微细加工技术概述及其应用
电子束微细加工技术的发展及其应用
电子束微细加工技术的发展及其应用电子束微细加工技术随着科学技术的发展而逐渐成熟,其在加工工业领域有着广泛的应用。
本文将重点探讨电子束微细加工技术的发展历程,技术特点以及在各个领域的应用。
一、电子束微细加工技术的发展历程电子束微细加工技术可以追溯到二十世纪中期,当时美国贝尔实验室的研究人员首次将电子束用于微细加工。
当时,电子束微细加工技术还处于探索阶段,局限于单层薄膜的微细加工。
随着科学技术的发展,电子束微细加工技术经历了从单层薄膜加工到多层薄膜、集成电路、光学器件以及生物医学等领域的拓展过程。
二、电子束微细加工技术的技术特点1.高精度电子束微细加工技术的加工精度可以达到亚微米级别。
由于电子束的微小直径,因此加工精度高。
同时,电子束微细加工技术无需接触到工件表面,因此可以避免因为接触而导致的破坏。
2.高速度电子束微细加工技术的加工速度比传统机械加工技术快得多。
电子束可以在微小的空间内加工,从而提高加工效率。
3.可控性强电子束微细加工技术可以通过调整电子束的加速电压和电子束的聚焦来实现不同的加工效果。
同时,电子束微细加工技术还具有可调的深度控制功能。
三、电子束微细加工技术在各个领域的应用1.集成电路在集成电路制造领域,电子束微细加工技术可以实现极小尺寸的电路设计。
利用电子束微细加工技术可以制造出亚微米级别的电路,这对于集成电路的制造具有重要的作用。
2.生物医学电子束微细加工技术在生物医学领域的应用主要集中在生物芯片制造方面。
利用电子束微细加工技术可以制造出超薄的微处理芯片,这些芯片可以被用于感应、检测和诊断。
3.光学器件利用电子束微细加工技术可以制造出高精度的光学器件,如光纤、光阻、光学芯片等等,这些光学器件可以被应用于通讯、光电子学、测量、材料加工等领域。
4.微纳机械电子束微细加工技术在微纳机械领域具有广泛的应用。
可以利用电子束微细加工技术制造出微米级别的光学器件、电子器件和机械器件等。
在微纳机械领域,电子束微细加工技术在制造微机械设备时具有独特的优势。
微细加工技术概述
1、电子束微细加工技术
电子束加工的原理
电子束加工是在真空条件下, 利用聚焦后能量密度极高(106~ 109W/cm2)的电子束,以极高的 速度冲击到工件表面极小的面 积上,在很短的时间(几分之一 微秒)内,其能量的大部分转变 为热能,使被冲击部分的工件 材料达到几千摄氏度以上的高 温,从而引起材料的局部熔化 和气化,被真空系统抽走。
微细加工的特点
微细加工作为精密加工领域中的一个极重要的关键技术, 目前有如下的几个特点: 1. 微细加工和超微细加工是多学科的制造系统工程; 2. 微细加工和超微细加工是多学科的综合高新技术; 3. 平面工艺是微细加工的工艺基础; 4. 微细加工技术和精密加工技术互补; 5. 微细加工和超微细加工与自动化技术联系紧密; 6.微细加工检测一体化。
所谓微细加工技术就是指能够制造微小尺寸零件 的加工技术的总称。 • 广义地讲,微细加工技术包含了各种传统精密加 工方法和与其原理截然不同的新方法,如微细切削 磨料加工、微细特种加工、半导体工艺等; • 狭义地讲,微细加工技术是在半导体集成电路制 造技术的基础上发展起来的,微细加工技术主要是 指半导体集成电路的微细制造技术,如气相沉积、 热氧化、光刻、离子束溅射、真空蒸镀等。
电子束切割
利用电子束在磁场中偏转的原理,使电子束在工 件内部偏转,还可以利用电子束加工弯孔和曲面。
电子束微细焊接
电子束焊接是利用电子束作为热源的一种焊接工艺,在 焊接不同的金属和高熔点金属方面显示了很大的优越性, 已成为工业生产中的重要特种工艺之一。 电子束焊接具有以下的工艺特点: (1)焊接深宽比高。 (2)焊接速度高,易于实现高速自动化。 (3)热变形小。 (4)焊缝物理性能好。 (5)工艺适应性强。 (6)焊接材料范围广。
微细加工技术概述及其应用
2011 年春季学期研究生课程考核(读书报告、研究报告)考核科目:微细超精密机械加工技术原理及系统设计学生所在院(系):机电工程学院学生所在学科:机械设计及理论学生姓名:杨嘉学号:10S008214学生类别:学术型考核结果阅卷人微细加工技术概述及其应用摘要微细加工原指加工尺度约在微米级范围的加工方法,现代微细加工技术已经不仅仅局限于纯机械加工方面,电、磁、声等多种手段已经被广泛应用于微细加工,从微细加工的发展来看,美国和德国在世界处于领先的地位,日本发展最快,中国有很大差距。
本文从用电火花加工方法加工微凹坑和用微铣削方法加工微小零件两方面描述了微细加工技术的实际应用。
关键词:微细加工;电火花;微铣削1微细加工技术简介及国内外研究成果1.1微细加工技术的概念微细加工原指加工尺度约在微米级范围的加工方法。
在微机械研究领域中,从尺寸角度,微机械可分为1mm~10mm的微小机械,1μm~1mm的微机械,1nm~1μm的纳米机械,微细加工则是微米级精细加工、亚微米级微细加工、纳米级微细加工的通称。
广义上的微细加工,其方式十分丰富,几乎涉及现代特种加工、微型精密切削加工等多种方式,微机械制造过程又往往是多种加工方法的组合。
从基本加工类型看,微细加工可大致分为四类:分离加工——将材料的某一部分分离出去的加工方式,如分解、蒸发、溅射、切削、破碎等;接合加工——同种或不同材料的附和加工或相互结合加工方式,如蒸镀、淀积、生长等;变形加工——使材料形状发生改变的加工方式,如塑性变形加工、流体变形加工等;材料处理或改性和热处理或表面改性等。
微细加工技术曾广泛用于大规模集成电路的加工制作,正是借助于微细加工技术才使得众多的微电子器件及相关技术和产业蓬勃兴起。
