ,a -z ),得x =23a ,y =a 3,z =a 3,即M ⎝ ⎛⎭⎪⎫2a 3,a 3,a 3,所以|MN →|=⎝ ⎛⎭⎪⎫a -23a 2+⎝ ⎛⎭⎪⎫a -a 32+⎝ ⎛⎭⎪⎫a 2-a 32 =216a ,故选A.] 8.D [不妨设PM =a ,PN =b , 作ME ⊥AB 于E ,NF ⊥AB 于F . ∵∠EPM =∠FPN =45°, ∴PE =22a ,PF =22b , ∴EM →·FN →=(PM →-PE →)·(PN →-PF →) =PM →·PN →-PM →·PF →-PE →·PN →+PE →·PF → =ab cos60°-a ×22b cos45°-22ab cos45°+22a ×22b =ab 2-ab 2-ab 2+ab2=0,∴EM →⊥FN →,∴二面角α-AB -β的大小为90°.] 9.62211解析 设三棱锥为P -ABC ,且PA =6,PB =PC =4,以P 为原点建立空间直角坐标系如图,则P (0,0,0),A (6,0,0),B (0,4,0),C (0,0,4),PA →=(6,0,0),AB →=(-6,4,0),AC →=(-6,0,4),设平面ABC 的一个法向量为n =(x ,y ,z ), 则n ⊥AB →,n ⊥AC →,所以⎩⎪⎨⎪⎧-6x +4y =0,-6x +4z =0,即y =z =32x ,所以可选平面ABC 的一个法向量为n =(2,3,3),所以P 到平面ABC 的距离d =|PA →|·|cos〈PA →,n 〉|=|PA →·n ||n |=124+9+9=62211. 10.0解析 设OA →=a ,OB →=b ,OC →=c , 则|b |=|c |,〈a ,b 〉=〈a ,c 〉=π3,BC →=c -b ,∴OA →·BC →=a ·(c -b )=a ·c -a ·b =|a |·|c |cos π3-|a |·|b |cos π3=0,∴OA →⊥BC →,∴cos〈OA →,BC →〉=0. 能力提升练1.B [设A 1在底面ABC 内的射影为O ,过O 作OH ∥BC 交AB 于点H ,以O 为坐标原点,分别以OA →,OH →,OA 1→的方向为x 轴,y 轴,z 轴的正方向建立空间直角坐标系(图略). 设△ABC 的边长为1,则A ⎝⎛⎭⎪⎫33,0,0, B 1⎝ ⎛⎭⎪⎫-32,12,63, ∴AB 1→=⎝ ⎛⎭⎪⎫-536,12,63,平面ABC 的法向量n =(0,0,1), 则AB 1与底面ABC 所成角α的正弦值sin α=|cos 〈AB 1→,n 〉|=637536+14+69=23.]2.C 3.B [|OA →|=a +b2=4|a |2+|b |2+4a ·b =7, 同理|OB →|=7,则cos∠AOB =OA →·OB→|OA →||OB →|=6|a |2-|b |2+a ·b 7=1114,从而有sin∠AOB =5314,∴△OAB 的面积S =12×7×7×5314=534,故选B.]4.B [建立如图所示的空间直角坐标系,设AB =1,易得平面APB 的一个法向量为n 1=(0,1,0),平面PCD 的一个法向量为n 2=(0,1,1), 故平面ABP 与平面CDP 所成二面角的余弦值为|n 1·n 2||n 1||n 2|=22,故所求二面角的大小是45°.] 5.-33 6.255第56练 立体几何中的易错题1.已知直线a ,b ,m ,其中a ,b 在平面α内.则“m ⊥a ,m ⊥b ”是“m ⊥α”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件2.设l 为直线,α,β是两个不同的平面.下列命题中正确的是( ) A .若l ∥α,l ∥β,则α∥β B .若l ⊥α,l ⊥β,则α∥β C .若l ⊥α,l ∥β,则α∥β D .若α⊥β,l ∥α,则l ⊥β3.(2019·湛江调研)设m ,n 是两条不同的直线,α,β是两个不同的平面,下列命题中正确的是( )A .α∩β=n ,m ⊂α,m ∥β⇒m ∥nB .α⊥β,α∩β=m ,m ⊥n ⇒n ⊥βC.m⊥n,m⊂α,n⊂β⇒α⊥βD.m∥α,n⊂α⇒m∥n4.若点P∈平面α,点Q∈平面α,点R∈平面β,α∩β=m,且R∉m,PQ∩m=M,过P,Q,R三点确定一个平面γ,则β∩γ是( )A.直线QR B.直线PRC.直线RM D.以上均不正确5.(2019·唐山模拟)在长方体ABCD-A1B1C1D1中,AB=BC=2AA1,则异面直线A1B与B1C所成角的余弦值为( )A.105B.15C.55D.1556.若P是两条异面直线l,m外的任意一点,则( )A.过点P有且仅有一条直线与l,m都平行B.过点P有且仅有一条直线与l,m都垂直C.过点P有且仅有一条直线与l,m都相交D.过点P有且仅有一条直线与l,m都异面7.在三棱锥S—ABC中,AB⊥AC,AB=AC=SA,SA⊥平面ABC,D为BC的中点,则异面直线AB与SD所成角的余弦值为( )A.55B.66C.306D.以上结论都不对8.已知三棱锥S-ABC的所有顶点都在球O的球面上,△ABC是边长为1的正三角形,SC为球O的直径,且SC=2,则此棱锥的体积为( )A.26B.36C.23D.229.如图,长方体ABCD-A1B1C1D1的底面是边长为a的正方形,若在侧棱AA1上至少存在一点E,使得∠C1EB=90°,则侧棱AA1的长的最小值为( )A.a B.2aC.3a D.4a10.在三棱锥A -BCD 中,侧棱AB ,AC ,AD 两两垂直,△ABC ,△ACD ,△ADB 的面积分别为22,32,62,则该三棱锥外接球的表面积为( ) A .2πB .6πC .46πD .24π11.已知一所有棱长都是2的三棱锥,则该三棱锥的体积为________.12.已知棱长为1的正方体ABCD -A 1B 1C 1D 1中,M 是棱CC 1的中点,则三棱锥A 1-ABM 的体积为________.第12题图 第13题图13.如图,正方体ABCD -A 1B 1C 1D 1的棱长为a ,点P 是棱AD 上一点,且AP =a3,过B 1,D 1,P的平面交平面ABCD 于PQ ,Q 在直线CD 上,则PQ =________.14.如图,矩形ABCD 中,E 为边AB 的中点,将△ADE 沿直线DE 翻转成△A 1DE .若M 为线段A 1C 的中点,则在△ADE 翻转过程中,正确的命题是________.①MB 是定值; ②点M 在圆上运动;③一定存在某个位置,使DE ⊥A 1C ; ④一定存在某个位置,使MB ∥平面A 1DE .15.在三棱锥P -ABC 中,PB =6,AC =3,G 为△PAC 的重心,过点G 作三棱锥的一个截面,使截面平行于PB 和AC ,则截面的周长为________.16.如图,在棱长为1的正方体ABCD -A 1B 1C 1D 1中,点E ,F 分别是棱BC ,CC 1的中点,P 是侧面BCC 1B 1内一点,若A 1P ∥平面AEF ,则线段A 1P 长度的取值范围是________.答案精析1.B 2.B 3.A 4.C 5.B 6.B7.B [如图,取AC的中点E,连接DE,SE,因为D,E分别为BC,AC的中点,所以DE∥AB,所以∠SDE就是异面直线AB与SD所成的角,令AB=AC=SA=2,由勾股定理得SE=5,又DE=1,很明显BA⊥平面SAC,所以DE⊥平面SAC,所以DE⊥SE,所以SD= 6.在Rt△SDE中,cos∠SDE=DESD =16=66.故选B.]8.A [设E为△ABC的重心,连接OA,OB,OE.∵三棱锥S-ABC内接于球O,∴OB=OC=OA=1.又△ABC为等边三角形,∴OE⊥平面ABC,∴三棱锥的高h=2OE.∵AB=AC=BC=1,E为△ABC的重心,连接CE,∴CE=33,∴OE=OC2-CE2=63,∴h =263,∴V S -ABC =13S △ABC ·h=13×12×1×32×263=26.] 9.B [设AA 1=h ,AE =x ,A 1E =h -x ,x ∈[0,h ],则BE 2=a 2+x 2,C 1E 2=(2a )2+(h -x )2,BC 21=a 2+h 2. 又∠C 1EB =90°, 所以BE 2+C 1E 2=BC 21,即a 2+x 2+(2a )2+(h -x )2=a 2+h 2, 即关于x 的方程x 2-hx +a 2=0,x ∈[0,h ]有解,当x =0时,a 2=0,不合题意,当x >0时,h =a 2x+x ≥2a ,当且仅当x =a 时取等号. 即侧棱AA 1的最小值为2a .]10.B [设两两垂直的三条侧棱分别为a ,b ,c , 可以得到12ab =22,12bc =32,12ac =62, 解得a =2,b =1,c = 3. 所以2R =a 2+b 2+c 2=6, 所以球的表面积为S =4πR 2=6π.] 11.13 12.16 13.22a 3解析 如图,∵平面A 1B 1C 1D 1∥平面ABCD ,而平面B 1D 1P ∩平面ABCD =PQ ,平面B 1D 1P ∩平面A 1B 1C 1D 1 =B 1D 1, ∴B 1D 1∥PQ .又∵B 1D 1∥BD ,∴BD ∥PQ . 设PQ ∩AB =M ,∵AB ∥CD , ∴△APM ∽△DPQ , ∴PQ PM =PD AP=2,即PQ =2PM .又△APM ∽△ADB ,∴PM BD =AP AD =13.∴PM =13BD ,PQ =23BD ,又BD =2a ,∴PQ =223a .14.①②④解析 取DC 中点N ,连接MN ,NB ,则MN ∥A 1D ,NB ∥DE ,所以平面MNB ∥平面A 1DE ,因为MB ⊂平面MNB ,所以MB ∥平面A 1DE ,④正确;∠A 1DE =∠MNB ,MN =12A 1D =定值,NB =DE =定值,根据余弦定理得,MB 2=MN 2+NB 2-2MN ·NB ·cos∠MNB ,所以MB 是定值,①正确;B 是定点,所以M 是在以B 为圆心,MB 为半径的圆上,②正确;当矩形ABCD 满足AC ⊥DE 时存在,其他情况不存在,③不正确.所以①②④正确. 15.8解析 过点G 作EF ∥AC ,分别交PA ,PC 于点E ,F ,过点E 作EN ∥PB 交AB 于点N ,过点F 作FM ∥PB 交BC 于点M ,连接MN ,则四边形EFMN 是平行四边形(平面EFMN 为所求截面),且EF =MN =23AC =2,FM =EN =13PB =2,所以截面的周长为2×4=8.16.⎣⎢⎡⎦⎥⎤324,52解析 取B 1C 1的中点M ,BB 1的中点N ,连接A 1M ,A 1N ,MN ,可以证明平面A 1MN ∥平面AEF ,所以点P 位于线段MN 上,把△A 1MN 置于平面上,则有A 1M =A 1N =1+⎝ ⎛⎭⎪⎫122=52,MN =⎝ ⎛⎭⎪⎫122+⎝ ⎛⎭⎪⎫122=22,所以当点P 位于M ,N 时,A 1P 最大,当P 位于线段MN 的中点O 时,A 1P 最小,此时A 1O =⎝ ⎛⎭⎪⎫522-⎝ ⎛⎭⎪⎫242=324,所以A 1O ≤A 1P ≤A 1M ,即324≤A 1P ≤52,所以线段A 1P 长度的取值范围是⎣⎢⎡⎦⎥⎤324,52.第57练 高考大题突破练—立体几何[基础保分练]1.(2019·四川诊断)如图所示,四棱锥S -ABCD 中,SA ⊥底面ABCD ,∠ABC =90°,SA =2,AB =3,BC =1,AD =23,∠ACD =60°,E 为CD 的中点.(1)求证:BC ∥平面SAE ;(2)求直线SD 与平面SBC 所成角的正弦值.2.(2016·山东)在如图所示的圆台中,AC 是下底面圆O 的直径,EF 是上底面圆O ′的直径,。

