氨制冷与氟利昂制冷系统
制冷剂的四种状态
制冷剂的四种状态制冷剂的四种状态是固态、液态、气态和超临界态。
制冷剂是在制冷系统中起到传热传质作用的重要介质,其状态的改变对制冷效果和系统性能有着重要影响。
固态是制冷剂的一种状态。
在低温下,制冷剂的分子会凝聚在一起形成固体结构。
固态制冷剂具有较低的熵值和较高的密度,能够有效地吸收热量并降低温度。
常见的固态制冷剂有干冰(二氧化碳固态)和氨(氨气固态),它们在制冷过程中常用于冷冻、冷藏和超低温应用。
液态是制冷剂的另一种状态。
当制冷剂的温度和压力达到一定范围时,它会从固态转变为液态。
液态制冷剂具有较高的密度和较低的熵值,能够有效地吸收和释放热量。
常见的液态制冷剂有氨、氯化甲烷(R22)、氟利昂(R134a)等,它们在制冷系统中广泛应用于空调、冷冻设备和制冷车辆等领域。
第三,气态是制冷剂的另一种状态。
当制冷剂的温度和压力进一步升高时,它会从液态转变为气态。
气态制冷剂具有较低的密度和较高的熵值,能够有效地传递热量。
常见的气态制冷剂有氨、氟利昂等,它们在制冷系统中起到制冷介质和传热媒体的作用。
超临界态是制冷剂的一种特殊状态。
当制冷剂的温度和压力超过其临界点时,它会进入超临界态。
超临界态制冷剂具有介于气态和液态之间的特性,既具有气态制冷剂的高熵值和传热性能,又具有液态制冷剂的高密度和传质性能。
超临界态制冷剂在某些特殊应用中表现出良好的性能,例如超临界二氧化碳制冷技术在汽车空调、制冷设备和超低温冷冻等领域得到了广泛应用。
制冷剂的四种状态分别是固态、液态、气态和超临界态。
不同状态的制冷剂在制冷系统中起到不同的作用,其状态的改变会直接影响到制冷效果和系统性能。
因此,在设计和应用制冷系统时,需要根据具体需求选择合适的制冷剂状态,并对其特性进行合理利用,以达到最佳的制冷效果。
同时,对制冷剂状态的研究和探索也是未来制冷技术发展的重要方向之一。
氨制冷设备的构造及制冷工作原理
浅谈氨制冷设备的构造及制冷工作原理一、制冷系统的制冷工作原理:主要由压缩机、冷凝器、储氨器、油分离器、节流阀、氨液分离器、蒸发器、中间冷却器、紧急泄氨器、集油器、各种阀门、压力表和高低压管道组成。
其中,制冷系统中的压缩机、冷凝器、节流阀和蒸发器(冷库排管)是四个最基本部件。
它们之间用管道依次连接,形成一个封闭的系统,制冷剂氨在系统中不断循环流动,发生状态变化,与外界进行热量交换,其工作过程是:液态氨在蒸发器中吸收被冷却物的热量之后,汽化成低压低温的氨气,被压缩机吸入,压缩成高压高温的氨气后排入冷凝器,四个基本过程完成一个制冷循环。
在实际的制冷系统中,完成一次制冷循环,我局安装的就是一台6AW10型单级氨轴、连杆、润滑系统和直连式电动机配装而成的。
6AW103个排气缸、3个吸气缸),“A”表示以氨做制冷剂,型,“10”表示汽缸直径为10厘米。
该机活塞行程为100千焦/小时,电动机功率为37千瓦/小时,该机能将库温降至-300C。
8ASJ10型压缩机的总体结构是:“8”表示压缩机为8个缸,“A”表示以氨做制冷剂,“S”表示汽缸排列的样式如同字母S型,“J”表示单机两极,即在一台机体上设有低压级和高压级,两次压缩制冷。
其中6个缸(3个低压吸汽缸、3个低压排汽缸)为低压级,2个缸(1个高压吸汽缸、1个高压排汽缸)为高压级,该机分设高压腔和低压腔两次分别做工制冷的目的是:分割高低压缸压力差,做梯级压缩制冷,以取得较低的温度,该机能将库温降至-450C,标准制冷量为1100000千焦/小时,电动机功率为31千瓦/小时。
活塞式制冷压缩机的工作原理是靠电动机的转动,来传动直连式曲轴,带动连杆、活塞和汽阀系统,在曲轴箱汽缸中作上下往复运动,来完成吸汽、压缩、排汽三个过程使低压氨气转化为高压氨气,排至冷凝器中,强迫氨气体分子在高压作用下在容器内聚集,形成液态氨。
第十一章冷冻设备第二节活塞式压缩制冷设备的附属装置一、油分离器油分离器又称为油器,用于分高压缩后的氨气中所挟带的润滑油,以防止润滑油进入冷凝器,使传热条件恶化。
氨制冷的工作原理
氨制冷的工作原理
氨制冷是一种常用于工业和商业领域的制冷技术,其工作原理基于氨(NH3)在气态和液态之间的相变过程。
氨制冷系统主要由压缩机、冷凝器、膨胀阀和蒸发器组成。
工作过程如下:
1. 压缩机:氨气被压缩机吸入,并在压缩机内被压缩成高压气体。
这个过程同时也使得氨气的温度升高。
2. 冷凝器:高压气体通过冷凝器流过,与周围环境进行热交换。
在冷凝器中,氨气散发热量,导致氨气冷却并且压缩为液态氨。
3. 膨胀阀:经过冷凝器后的液态氨通过膨胀阀进入蒸发器。
