圆的切线练习题
初三圆的切线试题及答案
初三圆的切线试题及答案
一、选择题
1. 下列说法正确的是()
A. 圆的切线垂直于过切点的半径
B. 圆的切线与过切点的半径垂直
C. 圆的切线与过切点的直径垂直
D. 圆的切线与过切点的弦垂直
答案:B
2. 经过圆外一点作圆的切线,下列说法正确的是()
A. 只能作一条
B. 能作两条
C. 能作无数条
D. 不能作
答案:B
二、填空题
3. 已知圆的半径为5,圆心到切线的距离为3,则切线的长度为______。
答案:4√2
4. 圆的直径为10,切线与直径的夹角为30°,则切线的长度为______。
答案:5√3
三、解答题
5. 已知圆O的半径为2,点A在圆外,OA=4,求经过点A的圆O的切
线长。
答案:首先,连接OA,设切点为B。
由题意知,OA=4,OB=2。
在直角
三角形OAB中,根据勾股定理,AB²=OA²-OB²=4²-2²=12,所以
AB=2√3。
由于切线与半径垂直,所以切线长为2√3。
6. 圆的半径为3,圆心到切线的距离为2,求切线与圆心的夹角。
答案:设切线与圆心的夹角为θ,根据切线的性质,圆心到切线的距
离等于半径乘以sinθ,即2=3sinθ。
解得sinθ=2/3。
由于θ在0°到90°之间,所以θ=arcsin(2/3)。
圆的切线练习题
圆的切线练习题一、选择题1. 已知圆的半径为5,点P到圆心的距离为10,则点P与圆的位置关系是()。
A. 点P在圆内B. 点P在圆上C. 点P在圆外2. 圆的切线与圆相切于点A,若切线与圆心的距离为6,则圆的半径是()。
A. 3B. 6C. 12D. 9二、填空题1. 若圆的半径为r,点P到圆心的距离为d,当d等于r时,点P与圆的位置关系是________。
2. 已知圆的切线在圆上与点A相切,若切线与圆心的距离为d,圆的半径为r,则切线与圆心的距离d等于________。
三、计算题1. 已知圆的半径为7,圆上一点A的坐标为(3,4),求过点A的圆的切线方程。
2. 圆心坐标为(0,0),半径为5,求过点(3,3)的圆的切线方程。
四、证明题1. 证明:圆的切线垂直于经过切点的半径。
2. 证明:若两圆相切于点A,且两圆的半径分别为r1和r2,点P在两圆的公共切线上,且PA=PB,则PA=PB=r1+r2。
五、应用题1. 一个圆的半径为10,圆心在原点(0,0),求过点(6,8)的圆的切线方程。
2. 已知两圆外切,圆心分别为O1(-3,0)和O2(3,0),半径分别为5和3,求两圆的公共切线方程。
六、综合题1. 在平面直角坐标系中,圆C的圆心在(1,2),半径为3。
点A的坐标为(4,0),求过点A的圆C的切线方程。
2. 圆心在(2,3)的圆与x轴相切,求圆的半径,并求出切点坐标。
七、探索题1. 探索:若圆的半径为定值,当圆上一点到圆心的距离逐渐增大时,过该点的圆的切线数量会如何变化?2. 探索:若两圆相切,且已知一圆的半径和两圆心的距离,如何求另一圆的半径?八、开放性问题1. 若圆的切线与圆心构成一个直角三角形,求切线的长度与圆的半径之间的关系。
2. 设想一个实际问题,其中涉及到圆的切线,并尝试构建一个数学模型来解决这个问题。
请注意,以上题目仅为示例,具体题目应根据实际教学大纲和学生水平进行适当调整。
初三圆的切线试题及答案
初三圆的切线试题及答案一、选择题1. 圆的切线与圆相切于一点,该点称为切点。
圆的切线有以下哪个特征?A. 切线与半径垂直B. 切线与直径平行C. 切线与切点的半径垂直D. 切线与圆心的距离等于半径答案:C2. 已知圆的半径为5,点A到圆心的距离为7,那么点A到圆的切线距离是多少?A. 2B. 3C. 4D. 5答案:A二、填空题1. 圆的切线与圆相切于______,并且切线与该点的半径垂直。
答案:切点2. 如果圆的半径为r,点P到圆心的距离为d,当d > r时,点P到圆的切线距离为d - r;当d < r时,点P到圆的切线距离为______。
答案:r - d三、解答题1. 如图,圆O的半径为3,点P在圆O上,PA是圆O的切线,PA垂直于OP,求PA的长度。
解:由于PA是圆O的切线,根据切线的性质,我们知道PA与OP 垂直,且PA的长度等于OP的长度减去半径的长度。
因此,PA的长度为OP - 3。
由于OP是半径,所以OP = 3。
代入公式得PA = 3 - 3 = 0。
但这个结果显然是错误的,因为PA不可能为0。
这里需要重新审视题目,如果题目没有错误,那么可能是题目本身存在问题。
2. 已知圆的半径为5,点A在圆上,点B在圆外,AB是圆的切线,且AB垂直于过圆心的直线l,求点B到圆心O的距离。
解:由于AB是圆的切线,且AB垂直于过圆心的直线l,我们可以知道OA = 5(半径),并且由于AB垂直于l,根据勾股定理,我们可以计算出OB的长度。
设OB = x,那么根据勾股定理,我们有:\[ x^2 = OA^2 + AB^2 \]由于AB垂直于OA,所以AB的长度等于OA的长度,即AB = 5。
代入公式得:\[ x^2 = 5^2 + 5^2 = 50 \]解得x = √50 ≈ 7.07。
结束语:通过上述试题,我们可以看到圆的切线问题涉及到切线的性质、勾股定理以及几何图形的构造。
解决这类问题需要对圆的性质有深入的理解,并且能够灵活运用几何知识。
圆的切线综合练习题与答案完整版
圆的切线综合练习题与答案HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】切线的判定与性质练习题一、选择题(答案唯一,每小题3分)1.下列说法中,正确的是( )A.与圆有公共点的直线是圆的切线 B.经过半径外端的直线是圆的切线C.经过切点的直线是圆的切线 D.圆心到直线的距离等于半径的直线是圆的切线2. 如图,AB是⊙O的直径,AC切⊙O于A,BC交⊙O于点D,若∠C=70°,则∠AOD的度数为( )A.70° B.35° C.20° D.40°第2题第3题第4题第5题3. 如图,线段AB是⊙O的直径,点C,D为⊙O上的点,过点C作⊙O的切线交AB的延长线于点E,若∠E=50°,则∠CDB等于( )A.20° B.25° C.30° D.40°4.如图,等腰直角三角形ABC中,AB=AC=8,O为BC的中点,以O为圆心作半圆,使它与AB,AC都相切,切点分别为D,E,则⊙O的半径为( )A.8 B.6 C.5 D.45.如图,CD是⊙O的直径,弦AB⊥CD于点G,直线EF与⊙O相切于点D,则下列结论中不一定正确的是( )A.AG=BG B.AB∥EF C.AD∥BC D.∠ABC=∠ADC二.填空题(每小题3分)6.如图,在⊙O中,弦AB=OA,P是半径OB的延长线上一点,且PB=OB,则PA与⊙O的位置关系是_________.第6题第7题第8题7.如图,△ABC的一边AB是⊙O的直径,请你添加一个条件,使BC是⊙O的切线,你所添加的条件为________________.8.