2020年高考数学 专题四 立体几何题型分析 理

2020年高考数学 专题四 立体几何题型分析 理

2020专题四:立体几何题型分析考点一三视图、直观图与表面积、体积1.直观图(1)画法:常用斜二测画法.(2)规则:①原图形中x轴、y轴、z轴两两垂直,直观图中,x′轴、y′轴的夹角为45°(或135°),z′轴与x′轴和y′轴所在平面垂直.②原图形中平行于坐标轴的线段,直观图中仍平行于坐标轴.平行于x轴和z轴的线段在直观图中保持原长度不变,平行于y轴的线段长度在直观图中变为原来的一半.按照斜二测画法得到的平面图形的直观图,其面积与原图形的面积有以下关系S直观图=24S原图形,S原图形=22S直观图.2.三视图(1)几何体的三视图包括正(主)视图、侧(左)视图、俯视图,分别是从几何体的正前方、正左方、正上方观察几何体画出的轮廓线.(2)三视图的画法①基本要求:长对正,高平齐,宽相等.②画法规则:正侧一样高,正俯一样长,侧俯一样宽;看不到的线画虚线1.圆柱、圆锥、圆台的侧面展开图及侧面积公式圆柱圆锥圆台侧面展开图侧面积公式S圆柱侧=2πrl S圆锥侧=πrlS圆台侧=π(r+r′)l2名称几何体表面积体积柱体(棱柱和圆柱)S表面积=S侧+2S底V=Sh锥体(棱锥和圆锥)S表面积=S侧+S底V=13Sh台体(棱台和圆台)S表面积=S侧+S上+S下V=13(S上+S下+S上S下)h球S =4πR 2 V =43πR 3例1.等腰梯形ABCD ,上底CD =1,腰AD =CB =2,下底AB =3,以下底所在直线为x 轴,则由斜二测画法画出的直观图A ′B ′C ′D ′的面积为________.例2.(2020·重庆高考)某几何体的三视图如图所示,则该几何体的表面积为( )A .180B .200C .220D .240例3.(1)如图所示,已知三棱柱ABC ­A 1B 1C 1的所有棱长均为1,且AA 1⊥底面ABC ,则三棱锥B 1 ­ABC 1的体积为( )A.312 B.34 C.612D.64(2)(2020·新课标Ⅰ)某几何体的三视图如图所示,则该几何体的体积为( )A .16+8πB .8+8πC .16+16πD .8+16π考点二 球与空间几何体的“切”“接”问题 方法主要是“补体”和“找球心” 方法一:直接法例1、一个长方体的各顶点均在同一球面上,且一个顶点上的三条棱长分别为1,2,3 ,则此球的表面积为 .练习:已知各顶点都在一个球面上的正四棱柱高为4,体积为16,则这个球的表面积为( ) A. 16π B. 20π C. 24π D. 32π 方法二:构造法(构造正方体或长方体)例2(2020年福建高考题)若三棱锥的三条侧棱两两垂直,且侧棱长均为3,则其外接球的表面积是 练习 (2020年全国卷)一个四面体的所有棱长都为2,四个顶点在同一球面上,则此球的表面积为( ) A. 3π B. 4π C. 33π D. 6π 三、确定球心位置法例3、在矩形ABCD 中,AB=4,BC=3,AC 沿将矩形ABCD 折成一个直二面角B-AC-D ,则四面体ABCD 的外接球的体积为( )四、构造直角三角形例4、正四面体的棱长为a ,则其内切球和外接球的半径是多少,体积是多少?练习: 角度一 直三棱柱的外接球1.(2020·辽宁高考)已知直三棱柱ABC ­A 1B 1C 1的6个顶点都在球O 的球面上,若AB =3,AC =4,AB ⊥AC ,AA 1=12,则球O 的半径为( )A.3172 B .210 C.132D .310角度二 正方体的外接球2.(2020·合肥模拟)一个正方体削去一个角所得到的几何体的三视图如图所示 (图中三个四边形都是边长为2的正方形),则该几何体外接球的体积为________. 角度三 正四面体的内切球3.(2020·长春模拟)若一个正四面体的表面积为S 1,其内切球的表面积为S 2,则S 1S 2=________. 角度四 四棱锥的外接球4.四棱锥P ­ABCD 的五个顶点都在一个球面上,该四棱锥的三视图如图所示,E ,F 分别是棱AB ,CD 的中点,直线EF 被球面所截得的线段长为22,则该球的表面积为( ) A .9π B .3π C .22π D .12π考点三 利用空间向量求角和距离 1.两条异面直线所成角的求法π12125.A π9125.B π6125.C π3125.D设两条异面直线a ,b 的方向向量为a ,b ,其夹角为θ,则cos φ=|cos θ|=|a·b||a||b|(其中φ为异面直线a ,b 所成的角).2.直线和平面所成的角的求法如图所示,设直线l 的方向向量为e ,平面α的法向量为n ,直线l 与平面α所成的角为φ,两向量e 与n 的夹角为θ,则有sin φ=|cos θ|=|n·e||n||e|.3.求二面角的大小(1)如图①,AB ,CD 是二面角α ­l ­β的两个面内与棱l 垂直的直线,则二面角的大小θ=〈AB u u u r ,CD u u ur 〉.(2)如图②③,n 1,n 2分别是二面角α ­l ­β的两个半平面α,β的法向量,则二面角的大小θ=〈n 1,n 2〉(或π-〈n 1,n 2〉).4.点到平面的距离的求法设n r 是平面α的法向量,在α内取一点B, 则 A 到α的距离|||||cos |||AB n d AB n θ==u u u r r u u u r g r 易错点:1.求异面直线所成角时,易求出余弦值为负值而盲目得出答案而忽视了夹角为⎝⎛⎦⎥⎤0,π2.2.求直线与平面所成角时,注意求出夹角的余弦值的绝对值应为线面角的正弦值.3.利用平面的法向量求二面角的大小时,二面角是锐角或钝角由图形决定.由图形知二面角是锐角时cosθ=|n 1·n 2||n 1||n 2|;由图形知二面角是钝角时,cos θ=-|n 1·n 2||n 1||n 2|.当图形不能确定时,要根据向量坐标在图形中观察法向量的方向,从而确定二面角与向量n 1,n 2的夹角是相等(一个平面的法向量指向二面角的内部,另一个平面的法向量指向二面角的外部),还是互补(两个法向量同时指向二面角的内部或外部),这是利用向量求二面角的难点、易错点.一、线线角问题1.(2020·沈阳调研)在直三棱柱A 1B 1C 1 ­ABC 中,∠BCA =90°,点D 1,F 1分别是A 1B 1,A 1C 1的中点,BC =CA =CC 1,则BD 1与AF 1所成角的余弦值是( )A.3010 B.12 C.3015D.15102.如图,在棱长为1的正方体ABCD ­A 1B 1C 1D 1中,M 和N 分别是A 1B 1和BB 1的中点,那么直线AM 与CN 所成角的余弦值为________.二、线面角的问题3、(2020·湖南高考)如图,在直棱柱ABCD ­A 1B 1C 1D 1中,AD ∥BC ,∠BAD =90°,AC ⊥BD ,BC =1,AD =AA 1=3.(1)证明:AC ⊥B 1D ;(2)求直线B 1C 1与平面ACD 1所成角的正弦值.[针对训练](2020·福建高考改编)如图,在四棱柱ABCD ­A 1B 1C 1D 1中,侧棱AA 1⊥底面ABCD ,AB ∥DC ,AA 1=1,AB =3k ,AD =4k ,BC =5k ,DC =6k (k >0).若直线AA 1与平面AB 1C 所成角的正弦值为67,求k 的值.三、二面角问题4、(2020·新课标卷Ⅱ)如图,直三棱柱ABC ­A 1B 1C 1中,D ,E 分别是AB ,BB 1的中点,AA 1=AC =CB =22AB . (1)证明:BC 1//平面A 1CD ; (2)求二面角D ­A 1C ­E 的正弦值.[针对训练](2020·杭州模拟)如图,已知平面QBC 与直线PA 均垂直于Rt△ABC 所在平面, 且PA =AB =AC .(1)求证:PA ∥平面QBC ;(2)若PQ ⊥平面QBC ,求二面角Q ­PB ­A 的余弦值.四、 利用空间向量解决探索性问题.(2020·江西模拟)如图,四边形ABCD 是边长为3的正方形,DE ⊥平面ABCD ,AF ∥DE ,DE =3AF ,BE 与平面ABCD 所成的角为60°.(1)求证:AC ⊥平面BDE ; (2)求二面角F ­BE ­D 的余弦值;(3)设点M 是线段BD 上一个动点,试确定点M 的位置,使得AM ∥平面BEF ,并证明你的结论.[针对训练]已知正方体ABCD ­A 1B 1C 1D 1的棱长为1,点P 在线段BD 1上.当∠APC 最大时,三棱锥P ­ABC 的体积为________.五、近三年新课标高考试题立体几何(三视图1小+1小1大:(1)三视图(2)线面关系(3)与球有关的组合体(4)证明、求体积与表面积(注意规范性),作辅助线的思路(5)探索性问题的思考方法)(11)(6)在一个几何体的三视图中,正视图和俯视图如右图所示,则相应的侧视图可以为(15)已知矩形ABCD 的顶点都在半径为4的球O 的球面上,且6,23AB BC ==,则棱锥O ABCD -的体积为(18)(本小题满分12分)如图,四棱锥P-ABCD 中,底面ABCD 为平行四 边形,∠DAB=60°,AB=2AD ,PD ⊥底面ABCD . (Ⅰ)证明:PA ⊥BD ;(Ⅱ)若PD =AD ,求二面角A-PB-C 的余弦值。

2020年高考理科数学《立体几何》题型归纳与训练及答案解析

2020年高考理科数学《立体几何》题型归纳与训练及答案解析

12020年高考理科数学《立体几何》题型归纳与训练【题型归纳】题型一线面平行的证明1例1如图,高为1的等腰梯形 ABCD 中,AM = CD = 3AB = 1•现将△AMD 沿MD 折起,使平面 AMD 丄 平面 MBCD ,连接 AB , AC.试判断:在AB 边上是否存在点【解析】线面平行,可以线线平行或者面面平行推出。

此类题的难点就是如何构造辅助线。

构造完辅助线,证明过程只须注意规范的符号语言描述即可。

本题用到的是线线平行推出面面平行。

【易错点】不能正确地分析DN 与BN 的比例关系,导致结果错误。

【思维点拨】此类题有两大类方法: 1.构造线线平行,然后推出线面平行。

此类方法的辅助线的构造须要学生理解线面平行的判定定理与线面平行的性质之间的矛盾转化关系。

在此,我们需要借助倒推法进行分析。

首先,此类型题目大部分为证明题,结论必定是正确的,我们以此 为前提可以得到线面平行。

再次由线面平行的性质可知,过已知直线的平面与已知平面的交线必定平行于该直线,而交线就是我们要找的线,从而做出辅助线。

从这个角度上看我们可以看出线线平行推线面 平行的本质就是过已知直线做一个平面与已知平面相交即可。

如本题中即是过AD 做了一个平面ADB与平面MPC 相交于线PN 。

最后我们只须严格使用正确的符号语言将证明过程反向写一遍即可。

即先证1【答案】当AP = 3AB 时,有AD //平面MPC. 理由如下:连接BD 交MC 于点N ,连接NP.在梯形 MBCD 中,DC // MB ,DN NB DC MB 12,Ap 1在△ADB 中,pp 二」AD 〃 PN . •/ AD?平面 MPC , PN?平面 MPC , ••• AD //平面 MPC.P ,使AD //平面 MPC?并说明理由AD平行于PN,最后得到结论。

构造交线的方法我们可总结为如下三个图形。

PP上一方法二方法三2.构造面面平行,然后推出线面平行。

高考数学复习总结专题05 立体几何(选择题、填空题) (解析版)

高考数学复习总结专题05 立体几何(选择题、填空题) (解析版)

