3.3集成运放线性应用

合集下载

集成电路运算放大器的线性应用

集成电路运算放大器的线性应用

高开环增益
输入端几乎不吸收电流, 使得输入信号源不受负
载影响。
输出端具有很低的内阻, 可以驱动较大的负载。
无反馈时的电压放大倍数 极高,使得运算放大器具
有很高的放大能力。
高共模抑制比
对共模信号(两个输入端共 有的信号)有很强的抑制能
力,提高了抗干扰性能。
常见集成电路运算放大器类型
通用型运算放大器
高精度运算放大器
故障诊断与排除方法
01 02 03 04
当运算放大器出现故障时,首先检查电源和接地是否正常,排除电源 故障。
检查输入信号是否正常,以及输入电路是否存在短路或开路现象。
观察运算放大器的输出信号是否正常,如有异常则检查反馈电路和元 件是否损坏。
使用示波器等测试工具对运算放大器进行测试,进一步确定故障原因 并进行修复。
参考运算放大器的典型应 用电路,选择合适的外围 元件和参数。
应用注意事项与技巧
01 在使用运算放大器前,应对其进行充分的测 试和验证,确保其性能稳定可靠。
02
合理设计运算放大器的输入和输出电路,避 免引入不必要的噪声和失真。
03
注意运算放大器的电源和接地设计,确保电 源稳定且接地良好。
04
根据应用需求选择合适的反馈电路和元件, 以实现所需的放大倍数和带宽。
音频滤波器
通过配置运算放大器和外围元件,构成 各种滤波器,如低通、高通、带通等, 对音频信号进行频率选择和处理。
传感器信号调理电路
传感器信号放大电路
01
针对传感器输出的微弱信号,利用运算放大器进行放大,提高
信号的幅度和信噪比。
传感器信号滤波电路
02
去除传感器信号中的噪声和干扰,提取有用的信号成分,提高

集成运算的线性应用实验报告.doc

集成运算的线性应用实验报告.doc

集成运算的线性应用实验报告篇一:集成运算放大器的线性应用--实验篇集成运算放大器的线性应用一、实验名称:集成运算放大器的线性应用二、实验任务及目的1.基本实验任务用运放设计运算电路。

2.扩展实验任务用运放构成振荡频率为500Hz的RC正弦波振荡器。

3.实验目的掌握运放线性应用电路的设计和测试方法三、实验原理及电路1.实验原理运算放大器的线性应用,即将运放接入深度负反馈时,在一定范围内输入输出满足线性关系。

2.实验电路图2.15.1 U0=5Ui1+Ui2(Rf=100k)电路(注意平衡电阻的取值!)图2.15.2 U0=5Ui2-Ui1(Rf=100k)电路(注意输入端电阻的匹配!)图2.15.3 uo??(Cf=0.01?F)电路?图2.15.4 可调恒压源电路(注意电位器的额定功率!)图2.15.5 恒流源电路(注意负载电阻的取值!)图2.15.6 RC正弦波振荡器四、实验仪器及器件1.实验仪器稳压电源1台,使用正常;数字万用表1台,使用正常;示波器1台,使用正常;函数信号发生器1台,使用正常。

2.实验器件DC信号源1个,使用正常;uA741运放2个,使用正常;1kΩ电阻1个,10kΩ电阻2个,15kΩ电阻1个,17kΩ电阻1个,20kΩ电阻2个,33kΩ电阻1个,51kΩ电阻1个,100kΩ电阻4个,0.01μF电容1个,10kΩ电位器1个,使用正常。

五、实验方案与步骤1.按照图2.15.1接好电路,将输入端接地(ui1=0,ui2=0),万用表监测输出电压,接通±15V电源后,调整调零电位器,尽量使Uo接近零,若不为零,则需记录该失调电压的数值。

将DC信号源接通电源,万用表监测DC信号源输出,按照表格中要求的参数调整旋钮,测量输出电压。

2.按照图2.15.2接好电路,记录该失调电压,将DC信号源接通电源,按照表格中要求的参数调整旋钮,测量输出电压。

3.按照图 2.15.3接好电路,调节函数信号发生器输出1kHz/4V的方波信号。

集成运算放大器的线性应用实验

集成运算放大器的线性应用实验

6 积分器
模拟电路实验箱-集成运算放大器的线性应用

一、实验目的

于 勤
1、掌握用集成运算放大器构成各种基
本运算电路的方法;


2、掌握用集成运算放大器构成的各种
于 专
基本运算电路的调试和测试方法;
学 以
3、通过实验初步掌握集成运算放大器 的使用方法。


模拟电路实验箱-集成运算放大器的线性应用
匠心智拓(天津)科技有限公司
业 精 于 勤 技 精 于 专 学 以 致 用
模拟电路实验箱
模拟电路实验箱-集成运算放大器的线性应用

一 实验目的
精 于
二 实验设备

三 实验原理

四 实验内容
精 于
五 讨论题

六 实验报告

以 1 放大器调零
2 反相比例放大器
致 用
3 同相比例放大器
4 加法器
5 减法器
技 端之间,便构成同相比例放大器电
精 路。如右图所示。其运算关系为:
于 专
Uo=(1+Rf/R1)Ui
该式表明,输出电压与输入电
学 压是比例运算关系。

