2018年第44届俄罗斯数学奥林匹克竞赛试题(十一年级)
第28届俄罗斯数学奥林匹克
2
九年级
9. 1 能否将自然数 1 至 2 002 填写到一个 2 002
分别 取 点 M 和 N , 使 得 2 ∠MON = ∠AOC. 证 明 : △MBN 的周长不小于边 AC 之长 . 9. 8 在区间 (22 n ,23 n ) 中任取 22 n - 1 + 1 个奇数 . 证明 : 在所取出的数中必有两个数 , 其中每一个数的 平方都不能被另一个数整除 .
9. 6 有一个红色卡片盒和 k 个 ( k > 1) 蓝色卡片 盒 ,还有一副卡片 ,共有 2 n 张 , 它们被分别编为 1 至 2 n 号 . 开始时 ,这副卡片被按任意顺序叠置在红色卡
片盒中 . 从任何一个卡片盒中都可以取出最上面的一 张卡片 ,或者把它放到空盒中 , 或者把它放到比它号 码大 1 的卡片的上方 . 对于怎样的最大的 n , 可以通
10. 6 同 9. 6. 10. 7 设 △ABC 的一个旁切圆与边 BC 相切于点
2002 年第 5 期
A′ ,过点 A′ 作 ∠A 平分线的平行直线 a , 再分别类似
2
31 2 002 ,从而对于位于该行与该列相交处的方格 ,题中
地作出直线 b 和 c . 证明 : 直线 a 、 b、 c 相交于同一点 .
第 28 届俄罗斯数学奥林匹克于 2002 年 4 月 21 日至 29 日在俄罗斯阿迪格共和国首府迈科普市举行 ,来自 俄罗斯全国各地的 199 名选手参加了比赛 . 考试分为两天 ,各个年级都是 8 道试题 ,每天 4 道题 ,5 个小时 ,每道 题满分都是 7 分 . 我国派出了东北育才学校的 6 名选手参加了此次竞赛 . 竞赛设一二三等奖 . 其中一等奖仅有 6 名选手获得 ,约占参赛人数的 3 % ,我国选手李晓东以总分第二名的优秀成绩荣列其中 ; 此外 ,还颁发了 45 个二 等奖和 57 个三等奖 ,我国选手获得 1 个二等奖和 4 个三等奖 . 以下各个年级的前 4 题为第一天的试题 ,后 4 题为第二天的试题 . 过这种操作把所有卡片移到其中一个蓝色卡片盒中 ?
第44届俄罗斯数学奥林匹克(十、十一年级)
3.同十年级第3题.
4.i5=4C的情况可由对称性得出结论.
不妨设AC>AB.
在圆尸上选取一点Z,使得四边形尸胃为等腰梯形.
贝IJZ聊=z娜=Z:厦=Zc似,.
类似地,
这表明,耶//a4',ZiV/G4'.
于是,以0为中心,把线段变为线段
C5的位似变换把变为A氺Cif.
从而,点〇(即点S)在U上.
戈=1009对称,艮P
f(x)=f(2 018x).
故其在区间(a,2019]上根的个数
与区间[1,+?)上根的个数相等,即也有一
37
个根.
从而,方程①共有两个根.
2.设/为线段SC的中垂线.
如图1,注意
到,/经过点兄记
Y为点4关于Z的
对称点.
显然,点1在
圆厂上,且由对称
性知
AM//BC//MN.
由于点/>与图1
6.同九年级第6题.
7.同九年级第8题.
8.游戏板分为左右两部分.在每一部分中均有一些方格,方格之间连有一些线段,每一条线段均连接两个属于不同部分的方格?从任意一个方格均可以沿着线段到达任意一个其他的方格.开始时,在左部的一个方格里
放有一枚紫色的跳棋棋子,而在右部的一个方格里放有一枚青色的跳棋棋子.廖沙与芭莎轮流进行,芭莎先开始.每一步,游戏者均沿着一条线段将自己的棋子(芭莎是紫色的,廖沙是青色的)移动到一个空着的方格里.在此不允许出现已经出现过的场景(即相同的场景是指紫色的棋子位于相同的方格里,青色的棋子亦然).谁不能继续进行自己
8.—开始,在2 018x2018棋盘的左下
角和右下角方格里各有一枚棋子马,分别为红马和蓝马.科良和萨沙轮流移动自己的棋子,科良持红马,萨沙持蓝马,科良先开始.每一次移动均将棋子在一个坐标上移动20个格同时在另个坐标上移动17个格,棋子不能移动到已经被另枚棋子所占据的格,且不允许出现已经出现过的场景(若红 马处于同个位置,蓝马亦处于同一个位置,则称两个场景相同).谁不能继续进行自己的步骤即为输.问:在正确的玩法下,谁有取胜策略?
第二节 整数求解
第一章数论初步第二节整数求解A2-001哪些连续正整数之和为1000?试求出所有的解.【题说】 1963年成都市赛高二二试题 3.【解】设这些连续正整数共n个(n>1),最小的一个数为a,则有a+(a+1)+…+(a+n-1)=1000即n(2a+n-1)=2000若n为偶数,则2a+n-1为奇数;若n为奇数,则2a+n-1为偶数.因a≣1,故2a +n-1>n.同,故只有n=5,16,25,因此可能的取法只有下列三种:若n=5,则 a=198;若n=16,则 a=55;若n=25,则 a=28.故解有三种:198+199+200+201+20255+56+…+7028+29+…+52A2-002 N是整数,它的b进制表示是777,求最小的正整数b,使得N是整数的四次方.【题说】第九届(1977年)加拿大数学奥林匹克题3.【解】设b为所求最小正整数,则7b2+7b+7=x4素数7应整除x,故可设x=7k,k为正整数.于是有b2+b+1=73k4当k=1时,(b-18)(b+19)=0.因此b=18是满足条件的最小正整数.A2-003如果比n个连续整数的和大100的数等于其次n个连续数的和,求n.【题说】 1976年美国纽约数学竞赛题 7.s2-s1=n2=100从而求得n=10.A2-004设a和b为正整数,当a2+b2被a+b除时,商是q而余数是r,试求出所有数对(a,b),使得q2+r=1977.【题说】第十九届(1977年)国际数学奥林匹克题 5.本题由原联邦德国提供.【解】由题设a2+b2=q(a+b)+r(0≢r<a+b),q2+r=1977,所以 q2≢1977,从而q≢44.若q≢43,则r=1977-q2≣1977-432=128.即(a+b)≢88,与(a+b)>r≣128,矛盾.因此,只能有q=44,r=41,从而得a2+b2=44(a+b)+41(a-22)2+(b-22)2=1009不妨设|a-22|≣|b-22|,则1009≣(a-22)2≣504,从而45≢a≢53.经验算得两组解:a=50,b=37及a=50,b=7.由对称性,还有两组解a=37,b=50;a=7,b=50.A2-005数1978n与1978m的最后三位数相等,试求出正整数n和m,使得m+n取最小值,这里n>m≣1.【题说】第二十届(1978年)国际数学奥林匹克题 1.本题由古巴提供.【解】由题设1978n-1978m=1978m(1978n-m-1)≡0(mod 1000)因而1978m≡2m×989m≡0(mod 8), m≣3又1978n-m≡1(mod 125)而 1978n-m=(1975+3)n-m≡3n-m+(n-m)3n-m-1·1975(mod 125)(1)从而3n-m≡1(mod 5),于是n-m是4的倍数.设n-m=4k,则代入(1)得从而k(20k+3)≡0(mod 25)因此k必须是25的倍数,n-m至少等于4×25=100,于是m+n的最小值为n-m+2m=106,m=3,n=103A2-006求方程x3+x2y+xy2+y3=8(x2+xy+y2+1)的全部整数解x、y.【题说】 1980年卢森堡等五国国际数学竞赛题 6.本题由荷兰提供.于是 x3+x2y+xy2+y3=(x+y)3-2xy(x+y)=u3-2vux2+xy+y2=(x+y)2-xy=u2-v从而原方程变为2v(u-4)=u3-8u2-8 (2)因u≠4,故(2)即为根据已知,u-4必整除72,所以只能有u-4=±2α3β,其中α=0,1,2,3;β=0,1,2进一步计算可知只有u-4=2·3=6,于是u=10,v=16A2-007确定m2+n2的最大值,这里 m和 n是整数,满足 m,n ∈{1,2,…,1981},(n2-mn-m2)2=1.【题说】第二十二届(1981年)国际数学奥林匹克题 3.【解】若m=n,由(n2-mn-m2)2=1得(mn)2=1,故m=n=1.若m≠n,则由n2-mn-m2=±1得 n>m.令n=m+u k,于是[(m+u k)2-m(m+u k)-m2]2=1于是有若u k≠u k-1,则以上步骤可以继续下去,直至从而得到数列:n,m,u k,u k-1,…,u k-l,u k-l-1此数列任意相邻三项皆满足u i=u i-1+u i-2,这恰好是斐波那契型数列.而{1,2,…,1981}中斐氏数为:1,1,2,3,5,8,13,21,34,55,89,144,233,377,610,987,1597,可见m=987,n=1597时,m2+n2=3524578为满足条件的最大值.A2-008求方程w!=x!+y!+z!的所有正整数解.【题说】第十五届(1983年)加拿大数学奥林匹克题 1.【解】不妨设x≢y≢z.显然w≣z+1,因此(z+1)!≢w!=x!+y!+z!≢3·z!从而z≢2.通过计算知x=y=z=2,w=3是原方程的唯一解.A1-010前1000个正整数中可以表示成[2x]+[4x]+[6x]+[8x]的正整数有多少个?【题说】第三届(1985年)美国数学邀请赛题 10.【解】令f(x)=[2x]+[4x]+[6x]+[8x].个不同的正整数值.另一方面f(x+n)=f(x)+20n对任一正整数n成立.将1-1000分为50段,每20个为1段.每段中,f(x)可取12个值.故总共可取到50×12=600个值,亦即在前1000个正整数中有600个可以表示成[2x]+[4x]+[6x]+[8x]的形式.A2-011使n3+100能被n+10整除的正整数n的最大值是多少?【题说】第四届(1986年)美国数学邀请赛题 5.【解】由n3+100=(n+10)(n2-10n+100)-900知,若n3+100被n+10整除,则900也应被n+10整除.因此,n最大值是890.A2-012 a、b、c、d为两两不同的正整数,并且a+b=cd,ab=c+d求出所有满足上述要求的四元数组a、b、c、d.【题说】 1987年匈牙利数学奥林匹克题 1.【解】由于a≠b,所以当且仅当a=1或b=1时,才有a+b≣ab.如果a、b都不是1,那么c+d=ab>a+b=cd由此知c=1或d=1.因此a、b、c、d中总有一个(也只有一个)为1.如果a=1,那么由消去b可以推出从而得到c=2,d=3,或者c=3,d=2.这样,本题的答案可以列成下表A2-013设[r,s]表示正整数r和s的最小公倍数,求有序三元正整数组(a,b,c)的个数,其中[a,b]=1000,[b,c]=2000,[c,a]=2000.【题说】第五届(1987年)美国数学邀请赛题 7.【解】显然,a、b、c都是形如2m·5n的数.设a=2m1·5n1,b=2m2·5n2,c=2m3·5n3.由[a,b]=1000=23·53,知max(m1,m2)=3,max(n1,n2)=3.同理,max(m2,m3)=4,max(n2,n3)=3;max(m1,m3)=4,max(n1,n3)=3.由此,知m3应是4,m1、m2中必有一是3.另一个可以是0、1、2或3之任一种,因此m1、m2的取法有7种.又,n1、n2、n3中必有两个是3,另一个可以是0、1、2或3.因此n1、n2、n3取法有10种.故m i、n i(i=1、2、3)不同取法共有7×10=70种,即三元组共有70个.A2-014设m的立方根是一个形如n+r的数,这里n为正整数,r为小于1/1000的正实数.当m是满足上述条件的最小正整数时,求n的值.【题说】第五届(1987年)美国数学邀请赛题12.m=n3+1<(n+10-3)3=n3+3n2·10-3+3n·10-6+10-9于是从而n=19(此时m=193+1为最小).【题说】第十三届(1987年)全俄数学奥林匹克九年级题 1.【解】 144=122,1444=382设n>3,则则k必是一个偶数.所以也是一个自然数的完全平方,但这是不可能的.因为平方数除以4,因此,本题答案为n=2,3.A2-016当n是怎样的最小自然数时,方程[10n/x]=1989有整数解?【题说】第二十三届(1989年)全苏数学奥林匹克十年级题 1.【解】 1989≢10n/x<1990所以10n/1990<x≢10n/1989即10n·0.000502512…<x≢10n·0.000502765…所以n=7,这时x=5026与5027是解.A2-017设a n=50+n2,n=1,2,….对每个n,a n与a n+1的最大公约数记为d n.求d n的最大值.【题说】 1990年日本第1轮选拔赛题 9.【解】d n=(a n,a n+1)=(50+n2,50+(n+1)2-(50+n2))=(50+n2,2n+1)=(2(n2+50),2n+1)(因 2n+1是奇数)=(2(n2+50)-n(2n+1),2n+1)=(100-n,2n+1)=(100- n,2n+1+2(100- n))=(100-n,201)≢201在n=100≠201k(k∈N)时,d n=201.故所求值为201.A2-018 n是满足下列条件的最小正整数:(1)n是75的倍数;(2)n恰为 75个正整数因子(包括1及本身).试求n/75.【题说】第八届(1990年)美国数学邀请赛题5.【解】为保证 n是75的倍数而又尽可能地小,可设n=2α·3β·5γ,其中α≣0,β≣1,γ≣2,并且(α+1)(β+1)(γ+1)=75由75=52·3,易知当α=β=4,γ=2时,符合条件(1)、(2).此时n=24·34·52,n/75=432.A2-019 1.求出两个自然数x、y,使得xy+x和xy+y分别是不同的自然数的平方.2.能否在988至1991范围内求到这样的x和y?【题说】第二十五届(1991年)全苏数学奥林匹克九年级题5.【解】 1.例如x=1,y=8即满足要求.2.假设988≢x<y≢1991x、y∈N,使得xy+x与xy+y是不同的自然数的平方,则x2<xy+x<xy+y这时y-x=(xy+y)-(xy+x)>(x+1)2-x2=2x+1即y>3x+1由此得1991≣y>3x+1≣3×998+1矛盾!故在988与1991之间不存在这样的自然数x、y.A2-020求所有自然数n,使得这里[n/k2]表示不超过n/k2的最大整数,N是自然数集.【题说】 1991年中国数学奥林匹克题 5.【解】题给条件等价于,对一切k∈N,k2+n/k2≣1991 (1)且存在k∈N,使得k2+n/k2<1992.