最新八年级数学上册探索勾股定理(第一课时)教案汇编
八年级数学上册《探索勾股定理》教案
八年级数学上册《探索勾股定理》教案八年级数学上册《探索勾股定理》教案一、教学目标:知识与技能目标:1 、了解勾股定理的文化背景,体验勾股定理的探索过程,学习利用拼图验证勾股定理的方法。
2 、会利用勾股定理解决生活当中的实际问题。
过程与方法目标:在勾股定理的探索过程中,培养合情推理能力,体会数形结合和从特殊到一般的思想。
1 、通过拼图活动,体验数学思维的严谨性,发展形象思维。
2 、在探索活动中,学会与人合作,并能与他人交流思维的过程和探索的结果。
情感与态度目标:1 、通过对勾股定理历史的了解,对比介绍我国古代和西方数学家关于勾股定理的研究,激发学生热爱祖国悠久文化的情感,激励学生奋发学习。
2 、在探索勾股定理的过程中,培养合作意识和探索精神,以及严谨的数学学习态度。
体会勾股定理的应用价值。
二、教学重、难点重点:了解勾股定理的演绎过程,掌握定理的应用。
难点:理解勾股定理的推导过程。
关键:通过网格拼图的办法来探索勾股定理的证明过程,理解其内涵。
三、教学准备:制作投影幻灯片,网格图,设计好拼图(用纸片制作)。
四、教学方法:本节课采用情境导入法,探究发现法教学,由浅入深,由特殊到一般地提出问题,鼓励学生采用观察分析、自主探索、合作交流的学习方法,让学生经历数学知识的形成与应用过程。
五、教学程序一、创设情境,导入新课(显示投影片1、2)小明现在遇到难题:1 、大风将学校的一根木制旗杆吹裂,随时都可能倒下,十分危急。
(如图)现在决定从断裂处将旗杆折断,需要划出一个安全警戒区域,想请小明确定这个安全区域的半径至少是多少米,你能帮帮他吗?2 、小明妈妈买了一部29 英寸(约为74 厘米)的电视机,小明量了电视机的屏幕后,发现屏幕只有58 厘米长和46 厘米宽,他觉得一定是售货员搞错了。
你同意他的想法吗?你能解释这是为什么吗?教师活动:引导学生观察,提出问题,我们怎样帮他解决呢?学生活动:听取老师讲述,观看情境。
设计意图; 这样引入可唤起学生的好奇心和求知欲,激发学生的兴趣,从而较自然的引入课题。
探索勾股定理教案(第一课时).docx
探索勾股定理教案(第一课时)绍兴市袍江中学张清—、教材分析(一)教材所处的地位这节课是九年制义务教育浙教版课程标准教科书八年级第二章第六节探索勾股定理第一课时,勾股定理是几何屮几个重要定理之一,它揭示的是直角三角形屮三边的数量关系,把“形”的特征一一三角形屮一个角是直角,转化成数量关系一一三边之间满足/+沪二利用它可以解决直角三角形屮的许多计算问题,是解直角三角形的主要根据之一.它在数学的发展屮起过重要的作用,在现时世界屮也有着广泛的作用.学生通过对勾股定理的学习,可以在原有的基础上对直角三角形有进一步的认识和理解.(-)根据课程标准,制定本课的教学H标(1)知识与技能:掌握勾股定理,并能运用勾股定理解决一些实际问题.掌握用面积的方法来说明勾股定理的正确性.(2)过程与方法:经历探索勾股定理的过程,体验数学学习探究的方法.经历观察、归纳、猜想、概括等数学学习活动过程,发展合情推理能力,体会数形结合思想.(3)情感态度与价值观:进一步丰富数学学习的成功体验,认识到数学是解决实际问题的重要工具,初步形成积极参与数学活动的意识;通过追溯勾股定理的历史,增强学生的爱国情感.(三)本课教学重难点重点:勾股定理的发现及其简单应用.难点:勾般定理的探究采用面积法,这是学生从未体验过的,是本节教学的难点. 二、教法与学法教法分析:针对八年级学生的知识结构和心理特征,本节课选择引导探索法,由浅入深,由特殊到一般地提出问题.引导学生口主探索,合作交流,这种教学理念反映了吋代精神,有利于提高学生的思维能力,能有效地激发学生的思维积极性,基本教学流程是:创设情境,引发思考一一自主探索,合作交流一一追溯历史,激发情感一一应用拓展,能力提升一一冋顾反思,提炼升华一一布置作业,课堂延伸六部分.学法分析:在教师的组织引导下,采用自主探索、合作交流的研讨式学习方式,让学生思考问题,获取他识,掌握方法,借此培养学生动手、动脑、动口的能力,使学生真正成为学习的主体.三、教学过程(一)、创设情境,引发思考故事引入:相传两千多年前,古希腊著名的哲学家、数学家毕达哥拉斯去朋友家做客.在宴席上,其他的宾客都在尽情欢乐,只有毕达哥拉斯却看着朋友家的方砖地发起呆来•原来,朋友家的地是用一块块直角三角形形状的砖铺成的,黑白相间,非常美观大方. 主人看到毕达哥拉斯的样子非常奇怪,就想过去问他,谁知,毕达哥拉斯突然恍然大悟的样子,站起来,大笑着跑回家去了.原来,他发现了地砖上的三个正方形存在某种数学关系.图1 (黑白相间的地砖)教师与学生行为:教师给出一个历史小故事,设置悬念,引发学生思考.教学效果预估与对策:学生对故事中的问题很感兴趣,能够激发学生的探究欲望.设计意图:由毕达哥拉斯在朋友家做客的偶然发现入手,引入本节课的课题一一勾股定理,学生 接受起来更自然,贴切.(二)、自主探索,合作交流 探究活动1猜一猜问题1:你能发现图2屮三个正方形面积之间有怎样的关系?问题3:你能用等腰直角三角形的边长表示止方形的面积吗?由此猜想等腰直角三角 形三边有怎样的关系?教师与学生行为:对于问题(2)、(3)教师给学生足够的思考时间,然后让学生交流合作,得出 结论.问题(3)可让学生在自己准备好的小方格上画出,并计算A 、B 、C 三个正方形的面积,用字母 表示三个正方形面积Z 间的数量关系,进而发现了等腰肓角三角形三边的特殊关系.并在小组内交流, 教师适当引导,深入学生当屮,倾听他们的想法.教学效果预估与对策:对等腰直角三角形三边性质的探索,学生们探究欲望会很强烈,小组交流 想法也会达成共识,对于验证三个正方形面积Z 间的关系.同时辅Z 多媒体的动态演示,使教学效果 更肓观,利于学生接受,顺利突破难点.设计意图:通过设计问题串,让探索过稈由浅入深,循序渐进.经历观察、猜想、归纳这一数学 学习过稈,符合学生认知规律.探索血积证法的多样性,体现数学解决问题的灵活性,发展学生的合2:如图3屮的各红I 图形面积之问都有丄述的结果吗?情推理能力.探究活动2 做一做问题4;请分别计算出图4小正方形A 、B 、C 的面积,看看能得出什么结论?问题5:如图5, a, b, c 分别表示三个止方形的边长,三者之间的面积关系如何表示? 由三个正方形所搭成的直角三角形三边存在怎样的关系? 教师与学生行为:教师观察学生活动,指导与合作,让学生充分发表自己的见解,暴露他们的思 维过程•计算正方形C 的面积不易求出,教师及时点拨,同时借助多媒体动态演示.教学效果预估与对策:根据探索等腰直角三角形三边关系过稈,学生在对探讨一•般肓角三角形三 边性质有了一定基础.计算正方形C 的面积利用分割法和把它看作边长是整数的大正方形面积的一半很 容易想到,但拼凑法会有一定困难,教师利用多媒体动态演示,从而化难为易,得出頁角边为整数的 直角三角形三边的特殊关系.设计意图:此环节设计让学生动手做一做,算一算,充分利用计算血积的不同方法,进一步体会 数形结合思想,让学生经历从特殊到一般的过稈,体会事物由特殊到-•般的变化规律,发展学生的合情 推理能力.探究活动3量一量问题6:,在纸上画出三个直角三角形,使其两条直角边长分别为3c 加和4czn, 1. 5cm 和2cm , 0. 8c/77和1・5肋,分别测量这三个直角三角形斜边的长,根据所测得的结果填写 下表:a b c a 2+b 2c 2 3 41.5 20.81.5观察表屮后两列的数据・JL 面所猜想的数量关系还成立吗? 教师与学生行为:学生动手在纸上逊育角三角形,测量斜边的长度,讲行计算,教师及时点拨. 教学效果预估与对策:由于直角边长不是報数,计算起来难度大.测量斜边长度,由于存在误差, 预计学生会出现思维障碍,此时教师及时点拨,借助儿何I 出i 板演示岚角边为任意长的育角三角形三边W 2C < 1 1 ♦ 1 个 ] ] ( ] / C■pH * E 主 b ・ .・ — ■・ …■ .■ ・'・・・* ■ “ .B* + • + ] • ・ +1 B 1 1 ■卜■] 厶 ] 彳/ 二' + 寸 • 十 (A 的面积+1 '的面积二4 的面积) ・■ ■丄 」.八 厶■・ -.关系,得出一般直角三角形两直角边的平方和等于斜边的平方,从而发现了勾股定理.勾股定理:如果直角三角形两直角边分别为a、b ,斜边为c,那么r+bJc?设计意图:通过上述两种探究活动,学生已初步探究出直角边为整数的直角三角形三边关系.设计让学生动T-MS角边是小数的情形而脱离网格纸,将探究活动进一步深化,从而扩展到更一般的情况.使学生体会数学探究由特殊到一般,再到更一般的过稈.探究活动4 验一验问题7:直角三角形的两条直角边长分别为“、b (b>a),斜边长为c (如图7-1),将四个全等的直角三角形按如图7・2位置放置.如何用图7・2來说明勾股定理的正确性?DB图7-1 图7-2教师与学生行为:动手剪出四个全等的育角三角形,并按图要求拼好.教师提示学生用不同的方法求大正方形的面积并进行化简•指出这就是著名的赵爽证明来说明勾股定理的正确性.教学效果预估与对策:利用面积法来说明勾股定理的正确性,这是学生从未经历过的,学生较难形成思路,因此,一开始学生不知从何做起,此时教师进行启发:①大正方形面积肓接如何求?②若分开又如何求?③两者求出的面积有何关系?化简后你发现了什么?等一系列问题进行提示.设计意图:通过上述三种探究活动,学生已经得到一般肓角三角形的三边关系,肓角三角形两肓角边的平方和等于斜边的平方一勾股定理.但都是通过猜想、测量、计算等方法而得到,缺少几何严谨的说理过程,而探究活动4则弥补了它的缺陷,使学生更加确信勾股定理的正确性.同时也符合学生接受新知识的认知过程.