电网中性点接地方式

合集下载

电力系统的中性点接地方式

电力系统的中性点接地方式

电力系统的中性点接地方式电力系统中发电机绕组通常用Y联结、变压器高压绕组通常Y联结,Y联结绕组中性点统称电力系统中性点。

中性点接地方式有直接接地、不接地和经消弧线圈接地。

中性点接地方式要综合考虑电力系统的过电压与绝缘、继电保护与自动装置的配置、短路电流、供电可靠性。

中性点直接接地方式,系统发生单相接地故障时短路电流很大;中性点不接地和中性点经消弧线圈接地方式,系统发生单相接地故障时短路电流小。

1.中性点直接接地系统110kV及以上电网采用中性点直接接地方式。

实际运行时电网中性点并非全部同时接地,只有一部分接地,即合上中性点接地刀开关,其余则不接地即拉开其中性点接地刀开关。

系统单相接地时短路电流在合适范围,满足继电保护动作灵敏度需要,但不能过大。

一般单相短路电流不大于同一地点三相短路电流。

此系统正常运行时,系统中性点没有入地电流或只有极小的三相不平衡电流。

当发生单相接地时,短路电流足够大,继电保护装置动作,迅速切除故障电路;系统非故障部分仍正常运行。

接地故障线路停电,可在线路加装自动重合闸装置,如发生瞬时性接地故障,重合闸成功,停电约0.5s,系统供电可靠。

单相接地电流较大,对邻近通信线路电磁干扰较强。

我国380/220V三相四线系统,中性点直接接地。

2.中性点不接地系统我国3kV、6kV、10kV、35kV系统,当单相接地时根据电容电流中性点不接地,具体规定为3~6kV电网单相接地电容电流不大于30A;10kV电网单相接地电容电流不大于20A;35kV电网单相接地电容电流不大于10A。

因中性点未接地,当发生单相接地时,只能通过线路对地电容构成单相接地回路,故障点流过很小的容性电流(电弧)自行熄灭。

同时,系统三个线电压对称性未变化,用电设备正常工作,可靠性高。

规程规定,中性点不接地系统发生单相接地故障可继续运行2h,在2h内找到接地点并消除。

单相接地时电容电流近似计算公式如下:对架空线IC=UL/350;对电缆IC=UL/10。

电网中性点接地方式及选择要求

电网中性点接地方式及选择要求

电网中性点接地方式及选择要求电网中性点接地方式及选择要求三相交流电力系统中性点与大地之间的电气连接方式,称为电网中性点接地方式。

中性点接地方式涉及电网的安全牢靠性、经济性;同时直接影响系统设备绝缘水平的选择、过电压水平及继电保护方式、通讯干扰等。

一般来说,电网中性点接地方式也就是变电所中变压器的各级电压中性点接地方式。

因此,在变电所的规划设计时选择变压器中性点接地方式中应进行实在分析、全面考虑。

【电网中性点接地方式及选择要求】我国110kV及以上电网一般采纳大电流接地方式,即中性点有效接地方式(在实际运行中,为降低单相接地电流,可使部分变压器采纳不接地方式),这样中性点电位固定为地电位,发生单相接地故障时,非故障相电压上升不会超过1.4倍运行相电压;暂态过电压水平也较低;故障电流很大,继电保护能快速动作于跳闸,切除故障,系统设备承受过电压时间较短。

因此,大电流接地系统可使整个系统设备绝缘水平降低,从而大幅降低造价。

6~35kV配电网一般采纳小电流接地方式,即中性点非有效接地方式。

近几年来两网改造,使中、小城市6~35kV配电网电容电流有很大的加添,如不实行有效措施,将危及配电网的安全运行。

中性点非有效接地方式重要可分为以下三种:不接地、经消弧线圈接地及经电阻接地。

1中性点不接地方式适用于单相接地故障电容电流IC10A,以架空线路为主,尤其是农村10kV配电网。

此类型电网瞬间单相接地故障率占60%~70%,希望瞬间接地故障不动作于跳闸。

其特点为:单相接地故障电容电流IC10A,故障点电弧可以自熄,熄弧后故障点绝缘自行恢复;单相接地不破坏系统对称性,可带故障运行一段时间,保证供电连续性;【电网中性点接地方式及选择要求】通讯干扰小;单相接地故障时,非故障相对地工频电压上升31/2UC,此系统中电气设备绝缘要求按线电压的设计;当IC10A时,接地点电弧难以自熄,可能产生过电压等级相当高的间歇性弧光接地过电压,且持续时间较长,危及网内绝缘薄弱设备,继而引发两相接地故障,引起停电事故;系统内谐振过电压引起电压互感器熔断器熔断,烧毁TV,甚至烧坏主设备的事故时有发生。

中性点接地方式

中性点接地方式

1 中性点直接接地中性点直接接地方式,即是将中性点直接接入大地。

该系统运行中若发生一相接地时,就形成单相短路,其接地电流很大,使断路器跳闸切除故障。

这种大电流接地系统,不装设绝缘监察装置。

中性点直接接地系统产生的内过电压最低,而过电压是电网绝缘配合的基础,电网选用的绝缘水平高低,反映的是风险率不同,绝缘配合归根到底是个经济问题。

中性点直接接地系统产生的接地电流大,故对通讯系统的干扰影响也大。

当电力线路与通讯线路平行走向时,由于耦合产生感应电压,对通讯造成干扰。

中性点直接接地系统在运行中若发生单相接地故障时,其接地点还会产生较大的跨步电压与接触电压。

此时,若工作人员误登杆或误碰带电导体,容易发生触电伤害事故。

对此只有加强安全教育和正确配置继电保护及严格的安全措施,事故也是可以避免的。

其办法是:①尽量使电杆接地电阻降至最小;②对电杆的拉线或附装在电杆上的接地引下线的裸露部分加护套;③倒闸操作人员应严格执行电业安全工作规程。

2 中性点不接地中性点不接地方式,即是中性点对地绝缘,结构简单,运行方便,不需任何附加设备,投资省。

适用于农村10kV架空线路为主的辐射形或树状形的供电网络。

该接地方式在运行中,若发生单相接地故障,其流过故障点电流仅为电网对地的电容电流,其值很小称为小电流接地系统,需装设绝缘监察装置,以便及时发现单相接地故障,迅速处理,以免故障发展为两相短路,而造成停电事故。