(2)(1)等价于对一切k∈N,k4-1991k2+n≣0即(k2-1991/2)2+n-19912/4≣0 (3)故(3)式左边在k取32时最小,因此(1)等价于n≣1991×322-324=1024×967又,(2)等价于存在k∈N,使(k2-996)2+n-9962<0上式左边也在k=32时最小,故(2)等价于n<1992×322-324=1024×968故n为满足1024×967≢n≢1024×967+1023的一切整数.A2-021设n是固定的正整数,求出满足下述性质的所有正整数的和:在二进制的数字表示中,正好是由2n个数字组成,其中有n个1和n 个0,但首位数字不是0.【题说】第二十三届(1991年)加拿大数学奥林匹克题2.【解】 n=1,易知所求和S1=2.n≣2时,首位数字为1的2n位数,在其余2n-1位上,只要n个0的位置确定了.则n-1个1的位置也就确定了,从而这个2n位二进制数也随之确定.现考虑第k(2n>k≣1)位数字是1的数的个数.因为其中n个0的位置只可从2n-2个位置(除去首位和第k位)中选择,故这样的将所有这样的2n位二进制数相加,按数位求和,便有A2-022在{1000,1001,1002,…,2000}中有多少对相邻的数满足下列条件:每对中的两数相加时不需要进位?【题说】第十届(1992年)美国数学邀请赛题6.7或 8时,则当n和n+1相加时将发生进位.再若b=9而c≠9;a =9而b≠9或c≠9.则当n和n+1相加时也将发生进位.如果不是上面描述的数,则n有如下形式其中a,b,c∈{0,1,2,3,4}.对这种形式的n,当n和n+1相加时不会发生进位,所以共有53+52+5+1=156个这样的n.A2-023定义一个正整数n是一个阶乘的“尾”,如果存在一个正整数m,使得m!的十进位制表示中,结尾恰好有n个零,那么小于1992的正整数中有多少个不是阶乘的尾?【题说】第十届(1992年)美国数学邀请赛题15.【解】设f(m)为m!的尾.则f(m)是m的不减函数,且当m是5的倍数时,有f(m)=f(m+1)=f(m+2)=f(m+3)=f(m+4)<f(m+5)因此,从f(0)=0开始,f(m)依次取值为:0,0,0,0,0;1,1,1,1,1;2,2,2,2,2;3,3,3,3,3;4,4,4,4,4;6,6,6,6,6;…;1991,1991,1991,1991,1991容易看出如果存在m使f(m)=1991,则因而m>4×1991=7964.由公式(1)可计算出f(7965)=1988,从而f(7975)=1991.在序列(1)中共有7980项,不同的值有7980/5=1596个.所以在{0,1,2,…,1991}中,有1992-1596=396个值不在(1)中出现.这就说明,有396个正整数不是阶乘的尾.A2-024数列{a n}定义如下:a0=1,a1=2,a n+2=a n+(a n+1)2.求a1992除以7所得的余数.【题说】 1992年日本数学奥林匹克预选赛题1.【解】考虑a n以7为模的同余式:a0=1≡1(mod 7)a1=2≡2(mod 7)a1=1+22=5≡-2(mod 7)a3≡2+(-2)2=6≡-1(mod 7)a4≡-2+(-1)2=-1(mod 7)a5≡-1+(-1)2=0(mod 7)a6≡-1+02=-1(mod 7)a7≡0+(-1)2=1(mod 7)a8≡-1+12=0(mod 7)a9≡1+02=1(mod 7)a10≡0+12=1(mod 7)a11≡1+12=2(mod 7)所以,a n除以7的余数以10为周期,故a1992≡a2≡5(mod 7).A2-025求所有的正整数n,满足等式S(n)=S(2n)=S(3n)=…=S(n2)其中S(x)表示十进制正整数x的各位数字和.【题说】 1992年捷克和斯洛伐克数学奥林匹克(最后一轮)题 3.【解】显然,n=1满足要求.由于对正整数x,有S(x)≡x(mod 9),故当n>1时,有n≡S(n)≡S(2n)≡2n(mod 9)所以9|n.若n是一位数,则n=9,又S(9)=S(2×9)=S(3×9)=…=S(92)=9,故9满足要求.10k≢n<10k+1又910k,故10k+1≢n<10k+1若n<10k+10k-1+…+10+1,则与已知矛盾,从而n≣10k+10k-1+…+10+1(1)令n=9m.设m的位数为l(k≢l≢k+1),m-1=S(n)=S((10k+10k-1+…+10+1)n)=S((10k+1-1)m)=S(10k+1(m-1)+(10k+1-10l)+(10l-m))其中9有k+1-l个,b i+c i=9,i=1,2,…,l.所以S(n)=9(k+1)(2)由于n是 k+1位数,所以 n=99…9=10k+1-1.另一方面,当 n=99…9=10k+1-1时,S(n)=S(2n)=S(3n)=…=S(n2).综上所述,满足要求的正整数为n=1及n=10k-1(k≣1).A2-026求最大正整数k,使得3k|(23m+1),其中m为任意正整数.【题说】 1992年友谊杯国际数学竞赛十、十一年级题 2.【解】当m=1时,23m+1=9,故k≢2.又由于23m+1=(23)3m-1+1≡(-1)3m-1+1(mod 9)=0所以,对任意正整数m,9|(23m+1).即所求k的值为2.最大整数.【题说】 1993年全国联赛一试题2(4),原是填空题.【解】因为1093+33=(1031)3+33=(1031+3)((1031)2-3×1031+32)=(1031)(1031-3)+9-1它的个位数字是8,十位数字是0.A2-028试求所有满足如下性质的四元实数组:组中的任一数都等于其余三个数中某两个数的乘积.【题说】第十九届(1993年)全俄数学奥林匹克十一年级二试题5.【解】设这组数的绝对值为a≢b≢c≢d.无论a为b,c,d哪两个数的乘积,均有a≣bc,类似地,d≢bc.从而,bc≢a≢b≢c≢d≢bc,即a =b=c=d=a2.所以a=0或1,不难验证,如果组中有负数,则负数的个数为2或3.所以,答案为{0,0,0,0},{1,1,1,1},{-1,-1,1,1},{-1,-1,-1,1}.A2-029对任意的实数x,函数f(x)有性质f(x)+f(x-1)=x2.如果f(19)=94,那么f(94)除以1000的余数是多少?【题说】第十二届(1994年)美国数学邀请赛题3.【解】重复使用f(x)=x2-f(x-1),有f(94)=942-f(93)=942-932+f(92)=942-932+922-f(91)=…=942-932+922-…+202-f(19)=(94+93)(94-93)+(92+91)(92-91)+…+(22+21)(22-21)+202-94=(94+93+92+…+21)+306=4561因此,f(94)除以1000的余数是561.A2-030对实数x,[x]表示x的整数部分,求使[log21]+[log22]+[log23]+…+[log2n]=1994成立的正整数n.【题说】第十二届(1994年)美国数学邀请赛题 4.【解】 [long21]+[log22]+[log23]+…+[log2128]+[log2129]+…+[log2255]=2×1+4×2+8×3+16×4+32×5+64×6+128×7=1538.A2-031对给定的一个正整数n.设p(n)表示n的各位上的非零数字乘积(如果n只有一位数字,那么p(n)等于那个数字).若S=p (1)+p(2)+p(3)+…+p(999),则S的最大素因子是多少?【题说】第十二届(1994年)美国数学邀请赛题5.【解】将每个小于1000的正整数作为三位数,(若位数小于3,则前面补0,如 25可写成 025),所有这样的正整数各位数字乘积的和是(0·0·0+0·0·1+0·0·2+…+9·9·8+9·9·9)-0·0·0=(0+1+2+…+9)3-0p(n)是n的非零数字的乘积,这个乘积的和可以由上面表达式将0换成1而得到.因此,=463-1=33·5·7·103最大的素因子是103.A2-032求所有不相同的素数p、q、r和s,使得它们的和仍是素数,并且p2+qs及p2+qr都是平方数.【题说】第二十届(1994年)全俄数学奥林匹克九年级题7.【解】因为四个奇素数之和是大于2的偶数,所以所求的素数中必有一个为偶数2.若p≠2,则p2+qs或p2+qr中有一个形如(2k+1)2+2(2l+1)=4(k2+k+l)+3,这是不可能的,因为奇数的平方除以4的余数是1,所以p=2.设22+qs=a2,则qs=(a+2)(a-2).若a-2=1,则qs=5,因为q、s是奇素数,所以上式是不可能的.于是只能是q=a-2, s=a+2或者q=a+2,s=a-2所以s=q-4或q+4.同理r=q-4或q+4.三个数q-4、q、q+4被3除,余数各不相同,因此其中必有一个被 3整除.q或q+4为3时,都导致矛盾,所以只能是q-4=3.于是(p,q,r,s)=(2,7,3,11)或(2,7,11,3)A2-033求所有这样的素数,它既是两个素数之和,同时又是两个素数之差.【题说】第二十届(1994年)全俄数学奥林匹克十年级题5.【解】设所求的素数为p,因它是两素数之和,故p>2,从而p是奇数.因此,和为p的两个素数中有一个是2,同时差为p的两个素数中,减数也是2,即p=q+2,p=r-2,其中q、r为素数.于是p-2、p、p+2均为素数.在三个连续的奇数中必有一数被3整除,因这数为素数,故必为3.不难验证只有p-2=3,p=5,p+2=7时,才满足条件.所以所求的素数是5.个整数.【题说】第三十五届(1994年)国际数学奥林匹克题4.本题由澳大利亚提供.【解】 n3+1=n3+mn-(mn-1),所以mn-1|n(n2+m).因为(mn -1,n)=1,所以mn-1|n2+m.又n(m2+n)-(n2+m)=m(mn-1),所以mn-1|m2+n.因此m,n对称,不妨设m≣n.当n=1时,mn-1=m-1|n3+1=2,从而m=2或3,以下设n≣2.若m=n,则n2-1|(n3+1)=(n3-n)+(n+1),从而n2-1|(n +1),m=n=2.若m>n,则由于2(mn-1)≣n2+mn+n-2≣n2+2m>n2+m所以mn-1=n2+m,即(m-n-1)(n-1)=2从而于是本题答案为(m,n)=(2,1),(3,1),(1,2),(2,2),(5,2),(1,3),(5,3),(3,5),(2,5)共九组.【题说】第十三届(1995年)美国数学邀请赛题7.【解】由已知得即所以A2-036一个正整数不是42的正整数倍与合数之和.这个数最大是多少?【题说】第十三届(1995年)美国数学邀请赛题10.【解】设这数为42n+p,其中n为非负整数,p为小于42的素数或1.由于2×42+1,42+2,42+3,42×5+5,42+7,2×42+11,42+13,4×42+17,3×42+19,42+23,3×42+29,2×42+31,4×42+37,2×42+41,都是合数,所以在n≣5时,42n+p都可表成42的正整数倍与合数之和,只有42×5+5例外.因此,所求的数就是42×5+5=215.A2-038求所有正整数x、y,使得x+y2+z3=xyz,这里z是x、y的最大公约数.【题说】第三十六届(1995年)IMO预选题.【解】由原方程及y2、z3、xyz均被z2整除得出z2|x.设x=az2,y=bz,则原方程化为a+b2+z=abz2 (1)由b2、abz2被b整除得b|(a+z).于是b≢a+z.a+z+b2=abz2=(a+z)b+(a+z)b+b((z2-2)a-2z)≣a+z+b2+b((z2-2)a-2z)(2)(2)中不等式的等号只在b=1并且b=a+z时成立,而这种情况不可能出现(a+z>1),所以(2)是严格的不等式.这表明(z2-2)a-2Z<0 (3)从而z≢2(否则(3)的左边≣z2-2-2z≣z-2>0).在z=2时,2a-2z<0,即a=1,代入(1)得b=1或3,从而x=4,y=2或6.在z=1时,(1)成为a+b2+1=ab (4)从而(a-b)(b-1)=b+1=(b-1)+2这表明(b-1)|2,b=2或3.代入(4)得a=5.于是x=5,y=2或3.因此本题共有四组解:(x,y)=(4,2),(4,6),(5,2),(5,3).A2-039设 m、n∈N,(m,n)=1.求(5m+7m,5n+7n).其中(m,n)表示 m、n的最大公约数.【题说】 1996年日本数学奥林匹克题 2.【解】记H(m,n)=(5m+7m,5n+7n).则H(0,1)=(2,12)=2H(1,1)=(12,12)=12因H(m,n)=H(n,m),故可设n≣m.当n≣2m时,(5m+7m,5n+7n)=(5m+7m,(5m+7m)(5n-m+7n-m)-5m7m(5n-2m+7n-2m))=(5m+7m,5m7m(5n-2m+7n-2m))=(5m+7m,5n-2m+7n-2m)当m≢n<2m时,(5m+7m,5n+7n)=(5m+7m,(5m+7m)(5n-m+7n-m)-5n-m7n-m(52m-n+72m-n))=(5m+7m,52m-n+72m-n)记则(1)H(m′,n′)=H(m,n);(2)m′+n′≡m+n(mod 2);(3)(m′,n′)=(m,n).当(m,n)=1时,反复进行上面的操作,最后必有(m′,n′)=(1,0)或(m′,n′)=(1,1).从而有A2-040求下列方程的正整数解:(a,b)+[a,b]+a+b=ab其中a≣b,[a,b]、(a,b)分别表示a与b的最小公倍数与最大公因数.【题说】 1996年日本数学奥林匹克预选赛题 7.【解】记(a,b)=d,a=da′,b=db′,则[a,b]=da′b′.题设条件变为1+a′+b′+a′b′=da′b′(*)所以故1<d≢4.当d=4时,a′=b′=1,从而a=b=4;当d=3时,(*)等价于(2a′-1)(2b′-1)=3由a′≣b′得a′=2,b′-1.故a=6,b=3.当d=2时,(*)等价于(a′-1)(b′-1)=2由a′≣b′得a′=3,b′=2.从而a=6,b=4.综上所述,所求的正整数解有4,4;6,4;6,3.A2-041一个幻方中,每一行,每一列及每一对角线上的三个数之和有相同的值.图示一个幻方中的四个数,求x.【题说】第十四届(1996年)美国数学邀请赛题1.【解】幻方中两条对角线的和与第二列的和都为同一值s,这3s也是第一行的和加上第二行的和,再加上中央一数的3倍.所以中央的左下角的数为19+96-1=114.因此x=3×105-19-96=200A2-042对整数1,2,3,…,10的每一个排列a1,a2,…,a10,作和|a1-a2|+|a3-a4|+|a5-a6|+|a7-a8|+|a9-a10|数.求p+q.【题说】第十四届(1996年)美国数学邀请赛题12.【解】差|a i-a j|有如下的45种:这45种的和为1×9+2×8+3×7+4×6+5×5+6×4+7×3+8×2+9×1=165.