探究活动5 议一议问题8:观察图8并计算,判断锐角三角形,钝角三角形三边的长度是否满足aSb2=c2教师与学生行为:学生观察计算,教师多媒体动态演示.教学效果预估与对策:此环节在前探究的基础上,预计学生能大多数独立解决,从而进一步验证了有且只有直角三角形才满足a2+b2=c2.设计意图:经历从特殊到一般的探索过稈,学生以初步认识到直角三角形的特有性质,但学生已有的认知基础会不断地向学生提示锐角、钝角三角形迅否也具有这样的性质?此坏节的设计符合学生的认知特点,通过与锐角三角形、钝角三角形的对比,进一步强调育角三角形三边关系的特征.(三)、追溯历史,激发情感介绍勾股定理的历史,列举了东西文化中对勾股定理的发现,介绍了一些著名的人物、著作和学派.如商高、《周髀算经》、毕达哥拉斯……这些知识足以激发他们的兴趣,让学生更深刻的体会勾股定理所蕴涵的文化价值.教师与学生行为:老师介绍有关勾股定理的历史,学生认真对比屮西方文化,增强对勾股定理的进一步了解.教学效果预估与对策:教师利用多媒体辅助演示,使知识更系统.设计意图:介绍有关勾股定理的历史,使学生对屮国乃至世界的数学史产生浓厚的兴趣,为下一节的验证打好基础.(四)、应用拓展,能力提升(1)对勾股定理的直接应用问题9:①已知在厶ABC ZC=RtZ, BC = a,AC =b,AB = c.⑴若a = \,b = 2,求c ;(2)若a = 15,c = 17 ,求b・②已知在AABC 屮,ZC=RtZ, BC = a,AC=b,AB = c・(1)如果a =彳,b = ?,求c ;(2)如果a = 12,c = 13,求b ;(3)如果c = 34,a : b = 8:15,求 a,b.(2)利用勾股定理解决实际应用问题问题10:①如图9是一个长方形零件图,根据所给的尺寸(单位:mm),求两孔屮心A, B之间的距离.②某楼房三楼失火,消防队员赶来救火,了解到每层楼高3米,消防队员取来6. 5 米长的云梯,如果梯子的底部离墙基的距离是2. 5米,请问消防队员能否进入三楼灭火?(3) 面积法说明勾股定理正确性的再次认识问题11: (1876年美国总统Garfield 用面积法说明勾股定理的正确性)以"、b 为直角边,以c 为斜边作两个全等的直角三角形,把这两个直角三角形拼成 如图10所示形状,使A 、E 、B 三点在-•条直线上•利用面积法来说明勾般定理的正确性.图10教师与学生行为:教师出示问题,学生解决问题•对于个别有困惑的同学,教师及时点拨.教学效果预估与对策:对于问题9学生很容易独立完成.问题10都是要把实际问题转化为用勾股 定理来进行解决,学生可能难度比较大,教师在讲解时要多提示.问题11是面积法的再次应用,可在教师 的指导下共同完成.设计意图:设计了一个层层深入的问题串,引导学生由浅入深地思考问题,悟出一类问题的解题 规律.另外,由于学生对知识的理解程度有所差异,因此,习题的设置体现层次性.在新知运用过程 屮,也设计小组合作交流,鼓励学生主动参与学习活动,尝试用白己的方式去解决问题,发表白己的 看法.(五) 、回顾反思,提炼升华问题12:通过本节课的学习,你有哪些收获与感悟?教师与学生行为:教师引导学生从知识、过程、方法、情感态度等方面发表看法,学生积极进行 H 我总结,相互补充,巩固探究成果.r 等腰直角三角形[一般直角三角形 j 锐角、钝角三角场 ——肓角三角形两育角边的平方和等于斜边的平方一一定理的应用与拓展教学效果预估与对策:预计学生总结的是木课知识方面的收获与探索过程屮的经验和教训,以及 在与他人合作中得到的快乐.教师要加以引导,师生之间相互加以完善.设计意图:学生通过对本节知识的提炼,归纳岀有关知识与技能方面的一般结论以及在做数学活 动屮所遇到的困惑,感悟到古代数学家在探索新知的领域屮所付出的艰辛,做学问有乐趣亦有苦趣, 培养学生良好的个性和思维品质.(六) 、布置作业,课堂延伸A 类:继续强化勾股定理的计算与应用书本作业题1、3、5及作业本(2) 1,2, 4, 5, 6.B 类:进一•步加深对“勾股定理”的理解及对勾股定理的灵活应用书本Row 作业题4、6、7及作业本(2)3, 7.C 类:如图11,在厶ABC 中,AB=AC=2,在BC 边上有10个不同的点 P, P 2> …Pg,记 Mi 二APj+RB • RC (i=l, 2,…,10)・(1) 求%的值; B(2) 求 M.W-+M.0的值. 教师与学生行为:教师布置作业,学生记录作业.教学效果预估与对策:预计90%以上的同学可以独立完成A 层作业,B 层作业具有一定的开放性, 多数同学对此会很感兴趣.C 层作业比较难,主要是为哪些学有余力的同学准备.设计意图:作业布置上尽量体现层次性及开放性,面向全体•让学生进一步体会勾股定理在解决 直角三故事引入——探索勾股定理 观察、计算 猜想、归纳CA b E a BA 图II角形边的计算方面的重要作川,提高学生分析问题、解决问题的能力,感受勾股定理的现实意义.。
八年级数学上册《探索勾股定理》教案、教学设计
四、教学内容与过程
(一)导入新课
1.教师通过多媒体展示勾股定理的历史背景,如古希腊数学家毕达哥拉斯发现勾股定理的故事,以及我国古代对勾股定理的研究成果,引发学生对勾股定理的好奇心。
2.提问学生:“同学们,你们知道直角三角形有什么特征吗?”让学生回忆直角三角形的定义和性质,为新课的学习做好铺垫。
3.教师提出问题:“在直角三角形中,斜边与直角边之间是否存在某种特殊的数量关系?今天我们就一起来探讨这个问题。”
(二)讲授新知
1.教师通过动画演示,引导学生观察直角三角形中斜边与直角边的关系,并提出勾股定理的猜想。
2.教师逐步引导学生,利用数学归纳法证明勾股定理,强调数学逻辑性和严谨性。
-首先,验证直角边长度为1的直角三角形,斜边长度是否满足勾股定理;
4.多元评价:采用口头提问、课堂练习、课后作业等多种形式,全面评价学生的学习效果。
(三)情感态度与价值观
1.培养学生对数学学科的兴趣,激发他们探索数学知识的热情;
2.培养学生严谨、细心的学习态度,提高他们的数学素养;
3.培养学生的团队协作意识,让他们在合作探究中学会倾听、交流、分享;
4.使学生认识到勾股定理在数学发展中的重要地位,以及数学在人类文明进步中的价值。
此外,学生在解决问题的过程中,可能存在以下问题:对勾股定理的理解不够深入,难以灵活运用;在解决实际问题时,容易忽略细节,导致计算错误。因此,在教学过程中,教师应关注学生的这些薄弱环节,有针对性地进行教学设计和指导。
在此基础上,教师要关注学生的兴趣和动机,通过生动有趣的教学手段,激发学生的学习兴趣,使他们愿意主动参与到勾股定理的探究过程中。同时,注重培养学生的团队合作精神,让他们在互动交流中共同提高,为学生的全面发展奠定基础。
1.1探索勾股定理第1课时认识勾股定理(教案)2022秋八年级上册初二数学北师大版(安徽)
(五)总结回顾(用时5分钟)
今天的学习,我们了解了勾股定理的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对勾股定理的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
3.重点难点解析:在讲授过程中,我会特别强调勾股定理的表达式和证明方法这两个重点。对于难点部分,我会通过构造图形和实际操作来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与勾股定理相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。通过实际测量合作意识和表达交流素养,通过小组讨论和课堂分享,促进学生之间的交流与合作。
三、教学难点与重点
1.教学重点
-理解勾股定理的概念及其表达形式:即直角三角形中,两条直角边的平方和等于斜边的平方。这是本节课的核心内容,教师需通过直观的图形演示和实际操作,使学生深刻理解这一数学规律。
-掌握勾股定理的证明方法:通过不同的证明方法(如构造法、割补法、代数法等),让学生体会数学的严谨性和多样性,加强对定理的理解。
-灵活运用勾股定理解决问题:学生在解决问题时可能会出现对定理运用不灵活的情况,例如,无法将实际问题转化为直角三角形的边长计算问题。
-掌握勾股定理的适用范围:学生需要明确勾股定理只适用于直角三角形,对于非直角三角形不适用。
举例:针对证明过程的难点,可以设计以下教学活动:
a.通过割补法证明勾股定理时,教师可以引导学生通过剪纸、拼接等实际操作,直观地感受证明过程,降低理解难度。
-应用勾股定理解决实际问题:将勾股定理应用于解决直角三角形边长计算等问题,使学生掌握定理在实际生活中的运用。
北师大版-数学-八年级上册-第一章第1节探索勾股定理(1) 教案
北师大版八年级上第一章第1节探索勾股定理(1)教案教学目标:(一)教学知识点1. 经历用计算和数格子的办法探索勾股定理的过程,进一步发展学生的合情推理意识,主动探究的习惯,进一步体会数学与现实生活的紧密联系。
.2.掌握勾股定理的内容,能应用勾股定理解决简单的实际问题.(二)能力训练要求通过探索直角三角形的三边之间的数量关系,进一步发展学生的说理和简单的推理的意识及能力。
(三)情感与价值观通过自主学习的发展体验获取数学知识的感受;了解勾股勾股定理的历史,体会它的重大意义和文化价值教学重点:了解勾股定理的由来并能用它解决一些简单问题。
教学难点:勾股定理中数量关系的发现的发现课堂导入:我们生活的这个世界,蕴涵着无穷的秘密,人们不断去发现它,探索它,促使人类社会不断发展进步,可以说,人类不断发展的历史就是我们不断认识自然、发现自然规律的过程,其中有一些重要的发现对人类的历史进程产生了重大的影响。