目前,微细加工技术已逐渐被赋予更广泛的内容和更高的要求,已在特种新型器件、电子零件和电子装置、机械零件和装置、表面分析、材料改性等方面发挥日益重要的作用,特别是微机械研究和制作方面,微细加工技术已成为必不可少的基本环节。
微细加工技术在微电子器件制备中的应用研究
微细加工技术在微电子器件制备中的应用研究微电子器件制备是当今电子技术领域的热点研究方向之一。
微电子器件制备的核心就是微细加工技术,该技术主要以光刻、薄膜沉积、化学加工、离子注入、蚀刻等为基础。
这些微细加工技术在微电子制备中发挥着不可替代的作用,是现代信息和通信技术、计算机技术、医学和生物技术等方面的关键技术。
下面我们将从几个方面来探讨微细加工技术在微电子器件制备中的应用研究。
一、微电子器件制备的重要性微电子器件制备一直是电子技术领域的研究热点,已广泛应用于计算机、手机、数字化电视等高科技领域。
目前,在自动化控制、靶向治疗、生物芯片、智能传感等领域都有了广泛应用。
国家也将微电子产业作为发展战略,积极发展集成电路、显示器、微处理器等产业。
因此,微电子器件制备将在未来的高科技发展中扮演着越来越重要的角色。
二、微细加工技术的分类及应用1. 光刻技术:光刻技术是微细加工技术中的重要一环。
它的原理是将光照射到光刻胶上,形成图案,再通过蚀刻或其他化学反应形成图案,用于制作晶体管、太阳能电池、光子晶体器件等。
2. 薄膜沉积技术:薄膜沉积技术也是微电子器件制备中应用广泛的技术。
它主要包括化学气相沉积、物理气相沉积、电化学沉积等技术。
薄膜沉积技术的主要应用领域是微电子器件中的互连线的分离层等。
3. 化学加工技术:化学加工技术是用化学方法对微电子材料进行处理,以制备出微电子器件。
在化学加工技术中,蚀刻技术是最为常见的一种技术。
蚀刻技术主要是通过酸、碱等化学物质对材料进行腐蚀、溶解或者氧化等,然后按要求形成器件。
4. 离子注入技术:离子注入技术主要是将离子注入到半导体材料中去,以改变其电学性质和物理特性,进而形成微电子器件。
三、微细加工技术的研究方向1. 多维度控制技术在微电子器件制备中,需要对于个别的材料可实现严格的调控,比如要求薄膜良率高、晶圆表面平整度高等等。
因此,为提高整个加工过程的可控性,就要求多维度控制技术的发展,实现对于加工过程中每一环节的精细控制,比如对于温度、光照强度、反应时间等方面的控制。
微细加工工艺技术
微细加工工艺技术微细加工工艺技术是一种应用于微电子、光学、纳米学等领域的高精度加工技术,该技术能够实现对微细结构的精密加工。
在微细加工工艺技术中,常常采用的加工方法有激光刻蚀、化学蚀刻、光刻以及微电子束等。
激光刻蚀是一种应用激光照射,通过激光束的高能量将材料表面局部蚀刻的加工方法。
与传统的机械刻蚀相比,激光刻蚀具有高精度、高效率的优点。
在激光刻蚀中,光束的聚焦度和光斑直径是影响加工精度的重要参数。
化学蚀刻是一种利用特定的化学反应,在材料表面选择性地产生化学蚀刻产物,并将其去除的加工方法。
化学蚀刻通常需要制备特定的蚀刻溶液,通过控制溶液的浓度和温度,来影响化学反应的速率和选择性。
化学蚀刻可以实现微细结构的高精度加工,并被广泛应用于光学元件和微流控芯片等领域。
光刻是一种基于光化学反应的加工方法,通过光阻的选择性暴露和去除,来形成所需的图案结构。
在光刻过程中,首先在材料表面涂敷一层光刻胶,然后利用光刻机的紫外光照射和显影等步骤,实现图案的转移。
光刻具有高精度、高分辨率和高重复性的优点,是微细加工中不可或缺的工艺之一。
微电子束也是一种实现微细结构加工的重要方法。
微电子束利用高能电子束在材料表面定向照射,经过准直、聚焦和偏转等步骤,将电子束的能量转化为对材料的加工作用。
通过控制电子束的参数,如能量、聚焦度和扫描速度等,可以实现对微细结构的精密加工。
微电子束在高精度加工领域具有很大的应用潜力,尤其在微电子器件、光电器件以及半导体器件等方面,具有广阔的发展前景。
总的来说,微细加工工艺技术是一种实现高精度加工的重要方法,包括激光刻蚀、化学蚀刻、光刻和微电子束等。
这些加工方法在微电子、光学、纳米学等领域发挥着重要作用,推动了相关技术的进步和应用的发展。
未来随着科学技术的不断进步,微细加工工艺技术将继续发展壮大,为人类社会带来更多的科技成果和应用产品。
微细加工技术的研究与应用
微细加工技术的研究与应用随着科技的不断进步和工业的迅速发展,微细加工技术越来越受到人们的关注。
微细加工技术是指针对微细零件、组件和器件进行高精度加工、制造和装配的一种新型技术。
这种技术在汽车、电子、航空、医疗等领域有着广泛的应用前景。
一、微细加工技术的研究1.背景微细加工技术从20世纪90年代初期开始发展,主要是为满足电子器件和微机电系统(MEMS)制造的需要。
在此基础上,微细加工技术不断得到完善和升级,为其他领域的制造和加工提供了思路和方法。
2.研究内容微细加工技术的研究主要包括以下方面:(1)微细机械制造技术;(2)微细电子制造技术;(3)微细光学制造技术;(4)微细生物制造技术。
其中,微细机械制造技术是应用最为广泛的一项技术,主要针对微型零部件、机械组件和器件等进行加工和制造。
3.研究难点微细加工技术的研究面临着许多难点,其中最主要的难点是如何实现高精度加工。
微细零部件的尺寸通常都在数微米至数百微米之间,而传统加工技术所能达到的精度却远远不够。
因此,如何在微小尺度下进行高精度加工,是微细加工技术研究的核心问题。
二、微细加工技术的应用1.汽车制造领域汽车制造领域是微细加工技术应用的主要领域之一。
在汽车制造中,许多零部件的尺寸都很小,而且对加工精度要求很高。
例如,发动机的火花塞、气门、燃油喷嘴等部件;车身的紧固件、密封件和缝合件等,都需要采用微细加工技术进行加工和制造。