若R1不接或Rf=0,则为跟随
致 用
器。
Uo=Ui
模拟电路实验箱-集成运算放大器的线性应用
业 1. 按图接好电路,在反相端加入交流信号Ui=1KHz,
∞ 100K

模拟电路实验箱-集成运算放大器的线性应用
业 精 于 勤 技 精 于 专 学 以 致 用
模拟电路实验箱-集成运算放大器的线性应用

3.4、加法器

电子技术基础--第七章--集成运算放大器的线性应用和非线性应用

电子技术基础--第七章--集成运算放大器的线性应用和非线性应用
u u uO N ( N )0 R1 Rf
i1 i f 0
u O (1
Rf R1
)u i
u I 0 R1i1
uI i2 i1 R1
i1
uI R1
0 u M R2 i2
u M R2 i 2 R2 uI R1
0 u M R3i3
减法器的输出电压为两个输入信号之差乘以放大系数 Rf/R1, 故又称它为差分放大器。 为减小失调误差 R1//Rf=R2//R3
(五)反相积分运算电路
duC i 2 C dt
uC 0 uO
duo i2 C dt
u I 0 R1i1
i1 i2 0
du uI (C o ) 0 R1 dt
vI T
(同相过零比较器)
O

2
3
4
t
电压传输特性
vO
vO VOH
VOH O t
O VOL
vI
VOL
思考
1.若过零比较器如图所示,则它 的电压传输特性将是怎样的? 2.输入为正负对称的正弦波时, 输出波形是怎样的?
+VCC vI + A -VEE vO
vI T 2
+VCC vI + A -VEE vO
具体电路的工作原理,其它问题也就迎刃而解了。
比例运算电路 加法电路
减法电路 积分电路
微分电路
一、运算电路
• (一)反相比例运算电路 • (二)同相比例运算电路
(一)反相比例运算电路
i1 i f 0
u N uo R f i f
if u N uO u O Rf Rf

集成运算放大器的线性应用(思考题解答)

集成运算放大器的线性应用(思考题解答)

实验四 集成运算放大器的线性应用(思考题解答)1. 理想集成运算放大器具有哪些特点?答:电压放大倍数A v →∞,输入电阻R i →∞,输出电阻R O →0,共模抑制比K CMRR →∞,带宽BW →∞,无零点漂移和温漂等。

2. 运放具有虚短、虚断的条件是什么?你能否根据运放输出电压的大小判断其是否存 在虚短、虚断?答: 运放具有虚短、虚断的条件是电路有深度负反馈,集成运放工作在线性放大区.如果集成运放输出电压的大小达到最大输出电压幅度V OM (如本实验中V CC 为12V ,则V OM 约为10.5V 。

),则说明运放已工作在限幅区,此时虚短特点不再存在,而虚断成立。

3.实验内容1、2中,当V i = 2V 时,理论上分析反相端电位V –应为多大?答:实验内容1,电路如图:若V i = 2V ,则运放工作在限幅区, V o=-10V(为计算方便起见,假定V OM =10V)。

应用叠加原理可计算得:VV R R R V R R R V o f i ff 91.0)10(1001010210010100111=-⋅++⋅+=+++=-实验内容2,V i = 2V 时,V -的数值请自行分析。

4.图4—6(b )电路,说明当输入信号频率远大于CR 21f f o ⋅π=时,电路为积分电路,输入信号频率远小于f o 时,则电路为一个反相输入比例放大器的理由。

答:如图电路:若输入信号V i 的频率CR f f f π210=>>时,则有fC R f π21>> ,f R 的影响可忽略,视为开路, 所以电路即为积分电路。

若C R f f f π210=<<时,则有fCR f π21<< ,C 的影响可忽略,视为开路,所以电路即为反响输入比例放大器。

5432TitleR fR R R LA+p =R f //R 11--++V o V i 100K10K321A+A +CCR fR =R Rp R //R fV oV oV i V i。

集成运放的线性应用电路

集成运放的线性应用电路

集成运放的线性应用电路首先需要熟悉理想集成运放基本特性:1)开环差模增益(放大倍数)Aod=∞;2)差模输入电阻Rid=∞;3)输出电阻Ro=0;这是理解电路的基础。

uo=Aod*(up-un)。

uo=Aod*(up-un)其次还需要清楚,运放的组成是三极管所组成的单元,需要(电源)才能够正常工作,为此实际工作时,需要有电源为其供电提供输出能量。

最后,必须清楚的是,uo输出的范围在供电电源电压之内变化,如果理论输出值大于电压电压范围,则运放处于非线性区,只能输出最大值或最小值,这种情况下是不能进行线性运算的。

结论:运放处在放大区必然需要负反馈电路结构;因uo一定,其除以Aod,便可以得到up-un=uo/Aod=0的结果,必有虚短up=un 的特性;因Rid=∞,必有虚断ip=0,in=0的特性。

例题1(1)电压串联负反馈组态;(2)补偿电阻功能在于使运放外电路平衡,即同相端与反相端对地电阻相等。

这时需要采用这一特性,即ui=0时,uo=0。

所以有R5=R1//(R2+R4//R3);(3)因ip=0A,所以up=0V,所以un=0V(相当于接地,术语“虚地”);Ro 由于是电压负反馈,电路具有稳定电压功能,所以Ro=0;(4)在M点采用节点(电流)法,需要提前标注好电流方向,然后列方程即可。

i3=i2+4(M点节点电流);i1+i2=in(反向端节点电流,in=0);i1=(ui-0)/R1;i2=(uM-0/R2);i3=(uo-uM)/R3;i4=(uM-0)/R4由此可推导出:uo=R3*uM*(1/R2+1/R3+1/R4),uM=-R2/R1。

