小功率低成本的无刷直流电动机控制器

合集下载

微小型无刷直流电机控制器研究

微小型无刷直流电机控制器研究
维普资讯
维普资讯
自动 化
T 30F47 MS 2 L ' 0 A采 用 33 电 压 电 源 , 而 系 统 所 提 供 的 电 2 . V
引脚 C AO为 I 2 3 R 12内 部 电流 放 大 器 的 输 出端 ,该 端
导 通 顺 序 ,实 现 电 机 的连 续 运 行 。
( )功 率 驱 动 电路 3 本 设 计 中 无 刷 直 流 电 机 驱 动 器 采 用 I23 芯 片 。 R 12 I23 R 1 2芯 片 可 同 时 控 制 六个 大 功 率 管 的 导 通 和 关 断 顺 序 ,

示) ,包 括 一 个 速 度 调 节 环 和 一 个 电 流 调 节 环 。 首 先 ,根 据 所 检 测 到 的 电机 转 子 位 置 信 号 ,计 算 得 到 电机 的 当 前 转 动 速 度 ;然 后 ,与 速 度 参 考 值 比较 ,得 到 速 度 误 差 信 号 , 经 过 一 个 P 控 制 器 调 节 以 后 ,得 到 相 应 的 电 流 参 考 信 号 。 I 该 电流 参 考 信 号 与 实 际 的 电 机 相 电 流 信 号 进 行 比较 ,误 差 经 PD控 制 器 调 节 后 ,将 适 当 的 P I WM 信 号 加 到 电机 的 功 率驱 动电路上 ,通过控制 功率管 的开通关 断顺序 和时间 , 可 改 变 电机 定 子 绕 组 中 的 电 流 大 小 和 绕 组 的导 通 顺 序 ,从 而 实 现 对 直 流 无刷 电机 转 速 的控 制 ] 。 ( )相 电 流 检 测 1 Байду номын сангаас 本 设 计 中 ,使 用 了 旁 路 电阻 来 检 测 各 相 的相 电 流 。 相 电 流 检 测 电 路上 电阻 上 的压 降 信 号送 到 T 30 F 4 7 MS 2 L 20 A

基于JY01小尺寸低功耗电动车无刷电机控制器研究

基于JY01小尺寸低功耗电动车无刷电机控制器研究

2019年第10期【摘要】介绍了基于高度集成芯片的一款电动车无刷电机控制的设计方案,给出设计主要用到的直流无刷电机驱动控制专用芯片JY01、前置驱动芯片、功率开关管和辅助控制单片机。

经过实验证明:所设计的无刷电机控制器性能好、尺寸小、功耗低,本设计取得良好的效果。

【关键词】无刷电机;CSD88537ND ;JY01一、电动车无刷电机控制器研究的意义随着全球温室效应的影响加剧、化石能源逐渐消耗、加之全球环境恶化等问题,汽车行业不断有“禁售燃油车”的新闻,比如,法国计划从2040年开始,全面停止出售汽油车和柴油车,将法国打造成一个碳平衡的国家;德国参议院通过了2030年后禁售传统内燃机汽车的提案;荷兰确保2025年销售和上路的车仅是以电池或者氢燃料驱动的零排放汽车;挪威主要政党一致同意在2025年起禁售燃油车;印度宣称要在2030年全面禁售燃油车。

优越的环保性能和节能性,使得电动汽车已成当今全世界汽车行业发展的必然和主流[1]。

电池制造技术、电机驱动技术、电力电子技术和电动汽车整车技术是目前电动汽车四大核心技术。

电动汽车电机驱动技术要求高可靠、低功耗性和低成本。

从2000年以来,我国电动车无刷电机控制技术得到了爆发式的发展[2]。

最初的控制器的采用完全由分立元件构建而成,后来升级到由分立元件和功率开关组合的方案,目前市场上主流的方案是单片机MCU 、功率管驱动和功率开关管组合的方案[3]。

但随着电子技术的深入发展,逐渐出现了取消MCU 的专用驱动芯片,驱动方案也变为专用驱动芯片、功率管驱动和贴片小尺寸功率开关管,此方案驱动中玮采用MCU 芯片进行处理,驱动部分可以采用完全无编程,而且采用贴片的功率开关管,能够极大简化设计尺寸,减少控制器的损耗,降低控制器的成本,易于上手,缩短研发周期[4]。

二、系统组成本设计的核心是直流无刷电机驱动控制专用芯片JY01,该芯片由上海居逸电子科技发展有限公司自主研发,适用于有霍尔及无霍尔的驱动方案,芯片只需要简单的外围电路配合就能够实现SPWM 驱动,不仅应用方便,而且稳定可靠、驱动噪声小、驱动效率高。

(完整版)无刷直流电动机无传感器控制方法

(完整版)无刷直流电动机无传感器控制方法

无刷直流电动机无传感器低成本控制方法关键词:无刷直流电动机无位置传感器控制可编程逻辑器件1引言无刷直流电机的无传感器控制是近年来电机驱动领域关注的一项技术。

无位置传感器控制的关键在于获得可靠的转子位置信号,即从软、硬件两个方面间接获得可靠的转子位置信号来代替传统的位置传感器[1~3]。

采用无传感器控制技术的无刷电机具有结构简单、体积小、可靠性高和可维护性强等优点,使其在多个领域内得到了充分的利用[4]。

目前对于无传感器无刷电机的控制多采用单纯依靠DSP软件控制的方法[5],但是由于控制算法计算量大,执行速度较慢,且DSP成本较高,不利于以后向市场推广。

同时也出现了应用于无传感器BLDCM控制的一些专用的集成电路[6],但由于这些芯片可扩展性和通用性较低,而且价格昂贵,只适用于低压、小功率领域。

为了扩展无传感器BLDCM应用领域,降低其控制系统的成本,扩充控制系统的功能,增加控制系统的灵活性,本文以MCU+PLD方式组成控制系统的核心,利用PLD数字逻辑功能,分担MCU 的逻辑运算压力,使MCU和PLD的功能都得到了最大程度的发挥。