2.电子制造领域电子制造领域也是微细加工技术应用的重要领域之一。
在电子制造中,许多IC芯片、闪存和存储器等器件的结构都非常微小,需要采用微细加工技术进行精密加工和制造。
同时,电子制造领域还需要采用微细加工技术进行导电薄膜的制造、微型电极的加工等工作。
3.医疗领域医疗领域也是微细加工技术应用的一个新兴领域。
在医疗领域中,微细加工技术可以用于制造微型手术器械、医用传感器、微型分析芯片等器件,从而为医疗诊断和治疗提供了新的手段和方法。
微细加工技术
微细加工概念 微细加工机理 微细加工方法 LIGA技术及准LIGA技术
微细加工技术应用 生物加工技术
6.1 微细加工技术概述
6.1.1 微细加工的概念
微细加工技术是指加工微小尺寸零件的生产加工技术。 从广义的角度来讲,微细加工包括各种传统精密加工方法和 与传统精密加工方法完全不同的方法,如切削加工,磨料加 工,电火花加工等。从狭义的角度来讲,微细加工主要是指 半导体集成电路制造技术。
6.2 微细加工机理
(4)晶界、空隙、裂纹(102 ~1)mm 它们的破坏是以缺陷 面为基础的晶粒破坏。 (5)缺口(1 mm 以上) 缺口空间的破坏是由于应力集中而 引起的破坏。
在微细切削去除 时,当应力作用的区 域在某个缺陷空间范 围内,则将以与该区 域相应的破坏方式而 破坏。图 6-1 为材料 微观缺陷分布情况。
较大,允许的切削深度 ap 较大。微细加工时,从强度和刚 度都不允许大的切削深度 ap,因此切屑很小。
6.1 微细加工技术概述
3. 加工特征 一般加工时,多以尺寸、形状、位置精度为加工特征。
精密和超精密加工也是如此,所用加工方法偏重于能够形成 工件的一定形状和尺寸。微细加工和超微细加工却以分离或 结合原子、分子为加工对象,以电子束、激光束、离子束为 加工基础,采用沉积、刻蚀、溅射、蒸镀等手段进行各种处 理。这是因为它们各自所加工的对象不同而造成的。
2021/8/21
2
6.1 微细加工技术概述
微小尺寸加工与一般尺寸加工的不同点: 1. 精度的表示方法
在微小尺寸加工时,由于加工尺寸很小,精度就必须用 尺寸的绝对值来表示,即用去除的一块材料的大小表示,从 而引入加工单位尺寸的概念。加工单位就是去除的一块材料 的尺寸。 2. 微观机理
微细加工综述
www.themegallery.co m
微细加工技术综述
1.3.3 微细线切割加工:
微细电火花线切割加工的基本原理是利用移动的 微细金属导线作电极, 对工件进行脉冲火花放电、切割 成形。 微细电火花线切割几乎可加工具有任何硬度的导 电金属材料, 且加工过程中不受宏观力的作用, 从而可 保证较好的加工精度与表面质量。广泛应用于微小齿 轮、微小花键、微小异形孔、以及半导体模具、钟表 模具等具有复杂形状的微小零件的加工。 台湾的Yunn - Shiuan Liao等开发了桌面式高精度多 功能微细电火花线切割机床, 用来加工复杂的三维微零 件。机床能够达到1μm的尺寸精度和Rmax=0.64μm的表 面粗糙度。
1986年原苏联基辅工学院用工业激光器在硬质合 金毛坯上打中心孔,孔径为0.6一1.omm,深度为 6mm; 英 国 学 者 Mark Heaten 采 用 受 激 准 分 子 激 光 在 PMMA 材料上加工出微小涡轮盘, 叶片数为31 。
激光束微细加工发展现状
2001年,德国学者Peter Heyl 研制了用于加工三维 结构的高精度激光加工机, 研究了陶瓷和硬金属的激 光加工工艺, 在WC/Co 材料上加工出微三维结构。平 均表面粗糙度达到Ra =0.16μm, 最大表面粗粗度可达 Rz=0.7μm, 所加工工件的表面粗糙度达到了高精度电 火花铣削的表面粗糙度。 瑞士某公司利用固体激光器给飞机涡轮叶片进行打 孔,可以加工直径从20腼到80腼的微孔,并且其直径 与深度之比可达1:80; 日本在厚1mm的氮化硅板上打出孔径0.Zmm的孔, 在0.05mm的陶瓷薄膜上加工出孔径 0.02mm的孔,而 在钦、白金、钨、钥等难以加工的材料上也进行了 有效的激光加工。
二、高能束流微细特种加工技术
微细加工技术及其应用
总的说来,超精增亮可去除次级微观粗糙表面,次级粗糙表面的厚度在0~20μm之间,位于零件表面初级微观粗糙面的峰尖之间。而超精抛光则部分或整体去除初级微观粗糙表面,其值在10~40μm之间,当然这取决于零件材料表面的初始状态。
微细加工技术迄今能够加工的材料有退火及淬火钢、铜及铜合金、铸铁、Inconel镍合金(镍基合金)、钛金属、表面硬涂层处理前后的预处理(PVD、CVD、电镀)。
微细加工原理微细加工技术采用全自动方式对金属零件表面进行超精加工,通过一种机械化学作用来清除金属零件表面上1~40μm的材料,实现被加工表面粗糙度达到或者好于ISO标准的N1级的表面质量。微细加工技术主要应用于超精抛光和超精增亮这两个领域。超精抛光使传统的手工抛光工艺自动化;而超精增亮则生成新的表面拓扑结构。
Байду номын сангаас
微细加工技术及其应用?微细加工技术是由瑞士BinC公司发明的一种新型加工工艺,在2004年法国巴黎举办的国际表面处理展览会(SITS)和2004年在法国里昂举办的ALLIANCE展览会上荣获2项发明奖。微细加工工艺和设备拥有国际专利保护。微细加工技术结合了超精增亮和超精抛光两项革新技术,能够有选择性地保留表面的微观结构,以提高表面的摩擦和滑动性能(表面技术),以机械化和自动化取代传统的手工抛光,提高表面的美学功能。这种微细加工技术应用于切削刀具、冲压和锻造工具,航空、汽车、医疗器械、塑料注射模具等机械零件的表面处理,能够极大地改善零件表面的性能。
微细加工技术的发展与应用