例题2uo1=-(Rf)/R1*ui(反向比例运算);uo2=-R/R*uo1=-uo1(反向比例运算);uo=uo2-uo1=uo2-uo1=-uo1-uo1=-2uo1=2Rf/R1*ui当Rf=R1时,uo=2ui。

集成运放

集成运放
i1=iF+ ib- ib-= i1-iF 电压并联负反馈
(2) 同相比例运算放大器
iF if
ib+ =0
RF
u-= u+= ui
ib- =0
ui
Rf
_ + +
Au=1+
uo
iF=if
uo ui R 2F ui R 1f
RP
RP=Rf//RF
RF
Rf
R2 F u o (1 )u i ) R 1f

– +u + A1 o1



R
– + + A2

uo



RL
试判别下图放大电路中从运算放大器A2输出 例2: 并联电流负反馈 端引至A1输入端的是何种类型的反馈电路。 – +u + A1 o1




ui
i1
id if
R
+ A2
+
uo
解: 因反馈电路是从运算放大器A2的负载电阻RL 的靠近“地”端引出的,所以是电流反馈; 因输入信号和反馈信号均加在同相输入端上, 所以是并联反馈; 因净输入电流 id 等于输入电流和反馈电流 之差,所以是负反馈。

Ao
1+ AoF




Ao F
Xo


Xf


Xf

Xd
Ao F 0
Xo
Xd
Xf 、 d X
同相,所以
则有: F|<|Ao| |A
负反馈使放大倍数下降。

运放的线性运用

运放的线性运用

R’
+ u0 -
运算放大器的线性应用
6、加法与减法运算电路(1) 加法与减法运算电路( ①反向加法器: 输入信号均加入反向端 平衡电阻R’=R1//R2//R3//Rf 若取R1=R2=R3=R,则
R’ ui3 ui2 ui1 R3 R2 R1 i2 i1 Δ ∞ + + i3 if Rf
u0
uo= −
0.1 ui(mV)
-10 线性区
运算放大器的线性应用
2、线性运放的分析特点 设U+与U-为运放同相与反相端的电位, 因为对于理想运放有Aod=∞,所以
UU+ RF
Δ A + uo
+
U+=U-(虚短) (虚短)
设I+与I-为同相与反相端的输入电流, 因为对于理想运放有rid=∞,所以
ui1 uid ui2 + rid ro + uo -
运算放大器的线性应用
Rf
1、运放线性运用的条件: 运放线性运用的条件: 引入深度负反馈
+ ui -
R1
Af =
当 1 + AF
A 1 + AF
Δ ∞ + + R’
+ u0 -
1 = 1 时, Af ≈ AF F
A
uo(V) 10 -0.1 0
非线性区
因此,引入深度负反馈后,闭环增益 与开环增益无关,而实际中F并不趋近 于零,因此放大器可实现线性工作
Rf R
(ui1 + ui 2 +u i 3 )
运算放大器的线性应用
6、加法与减法运算电路(2) 加法与减法运算电路( ②同向加法器:

实验六 集成运算放大器的线性应用(最全)word资料

实验六 集成运算放大器的线性应用(最全)word资料

实验六集成运算放大器的线性应用(最全)word资料实验六 集成运算放大器的线性应用一、设计目的1.熟悉µA741集电路使用技术要求。

2.掌握µA741的运算电路的组成,并能验证运算的功能。

二、电路结构及说明1.反相放大器电路结构:理想条件下,表达式:1f i o u R Ru u A -==。

说明:21R R =时电路保持平衡。

2.同相放大器电路结构理想条件下,表达式:1f i o u 1R R u u A +==。

说明:21R R = ,f 3R R =电路保持平衡,减少输入引起失调电压的误差。

3.反相比例加法器电路结构 理想条件下,表达式)(B A 4fo u u R R u +-=。

说明:43R R =,543//R R R =电路保持平衡;单电源供电,利用分压方式得A u 、B u 。

4.差动减法器电路结构 理想条件下,达式)(B A 3fo u u R R u --=。

说明:43R R =电路保持平衡。

5.反相积分器电路结构理想条件下,表达式:dt t u CR u )(1i 1o ⎰-=。

说明:输入方波信号,输出是输入对时间的积分,负号表示输入与输出反相。

当输入电压为方波时,输出电压为三角波,其输出电压的峰值为:)2(211P -SP P -OP TC R u u -=(1)C 为反馈元件。

f R 为分流电阻,它是给直流反馈提供通路避免失调电压在输出端产生积累电荷,使积分器产生饱和,f R 取大些可改善积分线性。

(2)21R R =保持电路平衡。

(3)当选择时间常数T C R ==1τ时,那么:P -SP 1P -SP P -OP 41)2(21u T C R u u -=-=。

(其中T 表示信号频率的周期) 三、实验仪器1. 直流稳压电源 一台 2.函数信号发生器 一台 3.示波器 一台 4.晶体管毫伏表 一台 5.数字万用表 一块 四、设计要求和内容1.反相放大器。