中性点不接地系统发生单相接地故障时,其接地电流很小,若是瞬时故障,一般能自动熄弧,非故障相电压升高不大,不会破坏系统的对称性,故可带故障连续供电2h,从而获得排除故障时间,相对地提高了供电的可靠性。

中性点不接地方式因其中性点是绝缘的,电网对地电容中储存的能量没有释放通路。

在发生弧光接地时,电弧的反复熄灭与重燃,也是向电容反复充电过程。

由于对地电容中的能量不能释放,造成电压升高,从而产生弧光接地过电压或谐振过电压,其值可达很高的倍数,对设备绝缘造成威胁。

中性点接地方式

中性点接地方式

中性点接地方式电力系统中性点是指发电机或星形连接的变压器的中性点,其接地方式分为有效接地和非有效接地。

中性点非有效接地系统包括中性点不接地系统、中性点经消弧线圈接地系统和中性点经高阻抗接地系统等;中性点有效接地系统包括中性点直接接地系统和经小电阻接地系统。

下面对这些接地方式进行简单介绍一下。

中性点非有效接地系统1、中性点不接地系统:指与该系统直接连接的全部发电机和变压器中性点对大地绝缘的系统,也称为中性点绝缘系统。

中性点不接地系统结合目前我国的技术经济政策,采用中性点不接地方式运行的系统有:额定电压为3-10KV,接地电流不大于30A的电力网;额定电压为35-60KV,接地电流不大于10A的电力网。

2、中性点经消弧线圈接地系统:为了限制接地点电流,使电弧能自行熄灭,在电源中性点与大地之间接入消弧线圈的系统。

中性点经消弧线圈接地系统我国采用中性点经消弧线圈接地方式运行的系统有:额定电压为3-10KV,接地电流大于30A的系统;额定电压为35-60KV,接地电流大于10A的系统;额定电压为110KV的系统若处于雷电活动比较频繁的地区,若采用中性点直接接地方式不能满足安全供电要求,为减少因雷击等单相接地事故造成频繁跳闸的系统也可采用中性点经消弧线圈接地方式运行。

中性点有效接地系统1、中性点直接接地系统:为了防止发生单相接地故障时,电源中性点电位变化和相对地电压升高而将中性点直接和大地连接起来的系统。

中性点直接接地系统主要用于额定电压为110KV以上的电力系统中。

2、中性点经小电阻接地系统:随着用电负荷的不断增长,城市用电网和工业用电网中电缆线路占比较高,电网接地电容电流也较高(可达100A以上),若采用中性点经消弧线圈接地,则需要消弧线圈的容量很大,过电压倍数较高,需要提高电网绝缘水平,因此当接地电容电流较大时,建议采用中性点经小电阻接地方式。

中性点经小电阻接地系统其主要用于额定电压为6-10KV的配电网中电缆线路占比高的电网中。

电网中性点接地方式简介

电网中性点接地方式简介

电网中性点接地方式简介1. 引言在电力系统中,中性点接地(Neutral Grounding)是非常重要的概念。

中性点是指交流电网中相和相之间连接的点,而中性点接地是将这个点通过接地装置与大地连接起来的过程。

电网中性点接地方式不仅与系统的安全运行直接相关,还对电网的可靠性、经济性和可扩展性有着重要的影响。

因此,选择合适的中性点接地方式对于电力系统的设计和运行具有至关重要的意义。

本文将介绍电网中性点接地的基本概念以及常见的接地方式。

2. 中性点接地的意义2.1 安全性通过中性点接地,故障电流可以通过接地装置回流到大地,避免电网出现接触电压,保护人身安全。

2.2 故障识别中性点被接地后,电网中会出现零序电流,这种电流可以帮助快速识别故障发生的位置,提高故障定位的准确性和速度。

2.3 经济性中性点接地的方式会对电网的经济性产生影响。

合理选择接地方式可以降低故障损失、减少设备抢修时间、提高设备可靠性,从而降低电网运行成本。

3. 中性点接地方式3.1 系统接地方式系统接地方式是将电网的中性点通过接地装置直接连接到大地,常见的系统接地方式有以下几种:•TT接地方式:中性点通过接地电阻连接到大地,形成“中性点-电阻-大地”的回路。

•TN接地方式:中性点通过接地电阻和设备外壳连接到大地,形成“中性点-电阻-大地-设备外壳”的回路。

TN接地方式又分为TN-S、TN-C和TN-C-S三种。

•IT接地方式:中性点通过接地变压器连接到大地,形成“中性点-接地变压器-大地”的回路。

3.2 无效接地方式与系统接地方式相对应的是无效接地方式,即不将中性点连接到大地,而是通过一些特殊的装置将零序电流屏蔽在系统内部。

常见的无效接地方式有以下几种:•Arc suppression coil(ASC)接地方式:通过串联接地电感来阻抗化更高的零序电流,使其在系统内部形成环回,从而实现无效接地。

•Solid grounding 接地方式:采用较低阻抗的接地方法,将零序电流缩小到一定程度,从而降低故障电流对系统的影响。

简述电网中性点接地方式有哪几种

简述电网中性点接地方式有哪几种

1、简述电网中性点接地方式有哪几种,各有何优缺点。

答:①中性点直接接地1)设备和线路对地绝缘可以按相电压设计,从而降低了造价。

电压等级愈高,因绝缘降低的造价愈显著。

2)由于中性点直接接地系统在单相短路时须断开故障线路,中断用户供电,影响供电可靠性.3)单相短路时短路电流很大,开关和保护装置必须完善。

4)由于较大的单相短路电流只在一相内通过,在三相导线周围将形成较强的单相磁场,对附近通信线路产生电磁干扰。

②中性点经消弧线圈接地1)在发生单相接地故障时,可继续供电2小时,提高供电可靠性.2)电气设备和线路的对地绝缘应按线电压考虑.3)中性点经消弧线圈接地后,能有效地减少单相接地故障时接地处的电流,迅速熄灭接地处电弧,防止间歇性电弧接地时所产生的过电压,故广泛应用在不适合采用中性点不接地的以架空线路为主的3-60kV系统。