对于无位置传感器BLDCM控制系统,本文着重分析了换相控制策略和闭环调速,最后通过仿真和实验,验证了控制系统的合理性和可行性。

2系统的总体硬件设计本文中所设计系统是以8位PIC单片机和PLD构成的硬件平台,硬件结构框图如图1所示。

功率逆变电路采用三相全桥逆变结构,电机定子绕组为Y接法,电机工作模式为三相6状态方式。

在本文无传感器控制方式中采用反电动势过零位置检测方法,位置检测电路根据电机端电压获取3路位置信号,将信号送入PIC单片机进行软件移相后得到3路换相信号,由可编程逻辑器件进行逻辑解码后输出6路驱动开关管的前极信号,通过驱动芯片IR2233产生驱动信号以控制各开关管的导通与关断。

该系统采用速度单闭环方式,通过改变PWM的占空比以达到调速的目的。

本文中选用Microchip 公司的单片机PIC16F874作为控制核心,它内部有8K的FLASH 程序存储器,368字节的数据存储器(RAM),256字节的EEPROM数据存储器,14个中断源,8级深度的硬件堆栈,3个定时/计数器,两个捕捉/比较/PWM (CCP)模块,10位多通道A/D转换器等外围电路和硬件资源⑹。

空调用永磁无刷直流电动机控制器设计

空调用永磁无刷直流电动机控制器设计
Ab t a t h e ma e tma n t r s ls t rh sb e e yg o p l ain i ai b e ̄e u n y s r c :T e p r n n g e b u h e e DC moo a e n a v r o d a p i t v r l c o n a q e c ar c n i o i g a n a v n e rv t r i h au e fh g f ce c i o d t n n s a d a c d d e moo ,w t te f t r s o ih ef i n y,lw c s a d s l p r - i i h e i o o t n i e o e a mp tn i .T e ta i o a o t lsr tg n t cu e o r s ls C moo o t ls se a e c mp iae o h r d t n lc n r t e y a d s u t r f b u h e s D t r c n r y tm r o l t d, i o a r o c c sl n o e w si g n t i p p r n c n r l y tm i h o to c r f s I 3 F 0 0 a d i tl o t a d p w r- a t .I s a e ,a o to se w t t e c n r l o eo P C O 2 2 n e - y n h s h d n l e tp we d l S S 0 H6 S M a e in d i n o rmo u e F B 1 C 0 P w s d s e .T i d sg a malr v l me a d lwe o t n g g h s e in h s s l ou n o r c s ,a d e c n b i ey u e n v ra l a e w d l s d i a b e ̄e u n y a rc n i o i g i q e c i o dt nn . i Ke r s o t ls se o r s ls t r a a l e u n y arc n i o ig; s I 3 F 0 0;F - y wo d :c n r y tm fb h e sDC moo ;v r b e ̄ q e c i o d t n n d P C 0 2 1 o u i i S

小功率低成本电动车能量回馈制动控制器研制

小功率低成本电动车能量回馈制动控制器研制

大 功 率MO F T I B 专 用 集 成 电路 , S E 或 G T 用
个 +l V ~2 V单 电源 电源 供 电 , 5 0 六路 驱 动 。R2 3 内部 应用 自举技 术 , 实 现 同一 I 1O 来
控制 上 桥 臂 的3 个功 率 管 ( 、 8 T )T1 T7 T 、 9 , 、
工 程 技 术
小 功 率低 成 本 电动车 能 量 回馈 制 动 控 制器 研 制
许崇 良 朱君 ( 日照职业技术学 院 山东 日照 2 6 2 ) 7 8 6 摘 要: 目前 中小型 电动车辆常 用MC 3 3 , 3 0 5 I 1 0JMO F T . 电机驱 动电路 。 3 0 9 MC 3 3 ,R2 3 7 L S E  ̄成 电动车 辆制动 或减速 时, 电机 的转速低 若 于电机 的额定转速 , 无法实现 能量回馈 。 本文主要介绍在I 2 3 及M s E 之 间增加 电子开关 , R 10 O F T 关断驱动桥 的上 臂三个 M S E 8 率 管, OFT9 利 用下半桥 构成半桥斩波 式斩波 升压回馈 电路 , 实现 电动车辆制动或减速 时能量回馈 。 关键词 : 3 0 9 M 3 0 5 I 1 0 功率管 上桥臂 下桥臂 能量回馈 MC 3 3 C 3 3 R2 3 中图 分类 号 : 4 04 2 文 献标 识 码 : A 文章编 号 : 6 2 7 12 1 ) 2a -0 6 —0 1 7 -3 9 ( 0 10 ( ) 0 6 4 反 电 动 势 E,=C On, 电动 车辆 制 动 或 电路 , 它包 含 开 环 三 相 或 四相 电机 控 制 所 压 侧 与低 压 侧 的 通 道信 号 。 中3 上半 桥 其 个
减 速 时 , 电 机 的 转 速 低于 电 机 的 额 定 转 需 的全 部 有 效 功 能 。 若 MC3 0 9 子 测 速 器 臂 功 率 管 驱 动利 用 自举 电容 c7 C8 C 电 3 3电 、 、 9 速 , 产 生的 感应 电动势 E 小 于 电源 电 则 , 将 无 刷直 流 电动 机 的 转子 位 置信 号 进行 F 压 供 电 , 值 的 大 小 与功 率 开 关 的 栅 极 驱 / 其