微细加工技术的发展与应用随着科技的不断发展,微细加工技术成为现代工业中不可或缺的一部分。
微细加工技术是指对微小物体进行加工的技术,通常用于制造那些需要高精度或者微小尺寸的零件、设备和器件。
微细加工技术的应用范围非常广泛,包括微型机器人、光学器件、医疗器械、生物传感器等领域。
本文将探讨微细加工技术的发展历程、应用和未来发展趋势。
一、微细加工技术的发展历程微细加工技术源远流长。
在过去的几百年间,人们使用了各种手工工具和机械设备进行微细加工。
例如,19世纪英国人约瑟夫·温斯洛在1822年发明了摆线拖动齿轮切削机,实现了金属齿轮的精细加工。
这一技术被广泛应用于英国的纺织工业,并为工业革命的发展做出了贡献。
20世纪初,随着电气工程和电子学的发展,半导体器件的出现推动了微细加工技术的发展。
1947年,贝尔实验室的威廉·肖克利发明了第一个晶体管,奠定了现代电子工业的基础。
从此以后,微细加工技术得到了巨大的发展,出现了各种各样的微细加工工具和设备。
例如,扫描电子显微镜可以对微小物体进行高分辨率成像和表征,电子束光刻机可以用来制造半导体芯片、具有纳米尺度精度的纳米定位台可以用来进行精细的纳米加工等等。
二、微细加工技术的应用微细加工技术已经广泛应用于多个领域。
以下是一些例子:1. 光学器件光学器件包括激光器、光开关、波导器、光电探测器等。
微细加工技术可以提供高精度和可重复加工,适用于制造这些器件的需求。
例如,电子束光刻机已经被广泛应用于制造半导体激光器和光子晶体器件。
2. 医学器械微细加工技术可以用于制造医学器械,例如微型手术器械和医用传感器。
这些器械需要高精度和微小尺寸,以减少对患者的创伤和疼痛。
微细加工技术可以提供这些要求。
3. 生物传感器生物传感器利用生物体内的化学反应或者生物特性来检测生物分子和细胞。
微细加工技术可以用于制造这些传感器。
例如,电子束光刻机可以用来制造生物芯片,这些芯片可以用于生命科学研究和医学诊断。
综述微细加工的主要技术和特点
综述微细加工的主要技术和特点一、微细加工近几年展望21世纪,人类进入微观世界。
在原子分子尺度上,对物质进行操作和加工,无疑会展现出一种相当美好的前景,并引起各方面的广泛重视。
微细加工技术的产生和发展一方面是加工技术自身发展的必然,同时也是新兴的微型机械技术发展对加工技术需求的促进。
超精加工在20世纪的科技发展中做出了巨大的贡献。
东京工业大学的谷口纪男教授首先提出了纳米技术术语,明确提出以纳米精度为超精密加工的奋斗目标。
在超精密加工技术领域起步最早和技术领先的国家是美国,其次是日本和欧洲的一些国家。
美国超精密加工技术的发展得到了政府和军方的财政支持,近年,美国执行了"微米和纳米级技术"国家关键技术计划,国防部陆、海、空三军组成了特别委员会,统一协调研究工作。
美国至少有30多个厂家和研究单位研制和生产各种超精密加工机床,国家劳伦斯.利佛摩尔实验室、联合碳化物公司、摩尔公司、杜邦公司等在国际上均久负盛名。
美国最早研制了能加工硬脆材料的6轴数控超精密研磨抛光机;联合碳化物公司开发了直径为800mm的非球面光学零件的超精密加工机床;劳伦斯.利佛摩尔实验室还开发了能加工陶瓷、硬质合金、玻璃和塑料等难加工材料的超精密切削机床,在半导体工业、航空工业和医疗器械工业中投入使用;珀金-埃尔默等公司用超精密加工技术加工各种军用红外零部件。
日本对超精密技术的发展也十分重视,70年代初,日本成立了超精密加工技术委员会,制定了技术发展规划,成为此项技术发展速度最快的国家。
日本现有20多家超精密加工机床研制公司,重点开发民用产品所需的加工设备并力图使设备系列化,成批生产了多品种商品化的超精密加工机床。
在超精密切削技术发展比较成熟后,日本已将黑色金属、陶瓷和半导体功能材料的超精密加工技术作为重要的研究开发项目。
日本的研究创新意识强,不是单纯地模仿国外的做法,而是积极地利用外国技术并结合本国特点和生存环境,走出了一条自己的发展道路。
微细加工技术的应用和趋势
改造 客观世 界 的一种 高 新技 术 。微机械 多 的小型 泵 的1 0 0 0 倍 ,而 且机 电一体 化 蚀 ,最 后把 光刻胶 去掉 就得 到 了想要 的
由于 具有 能够在 狭 小空 间 内进 行 作业 , 的微 机械 不存 在信 号延 迟 问题 ,可进 行 图形 。光刻技 术在 微 电子 中 占有 很大 的 比重 ,比如微 电子应用 3 . 1搬迁原子 1 9 9 0 年 ,美 国圣何塞I B M N尔马登研
而 受 到人们 的高 度重 视 ,被 列为 2 1 世 纪 和智 能结 构后 ,更 易于 实现 微机 械 的多 关键 技术 之首。 功能化和智能化 。
1 . 微机械 的特征
1 . 5 适 于大批 量生 产 、制 造成 本低 究所科 学家用S T M 将镍表面 吸附的氙原子
5 个氙 原子排成 I B M - = 微 机 械 在 美 国 常 称 为 微 型 机 电系 廉。微机械采用与 半导体制造工艺类似的 逐一移动 ,最终 以3 统 ;在 日本 称作 微机 器 ;而在 欧 洲则称 方法生产 ,可以象超大规模集成 电路芯片 个字母 。每个字母 高5 n m ,原子间的最短 作微 系统。
而 又 不扰乱 工作 环境 和对 象 的特 点 ,在 高速工作 。
航 空航 天 ,精密 仪器 ,生物 医学 等领域
1 . 4 多功能和 智 能化 。微 机械 最终 宽 来评 价 的,而线 宽 的获得跟 光刻 技术
有 着广 阔 的应用 潜 力 ,且是 实现 纳米技 要达 到集传 感 器 、执行 器和 电子控 制 电 有 很 大 的关 系 。 术 (N a n 0 t e c h n o l o g y ) 的重 要 环 节 , 因 路为 一体 的 目标 ,特别 是应 用智 能材 料
