曝气池中的指标控制

合集下载

污水处理中溶解氧的关键因素

污水处理中溶解氧的关键因素

污水处理中溶解氧的关键因素
本文将介绍溶解氧在污水处理中的重要性和如何合理控制溶解氧的含量。

一、溶解氧的定义及理解
溶解氧是指水体中溶解的氧气含量。

在污水处理过程中,溶解氧是一个关键指标,它直接影响到活性污泥中的微生物的生长和代谢。

理论上,当曝气池各点监测到的DO值略大于0(如0.01mg/L)时,可以理解为充氧正好满足活性污泥中微生物对溶解氧的要求。

然而,实际上,为了保守的稳定活性污泥在分解有机物或自身代谢过程中对溶解氧的需求,通常将DO控制在1~3mg/L的范围内。

二、溶解氧对处理效果的影响
高溶解氧会加快微生物的代谢作用。

当曝气池处于高食微比运行状态时,维持相对较高的溶解氧是有利的,可加快废水中有机物的降解速率。

相反,当食微比不足时,应控制相对较低的溶解氧浓度,降低内源代谢的速率,以避免污泥老化及污泥解絮现象的发生,同时也可以降低电耗和节约运行成本。

三、溶解氧的控制方法
在污水处理过程中,需要根据不同的工艺要求和实际情况,对溶解氧进行严格控制。

具体方法包括:调整曝气系统的运行参数如曝气量、曝气时间等来控制溶解氧的浓度;同时要定期检测溶解氧的浓度,以及时调整曝气系统的运行参数。

此外,还可以通过调节进水水质和污泥浓度来控制溶解氧的含量。

四、总结
在污水处理过程中,溶解氧的控制具有举足轻重的作用。

合理控制溶解氧的含量可以提高污水处理效率、降低能耗并保障出水的质量。

因此,在实际操作中,需要充分考虑原水水质、活性污泥浓度、食微比等因素,结合实际情况把握好溶解氧的控制。

二十个污水处理关键参数控制指标,收藏!

二十个污水处理关键参数控制指标,收藏!

作者:一气贯长空二十个污水处理关键参数控制指标,收藏!一、BOD5生物化学需氧量表示在20℃下,5d微生物氧化分解有机物所消耗水中溶解氧量。

第一阶段为碳化(C-BOD),第二阶段为消化(N-BOD)。

BOD的意义:1、生物能氧化分解的有机物量;2、反映污水和水体的污染程度;3、判定处理厂效果;4、用于处理厂设计;5、污水处理管理指标;6、排放标准指标;7、水体水质标准指标。

二、CODMn /CODCr化学需氧量表示氧化剂有KMnO4和K2Cr2O7。

COD测定简便快速,不受水质限制,可以测定含有生物有毒的工业废水,是BOD的代替指标。

也可以看作还原物的量。

CODCr可近似看作总有机物量,CODCr-BOD差值表示污水中难被微生物分解的有机物,用BOD/CODCr比值表示污水的可生化性,当BOD/CODCr≥0.3时,认为污水的可生化性较好;当BOD/CODCr<0.3时,认为污水的可生化性较差,不宜采用生物处理法。

三、SS悬浮物质水中悬浮物测定用2mm的筛通过,并且用孔径为1μm的玻璃纤维滤纸截留的物质为SS。

交替物质在滤液(溶解性物质)和截留悬浮物中均含有,但大多数认为胶体物质和悬浮物质一样被滤纸截留。

四、TS蒸发残留物水样经蒸发烘干后的残留量,在105-110℃下将水样蒸发至干时所残余的固体物质总量。

溶解性物质量等于蒸发残留物减去悬浮物质量。

五、灼烧碱量(VTS)(VSS)蒸发残留物或悬浮物质在600℃±25℃经30min高温挥发的物质,表示有机物量(前者为VTS,后者为VSS),蒸发残留物灼烧减量的差称为灼烧残渣,表示无机物部分。

六、总氮、有机氮、氨氮、亚硝酸盐氮、硝酸盐氮氮在自然界以各种形态进行着循环转换。

有机氮如蛋白质水解为氨基酸,在微生物作用下分解为氨氮,氨氮在硝化细菌作用下转化为亚硝酸盐氮(NO2-)和硝酸盐氮(NO3-);。

污泥负荷的计算、控制及与其他指标的关系

污泥负荷的计算、控制及与其他指标的关系

污泥负荷F/M的计算、控制及与其他指标的关系一、污泥负荷的计算及一般控制区间1、什么是污泥负荷、承受负荷和去除负荷?如何计算?污泥负荷是指单位质量的污泥微生物在一定时间内所得基质的量,单位为kgCOD( BOD) /(kgMLSS·d)。

污泥负荷在微生物代谢方面的含义就是F/M比值,它代表了微生物量与食物量之间的一种平衡关系,直接影响活性污泥的增长速率、有机污染物的去除效果效率、氧的利用率以及污泥的沉降性能。

污泥负荷(F以BOD5表示,M以MLSS表示)的计算公式如下:F/M==(BOD5×Q)/曝气池中活性污泥总量其中,曝气池中活性污泥总量=曝气池有效容积×MLSS。