每一种出现的次数相同,而在和|a1-a2|+|a3-a4|+|a5-a6|+|a7-a8|+|a9-a10|中有5种,所以A2-043设正整数a、b使15a+16b和16a-15b都是正整数的平方.求这两个平方数中较小的数能够取到的最小值.【题说】第三十七届(1996年)国际数学奥林匹克题4.本题由俄罗斯提供.【解】 15a+16b=r2,16a-15b=s2于是16r2-15s2=162b+152b=481b (1)所以 16r2-15s2是481=13×37的倍数.由于0,±1,±2,±3,±4,±5,±6的平方为0,±1,±3,±4(mod 13),所以15≡2(mod 13)不是任一数的平方.因此,16r2≡15s2(mod 13)时,必有13|s.同样,由于0,±1,±2,±3,±4,±5,±6,±7,±8,±9,±10,±11,±12,±13,±14,±15,±16,±17,±18的平方为 0,±1,±3,±4,±9,±12,±16(mod 37),所以必有 37|s.于是481|s.由(1),481|r.在r=s=481时,b=(16-15)×481=481,a=(16+15)×481=31×481,满足15a+16b=r2,16a-15b=s2.所以所说最小值为481.A2-044设自然数n为十进制中的10位数.从左边数起第1位上的数恰是n的数字中0的个数,第2位上的数恰是n的数字中1的个数,一般地,第k+1位上的数恰是n的数字中k的个数(0≢k≢9).求一切这样的数n.【题说】 1997年日本数学奥林匹克预选赛题 7.【解】设n的左数第k+1位上的数字为n k(0≢k≢9),则数字k出现的次数为n k.因为n是10位数,所以n0+n1+n2+…+n9=10 (1)又数字k若在左数第n j+1位上出现,则数字j在n中出现k次.n k个k 意味着有数字j1,j2,…,j nk,共出现k nk次.于是,又有n i+2n2+…+9n9=10 (2)由(2)显然n5,n6,n7,n8,n9,至多一个非零,且n6,n7,n8,n9均≢1.若 n5=n6=n7=n8=n9=0 (3)则n0≣5.于是n中至少有一个数字≣5,与(3)矛盾.所以n5,n6,n7,n8,n9中有一个非零,其余四个为0.从而n1+2n2+3n3+4n4≢5 (4)(4)表明n1,n2,n3,n4中至少有两个为0,从而n中0的个数不少于6,即n0≣6.于是n6,n7,n8,n9中有一个为1,n5=0.若n9=1,则n0=9,n1≣1,这显然不可能.若n8=1,则n0=8,n1≣1,但无论n1>1或n1=1均不合要求.若n7=1,则n0=7,n1=1或2,前者显然不合要求.后者导致n2≣1,n0+n1+n2+n7>10也不合要求.若n6=1,则n0=6,n1=2或3.n1=2时,n2=1,数6210001000满足要求.n1=3时,n3>0,n0+n1+n3+n6>10,不合要求.综上所述,满足条件的10位数n只有6210001000.A2-045求所有的整数对(a,b),其中a≣1,b≣1,且满足等式a b2=b a.【题说】第三十八届(1997年)国际数学奥林匹克题5.本题由捷克提供.【解】显然当a、b中有一个等于1时,(a,b)=(1,1).以下设a,b≣2.设t=b2/a,则由题中等式得到b=a t,at=a2t,从而t=a2t-1.如果2t -1≣1,则t=a2t-1≣(1+1)2t-1≣1+(2t-1)=2t>t,矛盾.所以2t -1<1.于是我们有0<t<1.记K=1/t,则K=a/b2>1为有理数,由a=b k可知K=b K-2 (1)如果K≢2,则K=b K-2≢1,与前面所证K>1矛盾,因此K>2.设K=p/q,p,q∈N,p、q互质,则p>2q.于是由(1)q=1,即K为一个大于2的自然数.当b=2时,由(2)式得到K=2K-2,所以K≣4.又因为等号当且仅当K=4时成立,所以得到a=b K=24=16.当b≣3时,=b K-2≣(1+2)K-2≣1+2(K-2)=2K-3.从而得到K ≢3.这意味着K=3,于是得到b=3,a=b K=33=27.综上所述,满足题目等式的所有正整数对为(a,b)=(1,1),(16,2),(27,3).。
国际数学奥林匹克试题分类解析—A数论_A2整数的求解
A2 整数的求解A2-001 哪些连续正整数之和为1000?试求出所有的解.【题说】1963年成都市赛高二二试题3.【解】设这些连续正整数共n个(n>1),最小的一个数为a,则有a+(a+1)+…+(a+n-1)=1000即n(2a+n-1)=2000若n为偶数,则2a+n-1为奇数;若n为奇数,则2a+n-1为偶数.因a≥1,故2a+n-1>n.同,故只有n=5,16,25,因此可能的取法只有下列三种:若n=5,则a=198;若n=16,则a=55;若n=25,则a=28.故解有三种:198+199+200+201+20255+56+…+7028+29+…+52A2-002 N是整数,它的b进制表示是777,求最小的正整数b,使得N是整数的四次方.【题说】第九届(1977年)加拿大数学奥林匹克题3.【解】设b为所求最小正整数,则7b2+7b+7=x4素数7应整除x,故可设x=7k,k为正整数.于是有b2+b+1=73k4当k=1时,(b-18)(b+19)=0.因此b=18是满足条件的最小正整数.A2-003 如果比n个连续整数的和大100的数等于其次n个连续数的和,求n.【题说】1976年美国纽约数学竞赛题7.s2-s1=n2=100从而求得n=10.A2-004 设a和b为正整数,当a2+b2被a+b除时,商是q而余数是r,试求出所有数对(a,b),使得q2+r=1977.【题说】第十九届(1977年)国际数学奥林匹克题5.本题由原联邦德国提供.【解】由题设a2+b2=q(a+b)+r(0≤r<a+b),q2+r=1977,所以q2≤1977,从而q≤44.若q≤43,则r=1977-q2≥1977-432=128.即(a+b)≤88,与(a+b)>r≥128,矛盾.因此,只能有q=44,r=41,从而得a2+b2=44(a+b)+41(a-22)2+(b-22)2=1009不妨设|a-22|≥|b-22|,则1009≥(a-22)2≥504,从而45≤a≤53.经验算得两组解:a=50,b=37及a=50,b=7.由对称性,还有两组解a=37,b=50;a=7,b=50.A2-005 数1978n与1978m的最后三位数相等,试求出正整数n和m,使得m+n取最小值,这里n>m≥1.【题说】第二十届(1978年)国际数学奥林匹克题1.本题由古巴提供.【解】由题设1978n-1978m=1978m(1978n-m-1)≡0(mod 1000)理注解:设1978n=1000a+c 1978m=1000b+c 1978n-1978m=1000(a-b)因而1978m≡2m×989m≡0(mod 8),m≥31978n-m≡1(mod 125)注解:1978m(1978n-m-1)这两式的乘积要为1000整除,显然1978m这式为8的倍数,另一式为125的倍数。
第一节 特殊的自然数
第一章数论初步第一节特殊的自然数A1-001求一个四位数,它的前两位数字及后两位数字分别相同,而该数本身等于一个整数的平方.【题说】 1956年~1957年波兰数学奥林匹克一试题1.x=1000a+100a+10b+b=11(100a+b)其中0<a≤9,0≤b≤9.可见平方数x被11整除,从而x被112整除.因此,数100a+b=99a+(a+b)能被11整除,于是a+b能被11整除.但0<a+b≤18,以a+b=11.于是x=112(9a+1),由此可知9a+1是某个自然数的平方.对a=1,2,…,9逐一检验,易知仅a=7时,9a+1为平方数,故所求的四位数是7744=882.A1-002假设n是自然数,d是2n2的正约数.证明:n2+d不是完全平方.【题说】 1953年匈牙利数学奥林匹克题2.【证】设2n2=kd,k是正整数,如果 n2+d是整数 x的平方,那么k2x2=k2(n2+d)=n2(k2+2k)但这是不可能的,因为k2x2与n2都是完全平方,而由k2<k2+2k<(k+1)2得出k2+2k不是平方数.A1-003试证四个连续自然数的乘积加上1的算术平方根仍为自然数.【题说】 1962年上海市赛高三决赛题 1.【证】四个连续自然数的乘积可以表示成n(n+1)(n+2)(n+3)=(n2+3n)(n2+8n+2)=(n2+3n+1)2-1因此,四个连续自然数乘积加上1,是一完全平方数,故知本题结论成立.A1-004已知各项均为正整数的算术级数,其中一项是完全平方数,证明:此级数一定含有无穷多个完全平方数.【题说】 1963年全俄数学奥林匹克十年级题2.算术级数有无穷多项.【证】设此算术级数公差是 d,且其中一项 a=m2(m∈N).于是a+(2km+dk2)d=(m+kd)2对于任何k∈N,都是该算术级数中的项,且又是完全平方数.A1-005求一个最大的完全平方数,在划掉它的最后两位数后,仍得到一个完全平方数(假定划掉的两个数字中的一个非零).【题说】 1964年全俄数学奥林匹克十一年级题 1.【解】设 n2满足条件,令n2=100a2+b,其中 0<b<100.于是 n >10a,即 n≥10a+1.因此b=n2100a2≥20a+1由此得 20a+1<100,所以a≤4.经验算,仅当a=4时,n=41满足条件.若n>41则n2-402≥422-402>100.因此,满足本题条件的最大的完全平方数为412=1681.A1-006求所有的素数p,使4p2+1和6p2+1也是素数.【题说】 1964年~1965年波兰数学奥林匹克二试题 1.【解】当p≡±1(mod 5)时,5|4p2+1.当p≡±2(mod 5)时,5|6p2+1.所以本题只有一个解p=5.A1-007证明存在无限多个自然数a有下列性质:对任何自然数n,z=n4+a 都不是素数.【题说】第十一届(1969年)国际数学奥林匹克题1,本题由原民主德国提供.【证】对任意整数m>1及自然数n,有n4+4m4=(n2+2m2)2-4m2n2=(n2+2mn+2m2)(n2-2mn+2m2)而 n2+2mn+2m2>n2-2mn+2m2=(n-m)2+m2≥m2>1故 n4+4m4不是素数.取 a=4·24,4·34,…就得到无限多个符合要求的 a.A1-008将某个17位数的数字的顺序颠倒,再将得到的数与原来的数相加.证明:得到的和中至少有一个数字是偶数.【题说】第四届(1970年)全苏数学奥林匹克八年级题 4.【证】假设和的数字都是奇数.在加法算式中,末一列数字的和d+a为奇数,从而第一列也是如此,因此第二列数字的和b+c≤9.于是将已知数的前两位数字a、b与末两位数字c、d去掉,所得的13位数仍具有性质:将它的数字颠倒,得到的数与它相加,和的数字都是奇数.照此进行,每次去掉首末各两位数字.最后得到一位数,它与自身相加显然是偶数.矛盾!因此,和的数字中必有偶数.A1-009证明:如果p和p+2都是大于3的素数,那么6是p+1的因数.【题说】第五届(1973年)加拿大数学奥林匹克题 3.【证】因为p是奇数,所以2是p+1的因数.因为p、p+1、p+2除以 3余数不同,p、p+2都不被 3整除,所以p+1被 3整除.于是6是p+1的因数.A1-010证明:三个不同素数的立方根不可能是一个等差数列中的三项(不一定是连续的).【题说】美国第二届(1973年)数学奥林匹克题5.【证】设p、q、r是不同素数.假如有自然数l、m、n和实数a、d,消去a,d,得化简得(m-n)3p=(l-n)3q+(m-l)3r+3(l-n)(m原命题成立.A1-011设n为大于2的已知整数,并设V n为整数1+kn的集合,k =1,2,….数m∈V n称为在 V n中不可分解,如果不存在数p,q∈V n使得pq=m.证明:存在一个数r∈V n可用多于一种方法表达成V n中不可分解的元素的乘积.【题说】第十九届(1977年)国际数学奥林匹克题3.本题由荷兰提供.【证】设a=n-1,b=2n-1,则a2、b2、a2b2都属于V n.因为a2<(n+1)2,所以a2在V n中不可分解.式中不会出现a2.r=a2b2有两种不同的分解方式:r=a2·b2=a2…(直至b2分成不可分解的元素之积)与r=ab·ab=…(直至ab分成不可分解的元素之积),前者有因数a2,后者没有.A1-012证明在无限整数序列10001,100010001,1000100010001,…中没有素数.注意第一数(一万零一)后每一整数是由前一整数的数字连接0001而成.【题说】 1979年英国数学奥林匹克题 6.【证】序列 1,10001,100010001,…,可写成1,1+104,1+104+108,…一个合数.即对n>2,a n均可分解为两个大于1的整数的乘积,而a2=10001=137·73.故对一切n≥2,a n均为合数.A1-013如果一个自然数是素数,并且任意地交换它的数字,所得的数仍然是素数,那么这样的数叫绝对素数.求证:绝对素数的不同数字不能多于3个.【题说】第十八届(1984年)全苏数学奥林匹克八年级题 8.【证】若不同数字多于 3个,则这些数字只能是1、3、7、9.不难验证1379、3179、9137、7913、1397、3197、7139除以7,余数分别为0、1、2、3、4、5、6.因此对任意自然数M,104×M与上述7个四位数分别相加,所得的和中至少有一个被7整除,从而含数字1、3、7、9的数不是绝对素数.A1-014设正整数 d不等于 2、5、13.证明在集合{2,5,13,d}中可以找到两个不同元素a、b,使得ab-1不是完全平方数.【题说】第二十七届(1986年)国际数学奥林匹克题1.本题由原联邦德国提供.【证】证明2d-1、5d-1、13d-1这三个数中至少有一个不是完全平方数即可.用反证法,设5d-1=x2 (1)5d-1=y2 (2)13d-1=z2 (3)其中x、y、z是正整数.由(1)式知,x是奇数,不妨设x=2n-1.代入有 2d-1=(2n-1)2即d=2n2-2n+1 (4)(4)式说明d也是奇数.于是由(2)、(3)知y、Z是偶数,设y=2p,z=2q,代入(2)、(3)相减后除以4有2d=q2-p2=(q+p)(q-p)因2d是偶数,即q2-p2是偶数,所以p、q同为偶数或同为奇数,从而q+p和q-p都是偶数,即2d是4的倍数,因此d是偶数.这与d是奇数相矛盾,故命题正确.A1-015求出五个不同的正整数,使得它们两两互素,而任意n(n≤5)个数的和为合数.【题说】第二十一届(1987年)全苏数学奥林匹克十年级题 1.【解】由n个数a i=i·n!+1,i=1,2,…,n组成的集合满足要求.因为其中任意k个数之和为m·n!+k(m∈N,2≤k≤n)由于n!=1·2·…· n是 k的倍数,所以m·n!+k是 k的倍数,因而为合数.