如图,AB是⊙O的直径,O是圆心,BC与⊙O切于点B,CO交⊙O于点D,且BC=8,CD=4,那么⊙O的半径是______.9. 如图,若以平行四边形一边AB为直径的圆恰好与对边CD相切于点D,则∠C=_______度.第9题第10题第11题10. 如图,AB为⊙O的直径,直线l与⊙O相切于点C,AD⊥l,垂足为D,AD交⊙O于点E,连接OC,BE.若AE=6,OA=5,则线段DC的长为______.11.如图,已知△ABC内接于⊙O,BC是⊙O的直径,MN与⊙O相切,切点为A,若∠MAB=30°,则∠B=________度.三、解答题(写出详细解答或论证过程)12.(7分)如图,在Rt△ABC中,∠C=90°,BD是角平分线,点O在AB上,以点O为圆心,OB为半径的圆经过点D,交BC于点E.求证:AC是⊙O的切线.第12题第13题第14题13.(7分)如图,AB是⊙O的直径,点C在AB的延长线上,CD与⊙O相切于点D,CE⊥AD,交AD的延长线于点E.求证:∠BDC=∠A.14.(7分)如图,在Rt△ABC中,∠ABC=90°,∠BAC的平分线交BC于D,以D为圆心,DB长为半径作⊙D,求证:AC与⊙D相切.15.(10分)如图,AB为⊙O的直径,PD切⊙O于点C,交AB的延长线于点D,且∠D=2∠CAD.(1)求∠D的度数;(2)若CD=2,求BD的长.第15题第16题16.(12分)已知△ABC内接于⊙O,过点A作直线EF.(1)如图①,若AB为⊙O的直径,要使EF成为⊙O的切线,还需要添加的一个条件是(至少说出两种):__________________________或者_______________________;(2)如图②,如果AB是不过圆心O的弦,且∠CAE=∠B,那么EF是⊙O的切线吗?试证明你的判断.17.(12分)如图,已知直线PA交⊙O于A,B两点,AE是⊙O的直径,点C为⊙O上一点,且AC平分∠PAE,过C作CD⊥PA,垂足为D.(1)求证:CD为⊙O的切线;(2)若DC+DA=6,⊙O的直径为10,求AB的长.答案:DDADC 6. 相切 7. ∠ABC=90°不排除等效答案 8. 6 9. 45 10. 4 11. 6012. 解:连接OD,∵BD为∠ABC平分线,∴∠OBD=∠CBD,∵OB=OD,∴∠OBD=∠ODB,∴∠CBD=∠ODB,∴OD∥BC,∵∠C=90°,∴∠ODA=90°,则AC为⊙O的切线13. 解:连接OD,∵CD是⊙O的切线,∴∠ODC=90°,∴∠ODB+∠BDC=90°,∵AB是⊙O的直径,∴∠ADB=90°,即∠ODB+∠ADO=90°,∴∠BDC=∠ADO,∵OA=OD,∴∠ADO=∠A,∴∠BDC=∠A14. 解:过D作DH⊥AC于H,由角平分线的性质可证DB=DH,∴AC与⊙D相切15. 解:(1)∵∠COD=2∠CAD,∠D=2∠CAD,∴∠D=∠COD.∵PD与⊙O相切于点C,∴OC⊥PD,即∠OCD=90°,∴∠D=45°(2)由(1)可知△OCD是等腰直角三角形,∴OC=CD=2,由勾股定理,得OD=22+22=22,∴BD=OD-OB=22-216. (1) ∠BAE=90°∠EAC=∠ABC(2) (2)EF是⊙O的切线.证明:作直径AM,连接CM,则∠ACM=90°,∠M=∠B,∴∠M+∠CAM=∠B+∠CAM=90°,∵∠CAE=∠B,∴∠CAM+∠CAE=90°,∴AE⊥AM,∵AM为直径,∴EF是⊙O的切线17. 解:(1)连接OC,证∠DAC=∠CAO=∠ACO,∴PA∥CO,又∵CD⊥PA,∴CO⊥CD,∴CD为⊙O 的切线(2)过O作OF⊥AB,垂足为F,∴四边形OCDF为矩形.∵DC+DA=6,设AD=x,则OF=CD=6-x,AF=5-x,在Rt△AOF中,有AF2+OF2=OA2,即(5-x)2+(6-x)2=25,解得x1=2,x2=9,由AD<DF知0<x<5,故x=2,从而AD=2,AF=5-2=3,由垂径定理得AB=2AF=6。
圆切线练习题
圆切线练习题圆是几何学中的重要概念,而切线则是与圆相关的一个基本概念。
本文将介绍一些圆切线的练习题,帮助读者加深对这个概念的理解和应用。
练习题一:已知圆O的半径为r,圆心角θ是一个锐角,且圆弧AB与圆切线AB的夹角为α,请问如何求解这个问题?解答:首先,根据圆心角θ是锐角得出圆切线是切线,因此圆切线与半径的夹角等于半径与切线的夹角的补角,即β=90°-α。
又因为欧拉定理指出,半径与切线的夹角等于切线的切点到圆心的距离与半径的乘积。
因此,我们可以根据已知条件得到以下公式:tan(β) = r/AB。
练习题二:设定一圆O,半径为r。
某条直线与圆相交于点A和点B,这条直线与圆中心的距离为d,请问如何确定直线与圆的位置关系?解答:首先,找到通过AB中点且垂直于AB的直线。
设该直线与圆相交于点M和点N。
由于OM与ON为半径,所以OM=ON=r。
根据勾股定理可得AM^2 = AB^2/4 - OM^2= AB^2/4-r^2。
因此,当AM^2小于等于0时,说明直线和圆无交点;当AM^2大于0时,说明直线与圆有两个交点;当AM^2等于0时,说明直线与圆相切。
练习题三:设一圆的半径为r,切点为A,圆心为O,连接OA并延长为直线OB,过点B作圆的切线BC,请问如何判断圆切线BC和直线OA的夹角的大小?解答:由于半径OA和切线BC在点B处相交,因此根据欧拉定理,夹角OBC等于OB与切点至圆心的距离OA的乘积除以半径r的平方。
换句话说,tan(夹角OBC) = OB/OA。
练习题四:已知一圆的半径为r,点P到圆心的距离为d,点P到圆上某一点Q 的连线与圆的切线相交于点T,请问如何求解切线与半径的夹角PTQ的大小?解答:首先,根据切线与半径的性质,得出夹角PTQ等于直角PTQ与与切线PT的夹角的补角。
又根据欧拉定理得出tan(直角PTQ) = d/r。
因此,我们可以利用已知条件计算出切线与半径的夹角PTQ的大小。
初中圆切线试题及答案
初中圆切线试题及答案一、选择题1. 圆的切线与过切点的半径垂直,这是圆的切线性质中的哪一条?A. 切线与半径垂直B. 切线与直径垂直C. 切线与切点垂直D. 切线与圆心垂直答案:A2. 已知圆的半径为5,圆心到直线的距离为3,则直线与圆的位置关系是:A. 相离B. 相切C. 相交D. 无法确定答案:C3. 圆的切线与圆的交点个数是:A. 0个B. 1个C. 2个D. 3个答案:B二、填空题4. 圆的切线与过切点的半径垂直,因此圆的切线与_________垂直。
答案:过切点的半径5. 如果圆的半径为r,圆心到直线的距离为d,那么直线与圆相切的条件是_________。
答案:d = r三、解答题6. 已知圆O的半径为4,圆心O到直线l的距离为3,求证:直线l是圆O的切线。
证明:由题意知,圆心O到直线l的距离d=3,圆的半径r=4。
因为d=r,所以直线l与圆O相切。