立体几何(选择题、填空题)1.【2020年高考全国Ⅰ卷理数】埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥,以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为()515 1 5 1 5 1A. B. C. D.4 2 4 2【答案】C【解析】【分析】1设C D a,PE b,利用P O2 CD PE 得到关于a,b的方程,解方程即可得到答案.22a【详解】如图,设C D a,PE b,则P O PE 2 2 2 ,OE b41 a2 1 b b由题意P O2 ab,即b 2 ab,化简得4() 2 210,2 4 2 a ab1 5解得(负值舍去).a 4故选:C.【点晴】本题主要考查正四棱锥的概念及其有关计算,考查学生的数学计算能力,是一道容易题.2.【2020年高考全国I I卷理数】如图是一个多面体的三视图,这个多面体某条棱的一个端点在正视图中对应的点为M ,在俯视图中对应的点为N ,则该端点在侧视图中对应的点为()A. EB. FC.GD.H【答案】A【解析】【分析】根据三视图,画出多面体立体图形,即可求得M 点在侧视图中对应的点.【详解】根据三视图,画出多面体立体图形,D D B C上的点在俯视图中对应的点为N,3 4上的点在正视图中都对应点M,直线1 4∴在正视图中对应M ,在俯视图中对应N 的点是D4,线段D D,上的所有点在侧试图中都对应E ,∴点3 4D4在侧视图中对应的点为E .故选:A【点睛】本题主要考查了根据三视图判断点的位置,解题关键是掌握三视图的基础知识和根据三视图能还原立体图形的方法,考查了分析能力和空间想象,属于基础题.A, B,C 为球O 的球面上的三个点,⊙O为 A B C的外接圆,若⊙O3. 【2020 年高考全国Ⅰ卷理数】已知11的面积为 4π , AB BC AC OO ,则球O的表面积为()1A. 64πB. 48πC. 36πD. 32π【答案】A 【解析】 【分析】由已知可得等边 AB C 的外接圆半径,进而求出其边长,得出O O的值,根据球的截面性质,求出球的半 1径,即可得出结论. 【详解】设圆O半径为 ,球的半径为 R ,依题意, r 14,r 2 , A B C为等边三角形,得r2由正弦定理可得 AB 2rsin 60 2 3 ,O O AB 2 3 ,根据球的截面性质O O 平面 ABC , 11 O O O A ,R OA O O2 O A 2 OO 1 2 r 4 , 21 1 1 1 O 球2 的表面积 S 4R 64 .故选:A【点睛】本题考查球的表面积,应用球的截面性质是解题的关键,考查计算求解能力,属于基础题. 4. 【2020 年高考全国Ⅲ理数】下图为某几何体的三视图,则该几何体的的表面积是( )A.6+4 2B.4+4 2C.6+2 3D.4+2 3【答案】C【解析】【分析】根据三视图特征,在正方体中截取出符合题意的立体图形,求出每个面的面积,即可求得其表面积.【详解】根据三视图特征,在正方体中截取出符合题意的立体图形1根据立体图形可得:S△ABC S△AD C S△C DB 22 22根据勾股定理可得:AB A D DB 2 2△A DB是边长为22的等边三角形根据三角形面积公式可得:1 1 3S △A D B AB AD s in60(22) 2 2 32 2 2该几何体的表面积是:3223623.故选:C.【点睛】本题主要考查了根据三视图求立体图形的表面积问题,解题关键是掌握根据三视图画出立体图形,考查了分析能力和空间想象能力,属于基础题. 5. 【2020 年高考全国 I I 卷理数】已知△ABC 是面积为若球 O 的表面积为 16π,则 O 到平面 ABC 的距离为( 3 9 34的等边三角形,且其顶点都在球 O 的球面上. )3 A. 3 B.C. 1D.22【答案】C 【解析】 【分析】根据球O 的表面积和 ABC 的面积可求得球O 的半径 R 和 AB C 外接圆半径 ,由球的性质可知所求距r 离 2 2 .d R r 【详解】设球O 的半径为 R ,则 4 R 16 ,解得: R 2 . 2 设 AB C 外接圆半径为 ,边长为 a,r 9 3ABC是面积为 的等边三角形, 41 3 9 32 a 22 9 a 2 ,解得: a 3,r a 2 93 , 2 24 3 4 3 4球心 O 到平面 ABC 2 2 的距离d R r 43 1.故选:C.【点睛】本题考查球的相关问题的求解,涉及到球的表面积公式和三角形面积公式的应用;解题关键是明 确球的性质,即球心和三角形外接圆圆心的连线必垂直于三角形所在平面.6. 【2019 年高考全国Ⅰ卷理数】已知三棱锥 P −AB C 的四个顶点在球 O 的球面上,PA=PB=P C ,△ABC 是边 长为 2 的正三角形,E ,F 分别是 PA ,AB 的中点,∠CEF =90°,则球 O 的体积为A .8 6B . 4 6 D . 6C . 2 6 【答案】D【解析】解法一: PA P B PC, ABC 为边长为 2 的等边三角形,P ABC为正三棱锥,△ PB AC ,又 E , F 分别为 PA , AB 的中点,EF ∥PB ,EF AC ,又 EF CE ,C E AC C,EF 平面 PAC ,∴ PB 平面 PAC ,APB PA PB PC 2 ,P ABC 为正方体的一部分, 2R 2 2 2 6 ,即6 4 4 6 68 R, V R 3 π 6,故选 D . P A, AB 2 3 3解法二:设 PA PB PC 2x ,E, F 分别为 的中点, 1EF ∥PB ,且 EF PB x ,△ABC 为边长为 2 的等边三角形,C F 3 ,21 又 CEF 90,CE 3 x 2, AE PA x , 2 x 243 x 22 x2△AEC 中,由余弦定理可得 cos EAC作 PD AC 于 D ,,A D 1 x 2 4 3 x 4x 21PA PC \ D AC cos EAC , , 为 的中点, ,PA 2x 2x1 2 2x 2 1 2,x 2,x ,PA PB PC 2 ,2 2又 AB=B C=A C=2 , PA , PB , PC 两两垂直,6 2R 2 2 2 6 ,R,24 4 6 68 V R 3 6 ,故选 D. 3 3【名师点睛】本题主要考查学生的空间想象能力,补体法解决外接球问题.可通过线面垂直定理,得到 三棱两两互相垂直关系,快速得到侧棱长,进而补体成正方体解决.7. 【2019 年高考全国Ⅱ卷理数】设α,β为两个平面,则α∥β的充要条件是 A .α内有无数条直线与β平行 C .α,β平行于同一条直线 【答案】BB .α内有两条相交直线与β平行 D .α,β垂直于同一平面【解析】由面面平行的判定定理知: 内两条相交直线都与 平行是∥的充分条件,由面面平行性质定理知,若∥,则必要条件,故选 B .内任意一条直线都与 平行,所以平行是∥内两条相交直线都与的【名师点睛】本题考查了空间两个平面的判定与性质及充要条件,渗透直观想象、逻辑推理素养,利用 面面平行的判定定理与性质定理即可作出判断.面面平行的判定问题要紧扣面面平行判定定理,最容易 犯的错误为定理记不住,凭主观臆断,如:“若 a ,b ,a b ,则 ∥ ∥”此类的错误.8. 【2019 年高考全国Ⅲ卷理数】如图,点 N 为正方形 AB C D 的中心,△EC D 为正三角形,平面 EC D ⊥平 面 ABC D ,M 是线段 E D 的中点,则A .B M =E N ,且直线 B M ,EN 是相交直线 B .B M ≠EN ,且直线 B M ,E N 是相交直线C .B M =E N ,且直线 B M ,E N 是异面直线D .B M ≠EN ,且直线 B M ,EN 是异面直线 【答案】B【解析】如图所示,作 EO C D 于O ,连接O N ,B D ,易得直线 B M ,E N 是三角形 EB D 的中线,是 相交直线.过 M 作 MF OD 于 F ,连接 BF ,AB C D ,E O C D, E O 平面C DE ,EO平面C D E 平面 平面 ABC D , M F 平面 AB C D ,△MFB 与△EO N 均为直角三角 形 . 设 正 方 形 边 长 为 2 , 易 知 E O 3,ON 1,EN 2 ,3 5M F,BF ,BM 7 ,B M EN ,故选 B .2 2【名师点睛】本题考查空间想象能力和计算能力,解答本题的关键是构造直角三角形.解答本题时,先利 用垂直关系,再结合勾股定理进而解决问题.9. 【2018 年高考全国Ⅰ卷理数】某圆柱的高为 2,底面周长为 16,其三视图如图.圆柱表面上的点 M 在正 视图上的对应点为 A ,圆柱表面上的点 N 在左视图上的对应点为 B ,则在此圆柱侧面上,从 M 到 N 的路径中,最短路径的长度为A . 2 17B . 2 5 D .2C .3 【答案】B【解析】根据圆柱的三视图以及其本身的特征,知点 M 在上底面上,点 N 在下底面上,且可以确定点 M 和点 N 分别在以圆柱的高为长方形的宽,圆柱底面圆周长的四分之一为长的长方形的对角线的端点处, 所以所求的最短路径的长度为 ,故选 B .【名师点睛】该题考查的是有关几何体的表面上两点之间的最短距离的求解问题,在解题的过程中,需 要明确两个点在几何体上所处的位置,再利用平面上两点间直线段最短,所以处理方法就是将面切开平 铺,利用平面图形的相关特征求得结果.10. 【2018 年高考全国Ⅰ卷理数】已知正方体的棱长为 1,每条棱所在直线与平面所成的角都相等,则截此正方体所得截面面积的最大值为3 342 3 3 A .C .B .D .3 2 43 2【答案】A【解析】根据相互平行的直线与平面所成的角是相等的,AB C D A B C D 中,1所以在正方体 1 1 1AB D AA , A B , A D 所成的角是相等的,11 11 1平面 与线 1 1AB D 所以平面 与正方体的每条棱所在的直线所成角都是相等的,11 C BD 1同理,平面 也满足与正方体的每条棱所在的直线所成角都是相等的,AB D C BD要求截面面积最大,则截面的位置为夹在两个面与1中间,且过棱的中点的正六边形,且1 12边长为,223 2 3 34所以其面积为S 6,故选A.4 2【名师点睛】该题考查的是有关平面被正方体所截得的截面多边形的面积问题,首要任务是需要先确定截面的位置,之后需要从题的条件中找寻相关的字眼,从而得到其为过六条棱的中点的正六边形,利用六边形的面积的求法,应用相关的公式求得结果.即首先利用正方体的棱是3组每组有互相平行的4条棱,所以与12条棱所成角相等,只需与从同一个顶点出发的三条棱所成角相等即可,从而判断出面的位置,截正方体所得的截面为一个正六边形,且边长是面的对角线的一半,应用面积公式求得结果.11.【2018年高考全国Ⅲ卷理数】中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是【答案】A【解析】本题主要考查空间几何体的三视图.由题意知,俯视图中应有一不可见的长方形,且俯视图应为对称图形.故选A.12.【2018年高考全国Ⅲ卷理数】设A ,,,是同一个半径为的球的球面上四点,△A B C 为等边三B C D 4角形且其面积为A.12 3,则三棱锥D ABC 体积的最大值为9 3B.18 3D.54 3C.24 3【答案】B【解析】如图所示,设点 M 为三角形 ABC 的重心,E 为 AC 中点,当点 D 在平面 ABC 上的射影为 M 时,三棱锥 D ABC 的体积最大,此时,O D OB R 4,3 S △AB CAB 9 3 ,AB 6 ,点 M 为三角形 ABC 的重心,2 4 2B M BE 2 3 ,3 Rt △OB M 中,有O M OB 2 2 2,D M O D O M 4 2 6,B M1V DABCm ax9 36 18 3 ,故选 B. 3【名师点睛】本题主要考查三棱锥的外接球,考查了勾股定理,三角形的面积公式和三棱锥的体积公 式,判断出当点 D 在平面 ABC 上的射影为三角形 AB C 的重心时,三棱锥 DABC 体积最大很关键,2由 M 为三角形 ABC 的重心,计算得到 B M BE 2 3 ,再由勾股定理得到 O M ,进而得到结果, 3属于较难题型.13. 【2018 年高考全国Ⅱ卷理数】在长方体 AB C D A B C D 中,AB BC 1,AA 3 ,则异面直线 A D 与 1 1 1 1 11 D B 所成角的余弦值为1 1 A .5 5 B . D .6 5 2 C .52【答案】C【解析】方法一:用一个与原长方体相同的长方体拼到原长方体的前面,B P ∥A D D B DP= 5B P 2,,则11如图,则 1,连接 DP ,易求得 1 DB P A D DB与所成的角,11是异面直线1 D B2 1 B P 2 DP 25 4 5 5 由余弦定理可得cos DB P 1. 12DB PB 4 5 5 1 1故选 C.方法二:以 D 为坐标原点,DA,D C,D D 所在直线分别为 x ,y ,z 轴建立空间直角坐标系, 1D 0, 0, 0, A 1, 0, 0,B 1, 1, 3,D 0, 0, 3A D1, 0, 3 ,DB 1, 1, 3 ,则 ,所以 1 1 1 1cos AD , DB A D DB A D DB 1 3 2 5 5 1 1因为 , 1 15 1 15 A D DB 所以异面直线 与 所成角的余弦值为 1,故选 C. 15【名师点睛】先建立空间直角坐标系,设立各点坐标,利用向量数量积求向量夹角,再根据向量夹角 与线线角相等或互补关系求结果.利用法向量求解空间线面角的关键在于“四破”:第一,破“建系关”, 构建恰当的空间直角坐标系;第二,破“求坐标关”,准确求解相关点的坐标;第三,破“求法向量关”, 求出直线的方向向量或平面的法向量;第四,破“应用公式关”. ABC A B C 中, ABC 120 BC CC 1,AB 2 ,,113. 【2017 年高考全国Ⅱ卷理数】已知直三棱柱1 1 1 AB BC 所成角的余弦值为1则异面直线 与 13 15 5 A .B .D .2 103 C . 53【答案】CAB C D A B C D ,1【解析】如图所示,补成直四棱柱 1 1 1则所求角为 BC D,BC 2, BD 2 21 221cos 60 3,C D AB 5 ,11 1 1 BC12 5105 易得 C D 12 BD 2BC 12 ,因此cos BC D,故选 C . 1C D1【名师点睛】平移法是求异面直线所成角的常用方法,其基本思路是通过平移直线,把异面问题化归为 共面问题来解决,具体步骤如下:①平移:平移异面直线中的一条或两条,作出异面直线所成的角; ②认定:证明作出的角就是所求异面直线所成的角; ③计算:求该角的值,常利用解三角形;④取舍:由异面直线所成的角的取值范围是(0,],当所作的角为钝角时,应取它的补角作为两条异面2直线所成的角.求异面直线所成的角要特别注意异面直线之间所成角的范围.14.【2017年高考全国Ⅰ卷理数】某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形.该多面体的各个面中有若干个是梯形,这些梯形的面积之和为A.10 B.12D.16C.14【答案】B【解析】由题意该几何体的直观图是由一个三棱锥和三棱柱构成,如下图,则该几何体各面内只有两个相同的梯形,则这些梯形的面积之和为12(24)212,故选.B2【名师点睛】三视图往往与几何体的体积、表面积以及空间线面关系、角、距离等问题相结合,解决此类问题的关键是由三视图准确确定空间几何体的形状及其结构特征并且熟悉常见几何体的三视图.15.【2017年高考全国Ⅱ卷理数】如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为A.90 C.42B.63 D.36【答案】B【解析】由题意,该几何体是一个组合体,下半部分是一个底面半径为3,高为4的圆柱,其体积V 32 436,上半部分是一个底面半径为,高为的圆柱的一半,其体积3 611 V (3 26) 27,故该组合体的体积V V V36 27 63.21 2 2故选 B .【名师点睛】在由三视图还原为空间几何体的实际形状时,要从三个视图综合考虑,根据三视图的规 则,空间几何体的可见轮廓线在三视图中为实线,不可见轮廓线在三视图中为虚线.在还原空间几何 体实际形状时,一般是以正视图和俯视图为主,结合侧视图进行综合考虑.求解以三视图为载体的空 间几何体的体积的关键是由三视图确定直观图的形状以及直观图中线面的位置关系和数量关系,利用 相应体积公式求解.16. 【2017 年高考全国Ⅲ卷理数】已知圆柱的高为 1,它的两个底面的圆周在直径为 2 的同一个球的球面上,则该圆柱的体积为3π π A .C .B .D .4 π π24【答案】B【解析】绘制圆柱的轴截面如图所示:21 1 3 由题意可得: AC 1, AB ,结合勾股定理,底面半径 r 1 2,2 2 223 3由圆柱的体积公式,可得圆柱的体积是V πr 2h π 1 π ,故选 B.2 4【名师点睛】(1)求解空间几何体体积的关键是确定几何体的元素以及线面的位置关系和数量关系, 利用相应体积公式求解;(2)若所给几何体的体积不能直接利用公式得出,则常用等积法、分割法、 补形法等方法进行求解.17. 【2020 年高考全国 I I 卷理数】设有下列四个命题: p :两两相交且不过同一点的三条直线必在同一平面内.1p :过空间中任意三点有且仅有一个平面.2p :若空间两条直线不相交,则这两条直线平行.3p :若直线 l 平面α,直线 m ⊥平面α,则 m ⊥l . 4则下述命题中所有真命题的序号是__________.p p p p p ppp③④122334① ② 1 4【答案】①③④【解析】【分析】p p2利用两交线直线确定一个平面可判断命题的真假;利用三点共线可判断命题的真假;利用异面直线可1p p4判断命题的真假,利用线面垂直的定义可判断命题的真假.再利用复合命题的真假可得出结论.3p1l1l2【详解】对于命题,可设与相交,这两条直线确定的平面为;l l若与相交,则交点A 在平面内,3 1l l同理,与的交点B 也在平面内,3 2所以,AB ,即l3,命题为真命题;p1p2对于命题,若三点共线,则过这三个点的平面有无数个,p命题为假命题;2p对于命题,空间中两条直线相交、平行或异面,3p命题为假命题;3p4,若直线m 平面,对于命题m 垂直于平面则内所有直线,直线l 平面,直线m 直线,lp命题为真命题.4综上可知,,为真命题,,为假命题,p p p p为假命题,1 2为真命题,1 4p p p p为真命题.3 4为真命题,2 3故答案为:①③④.【点睛】本题考查复合命题的真假,同时也考查了空间中线面关系有关命题真假的判断,考查推理能力, 属于中等题.18. 【2020 年高考全国Ⅲ理数】已知圆锥的底面半径为 1,母线长为 3,则该圆锥内半径最大的球的体积为_________. 2 【答案】 3【解析】 【分析】将原问题转化为求解圆锥内切球的问题,然后结合截面确定其半径即可确定体积的值. 【详解】易知半径最大球为圆锥的内切球,球与圆锥内切时的轴截面如图所示,B C 2, AB AC 3 其中 ,且点 M 为 BC 边上的中点,设内切圆的圆心为O ,1由于A M 3 2 1 22 2 ,故 S △ABC2 2 2 2 2 , 2r设内切圆半径为 ,则:1 1 1 S △AB C S △A O B S △BO C S △A O C AB r BC r AC r2 2 21 3 3 2r2 2 ,22 4 2解得: r =,其体积:V r 3 . 2 3 32故答案为:. 3【点睛】与球有关的组合体问题,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的 位置,确定有关元素间的数量关系,并作出合适的截面图,如球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径;球外接于正方体,正方体的顶点均在球面上,正方体的体对角线长等于 球的直径.19. 【2019 年高考全国Ⅲ卷理数】学生到工厂劳动实践,利用 3D 打印技术制作模型.如图,该模型为长方体AB C D A B C D 挖去四棱锥 O —EF G H 后所得的几何体,其中 O 为长方体的中心,E ,F ,G ,H 分11 1 1AB = BC = 6 cm, AA = 4 cm 别为所在棱的中点, ,3D 打印所用原料密度为 0.9 g/cm 3,不考虑打印 1损耗,制作该模型所需原料的质量为___________g .【答案】118.81【解析】由题意得, S 46 4 23 12cm 2 ,四边形EF G H2 1∵四棱锥 O −EF G H 的高为 3cm , ∴V O EF G H 123 12cm 3 .3AB C D A B C D V 466 144cm,3又长方体 的体积为 1 1 1 1 2 所以该模型体积为 VV V144 12 132cm 3 ,其质量为 0.9132 118.8g .OEF G H2 【名师点睛】本题考查几何体的体积问题,理解题中信息联系几何体的体积和质量关系,从而利用公式 求解.根据题意可知模型的体积为长方体体积与四棱锥体积之差进而求得模型的体积,再求出模型的质 量即可.20. 【2019 年高考全国Ⅱ卷理数】中国有悠久的金石文化,印信是金石文化的代表之一.印信的形状多为长方体、正方体或圆柱体,但南北朝时期的官员独孤信的印信形状是“半正多面体”(图 1).半正多面体是 由两种或两种以上的正多边形围成的多面体.半正多面体体现了数学的对称美.图 2 是一个棱数为 48 的半正多面体,它的所有顶点都在同一个正方体的表面上,且此正方体的棱长为 1.则该半正多面体共 有________个面,其棱长为_________.(本题第一空 2 分,第二空 3 分.)【答案】26,21【解析】由图可知第一层(包括上底面)与第三层(包括下底面)各有9个面,计18个面,第二层共有8个面,所以该半正多面体共有18826个面.x如图,设该半正多面体的棱长为,则AB BE x,延长CB与FE 的延长线交于点G,延长BC交正方体的棱于H ,由半正多面体对称性可知,△BG E 为等腰直角三角形,2 2BG GE C H x,G H 2x x(21)x1,2 21x21,21即该半正多面体的棱长为21.【名师点睛】本题立意新颖,空间想象能力要求高,物体位置还原是关键,遇到新题别慌乱,题目其实很简单,稳中求胜是关键.立体几何平面化,无论多难都不怕,强大空间想象能力,快速还原图形.721.【2018年高考全国I I卷理数】已知圆锥的顶点为S,母线SA,SB 所成角的余弦值为,SA与圆锥8 底面所成角为45°,若△SAB 的面积为515,则该圆锥的侧面积为__________.【答案】402π7 15 8【解析】因为母线 SA , SB 所成角的余弦值为 ,所以母线 SA , SB 所成角的正弦值为,因为 81 15 8 △SAB 的面积为5 15 ,设母线长为l ,所以l 2 25 15 ,l80 , 2π 2因为 SA 与圆锥底面所成角为 45°,所以底面半径为 r l cosl , 4 22 因此圆锥的侧面积为 πr lπl 40 2π. 22【名师点睛】本题考查线面角、圆锥的侧面积、三角形面积等知识点,考查学生空间想象与运算能力. 先根据三角形面积公式求出母线长,再根据母线与底面所成角得底面半径,最后根据圆锥侧面积公式 求结果.22. 【2017 年高考全国 I 卷理数】如图,圆形纸片的圆心为 O ,半径为 5 c m ,该纸片上的等边三角形 ABC 的中心为 O.D ,E ,F 为圆 O 上的点,△DB C ,△ECA ,△FA B 分 别是以 BC ,CA ,AB 为底边的等腰三角形.沿虚线剪开后,分别以 BC ,CA ,AB 为折 痕折起△DB C ,△ECA ,△FAB ,使得 D ,E ,F 重合,得到三棱锥.当△ABC 的边长变 化时,所得三棱锥体积(单位:cm 3)的最大值为 【答案】 4 15.【解析】如下图,连接 DO 交 BC 于点 G ,设 D ,E ,F 重合于 S 点,正三角形的边长为 x(x>0),则 1 3 3O G x x. 3 2 63FG SG 5x , 6223 3x3x, SO h SG2GO2 5 x 556 631 1 3 3 15 3 三棱锥的体积V S △ABC h x2 5 5 x 4 x 5 . 5x3 34 3 1233 5 3 设 n x 5x 4x 5 ,x>0,则 n x 20x 3 x 4, 3 3x 4 n x 0 ,即 4x 30,得 ,易知 n x 在 令 处取得最大值. x 4 3x 4 3 3 15∴V max 48 5 4 4 15 .12【名师点睛】对于三棱锥最值问题,需要用到函数思想进行解决,本题解决的关键是设好未知量,利用图形特征表示出三棱锥体积.当体积中的变量最高次是2次时可以利用二次函数的性质进行解决,当变量是高次时需要用到求导的方式进行解决.。