我们今天所要研究的就是这样一个伟大的发现,无论是我国古代科技所代表的东方文明还是毕达哥拉斯学派所代表的西方文明,先后都发现了这个规律,有的科学家建议把这个规律作为地球人和外星文明交流的工具。
教学过程:1、知识准备谁能有办法得到下面几个格点图形的面积在网格图形中,简单的图形可以通过数格子的方法得到面积,复杂的图形总可以利用长方形和直角三角形的和或差得到面积。
1观察图1,正方形A中有_______个小方格,即A的面积为______个单位。
正方形B中有_______个小方格,即A的面积为______个单位。
正方形C 中有_______个小方格,即A 的面积为______个单位。
1、 你是怎样得出上面的结果的?在学生交流回答的基础上教师直接发问:2、 图2中,A,B,C 之间的面积之间有什么关系?学生交流后形成共识,教师板书,A+B=C 。
2、做一做出示投影提问:1、图3中,A,B,C 之间有什么关系?2、图4中,A,B,C 之间有什么关系?1、 从图1, 2, 3, 4中你发现什么?学生讨论、交流形成共识后,教师总结:以三角形两直角边为边的正方形的面积和,等于以斜边的正方形面积。
《探索勾股定理》第一课时说课稿 -参考教案
《探索勾股定理》第一课时说课稿 |参考教案《探索勾股定理》第一课时说课稿课题:“勾股定理”第一课时内容:教材分析、教学过程设计、设计说明一、教材分析(一)教材所处的地位这节课是九年制义务教育课程标准实验教科书八年级第一章第一节探索勾股定理第一课时,勾股定理是几何中几个重要定理之一,它揭示的是直角三角形中三边的数量关系。
它在数学的发展中起过重要的作用,在现时世界中也有着广泛的作用。
学生通过对勾股定理的学习,可以在原有的基础上对直角三角形有进一步的认识和理解。
(二)根据课程标准,本课的教学目标是:1、能说出勾股定理的内容。
2、会初步运用勾股定理进行简单的计算和实际运用。
3、在探索勾股定理的过程中,让学生经历“观察—猜想—归纳—验证”的数学思想,并体会数形结合和特殊到一般的思想方法。
4、通过介绍勾股定理在中国古代的研究,激发学生热爱祖国,热爱祖国悠久文化的思想,激励学生发奋学习。
(三)本课的教学重点:探索勾股定理本课的教学难点:以直角三角形为边的正方形面积的计算。
二、教法与学法分析:教法分析:针对初二年级学生的知识结构和心理特征,本节课可选择引导探索法,由浅入深,由特殊到一般地提出问题。
引导学生自主探索,合作交流,这种教学理念反映了时代精神,有利于提高学生的思维能力,能有效地激发学生的思维积极性,基本教学流程是:提出问题—实验操作—归纳验证—问题解决—课堂小结—布置作业六部分。
学法分析:在教师的组织引导下,采用自主探索、合作交流的研讨式学习方式,让学生思考问题,获取知识,掌握方法,借此培养学生动手、动脑、动口的能力,使学生真正成为学习的主体。
三、教学过程设计(一)提出问题:首先创设这样一个问题情境:某楼房三楼失火,消防队员赶来救火,了解到每层楼高3米,消防队员取来6.5米长的云梯,如果梯子的底部离墙基的距离是2.5米,请问消防队员能否进入三楼灭火?问题设计具有一定的挑战性,目的是激发学生的探究欲望,教师引导学生将实际问题转化成数学问题,也就是“已知一直角三角形的两边,如何求第三边?”的问题。
八年级数学上册 探索勾股定理(第一课时)教案 北师大版
探索勾股定理教学设计第(一)课时教学设计思想:本节内容需三课时讲授;勾股定理是反映自然界基本规律的一条重要结论.本节意图让学生自己经过观察、归纳、猜想和验证,发现勾股定理.初中学生思维活跃,求知欲强,好奇心浓,所以处理教材内容上尽量发挥学生的学习主动性.设计方格纸上计算面积,用拼图的方法验证等活动,以真正实现学生在知识、智力、能力和全面提高.为面向全体学生,进行小组合作学习,通过交流、议论、取长补短,引导学生团结协作,互帮互学,从而达到共同提高的目的.教学目标:(一)知识与技能1.体验勾股定理的探索过程,由特例猜想勾股定理,再由特例验证勾股定理.2.会利用勾股定理解释生活中的简单现象.(二)过程与方法1.在学生充分观察、归纳、猜想、探索勾股定理的过程中,发展合情推理能力,体会数形结合的思想.2.在探索勾股定理的过程中,发展学生归纳、概括和有条理地表达活动过程及结论的能力.(三)情感、态度与价值观1.培养学生积极参与、合作交流的意识.2.在探索勾股定理的过程中,体验获得成功的快乐,锻炼学生克服困难的勇气.教学重点探索和验证勾股定理.教学难点在方格纸上通过计算面积的方法探索勾股定理.教学方法交流—探索—猜想.在方格纸上,同学们通过计算以直角三角形的三边为边长的三个正方形的面积,在合作交流的过程中,比较这三个正方形的面积,由此猜想出直角三角形的三边关系.教具准备学生每人课前准备若干张方格纸、投影片教学安排3课时.教学过程Ⅰ.创设问题情境,引入新课[师]上面三个小问题是我们以前讨论过的,我们简单的回忆一下.[生](1)三角形按角的大小来分类可分为:直角三角形、锐角三角形、钝角三角形;(2)对于一般三角形来说,我们可以用SAS(边角边)、ASA(角边角)、AAS(角角边)、SSS(边边边)来判断两个三角形全等;而对于直角三角形来说,除以上四种方法外,还可以用HL(即有斜边和一条直角边对应相等的两个直角三角形全等).(3)两个直角三角形,有两边对应相等,有两种情况:第一种情况:两条直角边对应相等,这时,我们可注意到它们的夹角也对应相等,利用SAS可判断它们全等.第二种情况:一条直角边和斜边对应相等,利用HL公理即可判断它们全等.综上所述,两个直角三角形,如果有两边对应相等,则这两个直角三角形全等.[师]我们可以注意到直角三角形有它独有的一些特征.在我们学习和生活中,你是否还发现直角三角形的其他特征呢?这节课,我们就来继续研究直角三角形.Ⅱ.讲述新课1.问题串[师](1)观察图1.正方形A中含有_________个小方格,即A的面积是_________个单位面积;正方形B中含有_________个小方格,即B的面积是_________个单位面积;正方形C中含有_________个小方格,即C的面积是_________个单位面积.(2)在图2、图3中,正方形A、B、C中各含有多少个小方格?它们的面积各是多少?你是如何得到上述结果的?与同伴交流.(3)请将上述结果填入下表,你能发现正方形A,B,C的面积关系吗?A的面积(单位面积)B的面积(单位面积)C的面积(单位面积)图1图2图3[生]在图1中,正方形A含1个小方格,所以它的面积是1个单位面积;正方形B 含1个小方格,所以B的面积也是1个单位面积;正方形C含2个小方格,所以C的面积是2个单位面积.[师]如何求得正方形C的面积呢?[生]正方形C 可划分为四个直角边长都为1个单位的四个全等的等腰直角三角形,所以C 的面积为4×(21×1×1)=2个单位面积.[生]我们观察可发现,这四个等腰直角三角形重新拼摆,刚好可拼摆成2个小方格,所以C 的面积为2个单位面积.[生]正方形C 还可以看成边长为2个单位的正方形面积的一半,即C 的面积为21×22=2个单位面积.[师]同学们能够不拘一格地积极思考问题,用多种方法去求得图1中C 的面积,值得发扬广大,那么图2,图3中的A ,B ,C 的面积是否可借鉴图1中的A ,B ,C 的求法获得呢?请与你的同学们讨论、交流。
1.1探索勾股定理+教学设计2023—2024学年北师大版数学八年级上册
教师引导学生发现三边关系并提出猜想:a 2+ b2=c2教师引导学生对我们的猜想进行验证,所以给定了几组以a,b为直角边的直角三角形,用我们的猜想计算斜边c的长度。
再次引导学生用工具画出满足上图给定直角边的直角三角形,并用刻度尺测量出斜边的长度,检验和公式算出的数值是否一致从而提出猜想。
猜想公式后尝试应用公式计算,求出斜边的长度作图满足条件的直角三角形,并进行测量,发现测量出的斜边和用公式计算出的斜边在误差允许的范围内保持一致。
设计意图:让学生经历作图——测量——猜想——作图——测量——验证的过程,培养学生的动手实践能力和数学探究能力。
并且,作图和测量是数学操作中的两项基本技能,在此环节中得以多次训练,教学结构完整而统一。
同时,也引导传授学生遇到陌生的问题时,要先进行尝试,再大胆猜想,最后进行验证的数学学习思路。
本环节运用了数形结合的思想和从特殊到一般的思想,让学生感受数学探究的方法与乐趣。
环节三.严谨证明,欣赏教师活动:引导学生使用赵爽弦图对勾股定理进行证明,并强调数形结合的思想方法。
同时,展示第二十四届数学家大会的会徽,再次渗透数学文化。
教师继续带领大家欣赏刘徽的“青朱出入图”、欧几里得《几何原本》中的证明,和达芬奇的证明。
并在课件中展示相应的人物简历、文化科普,激发学生兴趣的同时补充数学文化知识。
学生活动:利用“赵爽弦图”尝试证明勾股定理,并在教师的引导下完成定理的证明。
欣赏其他名人的证法,感受数形结合之美。
体会“算两次”和割补法在勾股定理证明中的妙用。
思考讨论是否还有其他的证明方法,激发数学思教师继续带领学生欣赏其他美妙的证法,并且告诉学生勾股定理有500多种证明方法,是证法最多的定理之一,从而引发学生强烈的求知欲望,想要去查找或探索其他证明方法。
考和潜能设计意图: 通过严谨的数学证明教导学生“先猜后证”是数学之道,一个定理的提出除了猜想和尝试外,还需要逻辑严谨的数学证明.定理的证明可以使本节课的思路更加严谨和清晰。
《探索勾股定理》教学设计
《探索勾股定理》教学设计竞存中学数学组甄伟伟【教学内容】北师大版八年级数学上册第一章第一节《探索勾股定理》第一课时【教材分析】本节课的主要内容是勾股定理的探索及简单应用,勾股定理是几何中的重要定理之一,揭示的是直角三角形的三边关系,通过探索勾股定理的过程可以加深对直角三角形的认识和理解,很大程度上影响后续课时的学习。