集成运算放大器的线性应用

集成运算放大器的线性应用
积分电路中的R和C 互换就可得到基本微分
电路。 本电路反相输入端同样有“虚地”,根
据理想运放“虚断”的概念可得:
iC
iR
C
d (ui u ) dt
u
uo R
整理可得:
uo
RC
dui dt
若输入为方波信号,且 RC T / 2
则输出为尖顶脉冲波。
此外,我们可以看到微分运算电路对
信号的突变非常灵敏,对信号的缓慢变化反
件 RP RN 代入得:
uo
Rf R1
ui1
Rf R2
ui 2
Rf R3
ui3
3. 加减运算电路
对而u对i1、uui、i23来u说来i4,说R,f 引入R引的f 入是的电是压电并压联串负联反负馈,
反馈。 根据“虚短”和“虚断”的概念可得:
ui1 u ui2 u u uo
R1
R2
Rf
ui3 u ui4 u u
反相比例运算电路引入的是深度电压并联负反馈,输输出入电电阻阻为为::RRi oui0ii
ui iR1
R1
2. 同相比例运算电路
图中引入深度电压串联负反馈,输入电压经
平衡电阻R',加至运放同相端。
根据理想运放“虚短”和“虚断”的概
念,得u: u ui iR1 iRf

整iR1理得0 :R1u

iRf
R3
R4
R5
整理得:
uo
Rf RN
( RP R3
ui3
RP R4
ui 4
RN R1
ui1
RN R2
ui2 )
将电路参数平衡条件 RP RN 代入得:
在理想情况下, 该电路具有很好的抑制共 模信号的能力。但是它有输入电阻低和增益调

集成运算放大器的线性应用实验

集成运算放大器的线性应用实验

集成运算放大器的线性应用实验佘新平编写一、 实验目的1.了解集成运放的使用方法;2.熟悉集成运放的双电源和单电源供电方法;3.掌握集成运放构成各种运算电路的原理和测试方法。

二、 实验仪器及器件 1.双踪示波器; 2.直流稳压电源; 3.函数信号发生器;4.数字电路实验箱或实验电路板;5.数字万用表;6.集成电路芯片uA741 2块、瓷片电容0.01uF2个、电阻10k 10个、20k 5个、30k 2个、50k 2个、100k 2个、5.1k 1个、3.3k 1个、680k 1个,10k 电位器3个。

三、 预习要求1.熟悉集成电路芯片uA741的引脚图及功能; 2.掌握集成运放的工作特点;3.掌握构各种运算电路的形式及工作原理。

四、实验原理(1)集成运放简介集成电路运算放大器(简称集成运放或运放)是一个集成的高增益直接耦合放大器,通过外接反馈网络可构成各种运算放大电路和其它应用电路。

集成运放uA741的电路符号及引脚图如图1所示。

图1 uA741电路符号及引脚图任何一个集成运放都有两个输入端,一个输出端以及正、负电源端,有的品种还有补偿端和调零端等。

(a )电源端:通常由正、负双电源供电,典型电源电压为±15V 、 ±12V 等。

如:uA741的7脚和4脚。

(b )输出端:只有一个输出端。

在输出端和地(正、负电源公共端)之间获得输出电压。

如:uA741的6脚。

最大输出电压受运放所接电源的电压大小限制,一般比电源电压低1~2V ;输出电压的正负也受电源极性的限制;在允许输出电流条件下,负载变化时输出电压几乎不变。

这表明集成运放的输出电阻很小,带负载能力较强。

调零V - V + -V cc调零 +V cc NC V O(c )输入端:分别为同相输入端和反相输入端。

如:uA741的3脚和2脚。

输入端有两个参数需要注意:最大差模输入电压V id max 和最大共模输入电压V ic max。

集成运放的线性应用

集成运放的线性应用
由上述比例电路可知,运算放大器的闭环放大倍数决定于 外围元件的参数,与开环放大倍数无关。
三、减法运算电路
四、加法运算电路
五、积分运算电路
六、微分运算电路
七、对数运算电路
利用PN结伏安特性所具有的指数规律,将二极管或者三极管 分别接入集成运放的反馈回路和输入回路,可以实现对数运算和指 数运算,而利用对数运算、指数运算和加减运算电路相组合,便可 实现乘法、除法、乘方和开方等运算。
八、指数运算电路
平衡,要求平衡电阻 R2=R1//Rf。该比例电路的反馈是深度电压并联负反馈。其输入 电阻和输出电阻均不高。
二、同相比例运算电路
为了保证集成运放差动输入级的静态平衡,也要求平衡电 阻R2=R1//Rf。该比例电路的反馈是深度电压串联负反馈。其输 入电阻很高,输出电阻较低。
集成运放的线性 应用
集成运算放大器是一种具有高电压放大倍数、 输入电阻很大、输出电阻很小的直接耦合多级放大 电路。当外部接入不同的线性或非线性元器件组成 输入和负反馈电路时,可以灵活地实现各种特定的 函数关系。在线性应用方面,可组成比例、减法、 加法、积分、微分等模拟运算电路。
一、反相比例运算电路

集成运放的线性应用-答案

集成运放的线性应用-答案

集成运放的线性应用(信号运算、有源滤波)1、 解:(1)A ud =100dB ,即A ud =100000若运放线性应用,则有│uo │=│A ud (u P -u N )│=20V >15V高于电源电压值,故应工作于非线性区域。