(由于一些污水厂没有条件测定BOD5,所以污泥负荷计算也可用CODcr 来取代BOD5。

因为就某一处理装置而言,其污水的BOD5/COD一般情况下是相对稳定的。

)此处需要特别说明的是,上面我们所介绍的污泥负荷只是大致反映了曝气池中单位质量的活性污泥每天所能接纳的BOD5量,而不能反映所能去除的BOD5量。

因此,在实际的运行管理中应采用污泥的BOD5去除负荷。

二者的计算不同在于:前者的F用曝气池每天进水BOD5的总量表示,是污泥的承受负荷;而后者的F用曝气池每天去除的BOD5的总量表示,是污泥的去除负荷。

在日常运行管理中,后者往往更具指导意义,能反映出处理装置的实际处理能力。

2、F/M的一般控制区间数据来源/《活性污泥法工艺控制》:F/M参考控制值值得一提的是,上图提到的这些控制区间数据,仅可用于参考,并不能作为定理或者切实准确的标准。

毕竟,随着环保政策越来越严格,国家对出水标准也提出了更高的要求,这就迫使我们把生化处系统的F/M必须控制得更低,否则很难做到达标排放。

当然,维持较低F/M时,也会出现很多不良表现。

在低负荷情况下的不良表现——曝气池和二沉池容易产生浮渣;放流水容易夹带颗粒物;有水力货荷冲击时,容易导致活性污泥流出二沉池。

20个污水处理关键参数控制指标

20个污水处理关键参数控制指标

20个污水处理关键参数控制指标一、BOD5生物化学需氧量表示在20℃下,5d微生物氧化分解有机物所消耗水中溶解氧量。

第一阶段为碳化(C-BOD),第二阶段为消化(N-BOD)。

BOD的意义:1、生物能氧化分解的有机物量;2、反映污水和水体的污染程度;3、判定处理厂效果;4、用于处理厂设计;5、污水处理管理指标;6、排放标准指标;7、水体水质标准指标。

二、CODMn /CODCr化学需氧量表示氧化剂有KMnO4和K2Cr2O7。

COD测定简便快速,不受水质限制,可以测定含有生物有毒的工业废水,是BOD的代替指标。

也可以看作还原物的量。

CODCr可近似看作总有机物量,CODCr-BOD差值表示污水中难被微生物分解的有机物,用BOD/CODCr比值表示污水的可生化性,当BOD/CODCr≥0.3时,认为污水的可生化性较好;当BOD/CODCr<0.3时,认为污水的可生化性较差,不宜采用生物处理法。

三、SS悬浮物质水中悬浮物测定用2mm的筛通过,并且用孔径为1μm的玻璃纤维滤纸截留的物质为SS。

交替物质在滤液(溶解性物质)和截留悬浮物中均含有,但大多数认为胶体物质和悬浮物质一样被滤纸截留。

四、TS蒸发残留物水样经蒸发烘干后的残留量,在105-110℃下将水样蒸发至干时所残余的固体物质总量。

溶解性物质量等于蒸发残留物减去悬浮物质量。

五、灼烧碱量(VTS)(VSS)蒸发残留物或悬浮物质在600℃±25℃经30min高温挥发的物质,表示有机物量(前者为VTS,后者为VSS),蒸发残留物灼烧减量的差称为灼烧残渣,表示无机物部分。

六、总氮、有机氮、氨氮、亚硝酸盐氮、硝酸盐氮氮在自然界以各种形态进行着循环转换。

有机氮如蛋白质水解为氨基酸,在微生物作用下分解为氨氮,氨氮在硝化细菌作用下转化为亚硝酸盐氮(NO2-)和硝酸盐氮(NO3-);另外,NO2-和NO3-在厌氧条件下在脱氮菌(反硝化细菌)作用下转化为N2。

污水处理常用指标定义

污水处理常用指标定义

污水处理常用指标定义引言概述:污水处理是保护环境、维护人类健康的重要环节。

为了评估污水处理的效果,我们需要使用一些常用指标来衡量。

本文将详细介绍污水处理中常用的指标定义及其意义。

一、污水处理效果指标1.1 水质指标水质指标是衡量污水处理效果的重要标准之一。

常用的水质指标包括化学需氧量(COD)、生化需氧量(BOD)、总悬浮物(TSS)等。

其中,COD反映了水中有机物的含量,BOD表示水中有机物的生物降解能力,TSS则代表水中悬浮物的浓度。

这些指标的测量结果可以匡助我们评估污水处理工艺的效果,并根据需要进行调整。

1.2 氨氮指标氨氮是污水中常见的一种污染物,其含量高低直接关系到水体的富营养化程度。

氨氮指标可以反映污水处理过程中对氨氮的去除效果。

通常,我们使用氨氮总量(NH3-N)和氨氮氮化物(NH4+-N)两个指标来评估污水中氨氮的含量。

通过监测和控制氨氮指标,可以有效减少水体富营养化的风险。

1.3 pH值指标pH值是衡量水体酸碱性的指标,也是污水处理中常用的指标之一。

污水处理过程中,pH值的变化会影响到污水中有机物的降解速率、细菌的生长繁殖等。

因此,监测和调控污水处理过程中的pH值是确保处理效果稳定的重要手段。

二、污水处理工艺指标2.1 水力停留时间(HRT)水力停留时间是指污水在污水处理系统中停留的平均时间。

它是评估污水处理工艺效果的重要指标之一。

通过控制HRT,可以调整污水处理系统的处理能力和处理效果。

2.2 曝气量指标曝气量是指在曝气池中加入的气体量,通常用气体流量来表示。

曝气量是衡量曝气系统工艺性能的重要指标之一。

适当的曝气量可以提供足够的氧气供给微生物降解有机物,从而提高处理效果。

2.3 混合方式指标混合方式是指污水处理系统中混合池的混合方式。

混合方式的选择直接影响到污水处理过程中物质的传质和反应速率。

常用的混合方式包括机械搅拌、气液混合、液体循环等。

通过选择合适的混合方式,可以提高污水处理系统的效果。

AO工艺主要参数指标的控制

AO工艺主要参数指标的控制

A/O工艺主要参数指标的控制!污水处理的运行需要众多控制参数的合理调控,只有这样,才能保证处理工艺的正常、高效运行。

本文详细介绍A/O(脱氮)工艺主要参数指标的控制!1、pH值一般污水处理系统可承受的pH值变动范围为6~9,超出范围需进行投加化学调和剂调整;pH值过小会造成混凝絮体小、生物处理中原生动物活动减弱;过大则体现为混凝絮体粗大,出水浑浊,活性污泥解体,原生动物死亡。