③中性点不接地1)当发生金属性接地时,接地故障相对地电压为零。

2)中性点对地的电压上升到相电压,且与接地相的电源电压相位相反。

3)非故障相对地电压由相电压升高为线电压。

4)三相的线电压仍保持对称且大小不变,对电力用户接于线电压的设备的工作并无影响,无须立即中断对用户供电。

5)单相接地电流,等于正常运行时一相对地电容电流的三倍,为容性电流。

2,什么是计算负荷?确定计算负荷的目的是什么?答:(1)根据已知的工厂的用电设备安装容量求取确定的,预期不变的最大假想负荷。

也就是通过负荷的统计运算求出的。

用来按发热条件选择供电系统中各个元件的负荷值,成为计算负荷。

(2)目的:计算负荷是用户供电系统结构设计,供电线路截面选择,变压器数量和容量选择,电气设备额定参数选择等的依据,合理地确定用户各级用电系统的计算负荷非常重要。

3,用什么方法进行计算负荷需要系数法,附加系数法,二项式法等。

主要计算:Pc计算有功负荷,Qc无功计算负荷,Ic计算电流等。

4,在供电系统中提高功率因数的措施有哪些?1、提高用户自然功率因数2、无功补偿:1)就地补偿 2)集中补偿:分组集中补偿,高压集中补偿,低压集中补偿。

电力系统中性点接地的三种方式

电力系统中性点接地的三种方式

电力系统中性点接地的三种方式有效接地系统(又称大电流接地系统)小电流接地系统(包含不接地和经消弧线圈接地)经电阻接地系统(含小电阻、中电阻和高电阻)大电流接地系统用于110kV及以上系统及。

该系统在单相接地时,另外两相对地电压基本不变,系统过电压较低,对110kV及以上系统抑制过电压有利,但此时接地电流很大,运行设备很难长时间通过此电流,接地相对地电压很低,甚至为零,系统电压严重不平衡,许多电气设备无法正常工作,必须及时切除接地点。

大电流接地系统要求部分主变的中性点接地,避免单相接地时短路电流过大。

这些主变必须有一个三角形接线的绕组,以构成零序通路,降低零序阻抗。

主变的零序阻抗一般为正序阻抗的1/3,线路的零序阻抗一般为正序阻抗的3倍。

作为220kV枢纽变电站的主变必须并列运行。

其中一台主变的220kV侧中性点和110kV侧中性点必须直接接地,其他主变中性点通过间隙接地。

好处是110kV侧零序阻抗稳定,有利于该110kV系统零序定值的计算和整定,零序过流保护的保护范围变化很小,容易保持其阶梯特性;未220kV系统提供稳定的零序电源,保持220kV 系统零序保护的方向性和稳定性。

主变220kV侧中性点和110kV侧中性点均加装间隙保护,保护动作跳开各侧断路器。

作为220kV负荷变电站的主变必须分列运行。

此时所有主变的220kV侧中性点必须通过间隙接地,110kV侧中性点全部接地运行。

所有主变不能相220kV系统提供零序电流,110kV侧零序阻抗稳定。

主变220kV侧中性点加装间隙保护,保护动作跳开各侧断路器。

作为链式接线的220kV变电站,其220kV侧母线并列运行并有两个电源。

虽然主变分列运行,但必须有一台主变的220kV侧中性点直接接地,其他主变的220kV 侧中性点通过间隙接地。

110kV侧中性点必须全部直接接地。

主变220kV侧中性点加装间隙保护,保护动作跳开各侧断路器。

目前运行的110kV变电站全部主变均分裂运行,其电源侧母线为单电源。

配电网中性点接地方式分析及选择

配电网中性点接地方式分析及选择

配电网中性点接地方式分析及选择前言在配电系统中,中性点接地方式的选择对电力系统的安全稳定运行具有重要意义。

因此,在设计和运行中选择恰当的中性点接地方式十分关键。

本文将会介绍中性点接地方式的类型及适用范围,以及不同中性点接地方式的优缺点分析,期望能够帮助电力系统工程师更好地了解中性点接地方式的选择和使用。

中性点接地方式类型在电力系统中,中性点接地方式有以下几种类型:1.无中性点接地(Ungrounded)2.单点接地(Solidly Grounded)3.零序电抗接地(Reactance Grounded)4.零序电阻接地(Resistance Grounded)不同中性点接地方式的优缺点分析1. 无中性点接地(Ungrounded)无中性点接地或称为孤立中性点接地,是一种没有与地相连的中性点接地方式。

电源和负载之间不存在任何的地电流,因此可以将其视为同电压级两端的电压源。

但它也存在很多问题,比如电压冲击,无法及时有效的跳闸,等等。

1.不存在与地相连的中性点,防止电源因地电流而被破坏缺点:1.电容负载的介入导致的零序电流通过电容负载可以被无限放大,给继电保护带来思考不便;2.单个相线电压突变引发的问题以及局部地质介质缺陷等情况都不能及时被发现,但会给电气设备带来隐患;3.系统中出现第一次单相接地故障时,残余电压若满足第二次接地故障判别标准时,系统将不能及时地进行跳闸或投入备用电源;2. 单点接地(Solidly Grounded)单点接地是一种常用的中性点接地方式,也就是将中性点与地相连接,构成一个参考电平,一旦系统中发生一次单相接地故障,将会使系统的继电保护中止电源供应和跳闸故障线路,从而达到保护的作用。

优点:1.系统中出现单相接地故障时,继电保护能够发现并停电,电气设备受到的损害最小;2.在不影响系统情况,若再接入电容补偿,可以消除外界的干扰,减小电压谐波;3.系统跳闸后,抢修工作较为方便;1.中性点与地相连接,会出现地电流,地电压测量有一定难度;2.系统瞬时故障时(如单相接地、短路),电容负载过程中通过谐振形成的高幅度的干扰电压能够被放大,从而引入过电压、过电流以及过热等问题;3.长期电流过大会使绝缘劣化变差;3. 零序电抗接地(Reactance Grounded)零序电抗接地和零序电阻接地都是相对于单点接地的改进。