对任意两个数a i与 a j(i>j),如果它们有公共的质因数p,则p 也是a i-a j=(i-j)n!的质因数,因为0<i-j<n,所以p也是n!的质因数.但a i与n!互质,所以a i与a j不可能有公共质因数p,即a i、a j (i≠j)互素.令n=5,便得满足条件的一组数:121,241,361,481,601.A1-016已知n≥2,求证:如果k2+k+n对于整数k素数.【题说】第二十八届(1987年)国际数学奥林匹克题6.本题由原苏联提供.(1)若m≥p,则p|(m-p)2+(m-p)+n.又(m-p)2+(m-p)+n≥n>P,这与m是使k2+k+n为合数的最小正整数矛盾.(2)若m≤p-1,则(p-1-m)2+(p-1-m)+n=(p-1-m)(p-m)+n被p 整除,且(p-1-m)2+(p-1-m)+n≥n>p因为(p-1-m)2+(p-1-m)+n为合数,所以p-1-m≥m,p≥2m+1由得4m2+4m+1≤m2+m+n即3m2+3m+1-n≤0由此得A1-017正整数a与b使得ab+1整除a2+b2.求证:(a2+b2)/(ab+1)是某个正整数的平方.【题说】第二十九届(1988年)国际数学奥林匹克题6.本题由原联邦德国提供.a2-kab+b2=k(1)显然(1)的解(a,b)满足ab≥0(否则ab≤-1,a2+b2=k(ab+1)≤0).又由于k不是完全平方,故ab>0.设(a,b)是(1)的解中适合a>0(从而b>0)并且使a+b最小的那个解.不妨设a≥b.固定k与b,把(1)看成a的二次方程,它有一根为a.设另一根为a′,则由韦达定理(2),a′为整数,因而(a′,b)也是(1)的解.由于b>0,所以a′>0.但由(3)从而a′+b<a+b,这与a+b的最小性矛盾,所以k必为完全平方.A1-018求证:对任何正整数n,存在n个相继的正整数,它们都不是素数的整数幂.【题说】第三十届(1989年)国际数学奥林匹克题5.本题由瑞典提供.【证】设a=(n+1)!,则a2+k(2≤k≤n+1),被k整除而不被k2整除(因为a2被k2整除而k不被k2整除).如果a2+k是质数的整数幂p l,则k=p j(l、j都是正整数),但a2被p2j整除因而被p j+1整除,所以a2+k被p j整除而不被p j+1整除,于是a2+k=p j=k,矛盾.因此a2+k(2≤k≤n+1)这n个连续正整数都不是素数的整数幂.A1-019 n为怎样的自然数时,数32n+1-22n+1-6n是合数?【题说】第二十四届(1990年)全苏数学奥林匹克十一年级题5【解】 32n+1-22n+1-6n=(3n-2n)(3n+1+2n+1)当 n>l时,3n-2n>1,3n+1+2n+1>1,所以原数是合数.当 n=1时,原数是素数13.A1-020设n是大于6的整数,且a1、a2、…、a k是所有小于n且与n互素的自然数,如果a2-a1=a3-a2=…=a k-a k-1>0求证:n或是素数或是2的某个正整数次方.【题说】第三十二届(1991年)国际数学奥林匹克题2.本题由罗马尼亚提供.【证】显然a1=1.由(n-1,n)=1,得 a k=n-1.令 d=a2-a1>0.当a2=2时,d=1,从而k=n-1,n与所有小于n的自然数互素.由此可知n是素数.当a2=3时,d=2,从而n与所有小于n的奇数互素.故n是2的某个正整数次方.设a2>3.a2是不能整除n的最小素数,所以2|n,3|n.由于n-1=a k=1+(k-1)d,所以3d.又1+d=a2,于是31+d.由此可知3|1+2d.若1+2d<n,则a3=1+2d,这时3|(a3,n).矛盾.若1+2d≥n,则小于n且与n互素自然数的个数为2.设n=2m(>6).若m为偶数,则m+1与n互质,若m为奇数,则m+2与m互质.即除去n-1与1外、还有小于n且与n互质的数.矛盾.综上所述,可知n或是素数或是2的某个正整数次方.A1-021试确定具有下述性质的最大正整数A:把从1001至2000所有正整数任作一个排列,都可从其中找出连续的10项,使这10项之和大于或等于A.【题说】第一届(1992年)中国台北数学奥林匹克题6.【解】设任一排列,总和都是1001+1002+…+2000=1500500,将它分为100段,每段10项,至少有一段的和≥15005,所以A≥15005另一方面,将1001~2000排列如下:2000 1001 1900 110118001201 1700 1301 160014011999 1002 1899 110217991202 1699 1302 15991402………………1901 1100 1801 120017011300 1601 1400 15011300并记上述排列为a1,a2,…,a2000(表中第i行第j列的数是这个数列的第10(i-1)+j项,1≤i ≤20,1≤j≤10)令 S i=a i+a i+1+...+a i+9(i=1,2, (1901)则S1=15005,S2=15004.易知若i为奇数,则S i=15005;若i为偶数,则S i=15004.综上所述A=15005.A1-022相继10个整数的平方和能否成为完全平方数?【题说】 1992年友谊杯国际数学竞赛七年级题2.【解】(n+1)2+(n+2)2+…+(n+10)2=10n2+110n+385=5(2n2+22n+77)不难验证n≡0,1,-1,2,-2(mod 5)时,均有2n2+22n+77≡2(n2+n+1)0(mod 5)所以(n+1)2+(n+2)2+…+(n+10)2不是平方数,A1-023是否存在完全平方数,其数字和为1993?【题说】第三届(1993年)澳门数学奥林匹克第二轮题2.【解】存在,事实上,取n=221即可.A1-024能够表示成连续9个自然数之和,连续10个自然数之和,连续11个自然数之和的最小自然数是多少?【题说】第十一届(1993年)美国数学邀请赛题6.【解】答495.连续9个整数的和是第5个数的9倍;连续10个整数的和是第5项与第6项之和的5倍;连续11个整数的和是第6项的11倍,所以满足题目要求的自然数必能被9、5、11整除,这数至少是495.又495=51+52+…+59=45+46+…+54=40+41+…+50A1-025如果自然数n使得2n+1和3n+1都恰好是平方数,试问5n+3能否是一个素数?【题说】第十九届(1993年)全俄数学奥林匹克九年级一试题1.【解】如果2n+1=k2,3n+1=m2,则5n+3=4(2n+1)-(3n +1)=4k2-m2=(2k+m)(2k-m).因为5n+3>(3n+1)+2=m2+2>2m+1,所以2k-m≠1(否则5n +3=2k+m=2m+1).从而5n+3=(2k+m)(2k-m)是合数.A1-026设n是正整数.证明:2n+1和3n+1都是平方数的充要条件是n+1为两个相邻的平方数之和,并且为一平方数与相邻平方数2倍之和.【题说】 1994年澳大利亚数学奥林匹克二试题2.【证】若2n+1及3n+1是平方数,因为2(2n+1),3(3n +1),可设2n+1=(2k+1)2,3n+1=(3t±1)2,由此可得n+1=k2+(k+1)2,n+1=(t±1)2+2t2反之,若n+1=k2+(k+1)2=(t±1)2+2t2,则2n+1=(2k+1)2,3n+1=(3t±1)2从而命题得证.A1-027设 a、b、c、d为自然数,并且ab=cd.试问 a+b+c+d能否为素数.【题说】第五十八届(1995年)莫斯科数学奥林匹克九年级题 10.【解】由题意知正整数,将它们分别记作k与l.由a+c>c≥c1,b+c>c≥c2所以,k>1且l>1.从而,a+b+c+d=kl为合数.A1-028设k1<k2<k3<…是正整数,且没有两个是相邻的,又对于m=1,2,3,…,S m=k1+k2+…+k m.求证:对每一个正整数n,区间(S n,S n+1)中至少含有一个完全平方数.【题说】 1996年爱朋思杯——上海市高中数学竞赛题2.【证】 S n=k n+k n-1+…+k1所以从而。
国际数学奥林匹克试题分类解析―A数论_A2整数的求解汇总
A2 整数的求解A2-001 哪些连续正整数之和为1000?试求出所有的解.【题说】 1963年成都市赛高二二试题 3.【解】设这些连续正整数共n个(n>1),最小的一个数为a,则有a+(a+1)+…+(a+n-1)=1000即n(2a+n-1)=2000若n为偶数,则2a+n-1为奇数;若n为奇数,则2a+n-1为偶数.因a≥1,故2a+n-1>n.同,故只有n=5,16,25,因此可能的取法只有下列三种:若n=5,则 a=198;若n=16,则 a=55;若n=25,则 a=28.故解有三种:198+199+200+201+20255+56+…+7028+29+…+52A2-002 N是整数,它的b进制表示是777,求最小的正整数b,使得N是整数的四次方.【题说】第九届(1977年)加拿大数学奥林匹克题3.【解】设b为所求最小正整数,则7b2+7b+7=x4素数7应整除x,故可设x=7k,k为正整数.于是有b2+b+1=73k4当k=1时,(b-18)(b+19)=0.因此b=18是满足条件的最小正整数.A2-003 如果比n个连续整数的和大100的数等于其次n个连续数的和,求n.【题说】 1976年美国纽约数学竞赛题 7.s2-s1=n2=100从而求得n=10.A2-004 设a和b为正整数,当a2+b2被a+b除时,商是q而余数是r,试求出所有数对(a,b),使得q2+r=1977.【题说】第十九届(1977年)国际数学奥林匹克题 5.本题由原联邦德国提供.【解】由题设a2+b2=q(a+b)+r(0≤r<a+b),q2+r=1977,所以q2≤1977,从而q≤44.若q≤43,则r=1977-q2≥1977-432=128.即(a+b)≤88,与(a+b)>r≥128,矛盾.因此,只能有q=44,r=41,从而得a2+b2=44(a+b)+41(a-22)2+(b-22)2=1009不妨设|a-22|≥|b-22|,则1009≥(a-22)2≥504,从而45≤a≤53.经验算得两组解:a=50,b=37及a=50,b=7.由对称性,还有两组解a=37,b=50;a=7,b=50.A2-005 数1978n与1978m的最后三位数相等,试求出正整数n和m,使得m+n 取最小值,这里n>m≥1.【题说】第二十届(1978年)国际数学奥林匹克题 1.本题由古巴提供.【解】由题设1978n-1978m=1978m(1978n-m-1)≡0(mod 1000)理注解:设1978n=1000a+c 1978m=1000b+c 1978n-1978m=1000(a-b因而1978m≡2m×989m≡0(mod 8),m≥31978n-m≡1(mod 125)注解:1978m(1978n-m-1)这两式的乘积要为1000整除,显然1978m这式为8的倍数,另一式为125的倍数。
初中数学奥林匹克竞赛教程
初中数学奥林匹克竞赛教程(初稿)2004年5月8日初中数学竞赛大纲(修订稿)数学竞赛对于开发学生智力,开拓视野,促进教学改革,提高教学水平,发现和培养数学人才都有着积极的作用。
目前我国中学生数学竞赛日趋规范化和正规化,为了使全国数学竞赛活动健康、持久地开展,应广大中学师生和各级数学奥林匹克教练员的要求,特制定《初中数学竞赛大纲(修订稿)》以适应当前形势的需要。
本大纲是在国家教委制定的九年义务教育制“初中数学教学大纲”精神的基础上制定的。
《教学大纲》在教学目的一栏中指出:“要培养学生对数学的兴趣,激励学生为实现四个现代化学好数学的积极性。
”具体作法是:“对学有余力的学生,要通过课外活动或开设选修课等多种方式,充分发展他们的数学才能”,“要重视能力的培养……,着重培养学生的运算能力、逻辑思维能力和空间想象能力,要使学生逐步学会分析、综合、归纳、演绎、概括、抽象、类比等重要的思想方法。
同时,要重视培养学生的独立思考和自学的能力”。
《教学大纲》中所列出的内容,是教学的要求,也是竞赛的要求。
除教学大纲所列内容外,本大纲补充列出以下内容。
这些课外讲授的内容必须充分考虑学生的实际情况,分阶段、分层次让学生逐步地去掌握,并且要贯彻“少而精”的原则,处理好普及与提高的关系,这样才能加强基础,不断提高。
1、实数十进制整数及表示方法。
整除性,被2、3、4、5、8、9、11等数整除的判定。
素数和合数,最大公约数与最小公倍数。
奇数和偶数,奇偶性分析。
带余除法和利用余数分类。
完全平方数。
因数分解的表示法,约数个数的计算。
有理数的表示法,有理数四则运算的封闭性。
2、代数式综合除法、余式定理。
拆项、添项、配方、待定系数法。
部分分式。
对称式和轮换对称式。
3、恒等式与恒等变形恒等式,恒等变形。
整式、分式、根式的恒等变形。
恒等式的证明。
4、方程和不等式含字母系数的一元一次、二次方程的解法。
一元二次方程根的分布。
含绝对值的一元一次、二次方程的解法。
(完整版)(完整版)2018年(第59届)国际数学奥林匹克(IMO)竞赛试题及答案图片版
岁马尼亚克卢日蜻沐卡第一天«1. itΓ<HΛ三角砒4〃C的外44圈・点D和EAru殳/CAC上∙^nAD ≈ AEφ BI)^CE的•克羊分线⅛Γ上劣弧AB AC分別文于点FG im ADE⅜FG1 ⅛A÷*t•⅛ 2.求所有的整4⅛□23∙便俗存在实软5皿2.・・・.<¼+2∙滿足"*ι = <M∙ 5∙2 Ua2异且<≡∙<<∙⅛1 + 1 = α∣÷3— 1.2. - - ■” 戍立・題3・反忖斷卡三蔦砒是由铁俎戎的一个正三角外障•港足除了鬟下方一行.孕个敦是它下方相你两金铁之屋的绘对值•例*\下而是一金四忡的反恤浙卡三角耐・由Hl MlO tt⅛.42 65 7 18 3 10 9请MΛ5 4Λ2018fτ的反帕浙卡三 E 包含IMl +2十・∙∙ + 2018所亦的蹩典?鈿二夭« 4.我们呀谓一个(IJL是斯d角坐栋丰而上的一个A(X.,V)∙乳中工・"需足不雄述20的正史软.最初时•所有400个位豆那是空的.甲乙两人轮濃霖放石子•由甲先遗ft∙毎次伦刘甲时.他41 一个空的住I±Λ±-¼*的化也若子•要求任急两金红己石子舸息<1 Jt之问的距离都不#于%・每次伦刘乙片•他/1任直一个空的CiJt上崔上一个M6⅛2Lt>&子.(Jl色石子所在位直与戻它石于所在位直之问雎禹可以是任倉值・)4此UAitfTT去直至某金人无法再霖放石子•试确岌遥大的位再无论乙知何报就這色若予.Y⅛*Ef⅛Ui∙>∙4X⅛K个红已若子・« 5. Ha i.a2.…走一个>LfPil正整软斥列.已知4在於敦N>l∙使碍对每个^Kn > .V t Oi i o2 . I Q*1“ I OH――+ — + ・• • + ・■■■・ + —。
数学奥林匹克题解 代数-不等式
【解】抽出的人数必须满足
解得m=5.