对于生活污水,pH值一般符合要求,不需人为调控。

2、B/CB/C即系统进水的可生化性,数值上为同一样品的BOD5与COD的比值。

对于二级污水处理厂,B/C表征污水成分是否满足生物处理的要求。

对于活性污泥系统,一般认为B/C≥0.3,为可生化性良好,生物处理发挥作用。

而可生化性<0.3时,污水中有机物含量不足,无法满足生物处理中微生物生长的需要,生物处理效率低下,此时,调控方法是向污水中投加有机营养源。

3、水力停留时间HRTHRT即平均水力停留时间,指待处理污水在反应器内的平均停留时间,也就是污水与生物反应器内微生物作用的平均反应时间,为反应器有效容积与进水量的比值。

对于生物处理,HRT要符合相应工艺要求,否则水力停留时间不足,生化反应不完全,处理程度较弱;水力停留时间过长则会导致系统污泥老化。

表1 不同污水处理工艺HRT当处理效果不佳时,可参照设计值进行HRT的校核,校核水力停留时间时,水量应该算上污泥回流量与内回流量等。

若HRT过小,应缓慢减小污水量,过大则缓慢加大污水量。

注意,污水量的增减都应缓慢变动,否则造成系统的冲击负荷;由于污水处理任务艰巨,不要轻易减小进厂污水量,而是在回流量上做出调整。

4、污泥浓度MLSS及MLVSSMLSS为活性污泥浓度,MLVSS为挥发性活性污泥浓度,一般占MLSS 的55%~75%,可以概指为污泥中的有机成分。

它们是计量曝气池中活性污泥数量多少的指标。

活性污泥浓度表征生物池中微生物生长平衡情况,活性污泥控制在多少,主要是根据食微比进行核算,一般控制在2000~4000mg/L。

使好氧曝气池正常的方法

使好氧曝气池正常的方法

使好氧曝气池正常的方法
使好氧曝气池正常运作的方法包括以下几点:
1.控制温度:好氧活性污泥微生物能正常生理活动的最适宜温度范围是
15-30℃。

一般水温低于10℃或高于35℃时,都会对好氧活性污泥的功能产生不利影响。

因此,在实际生产运行中,要重视水温的突然变化,尤其是水温的突然升高。

为防止水温过高的工业废水对好氧生物处理产生不利影响,应进行降温处理。

2.保持适宜的溶解氧:好氧池中溶解氧的浓度应该保持在2-4mg/L的范围内,以保证微生物的正常生长和代谢。

3.控制进水水质:进水中的有机物浓度和氨氮浓度应该控制在适宜的范围内,以避免对微生物的生长和代谢产生不利影响。

4.定期排泥:好氧池中的污泥应该定期排出,以防止污泥过度积累和老化,影响微生物的生长和代谢。

5.定期监测:定期对好氧池中的溶解氧、pH值、有机物浓度、氨氮浓度等指标进行监测,及时发现问题并进行调整。

曝气池空气管材质改进有效提升曝气池运行周期的可行性探讨

曝气池空气管材质改进有效提升曝气池运行周期的可行性探讨

曝气池空气管材质改进有效提升曝气池运行周期的可行性探讨摘要:曝气池是化工污水处理装置生化系统的核心工艺构筑物,池内曝气设施一旦出现故障,将影响曝气池有机污染物的去除效果,造成出水水质波动。