电力系统中性点接地方式

电力系统中性点接地方式

电力系统中性点接地方式概述在电力系统中,中性点接地方式是指将电力系统中的中性点直接接地或通过特定的接地装置接地。

中性点接地方式的选择对电力系统的平安运行和人身平安至关重要。

本文将介绍电力系统中性点接地方式的常见类型和其特点。

直接接地方式直接接地方式是最常见的中性点接地方式之一。

它通过将电力系统中的中性点直接接地,使中性点与地之间形成低阻抗的电气连接。

直接接地方式有以下特点:1.简单:直接接地方式的接地装置相对简单,仅需将中性点与地之间连接即可。

2.易于检测故障:由于中性点直接接地,当系统中发生接地故障时,电流会通过接地装置流入地,形成接地电流,容易被检测到。

3.易产生大地电流:直接接地方式容易导致大地电流的产生,对于电力系统的线路和设备会产生一定的烧毁和损坏风险。

4.容易产生人身伤害:直接接地方式下,接地电阻较低,因此会产生较大的接触电压,存在人身触电的风险。

直接接地方式适用于施工本钱低、电力系统规模较小、对电网故障检测要求较高的场景。

绝缘中性点接地方式绝缘中性点接地方式是在电力系统中采用绝缘装置将中性点与地之间隔离,以实现中性点接地的方式。

绝缘中性点接地方式有以下特点:1.较低的接触电阻:绝缘中性点接地方式中,中性点与地之间存在绝缘装置,可以降低接地电阻,减小接触电压。

2.减少地电流:由于绝缘装置的隔离作用,绝缘中性点接地方式可以降低地电流的产生,减小对电力系统的烧毁和损坏风险。

3.难以检测故障:由于中性点与地之间的隔离,当系统发生接地故障时,可能无法轻易检测到接地电流,增加了故障诊断的难度。

绝缘中性点接地方式适用于电力系统规模较大、对地电流要求较低、对接触电压要求较高的场景。

高阻中性点接地方式高阻中性点接地方式是在电力系统中采用高阻抗装置将中性点与地之间接地的方式。

高阻中性点接地方式有以下特点:1.高接地电阻:高阻中性点接地方式中,通过引入高阻抗装置,使中性点与地之间形成高阻抗连接,有效提高了接地电阻。

中性点经电阻接地方式适用范围及优缺点

中性点经电阻接地方式适用范围及优缺点

中性点经电阻接地方式适用范围及优缺点引言在电力系统中,中性点经过电阻接地是一种常见的接地方式。

该方式通过在中性点接入一定的电阻,以将电网中的故障电流引导到地面。

本文将讨论中性点经电阻接地方式的适用范围及其优缺点。

适用范围中性点经电阻接地方式适用于低、中压电力系统,通常是在配电系统中使用。

以下是其主要适用范围的描述:1.低电压系统:中性点经电阻接地方式在低电压系统中应用广泛。

由于低压系统的短路电流较小,接地电阻通常较大,可以有效地限制故障电流的大小。

2.中电压系统:在中电压系统中,中性点经电阻接地方式也是一种常用的接地方式。

虽然中电压系统的短路电流较高,但通过选择合适的接地电阻值,仍然可以实现可靠的故障电流引导。

3.配电系统:中性点经电阻接地方式特别适用于配电系统。

配电系统通常包含大量的变压器和负载,电流较小。

中性点经电阻接地方式能够为这些系统提供经济实用的接地方法。

优点中性点经电阻接地方式具有以下优点:1.安全性:中性点经电阻接地方式可以有效地避免电网中出现的接地故障对人员和设备的危害。

通过引导故障电流到地面,可以防止电压过高对系统的进一步损坏。

2.经济性:与其他接地方式相比,中性点经电阻接地方式具有一定的经济性。

接地电阻的选择可以根据实际需求进行,因此可以满足不同系统的接地要求,同时减少了成本。

3.灵活性:中性点经电阻接地方式具有较高的灵活性。

电阻值可以根据实际需求进行调整,以满足不同系统的接地要求。

这也使得它更易于应用于各种不同的电力系统。

缺点中性点经电阻接地方式也存在一些缺点,需注意以下方面:1.效果受限:中性点经电阻接地方式的效果受限于接地电阻的大小。

如果选择的电阻值过大,可能导致故障电流无法及时引导到地面,影响系统的安全性。

2.部分故障电流仍在系统中循环:由于接地电阻的存在,部分故障电流仍然会在系统中循环,导致接地系统的功耗增加。

这可能对系统的运行效率和能源消耗产生一定影响。

结论中性点经电阻接地方式在低、中压电力系统中应用广泛,尤其适用于配电系统。

电力系统中性点不接地、经电阻接地、经消弧线圈接地、直接接地大全!

电力系统中性点不接地、经电阻接地、经消弧线圈接地、直接接地大全!