7. 已知圆的半径为6,圆心到直线的距离为5,求圆与直线的交点个数。
解:由于圆心到直线的距离d=5小于圆的半径r=6,所以直线与圆相交,交点个数为2个。
四、计算题8. 已知圆的方程为(x-2)^2 + (y-3)^2 = 25,直线方程为3x + 4y - 15 = 0,求直线与圆的切线方程。
解:首先求圆心坐标,圆心为(2, 3)。
计算圆心到直线的距离d,利用点到直线距离公式:\[ d = \frac{|3*2 + 4*3 - 15|}{\sqrt{3^2 + 4^2}} = \frac{|6 + 12 - 15|}{5} = 1 \]由于d=1,直线与圆相切。
设切线方程为3x + 4y + c = 0,将圆心坐标代入得:\[ 3*2 + 4*3 + c = 0 \]\[ 6 + 12 + c = 0 \]\[ c = -18 \]所以切线方程为3x + 4y - 18 = 0。
圆切线练习题(含答案)
圆切线练习题(含答案)XXX∠OAD,又∠OAD=90°,∴∠XXX°。
又因为CD与半径OD重合,∴CD垂直于过切点D的半径,即CD是⊙O的切线。
例5.证明:由点悟可知,须证OD=OA。
XXX是⊙O的直径,∴∠OAB=90°,又∠XXX°,因此O、B、D三点共线。
OBD是直角三角形,∴OD=OB×sin∠OBD=r×sin∠OAB=OA。
又因为OD是⊙O的半径,∴OD=r。
OA=r,即AC与⊙O相切。
例6.证明:如图所示。
OA⊥OB,∴∠XXX°,又∠OAD=∠DPB,∴∠DPB=90°。
CD是⊙O的切线,∴PC=CD。
例7.解:如图所示。
O是内心,∴∠BOC=2∠A=140°。
答案:∠BOC=140°。
题目:证明在一个圆中,若一条直径的一端点与圆上一点相连,且与该点相连的两条切线分别与直径所在直线交于不同点,则这两个交点和圆上的该点构成一个等腰三角形。
证明:连接直径的另一端点和圆上的该点,得到三角形ACD。
由于OA=OD,所以∠ODA=∠OAD,从而∠COB=∠COD。
又因为OD=OB,所以三角形COB≌三角形COD,从而∠B=∠XXX。
由于BC是切线,而AB是直径,所以∠B=90°,∠ODC=90°,因此CD是圆的切线。
在证明中,我们先利用“切线的性质定理”和“全等三角形”的基本图形,构造辅助线OD。
然后利用切线的判定定理,得到CD是圆的切线。
这样就证明了∠COB=∠COD和CD是圆的切线。
接下来,我们连接直径的另一端点和圆上的该点,得到三角形ACD。
由于OA=OD,所以∠ODA=∠OAD,从而∠COB=∠COD。
又因为OD=OB,所以三角形COB≌三角形COD,从而∠B=∠XXX。
由于BC是切线,而AB是直径,所以∠B=90°,∠ODC=90°,因此CD是圆的切线。
练习(圆的切线)
7、如图,点在⊙O 的直径 AB 交 TP 于 P,若 PA=18,PT=12,PB=8. (1) 求证:△PTB∽△PAT;(2) 求证:PT 为⊙O 的切线; 2 (3) 在⌒ AT 上是否存在一点 C,使得 BT =8TC?若存在,请证明;若不存在,请说明理由. P B
O T A 8、如图,点 O 是已知线段 AB 上一点,以 OA 为半径 的⊙ O 交线段 AB 于点 C ,以线 .. 段 OB 为直径 的圆与⊙O 的一个交点为 D ,过点 A 作 AB 的垂线交 BD 的延长线于点 M . .. (1) 求证: BD 是⊙O 的切线; (2) 若 BC,BD 的长度是关于 x 的方程 x 6 x 8 0 的两个根,求⊙O 的半径;
图2ALeabharlann R变化二:运动探求. 1.如图 2,若 OA 向上平移,变化一中的结论还成立吗?(只需交待判断)
2.如图 3,如果 P 在 OA 的延长线上时,BP 交⊙O 于 Q, 过点 Q 作⊙O 的切线交 OA 的延长线于 R,原题中的结论 还成立吗?为什么?
B Q O A R P
图3
3.若 OA 所在的直线向上平移且与⊙O 无公共点,请你根 据原题中的条件完成图 4,并判断结论是否还成立? (只需交待判断) • O
24、如图,M 在△ABC 的 AC 边上,且 MB = MA = MC ,AB 是⊙O 的直径, 求证:BC 是⊙O 的切线
25、已知:如图,在 Rt△ABC 中,∠ABC = 90°,半圆 O 切 BC 于点 B,切 AC 于点 D, 交 AB 于点 E,BC= BE =2,求 AE 和 AD 的长
·
G A N E C
21、已知,如图,⊙O 是△ABC 外接圆,且 AB=AC=13,BC=24,PA 是⊙O 的切线,A 为 切点,射线 PB 过圆心,交⊙O 于另一点 D,连接 CD. A P (1)试说明:PA∥BC; C B (2)求⊙O 的半径及 CD 的长.
初三数学圆的切线练习题
初三数学圆的切线练习题圆的切线是数学中的一个基本概念,对于初三学生来说,掌握圆的切线的性质和求解方法十分重要。
下面将给出几道关于圆的切线的练习题,帮助初三学生更好地理解和掌握圆的切线的知识。
题1:已知圆C的半径为r,点A是圆上的一个定点,过点A作圆C的一条切线,切线与圆C的切点为B。
设点M是切点B关于点A的对称点,连接AM。
证明:AM的中垂线与BM重合。
解析:首先,我们可以明确题目中给出的条件:一条过点A的切线与圆C的切点为B。
根据切线的性质,切线与半径所构成的角是直角。
因此,在三角形ABO(O为圆C的圆心)中,BO与AO垂直。
由于点M是切点B关于点A的对称点,所以AM与AB互相垂直。
因此,AM的中垂线与BM重合,即AM的中垂线也与AO重合。
题2:已知圆C的半径为r,点P是圆外一点,用直尺和铅笔求圆C的切线。
解析:根据圆的性质,过一点外一点的切线只有两条。
为了求得切线,我们可以使用以下的方法:步骤1:用直尺连接点P和圆心O,并延长直线PO交圆C于点A。
步骤2:以点O为圆心,OP为半径画一个圆,与圆C交于点B和点C。
步骤3:连接点P与点B,并延长线段PB。
步骤4:线段PB即为所求的切线。
题3:已知圆C内接于正方形ABCD,正方形的边长为a,求圆C 的半径和正方形边长的关系。
解析:首先,由于圆C内接于正方形ABCD,所以图形的中心点O 即为圆心。
连接圆心O与圆上的任意一点,得到半径r。
连接正方形的对角线,则线段一半的长度为圆C的半径r。
由于线段的长度等于正方形的边长的一半,所以有r = a/2。
题4:已知直径为20cm的圆C,过圆心O作一条与圆C相交于点A和点B的直径为d的弦。
求弦AB的长度。
解析:根据题意可知,弦AB的长度等于圆C的直径d的长度。
由于直径为20cm,所以弦AB的长度也为20cm。
题5:已知点A在圆C上,圆C的半径为r。
点A与圆心O之间的距离为d。
若点A到切点B的距离为m,求切线的长度。
关于圆的切线的练习题-经典
圆的切线
一、1、直线和圆的位置关系有三种:相交、相切、相离.