【学情分析】八年级学生已经具备了一定的生活经验和动手实践能力,并且对直角三角形的概念有了初步的认识,因而能够在教师的引导下,通过操作、观察、猜想、验证的过程,掌握勾股定理,并加以应用。
【教学目标】一、知识与技能目标通过测量数格子的方法探索勾股定理,掌握勾股定理,并能简单运用。
二、过程与方法目标通过操作、观察、猜想、发现勾股定理的过程,发展学生的合情推理和归纳概括能力,渗透数形结合的思想。
三、情感、态度与价值观目标经历积极交流讨论,探索勾股定理的数学活动过程,发展学生的合作意识,把实际问题转化为数学问题,让学生感受到数学就在日常生活中。
【教学重点】勾股定理的探索和理解。
【教学难点】在探索勾股定理的过程中如何计算具体图形的面积,以及勾股定理的简单运用。
【课时划分】本课共两课时,本设计为第一课时【教学过程】一、板书课题二、出示学习目标三、出示自学指导:认真看课本1--2页内容,注意;1.任意画两个直角三角形,通过测量发现三边的平方存在怎样的关系.2.数图1-2和图1-3中的格子数(即面积)发现具有什么关系.3.熟记勾股定理的内容.(六分钟后检测)四、学生自学,教师巡视。
五、检测与指导问题一:在纸上画若干个直角三角形,分别测量它们的三条边,看看三边长的平方之间有怎样的关系?(学生展示)师:基于测量值的计算,肯定有些误差,因此,我们需借助格子图进一步验证。
问题二:出示图1-2,你能发现下面图中分别以直角三角形的三边长为边所做的正方形面积之间有怎样的关系。
(兵教兵,学生展示讲解)①直接数出正方形内部所包含的完整小方格的个数,而将不足一个方格的部分都算半个(结果也恰好相等,这时教师可以给予学生适当的鼓励,并进一步追问其中的道理,使得学生明确这个方法的缺陷,甚至使学生可能对这个方法进行完善,并得到方法②);②将不足一个方格的部分进行适当的拼凑,以拼凑出若干个完整的小方格;③将斜边上的正方形划分为若干个边长都是整数的直角三角形,再利用三角形面积公式得出其面积;④在斜边上的正方形的各边上补一个直角三角形,得到一个大的正方形。
八年级数学《勾股定理》教案8篇
八年级数学《勾股定理》教案8篇(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如心得体会、工作报告、工作总结、工作计划、申请书、读后感、作文大全、合同范本、演讲稿、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of practical materials for everyone, such as insights, work reports, work summaries, work plans, application forms, post reading reviews, essay summaries, contract templates, speech drafts, and other materials. If you want to learn about different data formats and writing methods, please stay tuned!八年级数学《勾股定理》教案8篇本文将为大家介绍八年级数学《勾股定理》教案8篇。
北师大版数学八年级上册《探索勾股定理》教案1
北师大版数学八年级上册《探索勾股定理》教案1一. 教材分析《探索勾股定理》是北师大版数学八年级上册的一章内容。
本章通过探究直角三角形三边之间的关系,引导学生发现并证明勾股定理。
教材内容丰富,既有历史文化的传承,也有数学证明的严谨性,有助于提高学生的学习兴趣和探究能力。
二. 学情分析学生在七年级时已经学习了相似三角形、平方根等知识,为本章的学习奠定了基础。
但勾股定理的证明较为复杂,需要学生具有较强的逻辑思维能力和推理能力。
此外,学生对数学文化的认识还不够深入,需要教师在教学中加以引导。
三. 教学目标1.了解勾股定理的发现过程,感受数学文化的魅力。
2.掌握勾股定理的内容,并能运用勾股定理解决实际问题。
3.培养学生的探究能力、合作能力和数学思维能力。
四. 教学重难点1.重难点:勾股定理的证明及应用。
2.难点:理解并证明勾股定理,运用勾股定理解决实际问题。
五. 教学方法1.采用问题驱动法,引导学生主动探究勾股定理。
2.运用历史背景法,让学生了解勾股定理的文化价值。
3.采用合作交流法,培养学生团队合作精神。
4.利用几何画板等软件,直观展示勾股定理的证明过程。
六. 教学准备1.教师准备PPT、几何画板等教学工具。
2.学生准备笔记本、尺子、圆规等学习用品。
七. 教学过程1.导入(5分钟)利用PPT展示勾股定理的历史背景,引导学生了解勾股定理的文化价值。
2.呈现(10分钟)教师通过几何画板展示直角三角形,引导学生观察并猜想勾股定理。
3.操练(15分钟)学生分组讨论,每组尝试用尺子、圆规等工具验证勾股定理。
教师巡回指导,解答学生疑问。
4.巩固(10分钟)学生代表汇报验证结果,其他学生补充意见。
教师总结勾股定理的证明过程。
5.拓展(10分钟)教师提出一系列与勾股定理相关的问题,引导学生运用勾股定理解决实际问题。
6.小结(5分钟)教师引导学生总结本节课的学习内容,巩固勾股定理的知识。
7.家庭作业(5分钟)布置一道运用勾股定理解决问题的作业,巩固所学知识。
探索勾股定理(第一课时)教案
课题:1、1探索勾股定理(第一课时)教学目标1、知识与技能目标用数格子(或割、补、拼等)的办法体验勾股定理的探索过程并理解勾股定理反映的直角三角形的三边之间的数量关系,会初步使用勾股定理实行简单的计算和实际使用.让学生经历“观察—猜想—归纳—验证”的数学思想,并体会数形结合和特殊到一般的思想方法.进一步发展学生的说理和简单推理的意识及水平;进一步体会数学与现实生活的紧密联系.3、情感态度与价值观在探索勾股定理的过程中,体验获得成功的快乐;通过介绍勾股定理在中国古代的研究,激发学生热爱祖国,热爱祖国悠久文化的思想,激励学生发奋学习.教学重点:了结勾股定理的由来,并能用它来解决一些简单的问题。
教学难点:勾股定理的发现教学准备:多媒体课件教学过程:第一环节:创设情境,引入新课(3分钟,学生观察、欣赏)内容:2002年世界数学家大会在我国北京召开,投影显示本届世界数学家大会的会标:会标中央的图案是一个与“勾股定理”相关的图形,数学家曾建议用“勾股定理”的图来作为与“外星人”联系的信号.今天我们就来一同探索勾股定理.(板书课题)第二环节:探索发现勾股定理(15分钟,学生独立观察,自主探究)1.探究活动一:内容:(1)投影显示如下地板砖示意图,让学生初步观察:(2)引导学生从面积角度观察图形:问:你能发现各图中三个正方形的面积之间有何关系吗? 学生通过观察,归纳发现:结论1 以等腰直角三角形两直角边为边长的小正方形的面积的和,等于以斜边为边长的正方形的面积. 2.探究活动二:由结论1我们自然产生联想:一般的直角三角形是否也具有该性质呢? (1)观察下面两幅图:(2)填表:A 的面积(单位面积)B 的面积(单位面积)C 的面积(单位面积)左图 右图(3)你是怎样得到正方形C 的面积的?与同伴交流.(学生可能会做出多种方法,教师应给予充分肯定.)(4)分析填表的数据,你发现了什么? 学生通过度析数据,归纳出:结论2 以直角三角形两直角边为边长的小正方形的面积的和,等于以斜边为边长的正方形的面积. 3.议一议:内容:(1)你能用直角三角形的边长a 、b 、c 来表示上图中正方形的面积吗?AB CC BA(2)你能发现直角三角形三边长度之间存有什么关系吗?(3)分别以5厘米、12厘米为直角边作出一个直角三角形,并测量斜边的长度.2中发现的规律对这个三角形仍然成立吗?勾股定理(gou-gu theorem ):如果直角三角形两直角边长分别为a 、b ,斜边长为c ,那么222c b a =+.即直角三角形两直角边的平方和等于斜边的平方.数学小史:勾股定理是我国最早发现的,中国古代把直角三角形中较短的直角边称为勾,较长的直角边称为股,斜边称为弦,“勾股定理”所以而得名. (在西方称为毕达哥拉斯定理)第三环节:勾股定理的简单应用(7分钟,学生合作探究)内容:例 如图所示,一棵大树在一次强烈台风中于离 地面10m 处折断倒下,树顶落在离树根24m 处. 大树在折断之前高多少?(教师板演解题过程)第四环节:巩固练习(10分钟,学生先独立完成,后全班交流) 1、列图形中未知正方形的面积或未知边的长度:2、生活中的应用:小明妈妈买了一部29英寸(74厘米)的电视机. 小明量了电视机的屏幕后,发现屏幕只有58厘米长和46厘米宽,他觉得一定是售货员搞错了.你同意他的想法吗?你能解释这是为什么吗?第五环节:课堂小结(3分钟,师生对答,共同总结)内容:教师提问:弦股勾?225100x15171.这个节课我们一起学习了哪些知识和思想方法? 2.对这些内容你有什么体会?请与你的同伴交流. 在学生自由发言的基础上,师生共同总结:1.知识:勾股定理:如果直角三角形两直角边长分别为a 、b ,斜边长为c ,那么222c b a =+. 2.方法:① 观察—探索—猜想—验证—归纳—应用; ② 面积法;③ “割、补、拼、接”法.3.思想:① 特殊—一般—特殊; ② 数形结合思想.第六 环节:布置作业(2分钟,学生分别记录)内容:作业:1.教科书习题1.1; 2.阅读《读一读》——勾股世界;3.观察下图,探究图中三角形的三边长是否满足222c b a =+.要求:A 组(学优生):1、2、3 B 组(中等生):1、2 C 组(后三分之一生):1a bcabc。
1.1 探索勾股定理 课件 2024-2025学年北师大版数学八年级上册
拨
[答案] B
行分类讨论.