2020年高考数学试题分项版—立体几何(解析版)

2020年高考数学试题分项版—立体几何(解析版)

2020年高考数学试题分项版——立体几何(解析版)一、选择题1.(2020·全国Ⅰ理,3)埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥.以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为( )A.5-14 B.5-12 C.5+14 D.5+12答案 C解析 设正四棱锥的底面正方形的边长为a ,高为h , 侧面三角形底边上的高(斜高)为h ′, 则由已知得h 2=12ah ′.如图,设O 为正四棱锥S -ABCD 底面的中心,E 为BC 的中点,则在Rt △SOE 中,h ′2=h 2+⎝⎛⎭⎫a 22, ∴h ′2=12ah ′+14a 2,∴⎝⎛⎭⎫h ′a 2-12·h ′a -14=0,解得h ′a =5+14(负值舍去).2.(2020·全国Ⅰ理,10)已知A ,B ,C 为球O 的球面上的三个点,⊙O 1为△ABC 的外接圆,若⊙O 1的面积为4π,AB =BC =AC =OO 1,则球O 的表面积为( ) A .64π B .48π C .36π D .32π 答案 A解析 如图,设圆O 1的半径为r ,球的半径为R ,正三角形ABC 的边长为a .由πr 2=4π,得r =2, 则33a =2,a =23,OO 1=a =2 3. 在Rt △OO 1A 中,由勾股定理得R 2=r 2+OO 21=22+(23)2=16,所以S 球=4πR 2=4π×16=64π.3.(2020·全国Ⅱ理,7)如图是一个多面体的三视图,这个多面体某条棱的一个端点在正视图中对应的点为M ,在俯视图中对应的点为N ,则该端点在侧视图中对应的点为( )A .EB .FC .GD .H 答案 A解析 由三视图还原几何体,如图所示,由图可知,所求端点在侧视图中对应的点为E .4.(2020·全国Ⅱ理,10)已知△ABC 是面积为934的等边三角形,且其顶点都在球O 的球面上.若球O 的表面积为16π,则O 到平面ABC 的距离为( ) A. 3 B.32 C .1 D.32答案 C 解析如图所示,过球心O 作OO 1⊥平面ABC ,则O 1为等边三角形ABC 的外心.设△ABC 的边长为a , 则34a 2=934,解得a =3, ∴O 1A =23×32×3= 3.设球O 的半径为r ,则由4πr 2=16π,得r =2,即OA =2. 在Rt △OO 1A 中,OO 1=OA 2-O 1A 2=1, 即O 到平面ABC 的距离为1.5.(2020·全国Ⅲ理,8)下图为某几何体的三视图,则该几何体的表面积是( )A .6+4 2B .4+4 2C .6+2 3D .4+2 3答案 C解析 如图,该几何体为三棱锥,且其中有三个面是腰长为2的等腰直角三角形,第四个面是边长为22的等边三角形,所以该几何体的表面积为3×12×2×2+12×22×22×32=6+2 3.6.(2020·新高考全国Ⅰ,4)日晷是中国古代用来测定时间的仪器,利用与晷面垂直的晷针投射到晷面的影子来测定时间.把地球看成一个球(球心记为O ),地球上一点A 的纬度是指OA 与地球赤道所在平面所成角,点A 处的水平面是指过点A 且与OA 垂直的平面.在点A 处放置一个日晷,若晷面与赤道所在平面平行,点A 处的纬度为北纬40°,则晷针与点A 处的水平面所成角为( )A .20°B .40°C .50°D .90° 答案 B解析 如图所示,⊙O 为赤道平面,⊙O 1为A 点处的日晷面所在的平面,由点A处的纬度为北纬40°可知∠OAO1=40°,又点A处的水平面与OA垂直,晷针AC与⊙O1所在的面垂直,则晷针AC与水平面所成角为40°.7.(2020·新高考全国Ⅱ,4)日晷是中国古代用来测定时间的仪器,利用与晷面垂直的晷针投射到晷面的影子来测定时间.把地球看成一个球(球心记为O),地球上一点A的纬度是指OA与地球赤道所在平面所成角,点A处的水平面是指过点A且与OA垂直的平面.在点A 处放置一个日晷,若晷面与赤道所在平面平行,点A处的纬度为北纬40°,则晷针与点A处的水平面所成角为()A.20°B.40°C.50°D.90°答案 B解析如图所示,⊙O为赤道平面,⊙O1为A点处的日晷面所在的平面,由点A处的纬度为北纬40°可知∠OAO1=40°,又点A处的水平面与OA垂直,晷针AC与⊙O1所在的面垂直,则晷针AC与水平面所成角为40°.8.(2020·北京,4)某三棱柱的底面为正三角形,其三视图如图所示,该三棱柱的表面积为()A.6+ 3 B.6+2 3 C.12+ 3 D.12+2 3答案 D解析 由三视图还原几何体,该几何体为底面是边长为2的正三角形,高为2的直三棱柱, S 底=2×34×22=2 3. S 侧=3×2×2=12,则三棱柱的表面积为23+12.9.(2020·北京,10)2020年3月14日是全球首个国际圆周率日(π Day).历史上,求圆周率π的方法有多种,与中国传统数学中的“割圆术”相似.数学家阿尔·卡西的方法是:当正整数n 充分大时,计算单位圆的内接正6n 边形的周长和外切正6n 边形(各边均与圆相切的正6n 边形)的周长,将它们的算术平均数作为2π的近似值.按照阿尔·卡西的方法,π的近似值的表达式是( ) A .3n ⎝⎛⎭⎫sin 30°n +tan 30°n B .6n ⎝⎛⎭⎫sin 30°n +tan 30°n C .3n ⎝⎛⎭⎫sin 60°n +tan 60°n D .6n ⎝⎛⎭⎫sin 60°n+tan 60°n 答案 A解析 设内接正6n 边形的周长为C 1,外切正6n 边形的周长为C 2,如图(1)所示,sin 360°12n =BC 1, ∴BC =sin 30°n,∴AB =2sin 30°n ,C 1=12n sin 30°n.如图(2)所示,tan 360°12n =B ′C ′1,∴B ′C ′=tan 30°n,∴A ′B ′=2tan 30°n ,C 2=12n tan 30°n .∴2π=C 1+C 22=6n ⎝⎛⎭⎫sin 30°n +tan 30°n , ∴π=3n ⎝⎛⎭⎫sin 30°n+tan 30°n . 10.(2020·天津,5)若棱长为23的正方体的顶点都在同一球面上,则该球的表面积为( )A .12πB .24πC .36πD .144π 答案 C解析 由题意知,正方体的体对角线就是球的直径 ∴2R =(23)2+(23)2+(23)2=6, ∴R =3,∴S 球=4πR 2=36π.11.(2020·浙江,5)某几何体的三视图(单位:cm)如图所示,则该几何体的体积(单位:cm 3)是( )A.73B.143 C .3 D .6 答案 A解析 如图,三棱柱的体积V 1=12×2×1×2=2,三棱锥的体积V 2=13×12×2×1×1=13,因此,该几何体的体积V =V 1+V 2=2+13=73.12.(2020·浙江,6)已知空间中不过同一点的三条直线l ,m ,n ,“l ,m ,n 共面”是“l ,m ,n 两两相交”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件 答案 B解析 如图,直线l ,m ,n 不过同一点,且l ,m ,n 共面有三种情况:①同一平面内三线平行;②两平行线与另一线相交;③三线两两相交.因此,“l ,m ,n 两两相交”是“l ,m ,n 共面”的一种情况,即“l ,m ,n 共面”是“l ,m ,n 两两相交”的必要不充分条件.13.(2020·全国Ⅰ文,3)埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥.以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为( )A.5-14 B.5-12 C.5+14 D.5+12答案 C解析 设正四棱锥的底面正方形的边长为a ,高为h , 侧面三角形底边上的高(斜高)为h ′, 则由已知得h 2=12ah ′.如图,设O 为正四棱锥S -ABCD 底面的中心,E 为BC 的中点,则在Rt △SOE 中,h ′2=h 2+⎝⎛⎭⎫a 22, ∴h ′2=12ah ′+14a 2,∴⎝⎛⎭⎫h ′a 2-12·h ′a -14=0,解得h ′a =5+14(负值舍去).14.(2020·全国Ⅰ文,12)已知A ,B ,C 为球O 的球面上的三个点,⊙O 1为△ABC 的外接圆.若⊙O 1的面积为4π,AB =BC =AC =OO 1,则球O 的表面积为( ) A .64π B .48π C .36π D .32π 答案 A解析 如图,设圆O 1的半径为r ,球的半径为R ,正三角形ABC 的边长为a . 由πr 2=4π,得r =2, 则33a =2,a =23, OO 1=a =2 3.在Rt △OO 1A 中,由勾股定理得R 2=r 2+OO 21=22+(23)2=16,所以S 球=4πR 2=4π×16=64π.15.(2020·全国Ⅱ文,11)已知△ABC 是面积为934的等边三角形,且其顶点都在球O 的球面上.若球O 的表面积为16π,则O 到平面ABC 的距离为( ) A. 3 B.32 C .1 D.32答案 C解析 如图所示,过球心O 作OO 1⊥平面ABC ,则O 1为等边三角形ABC 的外心. 设△ABC 的边长为a , 则34a 2=934,解得a =3, ∴O 1A =23×32×3= 3.设球O 的半径为r ,则由4πr 2=16π,得r =2,即OA =2. 在Rt △OO 1A 中,OO 1=OA 2-O 1A 2=1, 即O 到平面ABC 的距离为1.16.(2020·全国Ⅲ文,9)下图为某几何体的三视图,则该几何体的表面积是( )A .6+4 2B .4+4 2C .6+2 3D .4+2 3答案 C解析 如图,该几何体为三棱锥,且其中有三个面是腰长为2的等腰直角三角形,第四个面是边长为22的等边三角形,所以该几何体的表面积为3×12×2×2+12×22×22×32=6+2 3.二、填空题1.(2020·全国Ⅱ理,16)设有下列四个命题:p 1:两两相交且不过同一点的三条直线必在同一平面内; p 2:过空间中任意三点有且仅有一个平面; p 3:若空间两条直线不相交,则这两条直线平行; p 4:若直线l ⊂平面α,直线m ⊥平面α,则m ⊥l . 则下述命题中所有真命题的序号是________. ①p 1∧p 4;②p 1∧p 2;③23p p ⌝∨;④34p p ⌝∨⌝. 答案 ①③④解析 p 1是真命题,两两相交且不过同一点的三条直线必定有三个交点,且这三个交点不在同一条直线上,由平面的基本性质“经过不在同一直线上的三个点,有且只有一个平面”,可知p 1为真命题;p 2是假命题,因为当空间中三点在一条直线上时,有无数个平面过这三个点;p 3是假命题,因为空间两条直线不相交时,它们可能平行,也可能异面;p 4是真命题,因为一条直线垂直于一个平面,那么它垂直于平面内的所有直线.由以上结论知綈p 2,綈p 3,綈p 4依次为真命题、真命题、假命题,从而①③④中命题为真命题,②中命题为假命题.2.(2020·全国Ⅲ理,15)已知圆锥的底面半径为1,母线长为3,则该圆锥内半径最大的球的体积为________. 答案23π 解析 圆锥内半径最大的球即为圆锥的内切球,设其半径为r .作出圆锥的轴截面P AB ,如图所示,则△P AB 的内切圆为圆锥的内切球的大圆.在△P AB 中,P A =PB =3,D 为AB 的中点,AB =2,E 为切点,则PD =22,△PEO ∽△PDB ,故PO PB =OE DB ,即22-r 3=r 1,解得r =22, 故内切球的体积为43π⎝⎛⎭⎫223=23π.3.(2020·新高考全国Ⅰ,16)已知直四棱柱ABCD -A 1B 1C 1D 1的棱长均为2,∠BAD =60°.以D 1为球心,5为半径的球面与侧面BCC 1B 1的交线长为________. 答案2π2解析 如图,设B 1C 1的中点为E ,球面与棱BB 1,CC 1的交点分别为P ,Q , 连接DB ,D 1B 1,D 1P ,D 1E ,EP ,EQ ,由∠BAD =60°,AB =AD ,知△ABD 为等边三角形, ∴D 1B 1=DB =2,∴△D 1B 1C 1为等边三角形, 则D 1E =3且D 1E ⊥平面BCC 1B 1,∴E 为球面截侧面BCC 1B 1所得截面圆的圆心, 设截面圆的半径为r ,则r =R 2球-D 1E 2=5-3= 2. 又由题意可得EP =EQ =2,∴球面与侧面BCC 1B 1的交线为以E 为圆心的圆弧PQ . 又D 1P =5,∴B 1P =D 1P 2-D 1B 21=1, 同理C 1Q =1,∴P ,Q 分别为BB 1,CC 1的中点, ∴∠PEQ =π2,知PQ 的长为π2×2=2π2,即交线长为2π2.4.(2020·新高考全国Ⅱ,13)棱长为2的正方体ABCD -A 1B 1C 1D 1中,M ,N 分别为棱BB 1,AB 的中点,则三棱锥A 1-D 1MN 的体积为________. 