激光微细加工技术的研究与应用
激光微细加工技术的研究与应用激光微细加工技术是一种应用非常广泛的前沿技术,能够在微纳尺度下对材料进行加工。
它具有高精度、高效率、高质量的特点,在现代工业中具有非常关键的应用价值。
本文将从激光微细加工技术的原理、发展历程以及应用领域等方面进行深入探究。
一、技术原理激光微细加工技术主要是通过激光在被加工物表面的作用下,使其产生化学反应、物理变化或消失等效应,实现对材料的加工。
其基本原理是通过激光束的聚焦,使光束与材料相互作用,产生较高的局部温度和压力,使物质发生蒸发、沉积、熔化、氧化等变化,从而实现对材料的加工。
二、技术发展历程激光微细加工技术的发展经历了几十年的漫长历程。
20世纪60年代,美国和苏联的科学家们开始在激光微细加工领域进行探索研究。
20世纪70年代,德国、日本、韩国等国家也开始了相关技术的研究。
80年代初,随着计算机技术和控制技术的快速发展,激光微细加工技术得到了迅速的发展。
90年代以来,随着激光技术和材料科学的不断进步,激光微细加工技术在制造业、材料科学、光学等领域得到了广泛应用。
三、技术应用领域激光微细加工技术具有非常广泛的应用领域,在现代工业、科技领域中得到了广泛的应用。
以下将从军事、航空航天、电子信息、生物医学等方面进行介绍。
1. 军事领域:激光微细加工技术在军事装备中得到了广泛应用,如激光导弹制导系统、光电防护系统、军事雷达成像系统等。
2. 航空航天领域:激光微细加工技术在航空航天领域中也得到了广泛应用,如航天器结构、焊接、修补、表面处理等方面。
3. 电子信息领域:激光微细加工技术在电子信息领域得到了广泛应用,如半导体制造、芯片刻蚀、电路打孔、塑胶雕刻等。
4. 生物医学领域:激光微细加工技术在生物医学领域中也得到了广泛应用,如激光治疗、眼科手术、组织切割、药物释放等方面。
四、技术瓶颈虽然激光微细加工技术得到了广泛的应用和发展,但是其仍然存在一些技术瓶颈,如:1. 能量损耗问题:光束在传输过程中会受到各种因素的影响,从而导致损耗。
微细加工技术概述
微细加工技术概述XxxxxxxxxxXxxxxxxxxxxx摘要:微细加工原指加工尺度约在微米级范围的加工方法,现代微细加工技术已经不仅仅局限于纯机械加工方面,电、磁、声等多种手段已经被广泛应用于微细加工,从微细加工的发展来看,美国和德国在世界处于领先的地位,日本发展最快,中国有很大差距。
本文从用电火花加工方法加工微凹坑和用微铣削方法加工微小零件两方面描述了微细加工技术的实际应用。
关键词:微细加工,超细加工论文1.微细加工技术简介微细加工技术是精密加工技术的一个分支,面向微细加工的电加工技术,激光微孔加工、水射流微细切割技术等等在发展国民经济,振兴我国国防事业等发面都有非常重要的意义,这一领域的发展对未来的国民经济、科学技术等将产生巨大影响,先进国家纷纷将之列为未来关键技术之一并扩大投资和加强基础研究与开发。
所以我们有理由有必要加快这一领域的发展和开发进程。
微细加工技术应满足下列功能:1)为达到很小的单位去除率(UR),需要各轴能实现足够小的微量移动,对于微细的机械加工和电加工工艺,微量移动应可小至几十个纳米,电加工的UR最小极限取决于脉冲放电的能量。
2)高灵敏的伺服进给系统,它要求低摩擦的传动系统和导轨主承系统以及高精度跟踪性能的伺服系。
3)高平稳性的进给运动,尽量减少由于制造和装配误差引起的各轴的运动误差。
4)高的定位精度和重复定位精度。
5)低热变形结构设计。
6)刀具的稳固夹持和高的重复夹持精度。
7)高的主轴转速及极低的动不平衡。
8)稳固的床身构件并隔绝外界的振动干扰。
9)具有刀具破损和微型钻头折断的敏感的监控系统。
2.微细加工的特点微细加工技术是指加工微小尺寸零件的生产加工技术。
从广义的角度来讲,微细加工包括各种传统精密加工方法和与传统精密加工方法完全不同的方法,如切削技术,磨料加工技术,电火花加工,电解加工,化学加工,超声波加工,微波加工,等离子体加工,外延生产,激光加工,电子束加工,粒子束加工,光刻加工,电铸加工等。
微细加工技术在电子行业中的应用
微细加工技术在电子行业中的应用随着时代的进步和科技的发展,人们对电子设备的需求越来越高,使得电子行业得到了长足的发展。
而微细加工技术正是推动电子行业发展的重要力量之一。
什么是微细加工技术?微细加工技术是指通过各种生产加工技术和设备,对微小物体(如纳米级别的材料和器件)进行制造、加工、修补和检测的技术。
它的出现和发展可以追溯到上个世纪50年代初期,随着微电子学的兴起,这项技术也得到了快速的发展。
微细加工技术不仅能够制造出微型化的电子器件,而且可以使器件的尺寸更小、性能更强,从而提高其在各种应用场景中的竞争力。
现在,微细加工技术在电子行业中已经是不可或缺的一环。
1.晶圆加工晶圆加工是指将硅晶圆上的器件进行加工、制造和测试的过程。
在微细加工技术的帮助下,制造出来的晶圆制品可以更小、更精准,对于半导体行业来说能够使得生产成本更低、生产效率更高,并且器件的性能和可靠性更好。
2.光学元件制造现代的电子设备中很少能够不使用到光学元件,如LED、LCD以及激光器等。
微细加工技术可以制造出光学元件,使得这些设备的尺寸更小、成本更低,并且拥有更高的性能和效率。
3.微型电子元件制造微型电子元件是微细加工技术在电子行业中最常见的应用之一。
通过微细加工技术,可以制造出微型的内存条、存储器、微处理器等电子元件,这些微型设备在大量使用的情况下,具备更高的耐用性、性能优势和长期稳定性。
4.纳米技术纳米技术是一种微细加工技术的分支领域,它使得电子产品的尺寸达到了纳米级别。