(2)│u P -u N │≤VCC/ A ud =15/100000=0.15mV(3)由A UF 为40dB 得A UF =100A UF =100= A ud /1+A ud *F =100000/1+A ud *F1+A ud *F=1000f Hf =(1+A ud *F )f H =1000*100=100000 H Z =100k H Z4、解:(1)(a )图中接入了电压并联负反馈,实现电流-电压转换电路;(2)(b )图中接入了电流串联负反馈,实现电压-电流转换电路 ;(3)(c )图中接入了电压串联负反馈,实现输入电阻高、输出电压稳定的电压放大电路;(4)(d )图中接入了电流并联负反馈,实现输入电阻低、输出电流稳定的电流放大电路。

5、解:u i =4sin314t(V) ,V Z =6V ,T=20mS如图画出u o1和u o2的波形A1构成电压比较器,其输出被稳压管限制在正负6V ,A2构成反相积分运算电路。

u o1和u o2的波形如右图。

6、解:⑴ 判断电路中的反馈组态:电压并联负反馈。

(2)求电压放大倍数uf A :设“T ”型网络节点为M ,利用-=+u u ,则⎪⎩⎪⎨⎧=++-=334221R u R u R u R u R u R u o M M M M i 求出143232R R R R R R ui u A o uf ++-== (3)若T 型反馈网络换成一个反馈电阻Rf ,并保持同样的uf A , 则43232R R R R R Rf ++=输出电压的表达式为 )(d 11O I O 21t u t u RC u t t +-=⎰ 当u I 为常量时)()(100 )()(10101 )()(11O 12I 1O 12I 75112I O t u t t u t u t t u t u t t u RCu O +-=+-⨯-=+--=-- 若t =0时u O =0,则t =5ms 时u O =-100×5×5×10-3V =-2.5V 。

353-集成运算放大器应用

353-集成运算放大器应用

3. 输出保护
利用稳压管V1和V2接成反向串联电路。 若输出端出现过高电压,集成运放输出端 电压将受到稳压管稳压值的限制,从而避 免了损坏。
正负电源 (CH1/CH2
串联模式)
输出额定值:0~30/0~3A:CH1~COM 0~30/0~3A:CH2~COM
-
COM
+
上限截止频率fH的测量:
• 输入f=1KHz,Ui=5mV的正弦信号,且输出波形不 失真时,用交流毫伏表测输出电压U0的值为Uom。 此后保持输入信号Ui=5mV不变,将信号频率由 1KHz向更高处调节,这时输出电压U0会随Ui频率 的增高而逐渐下降。直到U0下降到0.7Uom。这时 对应的信号频率就是被测放大器的上限截止频率 f H。
单位增益带宽
• 单位增益带宽定义为:运放的闭环增益为 1倍 条件下,将一个恒幅正弦小信号输入到运放的 输入端,从运放的输出端测得闭环电压增益下 降3db(或是相当于运放输入信号的0.707)所 对应的信号频率。单位增益带宽是一个很重要 的指标,对于正弦小信号放大时,单位增益带 宽等于输入信号频率与该频率下的最大增益的 乘积,换句话说,就是当知道要处理的信号频 率和信号需要的增益后,可以计算出单位增益 带宽,用以选择合适的运放。这用于小信号处 理中运放选型。
R R f f U= ( U+ U) 0 i 1 i 2 R R 1 2
电路中R1、R2、Rf、R′的选择同反相比例运算电路。
4、差动比例运算电路
当R1=R2=R、R3=R4=Rf时
R f U= (U U 0 i2i1) R
5、积分运算电路
• 积分电路可以完成对输入电压的积分运算,即其输出电压与输入电压的 积分成正比。 • 反向积分电路电容器C引入交流并联电压负反馈,运放工作在线性区。 • 由于积分运算是对瞬时值而言的,所以各电流、电压均采用瞬时值符号

集成运算放大电路的线性应用

集成运算放大电路的线性应用

28
8.2.3 加减运算电路
Uo
(1
RF R
)U
U U
Uo
(1
RF R
)
R
p
(U i1 R1
Ui2 R2
Ui3 R3
)
Rn R // RF
RF
Rp Rn
U (
i1
R1
Ui2 R2
Ui3 ) R3
如果Rp Rn,
Uo
RF
U (
i1
R1
Ui2 R2
Ui3 ) R3
并且,若R//RF=R1//R2//R3,可省略R’。
Uo
Uo2
RF
2
(U i1 R1
Ui2 R2
Ui3 ) R4
33
8.2.3 加减运算电路
2) 两级集成运放同相端输入实现加减运算
采取同相端输入的方法,可提高输入阻抗。
34
U o1
(1
RF1 R1
)U i1
Uo
(1
RF 2 R3
)U
i
2
RF 2 R3
U o1 (叠加原理)
(1
RF 2 R3
当u+> u -时, uo=+UOM; 当u+< u -时, uo=-UOM 。
2) 净输入电流为零,即i+=i-≈0 。
集成运放仍然具有“虚断路”的特点。
10
8.2 基本运算电路
集成运放构成负反馈(深度负反馈)时,工 作在线性区,完成运算功能:比例、加减、积分、 微分、对数、指数、乘法和除法等运算电路。
)U i 2
RF 2 R3
(1
RF1 R1
)U