无刷直流电机控制器使用说明书

无刷直流电机控制器使用说明书

1无刷直流电机控制器使用说明书
该控制器适用于直流12V/24V、功率200W 以下、转速30000转以内、电气相位为60°/120°的直流无刷电动机。

主要特点:
霍尔传感器解码、电子换相、适用于电气相位为60°/120°的无刷直流电机。

PWM 无级调速,调速范围为额定转速的10%-100%。

提供了开环和闭环两种速度检测方式。

控制方式:启动/停止、制动/运转、正转/反转。

保护功能:过流保护、欠压保护、短路保护、过热保护、电机堵转保护、传感器错相保护。

使用注意事项:
1、电源一定不能接反,否则会损坏电机控制器。

2、电机的各相及检测线必须和控制器正确连接,否则电机无法正常运转。

3、PR1为力度调节电位器,顺时针调节为力度增加,逆时针调节为力度减小;
PR2为速度调节电位器,顺时针调节为速度减小,逆时针调节为速度增加。

4、调节力度、速度电位器时,请用小一字螺丝刀微调多圈。

- 接直流电源正极 - 接直流电源
地 - 接电机绕组A (粗
白线)- 接电机绕组B (粗蓝线)- 接电机绕组C (
粗绿线)- 接红色线(细线) - 接黑色线(细线) - 接电机相位检测器A
(细白线) - 接电机相位检测器B (细蓝线) - 接电机相位检测器C
(细绿线
)
- 接地线(停止)、悬空(运- 未定义 - +15V 电源
- 接地线(正转
)



(
反- 故障
输出-
地线
电源
指示灯 故障指示灯 - 地线- 接地线(运转)、悬空(制。

无刷直流电动机控制系统设计

无刷直流电动机控制系统设计

无刷直流电动机控制系统设计方案第1章概述 (1)1.1 无刷直流电动机的发展概况 (1)1.2 无刷直流永磁电动机和有刷直流永磁电动机的比较 (2)1.3 无刷直流电动机的结构及基本工作原理 (3)1.4 无刷直流电动机的运行特性 (6)1.4.1 机械特性 (6)1.4.2 调节特性 (6)1.4.3 工作特性 (7)1.5 无刷直流电动机的使用和研究动向 (8)第2章无刷直流电动机控制系统设计方案 (10)2.1 无刷直流电动机系统的组成 (10)2.2 无刷直流电动机控制系统设计方案 (12)2.2.1 设计方案比较 (12)2.2.2 无刷直流电动机控制系统组成框图 (13)第3章无刷直流电动机硬件设计 (15)3.1 逆变主电路设计 (15)3.1.1 功率开关主电路图 (15)3.1.2 逆变开关元件选择和计算 (15)3.2 逆变开关管驱动电路设计 (17)3.2.1 IR2110功能介绍 (17)3.2.2 自举电路原理 (19)3.3 单片机的选择 (20)3.3.1 PIC单片机特点 (20)3.3.2 PIC16F72单片机管脚排列及功能定义 (22)3.3.3 PIC16F72单片机的功能特性 (22)3.3.4 PWM信号在PIC单片机中的处理 (23)3.3.5 时钟电路 (23)3.3.6 复位电路 (24)3.4 人机接口电路 (24)3.4.1 转把和刹车 (24)3.4.2 显示电路 (25)3.5 门阵列可编程器件GAL16V8 (27)3.5.1 GAL16V8图及引脚功能 (27)3.6 传感器选择 (28)3.7 周边保护电路 (30)3.7.1 电流采样及过电流保护 (30)3.7.2 LM358双运放大电路 (31)3.7.3 欠电压保护 (32)3.8 电源电路 (32)第4章无刷直流电动机软件设计 (33)4.1 直流无刷电机控制器程序的设计概况 (33)4.2 系统各部分功能在软件中的实现 (33)4.3 软件流程图 (34)结束语 (36)致谢 (37)参考文献 (38)附录1 (39)附录2 (51)第1章概述1.1 无刷直流电动机的发展概况无刷直流电动机是在有刷直流电动机的基础上发展起来的,这一渊源关系从其名称中就可以看出来。

基于DSP的小功率无刷直流电动机驱动器设计

基于DSP的小功率无刷直流电动机驱动器设计
C a gh 1 2 5 C i ;2 Sho o f raina dC m u i t n,G in U i r t o l t nc h n sa4 0 0 , hn a . colfI om t n o m n ai n o c o u i n e i Ee r i l v syf c o Tcn l y G inG a g i 4 0 4, hn ) e o o , ul u n x 5 10 C ia h g i
2 .桂林 电子科技大学 信息 与通信学 院 ,广西 桂林 摘 5 10 ) 4 04
要 :现在家 电行业对小功率无刷直 流电动机 的需求 日见增 多 ,为了满足 用户对 电机控 制系统产 品性 能的更高要
求 。采用 1 公司的数字信号处理器 T S 2 F 8 2专用 电机控制芯片 ,设计了一种小功率无刷直 流电动机 的驱动器。 ' I M 30 2 1
0 引 言
无刷直流电动机具有高运行效率 、高启动转矩、 高控制精度以及 良好的调速性能等特点 ,适合于长 时间的连续运行场合。特别是其低速高转矩 以及频 繁正反转不发热的性能,更适 用于机床及牵 引电动 机的驱动控制。其稳速运转精度 比传统 的有刷直流 电动机更 高 ,性价 比更好 ,且体积小、质量轻 、可 作成各种体积形状 ,对于空间和质量要求较严格 的 环境更适合¨ 。是当今效率最高 的调速 电动机。随 J 着社会 的发展 ,用户对 电机控制产品性 能的要求越
bu he s DC rs ls moo d v wa d sg e o t n hs a e u ig I d dc td tr r e i s ein d u i ti p p r sn T ’ e iae moo c nrl hp S tr o to c i T 3 0 2 ii lsg a rc so .T eh r w r d sf aesrcuea d c nrl t tg f h rv MS 2 F 8 2 dgt in l o es r h ad aea ot r t tr n o t r e y o ed e 1 a p n w u o sa t i