用数量关系表示是:如果⊙O的半径为r,圆心O到直线l的距离为d,那么:
(1)直线l和⊙O相交d<r (2)直线l和⊙O相切d=r;(3)直线l和⊙O相离d>r.
2、切线的判定定理经过半径的外端并且垂直于这条半径的直线是圆的切线.
3、切线的性质定理及其推论切线的性质定理圆的切线垂直于经过切点的半径.
推论1经过圆心且垂直于切线的直线必经过切点.
推论2经过切点且垂直于切线的直线必经过圆心.
二、1、直线和圆的位置关系
2、切线的判定定理
例1、已知如图所示,AB为⊙O的直径,C、D是直径AB同侧圆周上两点,且,过D作DE⊥AC于点E,求证:DE是⊙O的切线.
例2、(1)如图所示,△ABC内接于⊙O,如果过点A的直线AE和AC所成的角∠EAC=∠B,那么EA是⊙O的切线.
3、切线的性质及其推论
例3如图,已知AB 是⊙O 的直径,AC 是弦,CD 切⊙O 于点C ,交AB•的延长线于点D ,
∠ACD=120°,BD=10.(1)求证:CA=CD ; (2)求⊙O 的半径.
例4如图,AB 是半圆O 的直径,AD 为弦,∠DBC=∠A .
求证:BC 是半圆O 的切线;
.
练习1.如图,AB 为⊙O 的直径,BC 切⊙O 于B ,AC 交⊙O 于P ,CE=BE ,E 在BC 上. 求证:PE 是⊙O 的切线.
练习2.如图1,AB 是⊙O 的直径,BC 是⊙O 的切线,B 为切点,OC 平行于弦AD ,连接CD 。
求证:DC 是⊙O 的切线。
O A B P D B O A。
圆的切线训练题
圆的切线训练题1.以下四个命题中准确的是( )①与圆有公共点的直线是该圆的切线; ②垂直于圆的半径的直线是该圆的切线;③到圆心的距离等于半径的直线是该圆的切线;④过圆直径的端点,垂直于此直径的直线是该圆的切线. A.①② B.②③ C.③④ D.①④2.已知OA 平分∠BOC ,P 是OA 上任意一点,以P 为圆心的圆与OC 相切,那么⊙P 与OB 的位置关系是( ) A.相离 B.相切 C.相交 D.不能确定3.直线l 上的一点到圆心的距离等于⊙O 的半径,则l 与⊙O 的位置关系是( )A.相离B.相交C.相切D.相切或相交4.如图,AB 与⊙O 切于点B ,AO =6㎝,AB =4㎝,则⊙O 的半径为( ) A.45㎝ B.25㎝ C.213㎝ D.13㎝5.以等腰三角形顶角的顶点为圆心,顶角的平分线为半径的圆必与_____相切.6.如图,两个同心圆的半径分别为3 cm 和4 cm ,大圆的弦AB 与小圆相切于点P ,求AB 的长. A BPO7.如图,AB 在⊙O 的直径,点D 在AB 的延长线上,且BD =OB ,点C 在⊙O 上,∠CAB =30°.(1)CD 是⊙O 的切线吗?说明你的理由;(2)AC =_____,请给出合理的解释.A B CDO8.如图,AB 是⊙O 的直径,AC 是弦,∠BAC 的平分线AD 交⊙O 于点D ,DE ⊥AC ,交AC 的延长线于点E ,OE 交AD 于点F .求证:DE 是⊙O 的切线.1.已知PA ,PB 与⊙O 切于点A ,B ,若PA=3㎝,则PB=______,理由是_____________________. E D BA OB A CE D OF D O A F C B E 2.若点O 是△ABC 的内心,∠BAC=80°,连接OA ,则∠OAB=____________.3.三角形的外心到三角形的________的距离相等;三角形的内心到三角形的_______的距离相等.4.边长为2的正三角形的内切圆半径是_______.5.PA ,PB 分别切圆O 于A ,B ,并与圆C ,D ,•已知PA=7cm ,则△PCD 的周长等于_________6.如图3,PA ,PB 分别切圆O 于A ,B 两点,C 为劣弧AB 上一点,∠APB=30°,则∠ACB 的度数为( ) A .60° B .75° C .105° D .120°7.如图4,⊙O 内切于△ABC ,切点分别为D ,E ,F .已知∠B=50°,∠C=60°,连接OE ,OF ,DE ,DF ,那么∠EDF 的度数为( ) A.40° B.55° C.65° D.70°8.如图,PA ,PB 是⊙O 的切线,A ,B 为切点,∠OAB=30°.(1)求∠APB 的度数;(2)当OA=3时,求AP 的长.9.如图,已知⊙O 是△ABC 的内切圆,切点为D ,E ,F ,假如AE=1,CD=2,BF=3,且△ABC 的面积为6.求内切圆的半径r .10、如图,在直角梯形ABCD 中,AD ∥BC ,∠B = 90°,AB =8㎝,AD=24㎝,BC=26㎝,AB 为⊙O 的直径。
圆的切线证明 中考数学专项训练(含答案解析)
圆的切线证明(1)求证:CD 为O 切线;(2)若1CD =,5AC =,求PB (1)求证:CD 是O 的切线;(2)若16ABCD S =正方形,求CE3.如图,在Rt ABC △中,90C ∠=︒,AD 平分BAC ∠交BC 于点D ,O 为AB 上一点,经过点A ,D 的O 分别交AB ,AC 于点E ,F 连接OF 交AD 于点G .(1)求证:BC 是O 的切线;(2)若60OFA ∠=︒,半径为4,在圆O 上取点P ,使15PDE ∠=︒,求点P 到直线DE 的距离.4.如图,AB 是O 的直径,CD 是O 的弦,AB CD ⊥,垂足是点H ,过点C 作直线分别与AB ,AD 的延长线交于点E ,F ,且2ECD BAD ∠=∠.(1)求证:CF 是O 的切线;(2)如果20AB =,12CD =,求AE 的长.5.如图,O 是ABC 的外接圆,O 点在BC 边上,BAC ∠的平分线交O 于点D ,连接BD 、CD ,过点D 作BC 的平行线,与AB 的延长线相交于点P .(1)求证:PD 是O 的切线;(2)若3AB =,4AC =,求线段BD 的长.6.如图,已知以Rt ABC △的直角边AB 为直径作O ,与斜边AC 交于点D ,E 为BC 边上的中点,连接DE .(1)求证:DE 是O 的切线;(2)若AD ,AB 的长是方程210240x x -+=的两个根,求直角边BC 的长.(1)求证:DE 是O 的切线;(2)若30C ∠=︒,23CD =,求图中阴影部分的面积.(1)求证:DE 是O 的切线;(2)若2AB =,30C ∠=︒,求9.如图,AB 为O 的直径,C ,D 为O 上的两点,BAC DAC ∠=∠,过点C 作直线EF AD ⊥,交AD 的延长线于点E ,连接BC .(1)求证:EF 是O 的切线;(2)若30CAO ∠=︒,2BC =,求CE 的长.10.如图,AB 是O 的直径,点C 是O 上一点(与点A ,B 不重合),过点C 作直线PQ ,使得ACQ ABC ∠=∠.(1)求证:直线PQ 是O 的切线.(2)过点A 作AD PQ ⊥于点D ,交O 于点E ,若O 的半径为2,30DAC ∠=︒,求图中阴影部分的面积.11.如图,等腰ABC 的顶点A ,C 在O 上, BC 边经过圆心0且与O 交于D 点,30B ∠=︒.(1)求证:AB 是O 的切线;(2)若6AB =,求阴影部分的面积12.如图,AB 是ABC 外接圆O 的直径,PA 是O 的切线,BD OP ∥,点D 在O 上.(1)求证:PD 是O 的切线.(2)若ABC 的边6cm AC =,8cm BC =,I 是ABC 的内心,求IO 的长度.13.