故甲队有2m=10人,乙队有3m=15人,甲队抽出14-m=9(人).乙队抽出5m-11=14(人),从而参加游戏的人共有
选法.
B3-004求出所有满足不等式
的实数.
【题说】第四届(1962年)国际数学奥林匹克题2.本题由匈牙利提供.
An-1=xn-1xn-2…x0,An=xnxn-1…x0(a进制的位置表示法);
Bn-1=xn-1xn-2…x0,Bn=xnxn-1…x0(b进制的位置表示法).
其中xn≠0,xn-1≠0.证明:当a>b时,有
【题说】第十二届(1970年)国际数学奥林匹克题2.本题由罗马尼亚提供.
【证】由于a>b,故AnBn-1-An-1Bn=(xnan-1+An-1)Bn-1-(xnbn-1+Bn-1)An-1=xn[xn-1(an-1bn-2-an-2bn-1)+…+x0(an-1-bn-1)]>0
证明:这个矩阵所有元素的和不小于0.5n2.
【题说】第十三届(1971年)国际数学奥林匹克题6.本题由瑞典提供.
【证】交换A的两行或两列不改变题设的A的性质(因为行和与列和均不变、只是交换了位置),因此我们可以先通过交换两行或两列的变换,使得有尽可能大的k满足a11=a22=…=akk=0.此时对于i,j>k有aij≠0.对于i≤k,j>k,若aij=0,则aji≠0,因若不然,交换i,j行,就会使a11=a22=…=akk=ajj=0,与k的极大性矛盾.因而对于j>k,仍有
B3-015设m、n为正整数,证明存在与m、n无关的常数a
【题说】1989年瑞典数学奥林匹克题5.
【解】amax=3
第44届IMO试题解答
的长度之和的
因此 , a ≥ . 2 2 2 由 k≥ 1 ,即 a ≥b (2 a - b) + 1 ,则 2 2 a > b (2 a - b) ≥ 0. 因此 , a > b ,或 2 a = b . ① 2 2 3 假设 a1 、 a2 为 a - 2 kb a + k ( b - 1 ) = 0 的两 个解 ,对固定的正整数 k 和 b , 假设其中之一为整 数 . 由于 a1 + a2 = 2 kb2 ,则另一个也为整数 . 不妨设 a1 ≥a2 ,则 a1 ≥kb2 > 0. 又由 a1 a2 = k ( b3 - 1) ,则 3 3 k ( b - 1) k ( b - 1) 0 ≤a2 = ≤ < b. 2
2 且等号成立 . 6. 由于
x′ i = d
n
若对角线 CF 与 AD 或 B E 形成一个大于或等于 60° 的角 ,不妨设 ∠AQF ≥60° , Q 为 AD 与 CF 的交 点 . 同上述论证 ,得到 △AQF 、 △CQD 为等边三角形 . 推出 ∠BRC = 60° , R 为 B E 与 CF 的交点 . 再次按上 述的论证 ,得到 △BCR 与 △EFR 为等边三角形 . 故命题成立 . 4. 如图 2 , 由 Simson 定理 , P 、 Q、 R 三点共 线 . 此外 , 由于 ∠DPC = ∠DQC = 90° , 则 D 、P 、 Q、 C 四点共圆 ,得到 ∠DCA = ∠DPQ = ∠DPR . 又由 于 D 、 Q、 R、 A 图2 四点共圆 ,则 ∠DAC = ∠DRP. 从而 , △DCA ∽ △DPR . 同理 , △DAB ∽ △DQP , △DBC∽ △DRQ .
MN =
第44届俄罗斯数学奥林匹克(十、十一年级)
与 水 关于 点
即直线
'
尺
子 科 良 持红 马 萨 沙 持蓝 马 科 良 先 开 始 每
,
次 移 动均 将 棋 子 在 格 同 时在 另 个 坐 标 上 移 动
一 一
一
个坐标上 移 动
1
这表明 过点 ,
^ X
=
.
,
/)
、
尺 水 三点 共 线
、
,
经
20
个
7
个格 棋 子 不
"
;
V
n
_
L
> 1
0
"
i
-
1 .
c f
个
据式 ① 可 推 知
n
-
k
^ 9 9 => p ( A
,
)
^9
"
.
X X
…
X
X X X
从 而 便 找 到 了 无 穷 多个 时 刻 所 加 的 数 " 不 超过 9
i
(
l
)
.
,
观察某
2 00
,
i
(
-
1
)
个 时 刻 黑 板上 首 次对 某 个 R 正 现 整 设 出 不 小 于U d 的 数 假
一
,
由 此 即 可 推 出式 ① 由于
i
n +
1
个
.
V(
1
)
= 1
,
由 所证 的 不 等式 ①推 知
=
该 数是 由 数 由于 pM
8
第45届俄罗斯数学奥林匹克(十、十一年级)
2019年第12期31第45届俄罗斯数学奥林匹克(十、十一年级)中图分类号:G424.79文献标识码:A文章编号:1005-6416(2019)12-0031-08决赛十年级1.在平面上的每个点A处均放置一个实数/■(4)•若M ABC的重心,则/'(M)=/(4)+/(B)+/(C).证明:对于一切点4,均有/(A)=0.2.芭莎和沃娃做游戏,芭莎先开始•开始时,在他们面前放着一块很大的塑料板•芭莎每一次都把某一块塑料板分割为三块(可以相同)•沃娃则从中挑出两块把它们粘合成一块•若在某一时刻,在已有的塑料块中能找到100块重量相同的,则芭莎获胜•问:沃娃能否阻止芭莎取胜?3.星际旅馆有100间客房,可分别容纳101,102,-,200位客人.在这些客房里目前共住着n位客人.现在来了一个VIP团队,需要为他们腾出一整间客房•为此,客房经理挑选出一间客房,并把原来住在里面的所有客人全安排到同一间其他的客房里•问:对于怎样的S客房经理可以以这种方式安排客人,而不会受制于客人的现在住房情况?4.在锐角A ABC中,AC<BC.经过顶点A、B的圆与线段CA、CB分别交于点41、艮.△ABC、△儿QC的外接圆的第二个交点为P,线段4Q与BA X交于点S.Q、R分别为点S关于直线CA、CB的对称点.证明:P、Q、R、C四点共圆.5.同九年级第5题.6.在锐角中作角平分线BL,D、E 分别为A ABC的外接圆厂上弧亦、辰的中点•在线段BD、BE的延长线上各取一点P、Q,使得Z APB=ZCQB=90°.证明:线段BL 的中点在直线PQ上.7.某数学小组共有24名学生•对于每个有6名学生所组成的队,负责人均给出“能配合”或“不能配合”的两类评价.为做数学擂台赛训练,负责人打算把小组里的学生分为4个队,每个队6名学生.问:能否对于任何一种分为4个队的方法,要么恰有三个队是能配合的,要么恰有一个队是能配合的,并且两种情况都会出现?8.给定非常数的整系数多项式P(x)和正整数n.令a。
第三节立体几何证明
第三节立体几何证明本页仅作为文档页封面,使用时可以删除This document is for reference only-rar21year.March第三章几何第三节立体几何证明C3-001证明:如果四面体ABCD的对棱分别相等(即AB=CD,AC=BD,AD=BC),那么通过每组对棱中点的直线互相垂直,并且是四面体的对称轴.【题说】 1953年~1954年波兰数学奥林匹克三试题3.【证】如图,设 K、L、P、Q、M、N分别是四面体各棱中点.由于AD=BC,BD=AC,AB公用,所以△ABD≌△BAC,因而它们的对应中线DK=CK,由此知KL⊥CD,同理LK⊥AB.这说明A与B关于KL对称,C与D也关于KL对称.因此,KL是四面体的对称轴.BC的中点Q与DA的中点P对称,因而PQ⊥KL.同理可得结论中的其它部分.[别证] 将四面体的各组对棱分别作为一个平行六面体各面的对角线,由于各组对棱分别相等,所以这六面体为长方体,而长方体的对面中心的连线是对称轴并且互相垂直.C3-002 四面体ABCD,若AB⊥CD,AC⊥BD,则AD⊥BC.【题说】 1957年天津市赛初赛题 3,1979年上海市赛题4.【证】过A作BCD的垂线AH,连BH、CH、DH并延长,分别交CD、DB、BC于E、F、G,再连AE、AF、AG.因AH⊥平面BCD,AB⊥CD,得BE⊥CD.同理,CF⊥BD,故H为△BCD的垂心,所以DG⊥BC,得AD⊥BCC3-003 已知一个圆锥及其内切球,这个球外接一个圆柱,该圆柱的底面在圆锥底面上.并设V1是圆锥的体积,V2是圆柱的体积.(a)证明:不可能成立V1=V2;(b)求出使V1=KV2成立的最小的数K.并作出这种情况下的圆锥顶角.【题说】第二届(1960年)国际数学奥林匹克题 6.本题由保加利亚提供.【解】(a)轴截面如图.设球半径为R,锥底面半径为r,高为h=(c+2)R.V2=2πR3所以V1≠V2.C3-004证明:如果四面体被平面所截得的截面形状是平行四边形,那么这个平行四边形的半周长介于四面体的最长棱长和最短棱长之间.【题说】 1960年~1961年波兰数学奥林匹克三试题3.【证】设四面体ABCD被平面所截得的截面是平行四边形MNPQ,各点位置如图所示.因为PQ∥MN,所以PQ∥平面ABC,从而PQ平行于平面ABC与平面BCD的交线BC,因此MN∥BC.同理,MQ∥AD∥NP.于是由此得:设a和b分别是四面体的最小棱和最大棱,则a≤BC,AD≤b,由此得a≤MN+MQ≤bC3-005 设有一个四面体SABC有如下性质:有五个球与棱SA、SB、SC、AB、BC、CA或其延长线相切.证明:(a)该四面体是正四面体;(b)反之,对每一正四面体都有这样的五个球.【题说】第四届(1962年)国际数学奥林匹克题7.本题由前苏联提供.【证】设球K与四面体ABCD的各棱相切,则K与各个面,比如面ABC,相交得一个圆,这圆是△ABC的内切圆或旁切圆,记为K ABC.每两个这样的圆,如K ABC与K ABD有一个唯一的公共点,也就是球K与AB的切点.有两种情况:Ⅰ.所有的圆都是内切圆.由于K ABC与K ABD均唯一确定,而且不在同一平面上,所以如果有这样的球K,只可能有一个.Ⅱ.有一个圆为旁切圆.例如圆K ABD是与D相对的旁切圆,即它与DA、DB的延长线相切,那么K BCD、K CAD也是与D相对的旁切圆,而K ABC与AB、BC、CA相切于内点,所以是内切圆.与Ⅰ同理,对于每个顶点,这种球至多有一个.因而与四面体各棱都相切的球至多有五个,一个类型Ⅰ,四个类型Ⅱ.现在假定有五个球与四面体各棱都相切.由内切球K1,可得(设DA =a,DB =b,DC =c,BC =a′,CA =b′,AB =c′):a +a′=b +b′=c +c′=自A、B、C、D所作四条切线之和考虑D所对的旁切球,可得a-a′=b-b′=c-c′所以a=b=c,a′=b′=c′再考虑其他旁切球,可得a =b =c =a′=b′=c′所以ABCD为正四面体.反之,正四面体显然有五个和各棱都相切的球.C3-006 (a)已知一四面体ABCD.顶点D和底面△ABC的重心D1相连接,过A、B、C作DD1的平行线,分别交于该点相对的底面所在平面于A1、B1、C1.证明:四面体ABCD的体积是四面体A1B1C1D1体积的三分之一.(b)当点D1是底面△ABC内任一点时,结果又如何?【题说】第六届(1964年)国际数学奥林匹克题6.本题由波兰提供.【证】(a)设E、F、G分别为AD1、BD1、CD1与BC、CA、AB的交点.则A1在ED上,且△ED1D∽△EAA1,AA1 3DD1,同样BB1 CC1 3DD1,所以四面体A1B1C1D1的底面△A1B1C1≌△ABC,而四面体A1B1C1D1的高等于四面体ABCD的高的3倍.所以(b)当D1为任意点时,结论仍然成立.设DD1交平面A1B1C1于D1,A1D2、B1D2、C1D2分别交B1C1、C1A1、A1B1于E1、F1、G1.则过D1、D2任意作两个平行平面与直线AA1、BB1、CC1相截而得C3-007 在某个球形的星球上的居民,他能在星球表面上以不大的速度u移动,有一艘以速度v飞行的宇宙飞船.证明:若v/u>10,则从飞船上总能看到这个星球居民,假定他没有藏起来的话.【题说】 1965年全俄数学奥林匹克十一年级题5.【证】设行星半径是1,取任一直径的二端点为南北极N、S,过N、S引一条基准子午线.再将它分成若干段长度为ε的相等的弧,过这些分点作纬线.始,每次到达基准子午线时都下移ε到下一条纬线.这样,便能保证从飞船上看到行星上移动的居民.理由如下:假如飞船在点B上空,行星居民在A,A与B纬度相同.