在膨胀阀的作用下,氨气从高压液态急速膨胀为低压气态。
这个过程还使得氨气的温度降低。
4. 蒸发器:氨气进入蒸发器,在这里与所需冷却的物体或空气进行热交换。
在蒸发器中,氨气吸收外部环境的热量,同时自身蒸发为气体。
5. 循环重复:氨气再次被压缩机吸入,重复上述循环过程。
通过不断的压缩和膨胀,氨制冷系统能够将热量从低温环境(蒸发器)中吸收,并释放到高温环境(冷凝器)中,从而实现制冷效果。
此外,氨制冷系统具有高效性能和较低的环境影响,因此被广泛应用于商业制冷和工业制冷领域。
氨制冷系统与氟制冷系统的比较
氨制冷系统与氟制冷系统的比较一、氨制冷机组的优缺点1.1缺点1.1.1由于氨几乎不溶于矿物油,造成氨制冷系统的管道和换热器的传热面会积油膜,影响传热。
1.1.2由于氨几乎不溶于矿物油,氨制冷系统需配用复杂的油分离系统,造成产品体积庞大。
1.1.3氨在含油水份时,对铜和铜合金(磷青铜外)有腐蚀作用,因此氨制冷机中一般不允许使用其他铜和铜合金,尤其在换热器中只能采用铁管作为换热管,效率和可靠性均较差。
1.1.4氨的毒性较大,对人的器官有强烈的刺激作用,当氨蒸气在空气中体积分数达到0.5~0.6%时,人在其中停留约半小时就会中毒;当氨蒸气在空气中的体积分数达到11~14%时,即可点燃(黄色火焰),若达到16~18%时引起爆炸。
氨蒸气对食品有污染作用,因此,氨机应保持通风,使氨的含量不超过0.02mg/L。
1.2 优点1.2.1氨是一种ODP和GWP均为0的天然制冷剂,对大气臭氧层和温室效应均无影响,是一种环保制冷剂。
1.2.2价格便宜二、氟制冷机组的优缺点2.1缺点2.1.1目前常用制冷剂为R22,其ODP=0.05、GWP指数也偏高,是一种过渡制冷剂,我国1998年《国家方案》中规定R22完全禁止使用年限为2040年(禁止新生产R22制冷设备)。
2.1.2价格较昂贵2.2优点1.2.3与冷冻油可互溶,无须复杂的油分,结构简单、体积小、外表美观。
1.2.4R22是一种中温制冷剂,它的沸点是-40.8℃常温下冷凝压力和氨相近,单位容积制冷量也差不多,在中温和低压下饱和压力较高,因此在较低温度下R22比氨好。
1.2.5R22不燃烧,不爆炸,毒性很小。
1.2.6氟利昂冷水机组通用性强,目前全球95%以上的制冷机组采用氟制冷剂。
南京建贸制冷空调设备有限公司。
液氨冷库改造为氟利昂制冷分析报告
××××有限公司关于氨冷库改为氟冷库的申请报告××××:目前,我公司的冷藏和冷冻库房是用液氨为制冷剂的机组。
由于存在以下原因,特申请集团公司批准改造。
一、政策原因:根据《国务院安委会办公室关于涉氨制冷企业液氨使用专项治理情况的通报》(安委办函(2015)23号)和《涉氨制冷企业液氨使用专项治理技术指导书(试行)》、《国务院安委会关于深入开展涉氨制冷企业液氨使用专项治理的通知》(安委(2013)6号)的文件精神。
我公司氨制冷仓库设计,安装不规范。
整改难度较大,面临关停危险。
二、安全原因:1、氨机冷库本身存在的问题:近年来各地发生氨泄漏或爆炸事故触目惊心。
氨冷库自动化程度较低,冷库管理人员和操作人员专业素质参差不齐,操作不当会发生液氨泄漏和爆炸,存在安全隐患。
2、今年通过××××××等部门检查,我公司氨冷库存在很多安全隐患,另外我公司的冷库建造时不规范,现在按国家对氨冷库的新规范,整改到位也要一定量的资金投入,甚至有些项目无法彻底整改(安全距离300米等)。
3、液氨冷库管道定期要进行X光检测,如果不合格,就无法办理压力管道使用许可证,安监部门就可以随时关闭冷库运行,给公司造成不必要的经济损失。
三、氟/氨制冷比较四、投资综上所述,氨改氟一次性投资较大,但改造后从安全性上彻底消除了安全隐患,降低了安全风险,减少了安全管理成本。
改造后运行成本大幅降低,从长远角度分析对于小型冷库(我公司冷库属于小型,小于5000立方米)采用氟制冷系统更经济实惠。
妥否请批示×××有限公司×××。
氟利昂代替液氨制冷技术在碾压混凝土工程中的应用
氟利昂代替液氨制冷技术在碾压混凝土工程中的应用摘要:碾压混凝土大坝为大体积混凝土施工,因受地方气候特点、混凝土内部化学反应等因素影响、内外温差等因素导致混凝土产生裂缝。
为确保大坝混凝土质量,对大坝所需用的骨料进行降温,达到大体积混凝土温控要求。
文章中主要说明氟利昂制冷技术代替液氨制冷技术的优越性,通过应用实例显示使用节能技术所取得的实际效果,可在全国大型水利工程中推广运用。
