2014年成人高考专升本高等数学二考试真题及参考答案
2014专升本高等数学真题及答案
河南省2014年普通高校等学校选拔优秀本科毕业生本科阶段学习考试高等数学一.选择题(每小题2分,共60分)1.函数2()sin 9ln(1)f x x x =-+-的定义域是()A.(1,3] B.(1,)+∞ C.()3,+∞ D.[3,1)-2.已知2(2)2f x x x =-,则()f x =()A.2114x + B.2114x - C.214x x - D.114x +3.设()f x 的定义域为R ,则()()()g x f x f x =--.()A.是偶函数 B.是奇函数C.不是奇函数也不是偶函数D.是奇函数也是偶函数4.已知224lim 42x ax x →+=--,则()A.1a =- B.0a = C.1a = D.2a =5.1x =-是函数2212x y x x -=--的()A.跳跃间断点B.可去间断点C.连续点D.第二类间断点6.当x→0时,比1cos x -高阶的无穷小是()A.211x +- B.2ln(1)x +C.sin xD.3arctan x7.已知()ln f x x =,则220()()lim 2h f x h f x h→+-=()A.2ln xx -Bln x x C.-21xD.1x8.曲线sin 2cos y t x t=⎧⎨=⎩(t 为参数)。
在2t=对应点处切线的方程为()A.1x =B.1y =C.1y x =+ D.1y x =-9.函数()(1)(2)(3)(4)f x x x x x x =----,则方程'()0f x =实根的个数为()A.2B.3C.4D.510.设()y y x =是由方程xy xy e =+确定的隐函数。
则dy dx=A.11x y x +-- B.21y xy x --C.11y x+- D.12x x xy---11.已知函数()f x 在区间[]0,a (a>0)上连实,(0)f >0且在(0,a)上恒有'()f x >0,设10()aS f x dx =⎰,2(0)S af =,1S 与2S 的关系是()A.1S <2SB.1S =2SC.1S >2S D.不确定12.曲线31y x =+()A.无拐点B 有一个拐点C.有两个拐点D.有三个拐点13.曲线y=12x -的渐近线的方程为()A.0,1x y ==B1,0x y ==C.2,1x y == D.2,0x y ==14.设()F x 是()f x 的一个原函数则()xx e f e dx --⎰=()A.()xF e c -+ B.()xF e c --+C.()x F e c+ D.()xF e c-+15.设()f x 在[],a b 上连续,则由曲线()y f x =与直线x=a,x=b,y=0所围成平面图形的面积为()A ()baf x dx⎰B.()baf x dx⎰C.()b af x dx ⎰D.()()()f b f a b a --16.设()f x 是连实函数,满足()f x =21sin 1x x ++_11(),f x dx -⎰则lim ()x f x →∞=()A.B.-6πC.3πD6π17.设()f x =(1)sin ,xt tdt -⎰则'()f x =()A.sin cos x x x +B.(1)cos x x- C.sin cos x x x- D.(1)sin x x-18.下列广义积分收敛的是()A.2ln xdx x+∞⎰B.11dx x+∞⎰C.2111dx x -⎰D.1cos xdx+∞⎰19.微方程0dx dy y x+=的通解是()A.2225x y += B.34x y c+= C.22x y c+= D.227y x -=20解常微方程''2'xy y y xe -+=的过程中,特解一般应设为()A.2=)xy Ax Bx e+半( B.=xy Axe半 C.=xy Ae半 D.2=()xy x e Ax B +半21.已知a,b,c 为非零向量,且0a b ⋅=,0b c ⨯=则()A.a b ⊥ 且b cB.a b b c⊥ 且 C.a c b c⊥ 且 D.a c b c⊥ 且22、直线L:==3-25x y z与平面π:641010x y z -+-=的位置关系是()A、L 在π上B、L 与π平行但无公共点C、L 与π相交但不垂直D、L 与π垂直23、在空间直角坐标系内,方程222-y =1x 表示的二次曲面是()A、球面B、双曲抛物面C、圆锥面D、双曲柱面24、极限0y 02lim+1-1x xyxy →→=()A、0B、4C、14D、-1425、点(0,0)是函数z xy =的()A、驻点B、极值点C、最大值点D、间断点26、设{}(,)21D x y x y =≤≤,则()+Dxy y dxdy ⎰⎰=()A、0B、-1C、2D、127、设(),f x y 为连续函数,()()122-01,+,x xdx f x y dy dx f x y dy ⎰⎰⎰⎰交换积分次序后得到()A、()212,yy dy f x y dx⎰⎰B、()2,ydy f x y dx⎰⎰C、()12-0,y ydy f x y dx⎰⎰D、()2022,yy dy f x y dx⎰⎰28、L 为从(0,0)经点(0,1)到点(1,1)的折线,则2+Lx dy ydx ⎰=()A、1B、2C、0D、-113.下列级数条件中收敛的是()A、2n=12n-1n +1∞∑B、n nn=11-3∞∑(1)C、22n=1n +n+1n -n+1∞∑D、nn=11-n∞∑(1)30、级数2n=114n -1∞∑的和是()A、1B、2C、12D、14二、填空题(每题2分,共20分)31、设-1=-1x x f x x x ⎛⎫≠⎪⎝⎭(0,1),则()f x =______.32、设连续函数()f x 满足22()()f x x f x dx =-⎰,则2()f x dx ⎰=______.33、已知(){,1ln 1x a x x x f x -<≥=,,若函数()f x 在1x =连续,则a=______.34、设33'(1)12f x x +=+是()01f =-,则()f x =______.35、不定积分cos 2xdx ⎰=______.36、若向量{}{}{}0,1,1;1,0,1;1,1,0a b c ===则()a b c ⨯ =______.37、微分方程"4'40y y y -+=的通解()y x =______.38、设arctan222(,)ln()cos y xf x y ex y xy =+,则'(1,0)x f =______.39、函数()222,,f x y z x y z =++在点(1,1,1)处方向导数的最大值为______.40、函数()112f x x=-的幂级数展开式是______.三、计算题(每题5分,共50分)41、求极限20(1)lim1tan -1x x x e x x→-++42、设n a 为曲线ny x =与1(1,2,3,4...)n y xn +==所围的面积,判定级数1n n na ∞-∑的敛散性43.求不定积分21xdx x -⎰.44.计算定积分402x dx -⎰.45.解方程3xy y x '-=.46.已知函数(,)z f x y =由方程20xyz ez e --+=所确定,求dz .47.已知点(4,1,2),(1,2,2),(2,0,1)A B C --求ΔABC 的面积.48.计算二重积分22lnDx y dxdy +⎰⎰,其中22{(,)14}D x y x y =≤+≤.49.计算曲线积分22(1)(1)y x dx x y dy <++-⎰其中L 是圆221x y +=(逆时针方向).50.试确定幂级数01nn x n ∞=+∑的收敛域并求出和函数.四.应用题(每小题7分,共14分)51.欲围一个面积150平方米的矩形场地,所用材料的造价其正面每平方米6元,其余三面是每平方3元,问场地的长,宽各为多少时,才能使造价最低?52.已知D 是抛物线L:22y x =和直线12x =所围成的平面区域,试求:(1)区域D 的面积(2)区域D 绕Ox 轴旋转所形成空间旋转体体积.五.证明题(6分)53.设2e a b e <<<证明2224ln ln ()b a b a e ->-2014专升本真题答案一.选择题1-10A C B A B D B B C B 11-20C B D B C B D C C D 21-30B D D B A A C A D C 二.填空题31.1x 32.8933.134.21x x --35.1sin 22x c=36.237.2212xx x c ec e+38.239.2340.2n nn x ∞=∑,11(,)22x ∈-41.2030303030320220220(1)1tan 11tan 1(1tan 1)1tan (1)(1tan 1)tan 2tan 6sec 16tan 66lim limlimlimlimlim lim lim x x x x x x x x x x e x x x x x x x x x x x x x x x x x x x x x x x x →→→→→→→→-+-+=+-++++=+-++++=-=-=-===42.