答案 1解析 如图,由正方体棱长为2,得S △A 1MN =2×2-2×12×2×1-12×1×1=32,又易知D 1A 1为三棱锥D 1-A 1MN 的高,且D 1A 1=2, ∴1111A D MN D A MN V V --==13·1A MN S △·D 1A 1=13×32×2=1. 5.(2020·江苏,9)如图,六角螺帽毛坯是由一个正六棱柱挖去一个圆柱所构成的.已知螺帽的底面正六边形边长为2 cm ,高为2 cm ,内孔半径为0.5 cm ,则此六角螺帽毛坯的体积是________cm 3.答案 ⎝⎛⎭⎫123-π2 解析 螺帽的底面正六边形的面积 S =6×12×22×sin 60°=63(cm 2),正六棱柱的体积V 1=63×2=123(cm 3), 圆柱的体积V 2=π×0.52×2=π2(cm 3),所以此六角螺帽毛坯的体积 V =V 1-V 2=⎝⎛⎭⎫123-π2cm 3. 6.(2020·浙江,14)已知圆锥的侧面积(单位:cm 2)为2π,且它的侧面展开图是一个半圆,则这个圆锥的底面半径(单位:cm)是________. 答案 1解析 如图,设圆锥的母线长为l ,底面半径为r ,则圆锥的侧面积S 侧=πrl =2π, ∴r =12l .又圆锥侧面展开图为半圆, ∴12πl 2=2π, ∴l =2,∴r =1.7.(2020·全国Ⅱ文,16)设有下列四个命题:p 1:两两相交且不过同一点的三条直线必在同一平面内; p 2:过空间中任意三点有且仅有一个平面; p 3:若空间两条直线不相交,则这两条直线平行; p 4:若直线l ⊂平面α,直线m ⊥平面α,则m ⊥l . 则下述命题中所有真命题的序号是________. ①p 1∧p 4;②p 1∧p 2;③23p p ⌝∨;④34p p ⌝∨⌝. 答案 ①③④解析 p 1是真命题,两两相交且不过同一点的三条直线必定有三个交点,且这三个交点不在同一条直线上,由平面的基本性质“经过不在同一直线上的三个点,有且只有一个平面”,可知p 1为真命题;p 2是假命题,因为当空间中三点在一条直线上时,有无数个平面过这三个点;p 3是假命题,因为空间两条直线不相交时,它们可能平行,也可能异面;p 4是真命题,因为一条直线垂直于一个平面,那么它垂直于平面内的所有直线.由以上结论知綈p 2,綈p 3,綈p 4依次为真命题、真命题、假命题,从而①③④中命题为真命题,②中命题为假命题.8.(2020·全国Ⅲ文,16)已知圆锥的底面半径为1,母线长为3,则该圆锥内半径最大的球的体积为________. 答案23π 解析 圆锥内半径最大的球即为圆锥的内切球,设其半径为r .作出圆锥的轴截面P AB ,如图所示,则△P AB 的内切圆为圆锥的内切球的大圆.在△P AB 中,P A =PB =3,D 为AB 的中点,AB =2,E 为切点,则PD =22,△PEO ∽△PDB ,故PO PB =OE DB ,即22-r 3=r 1,解得r =22, 故内切球的体积为43π⎝⎛⎭⎫223=23π.三、解答题1.(2020·全国Ⅰ理,18)如图,D 为圆锥的顶点,O 是圆锥底面的圆心,AE 为底面直径,AE =AD .△ABC 是底面的内接正三角形,P 为DO 上一点,PO =66DO .(1)证明:P A ⊥平面PBC ; (2)求二面角B -PC -E 的余弦值.(1)证明 由题设,知△DAE 为等边三角形,设AE =1, 则DO =32,CO =BO =12AE =12, 所以PO =66DO =24, PC =PO 2+OC 2=64,PB =PO 2+OB 2=64, 又△ABC 为等边三角形,则BAsin 60°=2OA , 所以BA =32, P A =PO 2+OA 2=64, P A 2+PB 2=34=AB 2,则∠APB =90°,所以P A ⊥PB ,同理P A ⊥PC , 又PC ∩PB =P ,所以P A ⊥平面PBC . (2)解 过O 作ON ∥BC 交AB 于点N ,因为PO ⊥平面ABC ,以O 为坐标原点,OA 所在直线为x 轴,ON 所在直线为y 轴,OD 所在直线为z 轴,建立如图所示的空间直角坐标系,则E ⎝⎛⎭⎫-12,0,0,P ⎝⎛⎭⎫0,0,24, B ⎝⎛⎭⎫-14,34,0,C ⎝⎛⎭⎫-14,-34,0,PC →=⎝⎛⎭⎫-14,-34,-24,PB →=⎝⎛⎭⎫-14,34,-24,PE →=⎝⎛⎭⎫-12,0,-24,设平面PCB 的一个法向量为n =(x 1,y 1,z 1), 由⎩⎪⎨⎪⎧n ·PC →=0,n ·PB →=0,得⎩⎨⎧-x 1-3y 1-2z 1=0,-x 1+3y 1-2z 1=0,令x 1=2,得z 1=-1,y 1=0, 所以n =(2,0,-1),设平面PCE 的一个法向量为m =(x 2,y 2,z 2), 由⎩⎪⎨⎪⎧m ·PC →=0,m ·PE →=0,得⎩⎨⎧-x 2-3y 2-2z 2=0,-2x 2-2z 2=0,令x 2=1,得z 2=-2,y 2=33, 所以m =⎝⎛⎭⎫1,33,-2,故cos 〈m ,n 〉=m ·n|m |·|n |=223×103=255, 所以二面角B -PC -E 的余弦值为255.2.(2020·全国Ⅱ理,20)如图,已知三棱柱ABC -A 1B 1C 1的底面是正三角形,侧面BB 1C 1C 是矩形,M ,N 分别为BC ,B 1C 1的中点,P 为AM上一点.过B 1C 1和P 的平面交AB 于E ,交AC 于F .(1)证明:AA 1∥MN ,且平面A 1AMN ⊥平面EB 1C 1F ;(2)设O 为△A 1B 1C 1的中心,若AO ∥平面EB 1C 1F ,且AO =AB ,求直线B 1E 与平面A 1AMN 所成角的正弦值.(1)证明 因为侧面BB 1C 1C 是矩形,且M ,N 分别为BC ,B 1C 1的中点, 所以MN ∥CC 1.又由已知得AA 1∥CC 1,故AA 1∥MN . 因为△A 1B 1C 1是正三角形,所以B 1C 1⊥A 1N . 又B 1C 1⊥MN ,故B 1C 1⊥平面A 1AMN . 所以平面A 1AMN ⊥平面EB 1C 1F .(2)解 由已知得AM ⊥BC .以M 为坐标原点,MA →的方向为x 轴正方向,|MB →|为单位长度,建立如图所示的空间直角坐标系,则AB =2,AM = 3.连接NP ,则四边形AONP 为平行四边形, 故PM =233,E ⎝⎛⎭⎫233,13,0.由(1)知平面A 1AMN ⊥平面ABC ,作NQ ⊥AM ,垂足为Q ,则NQ ⊥平面ABC . 设Q (a,0,0), 则NQ =4-⎝⎛⎭⎫233-a 2,B 1⎝⎛⎭⎪⎫a ,1,4-⎝⎛⎭⎫233-a 2, 故B 1E →=⎝ ⎛⎭⎪⎫233-a ,-23,-4-⎝⎛⎭⎫233-a 2,|B 1E →|=2103.又n =(0,-1,0)是平面A 1AMN 的一个法向量,故sin ⎝⎛⎭⎫π2-〈n ,B 1E →〉=cos 〈n ,B 1E →〉 =n ·B 1E →|n ||B 1E →|=1010.所以直线B 1E 与平面A 1AMN 所成角的正弦值为1010. 3.(2020·全国Ⅲ理,19)如图,在长方体ABCD -A 1B 1C 1D 1中,点E ,F 分别在棱DD 1,BB 1上,且2DE =ED 1,BF =2FB 1.(1)证明:点C 1在平面AEF 内;(2)若AB =2,AD =1,AA 1=3,求二面角A -EF -A 1的正弦值.(1)证明 设AB =a ,AD =b ,AA 1=c ,如图,以C 1为坐标原点,C 1D 1—→,C 1B 1—→,C 1C —→的方向分别为x 轴,y 轴,z 轴正方向,建立空间直角坐标系C 1-xyz .连接C 1F ,则C 1(0,0,0),A (a ,b ,c ), E ⎝⎛⎭⎫a ,0,23c ,F ⎝⎛⎭⎫0,b ,13c , EA →=⎝⎛⎭⎫0,b ,13c ,C 1F →=⎝⎛⎭⎫0,b ,13c , 所以EA →=C 1F →,所以EA ∥C 1F , 即A ,E ,F ,C 1四点共面, 所以点C 1在平面AEF 内.(2)解 由已知得A (2,1,3),E (2,0,2),F (0,1,1),A 1(2,1,0), 则AE →=(0,-1,-1),AF →=(-2,0,-2), A 1E →=(0,-1,2),A 1F →=(-2,0,1). 设n 1=(x 1,y 1,z 1)为平面AEF 的法向量, 则⎩⎪⎨⎪⎧n 1·AE →=0,n 1·AF →=0,即⎩⎪⎨⎪⎧-y 1-z 1=0,-2x 1-2z 1=0,可取n 1=(-1,-1,1).设n 2=(x 2,y 2,z 2)为平面A 1EF 的法向量, 则⎩⎪⎨⎪⎧n 2·A 1E →=0,n 2·A 1F →=0,即⎩⎪⎨⎪⎧-y 2+2z 2=0,-2x 2+z 2=0,同理可取n 2=⎝⎛⎭⎫12,2,1. 因为cos 〈n 1,n 2〉=n 1·n 2|n 1|·|n 2|=-77,所以二面角A -EF -A 1的正弦值为427. 4.(2020·新高考全国Ⅰ,20)如图,四棱锥P -ABCD 的底面为正方形,PD ⊥底面ABCD .设平面P AD 与平面PBC 的交线为l .(1)证明:l ⊥平面PDC ;(2)已知PD =AD =1,Q 为l 上的点,求PB 与平面QCD 所成角的正弦值的最大值. (1)证明 在正方形ABCD 中,AD ∥BC , 因为AD ⊄平面PBC ,BC ⊂平面PBC , 所以AD ∥平面PBC ,又因为AD ⊂平面P AD ,平面P AD ∩平面PBC =l , 所以AD ∥l ,因为在四棱锥P -ABCD 中,底面ABCD 是正方形, 所以AD ⊥DC ,所以l ⊥DC ,且PD ⊥平面ABCD ,所以AD ⊥PD ,所以l ⊥PD , 因为DC ∩PD =D , 所以l ⊥平面PDC .(2)解 以D 为坐标原点,DA →的方向为x 轴正方向,如图建立空间直角坐标系D -xyz ,因为PD =AD =1,则有D (0,0,0),C (0,1,0),A (1,0,0),P (0,0,1),B (1,1,0), 设Q (m,0,1),则有DC →=(0,1,0),DQ →=(m,0,1),PB →=(1,1,-1), 设平面QCD 的法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧DC →·n =0,DQ →·n =0,即⎩⎪⎨⎪⎧y =0,mx +z =0,令x =1,则z =-m ,所以平面QCD 的一个法向量为n =(1,0,-m ), 则cos 〈n ,PB →〉=n ·PB →|n ||PB →|=1+0+m 3·m 2+1. 根据直线的方向向量与平面法向量所成角的余弦值的绝对值即为直线与平面所成角的正弦值,所以直线PB 与平面QCD 所成角的正弦值等于 |cos 〈n ,PB →〉|=|1+m |3·m 2+1=33·1+2m +m 2m 2+1=33·1+2m m 2+1≤33·1+2|m |m 2+1≤33·1+1=63,当且仅当m =1时取等号,所以直线PB 与平面QCD 所成角的正弦值的最大值为63. 5.(2020·新高考全国Ⅱ,20)如图,四棱锥P -ABCD 的底面为正方形,PD ⊥底面ABCD .设平面P AD 与平面PBC 的交线为l .(1)证明:l ⊥平面PDC ;(2)已知PD =AD =1,Q 为l 上的点,QB =2,求PB 与平面QCD 所成角的正弦值. (1)证明 在正方形ABCD 中,AD ∥BC , 因为AD ⊄平面PBC ,BC ⊂平面PBC , 所以AD ∥平面PBC ,又因为AD ⊂平面P AD ,平面P AD ∩平面PBC =l , 所以AD ∥l ,因为在四棱锥P -ABCD 中,底面ABCD 是正方形,所以AD ⊥DC ,所以l ⊥DC ,且PD ⊥平面ABCD ,所以AD ⊥PD ,所以l ⊥PD , 因为DC ∩PD =D , 所以l ⊥平面PDC .(2)解 以D 为坐标原点,DA →的方向为x 轴正方向,建立如图所示的空间直角坐标系D -xyz ,则D (0,0,0),C (0,1,0), B (1,1,0),P (0,0,1),DC →=(0,1,0),PB →=(1,1,-1).由(1)设Q (a,0,1),则BQ →=(a -1,-1,1). 由题意知(a -1)2+2=2, ∴a =1,∴DQ →=(1,0,1).设n =(x ,y ,z )是平面QCD 的一个法向量, 则⎩⎪⎨⎪⎧n ·DQ →=0,n ·DC →=0,即⎩⎪⎨⎪⎧x +z =0,y =0,可取n =(1,0,-1),∴cos 〈n ,PB →〉=n ·PB →|n |·|PB →|=63,故PB 与平面QCD 所成角的正弦值为63. 6.(2020·北京,16)如图,在正方体ABCD -A 1B 1C 1D 1中,E 为BB 1的中点.