基于foc矢量控制的无刷直流电机控制器设计

基于foc矢量控制的无刷直流电机控制器设计

知识专题:基于foc矢量控制的无刷直流电机控制器设计一、简介无刷直流电机(BLDC)是一种使用电子换向控制器而不是机械换向器来转动电机的电机类型。

它具有高效率、低噪音和长寿命等优点,因此在许多领域得到广泛应用。

而基于磁场定向控制的FOC矢量控制则是一种提高无刷直流电机性能的先进控制技术。

本文将就基于FOC矢量控制的无刷直流电机控制器设计进行深入探讨,包括其原理、设计要点以及应用场景等。

二、FOC矢量控制原理及优势FOC矢量控制是一种以矢量运算为基础的控制策略,通过对电机磁场和电流进行矢量控制,可以实现电机高效、精确的控制。

与传统的直接转矩控制(DTC)相比,FOC矢量控制具有转矩响应快、效率高、噪音小等优势,特别适用于对电机性能要求较高的场景。

三、基于FOC矢量控制的无刷直流电机控制器设计要点1. 电机参数识别:首先需准确识别电机的参数,包括电感、电阻、磁通极链系数等。

这些参数将直接影响控制器设计和性能表现。

2. 闭环控制策略:基于FOC矢量控制的无刷直流电机控制器通常采用闭环控制策略,例如PID控制。

通过精确的闭环控制,可以实现电机的精准转速和位置控制。

3. 硬件设计:控制器的硬件设计非常重要,包括功率电子器件选型、电路板布线、散热设计等。

合理的硬件设计可以提高控制器的稳定性和效率。

4. 软件算法:控制器的软件算法是FOC矢量控制的核心,其中包括空间矢量调制、换向算法、速度闭环控制等。

优秀的软件算法可以提高电机的控制精度和动态性能。

四、基于FOC矢量控制的无刷直流电机控制器应用场景1. 电动汽车:FOC矢量控制的无刷直流电机控制器在电动汽车领域有着广泛的应用。

其高效、精准的控制特性可以提高汽车的动力性能和续航里程。

2. 工业机器人:在工业机器人领域,FOC矢量控制的无刷直流电机控制器可以实现机器人的高速精度运动,提高生产效率和产品质量。

个人观点基于FOC矢量控制的无刷直流电机控制器设计是现代电机控制领域的重要研究方向,其在提高电机性能和应用领域拓展方面具有巨大潜力。

直流无刷电机控制器原理

直流无刷电机控制器原理

直流无刷电机控制器原理直流无刷电机(BLDC)控制器是一种用于控制无刷电机转速和方向的设备,它通过精确的电子控制来实现对电机的精准驱动。

在本文中,我们将详细介绍直流无刷电机控制器的原理,包括其工作原理、结构组成、控制方法等内容。

1. 直流无刷电机控制器的工作原理。

直流无刷电机控制器的工作原理主要是通过对电机的三相驱动信号进行精确的控制,从而实现对电机的转速和方向的控制。

在控制器内部,通常包含了驱动电路、传感器信号处理电路和控制逻辑电路。

其中,驱动电路用于产生电机的三相驱动信号,传感器信号处理电路用于处理电机位置和速度的反馈信号,控制逻辑电路用于实现对电机的闭环控制。

2. 直流无刷电机控制器的结构组成。

直流无刷电机控制器通常由主控芯片、功率放大器、传感器、电源模块等部分组成。

主控芯片是控制器的核心部分,它负责处理传感器反馈信号并生成电机驱动信号,功率放大器用于放大主控芯片输出的驱动信号,传感器用于检测电机的位置和速度,电源模块用于为整个控制器提供稳定的电源供应。

3. 直流无刷电机控制器的控制方法。

直流无刷电机控制器通常采用开环控制和闭环控制两种方法。

开环控制是指根据预先设定的电机驱动信号直接驱动电机,这种控制方法简单、成本低,但精度较低。

闭环控制是指通过传感器反馈信号对电机进行实时监测和调节,以实现对电机的精准控制,这种控制方法精度高,但成本较高。

4. 直流无刷电机控制器的应用领域。

直流无刷电机控制器广泛应用于工业自动化、电动汽车、无人机、家用电器等领域。

在工业自动化中,直流无刷电机控制器可以实现对生产线上各种设备的精准控制;在电动汽车中,直流无刷电机控制器可以实现对电动汽车驱动系统的精准控制;在无人机中,直流无刷电机控制器可以实现对无人机飞行稳定性的控制;在家用电器中,直流无刷电机控制器可以实现对家用电器的精准驱动。

5. 结语。

通过本文的介绍,相信读者对直流无刷电机控制器的原理有了更深入的了解。

无刷直流电机控制系统的设计及仿真

无刷直流电机控制系统的设计及仿真

目录1 前言............................................................................................................... - 0 -1.1 无刷直流电机的开展......................................................................... - 0 -1.2 无刷直流电机的优越性..................................................................... - 0 -1.3 无刷直流电机的应用......................................................................... - 1 -1.4 无刷直流电机调速系统的研究现状和未来开展............................. - 1 -2 无刷直流电机的原理................................................................................... -3 -2.1 三相无刷直流电动机的根本组成..................................................... - 3 -2.2 无刷直流电机的根本工作过程......................................................... - 4 -2.3 无刷直流电动机本体......................................................................... - 5 -2.3.1 电动机定子............................................................................... - 5 -2.3.2 电动机转子............................................................................... - 6 -2.3.3 有关电机本体设计的问题....................................................... - 7 -3 转子位置检测............................................................................................... - 8 -3.1 位置传感器检测法............................................................................. - 8 -3.2 无位置传感器检测法......................................................................... - 9 -4 系统方案设计............................................................................................. - 11 -4.1 系统设计要求................................................................................... - 11 -4.1.1 系统总体框架......................................................................... - 11 -4.2 主电路供电方案选择....................................................................... - 11 -4.3 无刷直流电机电子换相器............................................................... - 13 -4.3.1 三相半控电路......................................................................... - 13 -4.3.2 三相全控电路......................................................................... - 14 -4.4 无刷直流电机的根本方程............................................................... - 15 -4.5 逆变电路的选择............................................................................... - 17 -4.6 基于MC33035的无刷直流电动机调速系统................................... - 18 -4.6.1 MC33035无刷直流电动机控制芯片...................................... - 18 -4.6.2 基于MC33035的无刷直流电动机调速系统设计 ................ - 19 -5 无刷直流电机调速系统的MATLAB仿真................................................... - 22 -5.1 电源、逆变桥和无刷直流电机模型............................................... - 23 -5.2 换相逻辑控制模块........................................................................... - 24 -5.3 PWM调制技术.................................................................................... - 29 -5.3.1 等脉宽PWM法......................................................................... - 31 -5.3.2 SPWM(Sinusoidal PWM)法..................................................... - 31 -5.4 控制器和控制电平转换及PWM发生环节设计............................... - 31 -5.5 系统的仿真、仿真结果的输出及结果分析................................... - 33 -5.5.1 起动,阶跃负载仿真............................................................. - 33 -5.5.2 可逆调速仿真......................................................................... - 35 -6 总结和体会................................................................................................. - 37 -无刷直流电机调速控制系统设计1前言直流无刷电机,无机械刷和换向器的直流电机,也被称为无换向器直流电动机。