第三章 差动放大电路及集成运算放大器 第三节集成运算放大器及其应用

第三章 差动放大电路及集成运算放大器 第三节集成运算放大器及其应用

差动放大电路及集成运算放大器
3.3.3.4 差模输入电阻rid
是指运放在输入差模信号时的输入电阻。对信号源来说,
差模输入电阻rid的值越大,对其影响越小。理想运放的rid
为无穷大。
3.3.3.5 开环输出电阻ro
运放在开环状态且负载开路时的输出电阻。其数值越小,
带负载的能力越强。理想运放的ro = 0。
i11
ui1 R11
;i12
ui 2 R12
该参数表示运放两个输入端之间所能承受的最大差模电 压值,输入电压超过该值时,差动放大电路的对管中某侧的 三极管发射结会出现反向击穿,损坏运放电路。运放μA741 的最大差模输入电压为30V。
差动放大电路及集成运算放大器
3.3.3.2 最大共模输入电压Uicmax
这是指运算放大器输入端能承受的最大共模输入电压。 当运放输入端所加的共模电压超过一定幅度时,放大管将退 出放大区,使运放失去差模放大的能力,共模抑制比明显下 降。运放μA741在电源电压为±15V时,输入共模电压应在 ±13V以内。
如果输入信号从同相输入端引入,运放电路就成了同相 比例运算放大电路。如图3-20所示。根据理想运算放大器的 特性:u u ui i1 i f 得:
i1
u R1
ui R1
if
u uo RF
ui uo RF
因而: uo
1
RF R1
ui
Auf
uo ui
1
RF R1
差动放大电路及集成运算放大器
该电路的反馈类型为串联电.3.4.3 反相加法器 如果在反相输入比例运算电路的输入端增加若干输入支
路,就构成反相加法运算电路,也称求和电路,如图3-22所 示。

集成运放的典型应用

集成运放的典型应用

集成运放的典型应⽤上⼀贴我们讲了集成运算放⼤器的原理,对集成运放有了⼀个初步的了解,其实在综保插件⾥应⽤的两个集成运放LM339是作为电压⽐较器应⽤的,通过电流互感器传来的电流信号转换成电压信号,与插件内部设定的电压信号进⾏⽐较,当电流互感器传来的信号⼤于插件内部设定的电压信号时,综保插件就会认为照明主回路有短路故障,从⽽驱动执⾏电路切断主回路的交流接触器控制电源。