1.1 探索勾股定理
返回目录
方 ■方法:利用勾股定理解决面积问题
法
如图,由直角三角形的三边向外作正方形、半圆或等边
技
巧 三角形,则有 S =S +S (S ,S ,S 分别代表三个图形的
1
2
3
1
2
3
点
拨 面积,其中 S1 代表以斜边为一边的图形的面积).
1.1 探索勾股定理
返回目录
例 如图,正方形 ABGF 和正方形 CDBE 的面积分别是
[解题思路]设 AC=b,BC=a,AB=c,易得 AB⊥DE,所
考
点
清 以四边形 ACBE 的面积=S△ACB+S△ABE= AB·DG+ AB·EG=
单
解
2
读 AB·(DG+EG)= AB·DE= c , 四边形 ACBE 的面积
=S
梯形 ACFE
)b+
+S△EFB=
返回目录
[答案] 解:如图,过点 A 作 AD⊥BC,垂足为 D,
所以∠ADB=∠ADC=90°.
设 BD=x,则 CD=21-x,
在 Rt△ABD 中,AD2=102-x2,
在 Rt△ADC 中,AD2=172-(21-x)2,
解得 x=6,所以 AD2=102-62=64,
所以 AD=8,即 BC 边上的高为 8.
(1)已知∠C=90°,a=6,b=8,求 c;
(2)已知∠B=90°,a=15,b=25,求 c.
1.1 探索勾股定理
考
点
清
北师大版八年级数学上册第一章《勾股定理》教案
第一章勾股定理1 探索勾股定理第1课时勾股定理(1)1.经历测量和用数格子的办法探索勾股定理的过程,进一步发展学生的合情推理意识,主动探究的习惯,进一步体会数学与现实生活的紧密联系.2.探索并理解直角三角形的三边之间的数量关系,进一步发展学生的说理和简单推理的意识及能力.3.利用勾股定理,已知直角三角形的两边求第三边长.4.在勾股定理的探索过程中,发展合情推理能力,体会数形结合的思想.5.经历观察与发现直角三角形三边关系的过程,感受勾股定理的应用意识.6.通过对勾股定理历史的了解,感受数学变化,激发学习热情.7.在探究活动中,体现解决问题方法的多样性,培养学生的合作交流意识和探索精神.【教学重点】探索勾股定理.【教学难点】用测量和数格子的方法探索勾股定理.一、创设情境,导入新课我们知道,任意三角形的三条边必须满足定理:三角形的两边之和大于第三边.对于等腰三角形和等边三角形的边,除满足三边关系定理外,它们还分别存在着两边相等和三边相等的特殊关系.那么对于直角三角形的边,除满足三边关系定理外,它们之间也存在着特殊的关系,这就是我们这一节要研究的问题:勾股定理.出示投影1(章前的图文P1),介绍数学家曾用这个图形作为与“外星人”联系的信号.【教学说明】通过复习旧知识,引入新课.出示投影,介绍与勾股定理有关的背景,激发学生的学习兴趣.二、思考探究,获取新知勾股定理做一做:1.在纸上画若干个直角三角形,分别测量它们的三条边,看看三边长的平方之间有怎样的关系?与同伴交流.【教学说明】学生根据教师的要求完成这个问题,自主交流发现直角三角形的性质.2.观察教材图1—2,正方形A中有个小方格,即A的面积为个面积单位.正方形B中有个小方格.即B的面积为个面积单位.正方形C中有个小方格,即C的面积为个面积单位.你是怎样得出上面结果的?在学生交流回答的基础上教师接着发问.教材图1—2中,A、B、C之间的面积之间有什么关系?【教学说明】通过观察特殊图形下方格数与正方形面积之间的转化,进一步体会探索勾股定理.归纳得出结论:S A+S B=S C.3.教材图1—3中,A、B、C之间是否还满足上面的关系?你是如何计算的?【教学说明】通过观察计算一般情况下方格数与正方形面积之间的转化,进一步加强对勾股定理的理解.4.如果直角三角形两直角边分别是1.6个单位长度和2.4个单位长度,上面所猜想的数量关系还成立吗?说明你的理由.【教学说明】渗透从特殊到一般的数学思想,充分发挥学生的主体地位,让学生体会到观察、猜想、归纳的思想,也让学生的分析问题、解决问题的能力得到了提高.议一议:你能发现直角三角形三边长度之间的关系吗?【教学说明】学生自主探究,发现直角三角形的性质,并整合成精确的语言将之表达出来,有利于培养学生综合概括能力和语言表达能力.【归纳结论】直角三角形的两直角边的平方和等于斜边的平方.这就是著名的“勾股定理”.也就是说:如果直角三角形的两直角边为a、b,斜边为c,那么a2+b2=c2.我国古代称直角三角形的较短的直角边为勾,较长的直角边为股,斜边为弦,这便是勾股定理的由来.三、运用新知,深化理解1.在直角三角形ABC中,∠C=90°,若a=5,b=12,则c= .2.在直角三角形的ABC中,它的两边长的比是3∶4,斜边长是20,则两直角边长分别是.【教学说明】学生的完成,加深对勾股定理的理解和检测对勾股定理的简单运用,对学生的疑惑或出现的错误及时指导,并进行强化.【答案】1.13;2.12,16四、师生互动,课堂小结通过本节课的学习,你掌握了哪些新知识,还有什么困惑?【教学说明】教师引导学生回顾新知识,加强对勾股定理的理解,进一步完善了学生对知识的梳理.完成练习册中本课时相应练习.本节内容重在探索与发现,要给充分的时间让学生讨论与交流.适当的练习以巩固所学也是必要的,当然,这些内容还需在后面的教学内容再加深加广.第2课时勾股定理(2)1.经历运用拼图的方法说明勾股定理是正确的过程,在数学活动中发展学生的探究意识和合作交流的习惯.2.掌握勾股定理和它的简单应用.3.通过从实际问题中抽象出直角三角形这一模型,初步掌握转化和数形结合的思想方法.4.经历探究勾股定理在实际问题中的应用过程,感受勾股定理的应用方法.5.在数学活动中发展了学生的探究意识和合作交流的习性;体会勾股定理的应用价值,通过本节课学习,让学生体会到数学来源于生活,又应用到生活中,增加学生应用数学知识解决实际问题的经验和感受.【教学重点】能熟练应用拼图法证明勾股定理.【教学难点】用面积证勾股定理.一、创设情境,导入新课我们已经通过数格子的方法发现了直角三角形三边的关系,究竟是几个实例,是否具有普遍的意义,还需要加以论证,下面就是今天所要研究的内容.【教学说明】让学生经历从特殊到一般的数学方法,明白数学问题是需要通过一定的论证才能说明它的正确性,为后面学习证明打下埋伏.二、思考探究,获取新知勾股定理的验证及简单运用做一做:1.画一个直角三角形,分别以这个直角三角的三边为边长向外作正方形,你能利用这个图证明勾股定理的正确性吗?你是如何做的?与同伴进行交流.【教学说明】让学生进一步体会探索勾股定理的过程,体会数形结合的思想.2.为了计算教材图1—4中大正方形的面积,小明对这个大正方形适当割补后,得到教材P51—5、1—6图.(1)将所有三角形和正方形的面积用a,b,c的关系式表示出来;(2)教材图1—5、1—6中正方形ABCD的面积分别是多少?你们有哪些表示方式?与同伴进行交流.(3)你能分别利用教材图1—5、1—6验证勾股定理吗?【教学说明】学生通过各种方法验证勾股定理的正确性,加深对勾股定理的理解,又让学生体会到一题多解.【归纳结论】勾股定理的证明方法达300多种,请同学们利用业余时间探究、讨论并阅读教材P7-8的其它证明勾股定理的方法,以开阔事学们的视野.三、运用新知,深化理解1.一块长3m,宽2.2m的薄木板能否从一个长2m,宽1m的门框内通过,为什么?2.飞机在空中水平飞行,某一时刻刚好飞到一个男孩头顶正上方4000米处,过了20秒,飞机距离这个男孩头顶5000米,飞机每小时飞行多少千米?【教学说明】让学生从实际生活的角度大胆的去考虑,用生活经验和学过的知识去解答.并学会把实际问题抽象为直角三角形的数学模型的过程,能够熟练地将勾股定理应用到现实生活中去.【答案】1.能,让薄木板的宽从门框的对角线斜着通过.2.分析:根据题意,可以先画出符合题意的图形.如图,图中△ABC的∠C=90°,AC=4000米,AB=5000米欲求飞机每时飞行多少千米,就要知道20秒时间里飞行的路程,即图中的CB的长,由于△ABC的斜边AB=5000米,AC=4000米,这样BC就可以通过勾股定理得出,这里一定要注意单位的换算.解:由勾股定理得BC2=AB2-AC2=52-42=9(km2)即BC=3千米飞机20秒飞行3千米.那么它1小时飞行的距离为:3600/20×3=540(千米/时)答:飞机每小时飞行540千米.四、师生互动,课堂小结通过这节课的学习,你学会了哪几种证明勾股定理的方法?还有哪些疑问?【教学说明】总结归纳帮助学生进一步掌握解决实际问题的关键是抽象出相应的数学模型.完成练习册中本课时相应练习.了解多种证明勾股定理的方法,有助于加深对勾股定理内容的理解,但这需要花一定的时间,可以让学生课外了解.并运用所学知识解决实际问题,体验数学来源于生活,生活中也蕴含着许多数学道理.2 一定是直角三角形吗1.