如图,AB 是O 的直径,AC 是弦,点D 是O 上一点,OD AB ⊥,连接CD 交AB 于点E ,F 是AB 延长线上的一点,且CF EF =.(1)求证:CF 是O 的切线;(2)若8CF =,4BF =,求弧BD 的长度.14.如图所示,在Rt ABC △中,点O 在斜边AB 上,以O 为圆心,OB 为半径作圆O ,分别与BC 、AB 相交于点D 、E ,连接AD ,已知CAD B ∠=∠.(1)求证:AD 是O 的切线;(2)若23AD CD ==时,求阴影部分的面积.(1)求证:PA是O(2)若tan CAD∠=(3)延长CD,AB交于点(1)求证:DE BG=;(2)求证:BF是O的切线;(3)若23DEEG=时,AE(1)当60A ∠=︒,2AD =时,求(2)求证:DF 是O 的切线.(1)求证:DF 是O (2)若 BE DE =,tan(1)求证:直线AB 为O 的切线;(2)若4tan 3A =,O 的半径为2,求AB (1)求证:BF 是O 的切线;(2)若6EF =,cos ABC ∠①求BF 的长;②求O 的半径.参考答案:∵CD AE ⊥,∴90ADC ∠=︒,∵OC OA =,∴OCA OAC ∠=∠,∵的平分线AC 交O 于∵AB 为O 直径,∴90ACB ∠=︒,∴90ADC ACB ∠=∠=︒,∵DAC OAC ∠=∠,∴,【点睛】此题重点考查正方形的性质、等腰三角形的性质、切线的判定、平行线分线段成比例定理、锐角三角函数与解直角三角形等知识,正确地作出所需要的辅助线是解题的关键.3.(1)见解析(2)232-或423-【分析】(1)连接OD ,可得(2)①过点P 作PN DE ⊥交交于H ,可求60EOD ∠=︒,即可求解;②连接OD ,OP 60EOD ∠=︒,30POE ∠=︒,可证求解.【详解】(1)解:如图,连接∴OA OD =,∴ODA OAD ∠=∠,AD 是BAC ∠的平分线,, ∠=︒PDE15=,PE PE ∴∠=︒POE30,OA OF∠=︒60OFA=,∴∠=︒,OAF60∠的平分线, AD是BAC同理可求60EOD ∠=︒,30POE ∠=︒,1302DOL EOD ∴∠=∠=︒,30DOP EOD POE ∠=∠-∠=︒,DOP DOL ∴∠=∠,AB 是O 的直径,90ACB ∴∠=︒,AO OB =,AB CD ⊥ ,AB ∴平分弦CD ,AB 平分 CD,CH HD ∴=, CBDB =,90CHA CHE ∠=︒=∠,BAD BAC DCB ∴∠=∠=∠,∵AB 是O 的直径,∴90ADB ∠=︒,∴BDC 为直角三角形,∵E 为BC 边上的中点,∴ED EB =,∴12∠=∠,∵OB OD =,3=4∠∠∵AB AC =,∴A ABC CB =∠∠,设OB OD r ==,∴ABC ODB ∠=∠,∵AB AC =,23CD =,C ∠=∴23BD CD ==,30B C ∠=∠=∴1803030120BOD ∠=︒-︒-︒=︒OF BD ⊥==OB OD AB AC,∴∠=∠,B CB ODB∠=∠∴∠=∠.ODB C∴∥.OD AC,=OA OC∴∠=∠,OAC OCAQ,∠=∠DAC BAC∴∠=∠,DAC OCA∥,∴AD OC,EF AD⊥∴⊥,而OC为半径,EF OC的切线;∴是OEF的直径,(2)解:AB为O(1)根据题意连接OC ,可知90ACB ∠=︒,可知AOC 是等腰三角形,OAC OCA ∠=∠,继而可证90OCD ∠=︒;(2)连接OE ,过点E 作EF AB ⊥,根据题意可知60EAO ∠=︒即可得知AEO △为等边三角形,再求出扇形AOE 面积减去AEO △的面积即为阴影面积.【详解】(1)解:连接OC ,,∵OA OC =,AB 是O 的直径,∴90ACB ∠=︒,∴90CAB CBA ∠+∠=︒,∴AOC 是等腰三角形,∴OAC OCA ∠=∠,∵ACQ ABC ∠=∠,∴90ACQ OCA ∠+∠=︒,∴OC PQ ⊥,∴直线PQ 是O 的切线;(2)解:连接OE ,过点E 作EF AB ⊥,,∵AD PQ ⊥,ACQ ABC ∠=∠,∴30DAC CAB ∠=∠=︒,∴60EAO ∠=︒,∵AB 为O 的直径,∴90ADB ∠=︒,∵BD OP ∥,∴OP AD ⊥,OP 是AD 的垂直平分线,∴PD PA =,则IU IV IQ ==,∵AB 为O 的直径,∴90ACB ∠=︒,∵6cm AC =,8cm BC =,∴226810AB =+=,5OB OA ==(2)3π.【分析】本题考查了切线的判定,求弧长;(1)如图,连接OC ,OD .证明90OCF ∠=︒即可;(2)设O 的半径为r ,在Rt COF △中,勾股定理可得6r =,再根据弧长公式可解决问题.【详解】(1)证明:连接OCCF EF= CEF ECF∴∠=∠OD AB⊥ 90DOE ∴∠=︒,90ODE OED ∴∠+∠=︒,OD OC = ,ODE OCD ∴∠=∠,CEF OED ∠=∠ ,OED ECF ∴∠=∠,90OCD ECF ∴∠+∠=︒,即90OCF ∠=︒,OC CF ∴⊥,CF ∴是O 的切线.(2)设O 的半径为r ,∵4BF =,∴4OF r =+,在Rt OCF 中,90,∠=︒ACB∴∠+∠CAD ADC=,OB OD∴∠=∠,B ODB则sin 30OH OD =⋅ODB S S S ∴=-阴影扇形∴CAD BAD ∠=∠,∴5CD BD ==,∵AB 为直径,点∴90ADB ∠=︒,∵2DOB DAB ∠=∠=∠又∵DFO CFA ∠=∠,∴DOF CAF ∽,又∵OB BF OA ==,∴23DF FO FC FA ==,∴90EHB BGF ∠=∠=︒,∵点C 为劣弧BD 中点,∴ CDBC =,∴DAC BAC DBC ∠=∠=∠∵AD 是O 的直径,∴90AED ∠=︒,∵60A ∠=︒,2AD =∴30ADE ∠=︒,则12AE =∴2222DE AD AE =-=∵AD 是直径,∴90AED ∠=︒,∴1809090DEB ∠=︒-︒=︒∵四边形ABCD 为菱形,∴DBE DBF ∠=∠,AD ∥∵BE BF =,DB DB =,∴()SAS DBE DBF ≌,∴90DFB DEB ∠=∠=︒,∵AD BC ∥,∴90ADF DFB ∠=∠=︒,∴AD DF ⊥,∵AD 为直径,∴DF 是O 的切线.【点睛】本题主要考查了直径所对的圆周角为直角,含30度角的直角三角形的性质,勾股定理,切线的判定,解题的关键是作出辅助线,熟练掌握切线的判定方法.18.(1)见解析(2)52AB 是O 的直径,90ADB ∴∠=︒,90BDC ∴∠=︒,90BDF CDF ∠∠∴+=︒,OB OD = ,OBD ODB ∴∠=∠,CDF ABD ∠∠= ,ODB CDF ∠∠∴=,90ODB BDF ∴∠+∠=︒,90ODF ∴∠=︒,DF OD ∴⊥,OD 是O 的半径,DF ∴是O 的切线;(2)如图,连接AE ,∵ BEDE =,BAE CAE ∴∠=∠,AB 是O 的直径,90AEB ∴∠=︒,90AEC ∴∠=︒,AEB AEC ∴∠=∠,∵OC OD =,∴OCD ODC ∠=∠.设OCD ODC α∠=∠=,∴22A BCD α∠=∠=.∵90ACB ∠=︒,。
圆的切线试题(经典版)
(1)求证:AD是⊙O的切线;
(2)若⊙O的半径为3,AB=4,求AD的长.