关键词:氟利昂替代液氨制冷技术、碾压混凝土、推广运用1.近些年液氨事故案例2013年4月21日20时05分,四川省眉山市仁寿县凤陵乡金凤食品厂生猪屠宰场冻库液氨管道封头脱落发生液氨泄漏,事故已造成4人死亡,22人急性氨中毒。
2013年8月31日10时50分左右,位于宝山城市工业园区内的上海翁牌冷藏实业有限公司,发生氨泄漏事故,造成15人死亡,7人重伤,18人轻伤,造成直接经济损失约2510万元。
2013年6月3日6时10分许,位于吉林省长春市德惠市的吉林宝源丰禽业有限公司(以下简称宝源丰公司)主厂房发生火灾、火势蔓延到氨设备和氨管道区域,燃烧产生的高温导致氨设备和氨管道发生物理爆炸,大量氨气泄漏,介入了燃烧。
造成特别重大火灾爆炸事故,共造成121人死亡、76人受伤,17234平方米主厂房及主厂房内生产设备被损毁,直接经济损失1.82亿元。
可见液氨安全风险高,事故影响范围广。
2.工程概况某抽水蓄能电站工程夏季混凝土生产采取温控措施,主要生产碾压混凝土和常态混凝土,根据混凝土浇筑温控要求,5月~9月浇筑基础约束区混凝土,出机口温度按不大于11℃控制;其它情况出机口温度应按设计要求的浇筑温度作适当调整。
本工程预冷混凝土主要由2×4.5m³强制式拌和楼生产,夏季预冷混凝土理论小时强度为162m³/h,制冷系统总装机容量为2062kW(171万kcal/h,标准工况)。
混凝土预冷需采用二次风冷骨料及加冷水拌和混凝土的综合预冷措施,部分强约束区混凝土还需加片冰拌和。
氨制冷 制冷工作原理
氨制冷制冷工作原理
氨制冷是利用氨作为制冷剂的一种制冷方式。
其制冷工作原理主要包括以下几个步骤:
1. 压缩:氨制冷系统首先通过压缩机将氨气压缩成高压气体。
压缩机采用电机驱动,使氨气逐渐增压,将其压力提高到高于环境温度的水平。
2. 冷凝:高压氨气进入冷凝器,在冷凝器中与低温热交换介质(如水或空气)接触,使氨气的温度降低,发生冷凝作用。
在冷凝过程中,氨气释放出大量的热量,并且逐渐冷却下来,形成高压液体氨。
3. 膨胀:高压液体氨通过膨胀阀进入蒸发器。
膨胀阀的作用是调节液体氨流量和压力,使液体氨进入蒸发器后迅速蒸发。
在蒸发器中,液体氨吸收周围的热量,使空气或水温度降低。
4. 蒸发:在蒸发器中,液体氨流体化为氨气,并吸收周围的热量,使蒸发器内部温度进一步降低。
蒸发器通常通过散热片或换热管将冷凝热传递给被制冷的物体或环境。
5. 循环:氨气被吸入压缩机,循环再次进行。
通过不断循环流动,氨制冷系统可以持续地将热量从制冷区域传递到周围环境中,实现制冷效果。
需要注意的是,氨制冷系统需要严格控制氨气的压力、温度和
流量,以确保制冷过程的安全和高效。
同时,由于氨气有毒、易燃的特性,操作过程中需要采取相应的安全措施。
氨制冷系统改建氟制冷系统施工方案
氨制冷系统改建氟制冷系统施工方案一、项目背景在工业生产中,氨制冷系统因为其高效节能的特点得到了广泛应用。
然而,由于氨气具有毒性和爆炸性质,存在一定的安全隐患。
为了提高安全性并降低环境负荷,现有的氨制冷系统需要改建为氟制冷系统,以氟利昂为制冷剂,以实现更为环保的制冷效果。
二、施工方案1. 设计方案根据现有氨制冷系统的特点和要求,设计氟制冷系统的方案需要考虑以下几个方面:•系统容量:保持系统制冷量的基础上进行换算,确保新系统能够满足实际生产需求。
•设备选型:选用适合氟制冷系统的制冷设备,如压缩机、蒸发器、冷凝器等。
•管道布局:重新设计管道连接方式和布局,确保氟制冷系统能够正常运行并易于维护。
2. 材料准备•更新和更换对应氟制冷系统的管道、阀门、压缩机等零部件。
•准备氟利昂等制冷剂及相关耗材。
3. 施工步骤步骤一:拆除原有氨制冷系统设备1.关停原有氨制冷系统,排放余氨气体。
2.拆除原有氨制冷系统的压缩机、蒸发器、冷凝器等设备。
步骤二:安装氟制冷系统设备1.安装氟制冷系统的蒸发器、冷凝器、压缩机等设备。
2.连接氟制冷系统的管道、阀门等零部件。
步骤三:冷却系统调试1.注入氟利昂等制冷剂。
2.调试系统,确保氟制冷系统正常运行。
三、施工注意事项1.施工人员需要具备相关的制冷系统维修经验和技能。
2.施工现场应遵守相关安全规范,确保施工过程安全。
3.施工过程中应及时处理产生的废氨气体和废弃物,做好环境保护工作。
四、施工验收施工完成后,需进行氟制冷系统的试运行和验收。
确保系统正常运行并达到设计要求。
五、总结通过对原有氨制冷系统进行改建,将其改建为氟制冷系统,不仅提高了安全性,还减少了环境负荷。
施工方案的制定和严格执行是保证项目顺利进行的关键,希望施工过程中能够严格按照上述方案执行,顺利完成改建任务。
机房制冷为什么只能采用机房专用的精密空调,氟制冷与氨制冷有什么区别?