那么飞船因此,当纬线的弧(沿飞船飞行方向,从B到A)<π时,居民来不及逃避.当<π时,由于ε很小,可以认为飞船在到B之前,仍在同一纬度上飞行.由于飞船到B时,居民在A,所以飞船在A时(比到BC3-008 证明:一个正四面体的外接球球心,到它的四个顶点的距离之和,小于空间中的其它任一点到四个顶点的距离之和.【题说】第八届(1966年)国际数学奥林匹克题3.本题由保加利亚提供.【证】过这正四面体的各个顶点作对面的平行平面,围得一个大的正四面体.任一点P到原四面体各个顶点的距离和a不小于该点到大四的体积,因此a′等于大四面体的高h(当点P在大四面体外时,P到各面距离的代数和等于h,因而a′>h).而原四面体外接球球心到各顶点的距离和等于h.因此命题成立.C3-009以四面体ABCD的棱AB、AC、AD为直径各作一个球.证明:这些球覆盖了整个四面体.【题说】第二届(1968年)全苏数学奥林匹克十年级题3.【证】由A点作平面BCD的垂线AH,再由H点分别作线段BC、BD、CD的垂线HK、HL和HM.显然,棱锥ABKL、ACKM、ADML分别被相应的球所覆盖.C3-010证明:任何一个四面体总有一个顶点,以这个顶点引出的三条棱为三边可构成一个三角形.【题说】第十届(1968年)国际数学奥林匹克题4.本题由波兰提供.【证】设四面体ABCD中,AB是最长的棱.因为AC+BC>AB,AD+BD>AB,所以AC+AD+BC+BD>2AB.从而AC+AD>AB与BC+BD>AB中至少有一个成立.不妨设前者成立,这时AC、AD、AB可构成三角形.C3-011 一个给定的四面体ABCD是等腰的,即AB=CD,AC=BD,AD=BC.证明:该四面体的各面都是锐角三角形.【题说】第一届(1972年)美国数学奥林匹克题2.【证】由题设知,四面体各面为全等三角形.设其三内角分别为α、β、γ,则α+β+γ=180°.又α、β、γ中每一个角小于其它两个的和,所以每一个角都小于90°,即各个面都是锐角三角形.C3-012 在空间的八个点上放置探照灯,若它的照射范围是以此点为顶点的直三面角.证明:这些探照灯能照亮整个空间.【题说】第一届(1967年)全苏数学奥林匹克十年级题2.【证】作一平面,使已知点中的四个在它的一侧,其余四点在另一侧,则放在平面一侧的四个探照灯可以照遍另一侧.C3-013 设一个凸多面体P1的9个顶点为A1,A2,…,A9.设P i为由P1通过平移A1→A i(i=2,3,…,9)得到的凸多面体,证明:在多面体P1,P2,…,P9中至少有两个最少包含有一个公共内点.【题说】第十三届(1971年)国际数学奥林匹克题2.本题由前苏联提供.【证】以A1为原点建立一个坐标系,设A2,…,A9的坐标分别是v2,…,v9,令A′i的坐标为2v i(1≤i≤9),则P k的诸顶点的坐标为即A′i和A′k连线的中点.由于以A′i(1≤i≤9)为顶点的凸多面体P′是以A1为位似中心将P1放大到2倍的结果,它的体积是P1的8倍,而且P1,P2,…,P9都落在P′内部(因为它们都是凸的,并且顶点都在P′面上),它们的体积之和为P1的9倍,大于P′的体积,根据重叠原则,至少有两个P i(1≤i≤9)有公共内点.C3-014已知四个不重合的平行平面,试证:存在一个正四面体,使每个平面上都有该四面体的一个顶点.【题说】第十四届(1972年)国际数学奥林匹克题6.本题由英国提供.【证】设已知平面为E1,E2,E3,E4,并且在编号中,使平面E2,E3,E4依次在平面E1的同一侧,记平面E i与平面E i+1间的距离为d i(i=1,2,3).任取一正四面体P′1P′2P′3P′4.并且依照定比d1∶d2:d3分线段P′1P′4,依次得分点Q2和Q3,依照定比d2∶d3分线段P′2P′4得分点R3;依照定比d1∶d2分线段P′1P′3,得分点S2(如图a),于是有P′4Q3∶P′4Q2=P′4R3∶P′4P′从而可知Q3R3∥Q2P′2类似地,由P′1Q2∶P′1Q3=P′1S2∶P′1P′3可知Q2S2∥Q3P′3因此过Q2、P'2、S2的平面E′2与过Q3、R3、P′3的平面E′i3平行.设E′1和E′4分别是过点P′1和P′4且平行于E′2的平面(如图b),过点P′4引平面E′1的垂线交平面E′i于点T i(i=1,2,3),记平面E′i与E′i+1间的距离为t i(i=1,2,3).于是有t1∶t2∶t3=P′1Q2∶Q2Q3∶Q3P′4=d1∶d2∶d2(1)由(1)式可知,在空间可作一相似变换将平面E′1、E′2、E′3、E′4分别变换为平面E″1、E″2、E″3、E″4,使平面E″i与平面E″i+1间的距离为d i(i=1,2,3),在这相似变换下,正四面体P′1P′2P′3P′4变换为正四面体P″1P″2P″3P″4,并且点P″i在平面E′i内(i=1,2,3,4).最后,移动平面E″1、E″2、E″3、E″4使它们分别与平面E1、E2、E3、E4重合,于是正四面体P″1P″2P″3P″4变换为正四面体P1P2P3P4,并且P i在平面E i内(i=1,2,3,4).C3-015半径为1的球面上两点,用球内长度小于2的曲线连结起来,证明:这条曲线一定落在这个球的某个半球内.【题说】第三届(1974年)美国数学奥林匹克题3.【证】作点A、B所在的大圆,连结AB,并过球心O作平行AB的平面α,如图曲线整个地落在α以上的半球内.如若不然,曲线必与α交于某点P,连AP、BP,作A关于α的对称点A′,连AO、BO、A′O、A′P,曲线长≥AP+BP=A′P+BP>A′B=2.与已知矛盾.因此,原命题成立.C3-016 凸多面体N在每个顶点处都形成一个三面角.又知它的每个面是多边形,且内接于一个圆周.证明:该多面体能内接于一个球.【题说】第十一届(1977年)全苏数学奥林匹克十年级题3.【证】过多面体棱AB的两个界面的外接圆可唯一确定一个球面δ,球面δ含有上述两个界面上的所有顶点.如果BC和BD是由B出发的另外两条棱,那么包含B、C、D的圆(包含界面的外接圆)也属于δ,因为由棱BC连接的界面的顶点全部落在δ上.类似地研究由C出发的棱连接的界面,等等,一直到多面体的任意顶点全部落在球面δ上.C3-017 1.若四面体的六个二面角(即两面之间的夹角)相等,那么,这个四面体一定是正四面体.2.如果五个二面角相等,这个四面体一定是正四面体吗?【题说】第七届(1978年)美国数学奥林匹克题4.【证】作DE⊥AB,DF⊥AC,又作EG⊥AB,FG⊥AC,设EG与FG交于G.则AB⊥面DEG,AC⊥面DGF.所以AB⊥DG,AC⊥DG所以DG⊥面ABC∠DGE=∠DGF=90°由设∠DEG=∠DFG由是 Rt△DEG≌Rt△DFG,DE=DF因此 Rt△ADE≌Rt△ADF∠BAD=∠CAD同理可证∠ADB=∠ADC所以△ABD≌△ADC得 AB=AC,BD=DC再考虑以B、C为顶点的三面角,又得AB=BD,AC=DC,由此,该四面体六条棱皆相等,每个面都是等边三角形,因而是正四面体.2.结论不成立,可如下作出一个非正四面体,它有五个二面角相等:使∠ABC=∠CBD=∠DBA=∠ACB=∠BCD=∠DCA=40°,∠BAD=∠CAD=∠CDA=∠BDA=70°,∠BAC=∠BDC=100°.显然,这样的四面体存在,其中除二面角B-AD-C外,五个二面角皆相等,而它不是正四面体.[别解] 若取∠ABC等6个角为80°,∠BAD等4个角为80°,∠BAC=∠BDC=20°.则也有五个二面角相等的非正四面体.C3-018 众所周知,在欧氏几何中,三角形内角和为定值.试证明四面体的二面角的和不是定值.【题说】第十一届(1979年)加拿大数学奥林匹克题2.【解】考虑正三棱锥ABCD.设侧面与底面所成二面角为α,侧面间的二面角为β.当顶点A趋向于底面中心O时,α→0,β→π,四面体所有的二面角的和趋向于3π.当顶点A趋向于无穷时,α→π/2,β→π/3,四面体所有二面角的和趋向于3(π/2+π/3)=5π/2.由此可知,四面体的所有二面角的和不是定值.C3-019 已知四面体内切球的切点是四面体各面的重心,求证:该四面体是正四面体.【题说】第九届(1980年)美国数学奥林匹克题4.【证】设G1、G2分别是△ABC、△ADC的重心,则切线AG1=AG2,CG1=CG2.△ABC与△ADC中有两组中线对应相等,又共有AC.易知二者全等.因而得AB=AD,BC=DC同理 AC=AD,BC=BD;AD=BD,AC=BC.四面体六条棱都相等,故是正四面体.C3-020 过正方体ABCD-A1B1C1D1的一条对角线AC1任作一平面,截正方体.在截面不是对角面的情况下,能否使截面成为一个矩形?试证明你的结论.【题说】 1982年芜湖市赛题4.【解】如图,设截面为矩形AEC1F,则EF=AC1=BD1但矩形BB1D1D中,显然EF≤BD1,等号仅在EF是对角线BD1或B1D时成立.[别解] AB是面BCC1B1的垂线,所以BE是斜线AE在面BCC1B1上的射影,若AE⊥EC1,则BE⊥EC1,显然这是不可能的.C3-021 经过正方体中心的任一截面的面积不小于正方体的一个侧面面积,试证明.【题说】第十八届(1984年)全苏数学奥林匹克十年级题8.【证】显然正方体的截面是中心对称凸多边形,并且边数是偶数的,即或是四边形或是六边形.如果截面是四边形,那末它与正方体某两个相对的侧面不相交,并且截面在这两个侧面上射影是整个侧面,因此截面四边形的面积不小于正方体一个侧面的面积.如果截面是六边形,那末它与正方体的六个侧面都相交,考察正方体的侧面展开图,可知截面的周长P有不等式.其中a是正方体的棱长.截平面交正方体内切球的截圆半径为a/2,所以对截面积S,有这时截面六边形的面积也不小于正方体的一个侧面的面积.C3-022 AB、BC、CD为不在同一平面内的三条线段,AB、BC⊥BD.【题说】 1986年北京市赛高一题1(4).原题为选择题.【证】因P、Q、R分别为AB、BC、CD的中点,故PQ∥AC,QR∥BD.在△PQR中,有所以∠PQR=90°,即 PQ⊥QR,从而AC⊥BDC3-024 四面体ABCD的棱AB、CD之中点分别是E、F,过EF任作一个平面.试证:这个平面将四面体分成两个等积的部分.【题说】 1987年芜湖市赛题4,第二十九届(1988年)IMO预选题8.【证】如图,设截面为EGFH,DG∶AG=λ,d(x)表示点x到截面EGFH的距离,则所以设△BCD面积为S,A到平面BCD的距离为h,则同理可得三式相加,得C3-025 设A1A2A3A4是一个四面体,S1、S2、S3、S4分别是以A1、A2、A3、A4为球心的球,它们两两相切,如果存在一点Q,以这点为球心可作一个半径为r的球与S1、S2、S3、S4都相切,还可以作一个半径为R的球与四面体的各棱都相切.求证这个四面体是正四面体.【题说】第二届(1987年)全国冬令营赛题5.【证】设以A i为球心的球半径为r i(1≤i≤4).半径为R的球切棱A i A j于B ij,A i B ij=a i(1≤i,j≤4,i≠j).则r i+r j=a i+a j(1≤i,j≤4,i ≠j).从而r i=a i(1≤i≤4),又所以r i=r j(1≤i,j≤4,i≠j).从而各棱均相等,四面体为正四面体.C3-026 正方形ABCD中,M为AB上一点,N是BC上一点,且AM=BN.连DM、DN分别交对角线AC于P、Q,剪去△MNB.求证:(1)以DM、DN为折痕,将DA、DC重合,可以构成一个三棱锥的侧面;(2)以线段AP、PQ、QC为边,恰可构成有一个内角为60°的三角形.【题说】第一届(1990)希望杯高一二试题5.【证】(1)设∠ADP=α,∠CDQ=β,∠PDQ=γ.因为α+γ>45°>β,β+γ>45°>α,故只须证明α+β>γ.设AM =BN =a,CN =b,AB=1.则因此α+β>45°,从而α+β>γ.(2)在折成的四面体D-A(C)MN中,DA⊥AN,DA⊥AM,故DA⊥底面△AMN,且△AMN≌△BMN(图1中)故∠MAN=90°.又AQ平分∠DAN,AP平分∠DAM.过Q作QR∥AN交DA于R;过R作RS∥AM交AP于S.则四面体R-AQS 中,RS=RQ=RA,且∠ARQ=∠QRS=∠ARS=90°.60°.C3-027 在空间给定若干个点,其中任意四点不共面.