解:由题意知112110111(1212(1)(2)n n n n n x x a x x dx n n n n n n +++⎡⎤=-=-=-=⎢⎥++++++⎣⎦⎰)1131123231112(1)(2)(1)(2)1(1)(2)lim 101(1)(2)1(1)(2)n n n n n n n n n n n n nna n n n n nn n n n n n n n a n n n∞∞==∞∞→∞==∞∞∞=====++++++=>++++∑∑∑∑∑∑∑故此级数为正项级数且u 由正项级数比较判别法的极限形式知故与级数的敛散性相同且为收敛级数,故为收敛级数即级数收敛43.22212221122211(1)2111(1)(1)21(1)11212xdx d x x x x d x x c x c--+=---=---=+=-+-+⎰⎰⎰44.42x dx-⎰4422422022(2)2222224x dx x dxx x x x =-+-⎡⎤⎡⎤=-+-⎢⎥⎢⎥⎣⎦⎣⎦=+=⎰⎰45.原方程可化为21'y y x x-=为一阶线性齐次微分方程,由公式知,其通解为112ln 2ln 2231(+c)2=2x xx xdx x e dx c e x e dx c x x dx c x x xdx c x x x cx ----⎡⎤⎰⎰⋅+⎢⎥⎣⎦⎡⎤=+⎣⎦⎡⎤=+⎢⎥⎣⎦⎡⎤=+⎣⎦=+⎰⎰⎰⎰y=e 46..'''''''2,,22222xy z xy xy z x y Z xy x zz xy y zz xy xyz z z e F ye F xe F e F zye x F e F z xe y F e z zdz dx dy x yye xe dx dy e e --------+=-=-=-∂=-=∂-∂=-=∂-∂∂=+∂∂=+--解:令F(x,y,z)=e 则故所以47.解:{}AB=3,34-- ,,{}AC=2,11-- ,{}AB*AC=3341,5,3211i j k--=--AB ×AC=22215335++=ABC 的面积等于12AB ×AC =35248.在极坐标下22221221222211222122122212lnln .2ln 22.ln ln 22122ln .224ln 224ln 2434ln 2x r rr r x y dxdy d rdrr dr r l d r dr rdrr l θπππππππππ+==⎡⎤=-⎢⎥⎣⎦⎡⎤=-⎢⎥⎣⎦=-=-=-⎰⎰⎰⎰⎰⎰⎰⎰49.由格林公式知2222222222212013410(1)(1)(1)(1)1(1)(1)()(2242x oy x dx x y dy x y y x dxdy y x y y x dxdy x y dxdyd r rdr r drr l θπππ++-⎧⎫⎡⎤⎡⎤∂-∂+⎪⎪⎣⎦⎣⎦=-+=⎨⎬∂∂⎪⎪⎩⎭⎡⎤=--+⎣⎦=-+=--=-=-=-⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰,其中D:x 用极坐标计算)50.解:幂级数01n n x n ∞=+∑中11n a n =+有公式知112limlim 111n n n na n a n ρ+→∞→∞+===+故收敛半径11R ρ==,收敛区间为(1,1)-1x =-时,幂级数为0(1)1nn n ∞=-+∑收敛;1x =时,幂级数为011n n ∞=+∑发散;故幂级数01nn x n ∞=+∑的收敛域为[1,1)-设幂级数01n n x n ∞=+∑的和函数为()s x ,即0()1nn x s x n ∞==+∑则10()1n n x xs x n +∞==+∑由100111n n n n x x n x +∞∞=='⎛⎫== ⎪+-⎝⎭∑∑则1(1)00011(1)ln 111n x x x n x dx d x n x x +∞-===--=-+--∑⎰⎰故(1)()ln x xs x -=-即(1)1()ln x s x x-=-51.解:设场地的长为x ,宽为y ,高为h 。
成人高考成考高等数学(二)(专升本)试卷与参考答案
成人高考成考高等数学(二)(专升本)自测试卷(答案在后面)一、单选题(本大题有12小题,每小题7分,共84分)1、设函数(f(x)=x3−3x+2),则(f(x))在区间[-2, 2] 上的最大值为:A、2B、4C、6D、82、已知函数(f(x)=e x lnx),则该函数的定义域是:A.((0,+∞))B.((−∞,0))C.((0,1))D.((1,+∞))3、设函数f(x)=x3−3x2+2在区间[−1,3]上的最大值为M,最小值为m。
则M−m 的值是:A. 4B. 6C. 8D. 10),则该函数的间断点是:4、设函数(f(x)=11+x2A.(x=0)B.(x=1)C.(x=−1)D.(x)无间断点5、设函数(f(x)=x3−3x+1),则该函数在区间 [-2, 2] 上的最大值为:A、4B、3C、2D、16、设函数f(x)=x3−6x2+9x+1,则该函数的极值点为:A.x=1B.x=2C.x=3D.x=47、若函数(f(x)=ln(x2+1)),则(f(x))在(x=1)处的导数(f′(1))是:)A、(12B、1C、2)D、(238、设函数(f(x)=x3−6x2+9x+1),则函数的极值点个数是:A. 0B. 1C. 2D. 39、设函数(f(x)=3x2−4x+5),则该函数的对称轴为:A.(x=1))B.(x=−13)C.(x=23D.(x=2)10、在下列函数中,连续函数为:())(x∈R)A.(f(x)=1x3)(x∈R)B.(f(x)=√xC.$( f(x) =)$D.(f(x)=|x|)(x∈R)),则(f′(0))的值为:11、已知函数(f(x)=1x2+1A. 0B. 1C. -1D. 不存在),求(f′(x))。
12、设函数(f(x)=2x+3x−1)A.(2(x−1)2B.(2x2−1)C.(2(x+1)(x−1))D.(1x−1)二、填空题(本大题有3小题,每小题7分,共21分)1、设函数(f(x)=e ax+b),其中(a,b)为常数,若(f(x))的单调递减区间为((−∞,1a)),则(a)的取值范围为______ 。
成人高考成考高等数学(二)(专升本)试卷及解答参考
成人高考成考高等数学(二)(专升本)复习试卷(答案在后面)一、单选题(本大题有12小题,每小题7分,共84分)1、设函数(f(x)=2x−3x),则函数的零点个数是:A. 1B. 2C. 3D. 02、设函数(f(x)=e x sinx),则该函数的导数(f′(x))为:A.(e x(sinx+cosx))B.(e x(sinx−cosx))C.(e x cosx)D.(e x sinx)3、设函数f(x)=x3-6x2+9x,若函数在x=1处取得极值,则该极值是:A. 4B. 0C. -4D. 84、下列函数中,定义域为实数集的有()A、f(x) = √(x^2 - 1)B、g(x) = 1/xC、h(x) = |x| + 1D、k(x) = √(-x)5、设函数(f(x)=x3−3x+2),则(f(x))的极值点为:A.(x=−1)和(x=1)B.(x=−1)和(x=2)C.(x=0)和(x=1)D.(x=0)和(x=2)6、设函数(f(x)=3x2−4x+1),则该函数的图像开口方向是:A. 向上B. 向下C. 水平D. 垂直),其定义域为((−∞,0)∪(0,+∞)),则函数(f(x))在(x=0)处7、设函数(f(x)=1x的极限值为:A. -∞B. +∞C. 0D. 不存在8、若函数(f(x)=x3−3x2+4x+1)在点(x=1)处可导,且其导数的反函数为(g(x)),则(g′(1))等于:B. -1C. 0D. 29、若函数(f(x)=11+x2)的定义域为(D f),则(D f)为:A.((−∞,+∞))B.((−∞,−1)∪(−1,+∞))C.((−∞,−1]∪[−1,+∞))D.((−1,1]∪[1,+∞))10、设函数f(x)=1xlnx,则f(x)的导数f′(x)为:A.−1x2lnx+1x2B.1x2lnx−1x2C.1x lnx−1x2D.−1x lnx+1x211、设函数(f(x)=11+x2),则(f′(0))的值为:A.(−1)B.(0)C.(12)D.(11+02)12、设函数f(x)=x 3−3xx2−1,则f′(1)的值为:A. 1C. 0D. 无定义二、填空题(本大题有3小题,每小题7分,共21分)1、设函数f(x) = x² - 3x + 2,若f(x)在x=1处的导数为0,则f(x)的极值点为______ 。
14年专升本高数真题