一种小功率无位置传感器无刷直流电动机控制系统研究

一种小功率无位置传感器无刷直流电动机控制系统研究

t n. a d c nr ls ae y f rt i s s m r e c ie . i o n o t t t g s y t a e d s rb d o r o h e KEY ORDS: S n o ls ; B DC ; T r u i p e ; V l g W e sr s e L M oq er ls p o t e} C re t Me s r n a u rn ; a u me t
躲 ;嚣 .
中 ,三相 电动 势 中共 有 6个过零 点 。如果 能够 通过

种 方法 检测 这 6个 过 零 点 ,再将 其 延 迟 3 。 O 电角
( ) I 2 3管脚 H N 和 a R 1O Il L N 输 入波形 I2
( )主 电 ̄-B b f 端输 出波形 A
度 ,就可 以得 到 6个 换 相信号 。反 电动势 过零 点检
1 控 制 系统 概 述
1 .1 控 制 方法 和控制 芯 片的选择
工作 主 电路 的母 线 电压 ,并 且 为 了 防 止 自举 电容 两端 电压 放 电 ,选用 快恢 复 二极 管 F 17 R 10 R 0 。I2 3
自 带死区功能 ,经实验测得 为 25 ~3 s . ,故
本 文研 究 的无 刷 直 流 电动 机 功 率 为 7 Ow,5 对 极 ,电压 2 4V,电流 4A。系统采 用反 电动势 过 零 点 检测法 。其 思 想 为 :三 相 无 刷 直 流 电动 机 每
彭钰珍 韦忠朝
4 07 ) 3 0 4 ( 华中科 技大学 ,武汉

要:为 了寻找合适的外围简化 电路,配合完善的算法介绍 了7 无位置传感器无刷直流电 Ow
动机 的起 动过程 、 电压 检测 、电流 检测 、换 相 转矩 的抑 制 以及 电机 相 应 的 控 制策 略 等 ,给 出 了

直流无刷电机控制器调速方法【技巧】

直流无刷电机控制器调速方法【技巧】

直流无刷电机怎么控制速度?很多开始使用无刷电机的客户咨询这个问题,随着无刷马达广泛在医疗、自动化设备、机器人、汽车等领域的应用,为了实现不同的传动控制要求,对控制直流无刷电机的速度的快慢、正反转等驱动问题有很多疑问,下面给大家分享控制无刷电机速度的3个方法:直流无刷电机的调速方法:方法一:用电压来操控速度,扭力主要由电流来操控,一般会带一个配套的电机驱动器,更改驱动器的輸出电压就还可以操控无刷电机的速度,如果没有驱动器,想自已真接操控马达的话,需要看马达的功率和工作电流。

方法二:PWM控速,直流电机的PWM控速原理与交流电机调速原理不同,它不是通过调频方式去调节马达的转速,而是通过调节驱动电压脉冲宽度的方式,并与电路中一些相应的储能元件配合,更改了输送到电枢电压的幅值,从而达到更改直流无刷电机转速的目的。

它的调制方式是调幅。

PWM操控有两种方式:1.采用PWM信号,操控三极管的导通时间,导通的时间越长,那么做功的时间越长,马达的转速就越高2.采用PWM操控信号操控三极管导通时间,更改操控电压高低来实现方法三:如果是小功率的马达还可以用电阻控速(不建议采用,方式非常简单,串联个电位器即可,只有这个方式会降低效率,因此不倡导),大功率的马达不能采用电阻操控速度,是因为这样需要一个小阻值大功率的电阻(马达工作阻值很小),这个电阻不好找而且这个方案效率太低,最好是还是找个配套的直流无刷电机驱动器。

以上就是关于直流无刷电机控制调速的3个比较常用的方法,希望可以给大家一点帮助和启示。

扩展资料:直流无刷电机工作原理:无刷直流电机由电动机主体和驱动器组成,是一种典型的机电一体化产品。

电动机的定子绕组多做成三相对称星形接法,同三相异步电动机十分相似。

电动机的转子上粘有已充磁的永磁体,为了检测电动机转子的极性,在电动机内装有位置传感器。

驱动器由功率电子器件和集成电路等构成,其功能是:接受电动机的启动、停止、制动信号,以控制电动机的启动、停止和制动;接受位置传感器信号和正反转信号,用来控制逆变桥各功率管的通断,产生连续转矩;接受速度指令和速度反馈信号,用来控制和调整转速;提供保护和显示等等。