漏电保护电路也同短路保护电路⼀样,进⾏电压⽐较来判断设备是不是漏电的。

集成运算放⼤器是这样组成⽐较电路:集成运算放⼤器 ,简称为集成运放.它实际上是⼀个⾼增益的多级直接耦合放⼤器 ,最早⽤于模拟计算机 ,并由此⽽得名.随着电⼦技术的⾼速发展 ,集成运放不断升级换代 ,其性能参数和技术指标不断提⾼ ,⽽价格⽇益降低.它的应⽤早已超出运算的范畴之外 ,已成为⼀种通⽤性很强的功能性器件 ,它的应⽤犹如六、七⼗年代⽆线电电路中的三极管⼀样 ,已成为现代电⼦电路中的核⼼器件 ,正如三级管⼀样 ,如略去电源端和调零端以外 ,集成运放的符号也有三个端 ,即反相输⼊端、同相输⼊端和输出端.图1 集成运放符号集成运放的⾼增益 ,其含义是开环电压放⼤倍数趋于⽆穷⼤ ,其次输⼊电阻⾼ ,⼏乎不从信号源索取电流;输出电阻低 ,带负载的能⼒很强.这三点是集成运放多项性能指标中的集中体现.尤其是前两条 ,是分析运放线性应⽤的原始依据 ,即可以演变为所谓 “虚短” 和 “虚断” 的两条重要性质.由于输出和输⼊可写为:U0 = Au (U+ - U- ) ,因为开环电压放⼤倍数Au趋于⽆穷⼤ ,线性应⽤时:U+ = U- ,即 “虚短” .⾮线性应⽤时 ,某时刻两输⼊端谁的电位⾼ ,输出就反映谁的特征 ,即:当U+ > U- ,输出U0 趋于正向饱和;当U+ < U- ,输出U0趋于负向饱和.这是集成运放运⽤于⾮线性状态的本质特征.电压⽐较器就是集成运放在⾮线性状态下的具体应⽤.所谓电压⽐较器 ,就是⼀种⽤来⽐较输⼊信号电压⼤⼩的电⼦电路.它可以将连续变化的模拟信号转换成仅有两个状态的矩形波.集成运放⼯作在⾮线性区时 ,两个输⼊端谁的电位⾼ ,输出就反映谁的特征 ,这是构成电压⽐较器的理论基础.如下图 2所⽰为最基本的电压⽐较器和其电压传输特性图.其中两个输⼊端中⼀个端⼦为参考端 ,参考电压为UR ,另⼀个端⼦(⽐如反相端)作为信号输⼊端 ,将信号电压与参考电压相⽐较 ,当信号电压⼩于参考电压时 ,输出为⾼电平 ,反之输出为低电平.由此得到如图的电压传输特性曲线.如此简单的电压⽐较器 ,增加限幅保护电路、引⼊正反馈去影响参考电压值等措施就可得到⼏种电压⽐较器的原型电路.⽐如:1.过零⽐较器:参考电压为零 ,输⼊信号每过零时 ,输出发⽣跃变 ,它实际上是⼀个单限⽐较器.最简单的应⽤是可以将正弦波变为⽅波.2.滞回⽐较器:利⽤正反馈来影响原来的参考电压使参考电位与此时的输出状态有关 ,从⽽消除在原来的参考电位附近输⼊信号由于受⼲扰⽽产⽣的空翻现象.3.双限⽐较器:由两个单限⽐较器组成所谓的双限⽐较器(也称为窗⼝⽐较器) ,可以将输⼊信号按需要范围进⾏选取.正是这样简单的电压⽐较器 ,在⾮正弦波产⽣变换电路、延时定时电路、⾃动控制及有关模数接⼝电路中得到了⼴泛的应⽤.如下图3所⽰为⽅波发⽣器的原形电路.它实质上是由⼀个带有正反馈的电压⽐较器和负反馈延时微分电路组成 ,同相端的参考电压由 R1 和 R2 将输出电压分压得到 ,在输出⾼电平或低电平时 ,使之电容充电或放电 ,电容两端得到的电压跟此时的参考电压 U+ 去⽐较 ,从⽽使电路的输出状态来回翻转输出⽅波.在⽅波发⽣器的基础上 ,将电容的充放电回路分开 ,即可得到矩形波发⽣器.在矩形波发⽣器的基础上后⾯加接⼀级积分电路 ,并稍微调整电路结构即可得到三⾓波发⽣器和锯齿波发⽣器.它们是⽰波器中扫描电压信号的基本产⽣电路.555定时器是包含模拟与数字的⼀种综合性中规模集成电路器件.其中模拟部分的核⼼就是由三个5千欧电阻分压器提供参考电压的两个电压⽐较器 ,上⾯的反相⽐较器是以 2P 3UCC作为参考电压 ,下⾯的同相⽐较器是以1P 3UCC作为参考电压.两者的输出分别控制基本 RS触发器的 R端和 S端 ,以触发器的输出作为定时器的输出 ,并以它的反端去控制放电三极管的导通与截⽌.正是这样巧妙地结合,使555定时器加上简单的 RC外围电路 ,便可构成单稳态触发器、施⽶特触发器、多谐⾃激振荡器等应⽤型电路.这⾥⾯ ,两个电压⽐较器将输⼊信号或电容上充放电⽽得的电压值跟参考电压 2P 3UCC和1P 3UCC去⽐较 ,从⽽转换成⾼电平或低电平 ,去控制触发器动作 ,输出所需要的电压波形进⽽控制执⾏机关,从⽽实现了电路的⾃动控制、延时、定时等多项功能 ,⽽电压⽐较器在此发挥出了⾄关重要的作⽤.同上情况相似 ,在并⾏⽐较型AP D转换器中 ,根据量化单位的⼤⼩ ,由 n 个分压电阻组成的分压电路得到(n - 1)个阶梯型电压值作为(n - 1)个电压⽐较器的反相端的参考电压 ,跟加在同相端的采样保持后的模拟信号电压⽐较 ,使每个⽐较器输出⾼电平或低电平 ,并通过其后⾯的缓冲寄存器得到(n - 1)位⼆进制数 ,完成了将模拟信号转换为数字信号的关键的⼀步.综上所述:电压⽐较器是集成运放的⼀种⾮线性应⽤.变化的、随机的输⼊信号跟另⼀个端的参考电压进⾏⽐较 ,使输⼊信号转换成只有⾼电平或低电平的输出信号 ,当输⼊信号电压等于参靠电压(即阈值)时 ,输出状态发⽣翻转.能实现这⼀点的关键就是取决于集成运放优良的性能 ,即开环电压放⼤倍数⽆穷⼤.但是实际运放的开环电压放⼤倍数不可能⽆穷⼤ ,除去运放的响应时间及零点漂移等因素 ,其⽐较误差及上升(下降)沿的陡度决定于运放的开环电压放⼤数 ,其值越⼤ ,产⽣的误差越⼩ ,上升(下降)沿越竖直.假设运放的开环电压放⼤倍数为 10的6次⽅,运放的输出饱和压降为 ±10V ,则产⽣的阈值误差为 ± 10 µV ,可见产⽣的误差是很⼩的.深刻理解电压⽐较器为集成运放在⾮线性应⽤下的本质特征 ,并在教学中将其应⽤实例适时地进⾏归纳、总结、⽐较 ,这对提⾼教学质量 ,丰富学⽣的知识 ,培养学⽣的创新能⼒ ,都有着重要的意义.。