给定的点具有以下性质:若有球面过其中任意四点,则所有其余的点均在该球面上或球面内.证明:所有给定的点,均在一个球面上.【题说】第十四届(1988年)全俄数学奥林匹克十年级题4.【证】在给定点中取点A、B、C,使其余的点都在平面ABC的同一侧.设D、E是另两个已知点,若E在过A、B、C、D的球面S的内部,则点D在过A、B、C、E的球面的外部,与已知矛盾.因此,点E必在球面S 上.同理可证所有其余的点均应在球面S上.C3-028 三维欧氏空间(xyz空间)所有点的集合为E.A1、A2、A3、A4、A5是E的非空子集,满足条件:(1)A1∪A2∪A3∪A4A2、A3、A4、A5中至少4个集合的点.【题说】 1990年日本第二轮选拔赛题1.【证】若存在直线l至少含3个相异子集A i的点,则过该直线及另一子集的点作平面即为所求.设任何直线至多含两个相异子集的点.设P i 分别为A i的点(i=1,2,3,4,5).考虑连结P1、P2的直线l,除P1、P2外l上还有A1或A2的点.不失一般性,设l上含A1的点Q1≠P1.过P2、P3、P4作平面L,若l在L内,则L即为所求;若l不在L内,过P5和l作平面M, M与L的交线为过P2的直线a.在M内,过P5的两条直线P1P5和P5Q1至少有一条与a相交,交点属于A1或A5,所以平面L必含有4个不同子集的点.C3-029 设AA′、BB′、CC′是球的不在同一平面的三条弦,它们相交于球内一点P.若过A、B、C、P的球面和过A′、B′、C′、P的球面相切,求证:AA′=BB′=CC′.【题说】第二十一届(1992年)美国数学奥林匹克题4.【证】过A、A′、B、B′的平面截三个球得三个圆,其中两个圆分别是△ABP及△A′B′P的外接圆,这两个圆相切于P点(如图).设RQ 是它们在P点的公切线.于是,有∠ABP=∠APQ=∠A′PR=∠A′B′P=∠BAP所以AP=BP同理A′P=B′p相加得 AA′=BB′同理BB′=CC′C3-036 四面体ABCD的四条高AA1、BB1、CC1、DD1相交于H点(A1、B1、C1、D1分别为垂足).三条高上的内分点A2、B2、C2满足AA2∶A2A1=BB2∶B2B1=CC2∶C2C1=2∶1.证明:H、A2、B2、C2、D1在同一个球面上.【题说】第二十一届(1995年)全俄数学奥林匹克第十一年级题7.【证】设M是△ABC重心,则它将中线AA3分为2∶1,于是MA2∥A3A1.因为AA2⊥面BCD,所以AA1⊥A3A1,从而MA2⊥A1A,∠MA2H=90°.同理∠MB2H=∠MC2H=90°.又DD1是四面体的高,所以DD1⊥MD1,即∠MD1H=90°.因此M、A2、B2、C2、D及H在以MH为直径的球面上.。
第36届俄罗斯数学奥林匹克(十一年级)
参考答案
11.1.不存在. 注意到对k=l,2,…,10,有
AB、BC、CD、DA(不含其他顶点)的中点,“
,2、厶、,4分别是△ABK、A BCK、A M414共点. 11.4.给定正整数n(n≥3).求使得下面 结论恒成立的最小的正整数k. 对于平面上任意三点不共线的n个点 A;=(并i,Y;),任意rg个实数c;(1≤i≤,1),都 存在一个次数不超过k的二元实系数多项式 P(石,Y),满足 P(筏,Y‘)=Ci(i=l,2,…,n). 11.5.给定正整数n(n>1).证明:存在
n+I是合数,故它是1到2n+l之间所有质
数的倍数. 如果n+l是质数,则rt+2是合数. 下证:rg+3,rt+4,…,2n+2这,1个连续 正整数就满足条件. 首先由上面的讨论知,它们的乘积是
=Ixi+。一,一aI(i+1≤s≤乃一1),
lb一茗,I=b一髫,>戈。一l一菇,
>口一髫,=Ia一省,I(1≤r≤i一1). 将所有上述不等式与等式
由归纳法假设,集合A中学生可以排成
一圈K满足要求. 设(石l,聋2),(菇3,礼),…,(石姓一l,菇扯)是K 上按顺时针方向排列的所有新室友对. 令菇:表示算i原来的室友,显然,菇:∈B.
在集合B中令
(省缸,x:),(茗;,茁;),…,(髫乞mz乞一・)
构成新的室友对集,与集合B中原来的室友 对集共同构成了集合曰中的室友对集.
(i=l,2,…,n一2), {(厅一1,n一1),(n一1,,1),(1,n—1),(1,n)}, {(,l,n),(rg,1),(2,rt),(2,1)}. 由于初始时刻,它们都各含1个“+”
证明:函数Y=IP(x)I在区间[菇,,菇。]上
的最大值一定在区间[菇。一。,菇。]上的某点处
第35届俄罗斯数学奥林匹克_十一年级_
递增. 故 0< b2 < 2+ 1 1 - 2= . 2 2 b2 < 1 . 2 1 .这 2
由此知当 k !2 时 , bk
如果 ak + a j 为 整数 , 则 b k + bj 也 为整 数 . 因此, 它们之一 ( 不妨设 bk ) 不小于
表明, k = 1 , b j = 1 - b1. 但由数列 { b n } 的单调 性得到那样的 j 至多一项. 11 3 设 AB 1、 AC 1、 AD 1 分别是 %ACD、 %ABD、 %ABC 的高 . 则三个三角形的垂心分 别在 AB 1、 AC 1、 AD 1 上且不与顶点 A 重合. 由于它 们位 于 一条 直线 l 上 , 故 AB 1、 AC 1、 AD 1 在含点 A 和 l 的平面 C 1、 D 1 位于平面 上 , 点 B 1、 和平面 BCD 的交线上 .
2 2
10
10
的所有整点 ( x, y )组成的集合. 甲乙两人 ( 由 甲开始 )轮流依次指定 S 中的两两不同的点 A 1, A 2, # 满足: A i ( i = 1 , 2 , #) 与 A i + 1关于原
(1 , 2 ),
3( n - 1)
2
点不对称 , 且 A i A i + 1 < A i + 1 A i + 2. 一个人如果 n . 3
令 A) 是点 A 在平面 BCD 上的投影 . 则由 三垂线定理知点 B 1、 C 1、 D 1 分别是 A ) 在 CD、 BD、 BC 上的投影 . 这表明, 点 A ) 、 C、 B 1、 D1位 于以 A ) C 为直径的一个圆周上 , 点 A ) 、 D、 B 1、 C 1 位于以 A ) D 为直径的一个圆周上. 故 ∗ BC, A ) C+ = = = 其中, 由 ∗ D 1C, A ) C+ ∗ C 1B 1, A ) B 1+ ∗ BD, A ) D+ , ∗ D 1B 1, A ) B 1+ = ∗ C 1D, A ) D+ =
全俄中学生数学奥林匹克 (第25届第Ⅳ阶段八、九年级)(Word版,含答案)
全俄中学生数学奥林匹克(第25届第Ⅳ阶段八、九年级)======== 八年级试题 ========1、父亲带着两个儿子向离城33公里的祖母家出发,父亲有一辆摩托车,速度为25公里/小时.如果再载了另一个人,则速度为20公里/小时,(摩托车不允许带两个人,即每车至多载两人.)每个儿子如果步行,速度为5公里/小时.证明:这3个人可在3小时内同时到达祖母家.证:设第二个儿子先步行,父亲载着第一个儿子乘摩托车走了公里,这里用了小时,并且他们超过第二个儿子(公里).这时,父亲让第一个儿子步行,自己返回去接第二个儿子.到遇到第二个儿子时,用了(小时).第二个儿子遇到父亲时,步行走了(公里),这时离祖母家还有(公里).如果父亲载第二个儿子的路程与载第一个儿子的路程相同,那么,所以(公里).这样,在路上共计用的时间为(小时),或(小时).2、在正整数A的右边添上3个数字,组成一个新数,这个新数等于从1到A的所有正整数之和,求A.解:设3个数字组成的数是B,则,于是,即,因此.由左边不等式知:,由右边不等式知:,所以.3、在△ABC的边BC,CA,AB上分别取点A1,B1,C1,使得△A1B1C1的中线A1A2,B 1B2,C1C2分别平行于直线AB,BC,CA,试确定点A1,B1,C1分△ABC的边为怎样的关系?解:设M点为△A1B1C1的重心,A3,B3,C3为△A1B1C1中线的延长线分别与△ABC各边的交点(如图).由题设知MC3CB1是平行四边形,所以MC3=B1C.其次,直线C1C3经过线段A 1B1的中点且平行于AC,所以MC3是△A1A3C的中位线,因此,A3C=2MC3,即A3B1=B1C.又A2A3是△B1C1A的中位线,所以AA3=A3B1,于是AA3=A3B1=B1C.因此B1点分AC为两部分的比AB1: B1C=2:1,同理CA1:A1B=BC1:C1A=2:1.4、有40个装有气体的瓶子,各瓶内气压是未知的且可以不相同.每次允许将若干个瓶子相连接,但瓶子数均不超过给定的正整数,然后再将它们分开,这时所连接的各瓶的气压将变成相等的,都等于连接前它们气压的算术平均值,当取怎样的最小值时,能使得40个瓶子中的气压变得都相等,而与初始时各瓶中的气压数无关?解:最小值.当时,可采取下列方式,使各瓶气压变得相等.将瓶子分为8组,每组5个,可使每组中各瓶的气压相等.然后再从每组中各取1个瓶子,共8个来自不同组的瓶子组成1个新组,这样的新组有5组.只要可使新组中的各瓶气压变得相等(这也就使得所有的40个瓶子的气压相等).这是可以做到的,先在每组8瓶中,分成各有4个瓶子的两组,让每组的4个瓶子相连接而使得它们的气压变得相等,然后从这两个4瓶组中分别各取1瓶,两者相连接,这样一来便可使得所有的各瓶气压相等.下面证明:若,则找不到适当的方式会使各瓶气压相等.设40瓶有1瓶的气压值为2;而其余各的瓶的气压值为1.要使各瓶气压相等,则每瓶气压值为(2+39×1)/40=41/40.但是,每次融合后的气压值所表示的既约分数的分母都不能被5整除.事实上,如果每次融合前的每个气压值的分母不被5整除,那么它们中的两个、三个或四个分数的算术平均的分母只能是它们分母的最小公倍数,因而也不可能是5的倍数,因为40是5的倍数,所以在上述初始的气压值的条件下,不可能使各瓶气压值变得相等.5、证明:正整数1至15不能分成两组:其中A有2个数,B有13个数,而使得B组中各数之和恰等于A组中2个数之积.证:假设按题设要求的分组可能,A组中2个数是,不妨设,则B组中各数之和为1+2+…+15――=120――,依题意得=120――.上式可变为(+1)(+1)=121,因此+1=1,+1=121,或+1=11,+1=11.但是,前式=0,=120>15;后式==10,这都是不可能的,因而1至15这15个数不可能按题设要求分成两组.6、给定非钝角△ABC,点A1是A点关于BC的对称点,点C1是C点关于AB的对称点.证明:如果A1,B和C1共线,且C1B=2A1B,那么∠CA1B是直角.证:由题设知BC垂直平分线段AA1,即AB=BA1,且∠A1BC=∠ABC(如图).同理C1B=BC且∠C1BA=∠ABC,于是3∠ABC=180°,即∠ABC=60°.考察△CBA1,其中∠CBA1=60°,CB=C1B=2BA1.作CA2⊥BA1于A2,在△CA2B中,∠BCA2=30°,所以BA2=BC=BA,所以A2=A1,从而∠CA1B=90°.7、盒子里放着整副骨牌,两个游戏者依次从中选取一张骨牌,并将其摆到桌面上,并按照“接龙”的规则,将牌接在已摆成一串的骨牌两端中的任意一端,谁要是接不下去了就算输,在正确策略下,谁能获胜?解:第一个游戏者必胜.记第一个游戏者为甲,第二个游戏者为乙.甲首先摆0:0,乙以0:连接,这时甲接以:,现在乙或者接0:或者接:,对第一种情况,甲接:;对第二种情况,甲接:0,甲接完这步后,骨牌串的两端或者都是,或者都是0.这步之后,设乙接上0:(:),则甲接上:(:0).形如0:和:(0,)的骨牌是成对的,所以最后的步骤必是在甲接牌后而终止.8、由54块纸片做的相同的单位正方形串成一条非封闭的链,以正方形的顶点作为接头,任意的正方形(链端的除外)与相邻的两个正方形的接头是相对的两个顶点,这个正方形链可否完全地覆盖3×3×3的正方体的界面?解:这样的正方形链不可能覆盖3×3×3的正方体.如若不然,假设可以覆盖正方体,显然,正方体的每个侧面可分成9个单位正方形.对于链中的每个正方形,是以它的对角线两端点作为接头,于是我们在正方体的侧面上得到以单位正方形的对角线组成的折线(它可能在折线的顶点处自交).