本文通过对2015年以来曝气设施损坏原因的综合分析,提出空气管材质改进和曝气器安装方式优化的建议。

通过实施,有效提升了曝气池运行周期,确保装置生化系统的稳定运行。

关键词:曝气池;曝气器;空气管;ABS;断裂;碳钢;改进一、装置曝气设施综述曝气池是化工污水处理装置生化系统的核心工艺构筑物。

污水从A/O池经过硝化与反硝化后进入曝气池,在溶解氧的作用下,池中好氧微生物与水中有机污染物发生生物化学反应,降解成简单的有机物或无机物,从而使污水得到净化。

曝气池工艺控制指标为溶解氧,指标范围2.5—6mg/L。

在曝气设施运行良好的情况下,曝气池有机污染物去除效率可以达到60%。

装置2003年扩能扩容改造,曝气池和A/O池O段水下空气管及配件均采用ABS工程塑料。

二、曝气设施故障形式及原因分析(一)故障形式1、曝气器表面微孔堵塞曝气器为高分子聚乙烯全塑结构,表面密布微孔,孔隙率大,正常使用寿命为5年。

当池内出现异常供风或暂停供风时,易发生曝气器表面微孔被活性污泥附着或堵塞的故障。

通过适当调整鼓风机供气量,降低曝气池液位增加压差,可以恢复曝气器功效。

2、个别曝气器脱落由于风压变化、管道振动、支架脱落、材料疲劳等原因,会造成个别曝气器脱落。

每个曝气器的理论服务面积仅为1.5~2m2,因此个别脱落对整间曝气池运行影响不大。

但是当供风管道材质为ABS时,影响程度会逐渐加深,甚至对整段空气盘管的稳定性造成影响。

3、水下ABS空气管断裂此类型故障呈突发性、多发性的特征,对曝气池稳定运行影响较大。

当池底ABS空气管发生断裂时,部分断裂管线浮出水面,水下断口则形成泄压放空点,池面翻滚。

被迫关闭格间空气支阀会直接导致格间水面静止,大量活性污泥失效沉降,形成淤泥,最终此格间曝气器全部失效,从而影响到整间曝气池的运行效果。

生化池(曝气池)运行管理

生化池(曝气池)运行管理

生化池(曝气池)运行管理一、调试阶段1、接种菌种接种菌种是指利用微生物生物消化功能的工艺单元,如主要有水解、厌氧、缺氧、好氧工艺单元,接种是对上述单元而言的。

依据微生物种类的不同,应分别接种不同的菌种。

接种量的大小:厌氧污泥接种量一般不应少于水量的8-10%,否则,将影响启动速度;好氧污泥接种量一般应不少于水量的5%。

只要按照规范施工,厌氧、好氧菌可在规定范围正常启动。

启动时间:应特别说明,菌种、水温及水质条件,是影响启动周期长短的重要条件。

一般来讲,低于20℃的条件下,接种和启动均有一定的困难,特别是冬季运行时更是如此。

因此,建议冬季运行时污泥分两次投加,以每天6000m3为例,建议第一期,在水解和好氧池中各投加12t活性污泥(注意应采取措施防止无机物污泥进入),投加后按正常水位条件,连续闷曝(曝气期间不进水)3-7d后,检查处理效果,在确定微生物生化条件正常时,方可小水量连续进水20-30d,待生化效果明显或气温明显回升时,再次向两池分别投加10-20t活性污泥,生化工艺才能正常启动。

菌种来源,厌氧污泥主要来源于已有的厌氧工程,如汉斯啤酒厌氧发酵工程、农村沼气池、鱼塘、泥塘、护城河清淤污泥;好氧污泥主要来自城市污水处理厂,应拉取当日脱水的活性污泥作为好氧菌种。

2、驯化培养a、驯化条件一般来讲,微生物生长条件不能发生骤然的突出变化,常规讲要有一个适应过程,驯化过程应当与原生长条件尽量一致,当做不到时,一般用常规生活污水作为培养水源,果汁废水因浓度较高不能作为直接培养水,需要加以稀释,一般控制COD负荷不高于1000-1500mg/L 为宜,这样需要按1:1(生活污水:果汁废水)或2:1配制作为原始驯化水,驯化时温度不低于20℃,驯化采取连续闷曝3-7d,并在显微镜下检查微生物生长状况,或者依据长期实践经验,按照不同的工艺方法(活性污泥、生物膜等),观察微生物生长状况,也可用检查进出水COD大小来判断生化作用的效果。

环境工程学

环境工程学

1、废水的混凝机理。

答:压缩双电层、吸附电中和作用、吸附架桥作用、网捕作用2、按照微生物的生长方式,废水生物处理方法。

答:好氧悬浮生长处理、好痒附着生长处理3、已知某完全混合式活性污泥曝气池的进水BOD5浓度为100mg/L,测得曝气池混合液中的BOD5为22mg/L,曝气池出水BOD5浓度时多少。

4、曝气方式。

答:鼓风曝气、机械曝气5、影响微生物生长的环境因素。

6、按照长生微气泡的方式,气浮法分类。

7、水力停留时间HRT的英文全称。

答:Hydraulic Retention Time8、混合液悬浮固体浓度MLSS的英文全称。

9、生化需氧量BOD的英文全称。

10、溶解氧DO的英文全称。

11、污泥停留时间SRT的英文全称。

12、曝气生物滤池BAF的英文全称。

13、Sludge age。

16、污泥负荷率SLR。

二、选择题1、理想沉淀池中,颗粒的沉降是(A)。

A、自由沉降B、絮凝沉降C、成层沉降D、压缩沉降2、废水中乳化油的最适宜去除方法是(B)。

A、隔油B、气浮C、萃取D、气提3、下述生化处理中,氧利用率最高的是(D)。

A、接触氧化法B、活性污泥法C、延迟曝气法D、深井曝气法4、活性污泥曝气池的污泥容积指数SVI处于(A)范围是,污泥沉淀性能良好。

A、50<SVI<100B、SVI=100~200C、SVI>200D、SVI>3005、采用中温发酵对废水进行厌氧处理,其适宜温度范围为()。

A、10~30℃B、35~38℃C、32~42℃D、50~55℃6、下列生物处理工艺中,不属于活性污泥法工艺的是:(B)。

A、SBR工艺B、生物接触氧化法工艺C、CASS工艺D、AB工艺7、废水中胶体的s 电位(B),表示该废水易于混凝处理。

A、越高B、越低8、在好氧处理工程中,BOD:N:P比例宜控制在(A)。

A、100:5:1B、(200~300):5:1C、50:5:1D、150:5:19、氧化沟中采用的曝气器通常是(D)。

污泥沉降性SV30曝气池控制主要因素

污泥沉降性SV30曝气池控制主要因素

污泥沉降性SV30曝气池控制主要因素
污泥沉降性SV30 是指曝气池混合液静止30min 后污泥所占体积,体积少,沉降性好,城市污水厂SV30 常在15-30%之间。