(1)求证:BC 1∥平面AD 1E ;(2)求直线AA 1与平面AD 1E 所成角的正弦值. (1)证明 在正方体ABCD -A 1B 1C 1D 1中, AB ∥A 1B 1且AB =A 1B 1,A 1B 1∥C 1D 1且A 1B 1=C 1D 1, ∴AB ∥C 1D 1且AB =C 1D 1,∴四边形ABC 1D 1为平行四边形,则BC 1∥AD 1, ∵BC 1⊄平面AD 1E ,AD 1⊂平面AD 1E , ∴BC 1∥平面AD 1E .(2)解 以点A 为坐标原点,AD ,AB ,AA 1所在直线分别为x ,y ,z 轴建立如图所示的空间直角坐标系A -xyz ,设正方体ABCD -A 1B 1C 1D 1的棱长为2, 则A (0,0,0),A 1(0,0,2),D 1(2,0,2),E (0,2,1), AD 1→=(2,0,2),AE →=(0,2,1),AA 1→=(0,0,2), 设平面AD 1E 的法向量为n =(x ,y ,z ), 由⎩⎪⎨⎪⎧n ·AD 1→=0,n ·AE →=0,得⎩⎪⎨⎪⎧2x +2z =0,2y +z =0,令z =-2,得x =2,y =1,则n =(2,1,-2). cos 〈n ,AA 1→〉=n ·AA 1→|n |·|AA 1→|=-43×2=-23.因此,直线AA 1与平面AD 1E 所成角的正弦值为23.7.(2020·天津,17)如图,在三棱柱ABC -A 1B 1C 1中,CC 1⊥平面ABC ,AC ⊥BC ,AC =BC =2,CC 1=3,点D ,E 分别在棱AA 1和棱CC 1上,且AD =1,CE =2,M 为棱A 1B 1的中点.(1)求证:C 1M ⊥B 1D ;(2)求二面角B -B 1E -D 的正弦值;(3)求直线AB 与平面DB 1E 所成角的正弦值.(1)证明 依题意,以C 为坐标原点,分别以CA →,CB →,CC 1→的方向为x 轴,y 轴,z 轴的正方向建立空间直角坐标系(如图),可得C (0,0,0),A (2,0,0),B (0,2,0),C 1(0,0,3),A 1(2,0,3),B 1(0,2,3),D (2,0,1),E (0,0,2),M (1,1,3).则C 1M →=(1,1,0),B 1D →=(2,-2,-2), ∵C 1M →·B 1D →=2-2+0=0,∴C 1M ⊥B 1D .(2)解 依题意,CA →=(2,0,0)是平面BB 1E 的一个法向量,EB 1→=(0,2,1),ED →=(2,0,-1). 设n =(x ,y ,z )为平面DB 1E 的法向量, 则⎩⎪⎨⎪⎧n ·EB 1→=0,n ·ED →=0,即⎩⎪⎨⎪⎧2y +z =0,2x -z =0.不妨设x =1,可得n =(1,-1,2).∴cos 〈CA →,n 〉=CA →·n |CA →||n |=66,∴sin 〈CA →,n 〉=1-16=306. ∴二面角B -B 1E -D 的正弦值为306. (3)解 依题意,AB →=(-2,2,0),由(2)知,n =(1,-1,2)为平面DB 1E 的一个法向量, ∴cos 〈AB →,n 〉=AB →·n |AB →||n |=-33,∴直线AB 与平面DB 1E 所成角的正弦值为33. 8.(2020·江苏,15)在三棱柱ABC -A 1B 1C 1中,AB ⊥AC ,B 1C ⊥平面ABC ,E ,F 分别是AC ,B 1C 的中点.(1)求证:EF ∥平面AB 1C 1; (2)求证:平面AB 1C ⊥平面ABB 1.证明 (1)因为E ,F 分别是AC ,B 1C 的中点, 所以EF ∥AB 1.又EF ⊄平面AB 1C 1,AB 1⊂平面AB 1C 1, 所以EF ∥平面AB 1C 1.(2)因为B 1C ⊥平面ABC ,AB ⊂平面ABC , 所以B 1C ⊥AB .又AB ⊥AC ,B 1C ⊂平面AB 1C ,AC ⊂平面AB 1C , B 1C ∩AC =C , 所以AB ⊥平面AB 1C . 又因为AB ⊂平面ABB 1, 所以平面AB 1C ⊥平面ABB 1.9.(2020·江苏,22)在三棱锥A -BCD 中,已知CB =CD =5,BD =2,O 为BD 的中点,AO ⊥平面BCD ,AO =2,E 为AC 的中点.(1)求直线AB 与DE 所成角的余弦值;(2)若点F 在BC 上,满足BF =14BC ,设二面角F -DE -C 的大小为θ,求sin θ的值.解 (1)如图,连接OC ,因为CB =CD ,O 为BD 的中点,所以CO ⊥BD .又AO ⊥平面BCD ,所以AO ⊥OB ,AO ⊥OC .以{OB →,OC →,OA →}为基底,建立空间直角坐标系O -xyz . 因为BD =2,CB =CD =5,AO =2, 所以B (1,0,0),D (-1,0,0),C (0,2,0),A (0,0,2). 因为E 为AC 的中点,所以E (0,1,1). 所以AB →=(1,0,-2),DE →=(1,1,1),所以|cos 〈AB →,DE →〉|=|AB →·DE →||AB →|·|DE →|=|1+0-2|5×3=1515.因此,直线AB 与DE 所成角的余弦值为1515. (2)因为点F 在BC 上,BF =14BC ,BC →=(-1,2,0).所以BF →=14BC →=⎝⎛⎭⎫-14,12,0. 又DB →=(2,0,0),故DF →=DB →+BF →=⎝⎛⎭⎫74,12,0.设n 1=(x 1,y 1,z 1)为平面DEF 的一个法向量, 则⎩⎪⎨⎪⎧ DE →·n 1=0,DF →·n 1=0,即⎩⎪⎨⎪⎧x 1+y 1+z 1=0,74x 1+12y 1=0,令x 1=2,得y 1=-7,z 1=5,所以n 1=(2,-7,5). 设n 2=(x 2,y 2,z 2)为平面DEC 的一个法向量, 又DC →=(1,2,0),则⎩⎪⎨⎪⎧DE →·n 2=0,DC →·n 2=0,即⎩⎪⎨⎪⎧x 2+y 2+z 2=0,x 2+2y 2=0,令x 2=2,得y 2=-1,z 2=-1, 所以n 2=(2,-1,-1). 故|cos θ|=|n 1·n 2||n 1|·|n 2|=|4+7-5|78×6=1313. 所以sin θ=1-cos 2θ=23913. 10.(2020·浙江,19)如图,在三棱台ABC -DEF 中,平面ACFD ⊥平面ABC ,∠ACB =∠ACD =45°,DC =2BC .(1)证明:EF ⊥DB ;(2)求直线DF 与平面DBC 所成角的正弦值.(1)证明 如图(1),过点D 作DO ⊥AC ,交直线AC 于点O ,连接OB .由∠ACD =45°,DO ⊥AC ,得CD =2CO . 由平面ACFD ⊥平面ABC ,得DO ⊥平面ABC , 所以DO ⊥BC .由∠ACB =45°,BC =12CD =22CO ,得BO ⊥BC .所以BC ⊥平面BDO ,故BC ⊥DB . 由ABC -DEF 为三棱台, 得BC ∥EF ,所以EF ⊥DB .(2)解 方法一 如图(2),过点O 作OH ⊥BD ,交直线BD 于点H ,连接CH .由ABC -DEF 为三棱台,得DF ∥CO ,所以直线DF 与平面DBC 所成角等于直线CO 与平面DBC 所成角. 由BC ⊥平面BDO ,得OH ⊥BC , 故OH ⊥平面DBC ,所以∠OCH 为直线CO 与平面DBC 所成角. 设CD =22,则DO =OC =2,BO =BC =2, 得BD =6,OH =233,所以sin ∠OCH =OH OC =33.因此,直线DF 与平面DBC 所成角的正弦值为33. 方法二 由ABC -DEF 为三棱台,得DF ∥CO ,所以直线DF 与平面DBC 所成角等于直线CO 与平面DBC 所成角,记为θ.如图(3),以O 为原点,分别以射线OC ,OD 为y ,z 轴的正半轴,建立空间直角坐标系O-xyz .设CD =22,由题意知各点坐标如下:O (0,0,0),B (1,1,0),C (0,2,0),D (0,0,2).因此OC →=(0,2,0),BC →=(-1,1,0),CD →=(0,-2,2). 设平面DBC 的一个法向量为n =(x ,y ,z ),由⎩⎪⎨⎪⎧n ·BC →=0,n ·CD →=0,即⎩⎪⎨⎪⎧-x +y =0,-2y +2z =0,可取n =(1,1,1),所以sin θ=|cos 〈OC →,n 〉|=|OC →·n ||OC →|·|n |=33.因此,直线DF 与平面DBC 所成角的正弦值为33. 11.(2020·全国Ⅰ文,19)如图,D 为圆锥的顶点,O 是圆锥底面的圆心,△ABC 是底面的内接正三角形,P 为DO 上一点,∠APC =90°.(1)证明:平面P AB ⊥平面P AC ;(2)设DO =2,圆锥的侧面积为3π,求三棱锥P -ABC 的体积. (1)证明 ∵D 为圆锥顶点,O 为底面圆心, ∴OD ⊥平面ABC ,∵P 在DO 上,OA =OB =OC , ∴P A =PB =PC ,∵△ABC 是圆内接正三角形, ∴AC =BC ,△P AC ≌△PBC ,∴∠APC =∠BPC =90°,即PB ⊥PC ,P A ⊥PC , P A ∩PB =P ,∴PC ⊥平面P AB ,PC ⊂平面P AC ,∴平面P AB ⊥平面P AC .(2)解 设圆锥的母线为l ,底面半径为r ,圆锥的侧面积为πrl =3π,rl =3,OD 2=l 2-r 2=2,解得r =1,l =3,AC =2r sin 60°=3, 在等腰直角三角形APC 中, AP =22AC =62, 在Rt △P AO 中,PO =AP 2-OA 2=64-1=22, ∴三棱锥P -ABC 的体积为V P -ABC =13PO ·S △ABC =13×22×34×3=68.12.(2020·全国Ⅱ文,20)如图,已知三棱柱ABC -A 1B 1C 1的底面是正三角形,侧面BB 1C 1C 是矩形,M ,N 分别为BC ,B 1C 1的中点,P 为AM 上一点.过B 1C 1和P 的平面交AB 于E ,交AC 于F .(1)证明:AA 1∥MN ,且平面A 1AMN ⊥平面EB 1C 1F ;(2)设O 为△A 1B 1C 1的中心.若AO =AB =6,AO ∥平面EB 1C 1F ,且∠MPN =π3,求四棱锥B-EB 1C 1F 的体积.(1)证明 因为侧面BB 1C 1C 是矩形,且M ,N 分别为BC ,B 1C 1的中点, 所以MN ∥CC 1.又由已知得AA 1∥CC 1,故AA 1∥MN . 因为△A 1B 1C 1是正三角形,所以B 1C 1⊥A 1N . 又B 1C 1⊥MN ,故B 1C 1⊥平面A 1AMN . 所以平面A 1AMN ⊥平面EB 1C 1F .(2)解 因为AO ∥平面EB 1C 1F ,AO ⊂平面A 1AMN , 平面A 1AMN ∩平面EB 1C 1F =PN , 所以AO ∥PN ,又AP ∥ON ,故四边形APNO 是平行四边形,所以PN =AO =6,AP =ON =13AM =3,PM =23AM =23,EF =13BC =2.因为BC ∥平面EB 1C 1F ,所以四棱锥B -EB 1C 1F 的顶点B 到底面EB 1C 1F 的距离等于点M 到底面EB 1C 1F 的距离. 如图,作MT ⊥PN ,垂足为T ,则由(1)知,MT ⊥平面EB 1C 1F , 故MT =PM sin ∠MPN =3. 底面EB 1C 1F 的面积为12(B 1C 1+EF )·PN =12×(6+2)×6=24. 所以四棱锥B -EB 1C 1F 的体积为13×24×3=24.13.(2020·全国Ⅲ文,19)如图,在长方体ABCD -A 1B 1C 1D 1中,点E ,F 分别在棱DD 1,BB 1上,且2DE =ED 1,BF =2FB 1.证明:(1)当AB =BC 时,EF ⊥AC ; (2)点C 1在平面AEF 内. 证明 (1)如图,连接BD ,B 1D 1. 因为AB =BC ,所以四边形ABCD 为正方形,故AC ⊥BD .又因为BB 1⊥平面ABCD ,AC ⊂平面ABCD , 于是AC ⊥BB 1.又BD ∩BB 1=B ,BD ,BB 1⊂平面BB 1D 1D , 所以AC ⊥平面BB 1D 1D .又因为EF ⊂平面BB 1D 1D ,所以EF ⊥AC .(2)如图,在棱AA 1上取点G ,使得AG =2GA 1,连接GD 1,FC 1,FG , 因为ED 1=23DD 1,AG =23AA 1,DD 1∥AA 1且DD 1=AA 1,所以ED 1∥AG 且ED 1=AG , 所以四边形ED 1GA 为平行四边形, 故AE ∥GD 1.因为B 1F =13BB 1,GA 1=13AA 1,BB 1∥AA 1且BB 1=AA 1,所以B 1F ∥GA 1,且B 1F =GA 1, 所以四边形B 1FGA 1是平行四边形, 所以FG ∥A 1B 1且FG =A 1B 1, 所以FG ∥C 1D 1且FG =C 1D 1, 所以四边形FGD 1C 1为平行四边形, 故GD 1∥FC 1. 所以AE ∥FC 1.所以A ,E ,F ,C 1四点共面,即点C 1在平面AEF 内.。