电⼒系统中性点不接地、经电阻接地、经消弧线圈接地、直接接地⼤全!电⼒系统中性点运⾏⽅式有不接地、经电阻接地、经消弧线圈接地或直接接地等多种。

我国电⼒系统⽬前所采⽤的中性点接地⽅式主要有三种:即不接地、经消弧线圈接地和直接接地。

⼩电阻接地系统在国外应⽤较为⼴泛,我国开始部分应⽤。

1、中性点不接地(绝缘)的三相系统各相对地电容电流的数值相等⽽相位相差120°,其向量和等于零,地中没有电容电流通过,中性点对地电位为零,即中性点与地电位⼀致。

这时中性点接地与否对各相对地电压没有任何影响。

可是,当中性点不接地系统的各相对地电容不相等时,及时在正常运⾏状态下,中性点的对地电位便不再是零,通常此情况称为中性点位移即中性点不再是地电位了。

这种现象的产⽣,多是由于架空线路排列不对称⽽⼜换位不完全的缘故造成的。

在中性点不接地的三相系统中,当⼀相发⽣接地时:⼀是未接地两相的对地电压升⾼到√3倍,即等于线电压,所以,这种系统中,相对地的绝缘⽔平应根据线电压来设计。

⼆是各相间的电压⼤⼩和相位仍然不变,三相系统的平衡没有遭到破坏,因此可继续运⾏⼀段时间,这是这种系统的最⼤优点。

但不许长期接地运⾏,尤其是发电机直接供电的电⼒系统,因为未接地相对地电压升⾼到线电压,⼀相接地运⾏时间过长可能会造成两相短路。

所以在这种系统中,⼀般应装设绝缘监视或接地保护装置。

当发⽣单相接地时能发出信号,使值班⼈员迅速采取措施,尽快消除故障。

⼀相接地系统允许继续运⾏的时间,最长不得超过2h。

三是接地点通过的电流为电容性的,其⼤⼩为原来相对地电容电流的3倍,这种电容电流不容易熄灭,可能会在接地点引起弧光解析,周期性的熄灭和重新发⽣电弧。

弧光接地的持续间歇性电弧较危险,可能会引起线路的谐振现场⽽产⽣过电压,损坏电⽓设备或发展成相间短路。

故在这种系统中,若接地电流⼤于5A时,发电机、变压器和电动机都应装设动作于跳闸的接地保护装置。

2、中性点经消弧线圈接地的三相系统中性点不接地三相系统,在发⽣单相接地故障时虽还可以继续供电,但在单相接地故障电流较⼤,如35kV系统⼤于10A,10kV系统⼤于30A时,就⽆法继续供电。

中性点接地方式6

中性点接地方式6

应选择下列哪项数值?
(A)22kVA
(B)25kVA
(C)30kVA (D)28kVA
答案:[ C ] 2006年考题
解答过程:
根据电气工程电气设计手册(1)80页(3-1)公式
又根据《导体和电器选择设计技术规定》 DL/T5222-2005 第 18.1.4,式
18.1.4 消弧线圈的补偿容量,
b)装在电网的变压器中性点的消弧线圈,以及具有直配线的发电机 中性点的消弧线圈应采用过补偿方式。对于采用单元连接的发电机中 性点的消弧线圈,宜采用欠补偿方式。 C)系统中消弧线圈装设地点应符合下列要求:
应保证系统在任何运行方式下,大部分电网不得失去消弧线圈的 补偿。不应将多台消弧线圈集中安装在一处,并因避免电网仅装一台 消弧线圈。
18.1.4 消弧线圈的补偿容量,可按下式计算
Q
KIC
UN 3
= 1.35 × 22.2 ×35/1.732= 605.6KVA
其中 k 为补偿系数,过补偿取 1.35。k 的取值可根据DL/T5222-2005 第
18.1.6 条:装在电网变压器中性点的消弧线圈,以及具有直配线的发电机
中性点的消弧线圈应采用过补偿方式。 故选 D。
1 发电机及变压器中性点的接地方式
1.1 电力系统中性点接地方式
电力系统中性点的接地方式主要分两大类:中性点非直接接地和 中性点直接接地。
1.1.1 中性点非直接接地。
中性点非直接接地可分为三种形式: (1)中性点不接地。中性点不接地方式最简单,单相接地时允
许带故障运行两小时,供电连续性好,接地电流仅为线路及设备 的电容电流。但由于过电压水平高,要求有较高的绝缘水平,不 宜用于110kV及以上电网。在6-63kV电网中,则采用中性点不接地 方式,但电容电流不能超过允许值,否则接地电弧不易自熄,易 产生较高弧光间歇接地过电压,波及整个电网。

电力系统中性点接地方式

电力系统中性点接地方式

电力系统中性点接地方式接地,一个耳熟能详的词语,虽然很普通,可其中蕴含丰富的知识。

中性点接地,生活中无处不在,但伸出手来,却仿佛感受不到,知其然更需知其所以然。

一、基本概念电力系统中性点是指三相绕组作星形连接的变压器和发电机的中性点。

三相交流电力系统中性点与大地之间的电气连接方式,称为电网中性点接地方式。

中性点接地方式涉及电网的安全可靠性、经济性;同时直接影响系统设备绝缘水平的选择,过电压水平及继电保护方式,通讯干扰等。

二、基本接地方式我国电力系统广泛采用的中性点接地方式主要有中性点不接地、中性点经消弧线圈接地及中性点直接接地三种。

1、中性点不接地当中性点不接地系统发生单相接地故障时,故障相电压为零。

非故障相相电压上升为线电压,为原来的1732倍。

但线电压不变,对电力用户没有影响,系统还可以继续供电,一般可允许继续运行两个小时,此期间应发出信号,由工作人员尽快查清原因并解除故障,使系统正常运行。

u故当线路不长、电压不高时,接地电流较小,电弧一般能自动熄灭,特别是35kV及以下的系统中,绝缘方面的投资增加不多,而供电可靠性较高的优点突出,所以中性点宜采用不接地的运行方式。

当电压高、线路长时,接地电流较大。

可能产生稳定电弧或间歇性电弧,而且电压等级较高时,整个系统绝缘方面的投资大为增加,上述优点便不存在了。

2、中性点经消弧线圈接地单相接地时,当接地电流大于IOA而小于30A时,有可能产生不稳定的间歇性电弧,随着间歇性电弧的产生将引起幅值较高的弧光接地过电压。

该方式就是在中性点和大地之间接入一个电感消弧线圈,在系统发生单相接地故障时,利用消弧线圈的电感电流补偿线路接地的电容电流,使流过接地点的电流减小到能自行熄灭的范围。

中性点经消弧线圈接地,保留了中性点不接地方式的全部优点。

由于消弧线圈的电感电流补偿了电网接地电容电流,使得接地点残流减少到5A及以下,降低了故障相接地电弧恢复电压的上升速度,以致电弧能够自行熄灭,从而提高供电可靠性。

电力系中性点各种接地方式

电力系中性点各种接地方式

配电网中性点接地方式1 引言三相交流电网中性点与大地间电气连接的方式,称为电网中性点接地方式。

电力系统中性点接地方式是一个综合性的技术问题,它与系统的供电可靠性,人身安全,设备安全,绝缘水平,过电压保护,继电保护,通信干扰(电磁环境)及接地装置等问题有密切关系。