污泥沉降性能与絮粒直径大小有关,直径大沉降性好,反之亦然。

污泥沉降性还与污泥中丝状菌数量有关,数量多沉降性差,数量少沉降性好。

污泥沉降性能还与其它几个指标有关,它们是污泥体积指数(SVI),混合液悬浮物浓度(MLSS)、混合液挥发性悬浮浓度(MLVSS)、出水悬浮物(ESS)等。

测定水质指标来指导运行:BOD/COD 之值是衡量生化性重要指标,BOD/COD≥0.25 表示可生化性好,BOD/COD≤0.1 表示生化性差。

进出水BOD/COD 变化不大,BOD 也高,表示系统运行不正常;反之,出水的BOD/COD 比进水BOD/COD 下降快,说明运行正常。

出水悬浮物(ESS)高,ESS≥30mg/l 时则表示污泥沉降性不好,应找原因纠正,ESS≤30mg/l 则表示污泥沉降性能良好。

(4)曝气池控制主要因素:
1.维持曝气池合适的溶解氧,一般控制1-4mg/l,正常状态下监测曝气池出水端DO 2mg/l 为宜。

2.保持水中合适的营养比,C(BOD):N:P=100 : 5:1
3.维持系统中污泥的合适数量,控制污泥回流比,依据不同运行方式,回流比在0-100%之间,一般不少于30-50%。

污泥形状异常及分析。

污水处理厂项目可持续影响指标

污水处理厂项目可持续影响指标

污水处理厂项目可持续影响指标一、污水的物理性质指标1、温度对污水、污泥的物理性质、化学性质及生物性质有着直接影响。

在活性污泥系统的曝气池中,主要依靠大量活性微生物(菌胶团)进行处理,他们比较适合的温度一般在20~30℃左右,因此,如果要保证较好的有机物处理效果,温度应该尽可能的控制在20~30℃左右。

温度监测在现场进行,常用的方法有水温计法、深水温计法、颠倒温度计法和热敏温度计法。

2、色度城市污水处理厂的污水与工业废水的污水不同,其色度并不是很明显,但是并不说对于色度的监测不重要。

其实,通过对进入污水处理厂的污水颜色的观察,可以判断污水的新鲜程度。

通常,新鲜的城市污水呈灰色,可是如果在管道输送过程中厌氧腐败,DO很少,则污水呈黑色并带有臭味。

另外,在我国,由于通常采用将工业废水与生活污水合流排放的排水体制,所以有时城市污水厂的色度有时有较大差异。

色度给人以不悦的感觉,我国对于污水厂排放标准中对于色度有排放要求,因此,如果进水的色度较大时,出水的监测指标中色度应该予以重视。

3、臭味水中臭味主要来自有机质的腐败产生的,也会给人带来不快,甚至会影响到人体生理,呼吸困难、呕吐等。

因此,臭味是比较重要的物理指标,不过,目前污水厂并没有对臭味进行专门的监测。

二、污水的化学(包括生化)性质指标污水水质化学指标有悬浮物、pH、碱度、重金属离子、硫化物、生化需氧量、化学需氧量、总需氧量、总有机碳、有机氮、溶解氧等等。

1、化学需氧量(COD)化学需氧量(COD),是在一定的条件下,采用一定的强氧化剂处理水样时,所消耗的氧化剂量。

它是表示水中还原性物质多少的一个指标。

水中的还原性物质有各种有机物、亚硝酸盐、硫化物、亚铁盐等。

但主要的是有机物。

因此,化学需氧量(COD)又往往作为衡量水中有机物质含量多少的指标。

化学需氧量越大,说明水体受有机物的污染越严重。

COD的测定是污水处理厂日常主要监测项目,通过对不同构筑物的进出水COD的测定,可以准确掌握构筑物的运行情况,通过对一段时期的数据分析,可以对构筑物的运行进行适当调整,以便保证污水的处理效果。

06污水处理中需控制的主要水质指标及意义(1.5h)

06污水处理中需控制的主要水质指标及意义(1.5h)

流和其他相应调整,使曝
气池中的污泥维持所需的 浓度范围。
2、一般物化指标
6.污泥体积指数(SVI) 概念及表示方法
污泥体积指数是指曝气池混合液经30min沉淀后,相应的1g干污泥 所占的容积(以mL计),单位mL/g 。即: SVI=SV30/MLSS。
意义及影响
SVI值是判断污泥沉降浓缩性能的一个常用参数。 污泥体积指数过低:说明泥粒细小,无机质含量高,缺乏活性,可能 是水体中营养元素缺失导致; 污泥体积指数过高:说明污泥的沉降性能不好,并且已有产生膨胀现 象的可能。
BOD5/CODcr>0.45,生化性较好; BOD5/CODcr>0.30,可生化; BOD5/CODcr<0.30,较难生化; BOD5/CODcr<0.25,不宜生化。
2、一般物化指标
9.溶解氧(DO) 概念及表示方法
溶解于水中的游离氧称为溶解氧,用DO表示,常以O2mg/L、mL/L等 单位来表示,一般用碘量法测定。
讲,应该说SS包括污泥浓度,对于同一股进水,不能比较SS和 MLSS值的大小,原因同上,即 MLSS并不能用来表达原水中的悬浮 物浓度,而仅仅用于表达生物反应器及其后沉淀池中悬浮物浓度。 MLSS:混合液中总的悬浮固体浓度,由两部分组成,MLVSS和不 可挥发部分,即MLSS=MLVSS+不可挥发部分。 MLVSS:混合液中可挥发性的悬浮固体浓度,代表活性微生物的量
控制范围
“5749”规定不超过3度,特殊情况不超过5度。
1、感官性状指标
浊度的去除方法 絮凝沉淀法:可用酰胺胶体与聚合氯化铝按比例溶入,静候段时间会 将水中悬浮物絮凝,进而沉淀。 过滤法:使用碳滤、砂滤或者膜过滤装置都能起到相应的效果。