掌握直角三角形的判别条件,并能进行简单应用.2.通过用三角形的三边的数量关系来判断三角形的形状,体验数形结合方法的应用.3.敢于面对数学学习中的困难,并有独立克服困难和运用知识解决问题的成功经验,进一步体会数学的应用价值,发展运用数学的信心和能力,初步形成积极参与数学活动的意识.【教学重点】探索并掌握直角三角形的判别条件.【教学难点】运用直角三角形判别条件解题.一、创设情境,导入新课展示一根用13个等距的结把它分成等长的12段的绳子,请三个同学上台,按老师的要求操作.甲:同时握住绳子的第一个结和第十三个结.乙:握住第四个结.丙:握住第八个结.拉紧绳子,让一个同学用量角器,测出这三角形其中的最大角.发现这个角是多少度?古埃及人曾经用这种方法得到直角,这三边满足了什么条件?怎样的三角形才能成为直角三角形呢?这就是我们今天要研究的内容.【教学说明】利用古埃及人得到直角的方法,学生亲自动手实践,体验从实际问题中发现数学,同时明确了本节课的研究问题.既进行了数学史的教育,又锻炼了学生的动手实践、观察探究的能力.二、思考探究,获取新知直角三角形的判别做一做:下面的三组数分别是一个三角形的三边a、b、c.5、12、137、24、258、15、171.这三组数都满足a2+b2=c2吗?2.分别用每组数为三边作三角形,用量角器量一量,它们都是直角三角形吗?3.如果三角形的三边长为a、b、c,并满足a2+b2=c2.那么这个三角形是直角三角形吗?【教学说明】鼓励学生大胆发言,让他们体验通过实际的计算和探究得到结论的乐趣,增强了他们勇于探索的精神.【归纳结论】如果三角形的三边长a、b、c满足a2+b2=c2,那么这个三角形是直角三角形.满足a2+b2=c2的三个正整数,称为勾股数.大家可以想这样的勾股数是很多的.今后我们可以利用“三角形三边a、b、c满足a2+b2=c2时,三角形为直角三角形”来判断三角形的形状,同时也可以用来判定两条直线是否垂直的方法.三、运用新知,深化理解1.下列几组数能否作为直角三角形的三边长?说说你的理由.(1)9,12,15;(2)15,36,39;(3)12,35,36;(4)12,18,22.2.已知△ABC中BC=41,AC=40,AB=9,则此三角形为三角形,是最大角.3.四边形ABCD中已知AB=3,BC=12,CD=13,DA=4,且∠DAB=90°,求这个四边形的面积.【教学说明】学生独立完成,能够加深判断一个三角形是直角三角形的条件的理解,帮助学生答疑解惑,及时指导,矫正强化.在完成上述题目后,引导学生完成《创优作业》中本课时的“课堂自主演练”部分.【答案】1.(1)(2)两组能作为直角三角形的三边长.∵92+122=152,152+362=392.∴这两个三角形都是直角三角形.2.直角,∠A3.解:连结BD,在△ABD中,∠DBA=90°,BD2=AB2+AD2=32+42,BD=5.在△DBC中,∵52+122=132,即DB2+BC2=DC2,∴△DBC为直角三角形,∠DBC=90°,∴S四边形ABCD=S△DAB+S△DBC=12×3×4+12×5×12=36.四、师生互动,课堂小结1.判断一个三角形是直角三角形的条件.2.今天的学习,你有哪些收获?还有哪些困惑?与同学交流.【教学说明】及时反馈教与学双边活动的结果,查漏补缺,让学生养成系统整理知识的好习惯.1.教材P10-11习题1.3第2、3、4题.2.完成练习册中本课时相应练习.这是勾股定理的逆向应用.大部分同学只要能正确掌握勾股定理的话,都不难理解.当然勾股定理的理解是关键.3勾股定理的应用1.能运用勾股定理及直角三角形的判别条件解决简单的实际问题.2.学生观察图形,勇于探索图形间的关系,培养学生的空间观念.3.在将实际问题抽象成几何图形的过程中,提高分析问题、解决问题的能力及渗透数学建模的思想.4.在不同条件,不同环境中反复运用勾股定理及直角三角形的判定条件,使学生达到熟练、灵活运用的程度.在解决问题的过程中,培养学生的空间观念,提高学生建立数学模型的能力.5.通过解决实际问题,提高了学生应用数学的意识和锻炼了学生与他人交流合作的意识,再次感悟勾股定理和直角三角形判定的应用价值.【教学重点】探索发现给定事物中隐含的勾股定理及直角三角表判定条件,并用它们解决生活中的实际问题.【教学难点】利用数学中的建模思想构造直角三角形,灵活运用勾股定理及直角三角形的判定,解决实际问题.一、创设情境,导入新课勾股定理的应用前几节课我们学习了勾股定理,你还记得它有什么作用吗?例如:欲登12米高的建筑物,为安全需要,需使梯子底端离建筑物5米,至少需要多长的梯子?日常生活当中,我们还会遇到下面的问题.【教学说明】回忆勾股定理,巩固旧知识,解决实际问题,完成知识的过渡,为学生学习新知识又一次打下了坚实的基础.二、思考探究,获取新知蚂蚁怎么走最近?出示问题:有一个圆柱,它的高等于12厘米,底面半径等于3厘米.在圆柱的底面A点有一只蚂蚁,它想吃到上底面上与A点相对的B点处的食物,需要爬行的最短路程是多少?(π的取值3).(1)同学们可自己做一个圆柱,尝试从A点到B点沿圆柱的侧面画出几条路线,你觉得哪条路线最短呢?(2)如图,将圆柱侧面剪开展开成一个长方形,从A点到B点的最短路线是什么?你画对了吗?(3)蚂蚁从A点出发,想吃到B点上的食物,它沿圆柱的侧面爬行的最短路程是多少?【教学说明】让学生经历把曲面上两点之间的距离转化为平面上两点之间线段最短更为直观,再次利用勾股定理解决生活中较为复杂的实际问题,使所学的知识得到充分运用.【归纳结论】我们知道,圆柱的侧面展开图是一长方形.好了,现在咱们就用剪刀沿母线AA′将圆柱的侧面展开(如下图).我们不难发现,刚才几位同学的走法:哪条路线是最短呢?你画对了吗?第(4)条路线最短.因为“两点之间的连线中线段最短”.三、运用新知,深化理解1.甲、乙两位探险者,到沙漠进行探险.某日早晨8∶00甲先出发,他以6千米/时的速度向东行走.1小时后乙出发,他以5千米/时的速度向北进行,上午10∶00,甲、乙两人相距多远?2.如图,有一个高1.5米,半径是1米的圆柱形油桶,在靠近边的地方有一小孔,从孔中插入一铁棒,已知铁棒在油桶外的部分是0.5米,问这根铁棒应有多长?【教学说明】学生独立解决,把生活中的实际问题转化为解直角三角形,对学生所学的知识进行强化,以利于教师及时纠正.【答案】1.分析:首先我们需要根据题意将实际问题转化成数学模型.解:(如图)根据题意,可知A是甲、乙的出发点,10∶00时甲到达B点,则AB=2×6=12(千米);乙到达C点,则AC=1×5=5(千米).在Rt△ABC中,BC2=AC2+AB2=52+122=169=132,所以BC=13千米.即甲、乙两人相距13千米.2.分析:从题意可知,没有告诉铁棒是如何插入油桶中,因而铁棒的长是一个取值范围而不是固定的长度,所以铁棒最长时,是插入至底部的A点处,铁棒最短时是垂直于底面时.解:设伸入油桶中的长度为x米,则应求最长时和最短时的值.(1)x2=1.52+22,x2=6.25,x=2.5所以最长是2.5+0.5=3(米).(2)x=1.5,最短是1.5+0.5=2(米).答:这根铁棒的长应在2~3米之间(包含2米、3米).四、师生互动,课堂小结通过本节课的学习,你掌握了哪些知识?还有哪些疑问?【教学说明】学生梳理知识,加强教与学的互通,进一步提高课堂教学的效果.1.教材P14~15第1、2、3、4题.2.完成练习册中本课时相应练习.这节课的内容综合性比较强,可能有些同学掌握得不是太好,今后要继续加强这方面的训练.本章归纳总结1.掌握勾股定理和如何判断一个三角形是直角三角形,能灵活运用它们解决实际问题.2.通过梳理本章知识点,回顾解决实际问题中所涉及的数形合的思想和逆向思维思考问题,以便能熟练灵活运用.3.让学生养成把已有的知识建立联系的思维习性,积极参与数学活动,在活动中学会思考、讨论、交流和合作,激发他们的求知欲望.4.用勾股定理和如何判断一个三角形是直角三角形解决简单问题.【教学难点】能理解运用勾股定理解题的基本过程;掌握在复杂图形中确定相应的直角三角形,根据勾股定理建立方程.一、知识框图,整体把握【教学说明】引导学生回顾本章知识点,构建知识结构框架,让学生比较系统地了解本章知识及它们之间的相互联系.二、释疑解惑,加深理解1.勾股定理的证明勾股定理的证明方法有多种,一般是采用剪拼的方法,它把“数与形”巧妙地联系起来,是几何与代数沟通的桥梁,同时也为后面的四边形、圆、圆形变换、三角函数等知识的学习提供了方法和依据.说明:利用面积相等是证明勾股定理的关键所在.2.勾股定理中的分类讨论在勾股定理的实际运用中,如果不明给出直角三角形中有两条边的长,要求第三条边的长就需要分两种情况讨论,即第一种情况是告诉两条直角边长求斜边,第二种情况是告诉一条直角边和斜边长求另一条直角边.3.