机房制冷为什么只能采用机房专用的精密空调,氟制冷与氨制冷有什么区别?机房制冷为什么只能采用机房专用的精密空调?机房区域的制冷只能采用机房专用的精密空调,这是有原因的,在选择数据中心制冷系统时,很多数据中心的IT人员认为舒适性空调也可以用于机房的冷却,并认为舒适性空调能效高,因此可以降低制冷系统的能耗。
但是,在机房中,显热负荷几乎完全由IT硬件、灯光、支持设备和供电产生的显热组成。
因为几乎没有人,室外空气有限,并且通常经过防潮处理,所以,潜热非常少。
针对这种情况,空调所需的显热比非常高,为0.95~0.99。
只有机房精密空调可以达到这种非常高的显热比。
相对而言,舒适性空调的显热比通常为0.65~0.70,因此,提供的显热量过少,潜热冷量过多。
过多的潜热冷量一位着将不断地从空气中去除水分。
为了保持所需的相对湿度范围45%~50%,将需要不断加湿,而这肯定要消耗大量的能量。
与此同时,精密空调具有高精度、反应灵敏、基于微处理器的控制系统,可以对外界环境的变化快速做出反应,从而保证环境变化保持在稳定环境所需的整定值范围之内。
舒适性空调通常包括有限的基本控制系统,无法足够快速地做出反应,来保证所需的温度差。
而且,机房精密空调通常采用高中效过滤器,使空气中的尘埃减至最少,而舒适性空调采用粗效过滤器,无法去除足够的尘埃颗粒;机房精密空调的设计时按照全面8760小时运转设计的,组件有冗余功能,这会大大提高可靠性,降低运行和运维的成本。
机房专用空调具有恒湿的功能,保护机房设备不会因为湿度过大而损坏。
而舒适性空调并没有这个功能。
舒适性空调的温差范围在1℃ ,而机房精密空调的温差范围在0.1℃ 甚至更高。
机房精密空调中高效过滤器,保证了机房的无尘环境。
而舒适性空调,仅具备了低效过滤器。
机房精密空调虽然初期投资要比舒适性空调高,但其7*24终年无休的运行,可靠性相比舒适性空调要高好几个等级。
因此,机房区域的制冷只能采用机房专用的精密空调。
常用制冷剂分类以及性能介绍
常用制冷剂分类以及性能介绍制冷剂是用于制冷设备中的介质物质。
常见的制冷剂主要分为四类:氨类制冷剂、氟利昂类制冷剂、烷类制冷剂和CO2(二氧化碳)制冷剂。
下面将介绍每类制冷剂的性能和应用范围。
1.氨类制冷剂:氨(NH3)是一种无色有刺激气味的气体,可用于制冷以及工业生产中。
氨是一种高效的制冷剂,具有以下特点:-良好的传热性能:氨的导热系数高,传热效率高。
-高制冷效果:氨的蒸发潜热大,能够提供更大的制冷量。
-环保性:氨在环境中的寿命短,不会对臭氧层产生破坏,对大气污染较小。
氨常用于工业中的制冷系统、冷库和超市冷藏柜等。
2. 氟利昂类制冷剂:氟利昂(Fluorocarbon)是由氟、氯和碳组成的有机化合物,具有较好的热力学性能和制冷特性。
常见的氟利昂类制冷剂包括R22、R134a、R410A等,它们的性能主要有:-稳定性:氟利昂类制冷剂具有较好的化学稳定性,能够保证系统的长期运行。
-卓越的传热性能:氟利昂类制冷剂的传热系数高,传热效率优异。
-中等制冷效果:相对于氨类制冷剂,氟利昂类制冷剂的蒸发潜热较小,但仍能提供较好的制冷效果。
氟利昂类制冷剂广泛应用于家用空调、商用冷柜等领域。
3.烷类制冷剂:烷类制冷剂是通过将烷烃类化合物应用于制冷系统中来实现制冷效果的。
常见的烷类制冷剂有R290(丙烷)和R600a(异丁烷)。
烷类制冷剂的性能表现如下:-较小的环境影响:烷类制冷剂不含氟,对臭氧层和全球变暖潜在性的影响小。
-较低的饱和蒸气压:烷类制冷剂的饱和蒸气压较低,有助于提高制冷系统的效率。
-中等制冷效果:烷类制冷剂的制冷效果与氟利昂类制冷剂相似。
烷类制冷剂主要应用于家用和商用制冷设备中。
4.CO2制冷剂:CO2制冷剂,即二氧化碳,是一种环保的制冷剂,可以在低温和超低温应用中替代其他制冷剂。
CO2制冷剂的性能特点如下:-高制冷效果:CO2的蒸发潜热大,能够提供较高的制冷效果。
-高压特性:CO2在正常温度下为气体,需要较高的压力才能维持在液态中。
氨制冷设备的构造及制冷工作原理
浅谈氨制冷设备的构造及制冷工作原理一、制冷系统的制冷工作原理:主要由压缩机、冷凝器、储氨器、油分离器、节流阀、氨液分离器、蒸发器、中间冷却器、紧急泄氨器、集油器、各种阀门、压力表与高低压管道组成。
其中,制冷系统中的压缩机、冷凝器、节流阀与蒸发器(冷库排管)就是四个最基本部件。
它们之间用管道依次连接,形成一个封闭的系统,制冷剂氨在系统中不断循环流动,发生状态变化,与外界进行热量交换,其工作过程就是:液态氨在蒸发器中吸收被冷却物的热量之后,汽化成低压低温的氨气,被压缩机吸入,压缩成高压高温的氨气后排入冷凝器,在冷凝器中被冷却水降温放热冷凝为高压氨液,经节流阀节流为低温低压的氨液,再次进入蒸发器吸热气化,达到循环制冷的目的。