对于纳米级别的制造、加工和检测,要求工艺控制能力越强、尺寸精度越高。
利用纳米技术,可以制造出更加精细的电子器件,具有优异的性能表现和更长久的耐久性。
微细加工技术在电子行业中的优势1.精度性高微细加工技术可以将设备的尺寸达到纳米级别,相较于常规生产设备,精度性大大提高。
2.高可靠性微细加工技术制造出来的设备具有更高的性能表现,同时也拥有更长久的耐久性,这使得它们在实际使用中具有更高的可靠性。
细微加工特点及应用前景
细微加工特点及应用前景机自1006班 40号 **[摘要]:微细加工技术是现代加工技术手段的新发展,是二十一世纪关键技术之一。
本文介绍了微机械与微细加工技术的发展过程、技术特点以及相关理论基础,并具体阐述了微细加工技术的应用、发展的意义、存在的问题及发展要求。
[关键字]:微细加工微机械微机电发展前景随着20世纪80年代后期微机械、微机机电系统(Micro Electro Mechanical System,MEMS)这一门新兴交叉学科的兴起,微细加工技术作为获得微机械、微机电系统的必要手段,得到了快速的发展。
微细加工技术起源于平面硅工艺,但随着半导体器件、集成电路、微型机械等技术的发展与需求,微细加工技术已经成为一门多学科交叉的制造系统工程和综合高新技术, 广泛应用于医疗、生物工程、信息、航空航天、半导体工业、军事、汽车等领域,给国民经济、人民生活和国防、军事等带来了深远的影响,被列为21世纪关键技术之一。
1 细微加工的发展及特点1.1细微加工的发展过程现代制造技术的发展有两大趋势:一是向着自动化、柔性化、集成化、智能化等方向发展,另一个就是寻求固有制造技术的自身微细加工极限。
随着微/纳米科学与技术的发展,以微小形状尺寸或极小操作尺度为特征的微机械已成为人们在微观领域认识和改造客观世界的一种高新技术。
微机械由于具有能够在狭小空间内进行作业而又不扰乱工作环境和对象的特点,在航空航天、精密仪器、生物医疗等领域有着广阔的应用潜力,受到世界各国的高度重视。
美国国家科学基金会在二十世纪八十年代就把MEMS作为一项重点研究领域制定了资助研究计划并投入了大量的资金,美国宇航局、国防部先进研究计划署等单位也都先后在航空航天、军事领域展开了研究。
日本从1991年起启动了一项为期10年、耗资250亿日元的微型机械大型研究计划,分别用于医疗和航空、原子能工业,并投资3 000万美元筹建了一座“微型机器人中心”。
在欧洲,德国自1988年开始微加工10年项目,并首创了L IGA(德文Lithographie (制版术) , Galvanoformung (电铸成形) , Abformung(注塑)三个词的缩写)工艺,制作出微机械和微光学元件系统;法国1993年启动了“微系统与技术”项目;瑞士在其钟表制造行业和小型精密机械工业的基础上投入了MEMS的开发工作;英国政府制订了纳米科学计划。
微细加工
一、微细加工定义
从广义的角度来讲,微细加工是指所有制造
微小尺寸零件的加工技术。从狭义的角度来 讲,微细加工主要是指半导体集成电路制造 技术。
二、加工成形原理
去除加工:车削、铣削、磨削、电火花加工
结合加工:
附着:电镀、气相沉积
注入:氧化、渗碳、离子注入 连接:焊接、粘接
变形加工:锻造、铸造、液晶定向
3.5.1.2
特点
具有极高的复制精度和重复精度。 适用范围广。尺寸可在很大范围内变化;可以使难 以加工的精密内型面变为易加工的外型面,因此可 广泛用于具有精密、复杂内型面零件的制造。 电铸制品性能的可控性强。通过改变金属种类、电 铸液配方和工艺参数,或采取使用添加剂等措施, 电铸制品的力学性能和物理性能可在很大范围内变 化。 成本低。设备投资较少,加工余量较小,废品可作 为阳极材料重新使用,铸模和电铸液也可重复使用。
铸层质量不稳定。易出现麻点、针孔、晶粒粗大、应力过 大等缺陷,致使铸层的物理特性和力学性能下降,严重时 可造成零件报废。过大的内应力也会使铸层变形、开裂。 铸层均匀性差。金属沉积速度一般正比于阴极表面的电流 密度,对于复杂型面的铸模,由于电场分布极不均匀,因 此电流密度在铸模表面各处不一致,造成不同位臵的沉积 厚度相差悬殊,从而影响零件性能,而且这种不均匀会随 沉积时间的延长而加剧,产生恶性循环,严重降低平均沉 积电流密度和沉积速度。 加工时间长。如欲获得1mm厚铸层,简单形状的工件需要 数小时,复杂工件可能要数十小时。 有限的铸种材料性能不能满足所有实际需要。
3.5.1
微细电铸
3.5.1.1 工艺 设计制造铸模:根据设计图样或采用实物复制的方法制造铸 模,常用的铸模材料有不锈钢、铝、钛、环氧树脂、有机玻 璃等。 导电层、分离层处理:对非金属铸模进行导电化处理,对金 属铸模表面进行分离层处理。 电沉积金属:将铸模放入电解槽,利用电化学沉积原理在铸 模上沉积金属。常见的电铸金属种类有镍、铜、铁等单金属 或镍钴、镍锰等合金。 脱模和背衬处理:在电铸层达到需要的厚度后,采用机械或 化学方法把沉积金属与铸模分离,并根据需求在非加工表面 加固背衬。
微细加工技术
LIGA 技术首先由德国卡尔斯鲁厄核物理研究所提出来,LIGA 是lithographie(制版术)、 galvanoformung(电铸成形)、abformung(微注塑)这3个德文单词的缩写,被公认为是一种全新 的三维立体微细加工技术。
1. 技术原理与工艺过程 图所示为典型的LIGA 工艺过程,主要包括以下内容。 (1)深层同步辐射X光曝光 (2)显影 (3)电铸 (4)塑铸(铸模)
先进制造技术
微细加工与纳米制造技术
1.1 硅基微细加工技术