第 1 页 (共5页)2014年河南省普通高等学校选拔优秀专科毕业生进入本科阶段学习考试高等数学注意事项:答题前,考生务必将自己的姓名、考场号、座位号、考生号填写在答题卡上.本卷的试题答案必须答在答题卡上,答在卷上无效.一、选择题(每小题2分,共60分)在每小题的四个备选答案中选出一个正确答案,用铅笔把答题卡上对应题目的答案标号涂黑.1.函数ln(1)y x =-的定义域是A .(1,3]B .()1, +∞C .(3,)+∞D .[3,1)- 2.已知2(2)2f x x x =-,则()f x =A .2114x + B .2114x -C .214x x - D .114x + 3.设()f x 的定义域为R ,则()()()g x f x f x =--A .是偶函数B .是奇函数C .不是奇函数也不是偶函数D .是奇函数也是偶函数4.已知224lim42x ax x →+=--,则 A .1a =-B .0a =C .1a =D .2a =5.1x =-是函数2212x y x x -=--的A .跳跃间断点B .可去间断点C .连续点D .第二类间断点6.当0x →时,比与1cos x -高阶的无穷小是A 1B .2ln(1)x + C .sin xD .3arctan x7.已知()ln f x x =,则220()()lim2h f x h f x h→+-= A .2ln xx-B .ln xx第 2 页 (共5页)C .21x-D .1x8.曲线sin 2cos y t x t=⎧⎨=⎩(t 为参数),则π2t =对应点处切线的方程为A .1x =B .1y =C .1y x =+D .1y x =-9.函数()(1)(2)(3)(4)f x x x x x x =----,则方程()0f x '=实根的个数为 A .2 B .3 C .4 D .5 10.设()y y x =是由方程xy xy e =+确定的隐函数,则d d yx= A .11x yx+--B .21y xyx--C .11yx+- D .12xx xy---11.已知函数()f x 在区间[0,](0)a a >上连续,(0)0f >且在(0,)a 上恒有()0f x '>.设120()d ,(0)as f x x s af ==⎰,1s 与2s 的关系是A .12s s <B .12s s =C .12s s >D .不确定12.曲线31y x =+的拐点,则 A .无拐点 B .有一个拐点 C .有两个拐点 D .有三个拐点13. 曲线12y x =-的渐近线的方程为 A .0,1x y == B .1,0x y ==C .2,1x y ==D .2,0x y ==14. 设)(x F 是)(x f 的一个原函数 ,则()d xx ef e x --=⎰A. C e F x+-)( B. C eF x+--)(C. C e F x+)( D. C eF x+-)(15. 设)(x f 在],[b a 上连续,则由曲线)(x f y =与直线0,,===y b x a x 所围成平面图形的面积为 A. ()d b a f x x ⎰B.()d b af x x ⎰C.|()|d b af x x ⎰D.|()()|()f b f a b a -- 16.设()f x 是连续函数,满足1211sin ()()d 1xf x f x x x -+=-+⎰,则lim ()x f x →∞=第 3 页 (共5页)A .0B .π6- C .π3 D .π617.设0()(1)sin d xf x t t t =-⎰,则()f x '=A. sin cos x x x +B. (1)cos x x -C. sin cos x x x -D. (1)sin x x -18.下列广义积分收敛的是 A .2lnxd xx +∞⎰ B.1+∞⎰C.21⎰D .1cos d x x +∞⎰19.微分方程d d 0x y y x+=的通解是 A .2225x y += B .34x y C += C .22x y C += D .227y x -= 20.解常微分方程2xy y y xe '''-+=的过程中,特解一般应设为 A .xe Bx Ax y )(2+=* B .xAxe y =*C .xAe y =* D .)(2B Ax e x y x+=*21.已知c b a,,为非零向量,且0a b ⋅=,0b c ⨯=,则A. //a b 且b c ⊥B. a b ⊥且//b cC. //a c 且b c ⊥D. a c ⊥且//b c 22.直线:325x y z L ==-与平面π:641010x y z -+-=的位置关系是 A .L 在π上 B .L 与π平行但无公共点C .L 与π相交但不垂直D .L 与π垂直23.在空间直角坐标系内,方程2221x y -=表示的二次曲面是 A. 球面 B.双曲抛物面 C.圆锥面 D.双曲柱面 24.极限0x y →→=A .0B .4C .14D .14-25.点(0,0)函数z xy =的A.驻点B.极值点C.最大值点D.最小值点 26.设{(,)|||2,||1)D x y x y =≤≤,则()d d Dxy y x y +=⎰⎰第 4 页 (共5页)A.0B.-1C.2D. 1 27. 设),(y x f 为连续函数,12201d (,)d d (,)d x x x f x y y x f x y y -+⎰⎰⎰⎰交换积分次序后得到A .2102d (,)d yy y f x y x ⎰⎰ B .20d (,)d yy f x y x ⎰⎰C .120d (,)d yyy f x y x -⎰⎰D .2022d (,)d yy y f x y x ⎰⎰28. L 为从点(0,0)经点(1,0)到点(1,1)的折线,则2d d Lx y y x +=⎰A. 1B. 2C. 0D. -1 29. 下列级数条件收敛的是A. 21211n n n ∞=-+∑ B. 11(1)3n n n ∞=-∑C. 22111n n n n n ∞=++-+∑ D. ∑∞=-11)1(n n n30.级数21141n n∞=-∑的和是A .1B .2C .12 D .14二、填空题(每小题2分,共20分)31.设1(0,1)1x x f x x x -⎛⎫=≠⎪-⎝⎭,则()____f x =. 32.设连续函数()f x 满足22()()d f x x f x x =-⎰,则2()d ____f x x =⎰.33.已知,1()ln ,1x a x f x x x -<⎧=⎨≥⎩,若函数()f x 在1x =处连续,则_____a =.34.设()33112f x x '+=+,且(0)1f =-,则()____f x =.35.不定积分cos 2d x x =⎰.36.若向量{0,1,1}a =,{1,0,1}b =,{1,1,0}c =,则()____a b c ⨯⋅=. 37.微分方程440y y y '''-+=的通解()y x = . 38.设arctan222(,)ln()cos y xf x y ex y xy =+,则(1,0)______x f '=.39.函数222(,,)f x y z x y z =++在点(1,1,1)处方向导数的最大值为 ______. 40.函数1()12f x x=-的幂级数展开是______________.第 5 页 (共5页)三、计算题(每小题5分,共50分)41.求极限2x x →.42.设n a 为曲线ny x =与1n y x +=(1,2,3,4,)n =所围成的面积,判定级数1n n ∞=的敛散性.43.求不定积分x .. 44.计算定积分40|2|d x x -⎰.45.解方程3xy y x '-=的通解. 46.已知函数(,)z f x y =由方程20xyz ez e --+=所确定,求d z .47.已知点(4,1,2),(1,2,2),(2,0,1)A B C --,求ABC ∆的面积. 48.计算二重积分d Dx y ⎰⎰,其中22{(,)|14}D x y x y =≤+≤. 49.计算曲线积分22(1)d (1)d Ly x x x y y ++-⎰,其中L 是圆周221x y +=(逆时针方向).50.试确定级数01nn x n ∞=+∑的收敛域并求出和函数.四、应用题(每小题7分,共14分)51.欲围一个面积为150平方米的矩形场地.所用材料的造价其正面是每平方米6元,其余三面是每平方米3元.问场地的长、宽各为多少时,才能使造价最低?52.已知D 是抛物线2:2L y x =和直线12x =所围成平面区域.试求: (1) 区域D 的面积;(2)区域D 绕Ox 轴旋转所形成空间旋转体的体积. 五、证明题(6分)53.设2e a b e <<<,证明 2224ln ln ()b a b a e->-.。
铭远教育-(历年真题)2014年浙江省专升本数学试卷及解析
25、设 lim
x 0
f x 1 ,且 f x 0 ,证明: f x x . x
26、已知
2 ln 2
dt e 1
t
x
,求 x 的值. 6
浙江省 2014 年选拔优秀高职高专毕业生进入本科学习统一 考试 《高等数学》试卷答案
一、选择题 1、D 解析:解题方法举例子。若 f x x, g x 即 f x g x 极限存在. 2、C 解析:y 3 x 2 3 , 令 y 0. 得 x 1. 当 x 1 时,y 2 ; 当 x 1 时,y 2 .
x 1
lim f x lim
x 1
x 1 是不可导点.