这样,氨在系统中经过蒸发、压缩、冷凝、节流四个基本过程完成一个制冷循环。
在实际的制冷系统中,完成一次制冷循环,制冷剂需要通过上述四大件外,还通过许多辅助设备,这些设备就是为了提高运行的经济性、可靠性与安全性而设置的。
以双级压缩机制冷系统为例,完成一次制冷循环,氨必须依次通过低级氨压机、一级油分离器、中间冷却器、高级氨压机、二级油分离器、冷凝器、储氨器、节流阀、氨液分离器、调节站、蒸发器、再回到低级氨压缩机,这样才完成一次循环,实际制冷工艺流程就是较为复杂的。
制冷学原理就是一个能量转化过程。
即电能转化机械能,机械能转化为热能,热能又通过氨的作用进行冷热交换,完成制冷的过程。
二、活塞式压缩机的基本结构及其工作原理:活塞式压缩机就是目前广泛应用于大中型冷库的制冷机型。
我局安装的就就是一台6AW10型单级氨压缩机与一台8ASJ10型双级氨压缩机,均由大连冷冻机厂生产的。
活塞式压缩机主要由机体、曲轴、连杆、活塞、进排气阀组、安全阀、能量调节机构、润滑系统与直连式电动机配装而成的。
6AW10型压缩机的总体结构就是:“6”表示压缩机有6个缸(3个排气缸、3个吸气缸),“A”表示以氨做制冷剂,“W”表示汽缸排列的样式如同字母W型,“10”表示汽缸直径为10厘米。
10万吨冷库成本造价分析说明
建造10万吨冷库初步投资分析说明
目前市场上常用的制冷系统一般有氟利昂制冷系统和氨制冷系统,氨系统一般常用于大型冷库,初期成本投入比氟利昂系统低约1 5-
20%,且制冷效果上有较大的优势,但氨制冷系统附件较多,需要分别设置机房和设备间,而且氨的毒性较强在使用上有一定的危险性,须经相关部门审批立项,且审批程序有一定复杂,由于氨系统的复杂性,在后期的管理成本和维修成本也比氟利昂系统要高。
成本造价如下:
1、氨制冷系统:预估总建筑面积约7万M2,层高6M,可储存容量约10万吨,经初步测算,建安成本单方2200元/M2,总建安造价约1.54亿元;冷库板选用聚氨酯阻燃保温板,设备总造价约5000万元,冷库总成本约2亿元。
2、氟利昂制冷系统:
月租金收入:
1、按面积测算(层高一般不高于6米情况):120元/M2/月
运营成本约:35-45元/M2/月,按40元测算,
出租率暂按平均90%考虑;
扣除运营成本后月租金收入:(120-40)*7万M2*90%=504万元
税费暂按17.65%考虑
税后年租金收入约:504*12*(1-17.65%)=4980万元
2、按货物重量测算:日储藏费3.5元/T/日,进出口搬运费36元/ T,入库初冻费(第一天)35元/T
库存的平均量暂75%考虑,搬运费跟初冻费暂不具体测算,在库存量的比例中作考虑。
10万吨*3.5*30*0.75-40*7=508万元。
氨制冷设备的构造及制冷工作原理
浅谈氨制冷设备的构造及制冷工作原理一、制冷系统的制冷工作原理:主要由压缩机、冷凝器、储氨器、油别离器、节流阀、氨液别离器、蒸发器、中间冷却器、紧急泄氨器、集油器、各种阀门、压力表和高低压管道组成。
其中,制冷系统中的压缩机、冷凝器、节流阀和蒸发器〔冷库排管〕是四个最基本部件。
它们之间用管道依次连接,形成一个封闭的系统,制冷剂氨在系统中不断循环流动,发生状态变化,与外界进行热量交换,其工作过程是:液态氨在蒸发器中吸收被冷却物的热量之后,汽化成低压低温的氨气,被压缩机吸入,压缩成高压高温的氨气后排入冷凝器,在冷凝器中被冷却水降温放热冷凝为高压氨液,经节流阀节流为低温低压的氨液,再次进入蒸发器吸热气化,到达循环制冷的目的。
这样,氨在系统中经过蒸发、压缩、冷凝、节流四个基本过程完成一个制冷循环。
在实际的制冷系统中,完成一次制冷循环,制冷剂需要通过上述四大件外,还通过许多辅助设备,这些设备是为了提高运行的经济性、可靠性和安全性而设置的。
以双级压缩机制冷系统为例,完成一次制冷循环,氨必须依次通过低级氨压机、一级油别离器、中间冷却器、高级氨压机、二级油别离器、冷凝器、储氨器、节流阀、氨液别离器、调节站、蒸发器、再回到低级氨压缩机,这样才完成一次循环,实际制冷工艺流程是较为复杂的。
制冷学原理是一个能量转化过程。
即电能转化机械能,机械能转化为热能,热能又通过氨的作用进行冷热交换,完成制冷的过程。
二、活塞式压缩机的基本结构及其工作原理:活塞式压缩机是目前广泛应用于大中型冷库的制冷机型。
我局安装的就是一台6AW10型单级氨压缩机和一台8ASJ10型双级氨压缩机,均由大连冷冻机厂生产的。
活塞式压缩机主要由机体、曲轴、连杆、活塞、进排气阀组、安全阀、能量调节机构、润滑系统和直连式电动机配装而成的。
6AW10型压缩机的总体结构是:“6”表示压缩机有6个缸〔3个排气缸、3个吸气缸〕,“A”表示以氨做制冷剂,“W”表示汽缸排列的样式如同字母W型,“10”表示汽缸直径为10厘米。
常用制冷剂热力参数一览