曝气池需氧量与供气量的计算

曝气池需氧量与供气量的计算

曝气池需氧量与供气量的计算
按照曝气的方式不同,曝气池的分类也各不相同,一般情况下,我们可以分为推流式曝气池和完全混合型曝气池两种,各种不同的曝气方式设计的参数也是不相同的,这主要是根据实际条件来进行相应的调整。

曝气设备的选择则是经济效益和运行成本控制的关键。

1、需氧量
活性污泥的正常运行,除需要有性能良好的活性污泥以外,还需要进行充足的氧气供应,活性污泥法处理系统的日平均需氧量(O2)可按公式1/θC=YNs-Kd计算,去除1kgBOD5的需氧量(ΔO2)根据下式计算,也可根据经验数据选用。

ΔO2=/Ns
废水a’、b’的值和部分工业废水的a’、b’值可以从表1、表2选取。

2、供气量
在需氧量确定以后,取一定的安全系数,得到实际需氧量(Ra),并转化为标准状态需氧量(Ro)。

公式如下:
Ro=RaCs/[α(βρCS(T)-CT)×1.024(T-20)]
式中:
CS——在1.03×105Pa条件下氧的饱和浓度,mg/LX——混合液挥发性悬浮固体,(MLVSS)浓度mg/L
在实际工程中,所需要的空气量比标准条件下所需要的空气量要多33%~61%,具体在。

ao系统中sv30控制标准

ao系统中sv30控制标准

ao系统中sv30控制标准
AO系统中SV30的控制标准通常是根据活性污泥的沉降性能和污泥龄来确定的。

SV30是指曝气池混合液在量筒静止,沉降30分钟后污泥所占的体积百分比。

这个指标是通过观察和测量曝气池中的混合液在静止和沉降后,污泥的体积变化来计算得出的。

在AO系统中,SV30值通常控制在一定的范围内,以确保活性污泥的沉降性能良好,同时维持较长的污泥龄。

这有助于促进活性污泥的生长和降解有机物的能力。

需要注意的是,SV30只是评估活性污泥处理效果的一个指标之一,还需要结合其他指标如MLSS(最大负荷生物浓度)、COD(化学需氧量)等进行综合分析。

因此,在AO系统中,SV30的控制标准需要根据实际情况进行调整和优化,以实现最佳的处理效果。

污水的基本概念及控制指标

污水的基本概念及控制指标

一、污水的基本概念污水是生活污水、工业废水、被污染的雨水的总称。

1、生活污水:人类在口常生活中使用过的,并被生活废料所污染的水。

2、工业废水:是在工矿企业生产活动中用过的水,分为生产污水与生产废水。

生产污水:是指在生产过程中形成、并被生产原料、半成品或成品等废料所污染,也包括热污染(指生产过程中产生的、水温超过60℃的水);生产废水:是指在生产过程中形成.但未直接参与生产工艺、未被生产原料、半成品或成品污染或只是温度稍有上升的水。

区别:生产污水需要进行净化处理;生产废水不需要净化处理或仅需作简单的处理,如冷却处理.3、被污染的雨水:主要是指初期雨水。

由于初期雨水冲刷了地表的各种污物,污染程度很高,故宜作净化处理。

城市污水:生活污水与生产污水(或经工矿企业局部处理后的生产污水)的混合污水。

二、污水的物理性质及指标污水的主要物理性质及指标有:水温、色度、臭味、固体含量1、水温:污水的水温,对污水的物理性质、化学件质及生物性质有直接的影响,所以水温是污水水质的重要物理性质指标之一. 通常生物处理要控制水温在5-35℃之间。

2.色度:是用来衡量水的颜色的指标,可由悬浮固体、胶体或溶解物质形成。

表色:悬浮固体形成的色度真色:胶体或溶解物质形成的色度。

水体色度加深,使透光性减弱,影响水生生物的光合作用,抑制其生长繁殖,妨碍水体的自净作用.3.臭味:生活污水的臭味主要由有机物腐败产生的气体造成.工业废水的臭味主要由挥发性化合物造成。

4.固体含量:固体含量用总固体量(TS)作为指标总固体量:把定量水样在105—110℃烘箱中烘干至恒重,所得的重量按存在形态的不同可分为:悬浮的、胶体的和溶解的按性质的不同可分为:有机物、无机物与生物体悬浮固体(SS):又作悬浮物,把水样用滤纸过滤后,被滤纸截留的滤渣,在105—110℃烘箱中烘干至恒重,所得重量称为悬浮固体细分散悬浮固体:颗粒粒径在0.1-1. 0μm之间;粗分散悬浮固体:颗粒粒径大于1.0 μ m者。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1曝气池MLSS或MLVSS数值怎样控制为好曝气池混合液须维持相对固定的污泥浓度MLSS,才能维持好处理效果和处理系统稳定运行。

每一种好氧活性污泥法处理工艺都有其最佳曝气池的MLSS,比如普通空气曝池活性污泥的MLSS最佳值为2g/L左右,而AB法工艺A段的MLSS最佳值为5g/L左右,两者差距很大。