单晶硅是微机械采用最广泛的材料,硅基微细加工技术是微结构制造中的一种常用技术。 硅基微细加工技术主要指以硅材料为基础制作各种微机械零部件的加工技术,总体上可 分为体加工与面加工两大类。体加工主要指各种硅刻蚀(腐蚀)技术,而面加工则指各种薄膜制 备技术。这些技术在实际应用过程中还要借助于集成电路加工工艺,如光刻、扩散、离子注入、 外延和淀积等技术。
离子束加工出的2刃、4刃和6刃微细端铣刀
微细加工与纳米制造技术
日本FANUC公司和有关大学合作研 制的车床型超精密铣床,在世界上首次用 切削方法实现了自由曲面的微细加工。这 种超精密切削加工技术使用切削刀具,可 对包括金属在内的各种可切削材料进行微 细加工,也可利用CAD/CAM 技术实现三 维数控加工,具有生产率高、相对精度高 的优点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
武汉工程职业技术学院毕业论文课题名称机加工细微加工技术概述及其应用学生姓名陈凯 .学号1104180317专业模具设计与制造班级 2011级模具三班指导教师秦丽萍年月日目录摘要 (3)引言 (4)第一章微细加工技术简介及国内外 (5)1.1 (5)1.2 (9)第二章微细加工技术应用实例 (11)2.1 (11)2.2 (13)总结 (15)参考文献 (16)3 微细加工技术概述及其应用摘要:微细加工原指加工尺度约在微米级范围的加工方法,现代微细加工技术已经不仅仅局限于纯机械加工方面,电、磁、声等多种手段已经被广泛应用于微细加工,从微细加工的发展来看,美国和德国在世界处于领先的地位,日本发展最快,中国有很大差距。
本文从用电火花加工方法加工微凹坑和用微铣削方法加工微小零件两方面描述了微细加工技术的实际应用。
关键词:微细加工;电火花;微铣削引言:随着科学技术的发展,近年来在IT 、医疗器械以及通讯领域,人们对微小型零件(如:微型传感器、微型加速度计、微透镜阵列等)的需求日益增加。
这种需求的增加促进了微细加工技术的发展。
在目前的多种微细加工技术中,微机电系统(MicroElectroMechanicalSystem ,MEMS)一直是主流技术之一。
由于MEMS 技术衍生于微电子技术,它的主要加工对象被限制在硅基材料上,并且工件的几何形状基本上是简单的二维形状,因而只有在大规模集成电路的批量制造等方面才是经济的。
微细切削加工技术,特别是微细铣削作为MEMS 技术的补充,由于其几乎不受加工对象材料和几何形状的限制而受到研究人员的重视,正在成为微细加工技术中的新生力量。
近年来,采用传统的机械加工方法而进行微细制造的研究越来越受到人们的重视,针对特征尺寸在410~10m 所谓中间尺度微小机械零件的微细切削制造成为一大研究热点,其原因是机加工具有几大优势:1加工精度高;2生产效率高、灵活;3能加工任意三维特征的零件;4能加工包括钢在内的多种材料;5 1微细加工技术简介及国内外研究成果1.1微细加工技术的概念微细加工原指加工尺度约在微米级范围的加工方法。
在微机械研究领域中,从尺寸角度,微机械可分为1mm~10mm的微小机械,1μm~1mm的微机械,1nm~1μm的纳米机械,微细加工则是微米级精细加工、亚微米级微细加工、纳米级微细加工的通称。
广义上的微细加工,其方式十分丰富,几乎涉及现代特种加工、微型精密切削加工等多种方式,微机械制造过程又往往是多种加工方法的组合。
从基本加工类型看,微细加工可大致分为四类:分离加工——将材料的某一部分分离出去的加工方式,如分解、蒸发、溅射、切削、破碎等;接合加工——同种或不同材料的附和加工或相互结合加工方式,如蒸镀、淀积、生长等;变形加工——使材料形状发生改变的加工方式,如塑性变形加工、流体变形加工等;材料处理或改性和热处理或表面改性等。
微细加工技术曾广泛用于大规模集成电路的加工制作,正是借助于微细加工技术才使得众多的微电子器件及相关技术和产业蓬勃兴起。
目前,微细加工技术已逐渐被赋予更广泛的内容和更高的要求,已在特种新型器件、电子零件和电子装置、机械零件和装置、表面分析、材料改性等方面发挥日益重要的作用,特别是微机械研究和制作方面,微细加工技术已成为必不可少的基本环节。
现代微细加工技术已经不仅仅局限于纯机械加工方面,电、磁、声等多种手段已经被广泛应用于微细加工,微细超精密加工的主要方法如下:微细电火花加工技术的研究起步于20世纪60年代末,是在绝缘的工作液中通过工具电极和工件间脉冲火花放电产生的瞬时、局部高温来熔化和汽化蚀除金属的一种加工技术。
由于其在微细轴孔加工及微三维结构制作方面存在的巨大潜力和应用背景,得到了高度重视。
实现微细电火花加工的关键在于微小电极的制作、微小能量放电电源、工具电极的微量伺服进给、加工状态检测、系统控制及加工工艺方法等。
微细切削技术是一种由传统切削技术衍生出来的微细切削加工方法,主要包括微细车削、微细铣削、微细钻削、微细磨削、微冲压等。
微细车削是加工微小型回转类零件的主要手段,与宏观加工类似,也需要微细车床以及相应的检测与控制系统,但其对主轴的精度、刀具的硬度和微型化有很高的要求。
图1.1为用单晶金刚石刀头加工的微型丝杠。
微细钻削的关键是微细钻头的制备,目前借助于电火花线电极磨削可以稳定地制成直径为10um的钻头,最小的可达6.5um。
微细铣削可以实现任意形状微三维结构的加工,生产效率高,便于扩展功能,对于微机械的实用化开发很有价值.图1.1微细磨削是在小型精密磨削装置上进行的,能够从事外圆以及内孔的加工。
已制备的微细磨削装置,工件转速可达2 000 r/min,砂轮转速为3 500r/min,磨削采用手动走刀方式。
为防止工件变形或损坏,用显微镜和电视显示屏监视着砂轮与工件的接触状态。
微细磨削加工的微型齿轮轴,材料为硬质合金,轮齿表面粗糙度可达到Ra0.049 um。
微机械元件的加工很多情况下要完成三维形体的微细加工,需要采用不同的蚀刻技术。