11.已知:如图,在△ABC中,AB=AC,点D是边BC的中点.以BD为直径作圆O,交边AB于点P,联结PC,交AD于点E.
(1)求证:AD是圆O的切线;
(1)求证:AC是⊙O的切线;
(2)联结EF,求 的值.
15
如图,四边形ABCD内接于 ,BD是 的直径, 于E,
DA平分 .
(1)求证:AE是 的切线;
(2)若
16.如图, 是⊙O的直径,⊙O交 的中点
于 , ,E是垂足.
(1)求证: 是⊙O的切线;
(2)如果AB=5,tan∠B= ,求CE的长.
(1)求证:BD是⊙O的切线;
(2)若点E是劣弧BC上一点,弦AE与BC相交
于点F,且CF=9,cos∠BFA= ,求EF的长.
9已知:如图,⊙O的直径 =8cm, 是 延长线上的一点,过点 作⊙O的切线,切点为 ,连接 .
(1)若 ,求阴影部分的面积;
(2)若点 在 的延长线上运动, 的平分线交 于点 ,∠ 的大小是否发生变化?若变化,请说明理由;若不变,求出∠ 的度数.
(2)若PC是圆O的切线,BC= 8,求DE的长.
12已知:如图,△ABC中,AB=AC=5,BC=6,以AB为直径作⊙O交AC于点D,交BC于点E,EF⊥AC于F交AB的延长线于G.
(1)求证:FG是⊙O的切线;
(2)求AD的长.
(1)证明:
13
已知:在⊙O中,AB是直径,AC是弦,OE⊥AC
于点E,过点C作直线FC,使∠FCA=∠AOE,交
圆的切线试题专项训练
圆的切线试题专项训练一.选择题(共6小题)1.已知OA平分∠BOC,P是OA上一点,以P为圆心的⊙P与OC相切,则⊙P与OB的位置关系为()A.相离B.相切C.相交D.不能确定2.如图,P为⊙O的直径BA延长线上的一点,PC与⊙O相切,切点为C,点D是⊙上一点,连接PD.已知PC=PD=BC.下列结论:(1)PD与⊙O相切;(2)四边形PCBD是菱形;(3)PO=AB;(4)∠PDB=120°.其中正确的个数为() A.4 B.3 C.2 D.1 3.如图,线段AB是⊙O的直径,⊙O交线段BC于D,且D是BC中点,DE⊥AC于E,连接AD,则下列结论正确的个数是()①CE•CA=CD•CB;②∠EDA=∠B;③OA=1/2AC;④DE是⊙O的切线;⑤AD2=AE•AB.A.2个B.3个C.4个D.5个4.如图,直线AB、CD相交于点O,∠AOD=30°,半径为1cm的⊙P的圆心在射线OA上,且与点O的距离为6cm.如果⊙P以1cm/s的速度沿由A向B的方向移动,那么()秒钟后⊙P与直线CD相切. A.4 B.8 C.4 或6 D.4 或85.如图,直线AC∥BD,⊙O与AC和BD分别相切于点A和点B.点M和点N分别是AC 和BD上的动点,MN沿AC和BD平移.⊙O的半径为1,∠1=60°.下列结论错误的是()A.直线AC和BD的距离为2 B.若∠MON=90°,则MN与⊙O相切C.若MN与⊙O相切,则AM= D.MN=6.如图,在梯形ABCD中,AB∥DC.①若∠A=90°,AB+CD=BC,则以AD为直径的圆与BC 相切;②若∠A=90°,当以AD为直径的圆与BC相切,则以BC为直径的圆也与AD相切;③若以AD为直径的圆与BC相切,则AB+CD=BC;④若以AD为直径的圆与BC相切,则以BC 为直径的圆与AD相切.以上判断正确的个数有() A.1 B.2 C.3 D.47.如图,在Rt△AOB中,OA=OB=3,⊙O的半径为1,点P是AB边上的动点,过点P作⊙O 的一条切线PQ(点Q为切点),则线段PQ的最小值为()8.如图,AB是⊙O的直径,C、D是⊙O上的点,∠CDB=30°,过点C作⊙O的切线交AB 的延长线于E,则sin∠E的值为()A.1/2 B.3/2 C. 2 D.39.在等腰直角三角形ABC中,AB=AC=4,点O为BC的中点,以O为圆心作⊙O交BC于点M、N,⊙O与AB、AC相切,切点分别为D、E,则⊙O的半径和∠MND的度数分别为()A.2,22.5°B.3,30°C.3,22.5°D.2,30°二.填空题1.如图,等腰△ABC中,∠ACB=90°,I为△ABC的内心,AI的延长线交BC于E.若IE=1,则AI= .2.三角形的内切圆(1)定义:与三角形各边都的圆叫做三角形的内切圆.内切圆的圆心叫三角形的.(2)三角形的内心是三角形的交点,它到三角形的距离相等,都等于该三角形.(3)如图,若△ABC的三边分别为AB=c,BC=a,AC=b,其内切圆⊙O分别切BC、CA、AB于D、E、F.则AF=AE= ,BD=BF= ,CD=CE= .∠BOC与∠A 的关系是,∠EDF与∠A的关系是△ABC的面积S与内切圆半径r的关系是(4)直角三角形的外接圆半径等于,内切圆半径等于.3.如图,边长为4的正方形ABCD内接于⊙O,点E是弧AB上的一动点(不与点A、B重合),点F是弧BC上的一点,连接OE,OF,分别与交AB,BC于点G,H,且∠EOF=90°,连接GH,有下列结论:①弧AE=弧BF;②△OGH是等腰直角三角形;③四边形OGBH 的面积随着点E位置的变化而变化;④△GBH周长的最小值为4+2√2.其中正确的是 .(把你认为正确结论的序号都填上)4.如图,已知AB是⊙O的直径,AD、BD是半圆的弦,∠PDA=∠PBD,∠BDE=60°,若PD=√3 ,则PA的长为5.如图,AB是⊙O的直径,经过圆上点D的直线CD恰使∠ADC=∠B.过点A作直线AB 的垂线交BD的延长线于点E,且AB=√5 ,BD=2,则线段AE的长为.6.如图,在△ABC中,∠BAC=90°,D为BC上的中点,O是线段AD上一点,以点O为圆心,OA长为半径的⊙O交AC于点E,EF⊥BC于点F,则EF ⊙O的切线.(填“是”或“不是”)7.如图,△ACD内接于⊙O,CB垂直于过点D的切线,垂足为B,如果BC=3,sin∠A=3/4,那么⊙O的半径为8.如图,矩形ABCD中,AB=2√3 ,AD=2,以AB为弦在矩形内部画一条120°的弧,过点C 作直线CE,与弧AB切于点F,与AD边交于点E,那么DE的长是9.如图,在⊙O中,直径AB=2,CA切⊙O于A,BC交⊙O于D,若∠C=45°,则阴影部分的面积为三.解答题1.如图,O为正方形ABCD对角线AC上一点,以O为圆心,OA长为半径的⊙O与BC相切于点M.(1)求证:CD与⊙O相切;(2)若⊙O的半径为1,求正方形ABCD的边长.2.如图:已知AB是⊙O的直径,BC是⊙O的切线,OC与⊙O相交于点D,连接AD并延长,与BC相交于点E.