一般而言,曝气池中MLSS接近其最佳值时,处理效果最好。

而MLSS过低时往往达不到预期的处理效果。

当MLSS过高时,泥龄延长,维持这些污泥中微生物正常活动所需的溶解氧数会增加许多,导致对充氧系统能力的要求增大。

同时曝气池混合液的密度会增大,阻力增大,也就会增加机械曝气或鼓风曝气的电耗。

也就是说,虽然MLSS偏高时,可以提高曝气池对进水水质变化和冲击负荷的抵抗能力,但在运行上往往是不经济的。

而且有时还会导致污泥过度老化,活性下降,最后甚至影响处理水质。

在实际运行时,有时需要通过加大剩余污泥排放的方式强制减少曝气池的MLSS值,刺激曝气池混合液中的微生物的生长和繁殖,提高活性污泥分解氧化有机物的活性。

2什么是曝气池混合液污泥沉降比(SV)有什么作用污泥沉降比(SV)的英文是Settling Velocity,又称30min沉降率,是曝气池混合液在量筒内静置30min后所形成的沉淀污泥容积占原混合液容积的比例,以%表示。

一般取混合液样1000m1,用满量程1000m1量筒测量,静置30min后泥面的高度恰好就是SV的数值。

由于SV值的测定简单快速,因此是评定活性污泥浓度和质量的常用方法。

SV值能反映曝气池正常运行时的污泥量和污泥的凝聚性、沉降性能等。

可用于控制剩余污泥排放量,SV的正常值一般在15%-30%之间,低于此数值区说明污泥的沉降性能好,但也可能是污泥的活性不良。

可少排泥或不排泥或加大曝气量。

高于此数值区,说明需要排泥操作,或应采取措施加大曝气量,也可能是丝状菌的作用使污泥发生膨胀,需加大进泥量或减少曝气量。

3观测SV值时污泥的表观现象说明了什么(1)污泥沉淀30-60min后呈层状上浮且水质较清澈。

说明活性污泥反应功能较强,产生了硝化反应,形成了较多的硝酸盐,在曝气池中停留时间较长,进人二沉池中发生反硝化,产生气态氮;使一些污泥絮体上浮。

可通过减少曝气量或减少污泥在二沉池的停留时间来解决。

(2)在量筒中上清液含有大量的悬浮状微小絮体,而且透明度差、混浊。

说明是污泥解体,其原因有曝气过度、负荷太低造成活性污泥自身氧化过度、有害物质进入等。

可减少曝气量,或增大进泥量来解决。

(3)在量筒中泥水界面分不清,水质混浊其原因可能是流人高浓度的有机废水,微生物处于对数增长期,使形成的絮体沉降性能下降,污泥发散。

可采取加大曝气量,或延长污水在曝气池中的停留时间来解决。

4什么是污泥容积指数(SVI)污泥容积指数(SVI)的英文是Sludge Volume Index,是指曝气池出口处混合液经过30min静置沉淀后,每克干污泥所形的沉淀污泥所占的容积。

单位以ml/g计。

计算公式如下:SVI与SV值的关系:SVI值排除了污泥浓度对污泥沉降体积的影响,因而比SV值能更准确地评价和反映活性污泥的凝聚、沉淀性能。

一般来说,SVI值过低说明污泥颗粒细小,无机物含量高,缺乏活性;SVI过高说明污泥沉降性较差,将要发生或已经发生污泥膨胀。

城市污水处理厂的SVI 值一般介于70~100之间。

SVI值与污泥负荷有关,污泥负荷过高或过低,活性污泥的代谢性能都会变差,SVI值也会变很高,存在出现污泥膨胀的可能。

5影响曝气池混合液SVI值的原因是什么影响曝气池混合液SVI值的原因如下:(1)水温突然降低使微生物活性降低,分解有机物的功能下降。

(2)流入含酸废水使曝气池混合液pH值长时间处于酸性条件下,嗜酸性丝状微生物大量繁殖,另外排放酸性废水的管道内生长的丝状微生物膜周期性脱落也会导致混合液中的丝状微生物的增殖。

(3)进水中氮磷营养物质比例偏低,而丝状菌能够在氮磷等营养物质严重不足的情况下大量繁殖,并在混合液中占优势,进而引起污泥膨胀。

(4)曝气池有机负荷过高导致活性污泥的凝聚性能和沉淀性能变差,SVI值升高。

(5)进水中低分子有机物含量大,而低分子有机物是丝状菌最容易吸收利用的成分,从而使丝状微生物大量繁殖,曝气池混合液沉降性能降低。

(6)曝气池混合液溶解氧不足使絮体生长受抑制。

而丝状菌生物却能够在L以下条件中大量繁殖,导致活性污泥膨胀,SVI值升高。

(7)进水中有毒有害物质增加,如酚、醛、硫化物等类物质含量突然升高,使微生物菌胶团凝聚性能下降,大量解絮,而丝状菌则得以增殖,SVI升高。

(8)高浓度有机废水缺氧腐败后进人曝气池,其中含有大量的低分子有机物和硫化物等,从而使丝状菌大量繁殖,SVI值升高。

(9)消化池上清液短时间内进人曝气池。

其中的高浓度有机物使曝气池有机负荷升高,丝状菌大量繁殖。

(10)的进水中SS较低而溶解性有机物比例较大,使得污泥容重降低,固液难以分离从而使SVI值升高。

(11)污泥在二沉池停留时间过长,会导致其中溶解氧含量下降,污泥因此腐化变质,进而使回流污泥中丝状菌大量繁殖,引起曝气池活性污泥膨胀,SVI增高。

曝气池运行的好不好就看这四个数值了!曝气池MLSS或MLVSS数值怎样控制为好曝气池混合液须维持相对固定的污泥浓度MLSS,才能维持好处理效果和处理系统稳定运行。

每一种好氧活性污泥法处理工艺都有其最佳曝气池的MLSS,比如普通空气曝池活性污泥的MLSS最佳值为2g/L左右,而AB法工艺A段的MLSS最佳值为5g/L 左右,两者差距很大。