电力系统中性点接地方式是防止系统事故的一项重要应用技术,具有理论研究与实践密切结合的特点,因而是电力系统实现安全和经济运行的技术基础。

2 概念和术语1)“中性点不接地”和“中性点绝缘”我国常用中性点不接地这一术语,在有的国际场合称为“中心点绝缘”,后者容易使人误解为中性点零序阻抗是无限大。

而通常所讲的中性点不接地,实际上是经过集中于电力变压器中性点的等值电容(绝缘状态欠佳时还有泄漏电阻)接地的。

其零序阻抗多为一有限值,而且不一定是常数。

如在工频零序电压作用下,零序阻抗可能呈现较大的数值,而在3次或更高次谐波的零序电压作用下,零序容抗锐减,高次谐波电流骤增。

显然,中性点绝缘的概念对这一现象就解释不通了。

2)“中性点有效接地“和”中性点直接接地““中性点直接接地“这一术语对电力设备(如变压器)而言,含义是清晰的,它指该设备的中性点经过零阻抗接地。

但对整个电力系统其含义是不确切的,容易造成误解。

因为在高压电力系统,总有部分变压器的中性点不接地运行。

甚至在全接地的超高压电力系统中,仍然存在着有的变压器中性点经低电抗接地的情况。

IEEE32标准规定:当系统零序电抗与正序电抗之比不大于3,而且零序电阻对正序电抗之比不大于1是,该电力系统为中性点有效接地。

3)“中性谐振接地”和“中性经消弧线圈接地”4)“中性非有效接地”3 中性点接地方式的划分小电流接地方式的特点是其单相故障接地电弧能够自行熄灭。

电力系统的中心点接地方式根据上述原则,基本上可以划分为两大类:凡是需要断路器遮断单相接地故障者,属于大电流接地方式,凡是单相接地电弧能够瞬间自行熄灭者,属于小电流接地方式。

电网的接地方式

电网的接地方式
边界条件: UA 0 IB IC 0
UA1 UA2 UA0 0 a2IA1 aIA2 IA0 0
aIA1 a2IA2 IA0 0 UA EA
8
单相接地故障的分析:
以A相接地故障为例:
边界条件: UA 0 IB IC 0
UA1 UA2 UA0 0
IA1
IA2
IA0
Z1
小接地电流 系统:单相 接地不破坏 线电压的对 称性,允许 继续运行1~
2小时。
中性点经消弧线圈接地电网
中性点经电阻接地电网
3
中性点接地方式与下列因素有关
供电可靠性
过电压 绝缘 设备和人身安全 继电保护 通信干扰
中性点直接接地时导致经常跳闸停电
电压等级越高,允许的过电 压倍数越低,绝缘费用呈几
何级数增长。
21
小电流接地系统特点
(1)发生单相接地故障后,仅有分布电容引起 的电容电流; (2)故障点位置不同,母线上的电压不同,在 母线处金属性接地时,故障相电压为零;当零序 阻抗为无穷大时非故障相电压升高为线电压,其 夹角为60度。 (3)由于没有短路电流,可装设动作于信号的 保护。
UC EC U 0
UB EB U 0
18
特例3
UC
UC
k 1 k2
EA
(1)当:
Z0 k
IA(1)
k
3 2
I(3)
EA
UA0
k Z0 Z1
UB UC EA
IA 0
健全相电压升高 sqrt(3)倍。且夹角为 60度。属于中性点不 接地的情况。
EC U
UC
UA 0 EB U
UB
19
EA Z2
Z0

CH2、电网中性点接地方式

CH2、电网中性点接地方式

5 柱塞式(调气隙)自动补偿消弧线圈
6 有载开关调匝式自动补偿消弧线圈
7 磁饱和式(偏磁式)自动补偿消弧线圈
偏磁式消弧线圈原理示意图
7 磁饱和式(偏磁式)自动补偿消弧线圈
8 调容式自动补偿消弧线圈 Nhomakorabea9 三相五柱式自动补偿消弧线圈
三相五柱式消弧线圈结构图
9 三相五柱式自动补偿消弧线圈
10 高短路阻抗式自动补偿消弧线圈
中性点电阻接地超前相接电感单 相接地全电流补偿
EC EB EA KC KB KA R0 LT R r C r C C r
1 1.5 3 3 1.5 3 ω + + + j(3 C ) ωLT 2RT EA R R r 2ω T L IR = 0 T 1 1 1 3 1 R ω + + + + j(3 C ) R R0 RT r ωLT
高阻(200 高阻(200 )接地
2004-07-09,17: 2004-07-09,17:53
2. 接地电流对供电系统的危害
① 由于接地电流大,将使接地点附近的电缆温度 由于接地电流大, 剧增高,使电缆的绝缘大大降低, 剧增高,使电缆的绝缘大大降低,由此将使绝 缘击穿而造成两相或三相短路故障。再如: 缘击穿而造成两相或三相短路故障。再如:由 于接地电流大使绝缘子过热破裂等。 于接地电流大使绝缘子过热破裂等。 由于接地电流大,接地点的电弧不易自灭, ② 由于接地电流大,接地点的电弧不易自灭,电 弧将可能断断续续地燃烧, 弧将可能断断续续地燃烧,很易引起间歇电弧 过电压。理论和实践都证明, 过电压。理论和实践都证明,这种间歇电弧过 电压一般在2.1~3.2倍的额定相电压 倍的额定相电压。 电压一般在2.1~3.2倍的额定相电压。 接地点电流大,将使接地线, ③ 接地点电流大,将使接地线,尤其接地点处的 接地线电位升高( 接地线电位升高(接地点处接地线电位等于接 地点处的接地电阻值乘以接地电流)。 地点处的接地电阻值乘以接地电流)。