4、A 解析:令 t x u , 则 sin t x dt
x
0
sin udu, f x sin x sin x.
x
0
1 1 1 1 x dx x dx 5、B 解析: y e x x 2 1 e dx C x arctan x C .
所以通解为 ln xy x y C 0, C 为任意的常数
5 1 y 4e x e 2 x 2 2 15、
解析:
y C1e x C2e 2 x , r1 1, r2 2. y 3 y 2 y 1. 1 y * A.0 3 0 2 A 1, A . 2 1 C 4 5 2x 1 C C2 2 1 x 1 , C 5 y 4e e . 2 2 2 2 2 C1 2C2 1
8、曲线 y x ln e
成人高考专升本高等数学二考试真题及参考答案
2014成人高考专升本高等数学二考试真题及参考答案一、选择题(1~10小题。
每小题4分,共40分.在每小题给出的四个选项中。
只有一项是符合题目要求的)1.A.0B.1C.2D.∞【答案】B2.【答案】A3.【答案】A4.设函数f(x)在区间[a,b]连续且不恒为零,则下列各式中不恒为常数的是【答案】D5.【答案】A6.A.恒大于零B.恒小于零C.恒等于零D.可正,可负【答案】C【应试指导】因定积分与积分变量所用字母无关,7.【答案】C8.设函数f(z)在区间[a,b]连续,则曲线y=f(x)与直线x=a,x=b及x轴所围成的平面图形的面积为【答案】C【应试指导】由定积分的几何意义知,本题选C.9.【答案】D10.设事件A,B相互独立,A,B发生的概率分别为0.6,0.9,则A,B都不发生的概率为A.0.54B.0.04C.O.1D.0.4【答案】B二、填空题(11~20小题,每小题4分,共40分)11._________.【答案】112._________.【答案】O13._________.14._________.15._________.【答案】116.__________.17._________.【答案】218._________.【答案】019.__________.20.__________.三、解答题(21~28题。
共70分.解答应写出推理、演算步骤)21.(本题满分8分)【答案】22.(本题满分8分)【答案】23.(本题满分8分)【答案】24.(本题满分8分)【答案】25.(本题满分8分)【答案】26.(本题满分l0分)【答案】27.(本题满分l0分)设50件产品中,45件是正品,5件是次品.从中任取3件,求其中至少有l 件是次品的概率.(精确到0.01)【答案】设A={3件产品中至少有1件次品},则万={3件产品都为正品).(2分)所以P(A)=l—P(A)(5分)28.(本题满分l0分)设曲线Y=4一x2(x≥o)与z轴,Y轴及直线x=4所围成的平面图形为D.(如图中阴影部分所示).(1)求D的面积S.(2)求图中x轴上方的阴影部分绕y轴旋转一周所得旋转体的体积V.【答案】转自:厚学网。
成人高考专升本(高等数学二)考试真题及答案
成人高考专升本(高等数学二)考试真题及答案- 卷面总分:130分答题时间:100分钟试卷题量:19题一、单选题(共7题,共28分)1.设函数f(x)=ln(3x),则'f(2)=()A.4B.ln6C.1/2D.1/6正确答案:C您的答案:本题解析:暂无解析2.设函数f(x)=1-x^2在区间(,)A.单调增加B.单调减少C.先单调增加,后单调减少D.先单调减少,后单调增加正确答案:B您的答案:本题解析:暂无解析3.设A,B是两随机事件,则事件AB表示()A.事件A,B都发生B.事件B.发生而事件A不发生C.事件A发生而事件B不发生D.事件A,B都不发生正确答案:C您的答案:本题解析:暂无解析4.设函数f(x)=ln(3x),则f'(2)=()A.6B.ln6C.1/2D.1/6正确答案:C您的答案:本题解析:暂无解析5.设函数f(x)=1-x^3在区间(,)A.单调增加B.单调减少C.先单调增加,后单调减少D.先单调减少,后单调增加正确答案:B您的答案:本题解析:暂无解析6.曲线y=|x|与直线y=2所围成的平面图形的面积为()A.2B.4C.6D.8正确答案:B您的答案:本题解析:暂无解析7.设A,B是两随机事件,则事件AB表示()A.事件A,B都发生B.事件B发生而事件A不发生C.事件A发生而事件B不发生D.事件A,B都不发生正确答案:C您的答案:本题解析:暂无解析二、填空题(共4题,共16分)8.曲线y=x^33x^25x4的拐点坐标为()正确答案:(1,1)您的答案:9.设函数y=e^x+1,则y''=()正确答案:e^x-1您的答案:10.设曲线y=ax^2+2x在点(1,a+2)处的切线与直线y=4x平行,则a=()正确答案:1您的答案:11.正确答案:1您的答案:三、计算题(共4题,共16分)12.设函数y=sinx^2+2x,求dy正确答案:您的答案:13.已知离散型随机变量X的概率分布为X10203040Pa(1)求常数a;(2)求X的数学期望EX.正确答案:您的答案:14.求曲线y=x^2与直线y=0,x=1所围成的平面图形绕x轴旋转一周所得旋转体的体积V. 正确答案:您的答案:15.求函数f(x)=x^3-3x^-9x+2的单调区间和极值.正确答案:您的答案:16.求函数f(x,y)=x^2+y^2在条件2x+3y=1下的极值.正确答案:您的答案:17.设函数y=sinx^2+2x,求dy.正确答案:您的答案:18.已知离散型随机变量X的概率分布为X10203040P0.20.10.5a(1)求常数a;(2)求X的数学期望EX.正确答案:您的答案:19.求曲线y=x^2与直线y=0,x=1所围成的平面图形绕x轴旋转一周所得旋转体的体积V. 正确答案:您的答案:。
14年专升本高数真题
2014年河南省普通高等学校选拔优秀专科毕业生进入本科阶段学习考试高等数学注意事项:答题前,考生务必将自己的姓名、考场号、座位号、考生号填写在答题卡上.本卷的试题答案必须答在答题卡上,答在卷上无效.一、选择题(每小题2分,共60分)在每小题的四个备选答案中选出一个正确答案,用铅笔把答题卡上对应题目的答案标号涂黑.1.函数ln(1)y x =-的定义域是A .(1,3]B .()1, +∞C .(3,)+∞D .[3,1)- 2.已知2(2)2f x x x =-,则()f x =A .2114x + B .2114x -C .214x x - D .114x + 3.设()f x 的定义域为R ,则()()()g x f x f x =--A .是偶函数B .是奇函数C .不是奇函数也不是偶函数D .是奇函数也是偶函数4.已知224lim42x ax x →+=--,则 A .1a =-B .0a =C .1a =D .2a =5.1x =-是函数2212x y x x -=--的A .跳跃间断点B .可去间断点C .连续点D .第二类间断点6.当0x →时,比与1cos x -高阶的无穷小是A 1B .2ln(1)x + C .sin xD .3arctan x7.已知()ln f x x =,则220()()lim2h f x h f x h→+-=A .2ln xx - B .ln xxC .21x -D .1x8.曲线sin 2cos y t x t=⎧⎨=⎩(t 为参数),则π2t =对应点处切线的方程为A .1x =B .1y =C .1y x =+D .1y x =-9.函数()(1)(2)(3)(4)f x x x x x x =----,则方程()0f x '=实根的个数为 A .2 B .3 C .4 D .5 10.设()y y x =是由方程xy xy e =+确定的隐函数,则d d yx= A .11x yx +--B .21y xyx --C .11yx+- D .12xx xy---11.已知函数()f x 在区间[0,](0)a a >上连续,(0)0f >且在(0,)a 上恒有()0f x '>.设120()d ,(0)as f x x s af ==⎰,1s 与2s 的关系是A .12s s <B .12s s =C .12s s >D .不确定12.曲线31y x =+的拐点,则 A .无拐点 B .有一个拐点 C .