常用制冷剂热力参数一览制冷剂是一种用于制冷系统中传递热量的介质,广泛应用于各种冷却设备和空调系统中。
常用制冷剂具有特定的热力参数,在制冷系统设计和运行中起着重要的作用。
以下是一些常见制冷剂的热力参数的一览。
1.氨(NH3)氨是一种常用的制冷剂,广泛应用于冷冻和制冷设备中。
它具有较高的制冷效率和热传导性能。
氨的常用热力参数如下:-沸点:-33.34°C- 比热容:5.188 kJ/(kg·K)- 密度:0.7695 kg/m³(液态氨在-33.34°C时)-蒸汽压力:1.0MPa(20°C)2.氟利昂12(R12)氟利昂12是一种属于氯氟烃类的制冷剂,但由于其对臭氧层的破坏作用,目前已不再使用。
然而,它的热力参数仍然有参考价值:-沸点:-29.8°C- 比热容:0.75 kJ/(kg·K)- 密度:4.25 kg/m³(液态R12在-29.8°C时)-蒸汽压力:0.8MPa(20°C)3.氟利昂22(R22)氟利昂22是一种常用的制冷剂,也属于氯氟烃类。
它具有较低的饱和蒸汽压力,可用于中低温制冷系统。
-沸点:-40.8°C- 比热容:0.84 kJ/(kg·K)- 密度:5.16 kg/m³(液态R22在-40.8°C时)-蒸汽压力:0.8MPa(20°C)4.气体甲烷(R50)气体甲烷是一种常见的制冷剂,主要应用于制冷设备和空调系统中。
它具有较高的制冷效率和低能耗特性。
-沸点:-161.5°C- 比热容:2.2 kJ/(kg·K)- 密度:0.717 kg/m³(液态甲烷在-161.5°C时)-蒸汽压力:0.1MPa(20°C)5.二氟化碳(R744)二氟化碳是一种环保的制冷剂,也被称为超临界二氧化碳。
氨制冷系统与氟制冷系统的比较
氨制冷系统与氟制冷系统的比较氨制冷系统和氟制冷系统是目前常用于工业制冷、空调系统、冷库等领域中的两种主要制冷系统。
虽然两种制冷系统在外观和结构上有所不同,但在工作原理、制冷效率、安全性和环保方面,它们存在着明显的差异。
本文将从以上四个方面来探讨氨制冷系统和氟制冷系统的比较。
一、工作原理氨制冷系统是利用氨作为制冷剂,通过压缩、冷凝、膨胀和蒸发等过程实现制冷效果。
其主要原理是通过系统的循环,将氨的蒸发吸收周围的热量,然后将其压缩、冷凝并再次蒸发,从而实现冷却的目的。
该制冷系统的制冷量较大,适用于工业制冷、冷库等大型冷却设备。
氟制冷系统则采用氟利昂等氟化合物作为制冷剂,其工作原理与氨制冷系统类似,但氟制冷系统不会释放毒性气体。
其优点在于制冷效率较高,而且能够满足更为苛刻的环保要求。
二、制冷效率在制冷效率方面,氟制冷系统优于氨制冷系统。
由于氟化合物的物化性质优越,相对于氨气,氟制冷剂制冷的量增加了接近20%。
而且,氮氧化物和二氧化碳排放量较小,致力于更加友好的环境。
氨制冷系统虽然具有较高的制冷量,但氨气致命性较大(氨的危害性详情请查看调查小组的文章-安全环保连看),需要安全防护措施。
在运行过程中,如若氨气泄露,不仅无法保证工作环境,还会对人员的健康构成威胁。
因此,在制冷效果和安全性之间,氨制冷系统必须平衡考虑。
三、安全性氨制冷系统属于高危制冷系统,运行时极易发生安全事故,因而在工艺和安全方面较为复杂。
氨气的爆炸性和毒性也令其在运行过程中需要高度重视。
氨制冷系统需要强迫通风,安装探测器、警报器等设备来保障人员安全。
而氟制冷系统更为安全、环保,需要的保护设备较少。
四、环保性氮氧化物和二氧化碳等多种有害气体的排放对大气和环境造成了不良影响。
氨制冷系统在其工作过程中,氨气泄漏会导致环境和人体健康的威胁。
相比之下,氟制冷系统的环保性能更高,氟利昂对环境的影响较小,对大气层造成的破坏效应也较低。
名称-以氟制冷为主的系统已经开始成为全球爱饮颜色地段的主流选择,也得到了越来越多的应用。
氨制冷设备的正确操作
氨制冷设备的正确操作氨制冷设备的正确操作在制冷系统的管路上设置有各种设备,除制冷压缩机外的设备称为制冷设备,如冷凝器,中间冷却器,低压循环贮液桶等。
这些设备分别承担着制冷系统中制冷剂的分离,换热及其他工作,这些设备操作是否正确合理,将直接影响制冷系统的正常运行。
一。
油分离器的正确操作油分离器的种类很多,氨制冷系统一般采用洗涤式油分离器,氟利昂制冷系统则多采用过滤式油分离器。
1,洗涤式油分离器的操作制冷系统正常运行时,洗涤式油分离器的进气阀,出气阀和供液阀应开启,放油阀应关闭。
洗涤式油分离器的液位约在其高度的三分之一处。
液位高度取决于冷凝器水平出液管和油分离器进液管的高度差,这个高度差在安装时给与保证,不需人为控制。
如果液位过高,将增加排气阻力而液位过低则影响对氨气的洗涤及油气分离。
洗涤式油分离器分离出的润滑油比氨气重而存在底部,如果用手摸油分离器的底部感觉较热,表明底部已有存油,应及时放出。