电网中性点接地方式

电网中性点接地方式

电网中性点接地方式是一个综合性的、系统性的问题,既涉及到电网的安全可靠性、也涉及电网的经济性。

中性点接地方式直接影响到系统设备绝缘水平、系统过电压水平、过电压保护元件的选择、继电保护方式、系统的运行可靠性、通讯干扰等。

我国的110kV及以上电压等级的电网一般都采用中性点直接接地方式,在中性点直接接地系统中,由于中性点电位固定为地电位,发生单相接地故障时,非故障相的工频电压升高不会超过1.4运行相电压;暂态过电压水平也相对较低;继电保护装置能迅速断开故障线路,设备承受过电压的时间很短,这样就可以使电网中设备的绝缘水平降低,从而使电网的造价降低。

在三相交流电力系统中,作为供电电源的发电机和变压器的中性点,有三种运行方式:一种是电源中性点不接地;一种是电源中性点经消弧线圈接地;一种是电源中性点直接接地。

前两种合称为中性点非有效接地,或小电流接地系统,后一种中性点直接接地称为中性点有效接地,或大电流接地。

1 电源中性点不接地电力系统(3-63 kV系统大多数采用电源中性点不接地运行方式)。

电源中性点不接地系统发生单相接地时,如C相单相接地,那么完好的A、B 两相对地电压都由原来的相电压升高到线电压,即升高为原对地电压的√3倍,C相接地的电容电流为正常运行时每相对地电容电流的3倍。

当发生单相接地时,三相用电设备的正常工作未受到影响,因为线路的线电压无论相位和量值均未发生变化,因此三相用电设备仍然照常运行。

但电力部门只允许运行2小时,因为一旦另一相又发生接地故障时,就形成两相接地短路,产生很大的短路电流,可能损坏线路设备。

2 电源中性点经消弧线圈接地的电力系统。

在中性点不接地的电力系统中,有一种情况比较危险,即在单相接地时,如果接地电流较大,将出现断续电弧,这可使线路发生电压谐振现象,在线路上形成一个R-L-C的串联谐振电路,从而使线路上出现危险的过电压(可达相电压的2.5-3倍),导致线路上绝缘薄弱地点的绝缘击穿。

中性点的三种接线方式

中性点的三种接线方式

在中性点非直接接地电网中通常有以下三种方式:即中性点不接地方式、经消弧线圈接地方式、经电阻接地方式。

此类系统在发生单相接地时,由于故障点的电流很小,而且三相之间的线电压基本保持对称,对负荷的供电没有影响,因此,在一般情况下都允许再继续运行1~2小时,而不必立即跳闸,这是采用中性点非直接接地运行的主要优点,但是在单相接地后,其他两相的对地电压要升高倍,对设备的绝缘造成了威胁,若不及时处理可能会发展为绝缘破坏、两相短路,弧光放电,引起全系统过电压。

为了防止故障的进一步扩大,应及时发出信号,以便运行人员采取措施予以消除。

因此,在单相接地时,一般只要求选择性地发出信号,而不必跳闸。

但当单相接地对人身和设备的安全有危险时,则应动作于跳闸。

另外一种情况是,当中性点非直接接地系统发生单相接地故障时,接地点将通过接地线路对应电压等级电网的全部对地电容电流。

如果此电容电流相当大,就会在接地点产生间歇性电弧,引起过电压,从而使非故障相对地电压极大增加。

在电弧接地过电压的作用下,可能导致绝缘损坏,造成两点或多点的接地短路,使事故扩大。

为此,我国采取的措施是:当各级电压电网单相接地故障时,如果接地电容电流超过一定数值(35kV电网为10A,10kV电网为20A,3~6kV电网为30A),就在中性点装设消弧线圈,其目的是利用消弧线圈的感性电流来补偿接地故障时的容性电流,就可以减少流经故障点的电流,以致自动熄弧,保证继续供电。

该接地方式因电网发生单相接地的故障是随机的,造成单相接地保护装置动作情况复杂,寻找故障点比较难。

消弧线圈采用无载分接开关,靠人工凭经验操作比较难实现过补偿。

消弧线圈本身是感性元件,与对地电容构成谐振回路,在一定条件下能发生谐振过电压,给继电保护的功能实现增加了困难。

所以当电缆线路较长、系统电容电流较大时,也可以采用经电阻接地方式,即中性点与大地之间接入一定阻值的电阻。

该电阻与系统对地电容构成并联回路,由于电阻是耗能元件,也是电容电荷释放元件和谐振的阻压元件,对防止谐振过电压和间歇性电弧接地过电压,有一定优越性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电网中性点接地方式浅析
摘要:电力系统的中性点运行方式的选择会直接影响到电网的造价、供配电系统的安全性与可靠性,文章主要介绍了中性点接地方式的特点,并对不同的方式从经济、技术、运行等方面进行了分析,总结它们各自的优缺点及适用范围。

关键词:中性点接地系统;中性点不接地系统;电容电流接地方式
0引言
中性点接地方式是电力系统发展中的重要部分,也是电力系统可靠运行的关键之一。

中性点接地涉及到短路电流大小、供电可靠性、过电压大小等多方面的问题。

随着我国变电站规模的增大,有关中性点接地方式的研究也越来越多。

但在中性点接地系统中,中性点接地数目的不同,对短路电流、避雷器、断路器及继电保护等社会的影响也不同,文章就这一问题展开研究,同时提出解决对策。

2中性点有效接地系统特点
2.1中性点直接接地
中性点接地的优势明显,整个系统的过电压水平和输变电设备对绝缘水平要求不高。

系统的动态电压升高程度不会超过额定电压的80%,如果在高压电网中使用这种接地方式,可以有效降低线路和设备的成本,经研究,中性点接地系统的绝缘水平与中性点不接地的绝缘水平可降低20%左右的造价,其经济效益值得肯定。

但该
系统的缺点是,如果发生单相接地故障,其单相接地的电流大,容易引起线路跳闸,供电连续性和可持续性不高。

此外,单相接地电流有时会超过三相短路电流,直接影响到断路器遮断能力的选择,还会干扰到通信线路。

2.2中性点经低电阻接地
由电缆线路构成的6-35 kv送、配电网络,单相接地发生故障时电流量大,应采用低电阻接地方式,电阻值控制在10~20ω,故障电流为100-1000 a。