有两个拐点 D .有三个拐点13. 曲线12y x =-的渐近线的方程为 A .0,1x y == B .1,0x y ==C .2,1x y ==D .2,0x y ==14. 设)(x F 是)(x f 的一个原函数 ,则()d xx ef e x --=⎰A. C e F x+-)( B. C eF x+--)(C. C e F x+)( D. C eF x+-)(15. 设)(x f 在],[b a 上连续,则由曲线)(x f y =与直线0,,===y b x a x 所围成平面图形的面积为 A.()d b af x x ⎰B.()d b af x x ⎰C.|()|d b af x x ⎰D.|()()|()f b f a b a -- 16.设()f x 是连续函数,满足1211sin ()()d 1xf x f x x x-+=-+⎰,则lim ()x f x →∞= A .0 B .π6- C .π3 D .π617.设0()(1)sin d xf x t t t =-⎰,则()f x '=A. sin cos x x x +B. (1)cos x x -C. sin cos x x x -D. (1)sin x x -18.下列广义积分收敛的是 A .2lnxd xx +∞⎰ B.1+∞⎰C.21⎰D .1cos d x x +∞⎰19.微分方程d d 0x y y x+=的通解是 A .2225x y += B .34x y C += C .22x y C += D .227y x -= 20.解常微分方程2xy y y xe '''-+=的过程中,特解一般应设为 A .xe Bx Ax y )(2+=* B .xAxe y =*C .xAe y =* D .)(2B Ax e x y x+=*21.已知c b a,,为非零向量,且0a b ⋅=,0b c ⨯=,则A. //a b 且b c ⊥B. a b ⊥且//b cC. //a c 且b c ⊥D. a c ⊥且//b c 22.直线:325x y z L ==-与平面π:641010x y z -+-=的位置关系是 A .L 在π上 B .L 与π平行但无公共点C .L 与π相交但不垂直D .L 与π垂直23.在空间直角坐标系内,方程2221x y -=表示的二次曲面是 A. 球面 B.双曲抛物面 C.圆锥面 D.双曲柱面 24.极限0x y →→=A .0B .4C .14D .14-25.点(0,0)函数z xy =的A.驻点B.极值点C.最大值点D.最小值点 26.设{(,)|||2,||1)D x y x y =≤≤,则()d d Dxy y x y +=⎰⎰A.0B.-1C.2D. 1 27. 设),(y x f 为连续函数,12201d (,)d d (,)d x x x f x y y x f x y y -+⎰⎰⎰⎰交换积分次序后得到A .2102d (,)d yy y f x y x ⎰⎰ B .20d (,)d yy f x y x ⎰⎰C .120d (,)d yyy f x y x -⎰⎰D .2022d (,)d yy y f x y x ⎰⎰28. L 为从点(0,0)经点(1,0)到点(1,1)的折线,则2d d Lx y y x +=⎰A. 1B. 2C. 0D. -1 29. 下列级数条件收敛的是A. 21211n n n ∞=-+∑ B. 11(1)3n n n ∞=-∑C. 22111n n n n n ∞=++-+∑ D. ∑∞=-11)1(n n n30.级数21141n n∞=-∑的和是A .1B .2C .12 D .14二、填空题(每小题2分,共20分)31.设1(0,1)1x x f x x x -⎛⎫=≠⎪-⎝⎭,则()____f x =. 32.设连续函数()f x 满足22()()d f x x f x x =-⎰,则2()d ____f x x =⎰.33.已知,1()ln ,1x a x f x x x -<⎧=⎨≥⎩,若函数()f x 在1x =处连续,则_____a =.34.设()33112f x x '+=+,且(0)1f =-,则()____f x =.35.不定积分cos 2d x x =⎰.36.若向量{0,1,1}a =,{1,0,1}b =,{1,1,0}c =,则()____a b c ⨯⋅=.37.微分方程440y y y '''-+=的通解()y x = . 38.设arctan222(,)ln()cos y xf x y ex y xy =+,则(1,0)______x f '=.39.函数222(,,)f x y z x y z =++在点(1,1,1)处方向导数的最大值为 ______. 40.函数1()12f x x=-的幂级数展开是______________.三、计算题(每小题5分,共50分)41.求极限2x x →.42.设n a 为曲线ny x =与1n y x +=(1,2,3,4,)n =所围成的面积,判定级数1n n ∞=的敛散性.43.求不定积分x .. 44.计算定积分40|2|d x x -⎰.45.解方程3xy y x '-=的通解. 46.已知函数(,)z f x y =由方程20xyz ez e --+=所确定,求d z .47.已知点(4,1,2),(1,2,2),(2,0,1)A B C --,求ABC ∆的面积. 48.计算二重积分d Dx y ⎰⎰,其中22{(,)|14}D x y x y =≤+≤.49.计算曲线积分22(1)d (1)d Ly x x x y y ++-⎰,其中L 是圆周221x y +=(逆时针方向).50.试确定级数01nn x n ∞=+∑的收敛域并求出和函数.四、应用题(每小题7分,共14分)51.欲围一个面积为150平方米的矩形场地.所用材料的造价其正面是每平方米6元,其余三面是每平方米3元.问场地的长、宽各为多少时,才能使造价最低?52.已知D 是抛物线2:2L y x =和直线12x =所围成平面区域.试求: (1) 区域D 的面积;(2)区域D 绕Ox 轴旋转所形成空间旋转体的体积. 五、证明题(6分)53.设2e a b e <<<,证明 2224ln ln ()b a b a e ->-.。
山东省2014年普通高等教育专升本统一考试高等数学真题+答案
山东省 2014 年专升本真题试卷高等数学(一)一、单项选择题1.函数y =√x 2−x −6−arcsin 2x−39的定义域为( )A. (−∞,−2]∪[3,+∞)B.[−3,6]C.[−2,3]D. [−3,−2]∪[3,6]2.下列各组中,两个函数为统一函数的组是( )A.f (x )=lg x +lg (x +1),g (x )=lg [x (x +1)]B.y =f(x),g (x )=f(√x 2)C.f (x )=|1−x |,g (x )={x,x ≥12−x,x <1D.y =√9−x 2|x−5|−5,g (x )=√9−x 2x3.函数y =|xcosx |是( )A.有界函数B.偶函数C.单调函数D.周期函数4.直线x −1=y−5−2=z +8与直线{x −y =62y +z =3的夹角为( ) A.π6 B. π4 C. π3 D. π25.下列结论正确的是( )A.若级数∑a n 2∞n=1,∑b n 2∞n=1均收敛,则级数∑(a n +b n )2∞n=1收敛B.若级数∑|a n b n |∞n=1均收敛,则级数∑a n 2∞n=1,∑b n 2∞n=1均收敛C.若级数 ∑a n ∞n=1发散,则a n ≥1n 收敛D.若级数∑a n ∞n=1收敛,a n ≥b n ,则级数∑b n ∞n=1均收敛二、填空题6.函数y =[x ]=n ,n ≤x ≤n +1,n =0,±1,±2⋯的值域为_________7.设f (1x )=x x 2+1则f (x )=8.lim x→∞sinx x =___________9.曲线y =ln (1+e x )的渐近线为______________ 10.函数y =x tanx 的间断点为_________三、计算题11.设函数f (x )={−1,|x |>11,|x |≤1,求f [f (x )]12.求lim x→∞(√1n +√2n +⋯+√2012n)13. lim x→∞(√n +√n −√n −√n)14.求limx→∞5x 2−32x+1sin 2x15.若f (x )={x 2+1,|x |≤c 10|x |, |x |>c 在定义域上连续,试求常数c .16.设f (x )=x(x +1)(x +2)⋯(x +2012),求f ′(0)17.设{x =2(t −sint)y =3(1−cost),求d 2y dx 218.设∫xf (x )dx =arctanx +C ,求∫1f (x )dx .19.若u =ln (x 2+y 2),求ð2u ðxðy20.求∬x y ln x dxdy [1,2]×[0,1]四、应用和证明题21.求lim x→∞(1n 2+n−1+2n 2+n−2+⋯+n n 2+n−n )22.在曲线x 2a 2+y 2b 2=1(a >0.b >0,x >0,y >0)上求一点,使得曲线在该点处的切线与两坐标所围成的三角形面积最小。