蚀刻的基本原理是在被加工零件的表面贴上一定形状的掩膜,经蚀刻剂的淋洒并去除反应产物后,工件的裸露部分逐步被刻除,从而达到设计的形状和尺寸。
根据沿晶向的蚀刻速度分为等向蚀刻与异向蚀刻。
若工件被蚀刻的速度沿各个方向相等则为等向蚀刻,它可以用来制造任意横向几何形状的微型结构,高度一般仅为几微米。
所谓微细电解加工是指在微细加工范围内(1~l 000 nm),利用金属阳极电化学溶解去除材料的制造技术,其中材料的去除是以离子溶解的形式进行的,在电解加工中通过控制电流的大小和电流通过的时间,控制工件的去除速度和去除量,从而得到高精度、微小尺寸零件的加工方法。
加工间隙的大小直接影响微细电解加工的成形精度与加工效果,通过降低加工电压、提高脉冲频率和降低电解液浓度,电解微细加工间隙可控制在10um以下。
图1.2是用幅值为2 V、脉宽为3S、频率为33 MHz的脉冲电源在镍片上加工深为5um的螺旋槽,使用的电解液为0.2 mol/L的HCL溶液,其加工间隙为600nm,表粗糙度度100 nm。
图1.21.1.1什么是微切削加工技术7 微切削是一种快速且低成本的微小零件机械加工方式,而且不受材料的限制[1],使CNC加工中心可实现2D、215D 简单特征到复杂3D曲面零件的微加工,通过使用此法加工出的微小模具可达到批量生产的目的。
1.1.2微切削的加工范畴(1) 微切削指加工尺寸在1mm以下、精度为0.01—0.001mm零件的切削加工。
(2) T.MasuzaWa定义微切削为切削厚度小于999um的切削过程[2]。
试验中他把切削厚度选择在1—200um。
(3) 国际生产工程协会CIRP物理化学科学制造过程会议把加工尺度定义在1—500um。
(4) A. Simoneau认为微切削定义应从切削特点上真正反映微切削与宏观切削的分别,尺度效应的出现。
(5) Subbiah.S认为微切削是以下三种情况下的微量材料去除过程:一是微小产品及部件的加工过程;二是制造大型工件上的微小、复杂结构;三是在大型工件上制造精密的光滑表面。
因此微切削并不完全需要微小尺寸的刀具,用宏观切削中的刀具也可以做到微切削[5]。
1.1.3.微切削影响因素(1) 尺寸效应与宏观切削不同,对于微细切削来讲,切削力与切削能量都会随着材料的去处量的减少而减少,中外很多者都对此进行了大量的实验验证,此外当微切削进给量减少到微米级别时, 切削力会出现急剧增大的现象, 此类现象归结为微纳尺度切削中的尺寸效应。
与常规尺度切削相比, 微细切削时, 刀具前刀面参与切削的面积减小, 刀刃附近区域将承担主要的材料去除工作, 此时刀具刃口半径对于切削变形和材料去除的影响不容忽视; V ogler与K i m等人[12-13]通过实验验证了最小切削厚度对切削厚度堆积的影响,他们发现在微细加工中,当进给量小于切削厚度时, 刀具经过工件, 工件表面仅发生弹性变形, 而不是常规的切削, 随着切削进给量的增加,当刀具刀刃半径与切削进给量大小相当时刀具在工件表面产生耕切现象, 此时工件产生弹塑性变形;当进给量增大到远大于刀具刀刃半径时, 此时刀具在切削中可视为锋利。
(2) 切削速度很多学者都在微细切削实验中采用高速钢、硬质合金或者金刚石材料刀具对工件进行切削,硬质合金刀具硬度高, 切削力较小,但成本较高速钢高出很多,较前两者来说金刚石刀具切削最为锋利。
除去切削液消除积屑瘤对微细切削的影响, 这几种刀具在不同切削速度下反应出切削力的规律也是不一样的。
G. Bissacco等人[14]通过大量实验发现由于前刀面的切削区域的变形及摩擦在整个切削中所占的比例较小,导致硬质合金刀具与高速钢刀具在切削时,切削速度对切削力影响并不明显; 同时由于两种材料的刀具刀刃半径较金刚石刀具大, 刃口圆弧部分对加工面所产生的挤压所占的比例较大, 从而使得切削速度对切削力的影响更小, 所以高速钢与硬质合金刀具用于微细切削时,切削速度对切削力的影响并不明显。
金刚石刀具刀刃半径较硬质合金和高速钢刀具小很多, S . S . Joshi等人[15]通过实验发现金刚石刀具随着切削速度的增加切削力下降, 且切削速度对于切削力的影响取决于最小切削厚度与刀具刀刃半径的比值。
(3) 主轴转速微细加工中,主轴转速对于微切削的影响也是不可忽视的。
Ya zhou Sun , Qing xin , Meng等人通过大量实验,发现在微细切削中主轴转速对于切削力的影响是有一定规律的。
91.2微细加工技术的研究现状从国际上微细加工技术的研究与发展看,主要形成了以美国为代表的硅基MEMS 制造技术,以德国为代表的LIGA 制造技术和以日本为代表的传统加工方法的微细化等主要流派。
他们的研究与应用情况基本上代表了国际微细加工的水平和方向。
在美国,以Moore公司和Precitech公司为代表,专门从事超精密加工技术研究和装备生产;在欧洲,英国Cranfield大学的超精密工程中心(CUPE)是世界著名的超精密加工技术研究单位之一;日本对超精密加工技术的研究相对美、英、德来说起步较晚,却是当今世界发展最快的国家。
日本通产省工业技术院机械工程实验室(MEL)于1996 年开发了世界上第一台微型化的机床-微型车床[3],长32mm、宽25mm、高30.5mm,重量为100g,主轴电机额定功率为1.5W,转速10000r/min。
用该机床切削黄铜,沿进给方向的表面粗糙度值为Rz1.5μm,加工工件的圆度为2.5μm,最小外圆直径为60μm。
切削试验中的功率消耗仅为普通车床的1/500。
MEL 开发的微细铣床,长170mm、宽170mm、高102mm,主轴用功率为36W 的无刷直流伺服电机,转速约为15600r/min。