无刷直流电机控制器工作原理

无刷直流电机控制器工作原理

无刷直流电机控制器工作原理无刷直流电机控制器是一种用于控制无刷直流电机转速和方向的电子设备。

它通过调节电流和电压来控制电机的运转,实现电机的转速和方向的精确控制。

无刷直流电机控制器主要由电源模块、驱动模块和控制模块组成。

电源模块负责提供电源电压,通常使用直流电源供电。

驱动模块负责将电源电压转换为电机所需的相应电压和电流。

控制模块则负责接收外部的控制信号,根据信号的要求调节电机的转速和方向。

在无刷直流电机控制器中,关键的部件是功率半导体器件,通常使用MOSFET作为开关元件。

MOSFET具有高开关速度、低开关损耗和较低的导通电阻,适合用于高频率开关电路。

功率半导体器件的选取和设计对于无刷直流电机控制器的性能至关重要。

无刷直流电机控制器的工作原理主要包括以下几个方面:1. 电机驱动:控制器通过驱动模块将电源电压转换为电机所需的相应电压和电流。

驱动模块通常采用电流型控制方式,即通过调节电流大小来控制电机的转速。

控制器中的电流环和速度环可以实现闭环控制,使电机的转速更加稳定。

2. 电机霍尔传感器信号处理:无刷直流电机的转子上通常安装有霍尔传感器,用于检测转子的位置和速度。

控制器接收到霍尔传感器的信号后,根据信号的变化来判断电机的转子位置,从而确定电机的转子位置和速度。

3. 相序控制:无刷直流电机的转子上有多个绕组,控制器通过确定绕组的通断顺序来控制电机的转向。

相序控制是通过控制器中的电子开关来实现的,根据转子位置和速度来改变电子开关的状态,从而改变绕组的通断顺序。

4. 脉宽调制:为了控制电机的转速,控制器通过脉宽调制(PWM)技术来调节电机的电流。

脉宽调制是通过改变信号的占空比来改变电流大小,占空比越大,电流越大,电机转速越快;占空比越小,电流越小,电机转速越慢。

5. 保护功能:无刷直流电机控制器还具有多种保护功能,如过流保护、过温保护和过压保护等。

当电机工作时,如果电流、温度或电压超过设定的阈值,控制器会自动切断电源,以保护电机和控制器的安全。

无刷直流电机控制器mc33035的原理及应用

无刷直流电机控制器mc33035的原理及应用

无刷直流电机控制器MC33035的原理及应用1. 简介无刷直流电机(BLDC)是现代电动机领域的重要组成部分,广泛应用于电动汽车、家用电器、工业自动化等领域。

无刷直流电机控制器MC33035是一款常用控制器之一,本文将介绍MC33035的工作原理及其应用。

2. MC33035的工作原理MC33035是一种三相直流无刷电机控制器,它采用了先进的空闲轴暂态电流控制的技术,能够实现高效的电机控制。

下面将详细介绍MC33035的工作原理。

2.1 相电流控制MC33035通过调节不同相的电流来控制电机的转速和转向。

它采用了一个电流环路和一个速度环路来实现精确的控制。

在电流环路中,MC33035通过PWM方式驱动功率MOSFET,调节电机相的电流大小和方向。

通过改变电流大小和相序,MC33035能够控制电机的转速和转向。

2.2 空闲轴暂态电流控制MC33035还采用了空闲轴暂态电流控制技术,通过改变暂态电流的大小和时序来提高电机的控制精度和效率。

在暂态电流控制过程中,MC33035会检测电机的转速和电流,并根据设定的参数进行调整,以实现最佳的控制效果。

3. MC33035的应用MC33035广泛应用于各种无刷直流电机控制系统中,具有以下特点和优势:3.1 高效性能MC33035采用了先进的控制算法和技术,能够实现高效的电机控制。

其空闲轴暂态电流控制技术可以显著提高电机的效率,减少能量损耗。

3.2 稳定可靠MC33035具有良好的稳定性和可靠性,能够在复杂的工作环境下稳定运行。

它能够自动检测和保护电机,防止过电流、过电压等故障发生。

3.3 灵活可编程MC33035具有丰富的控制参数和接口,可以根据不同的应用需求进行灵活配置。

用户可以通过编程来调整控制算法和参数,实现定制化的控制方案。

3.4 广泛应用MC33035广泛应用于电动汽车、电动工具、家用电器、工业自动化等领域。

它可以控制不同功率和转速范围的电机,满足各种应用需求。

无刷直流电机控制器的设计

无刷直流电机控制器的设计
PIC系列单片机是采用精简指令集RISC技术、哈佛双总线和两级指令流水线结构的高性能价格比的8位嵌入式控制器(Embedded Controller)。本文研究的电动自行车车用的无刷直流电机控制器系统是以选取Microchip公司的一款具有极高性能价格比的PIC系列单片机PICl6F72做为主控芯片,用编程的方法来模拟无刷电机的控制逻辑,其特点是使用灵活,通过修改程序可适应不同规格的无刷电机,增加系统功能方便,通常将此类控制器称为数字式控制器;并且采用速度、电流双闭环控制策略,增强系统抗干扰能力,提高电机的运行效率,同时加入一些保护功能,如欠压保护、过电流保护、堵转保护等等,使系统设计更合理化、人性化。系统采用软件编程的方法来模拟无刷电机的控制逻辑,其特点是使用灵活,通过修改程序可适应不同规格的无刷电机,增加系统功能方便。
无刷直流电机控制器的设计
无刷直流电动机兼有直流电动机调整和起动性能好以及异步电动机结构简单无需维护的优点,因而在高可靠性的电机调速领域中获得了广泛应用。在电机转速控制方面,绝大多数场合数字调速系统已取代模拟调速系统。目前,数字调速系统主要采用两种控制方案:一种采用专用集成电路。这种方案可以降低设备投资,提高装置的可靠性,但不够灵活。另一种是以微处理器为控制核心构成硬件系统。这种方案可以编程控制,应用范围广,且灵活方便。
★工作电压、功耗:
单片机的工作电压最低可以达到,最高为6V,常见的是3V和5V
单片机的功耗参数主要是指正常模式、空闲模式、掉电模式下的工作电流,用电池供电的系统要选用电流小的产品,同时要考虑是否要用到单片机的掉电模式,如果要用的话必须选择有相应功能的单片机。
★其他方面:
在单片机的性能上还有很多要考虑的因素,比如中断源的数量和优先级、工作温度范围、有没有低电压检测功能、单片机内部有无时钟振荡器、有无上电复位功能等等。