14年专升本高数真题答案
2023年河南省普通高等学校选拔优秀专科毕业生进入本科阶段学习考试高等数学 解析及解析一、选择题(每小题2分,共60分)1.解析:A【解析】:2901310x x x ⎧-≥⇒<≤⎨->⎩,应选A.2.解析:C 【解析】:2211(2)(2)2()44f x x x f x x x =-⇒=-,应选C.3.解析:B【解析】:()()()()g x f x f x g x -=--=-,所以()g x 是奇函数,应选B.4.解析:A【解析】:222lim(2)0lim(4)04401x x x ax a a →→-=⇒+=⇒+=⇒=-,应选A.5.解析:B【解析】:因221(1)(1)2(1)(2)x x x y x x x x --+==--+-,所以1x =-是函数2212x y x x -=--地可去间断点,应选B.6.解析:D【解析】:211cos 2x x - ,33arctan x x ,所以比与1cos x -高价地无穷小是3arctan x ,应选D.7.解析:B【解析】:222200()()1()()limlim 22h h f x h f x f x h f x h h→→+-+-=()()2211()ln 22f x x ''==ln x x =,应选B.8.解析:B 【解析】:πππ222d cos =0d 2sin t t t t t y y t k x x t==='==='-切,π2t =对应点为(0,1),所以切线方程为1y =,应选B.9.解析:C【解析】:函数()f x 在[0,1],[1,2],[2,3],[3,4]四个区间上均满足罗尔中值定理,至少存在4个实数使得()0f x '=成立,而方程()0f x '=是4次多项式方程,最多有4个实根.故方程()0f x '=实根地个数为4,应选C.10.解析:B【解析】:d d d d (1)d ()d xxy x y y x e x x y y e x =++⇒-=+,所以d 2d 11x y y e y xy x x x+-==--,应选B.11.解析:C【解析】:()f x 在区间[0,](0)a a >上是增函数,有()(0)0f x f >>,从而120()d (0)d (0)a as f x x f x af s =>==⎰⎰,应选C.12.解析:B【解析】:60y x ''==,只有一个拐点(0,1),应选B.13. 解析:D【解析】:因为1lim lim02x x y x →±∞→±∞==-;221lim lim 2x x y x →→==∞-所以渐近线方程为2,0x y ==,应选D.14. 解析:B 【解析】:()d ()d ()xx x x x e f e x f e e F e C -----=-=-+⎰⎰,应选B.15. 解析:C【解析】:根据定积分几何意义可知,围成平面图形面积为|()|d b af x x ⎰,应选C.16.解析:B 【解析】:令11()d f x x a -=⎰,则21sin ()1xf x a x +=-+,所以11112211111sin ()d d d d 11x f x x x x a x x x ----=+-++⎰⎰⎰⎰,即有π22a a =-,故π6a =,从而1211sin πlim ()lim lim ()d 16x x x x f x f x x a x -→∞→∞→∞+=-=-=-+⎰,应选B.17.解析:D【解析】:()(1)sin f x x x '=-,应选D.18.解析:C 【解析】:21d 1x x -⎰是12q =地q 广义积分,是收敛地,应选C.19.解析:C【解析】:方程化为2222d d 0d()0x x y y x y x y C +=⇒+=⇒+=,应选C.20.解析:D【解析】:xxe 中多项式函数是一次函数,指数函数中x 系数1是二重特征根,特解应设)(2B Ax e x y x+=*,应选D.21.解析:B【解析】:0a b a b ⋅=⇒⊥, 0//b c b c ⨯=⇒,应选B.22.解析:D【解析】:因{3,2,5}//{6,4,10}--,所以直线与平面垂直,应选D.23.解析:D【解析】:2221x y -=在平面内表示双曲线,从而在空间直角坐标内表示双曲柱面,应选D.24.解析:B【解析】:0000002(11)2limlim 2lim(11)411x x x y y y xy xy xyxy xy xy →→→→→→++==++=+-,应选B.25.解析:A 【解析】:因0,0z zy x x y∂∂====∂∂,所以点(0,0)函数z xy =地驻点,应选A.26.解析:A【解析】:根据二重积分地对称性有()d d 0Dxy y x y +=⎰⎰,应选A.27. 解析:C【解析】:积分区域为{(,)|01,0}{(,)|12,02}x y x y x x y x y x ≤≤≤≤⋃≤≤≤≤-,画出图形,也可表示为{(,)|01,2}x y y y x y ≤≤≤≤-,应选C.28. 解析:A【解析】:从(0,0)到(1,0)曲线可表示为0x xy =⎧⎨=⎩x 从0 变到1,有12d d 0L x y y x +=⎰,从(1,0)到(1,1)曲线可表示为1x y y=⎧⎨=⎩y 从0 变到1,2120d d d 1L x y y x y +==⎰⎰,故有2d d 1Lx y y x +=⎰,应选A.29. 解析:D 【解析】:显然级数∑∞=-11)1(n nn是收敛地,而级数11n n∞=∑是发散地,应选D.30.解析:C【解析】:21111114122121n n n n n ∞∞==⎛⎫=- ⎪--+⎝⎭∑∑,所以111221n S n ⎛⎫=- ⎪+⎝⎭,111lim lim 12212n n n S S n →∞→∞⎛⎫==-= ⎪+⎝⎭,应选C.二、填空题(每小题2分,共20分)31.解析:x1.【解析】:因为111x f x x x-⎛⎫=⎪-⎝⎭,所以1()f x x =.32.解析:98.【解析】:设20()d f x x a =⎰,则2()f x x a =-,所以222008()d ()d 23a f x x x a x a ==-=-⎰⎰,从而有89a =,即208()d 9f x x =⎰.33.解析:1=a .【解析】:因11lim ()lim ln 0x x f x x ++→→==,11lim ()lim()1x x f x x a a --→→=-=-,所以10a -=,即1a =.34.解析:12--x x .【解析】:因()3312(1)1f x x '+=+-,所以()21f x x '=-,即有()2f x x x C =-+,把(0)1f =-代入得1C =-,故()21f x x x =--.35.解析:C x +2sin 21.【解析】:11cos 2d cos 2d(2)sin 222x x x x x C ==+⎰⎰.36.解析:2.【解析】:因011{1,1,1}101i j k a b ⨯==-,所以()1111102a b c ⨯⋅=⨯+⨯-⨯= .37.解析:()xex C C 221+.【解析】:微分方程地特征方程为2440r r -+=,特征根为122r r ==,故微分方程地通解为212()()xy x C C x e =+.38.