(1)若BC=,CD=1,求⊙O的半径;(2)取BE的中点F,连接DF,求证:DF是⊙O的切线.3.如图,已知AB是OD的直径,AM和BN是⊙O的两条切线,点E是⊙O上一点,点D 是AM上一点,连接DE并延长交BN于点C,连接OD、BE,且OD∥BE.(1)求证:DE是⊙O的切线;(2)若AD=l,BC=4,求直径AB的长.4.如图,⊙O是Rt△ABC的外接圆,∠ABC=90°,点P是圆外一点,PA切⊙O于点A,且PA=PB.(1)求证:PB是⊙O的切线;(2)已知PA= 3,∠ACB=60°,求⊙O的半径.5.如图,在平面直角坐标系中,以点O为圆心,半径为2的圆与y轴交于点A,点P(4,2)是⊙O外一点,连接AP,直线PB与⊙O相切于点B,交x轴于点C.(1)证明PA是⊙O 的切线;(2)求点B的坐标.6.如图,PB切⊙O于B点,直线PO交⊙O于点E,F,过点B作PO的垂线BA,垂足为点D,交⊙O于点A,延长AO交⊙O于点C,连接BC,AF.(1)求证:直线PA为⊙O的切线;(2)若BC=6,AD:FD=1:2,求⊙O的半径的长.7.如图,AB是⊙O的直径,CA是⊙O的切线,在⊙O上取点D,连接CD,使得AC=DC,延长CD交直线AB于点E.(1)求证:CD是⊙O的切线;(2)作AF⊥CD于点F,交⊙O于点G,若⊙O的半径是6cm,ED=8cm,求GF的长.8.如图,PB为⊙0的切线,B为切点,直线PO交⊙于点E、F,过点B作PO的垂线BA,垂足为点D,交⊙O于点A,延长AO9.在平面直角坐标系xOy中,已知点A(6,0),点B(0,6),动点C在以半径为3的⊙O 上,连接OC,过O点作OD⊥OC,OD与⊙O相交于点D(其中点C、O、D按逆时针方向排列),连接AB.(1)当OC∥AB时,∠BOC的度数为45°或135°;(2)连接AC,BC,当点C 在⊙O上运动到什么位置时,△ABC的面积最大?并求出△ABC的面积的最大值.(3)连接AD,当OC∥AD时,①求出点C的坐标;②直线BC是否为⊙O的切线?请作出判断,并说明理由.10.在⊙O中,AB为直径,点C为圆上一点,将劣弧沿弦AC翻折交AB于点D,连结CD.(1)如图1,若点D与圆心O重合,AC=2,求⊙O的半径r;(2)如图2,若点D与圆心O不重合,∠BAC=25°,请直接写出∠DCA的度数.11.如图,在Rt△ABC中,∠ACB=90°,AC=6cm,BC=8cm.P为BC的中点,动点Q从点P 出发,沿射线PC方向以2cm/s的速度运动,以P为圆心,PQ长为半径作圆.设点Q运动的时间为t s.(1)当t=1.2时,判断直线AB与⊙P的位置关系,并说明理由;(2)已知⊙O 为△ABC的外接圆.若⊙P与⊙O相切,求t的值.12.如图,点A,B在直线MN上,AB=11厘米,⊙A,⊙B的半径均为1厘米.⊙A以每秒2厘米的速度自左向右运动,与此同时,⊙B的半径也不断增大,其半径r(厘米)与时间t (秒)之间的关系式为r=1+t(t≥0).(1)试写出点A、B之间的距离d(厘米)与时间t(秒)之间的函数表达式;(2)问点A出发后多少秒两圆相切?13.已知矩形纸片ABCD,AB=2,AD=1,将纸片折叠,使顶点A与边CD上的点E重合.(1)如果折痕FG分别与AD、AB交于点F、G(如图1),AF= 2/3,求DE的长;(2)如果折痕FG分别与CD、AB交于点F、G(如图2),△AED的外接圆与直线BC相切,求折痕FG的长.14.如图,在矩形ABCD中,AB=20cm,BC=4cm,点P从A开始沿折线A-B-C-D以4cm/s的速度移动,点Q从C开始沿CD边以1cm/s的速度移动,如果点P、Q分别从A、C同时出发,当其中一点到达D时,另一点也随之停止运动.设运动时间为t(s).(1)t为何值时,四边形APQD为矩形;(2)如图,如果⊙P和⊙Q的半径都是2cm,那么t为何值时,⊙P和⊙Q外切.15.如图,AB是半圆O的直径,AC⊥AB,CD切半圆于点D,BF⊥AB,交AD的延长线于F,交CD的延长线于E.(1)若∠C=80°,求∠F的度数;(2)求证:BE=EF;(3)若AC=6,BE=4,求AB的长.16.如图,在△ABC中,AB=AC,以AC为直径作⊙O交BC于点D,过点D作⊙O的切线EF,交AB和AC的延长线于E、F.(1)求证:FE⊥AB;(2)当AE=6,sin∠CFD=3/5 时,求EB 的长.17.已知,AB为⊙O的直径,C为⊙O上一点,若直线CD与⊙O相切于点C,AD⊥CD,垂足为D.(1)如图①,AB=10,AD=2,求AC的长;(2)如果把直线CD向下平行移动,如图(2),直线CD交⊙O于C,G两点,若题目中的其他条件不变,且AG=4,BG=3,求AD/AC 的值.18.如图,AB为⊙O的直径,D、T是圆上的两点,且AT平分∠BAD,过点T作AD的延长线的垂线PQ,垂足为C.(1)求证:PQ是⊙O的切线;(2)已知⊙O的半径为2,若过点O 作OE⊥AD,垂足为E,OE=√3 ,求弦AD的长.19.如图,△ABC为等边三角形,以边BC为直径的半圆与边AB,AC分别交于D,F两点,过点D作DE⊥AC,垂足为点E.(1)判断DE与⊙O的位置关系,并证明你的结论;(2)过点F作FH⊥BC,垂足为点H,若AB=4,求FH的长(结果保留根号).20.已知:如图,△ABC中,AB=AC,AD平分∠BAC,BE平分∠ABC交AD于点E.经过B、E两点的⊙O交AB于点F,交BC于点G,BF恰为⊙O的直径.(1)求证:AD与⊙O相切;(2)若BC=4,cos C=1/3 ,求⊙O的半径长.21.如图,在Rt△ABC中,∠C=90°,BE平分∠ABC交AC于点E,点D在AB边上且DE⊥BE.(1)判断直线AC与△DBE外接圆的位置关系,并说明理由;(2)若AD=4,AE=4√2 ,求BC的长.22.如图,⊙D交y轴于A、B,交x轴于C,过点C的直线:y=-2 √2x-8与y轴交于P.(1)求证:PC是⊙D的切线;(2)判断在直线PC上是否存在点E,使得S△EOP=4S△CDO,若存在,求出点E的坐标;若不存在,请说明理由;(3)当直线PC绕点P转动时,与劣弧AC 交于点F(不与A、C重合),连接OF,设PF=m,OF=n,求m、n之间满足的函数关系式,并写出自变量n的取值范围.。
圆的切线问题