2020年高考数学立体几何专题复习(后附答案)

2020年高考数学立体几何专题复习(后附答案)

2020年高考数学立体几何专题复习(后附答案)教学目的1. 复习《立体几何初步》的相关知识及基本应用2. 掌握典型题型及其处理方法教学重点、难点《立体几何初步》的知识梳理和题型归类以及重点题型的处理方法知识分析1. 多面体的结构特征对于多面体的结构要从其反应的几何体的本质去把握,棱柱、棱锥、棱台是不同的多面体,但它们也有联系,棱柱可以看成是上、下底面全等的棱台;棱锥又可以看作是一底面缩为一点的棱台,因此它们的侧面积和体积公式可分别统一为一个公式。

2. 旋转体的结构特征旋转体是一个平面封闭图形绕一个轴旋转生成的,一定要弄清圆柱、圆锥、圆台、球分别是由哪一种平面图形旋转生成的,从而可掌握旋转体中各元素的关系,也就掌握了它们各自的性质。

3. 表面积与体积的计算有关柱、锥、台、球的面积和体积的计算,应以公式法为基础,充分利用几何体中的直角三角形、直角梯形求有关的几何元素。

4. 三视图与直观图的画法三视图和直观图是空间几何体的不同的表现形式,空间几何体的三视图可以使我们很好地把握空间几何体的性质.由空间几何体可以画出它的三视图,同样由三视图可以想象出空间几何体的形状,两者之间可以相互转化。

5. 线线平行的判定方法(1)定义:同一平面内没有公共点的两条直线是平行直线; (2)公理4:a b b c a c //////,,⇒; (3)平面几何中判定两直线平行的方法;(4)线面平行的性质:a a b a b ////αβαβ,,⊂=⇒ ; (5)线面垂直的性质:a b a b ⊥⊥⇒αα,//;(6)面面平行的性质:αβαγβγ////,, ==a a b 。

6. 直线和平面平行的判定方法 (1)定义:a a αα=∅⇒//;(2)判定定理:a b a b a ////,,⊄⊂⇒ααα; (3)线面垂直的性质:b a b a a ⊥⊥⊄,,,ααα//;(4)面面平行的性质:αβαβ////,a a ⊂⇒。

7. 判定两个平面平行的方法 (1)依定义采用反证法; (2)利用判定定理:αββαααβ//////,,,,b a b a b A ⊂⊂=⇒ ; (3)垂直于同一条直线的两个平面平行; a a ⊥⊥⇒αβαβ,//;(4)平行于同一平面的两个平面平行;αγβγαβ////,/⇒/。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

学魁榜2020年高考理科数学《立体几何》题型归纳与训练【题型归纳】题型一线面平行的证明例1如图,高为1的等腰梯形ABCD 中,AM =CD =13AB =1.现将△AMD 沿MD 折起,使平面AMD ⊥平面MBCD ,连接AB ,AC .试判断:在AB 边上是否存在点P ,使AD ∥平面MPC ?并说明理由【答案】当AP =13AB 时,有AD ∥平面MPC .理由如下:连接BD 交MC 于点N ,连接NP .在梯形MBCD 中,DC ∥MB ,DN NB =DC MB =12,在△ADB 中,AP PB =12,∴AD ∥PN .∵AD ⊄平面MPC ,PN ⊂平面MPC ,∴AD ∥平面MPC .【解析】线面平行,可以线线平行或者面面平行推出。

此类题的难点就是如何构造辅助线。

构造完辅助线,证明过程只须注意规范的符号语言描述即可。

本题用到的是线线平行推出面面平行。

【易错点】不能正确地分析DN 与BN 的比例关系,导致结果错误。

【思维点拨】此类题有两大类方法:1.构造线线平行,然后推出线面平行。

此类方法的辅助线的构造须要学生理解线面平行的判定定理与线面平行的性质之间的矛盾转化关系。

在此,我们需要借助倒推法进行分析。

首先,此类型题目大部分为证明题,结论必定是正确的,我们以此为前提可以得到线面平行。

再次由线面平行的性质可知,过已知直线的平面与已知平面的交线必定平行于该直线,而交线就是我们要找的线,从而做出辅助线。

从这个角度上看我们可以看出线线平行推线面平行的本质就是过已知直线做一个平面与已知平面相交即可。

如本题中即是过AD 做了一个平面ADB 与平面MPC 相交于线PN 。

最后我们只须严格使用正确的符号语言将证明过程反向写一遍即可。

即先证2AD 平行于PN,最后得到结论。

构造交线的方法我们可总结为如下三个图形。

2.构造面面平行,然后推出线面平行。

此类方法辅助线的构造通常比较简单,但证明过程较繁琐,一般做为备选方案。

辅助线的构造理论同上。

我们只须过已知直线上任意一点做一条与已知平面平行的直线即可。

可总结为下图例2如图,在几何体ABCDE 中,四边形ABCD 是矩形,AB ⊥平面BEC ,BE ⊥EC ,AB =BE =EC =2,G ,F 分别是线段BE ,DC的中点.求证:GF ∥平面ADE ;【答案】解法一:(1)证明:如图,取AE 的中点H ,连接HG ,HD ,又G 是BE 的中点,所以GH ∥AB ,且GH =12AB.又F 是CD 的中点,学魁榜所以DF=12 CD.由四边形ABCD是矩形得,AB∥CD,AB=CD,所以GH∥DF,且GH=DF,从而四边形HGFD是平行四边形,所以GF∥DH.又DH⊂平面ADE,GF⊄平面ADE,所以GF∥平面ADE.解法2:(1)证明:如下图,取AB中点M,连接MG,MF.又G是BE的中点,可知GM∥AE.又AE⊂平面ADE,GM⊄平面ADE,所以GM∥平面ADE.在矩形ABCD中,由M,F分别是AB,CD的中点得MF∥AD.又AD⊂平面ADE,MF⊄平面ADE,所以MF∥平面ADE.又因为GM∩MF=M,GM⊂平面GMF,MF⊂平面GMF,所以平面GMF∥平面ADE.因为GF⊂平面GMF,所以GF∥平面ADE.【解析】解法一为构造线线平行,解法二为构造面面平行。

【易错点】线段比例关系【思维点拨】同例一题型二线线垂直、面面垂直的证明例1如图,在三棱锥P­ABC中,PA⊥AB,PA⊥BC,AB⊥BC,PA=AB=BC=2,D为线段AC的中点,E为线段PC上一点.(1)求证:PA⊥BD;(2)求证:平面BDE⊥平面PAC【答案】(1)证明:因为PA⊥AB,PA⊥BC,AB∩BC=B,所以PA⊥平面ABC.又因为BD⊂平面ABC,所以PA⊥BD.(2)证明:因为AB=BC,D为AC的中点,所以BD⊥AC.由(1)知,PA⊥BD,又AC∩PA=A,所以BD⊥平面PAC.因为BD⊂平面BDE,所以平面BDE⊥平面PAC.【解析】(一)找突破口第(1)问:欲证线线垂直,应转化到证线面垂直,再得线线垂直;第(2)问:欲证面面垂直,应转化到证线面垂直,进而转化到先证线线垂直,借助(1)的结论和已知条件可证;(二)寻关键点有什么想到什么注意什么信息①:PA⊥AB,PA⊥BC 线面垂直的判定定理,可证PA⊥平面ABC(1)证明线面平行的条件:一直线在平面外,一直线在平面内(2)证明线面垂直时的条件:直线垂直于平面内两条相交直线(3)求点到面的距离时要想到借助锥体的“等体积性”信息②:AB=BC,D为AC的中点等腰三角形中线与高线合一,可得BD⊥AC信息③:PA⊥BD 证明线线垂直,可转化到证明一直线垂直于另一直线所在平面,再由线面垂直的定义可得信息④:平面BDE⊥平面PAC 面面垂直的判定定理,线线垂直⇒线面垂直⇒面面垂直信息⑤:PA∥平面BDE 线面平行的性质定理,线面平行,则线线平行,可得PA∥DE【易错点】规范的符号语言描述,正确的逻辑推理过程。