若手摸油分离器的底部,发现烫手,说明氨液烫手或没有氨液,此时油分离器已失去洗涤和分离作用,应及时查找原因并排除故障。
2,其他油分离器的操作填料式,过滤式,及其他形式油分离器的操作,除没有洗涤式油分离器的供液阀操作及液位要求,其它操作均于洗涤式分离器相同。
3,制冷机组上的油分离器制冷机组上的油分离器一般都没有手动放油阀及自动回油阀。
机组运行时分离出的润滑油会通过自动回油阀回到压缩机的曲轴箱,操作人员只需经常观察回油管是否时温时热即可,当自动回油阀出现故障时,才定时使用手动放油阀进行人工回油。
二,冷凝器的正确操作(1),制冷系统运行时,冷凝器除放油阀和放空气阀关闭外,其余阀门均应开启。
(2),水冷式冷凝器的冷凝压力最高不过1.5兆帕,否则应查明原因并及时排出,以免损坏设备。
(3),经常检查冷却水的温度和水量,冷却水净出口的温差约为2到4度,一般冷凝器温度比冷却水出水温度高3到5度。
(4),冷凝器管壁上的污垢要定期清除,污垢厚度不超过1毫米,一般每年清除一次。
制冷用空调技术 整理
1. 氟利昂制冷系统与氨制冷系统有何区别?答:氟利昂制冷系统经常采用回热器;必须装设干燥器;可装设油分离器;多采用干式蒸发器。
氨制冷系统必须设置油分离器;不能设回热器;必须设不凝气体分离器,因为氨和空气混合后高温下有爆炸危险;在冷凝器、高压贮液器和蒸发器上装设安全阀;必设紧急泄氨器;冷凝器、贮液器、蒸发器下部装有放油阀。
2. 现有一栋无空调内区建筑,其夏季总冷负荷为1.93×105 kWh ,冬季总热负荷为7.76×105kWh ,拟采用地下水源热泵系统作为全年空调系统的冷热源。
已知:电驱动水源热泵在制冷、制热季节的平均能效比分别为COP c =5.0、COP h =3.5,吸收式水源热泵的平均能效比分别为COP c =1.1、COP h =1.8;设两种热泵系统从地下取水的运行方案均采用定温差变水量方式,且取水温差t ∆=5℃。
求:(1)两种热泵系统导致地下水的冷热不平衡率;(2)两种热泵系统所需的地下水使用量;(3)根据上述计算结果分析采用哪种热泵系统更为合理。
【注:冷热不平衡率=(夏季向地下水投放的热量-冬季从地下水吸取的热量)/冬季从地下水吸取的热量】解:1) 电驱动夏季:55500 1.93101.93102.31610kW h 5k c COP Φ⨯Φ=Φ+=⨯+=⨯冬季:55507.76107.7610 5.5410kW h 3.5k k hCOP Φ⨯Φ=Φ-=⨯-=⨯冷热不平衡率:02.316 5.5458.2%5.54k Φ-Φ-∆===-Φ热驱动夏季:55500 1.93101.9310 3.6810kW h 1.1e c COP Φ⨯Φ=Φ+=⨯+=⨯冬季:55507.76107.7610 3.44910kW h 1.8e e hCOP Φ⨯Φ=Φ-=⨯-=⨯冷热不平衡率:03.68 3.4496.8%3.449e Φ-Φ-∆===Φ2)电驱动需要的地下水水量: 572.3161036003.9810kg4.1875m ⨯⨯==⨯⨯夏575.541036009.5310kg 4.1875m ⨯⨯==⨯⨯冬热驱动需要的地下水水量:573.681036006.3410kg 4.1875m ⨯⨯==⨯⨯夏573.681036005.9310kg 4.1875m ⨯⨯==⨯⨯冬3)根据以上计算,吸收式水源热泵更合适。
不同制冷剂的工作压力
不同制冷剂的工作压力制冷剂是用于制冷和空调系统中的介质,它的工作压力直接影响到制冷系统的性能和效率。
不同的制冷剂具有不同的工作压力范围,下面将介绍几种常用制冷剂的工作压力。
1. 氨(NH3)氨是一种常用的制冷剂,它具有良好的制冷性能和热力学性质。
氨的工作压力通常在0.5-1.5 MPa范围内,这个范围可以保证氨在制冷系统中的稳定工作。
氨的工作压力相对较高,因此在使用氨作为制冷剂时,需要采取一些安全措施来确保系统的安全性。
2. 氟利昂(R22)氟利昂是一种广泛使用的制冷剂,它具有良好的制冷性能和稳定性。
氟利昂的工作压力通常在0.8-1.5 MPa范围内,这个范围可以满足大多数制冷系统的需求。
氟利昂的工作压力相对较低,因此在使用氟利昂作为制冷剂时,可以采用一些较为简单的制冷设备。
3. 二氟甲烷(R32)二氟甲烷是一种新型的制冷剂,它具有较高的制冷性能和环保性能。
二氟甲烷的工作压力通常在0.8-1.5 MPa范围内,这个范围与氟利昂的工作压力相似。
二氟甲烷的工作压力适中,可以满足大多数制冷系统的需求。
4. 二氧化碳(CO2)二氧化碳是一种环保型的制冷剂,它具有良好的制冷性能和可再生性。
二氧化碳的工作压力通常在4-10 MPa范围内,这个范围比其他制冷剂的工作压力要高。
由于二氧化碳的工作压力较高,因此在使用二氧化碳作为制冷剂时,需要采取一些特殊的制冷设备来满足高压的要求。