国内外直流无刷电动机各种控制技术分析

国内外直流无刷电动机各种控制技术分析

(4) dsp控制器
在基于dsp的无刷直流电动机控制系统中,一片dsp就可代替单片机和各种接口,且由于dsp芯片的快速运算能力,可以实现更复杂、更智能化的算法;可以通过高速网络接口进行系统升级和扩展;可以实现位置、速度和电流环的全数字化控制,可以方便地通过sc i接口的扩展能力与上位机进行通讯,组成多机系统结构。以tms320lf2407为核心的永磁无刷直流电动机控制系统设计,包括pwm斩波电路结构及功率开关器件的选择,驱动电路,保护电路,及软件编程。利用tms320lf2407的运动控制接口形成单片dsp控制的电机系统,使用霍尔元件检测转子磁极位置,形成电子换向逻辑,通过数字p i速度和电流控制器控制电机速度。实验证明使用dsp实现无刷直流电动机控制,不仅比传统的模拟电路成本低,而且结构简单,方便扩展。基于tms320lf2407dsp数字信号处理芯片、智能功率模块ipm的无位置传感器的无刷直流电动机调速系统,采用p i控制算法提高了系统的实时性和控制精度,可以实现无刷直流电动机的无级调速。
(3) 无传感器控制
从控制系统的成本、维护性、可靠性等方面考虑,无传感器的传动系统对提高系统的可靠性具有更重要的意义,成为近年的研究热点。无传感器控制技术的关键在于速度/位置的观测与估计。由于无刷直流电动机在任意时刻,定子的三相绕组只有两相绕组同时有励磁电流,而另外一相绕组的感应电动势幅值较小,杂波较多,因此更适于无传感器控制。由于取消了霍尔元件等位置传感器,保证此类电机的稳定运行成了关键问题。电机在不同的工作频率、启动及过流状态下需要满足一定的稳定运行条件, pll锁相环以及pwm速度反馈网络也会影响电机工作的稳定性。无位置传感器无刷直流电动机的锁相稳速控制方法可以实现对电机的高精度稳速控制,既无需检测电机转子位置的传感器,也不用检测电机转速的光电码盘,而是由电机电枢绕组的反电动势经整形后直接作为转速反馈信号,系统一经锁定,电机的转速就跟随参考信号的频率变化,其稳速精度达到与晶体振荡器提供频率一样的稳定精度。基于三次谐波检测法的无位置传感器无刷直流电动机控制系统,可以实现开环、转速负反馈以及电压负反馈加电流正反馈三种调速方法。开环方式适合于转速精度要求不高的场合,转速负反馈方式适合于机械特性要求比较硬、转速精度要求比较高的场合,而电压负反馈电流正反馈方式则应用于动态性能要求比较高的场合。由于位置传感器直流电压波纹的信号失真对无刷直流电动机的性能也有影响,因而使无位置传感器的研究显得更为重要。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

小功率低成本的无刷直流电动机控制器研制
合肥工业大学自动化研究所肖本贤
摘要:针对电动助力车与压缩机电机的特点,对其驱动控制进行了研究,提出了一种高效低价的小型控制器的设计。

主要介绍以专用控制芯片MCC33035、MC33039、IR2130为核心构成的永磁无刷直流电动机控制器结构,主要涉及核心控制电路的构成、功率开关元件的驱动以及必要的保护措施。

1 引言
永磁无刷直流电动机是近年随着电力电子器件及新型永磁材料发展而迅速成熟起来的一种新型机电一体化电机,既具有交流电机的结构简单、运行可靠、维护方便等优点,又具备直流电机那样固有的优越的起动性能和调速特性,而无机械式换向机构,现以广泛应用于各种调速驱动场合,其应用前景看好,尤其从当今的环保、能源、效率等综合因素出发,水磁无刷直流电机可望在未来的电动车及冰箱或空调类永磁压缩机领域占有主导地位。

永磁无刷直流电动机控制器结构已有多种形式,有最初复杂的模拟式到近来以单片机为核心的数字式,但新型电机控制专用芯片的出现,给无刷直流电机调速装置设计带来了极大的便利,这种集成模拟控制芯片控制功能强、保护功能完善、工作性能稳定,组成的系统所需外围电路简单、抗干扰能力强、特别适用于对控制器体积、价格性能比要求较高的场合。

2 无刷直流电机的驱动控制电路
无刷直流电动机功率开关电路一般采用桥式或非桥式驱动,由于三相星形桥式驱动方式,其绕组利用率较高、力矩波动小,因而被大量采纳。

图1 是其工作原理图,对压缩机类负载,其输入可采用220V/50HZ市电输入、二极管单相全桥整流、电容滤波后得到;而对电动车其直流电源一般均为蓄电池。

图中主回路功率器件选用POWER-MOSFET,驱动电路采用IR公司生产的六输出高压MOS栅极驱动器IR2130。

MC33035是MOTOROLA公司研制的第二代无刷直流电机控制专用集成电路,加上一片MC33039电子测速器将转子位置信号进行F/V转换,形成转速反馈信号,即可构成转速闭环调节系统。

MC33035包括—个转子定位译码器可用于确定适当换向顺序,它监控着3 个霍尔效应开关传感器输入(4、5、6脚),以保证顶部和底部驱动输出的正确顺序;一个以向传感器供电能力为基准的温度补偿器;一个可以程序控制频率的锯齿波发生器;一个全通误差放大器,能够促进闭环电机速度实现控制,若作为开环速度控制,则可将这误差放大器连成为单一增益电压跟随器;一个脉冲宽度调制比较器,3个集电极开路顶部驱动输出(1,2,24脚),以及三个适用于驱动功率MOSFET的理想的大电流推挽式底部驱动输出(19,20,21脚);MC33035还具有几种保护特性,欠压锁定,由可选时间延迟限制的循环电流锁定停车方式,内部过热停车,以及一个很容易与微处理器相连的故障输出。