【思维点拨】(1)正确并熟练掌握空间中平行与垂直的判定定理与性质定理,是进行判断和证明的基础;在证明线面关系时,应注意几何体的结构特征的应用,尤其是一些线面平行与垂直关系,这些都可以作为条件直接应用.(2)证明面面平行依据判定定理,只要找到一个面内两条相交直线与另一个平面平行即可,从而将证明面面平行转化为证明线面平行,再转化为证明线线平行.(3)证明面面垂直常用面面垂直的判定定理,即证明一个面过另一个面的一条垂线,将证明面面垂直转化为4学魁榜证明线面垂直,一般先从现有直线中寻找,若图中不存在这样的直线,则借助中线、高线或添加辅助线解决.(4)证明的核心是转化,空间向平面的转化,面面⇔线面⇔线线.题型三空间向量例1如图,四面体ABCD 中,△ABC 是正三角形,△ACD 是直角三角形,ABD CBD ∠=∠,AB=BD .(1)证明:平面ACD ⊥平面ABC ;(2)过AC 的平面交BD 于点E ,若平面AEC 把四面体ABCD 分成体积相等的两部分,求二面角D ­AE ­C 的余弦值.【答案】(1)证明:由题设可得,△ABD ≌△CBD ,从而AD =DC .又△ACD 是直角三角形,所以∠ADC =90°.取AC 的中点O ,连接DO ,BO ,则DO ⊥AC ,DO =AO .又因为△ABC 是正三角形,所以BO ⊥AC .所以∠DOB 为二面角D ­AC ­B 的平面角.在Rt △AOB 中,BO 2+AO 2=AB 2.又AB =BD ,所以BO 2+DO 2=BO 2+AO 2=AB 2=BD 2,故∠DOB =90°.所以平面ACD ⊥平面ABC .(2)由题设及(1)知,OA ,OB ,OD 两两垂直.以O 为坐标原点,OA ―→的方向为x 轴正方向,|OA ―→|为单位长度,建立如图所示的空间直角坐标系O ­xyz ,则A (1,0,0),B (0,3,0),C (-1,0,0),D (0,0,1).由题设知,四面体ABCE 的体积为四面体ABCD 的体积的12,从而E 到平面ABC 的距离为D 到平面ABC6的距离的12,即E 为DB 的中点,得,32,故AD ―→=(-1,0,1),AC ―→=(-2,0,0),AE ―→1,32,设n =(x 1,y 1,z 1)是平面DAE 的法向量,·AD ―→=0,·AE ―→=0,x 1+z 1=0,x 1+32y 1+12z 1=0.可取n ,33,设m =(x 2,y 2,z 2)是平面AEC 的法向量,·AC ―→=0,·AE ―→=0,2x 2=0,x 2+32y 2+12z 2=0,可取m =(0,-1,3).则cos 〈n ,m 〉=n ·m |n ||m |=-33+3213×2=77.由图知二面角D ­AE ­C 为锐角,所以二面角D ­AE ­C 的余弦值为77.【解析】(一)找突破口第(1)问:欲证面面垂直,应转化去证线面垂直或证其二面角为直角,即找出二面角的平面角,并求其大小为90°;第(2)问:欲求二面角的余弦值,应转化去求两平面所对应法向量的夹角的余弦值,即通过建系,求所对应法向量来解决问题.(二)寻关键点有什么想到什么注意什么信息①:△ABC 为正三角形,△ACD 是直角三角形特殊三角形中的特殊的边角:△ABC 中三边相等,△ACD 中的直角(1)建系时要证明哪三条线两两垂直,进而可作为坐标轴(2)两平面法向量的夹角不一定是所求的二面角,也有可能是两法向量夹角的补角,因此必须说明角的范围信息②:∠ABD =∠CBD ,AB =BD边角相等关系可证两三角形全等,进而可证AD =DC ,∠ADC =90°信息③:证明:平面ACD ⊥平面ABC面面垂直的证明方法:几何法或定义法信息④:体积相等由体积的大小关系转化到点学魁榜到面的距离的大小关系,进而知点E为DB的中点【易错点】正确建立空间直角坐标系,确定点的坐标,平面法向量的计算。

【思维点拨】1.利用空间向量求空间角的一般步骤(1)建立恰当的空间直角坐标系;(2)求出相关点的坐标,写出相关向量的坐标;(3)结合公式进行论证、计算;(4)转化为几何结论.2.求空间角应注意的3个问题(1)两条异面直线所成的角α不一定是直线的方向向量的夹角β,即cosα=|cosβ|.(2)直线与平面所成的角的正弦值等于平面的法向量与直线的方向向量夹角的余弦值的绝对值,注意函数名称的变化.(3)两平面的法向量的夹角不一定是所求的二面角,有可能为两法向量夹角的补角.【巩固训练】题型一线面平行的证明1.如图,在正方体ABCD-A1B1C1D1中,S是B1D1的中点,E、F、G分别是BC、DC、SC的中点,求证:(1)直线EG∥平面BDD1B1;(2)平面EFG∥平面BDD1B1.【答案】详见解析【解析】(1)如图,连接SB,∵E、G分别是BC、SC的中点,∴EG∥SB.又∵SB⊂平面BDD1B1,EG⊄平面BDD1B1,∴直线EG∥平面BDD1B1.8(2)连接SD ,∵F 、G 分别是DC 、SC 的中点,∴FG ∥SD.又∵SD ⊂平面BDD 1B 1,FG ⊄平面BDD 1B 1,∴FG ∥平面BDD 1B 1,又EG ⊂平面EFG ,FG ⊂平面EFG ,EG∩FG =G ,∴平面EFG ∥平面BDD 1B 1.2.如图,四棱锥P -ABCD 的底面是边长为1的正方形,侧棱PA ⊥底面ABCD ,且PA =2,E 是侧棱P A上的中点.求证:PC ∥平面BDE ;【答案】详见解析【解析】证明:连接AC 交BD 于点O ,连接OE ,如图:∵四边形ABCD 是正方形,∴O 是AC 的中点.又E 是PA 的中点,∴PC ∥OE.∵PC ⊄平面BDE ,OE ⊂平面BDE ,∴PC ∥平面BDE.3.如图,在四棱柱ABCD -A 1B 1C 1D 1中,底面ABCD 是等腰梯形,∠DAB =60°,AB =2CD =2,M 是线段AB的中点.学魁榜求证:C1M∥平面A1ADD1;【答案】详见解析【解析】证明:因为四边形ABCD是等腰梯形,且AB=2CD,所以AB∥DC.又由M是AB的中点,因此CD∥MA且CD=MA.连接AD1,在四棱柱ABCD-A1B1C1D1中,因为CD∥C1D1,CD=C1D1,可得C1D1∥MA,C1D1=MA,所以四边形AMC1D1为平行四边形.因此C1M∥D1A,又C1M⊄平面A1ADD1,D1A⊂平面A1ADD1,所以C1M∥平面A1ADD1.题型二线线垂直、面面垂直的证明1.如图,在四棱锥P-ABCD中,PA⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,PA=AB=BC,E是PC的中点.(1)证明:CD⊥AE;(2)证明:PD⊥平面ABE;【答案】详见解析【解析】(1)在四棱锥P-ABCD中,因为PA⊥底面ABCD,CD⊂平面ABCD,故PA⊥CD,∵AC⊥CD,PA∩AC =A,∴CD⊥平面PAC,而AE⊂平面PAC,∴CD⊥AE,(2)由PA=AB=BC,∠ABC=60°,可得AC=PA,∵E是PC的中点,∴AE⊥PC,由(1)知,AE⊥CD,且PC∩CD=C,所以AE⊥平面PCD,而PD⊂平面PCD,∴AE⊥PD,∵PA⊥底面ABCD,PD在底面ABCD内的射影是AD,AB⊥AD,∴AB⊥PD,又∵AB∩AE=A,综上可得PD⊥平面ABE.102.如图,在三棱锥P -ABC 中,PA =PB =PC =AC =4,AB =BC =22.求证:平面ABC ⊥平面APC ;【答案】详见解析【解析】(1)证明:如图所示,取AC 中点O ,连接OP ,OB .∵PA =PC =AC =4,∴OP ⊥AC ,且PO =4sin60°=2 3.∵BA =BC =22,∴BA 2+BC 2=16=AC 2,且BO ⊥AC ,∴BO =AB 2-AO 2=2.∵PB =4,∴OP 2+OB 2=12+4=16=PB 2,∴OP ⊥OB .∵AC ∩OB =O ,∴OP ⊥平面ABC .∵OP ⊂平面PAC ,∴平面ABC ⊥平面APC .3.如图所示,四棱锥P -ABCD 中,底面ABCD 为平行四边形,AB =2AD =2,BD =3,PD ⊥底面ABCD .证明:平面PBC ⊥平面PBD ;【答案】详见解析【解析】(1)证明:1,2,CB CD BD === ∴CD 2=BC 2+BD 2,∴BC ⊥BD .又∵PD ⊥底面ABCD ,∴PD ⊥BC .又∵PD ∩BD =D ,∴BC⊥平面PBD .而BC ⊂平面PBC ,学魁榜∴平面PBC ⊥平面PBD .题型三空间向量1.已知直三棱柱ABC -A 1B 1C 1中,∠ACB =90°,AC =BC =2,AA 1=4,D 是棱AA 1的中点.如图所示.(1)求证:DC 1⊥平面BCD ;(2)求二面角A -BD -C 的大小.【答案】详见解析【解析】(1)证明:按如图所示建立空间直角坐标系.由题意,可得点C (0,0,0),A (2,0,0),B (0,2,0),D (2,0,2),A 1(2,0,4),C 1(0,0,4).于是,1DC =(-2,0,2),DC =(-2,0,-2),DB =(-2,2,-2).可算得1DC DC ⋅ =0,1DC DB ⋅ =0.因此,DC 1⊥DC ,DC 1⊥DB .又DC ∩DB =D ,所以DC 1⊥平面BDC .(2)设n =(x ,y ,z )是平面ABD 的法向量,又AB =(-2,2,0),AD =(0,0,2),2x +2y =0,z =0.取y =1=1,=1,=0,即平面ABD 的一个法向量是n =(1,1,0).由(1)知,1DC 是平面DBC 的一个法向量,记n 与1DC 的夹角为θ,则cos θ=-12,θ=2π3.结合三棱柱可知,二面角A -BD -C 是锐角,故所求二面角A -BD -C 的大小是π3.2.如图1,在Rt △ABC 中,∠ACB =30°,∠ABC =90°,D 为AC 中点,AE ⊥BD 于点E ,延长AE 交BC 于点F ,将△ABD 沿BD 折起,使平面ABD ⊥平面BCD ,如图2所示.12(1)求证:AE ⊥平面BCD ;(2)求二面角A -DC -B 的余弦值;(3)在线段AF 上是否存在点M 使得EM ∥平面ADC ?若存在,请指明点M 的位置;若不存在,请说明理由.【答案】详见解析【解析】(1)证明:因为平面ABD ⊥平面BCD ,交线为BD ,又在△ABD 中,AE ⊥BD 于点E ,AE ⊂平面ABD ,所以AE ⊥平面BCD.(2)由(1)中AE ⊥平面BCD 可得AE ⊥EF .由题意可知EF ⊥BD ,又AE ⊥BD ,如图,以E 为坐标原点,分别以EF ,ED ,EA 所在直线为x 轴、y 轴、z 轴,建立空间直角坐标系E -xyz ,不妨设AB =BD =DC =AD =2,则BE =ED =1.由图1条件计算得AE =3,BC =23,BF =3,则E (0,0,0),D (0,1,0),B (0,-1,0),A (0,0,3),,C (3,2,0),DC =(3,1,0),AD =(0,1,-3).由AE ⊥平面BCD 可知平面DCB 的法向量为EA ,EA =(0,0,3),设平面ADC 的法向量为n =(x ,y ,z ),+y =0,-3z =0.令z =1,则y =3,x =-1,所以n =(-1,3,1).因为平面DCB 的法向量为EA ,所以cos 〈n ,EA 〉==55.所以二面角A -DC -B 的余弦值为55.(3)设AM =λAF ,其中λ∈[0,1].由于AF所以AM =λAF =0λ∈[0,1].所以EM EA AM =+=3,0,(13λλ⎛- ⎝.由EM ·n =0,即-33λ+(1-λ)3=0,解得λ=34∈[0,1].所以在线段AF 上存在点M 使EM ∥平面ADC ,且AM AF =34.3.在三棱柱ABC -A 1B 1C 1中,侧面ABB 1A 1为矩形,AB =1,AA 1=2,D 为AA 1的中点,BD 与AB 1交学魁榜于点O ,CO ⊥侧面ABB 1A 1.(1)证明:BC ⊥AB 1;(2)若OC =OA ,求直线C 1D 与平面ABC 所成角的正弦值.【答案】详见解析【解析】(1)证明:由题意tan ∠ABD =AD AB =22,tan ∠AB 1B =AB BB 1=22,注意到0<∠ABD ,∠AB 1B <π2,所以∠ABD =∠AB 1B .所以∠ABD +∠BAB 1=∠AB 1B +∠BAB 1=π2.所以AB 1⊥BD .又CO ⊥侧面ABB 1A 1,所以AB 1⊥CO .又BD 与CO 交于点O ,所以AB 1⊥面CBD .又因为BC ⊂面CBD ,所以BC ⊥AB 1.(2)如图,分别以OD ,OB 1,OC 所在的直线为x 轴、y 轴、z 轴,以O 为原点,建立空间直角坐标系O -xyz ,则,-33,-63,0,,0B 1,233,,D0,.又因为CC 1→=2AD →,所以C ,233,所以AB -63,33,AC ,33,1DC ,233,设平面ABC 的法向量为n =(x ,y ,z ),则根据AB ·n =0,AC ·n =0可得n =(1,2,-2)是平面ABC 的一个法向量,设直线C 1D 与平面ABC 所成角为α.则sin α=35555.。

相关文档
最新文档