解析:0.【解析】:因2(,0)ln f x x =,所以2ln (,0)x xf x x'=,故(1,0)0x f '=.39.解析:32.【解析】:方向导数地最大值就是梯度地模,梯度为{}(1,1,1)grad (1,1,1)2,2,2{2,2,2}f x y z ==,|grad (1,1,1)|23f =,故方向导数地最大值为23.40.解析:⎪⎭⎫⎝⎛<<-∑∞=2121,20x x n n n .【解析】:00111()(2)2,1222nn n n n f x x x x x ∞∞==⎛⎫===-<< ⎪-⎝⎭∑∑.三、计算题(每小题5分,共50分)41.求极限20(1)lim 1tan 1x x x e x x→-+-+.【解析】:2300(1)(1tan 1)lim limtan 1tan 1x x x x e x x x x xx x →→-+++=-+-+300lim(1tan 1)lim tan x x x x x x x →→=+++⨯-22220032lim 6lim 6sec 1tan x x x x x x→→===-.42.设n a 为曲线ny x =与1n y x+=(1,2,3,4,)n =所围成地面积,判定级数1n n na ∞=∑地敛散性.【解析】:因两曲线n y x =、1n y x+=交点为(0,0),(1,1),所以110111()d 12(1)(2)n n n a x x x n n n n +=-=-=++++⎰.级数11(1)(2)n n n nna n n ∞∞===++∑∑,又因为232(1)(2)limlim 1(1)(2)n n n n n n n n n→∞→∞++==++,而级数3121n n∞=∑是收敛地,根据比较判别法地极限形式知,级数1(1)(2)n nn n ∞=++∑收敛.所以 级数1n n na ∞=∑收敛.43.求不定积分2d 1x x x -⎰.【解析】:22211d d(1)211x x x x x =---⎰⎰122221(1)d(1)12x x x C -=--=-+⎰.44.计算定积分4|2|d x x -⎰.【解析】:4242422|2|d |2|d |2|d (2)d (2)d x x x x x x x x x x-=-+-=-+-⎰⎰⎰⎰⎰ 242202112222422x x x x ⎛⎫⎛⎫=-+-=+= ⎪ ⎪⎝⎭⎝⎭.45.解方程3xy y x '-=地通解.【解析】:方程化为21y y x x'-=,这是一阶线性非齐次微分方程,它对应地齐次方程10y y x'-=地通解为y Cx =.设()y C x x =是原方程地解,代入方程得2()C x x x '=所以()C x x '=,即21()2C x x C =+,故 原方程通解为312y Cx x =+.46.已知函数(,)z f x y =由方程20xyz e z e --+=所确定,求d z .【解析】:方程两边微分得 [d d ]2d d 0xy z ey x x y z e z --+-+=,即 (2)d [d d ]zxye z ey x x y --=+,所以 d d d 22xy xy zz e y e xz x y e e --=+--.47.已知点(4,1,2),(1,2,2),(2,0,1)A B C --,求ABC ∆地面积.【解析】:因{3,3,4},{2,1,1}AB AC =--=--,所以334{1,5,3}211i j kAB AC ⨯=--=--,故ABC ∆地面积为11351259222S AB AC =⨯=++= .48.计算二重积分22ln d d Dx y x y +⎰⎰,其中22{(,)|14}D x y x y =≤+≤.【解析】:积分区域在极坐标下表示为(){},02π,12D r r θθ=≤≤≤≤,所以2π2221ln d d d ln d Dx y x y r r r θ+=⎰⎰⎰⎰221πln d r r =⎰()222113πln d π4ln22r r r r ⎛⎫=-=- ⎪⎝⎭⎰.49.计算曲线积分22(1)d (1)d Ly x x x y y ++-⎰,其中L 是圆周221x y +=(逆时针方向).【解析】:令2(,)(1)P x y y x =+,2(,)(1)Q x y x y =-,则有21P x y ∂=+∂,21Qy x∂=-∂.又L 为封闭曲线且取正方向,故由格林公式可得:2222(1)d (1)d d d ()d d L D DQ P y x x x y y x y x y x y x y ⎛⎫∂∂++-=-=-+ ⎪∂∂⎝⎭⎰⎰⎰⎰⎰ 2π13001d d π2r r θ=-=-⎰⎰.50.试确定级数01nn x n ∞=+∑地收敛域并求出和函数.【解析】:级数01nn x n ∞=+∑是标准不缺项地幂级数,收敛半径为112limlim 111n n n n a n R a n →∞→∞++==⨯=+,当1x =时,级数化为011n n ∞=+∑,是调和级数,发散地;当1x =-时,级数化为0(1)1nn n ∞=-+∑,是交错级数,收敛地;故所求级数地收敛域为[1,1)-.设和函数为()S x ,即0()1nn x S x n ∞==+∑,当(1,1)x ∈-且0x ≠时,10000001()d d d 11n x x x nn n n n x xS x t t t t t n t +∞∞∞=======+-∑∑∑⎰⎰⎰ln(1)x =--,所以ln(1)()x S x x-=-;当0x =时,00ln(1)1(0)lim lim 11x x x S x x →→-=-==-,当1x =-时,ln(1)()x S x x-=-有意义,故所求和函数为ln(1),[1,0)(0,1)()1,0x x S x xx -⎧-∈-⋃⎪=⎨⎪=⎩.四、应用题(每小题7分,共14分)51.欲围一个面积为150平方米地矩形场地.所用材料地造价其正面是每平方米6元,其余三面是每平方米3元.问场地地长、宽各为多少时,才能使造价最低?【解析】:设场地地长、宽各为,x y ,高为h ,造价为z ,则有63(2)z xh x y h =++,且150xy =,即9009(0)z xh h x x=+>,h 为常数,令290090x z h h x'=-=得定义域内唯一驻点10x =,此时15y =;在10x =时,有318000x z h x''=>,所以10x =是极小值点即最小值点,故场地地长、宽各为10米、15米时,才能使造价最低.52.已知D 是抛物线2:2L y x =和直线12x =所围成平面区域.试求:(1) 区域D 地面积;(2)区域D 绕Ox 轴旋转所形成空间旋转体地体积.【解析】:平面图形如下图所示取x 为积分变量,10,2x ⎡⎤∈⎢⎥⎣⎦,(1)根据抛物线地对称性,区域D 地面积是x 轴上方图形面积地2倍. 112202()d 22d s D f x x x x==⎰⎰1222y x=xyo13220222233x ==;(2)区域D 绕Ox 轴旋转所形成空间旋转体地体积为 1122220π()d πd D V f x x y x ==⎰⎰112220ππ2d π4x x x===⎰.五、证明题(6分)53.设2e a b e <<<,证明 2224ln ln ()b a b a e ->-.【证明】:设2()ln f x x =,显然它在(0,)+∞内可导,从而()f x 在区间[,]a b 上满足拉格朗日中值定理,即存在(,)a b ξ∈,使得2ln ()()()f b f a b a ξξ-=-成立,所以有()2222ln ln ln (),b a b a e a b e ξξξ-=-<<<<,又因为函数ln ()x g x x=在区间2[,]e e 上是减函数,所以有2()()g g e ξ>,即2ln 2eξξ>,故 22ln 4()()b a b a eξξ->-所以 2224ln ln ()b a b a e->-.。
成人高考专升本(高等数学二)考试真题及答案