曲面两点间的距离问题在解决曲面中两点间的距离时,往往是要将曲面问题转化为同一平面内两点之间的距离,这是解决问题的关键.三、典例精析,复习新知例1 一张直角三角形纸片,两直角边AC=6cm,BC=8cm,将△ABC折叠,使点B与点A重合,折痕是DE(如图所示),求CD的长.【分析】设CD为x,∵AD=BD,∴AD=8-x. ∴在△ACD中,根据勾股定理列出关于x的方程即可求解.解:由折叠知,DA=DB.在Rt△ACD中,由勾股定理得AC2+CD2=AD2,若设CD=xcm,则AD=DB=(8-x)cm,代入上式得62+x2=(8-x)2,解得x=7/4=1.75(cm),即CD的长为1.75cm.例2有一个立方体礼盒如图所示,在底部A处有一只壁虎,C′处有一只蚊子,壁虎急于捕捉到蚊子充饥.(1)试确定壁虎所走的最短路线;(2)若立方体礼盒的棱长为20cm,则壁虎如果想在半分钟内捕捉到蚊子,每分钟至少要爬行多少厘米?(保留整数)【分析】求几何表面的最短距离时,通常可以将几何体表面展开,把立体图形转化为平面图形.解:(1)若把礼盒上的底面A′B′C′D′竖起来,如图所示,使它与立方体的正面(ABB′A′)在同一平面内,然后连接AC′,根据“两点间线段最短”知线段AC′就是壁虎捕捉蚊子所走的最短路线.(2)由(1)得,△ABC′是直角三角形,且AB=20,BC′=40.根据勾股定理,得AC′2=AB2+BC′2=202+402,AC′≈44.7(cm),44.7÷0.5≈90(cm/min).所以壁虎要想在半分钟内捕捉到蚊子,它每分钟至少爬行90厘米(只入不舍).【教学说明】师生共同回顾本章主要知识,对于例题中需要注意的事项教师可以适当点评,便于学生熟练加以运用.四、复习训练,巩固提高1.已知在△ABC中,∠B=90°,一直角边为a,斜边为b,则另一条直角边c满足c2= .2.在Rt△ABC中,∠C=90°,若a=12,c-b=8,则b= ,c= .3.如图所示,在△ABC中,∠ACB=90°,CD⊥AB,D为垂足,AC=2.1,BC=2.8.求:(1)△ABC的面积;(2)斜边AB的长;(3)斜边AB上的高CD的长;(4)斜边被分成的两部分AD和BD的长.【答案】1.b2-a2;2.5,13;3.解:(1)S△ABC=12AC×BC=12×2.1×2.8=2.94.(2)AB2=AC2+BC2=2.12+2.82=12.5,∴AB=3.5.(3)由三角形的面积公式得12AC×BC=12AB×CD,所以12×2.1×2.8=12×3.5×CD,解得CD=1.68.(4)在Rt△ACD中,由勾股定理得AD2+CD2=AC2,∴AD2=AC2-CD2=2.12-1.682=(2.1+1.68)(2.1-1.68)=3.78×0.42=2×1.89×2×0.21=22×9×0.214×0.21.∴AD=2×3×0.21=1.26.∴BD=AB-AD=3.5-1.26=2.24.五、师生互动,课堂小结本节复习课你能灵活运用勾股定理和如何判断一个三角形是直角三角形的解决问题吗?还有哪些不足?【教学说明】教师引导学生归纳本章主要的知识点,对于遗漏或需要强调的地方,教师应及时补充和点拨.1.复习题4.5第11、12题.2.完成练习册中本课时相应练习.勾股定理是解决线段计算问题的主要依据,它单独命题比较少见,更多时候是与其他知识综合应用,在综合题中如何找到适当的直角三角形是解题的关键.。
1.1探索勾股定理(第一课时)课件 2024—2025学年北师大版八年级数学上册
A的面积(单位 B的面积(单位 C的面积(单位
面积)
面积)
面积)
1
1
2
4
4
8
9
9
18
SA+SB=SC
a2+b2=c2
图 1
图2
图3
自主探索二
你还能数出图中正
分割成若干个
C
方形A、B、C各占多 少个小格子吗?完
直角边为整数 A
成表格,探究规律。
的三角形
A的面积
B的面积
C的面积
(单位面积) (单位面积) (单位面积)
新知引入
相传两千多年前,一次毕达 哥拉斯去朋友家作客,发现朋友 家用砖铺成的地面反映直角三角 形三边的某种数量关系,同学们, 我们也来观察右边的图案,看看 你能发现什么?
12 3
自主探索一
请你数一数图中正方形A、B、C各占多少个小格子?完成表格, 探究规律。
图1
图2
图3
A、B、C 面积 关系
直角三角 形三边数 量关系
B
C
图4
A
图4
16
图5
4
A、B、C 面积 关系
直角三角形
三边数量关系
9 9
SA+SB=SC
a2+b2=c2
25
B
13
图5
S正方形c 4 1 4 3 1 25 2
推广:一般的直角三角形,上述结论成立吗?
1 a
2b c
3
a2+b2=c2
猜想:两直角边a、b与斜边c之间的关系?
新知归纳 勾股定理
b=58 由勾股定理得:
c2=a2+b2
你同意他的想法吗?你能解释这是为
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
探索勾股定理教学设计第(一)课时教学设计思想:本节内容需三课时讲授;勾股定理是反映自然界基本规律的一条重要结论.本节意图让学生自己经过观察、归纳、猜想和验证,发现勾股定理.初中学生思维活跃,求知欲强,好奇心浓,所以处理教材内容上尽量发挥学生的学习主动性.设计方格纸上计算面积,用拼图的方法验证等活动,以真正实现学生在知识、智力、能力和全面提高.为面向全体学生,进行小组合作学习,通过交流、议论、取长补短,引导学生团结协作,互帮互学,从而达到共同提高的目的.教学目标:(一)知识与技能1.体验勾股定理的探索过程,由特例猜想勾股定理,再由特例验证勾股定理.2.会利用勾股定理解释生活中的简单现象.(二)过程与方法1.在学生充分观察、归纳、猜想、探索勾股定理的过程中,发展合情推理能力,体会数形结合的思想.2.在探索勾股定理的过程中,发展学生归纳、概括和有条理地表达活动过程及结论的能力.(三)情感、态度与价值观1.培养学生积极参与、合作交流的意识.2.在探索勾股定理的过程中,体验获得成功的快乐,锻炼学生克服困难的勇气.教学重点探索和验证勾股定理.教学难点在方格纸上通过计算面积的方法探索勾股定理.教学方法交流—探索—猜想.在方格纸上,同学们通过计算以直角三角形的三边为边长的三个正方形的面积,在合作交流的过程中,比较这三个正方形的面积,由此猜想出直角三角形的三边关系.教具准备学生每人课前准备若干张方格纸、投影片教学安排3课时.教学过程Ⅰ.创设问题情境,引入新课[师]上面三个小问题是我们以前讨论过的,我们简单的回忆一下.[生](1)三角形按角的大小来分类可分为:直角三角形、锐角三角形、钝角三角形;(2)对于一般三角形来说,我们可以用SAS(边角边)、ASA(角边角)、AAS(角角边)、SSS(边边边)来判断两个三角形全等;而对于直角三角形来说,除以上四种方法外,还可以用HL(即有斜边和一条直角边对应相等的两个直角三角形全等).(3)两个直角三角形,有两边对应相等,有两种情况:第一种情况:两条直角边对应相等,这时,我们可注意到它们的夹角也对应相等,利用SAS可判断它们全等.第二种情况:一条直角边和斜边对应相等,利用HL公理即可判断它们全等.综上所述,两个直角三角形,如果有两边对应相等,则这两个直角三角形全等.[师]我们可以注意到直角三角形有它独有的一些特征.在我们学习和生活中,你是否还发现直角三角形的其他特征呢?这节课,我们就来继续研究直角三角形.Ⅱ.讲述新课1.问题串[师][生]在图1中,正方形A含1个小方格,所以它的面积是1个单位面积;正方形B 含1个小方格,所以B的面积也是1个单位面积;正方形C含2个小方格,所以C的面积是2个单位面积.[师]如何求得正方形C的面积呢?[生]正方形C 可划分为四个直角边长都为1个单位的四个全等的等腰直角三角形,所以C 的面积为4×(21×1×1)=2个单位面积.[生]我们观察可发现,这四个等腰直角三角形重新拼摆,刚好可拼摆成2个小方格,所以C 的面积为2个单位面积.[生]正方形C 还可以看成边长为2个单位的正方形面积的一半,即C 的面积为21×22=2个单位面积.[师]同学们能够不拘一格地积极思考问题,用多种方法去求得图1中C 的面积,值得发扬广大,那么图2,图3中的A ,B ,C 的面积是否可借鉴图1中的A ,B ,C 的求法获得呢?请与你的同学们讨论、交流。