经过折线的两端点(始点和终点)的对角线段,将有奇数条,而经过折线的其它顶点的对角线段将有偶数条,如果始点和终点重合,那么经过它的对角线段将有偶数条.假设对每个单位正方形纸片的每个顶点染上两种颜色中的一种.并使得其每条边上的顶点颜色各不相同,那么折线的顶点将是由一种颜色组成的集合(例如是黑色的).所以折线段的集合即是以黑色为端点的线段的集合,但在黑色顶点中有4个在正方体的顶点处,而经过每个这样的顶点的对角线段有3条,即奇数段的对角线经过的顶点有4个,这便导致矛盾.======== 九年级试题 ========1、沿圆周按顺序依次写下从1至N(N>2)的正整数,同时每对相邻的两个数,按十进制数表示法,它们至少有1个数字相同,求N的最小值.解:N=29.因为一位数没有公共的数字,所以N>9.据书写规则,因为这列数含有9,因而它们就不能小于19,进而不能小于29,即N≥29.今考察N=29时,可举出下面的例子,按此顺序排列,可将1至29的正整数排成一个圆圈而满足题设要求:1,11,10,20,21,12,2,22,23,3,13,14,4,24,25,5,15,16,6,26,27,7,17,18,8,28,29,9,19.2、在△ABC的AC边上取点D、E,使得AD=AB,BE=EC(E在A与D之间).F 是△ABC外接圆上(不含A点的)BC弧的中点,证明:B、E、D、F四点共圆.证:设∠BDA=α,∵AB=AD,∴∠ABD=α,∠BAD=180°-2α.∠CBF的度数等于弧CF的度数,而∠CAB的度数等于弧BC即×(2弧CF)的度数,所以∠CBF=∠CAB=90°-α(如图).点E、F分别与B、C等距,所以EF垂直平分BC.因此,∠BFE=90°-∠CBF=90°-(90°-α)=α,于是∠BDE=∠BFE=α,所以B,F,D,E四点共圆.3、正实数之乘积等于1,证明:如果,那么,对任意正整数,不等式成立.证:如果,且,那么不等式,事实上,由,,及,上述两个不等式都等价于.此外,在时,数与有相同的符号,所以.4、8×8的正方格是一个迷宫,每格是1×1.每格都画出下列四种方向中的一种的箭头;向上、向下、向左、向右,右上角的格上方是迷宫的出口,棋子从左下角的格开始出发,它走的每个步是按照该格的箭头方向走了1格,走完这步后,原来所在格的箭头将沿着顺时针方向转过90°,如果棋子走到了8×8正方形的边界,而这时箭头却指向界外,那么棋子将在这格停留,该格箭头将按顺时针方向转过90°,直至棋子可以行走. 证明:棋子迟早总会走出迷宫.证:假设棋子总走不出迷宫,那么棋子落在右图中标有“1“的格只能有限次(少于4次),否则“1”格必有1次箭头是指向出口的,从而走出迷宫.同样的,棋子在最后一次到达标有“1”格前也只能有限次到达“2”格.推而广之,在棋子只能有限次地到达“”格,那么也只能有限次到达“+1”格,这与假设棋子可无限次地走步而出不了迷宫矛盾.5、将网络平面中所有的格染成5种颜色,使得任意形如图形甲的图形中,各格是不同的颜色.证明:任意形如图形乙的图形上各格也是不同的颜色.证:假设某个1×5的图形上缺某种颜色,例如蓝色(在上图中,把这部分图形离析出来)那么图中用相同字母表示的两格中必有1格染蓝色,否则这些格所在的十字形中将缺少蓝色的格,这样一来,在含有字母的两个十字形中,必有一个十字形中含有两个蓝格,这与题设矛盾,所以原命题得证.6、(见八年级第7题)7、证明:每个正整数都可表示为有相同数目质因数的两个正整数之差(每个质因数只算1次,例如12有两个质因数2和3).证:如果给定的数是偶数,即,那么所求的数是.设是奇数,是它的质因数,又设是不含在集合的最小奇质数,那么所求的数便是和.因为根据的选择,中有因数2,而中有因数.因数是它们所共有的.8、在△ABC中,AB>BC,K、M分别是边AB和AC的中点,O是△AB C的内心.设P点是直线KM和CO的交点,而Q点使得QP⊥KM且QM∥BO,证明:QO⊥AC.证:作OR⊥AC于R,过P作MK的垂线,交直线OR于Q点(如图).这样只需证Q’M∥O,因为这时Q和Q’重合.因为K,M分别为AB和AC的中点,所以KM∥BC,于是∠M PC=∠BCP=∠ACB=∠MCP.因此MP=MC=MA,这样一来,P点在以AC为直径的圆周上,且∠APC =90°.在四边形APOR中,∠APO=∠ARO=90°,所以APOR内接于圆,∠RPO =∠RAO=×∠BAC.在四形边MPQ’R中,∠MPQ’=∠MRQ’=90°,所以MPQ’R内接于圆,于是∠Q’MR=∠Q’PR=∠Q’PO+∠OPR=(90°-∠OPM)+∠BAC=(90°-∠ACB)+∠BAC.设BO交AC于D,在△BDC中,∠BDC=180°-∠ACB-∠ABC=90°+∠BAC-∠ACB=∠Q’MR,因此MQ’∥BO,于是本题得证.。
完整版完整版2018年第59届国际数学奥林匹克IMO竞赛试题及答案图片版
罗马尼亚丸户日第氷卡第一天4 I. RrjtMIl 三角砒,4/?「的给按H •点。
知E@1UuB ,「上∙ ttflf4∕> = 4£. BI)^CE 的套R 亠分疑 ¼Γ Λ*ΛΛR∕IC^M⅛TAFG.i4W: InnE 柯FG 重律九平ft41 2・ L 繪疔的 JMI A 9 <t <* j. j⅛ JtOn ∙ I Ul ".,♦•・ 巧畀 JL« 3.反怙斯卡三為砒是由做血戎的一〉止三血0母∙ Λ<l⅛γMT 方一存∙ ⅜f*是它下方柜懈两金做之总 的地片值.W¼f 下面Jt 一金B 忡的反愉斯卡βiAU∙ Miυ tιΛ・57 I S 3 10 9请何442018ft 的反.枪驕卡丄■仏 fc>lΛl+2÷∙→3)lM 雋才的^k?昭二天4 4.代们卿谓-个αjL<⅛fi.Λ±*÷Λ±*⅛-个AU∙")∙ K*z.l r*Λ不绘1120的止整紋・Λw ∣t.所有JOo 个位KiF 是空的・甲乙站人4注抿试&子.由甲尢遼行・毎次驼刘甲时•他從一个空的 αι±Λ±-¼**⅞rttι;I t *∕Kttt*i¼<te∙δi^αακiw<⅛rtiiΛ不#于%•号次轮列乙H ∙他 在任蹇一介空的位直上摆上一个条的泓包召子・(U 忌子耐AUJt 与昇它石子所d(iK 之冏弘禺可以是仕卷 值・》4此这Itit 行下去A 盖泉金人丸法再加就石子.认从丈遥大的 »UA\ (tflft 论乙卜何 Λ>tltAf. Y⅛tlΛUl^artAtfc.t 6f.« 5. α<ι∣.<ι>,…〈一个丄限琐正筮 it∕M∙ ^4b4αmΛ> l t tt4∣t⅜¼>ttn>.v.杯*整敦・ UM: 4ΛjirttΛ/. UflFo frl ≡o^l *f>⅜<1Mtrr∙>Λ/•施2∙4 tt. H6r⅛i4<J.WCD*. ∕1B CD » BC DA •点內・ M4X.ZXAB = ZXCP i ZXBC = ZXD4⅛*l: ZΠΛ.4 ZDXC = 180β・H 瞬有・一1.2.罗坷尼込P a纳发卡4 I iwjtlt烏三铸刑・4〃「的外HflB•人〃4“在後几4〃・"•上∙IiflMD "・Mm的∙A牛分厲⅛Γ±KA∕IRTtC^MtfAEG URfl: InDE ⅛FG l^<÷fT.(tαt) ii^Λ: itFG分射丈/"W十、"卜出.HFS AH. GI Il AC.ΛΨ5.T Δ O 上.曲千FB∙ FD∙<FSMβ. MZFP/J-ZFHD-ZS-4∕J t<⅛MFP∣ /1S. 而FS || 4D.HΛDFSA + H^边可.円理巧如」£Y?;T尢羊厅E边0 f<(7T-∕1E-ΛP-FS t“衍■於∙i£毕■ 2•求瞬斤的蹩tt” 上J∙ K∕? 4Λ *: Ct<ι∣.αj. .0e→2∙ Λ<∙rf n^∣«■ α∣, <u⅛j ≡ <∣√ 4 Au∣∙t⅛l ♦1 ■ <b∙2时*T<>≡ LX∙∙∙.n<J..Φ(赵O Wl短未的,I为3|〃f(1) 首尢∙U∣H*t∙強伽■2 (2) *44I4U∙⅝HH. K 3f∙3∣邮以解钩HBAG CG = AF BF o Gr - FS刀伽α.∙∣<∣∙42⅜Kf <tA∕.∂0f* ft(t<f⅛ιtL¼HΛ⅛Mtfi于•甲.⅛∙tftUi><<K个红己石于<⅜)•I: /1- 100.t<t4⅜α*(τ.s∕)*χ÷ w⅜m⅛^t. ftJt ⅛√5的腐介<iM畀也<F*4⅛8-种無己的<i亶屮擢上红邑( 于∙ι^te⅜此包一半位Jfflr上红已石于•于是I r以件対K)OeiX色石于・4ι< ι*⅛^α¼αXOΛι⅛∙ ⅜tiΛΛA√⅞⅛-M≡:(l.i)9 (24). (3β2)l(4.4)(1.4>∙(2∙2h(3∙3)∙(4∙l)(L 2>e(23)l (3J)l(<3)(1.3).(2.1).(3.4),(4.2)再IXM的分俎”展刘2O∙2υ的UK. ▼号次α<ΛttαXrt±∏Lli予.创乙α同俎屮MGU負棺上Ii 己&子両屈申处It卸腐4匕XΛ⅛A ⅛√S. MΛ<4∣*乙可以Xi/V Q导如壬參播一金的包&千・< 5. Ho l.α3.…赴一金无风珊止JHtRFh6⅛>441tfft.V> 1. (tflFH⅜¼*iir<≥.V t21 + ^ + ...+⅛z∙+⅛<⅛" ‰ α∣*4.«* ・U*J: 4Ai*ΛΛ∕. ΛflF<∣^ - <*Λr∕< ≥ A∕><i.谚明:停时应于“和“41的冯个人于栢Z可以碍列∙tt*^Γrι>.V,f<tOm÷i<>l I <≡ntfl ÷ <«••・l -O∏Mn÷^∏ > Nit<M 的*«1 子* 合为/•・α>n⅛α-Λ kt⅛i)α1X t*⅛W t.用你钓不4 卩中的It <;JtMf < fκ JL ft(<α1)≡l Λ0.<⅛1 ∣Q"i∙ =♦<♦! I 心β*fχrftftH{<t∏ > JV)<<. Λat<*.ilpw P址创的一金素?1 f∙∙ I③中三金分人的4巾彗離・个分K今于分母的素凶次.W∣>(J)Λ τftx∂⅛t MJ・XΨ*x = m∕n<WJT4t.时”(巧二一“S)斬能为4 整it 三金分Kt⅛34*M . X 累因十P的*次必宿下拎怡工之一发皇• Λ¼⅛ A*⅛P<***#«»<:•三个分只的具中费眄个Ia小的QttE代帕同:我们碍対<>(θ∏⅜l) ≤ ⅜(θ∣∙)ι ⅞(θ∣∙) > M e0∙ I V(Jd) ≥ r√α∣> 梅梅祥沟个分式的卩鼻次相网∙^44M∕L¼<f. At>(αw>∣)∣⅛g) +1√<⅛)⑴(51 ⑹⑺"(a→ι)∙ S(<h)Hn > V. 创以&的卄砒何Z T前皆等价∙4»tr r{o,)4tXfιl jα∣h ^¼<J0^t<±.耐于另外三种悄町∙*iH<i∣r,l∣<j li>- ∙>(<ι∣H^*tf∙园此ΛMf ⅛v rκ∣ft^∣)・》仙)∙⅛s(%)iS(<∣ι)>*号时∙⅜I∣5∣<⅜⅛^AA Ita此ι⅛(<ιft)-υ√<ι∣)ΛM t∣f*r>(∙■川故片壬録耳P中的有M 介索软卩∙F F(αfi}*<MT*tt・SJΛaπ*P的素Hl于■次魚仮算妙“■/<>:败免∙M含前龙嗨可Iba rl aΛ.R>∕iΛ<^Λ.V>.V. ΛHHtfKm > M.覧OfR* I ■ Um.4G L&^^hALlCDt9 AU CD ^ UC DA. AXat»1«MJKZXzI" = ZXcD・EXBC - ZXDA证明:ZH.VΛ^ZPΛC= Ih(尸a*!:n>.zιe ∣∆xκ(t - ΔΛPΛ∙ZA>7∙ = ZzUJX =ZXWC ZXZZ>≡Zz∖∖4∕l = ZΛ(7>XV yc XC XD DZ 而二阪:寂∙IiX-VZ" AX ΛH爾以E X. (X FΛB・D、X. C. Z咚Be・所以⅛K⅜W⅛∣f丄\ ・VY + BX DX = AD DCfl∣tAX^ CX ÷ BX CZ = AB ・ CD*Z4Λ√>÷ZΛ.VC > IMr t HZ∕∕AC>ZΛΛ> ∙ B>∕TV?Sw c VJH . 解以xZ∙ < ∕n∖xc< OV:ιηβzc< DX9解以AD BC = ΛX BY ♦ DX DX> ΛV CX ♦- DX DX> ΛX CX ÷ BX CZλt) CD "ZΛΛD + ZfiXC < 180a H WU 总上乙人X" +/"XQ・180Q.。