低电阻接地能快速阻断故障,如果过电压水平低,可以使用绝缘水平较低的电缆和设备。

但还应认真考虑其可靠性,故障对电压、电流以及电气设备、通信的影响。

该接地方式主要适用于电缆线路,这样就不容易发生瞬时性单相接地故障,其电容电流还可以为城市配电网、发电厂厂用电系统及工矿企业配电系统服务。

3中性点直接接地方式
这种方式是中性点接地的常见方式,当一相接地时,其余两相电压不会升高,不存在弧光间歇接地的过电压,绝缘水平也能下降,有效控制了设备造价,尤其在高压和超高压电网,经济效果显著。

该接地方式主要在110kv及以上电网得到采用。

一相接地时,短路电流强,通常高达三相电流的100%或更高,虽然大量的电流能促使系统快速准确的工作,但需要选择容量更大的开关以及电气设备,有可能影响系统的稳定运行或干扰通信线路。

如果处在山区,结构
简单的110kv电网,采用直接接地方式时,是无法满足安全要求的,在对联网影响不大的情况下,可采用中性点经消弧线圈接地方式。

我国1000v以下的低压电网一般是采用380/220v三相四线制供电,并为了安全运行选择了直接接地,它能有小房子250v的危险对地电压。

电网的中性点接地方式是有多种变化的,目前电网采用最多的方式主要有不接地、经消弧线圈接地和经电阻接地等几种。

(1)中性点不接地方式,如果供电与客户使用之间的距离较短,在接地处就无法测试到电流,因为没有通过接地点的电流回路。

如果路线较长,我们就应该考虑导线对地面的电容,因为接地时,电流会通过导线形成电容。

加入电缆的总长度为10 km,通过接地点的电流就有10 a。

实践证明,当接地电流ig<10 a时,虽然单相接地可以运行一段时间(小于2 h),不影响线路的持续运行,但如ig 过大,则电弧就会导致二相短路,引起跳闸,造成停电事故。

(2) 中性点经消弧线圈接地方式。

当6 kv电网的电容电流大于10 a时,就可采用中性点经消弧线圈接地方式,主要是为了经消弧线圈流入接地弧道的电感性电流抵消经健全相流入该处的电容性
电流,从而减少接地电流。

4中性点接地方式措施
4.1中性点电阻接地的电网
当电网中性点不接地时,即使接地的电容较小,都有可能导致地电弧燃烧与熄灭,并让整个电位升级到可破坏其绝缘水平的地
步,严重时还会形成短路故障。

如果在中性点串接一电阻器,分散熄弧后半波的能量,降低中性点的电位,故障时的电压上升速度也会减慢,以此来减少电弧重燃的可能性,控制电网过电压的幅值。

高电阻接地方式是为了限制单相接地故障电流,同时还能阻止谐振过电压和间歇电流接地过电压;低电阻接地这是为了获得更大的阻性电流,将电阻叠加在故障点上,达到有效控制谐振过电压的目的。

4.2中性点谐振接地的电网
中性点谐振接地的三相系统与中性点不接地的三相系统一样,如果发生但相金属接地,其接地电压则为0,而非故障相对地电压就是升至正常电压的1.7倍,形成线电压。

接地点通过的是单相接地电容电流与消弧线圈的电感电流的向量和。

由于ic和il相位相反,如果合理选择消弧线圈的分接头,就能让接地点的电流变小甚至为0。

中性点谐振接地方式能减少接地点的电流,迅速熄灭故障电弧,预防间歇性电弧接地时产生的过电压,提高线路运行的可靠性。

4.3中性点经消弧线圈接地方式的优点
中性点经电阻接地与不接地相比,在消除间歇电弧过电压、自动检出故障线路、预防谐振过电压等方面都有明显优势;这与经消弧线圈接地电网相比,主要特点就是故障线路切除快,并能快速实现重合。

如今,经消弧线圈接地电网配合灵敏的故障选线装置运行,故障选线的灵敏度也能弥补其不足之处。

5结论
(1)直接接地方式的继电保护的灵敏度高,其绝缘水平完全可以根据单相电压来考虑,由于绝缘水平的要求低,大大降低了电网的造价。

但出现故障接地的电流过大,跳闸频繁,所以系统开关必须选择大容量的重型设备。

此外,强大的短路电流在导体周围产生较强的磁场,会干扰周围的通信线路。

(2)谐振接地方式能弥补单相接地故障电流、限制弧光过电压的不足,还能提高系统运行的稳定性,通常用在故障频发,或者供电安全可靠性要求高的线路中。

但是必须在过补偿条件下使用,容易导致正常运行下的谐振过电压。

虽然智能化消弧线圈、自动跟踪接地补偿、微机选线与保护技术的进步已经完善了谐振接地的性能,但其价格高昂,目前的使用范围有限。

(3)中性点小电抗接地方式能保证接地的可靠性,避免了变压器中性点部分接地时产生的过电压而造成的设备损坏,同时还能更好的满足目前继电保护的需要,优化了过电压保护装置和运行操作程序,减少了短路电流,有效降低了断路器的工作负担和对附近通信线路的干扰,提高了电网安全可靠性。

例如,在2台变压器经小电抗接地方式中,若选取电抗值为变压器零序阻抗的1/3,则等同于1台变压器中性点接地,另1台变压器中性点不接地情况。

当退出1台变压器运行时,将另1台变压器中性点改为直接接地,此时仍保持零序电抗值不变,调节方便。

对于单相短路电流过大的问题,在电网中性点接地中,首先应保证在电网为有效接地的情况下增加接地程度系数k,并可适当考虑采用中性点经小电抗接地方式。

6结束语
如今,各国家对电网中性点接地的方式有不同看法,选择模式也不同,但基本都是根据各中性点接地方式的优点和实际使用规则而定的。

近年来,城市电网改造力度加大,配电网中电缆线路的比例逐年上升,因此,可以选用小电阻接地运行方式或中性点电阻器与消弧线圈并联的接地方式。

总之,应该个地区的实际情况,从安全性与经济效益等方面出发,综合考虑,合理选择中性点接地方式。

相关文档
最新文档