一般而言,曝气池中MLSS接近其最佳值时,处理效果最好。

而MLSS过低时往往达不到预期的处理效果。

当MLSS过高时,泥龄延长,维持这些污泥中微生物正常活动所需的溶解氧数会增加许多,导致对充氧系统能力的要求增大。

同时曝气池混合液的密度会增大,阻力增大,也就会增加机械曝气或鼓风曝气的电耗。

也就是说,虽然MLSS偏高时,可以提高曝气池对进水水质变化和冲击负荷的抵抗能力,但在运行上往往是不经济的。

而且有时还会导致污泥过度老化,活性下降,最后甚至影响处理水质。

在实际运行时,有时需要通过加大剩余污泥排放的方式强制减少曝气池的MLSS值,刺激曝气池混合液中的微生物的生长和繁殖,提高活性污泥分解氧化有机物的活性。

曝气池混合液污泥沉降比(SV)污泥沉降比(SV)的英文是SettlingVelocity又称30分钟沉降率,是曝气池混合液在量筒内静置30分钟后所形成的沉淀污泥容积占原混合液容积的比例,以%表示。

一般取混合液样100ml,用满量程100ml量筒测量,静置30分钟后泥面的高度恰好就是SV的数值。

由于SV值的测定简单快速,因此是评定活性污泥浓度和质量的常用方法。

SV值能反映曝气池正常运行时的污泥量和污泥的凝聚性、沉降性能等。

可用于控制剩余污泥排放量,SV的正常值一般在15%~30%之间,低于此数值区说明污泥的沉降性能好,但也可能是污泥的活性不良。

可少排泥或不排泥或加大曝气量。

高于此数值区,说明需要排泥操作了,或着采取措施加大曝气量。

也可能是丝状菌的作用使污泥发生膨胀,需加大进泥量或减少曝气量。

观测SV值时污泥的表观现象说明了什么1、污泥沉淀30分钟~60分钟后呈层状上浮且水质较清澈。

说明活性污泥反应功能功能较强,产生了硝化反应,形成了较多的硝酸盐,在曝气池中停留时间较长,进入二沉池中发生反硝化,产生气态氮;使一些污泥絮体上浮。

可通过减少曝气量或减少污泥在二沉池的停留时间来解决。

2、在量筒中上清液含有大量的悬浮状微小絮体,而且透明度差、混浊。

说明是污泥解体,其原因有曝气过度、负荷太低造成活性污泥自身氧化过度、有害物质进入等。

可减少曝气量,或增大进泥量来解决。

3、在量筒中泥水界面分不清,水质混浊其原因可能是流入高浓度的有机废水,微生物处于对数增长期,使形成的絮体沉降性能下降,污泥发散。

可采取加大曝气量,或加大污水在曝气池中的停留时间来解决。

什么是污泥容积指数(SVI)污泥容积指数(SVI)的英文是SludgeVolumeIndex是指曝气池出口处混合液经过30分钟静置沉淀后,每克干污泥所形成的沉淀污泥所占的容积。

单位以ml/g计。

SVI与SV值的关系:SVI值排除了污泥浓度对污泥沉降体积的影响,因而比SV值能更准确地评价和反映活性污泥的凝聚、沉淀性能。

一般说来,SVI值过低说明污泥颗粒细小,无机物含量高,缺乏活性;SVI过高说明污泥沉降性较差,将要发生或已经发生污泥膨胀。

城市污水处理厂的SVI值一般介于70~100之间。

SVI值与污泥负荷有关,污泥负荷过高或过低,活性污泥的代谢性能都会变差,SVI 值也会变很高,存在出现污泥膨胀的可能。

影响曝气池混合液SVI值的原因是什么1、水温突然降低使微生物活性降低,分解有机物的功能下降。

2、流入含酸废水使曝气池混合液PH值长时间处于3~4酸性条件下,嗜酸性丝状微生物大量繁殖,另外排放酸性废水的管道内生长的丝状微生物膜周期性脱落也会导致混合液中的丝状微生物的增殖。

3、进水中氮磷营养物质比例偏低,而丝状菌能够在氮磷等营养物质严重不足的情况下大量繁殖,并在混合液中占优势,进而引起污泥膨胀。

4、曝气池有机负荷过高导致活性污泥的凝聚性能和沉淀性能变差,SVI值升高。

5、进水中低分子有机物含量大,而低分子有机物是丝状菌最容易吸收利用的成份,从而使丝状微生物大量繁殖,曝气池混合液沉降性能降低。

6、曝气池混合液溶解氧不足使絮体生长受抑制。

而丝状菌生物却能够在l以下条件中大量繁殖,导致活性污泥膨胀SVI值升高。

7、进水中有毒有害物质增加,如酚、醛、硫化物等类物质含量突然升高,使微生物菌胶团凝聚性能下降,大量解絮,而丝状菌则得以增殖,SVI升高。

8、高浓度有机废水缺氧腐败后进入曝气池,其中含有大量的低分子有机物和硫化物等,从而使丝状菌大量繁殖,SVI值升高。

9、消化池上清液短时间内进入曝气池。

其中的高浓度有机物使曝气池有机负荷升高,丝状菌大量繁殖。

10、进水中SS较低而溶解性有机物比例较大,使得污泥容重降低,固液难以分离从而使SVI值升高。

11、污泥在二沉池停留时间过长,会导致其中溶解氧含量下降,污泥因此腐化变质,进而使回流污泥中丝状菌大量繁殖,引起曝气池活性污泥膨胀,SVI增高。

相关文档
最新文档