成人高考专升本(高等数学二)考试真题及答案- 卷面总分:130分答题时间:100分钟试卷题量:19题一、单选题(共7题,共28分)1.设函数f(x)=ln(3x),则'f(2)=()A.4B.ln6C.1/2D.1/6正确答案:C您的答案:本题解析:暂无解析2.设函数f(x)=1-x^2在区间(,)A.单调增加B.单调减少C.先单调增加,后单调减少D.先单调减少,后单调增加正确答案:B您的答案:本题解析:暂无解析3.设A,B是两随机事件,则事件AB表示()A.事件A,B都发生B.事件B.发生而事件A不发生C.事件A发生而事件B不发生D.事件A,B都不发生正确答案:C您的答案:本题解析:暂无解析4.设函数f(x)=ln(3x),则f'(2)=()A.6B.ln6C.1/2D.1/6正确答案:C您的答案:本题解析:暂无解析5.设函数f(x)=1-x^3在区间(,)A.单调增加B.单调减少C.先单调增加,后单调减少D.先单调减少,后单调增加正确答案:B您的答案:本题解析:暂无解析6.曲线y=|x|与直线y=2所围成的平面图形的面积为()A.2B.4C.6D.8正确答案:B您的答案:本题解析:暂无解析7.设A,B是两随机事件,则事件AB表示()A.事件A,B都发生B.事件B发生而事件A不发生C.事件A发生而事件B不发生D.事件A,B都不发生正确答案:C您的答案:本题解析:暂无解析二、填空题(共4题,共16分)8.曲线y=x^33x^25x4的拐点坐标为()正确答案:(1,1)您的答案:9.设函数y=e^x+1,则y''=()正确答案:e^x-1您的答案:10.设曲线y=ax^2+2x在点(1,a+2)处的切线与直线y=4x平行,则a=()正确答案:1您的答案:11.正确答案:1您的答案:三、计算题(共4题,共16分)12.设函数y=sinx^2+2x,求dy正确答案:您的答案:13.已知离散型随机变量X的概率分布为X10203040Pa(1)求常数a;(2)求X的数学期望EX.正确答案:您的答案:14.求曲线y=x^2与直线y=0,x=1所围成的平面图形绕x轴旋转一周所得旋转体的体积V. 正确答案:您的答案:15.求函数f(x)=x^3-3x^-9x+2的单调区间和极值.正确答案:您的答案:16.求函数f(x,y)=x^2+y^2在条件2x+3y=1下的极值.正确答案:您的答案:17.设函数y=sinx^2+2x,求dy.正确答案:您的答案:18.已知离散型随机变量X的概率分布为X10203040P0.20.10.5a(1)求常数a;(2)求X的数学期望EX.正确答案:您的答案:19.求曲线y=x^2与直线y=0,x=1所围成的平面图形绕x轴旋转一周所得旋转体的体积V. 正确答案:您的答案:。
2014年浙江专升本(高等数学)真题试卷(题后含答案及解析)
2014年浙江专升本(高等数学)真题试卷(题后含答案及解析) 题型有:1. 选择题 2. 填空题 4. 解答题 5. 综合题选择题在每小题给出的四个选项中,只有一项是符合要求的。
1.当x→x0时,若f(x)存在极限,g(x)不存在极限,则下列结论正确的是( )A.当x→x0时,f(x)g(x)必定存在极限B.当x→x0时,f(x)g(x)必定不存在极限C.当x→x0时,f(x)g(x)若存在极限,则此极限必为零D.当x→x0时,f(x)g(x)可能存在极限,也可能不存在极限正确答案:D解析:极限运算法则,可以举反例,若f(x)=x2,g(x)=lnx,则f(x)= x2=0,g(x)=lnx=-∞,但f(x).g(x)=x2lnx=0;若f(x)=2,g(x)=sin=2,不存在,但f(x).g(x)=不存在;可见选项D正确.2.曲线y=x3-3x上切线平行于x轴的点是( )A.(0,0)B.(1,2)C.(一1,2)D.(0,2)正确答案:C解析:由导数几何意义可知,k切=y′(x0)=3—3=0,所以切点坐标为(1,一2)或(一1,2),即选项C正确.3.函数f(x)=(x2—x一2)|x3一x|的不可导点个数是( )A.3B.2C.1D.0正确答案:B解析:导数定义,f′(0)=所以f′-(0)==2,f′+(0)==-2所以函数f(x)在x=0处不可导;同理,f′(1)=所以f′-(1)=一(x2一x—2)|x(x+1)|=4.f′+(1)=(x2一x—2)|x(x+1)|=-4,所以函数f(x)在x=1处不可导;f′(-1)==(x-2)|x3-x|=0,所以函数f(x)在x=-1处可导;综上可知,函数f(x)共有2个不可导点,选项B正确.4.若f(x=sin(t一x)dt,则f(x)= ( )A.-sinxB.-1+cosxC.sinxD.0正确答案:A解析:变限函数求导数,因为sin(t一x)dt sinudu,所以sin(t—x)dt=sinudu=0一sin(一x).(一1)=-sim,可见选项A正确.5.微分方程y′+的通解是( )A.arctanx+CB.(arctanx+C)C.arctanx+CD.+arctanx+C正确答案:B解析:一阶线性微分方程,由通解公式可得y=e-∫p(x)dx[∫Q(x).e∫p(x)dxdx+C]=.elnxdx+C]=(arctanx+C),可见选项B正确.填空题6.设f(x)在(-∞,+∞)上连续,且f(2)=3,则=___________.正确答案:9解析:利用连续性求极限,=3f(2)=9 7.设f(x)=,则f[f(x)]=___________.正确答案:解析:求复合函数的表达式,f[f(x)]=f[f(x)]=8.曲线y=xln(e+)(x>0)的渐近线方程是___________.正确答案:y=x+解析:计算斜渐近线,设直线y=ax+b为所求曲线的渐近线,则a==lne=1,b=所以,斜渐近线为y=x+.9.设y=ln,则y′|x=0=___________.正确答案:-1解析:求导函数,因为y=ln[ln(1一x)一ln(1+x)]所以y′=,故y′(0)=-1.10.曲线y=(x>0)的拐点是___________.正确答案:()解析:求曲线的拐点,当x>0时,y′=令y″=0,得x=,所以拐点为().11.由曲线y=x和y=x2所围成的平面图形的面积是___________.正确答案:解析:据题意画图,求所围平面图形的面积S=(x—x2)dx=(x2一12.将函数f(x)=sin2x展开成x的幂级数为___________.正确答案:,x∈(一∞,+∞)解析:麦克劳林展式,f(x)=sin2x=cos2x,又因cosx=x2n,x∈(一∞,+∞),所以cos2x=(2x)2n即f(x)=,x∈(一∞,+∞).13.设(a×b).c=1,则[(a+b)×(b+c)].(c+a)=___________.正确答案:2解析:混合积,向量积运算法则,在混合积计算中,如有两向量相同,则混合积为0.因此,[(a+b)×(b+c)].(c+a)=[a×(b+c)+b×(b+c)]=[a×b+a×c+b×b+b ×c].(c+a)=[a×b+a×c+b×c].(c+a)=(a×b).c+(a×b).a+(a×c).c+(a×c).a+(b×c).c+(b×c).a=(a×b).c-(b×c).a=2(a×b).c=214.微分方程(1+x)ydx+(1一y)xdy=0的通解为___________.正确答案:ln|xy|+x-y+C=0,C为任意常数解析:可分离变量的微分方程,(1+x)ydx+(1一y)xdx=0x+ln|x+C=y—ln|y|,即通解为y=x+ln|xy|+C,C为任意常数.15.设二阶常系数线性齐次微分方程y″+ay′+by=0的通解为y=C1ex+C1e2x,那么非齐次y″+ay′+by=1满足的条件y(0)=2,y′(0)=-1的解为___________.正确答案:y=4ex-解析:求二阶线性常系数非齐次方程的通解,特征方程为r2+ar+b=0,r1=1,r2=2即(r-1)(r-2)=0,r2-3r+2=0,故a=-3,b=2.所以原微分方程为y″一3y′+2y=1,由于λ=0不是特征方程的根,取k=0,因此,设特解y*=A,则(y*)′=0,(y*)″=0,代入可得A=,所以y*=,所以y″一3y′+2y=1的通解为y=C1ex+C2e2x+,再由y(0)=2,y′(0)=-1,可得C1=4,C2=,故满足初始条件的特解为y=4ex-解答题解答时应写出推理、演算步骤。