5. 空气空气是一种常见的制冷剂,它具有广泛的资源和环保性能。
空气的工作压力通常在0.1-0.2 MPa范围内,这个范围相对较低。
空气的工作压力较低,因此在使用空气作为制冷剂时,可以采用一些简单的制冷设备。
不同制冷剂的工作压力存在一定的差异。
选择适合的制冷剂需要考虑到制冷系统的要求和性能,以及制冷剂的安全性和环保性能。
在使用制冷剂时,需要注意控制好工作压力,以确保制冷系统的正常运行。
氨改氟冷库改造
氨改氟冷库改造
绿特专门从事制冷设备生产制造、冷库设计、冷库咨询等服务,致力于冷库的安全、环保、健康。
液氨冷库泄露、爆炸事故频发,给与我们血的教训,绿特认为我们必须要理性认识氨这个物质。
首先,跟随绿特小编来了解一下吧:氨,气态时称“氨气”,分子式为NH3,氨水有一定的腐蚀作用,碳化氨水的腐蚀性更加严重,容易造成管道、阀门等设备的损坏,以致氨泄露;氨能灼伤皮肤、眼睛、呼吸器官的粘膜,人吸入过多,能引起肺肿胀,以至死亡;氨气爆炸极限16~25%(最易引燃浓度17%)。
经过对氨气的了解,我们发现氨气作为冷库的制冷剂,如果遇到冷库设备老化、零部件阀门老化、冷库管理落后、意外事故等情况,就有可能发生氨系统冷库氨气泄露、爆炸的严重事故。
绿特针对冷库改造提出了四大技术方案,将氨制冷系统改造为氟利昂间接制冷,已有多处成功案例,绿特认为,将氨系统冷库改造为更为安全的氟利昂制冷系统冷库将会成为各大冷库及冷链企业的最佳选择:氟并联机组制冷效率高,可保持恒高效运行,大大节约系统耗电,符合国家能源发展战略。
因为从长远看能源紧缺是长期不可逆转的问题,电的价格也是肯定会步步升高的;氟并联机组可以实现全自动控制,使系统运行可靠性高,更合理科学,同时降低系统操作和维护人工成本;氟并联系统因采用氟作为制冷剂,安全性要大大优于有毒,易爆的氨制冷剂,可有效保证系统内员工和周边居民的生命安全,避免恶性事故发生。
近年来由于冷库的需求高速发展,众多企业纷纷投资修建冷库,从选址到设计、从建设到验收,从使用到管理都应该符合行业管理标准和规范,同时,绿特建议,冷库的建设和使用应从安全角度出发,采用氟制冷系统,积极对旧氨制冷系统进行冷库改造。
面对冷库安全问题,我们永不懈怠!。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、氨制冷系统
图3-1为单级压缩氨泵供液制冷系统的组成。
制冷剂蒸气经压缩机1、油分离器2进入冷凝器3,冷凝后的制冷剂液体进入高压贮氮器4,氨液经管路送至调节阀降压降温后送人低压循环桶5,在低压循环桶中,将节流产生的氨气分离后,氨液经氨泵6,通过调节站进入冷分配设备7,在7中吸收了被冷却物体的热量而汽化,汽化后的氨气经氨液分离器,在分离器中,由于流速降低,将它携带的液滴分离出来,再进入压缩机。
这样不仅防止了压缩机的湿冲程,还使分离出来的液体制冷剂得到利用,它多用于多层冷库和远距离冷库。
其优点是使氨液分离器高度降低,在排管中氨液强迫流动可提高传热效果,经调节后容易达到均匀供液,可以实现系统的自动化。
除氨泵供液外还有直接供液制冷系统和重力供液制冷系统。
直接供液是指对蒸发器供液只经过膨胀阀直接进入蒸发器而不经过其他设备;重力供液是利用制冷剂液柱的重力向蒸发器输送低温的氨液。
其制冷系统的组成和工作过程和氨泵供液过程基本相同,不再介绍。
二、氟利昂制冷系统
图3-2为小型氟利昂冷藏库的系统组成图。
压缩机1从蒸发盘管11中吸气,经压缩,进入油分离器2,利用流速降低及离心力的原理和机械过滤的作用,将蒸气中携带的油分离,然后进入水冷冷凝器3,冷却冷凝成饱和液体贮存在贮液桶4中,贮液桶除使商低压(液封)隔开外,还能贮存液体和调节供液量。
使用时液体制冷剂经贮液桶的出液阀进入干燥过滤器5,滤除制冷剂中的机械杂质和水分,以免引起系统在热力膨胀阀处发生脏堵或冰堵。
然后制冷剂再进入气液热交换器6,被从盘管出来的蒸气过冷,它不仅防止压缩机的液击,而且提高制冷量和减少有害过热。
过冷后的液体制冷剂经电磁阀7进入热力膨胀阀8,电磁阀7在系统中起开闭作用,和压缩机电动机同时动作。
压缩机启动时电磁阀通电开启,使系统接通,压缩机停机时,电磁阀断电关闭,系统切断,这样可防止大量液体制冷剂进入蒸发盘管,以免下次压缩机启动时产生湿冲程。
制冷剂经热力膨胀阀8节流减压后压力和温度都降低,然后经直通截止阁9和分液头10分别进入冷库的各组盘管11。
截止阀9是为检修热力膨胀阀时,将它关闭,切断系统,避免空气进入系统或系统中的制冷剂大量外泄。
为保证运行的经济和安全还装了高低压力继电器13,使装置的高、低压力控制在某一数值,从而使高压不致过高以保护机器的安全运行,低压不致过低以保证运行的经济性。
温度继电器12是使库温控制在所需要的数值内。
此外对冷量较大的制冷压缩机,为了安全运行还装有油压继电器和水量调节器。