这两种集成芯片可以方便地完成无刷直流电动机的正反转、运转起动以及动态制动、过流保护、三相驱动信号的产生、电动机转速的简易闭环控制等。

此外,MC33035还有一个60度/120度选择管脚,它可
以确定转子定位译码器是60。

或是120。

传感器电相位输入。

该控制器电路结构,如图2所示。

图2中,J1控制电机转向,J2控制起停,月选择速度开环或闭环运行,J4控制电机制动,J5选择转子位置检测信号为60度或120度方式,J6控制系统的复位。

电位器用以设定所需电机转速,LED用作故障指示,当出现无效的传感器输入码、过流、欠压、芯片内部过热、使能端为低电平时,LED发光报警,同时自动封锁系统,只有故障排除后,经系统复位才能恢复正常工作。

该控制器工作过程为:从电机转子位置检测器PS送来的三相位置检测信号(SA、SB、SC)一方面送入MC33035,经芯片内部译码电路结合正反转控制端、起停控制端、制动控制端、电流检测端等控制逻辑信号状态,经过运算后,产生逆变器三相上、下桥臂开关器件的六路原始控制信号,其中,三相下桥开关信号还要按无刷直流电机调速机理进行脉宽调制处理。

处理后的三相下桥PWM控制信号(AB、BB、CB)及三相上桥控制信号(AT、BT、CT)经过驱动放大后,施加到逆变器的六个开关管上,使其产生出供电机正常运行所需的三相方波交流电流。

另一方面,转子位置检测信号还送入MC33039,经F/V转换,得到一个频率与电机转速成正比的脉冲信号FOUT,其通过简单的阻容网络滤波后形成转速反馈信号,利用MC33035中的误差放大器即可构成一个简单的P调节器,实现电机转速的闭环控制。

实际应用中,还可用外接各种PI、PID调节电路实现复杂的闭环调节控制。

3 IR2130驱动电路分析
按MC33035 的原有设计,其输出的下桥三路驱动信号可直接驱动N沟通功率MOSFET,上桥三路驱动信号可直接驱动P沟通功率MOSFET。

现考虑到逆变桥上桥臂也采用三个N沟通MOSFET,这样,各相上桥臂的驱动信号都将有各自不同的地位;另一考虑就是在需要较大驱动信号及较大偏置电压下直接使用,而MC33035上桥臂仅具有50mA吸入电流及最小30V击穿电压能力,在较高电压场合下,如AC220V经单相桥整流的给定电压就需转换。

IR2130 是美国IR公司生产的大功率MOSFET和IGBT专用驱动集成电路,驱动信号延时为阳级,开关频率在20kHz以上,其主要特点和性能为:集成度高,六路驱动,所需外围元件少;偏置电压最大600V,驱动电流200Ma/420mA,栅压范围10~20V,开关时间120ns/94ns(典型值),死区时间2.5μs(典型值);具有过流关断、欠压封锁功能;单电源工作,六路驱动仅用一个+15V~20V直流电压电源,IR2130内部应用自举技术来实现同一集成电路可同时输出两个驱动逆变桥中高压侧与低压侧的通道信号,它的内部为自学操作设计了悬浮电源;悬浮电源保证了IR2130直接可用于母线电压为—4~+500V的系统中来驱动功率MOSFET或IGBT,其中3个上半桥臂功率管驱动利用自举电容电压供电,3个下半桥臂功率管与芯片共用一个电源。

IR2130外部电路,如图3所示。

图中,C1、C2、C3为逆变器上桥臂产生隔离电源的自举电容,其值的大小与功率开关的栅极驱动要求和功率开关的最大“开通”时间有关;R3—R6、RS为过流检测电阻,只要改变R4的大小,就可调节电流保护值的大小;
R10—R15为栅极电阻,R7—R9 为上三臂的栅源电阻;其中引脚2、3、4为驱动逆变器中三个高压侧功率管的对应信号输入端,引脚5、6、7为驱动逆变器中三个低压侧功率管对应信号输入端,分别接至MC33035对应输出端;而对应的六路驱动器输出端已连至相应高、低压侧的六个N沟道功率MOSFET;芯片中ITRP是过流保护的逻辑输入信号,该信号取自功率主电路中的电流检测器,它与一个0.5v的比较电平比较,再与欠压等信号相或,可以阻止信号发生器产生六个输出,同时送出一故障信号FAULT给外部电路,该端提供一个过电流、直通或过电压、欠电压保护的指示信号,应用中,接指示用发光二极管或用户系统封锁端。

其工作原理为:从MC33035脉冲形成部分(或PWM波形发生器)来的三相六路输出脉冲信号,经内部三个输入信号处理器,按真值表处理之后,变为六路输出脉冲,其对应的驱动三路低压侧功率管信号,经三路输出驱动器功率放大后,直接送往被驱动MOSFET的栅源极。

而另外三路高压侧驱动信号H1、H2、H3 先经片内三个脉冲处理和电平移位器中的自举电路进行电位转换,变为三路电位悬浮的驱动脉冲,再经对应的三路输出锁存器锁存,并经严格的驱动脉冲欠电压与否检验之后,送到输出驱动器进行功率放大,最后才加到高压侧的MOSFET 的栅源极。

一旦外电路发生过电流或直通、IR2130的工作电源欠电压、某路自举电源工作电压不足、脉冲形成环节发生故障时,一则封锁驱动信号,另一方面,经FAULT端输出一故障信号。

附加上一个电路图(不用IR2130):
4 结束语
文中介绍的利用专用集成芯片构成的无刷直流电机控制系统,具有集成度高、速度快及完善的保护功能等特点。

尤其是采用单一电源驱动的具有六路输出功能的IR2130 集成快,大大简化了驱动电路结构,因而整个线路外围元件少、走线简单,可大大减小逆变器体积,提高可靠性,必将成为新一代变频器驱动电路。

该电路己成功地用于无刷直流电动机的控制装置中,实践证明:它是理想的无刷直流电机专用逆变调速器,具有成本低、结构简单、工作可靠的特点。

相关文档
最新文档