集成运放的线性应用实验报告

集成运放的线性应用实验报告

集成运放的线性应用实验报告实验目的,通过对集成运放的线性应用进行实验,加深对运放工作原理的理解,掌握运放的基本应用技巧,提高实验操作能力。

实验仪器与器件,集成运放、电阻、电容、示波器、信号发生器、直流电源等。

实验原理,集成运放是一种广泛应用于模拟电路中的集成电路元件,具有高输入阻抗、低输出阻抗、大增益等特点。

在线性应用中,运放可以作为信号放大器、滤波器、积分器、微分器等电路的核心部件,起到放大、滤波、积分、微分等作用。

实验步骤:1. 搭建基本的运放放大电路,连接示波器和信号发生器,调节信号发生器输出频率和幅值,观察输出波形,并记录实验数据。

2. 将电容接入运放反馈回路,搭建低通滤波器电路,调节信号频率,观察输出波形的变化,并记录实验数据。

3. 将电容和电阻接入运放反馈回路,搭建积分电路,输入方波信号,观察输出波形的变化,并记录实验数据。

4. 将电阻接入运放反馈回路,搭建微分电路,输入方波信号,观察输出波形的变化,并记录实验数据。

实验结果与分析:通过实验,我们观察到了运放放大电路、低通滤波器、积分电路、微分电路的输出波形特点,分析了不同电路对输入信号的处理方式。

在放大电路中,我们观察到了输入信号的放大效果,输出波形与输入波形的对应关系;在滤波器中,我们观察到了对不同频率信号的滤波效果,实现了对特定频率信号的抑制;在积分电路和微分电路中,我们观察到了对方波信号的积分和微分效果,输出波形的变化与输入波形的关系。

实验结论:通过本次实验,我们深入理解了集成运放在线性应用中的工作原理和特点,掌握了运放放大电路、滤波器、积分电路、微分电路等基本应用技巧,提高了实验操作能力。

同时,对运放的线性应用有了更深入的认识,为今后的电子电路设计和实际应用奠定了基础。

实验总结:集成运放作为模拟电路中的重要元件,在各种电子设备中得到了广泛应用。

通过本次实验,我们对运放的线性应用有了更深入的理解,对其在信号处理、滤波、积分、微分等方面的应用有了更清晰的认识。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3.3 集成运算放大器的线性应用
一、实验目的
1.了解集成运算放大器的基本使用方法。

2.熟悉集成运算放大器的基本运算关系。

3.针对各种运算关系,设计电路,并对其进行测试和验证。

二、设计与仿真
1.首先应熟悉EWB软件,并会用EWB软件对集成运算放大电路进行设计与仿真。

设计方法参见李忠波、袁宏等著《电子设计与仿真技术》第5.3节。

2.设计与仿真用3端或5端的运算放大器,将供电电源调节为±12V,如图3.3-1。

3.设计反向输入比例运算电路,如图 3.3-2,并用电压表对结果进行仿真。

其他的运算电路自行设计。

图3.3-1在参数菜单中将正负电源电压值改为±12V
图3.3-2反向输入比例运算电路的设计与仿真
三、实验原理
本实验采用的是LM324型模拟集成电路,它是TTL电路的一个典型产品,属于通用型集成运算放大器。

它是在同一块半导体基片上制作了四个完全相同的运放单元。

其外型和引脚参见李忠波主编《电子技术》第六章,在DMS综合实验箱上已对四个单元的输入、输出及正负电源做了明显标
a)b)
图3.3-3 反向输入运算电路
注。

反向输入运算电路的实验原理图如图3.3-3所示;同相输入和差动输入运算电路的实验原理图如图3.3-4所示。

a) b ) 图3.3-4 同相输入和差动输入运算电路
四、实验仪器设备
1. DM S综合实验箱 2. 数字万用表
五、实验内容与步骤
1.接好12±V 电源和地,信号源的“地”要与12±V电源“地”短接。

2.反向输入比例运算
按图3.3-3 a 接好电路,ui在-1V ~ +1V 范围内(实验箱中自备)任意取值,测量输出电压u o ,把测出的电压值填入表3.3-1中,计算出闭环放大倍数A uf 并与理论值相比较。

表3.3-1 反向输入比例运算电路电压的测量值
u i u o A uf
实测 理论
3. 反向输入求和运算
按图3.3-3 b 接好电路,u i 1 和 ui 2 分别在-0.5V ~ +0.5V 范围内任意取值,测输出电压uo ,把测出的电压值填入表3.3-2中,计算出闭环放大倍数A uf 并与理论值相比较。

表3.3-2 反向输入求和运算电路电压的测量值
u i 1 u i 2 u i 1+u i 2 u o
Auf 实测 理论
4.同向输入比例运算
按图3.3-4 a 接好电路,u i在-1V ~ +1V范围内任意取值,测量输出电压u o ,把测出的电压值填入表3.3-3中,计算出闭环放大倍数Au f 并与理论值相比较。

表3.3-3 同向输入比例运算电路电压的测量值
u i uo
A uf
实测 理论
按图3.3-4 b 接好电路,u i1 和 ui 2 分别在-0.5V ~ +0.5V 范围内任意取值,测输出
电压uo ,把测出的电压值填入表3.3-2中,计算出闭环放大倍数A uf并与理论值相比较。

表3.3-4 差动输入比例运算电路电压的测量值
1.按电路图正确接线,经指导教师检查允许后,方可接通电源。

当改接电路时,必须先断开电源。

2.输出端要严防短路;输入端加入电压时,要防止与正负电源短接。

七、试验预习要求
1.课前认真预习本试验的所有内容,清楚实验目的与实验原理。

2.复习集成运放的基本运算电路及运算关系,熟悉EWB软件对集成运算放大电路进行的设计与仿真。

3.写好预习报告,画出电路图和表格。

八、实验报告要求
1.记录实验所测得的数据,并进行计算。

2.算出各个运算电路的理论值,将实验所得到的结果与之比较,并做误差分析。

3.为什么输入信号电压值都在-1V ~ +1V以内?。

相关文档
最新文档