[生]图2中,A 含有9个小方格或者说正方形A 的边长是3个单位长度,都可以求得A 的面积是9个单位面积;同理可求得B 含有9个小方格,所以B 的面积为9个单位面积;对于正方形C 来说,我们观察可发现它含有18个小方格,所以C 的面积为18个单位面积. [师]看来,同学们已能从图2中很容易地就求得了A ,B ,C 的面积.是不是在求C 的面积时也和图1相类似,有多种求法呢?[生]是的.在正方形C 中,我们可以把它的边缘的12个全等的等腰直角三角形拼摆成6个小方格,再加上中间的12个小方格,正方形C 共含有18个小方格,所以它的面积为18个单位面积;我们也可以把C 分割成四个直角边为3个单位长度的等腰直角三角形,也可算得C 的面积为4×(21×32)=18个单位面积.[生]如果把组成C 的四个等腰直角三角形沿正方形的边向外翻,我们观察又可发现C在边长为6个单位长度的正方形中,并且C 的面积恰好是这个正方形面积的一半即21×62=18个单位面积.[生]图3与图1,图2类似,所以我们可用同样的方法观察求得A ,B ,C 各含4个,4个,8个小方格,面积分别为4个,4个,8个单位面积.[师]把三个图中A ,B ,C 的面积分别填入上面的表格中,你能发现它们的关系吗? [生]C 的面积=A 的面积+B 的面积. (表格略)[师]很好!但是A ,B ,C 的面积为什么会有这种关系呢?我们接着观察这三个图,你能发现什么?[生]在前面您说过这节课我们主要研究直角三角形,而在这三个图中,都是三个正方形围着一个直角三角形.[师]的确如此,从图中我们可以发现:三个正方形好像是“长”在直角三角形的三边上.[生]这说明三个正方形的边长分别是以直角三角形的三边为边长得到的.[师]那么,(3)的结论即C的面积=A的面积+B的面积与三角形有什么关系?这个关系说明什么?大家可以讨论、交流.[生]C是斜边上的正方形,所以C的面积是斜边的平方;A,B是两直角边上的正方形,所以A,B的面积分别是这两条直角边的平方.根据A,B,C的面积关系,我们不难发现:斜边的平方就等于两直角边的平方和.[师]但是,我们也不难发现上面3个图中的直角三角形是等腰直角三角形?如果不是等腰直角三角形,而是一般的直角三角形,会不会也有这种三边关系呢?2.做一做(让学生先独立思考,然后填写上面的表格.最后以小组为单位充分交流各自的想法,特别是在计算斜边上的正方形的面积即正方形C的求法)[师生共析]根据图4,图5可填表如下:我们先来观察图4,不难看出A ,B 分别含有16个小方格,9个小方格,所以A 、B 的面积分别为16个单位面积,9个单位面积,但斜边上的正方形C 的面积的计算较为复杂,我们可用以下几种方法求得:第一种方法:将正方形C 分割成4个直角边长分别为3、4全等的直角三角形和中间的一个小方格,利用计算三角形面积的公式可得正方形C 的面积为4×(21×3×4)+1=24+1=25个单位面积.第二种方法:直接数正方形C 中含有多少个小方格,但需要适当的拼凑,在第一种方法中,我们将正方形分割成5部分,直角三角形Ⅰ、Ⅱ、Ⅲ、Ⅳ和一个小方格,其中直角三角形Ⅰ、Ⅲ可拼凑成一个长和宽分别为3和4的长方形,含有12个小方格,同理Ⅱ、Ⅳ也可拼凑成12个小方格,所以正方形C 中共有12+12+1=25个小方格即C 的面积为25个单位面积.第三种方法:可将直角三角形Ⅰ、Ⅱ、Ⅲ、Ⅳ沿正方形C 的边外翻,就得到一个边长为7个单位长度的正方形,这时正方形C 的面积就为(49-1)÷2+1=25个单位面积.图5与图4同理.我们从上表不难发现16+9=25,4+9=13即C 的面积=A 的面积+B 的面积.[师]图4和图5中的三个正方形A ,B ,C 也是由中间的直角三角形“长”出来的,你能从三个正方形的面积关系与直角三角形的三边联系吗?[生]图4中的正方形A ,B ,C 的面积分别是直角三角形两条直角边的平方和斜边的平方,根据三个正方形的面积关系,我们不难发现,在这个直角三角形中,两条直角边的平方和等于斜边的平方.由图5我们也可得出同样的结论.3.议一议[师]我们通过对前面几个直角三角形的讨论,分析,你能归纳出直角三角形三边长度存在的关系吗?用自己的语言表达你的重大发现与同伴交流.[生]在直角三角形中,两条直角边长度的平方和等于斜边的平方.[师]这是由前面几个特例猜想出来的,是否合理呢?我们不妨作几个直角三角形检验一下.例如,作一个分别以5厘米、12厘米为直角边的直角三角形,然后测量斜边的长度,通过计算看一下直角三角形三边的规律还成立吗?[生]1.作一个直角∠MCN;2.以C为圆心,分别以5厘米、12厘米为半径画弧交CM、CN于点A,B;3.连结AB.用刻度尺量出斜边AB的长度(强调注意测量的误差)为13厘米.经检验斜边AB2=132=169,两直角边平方和AC2+BC2=52+122=25+144=169.即两直角边的平方和等于斜边的平方.[师]很好.同学们不妨多作几个不同的直角三角形,用上面的方法检验直角三角形三边的关系.[师生共析]通过特例猜想、检验,我们不难发现,直角三角形的三边的规律是成立的,这就是我们将要介绍的重点内容——勾股定理:如果直角三角形两直角边分别为a,b,斜边为c,那么a2+b2=c2即直角三角形两直角边的平方和等于斜边的平方.4.读一读(课本P6)古代人就对勾股定理有过深入的研究,几大文明古国都有相应的勾股定理的记载.我国是最早发现勾股定理的国家之一.早在三千多年前,周朝数学家商高就提出,将一根直尺折成一个直角.如果勾(即直角三角形中较短的直角边)等于3,股(即直角三角形中较长的直角边)等于4,那么弦(即直角三角形中的斜边)等于5,即“勾三、股四、弦五”,它被记载于我国古代著名的数学著作《周髀算经》中,在这本书中的另一处,还记载了勾股定理的一般形式.因此,我们也把勾股定理称为商高定理,而把商高称为“勾股先师”.在西方,把勾股定理又称为“毕达哥拉斯”定理.相传二千多年,希腊著名数学家毕达哥拉斯学派首先证明了勾股定理,因此他们还举行了一次空前规模的庆祝活动,宰杀了一百头牲畜.但因此也引发了数学的第一次危机——边长为1的正方形的对角线的长度不能用整数或分数来表示.关于勾股定理的记载还有很多,同学们如果有兴趣,可查阅有关这方面的资料。
所以说勾股定理有着悠久的历史,它反映了古代人民的聪明才智.5.想一想[师]小明的妈妈买了一部29英寸(74厘米)的电视机.小明量了电视机的荧屏后,发现荧屏只有58厘米长和46厘米宽,他觉得一定是售货员搞错了,你同意他的想法吗?你能解释这是为什么吗?[生]我听爸爸说过,29英寸或74厘米的电视机,是指荧屏对角线的长度,而不是其长或宽.[生]可是,连结荧屏的对角线将长方形的荧屏分成全等的两个直角三角形.根据勾股定理,长2+宽2=742,可582+462≠742,这是为什么呢?[生]因为荧屏边框遮盖了一部分,所以实际测量存在一些误差.[师]的确如此,但这里我们要知道一个生活常识,29英寸(74厘米)指的是荧屏的对角线的长度,而非荧屏的长或宽.6.例题讲解[例]在△ABC中,∠C=90°(1)若a=8,b=6,则c=_________;(2)若c=20,b=12,则a=_________;(3)若a:b=3:4,c=10,则a=_________,b=_________.[师生共析]分析:在△ABC中,∠C=90°,所以有关系:a2+b2=c2.在此关系式中,涉及到三个量,利用方程的思想,可“知二求一”.解:根据题意可得a2+b2=c2.(1)若a=8,b=6,所以82+62=c2.即c2=100,c>0,所以c=10;(2)若c=20,b=12,所以a2+122=202,即a2=202-122=(20+12)(20-12)=32×8=162,a>0,所以a=16;(3)若a:b=3:4,可设a=3x,b=4x,所以(3x)2+(4x)2=102.化简,得9x2+16x2=100,25x2=100,x2=4,x=2(x>0),所以a=3x=6;b=4x=8.评注:综合上述解法可以发现,形(即△ABC为直角三角形)与数(a2+b2=c2)的统一,所以我们说勾股定理是形与数的结合.Ⅲ.课时小结先由学生自己总结,然后师生共同完成.这节课我们主要研究:1.从特例猜想出勾股定理;2.用特例检验了勾股定理;3.简单了解了勾股定理的历史,应用.Ⅳ.课后作业1.课本P7,习题1.1.2.到网上或图书室查阅关于勾股定理的资料.Ⅴ.活动与探究有一根70cm的木棒,要放在长、宽、高分别是50cm、40cm、30cm的木箱中,能放进去吗?过程:在实际生活中,往往工程设计方案比较多,应用所学的知识进行计算方可解决,而此题正是需要我们大胆实践和创新,用我们学过的勾股定理和丰富的空间想像力来解决.我们可注意到木棒虽比木箱的各边都长,按各边的大小放不进去,但木箱是立体图形,可以利用空间的最长长度.如AC′.结果:由下图可得,AA′=30cm,A′B′=50cm,B′C′=40cm.△A′B′C′,△AA′C′都为直角三角形.由勾股定理,得A′C′2=A′B′2+B′C′2.在Rt△AA′C′中.AC′最长,则AC′2=AA′2+A′B′2+B′C′2=302+402+502=5000>702.故70cm的棒能放入长、宽、高分别为50cm,40cm,30cm的大箱中.板书设计。