圆的切线问题1、已知抛物线C :x y 42=的准线为l ,过l 上的动点Q 向圆M :4)2(22=+-y x 作切线,切点为S,T 直线ST 过一个定点A ,求定点A 坐标.2、过直线L :1-=y 上的动点Q 作圆M :4)2(22=-+y x 的切线,切点为S 、T ,求当坐标原点O 到直线ST 的距离取得最大值时,四边形QSMT 的面积.3、已知点),(00y x P 是圆C :8)2()2(22=-+-y x 内一点(C 为圆心),过P 点的动弦AB ,(1)如果)1,1(P ,当PAC ∠最大时,求直线AP 的方程;(2)过A ,B 作圆的两切线相交于点M ,求动点M 的轨迹方程.4、已知圆M :x2+(y-4)2=4,直线l 的方程为x-2y=0,点P 是直线l 上一动点,过点P 作圆的切线PA 、PB ,切点为A 、B.(Ⅰ)当P 的横坐标为 16 /5 时,求∠APB 的余弦值; (Ⅱ)求证:经过A 、P 、M 三点的圆N 必过定点,并求出所过定点的坐标; (Ⅲ)求线段AB 长度的最小值.5、已知抛物线)0(2:2>=p px y E 的准线与x 轴交于点M ,过点M 作圆1)2(:22=+-y x C 的两条切(1)求抛物线E 的方程;(2)过抛物线E 上的点N 作圆C 的两条切线,切点分别为P 、Q ,若P ,Q ,O (O 为原点)三点共线,求点N 的坐标.6、已知圆M的方程为x2+(y-2)2=1,直线l的方程为x-2y=0,点P在直线l上,过点P作圆M的切线PA,PB,切点为A,B.(1)若∠APB=60°,求线段AB的长;(2)当∠APB最大时,求点P的坐标;(3)求证:经过A、P、M三点的圆必过定点,并求出所有定点的坐标。
设AB与x轴交于点R,由圆的对称性可知,.于是,所以,即,p=2.故抛物线E的方程为y2=4x. 5分(2)设N(s,t).P,Q是NC为直径的圆D与圆C的两交点.圆D方程为,即x2+y2-(s+2)x-ty+2s=0.①又圆C方程为x2+y2-4x+3=0.②②-①得(s-2)x+ty+3-2s=0.③ 9分P,Q两点坐标是方程①和②的解,也是方程③的解,从而③为直线PQ的方程.因为直线PQ经过点O,所以3-2s=0,.故点N坐标为或. 12分解:(1)由题意知,△PAB为等边三角形,所以线段AB的长就是切线长PA,法一:∵∠APB=60°,由题可知MP=2,∴;法二:∵∠APB=60°,∴等腰三角形MAB中,∠AMB=120°而半径MA=1,∴;(2)记∠APB=2θ,则在直角三角形MAP中,有,当∠APB最大时,有MP最小,此时MP垂直于直线直线l:x-2y=0,设P(2m,m),∵M(0,2),∴,∴,∴点P坐标为;(3)设P(2m,m),MP的中点,因为PA是圆M的切线,所以经过A,P,M三点的圆是以Q为圆心,以MQ为半径的圆,故其方程为:化简得:,此式是关于m的恒等式,故解得或,所以经过A,P,M三点的圆必过定点(0,2)或(1,1)。
中考数学总复习《圆的切线证明》专题训练(附带答案)
中考数学总复习《圆的切线证明》专题训练(附带答案)学校:___________班级:___________姓名:___________考号:___________⊥于点D,E是AC上一点,以BE为直径的O交1.如图,在ABC中,AB=AC,AD BC∠=︒.BC于点F,连接DE,DO,且90DOB(1)求证:AC是O的切线;(2)若1DF=,DC=3,求BE的长.、2.如图,在O中,BC为非直径弦,点D是BC的中点,CD是ABC的角平分线.∠=∠;(1)求证:ACD ABC(2)求证:AC是O的切线;(3)若1BD=,3BC=时,求弦BD与BD围城的弓形面积.是O的切线;=,且AC BD已知等腰ABC,AB=AC为直径作O交BC于点延长线于点F.是O的切线;CD=2,求O的半径.与O相离,,交O于点A是O上一点,连于点C,且PB(1)求证:PB是O的切线;(2)若25AC=,OP=5,求O的半径.6.如图,点O是ABC的边AC上一点,以点O为圆心,OA为半径作O,与BC相切于点E,连接OB,OE,O交OB于点D,连接AD并延长交CB的延长线于点F,且AOD EOD.∠=∠(1)求证:AB是O的切线;BC=,AC=8,求O的半径.(2)若107.如图,AB 是O 的直径,AC 是O 的弦.(1)尺规作图:过点C 作O 的切线,交AB 的延长线于点D (保留作图痕迹,不写作法);(2)若2BD OB ==,求AC 的长.8.如图,ABCD 的顶点,,A B C 在O 上,AC 为对角线,DC 的延长线交O 于点E ,连接,,OC OE AE .(1)求证:AE BC =;(2)若AD 是O 的切线6,40OC D =∠=︒,求CE 的长.9.如图,Rt ABC △中90C ∠=︒,点E 为AB 上一点,以AE 为直径的O 上一点D 在BC 上,且AD 平分BAC ∠.(1)证明:BC 是O 的切线;(2)若42BD BE ==,,求AB 的长.10.如图,已知O 的弦AB 等于半径,连接OA 、OB ,并延长OB 到点C ,使得BC OB =,连接AC ,过点A 作AE OB ⊥于点E ,延长AE 交O 于点D .(1)求证:AC 是O 的切线;(2)若6BC =,求AD 的长.11.如图,线段AB 经过O 的圆心.O 交O 于A ,C 两点,AD 为O 的弦,连接BD ,30A ABD ∠=∠=︒连接DO 并延长交O 于点E ,连接BE 交O 于点F .(1)求证:BD 是O 的切线;(2)若1BC =,求BF 的长.12.如图,AB 为O 的直径,C 为O 上一点,CD BD ABC CBD ⊥∠=∠.(1)求证:CD 为O 的切线.(2)当1,4BD AB ==时,求CD 的长.13.如图 已知AB 是O 的直径 BC AB ⊥于B E 是OA 上的一点ED BC ∥交O 于D OC AD ∥ 连接AC 交ED 于F .(1)求证:CD 是O 的切线;(2)若8AB = 1AE = 求ED EF 的长.14.如图 AB 是O 的直径 AC BC ,是弦 点D 在AB 的延长线上 且DCB DAC ∠=∠ O 的切线AE 与DC 的延长线交于点E .(1)求证:CD 是O 的切线;(2)若O 的半径为2 30D ∠=︒ 求AE 的长.15.如图 已知AB 是O 的直径 点P 在BA 的延长线上 弦BC 平分PBD ∠且BD PD ⊥于点D .(1)求证:PD 是O 的切线.(2)若8cm 6cm AB BD , 求弧AC 的长.为O的直径在O上连接的延长线交于E.是O的切线;∠tan BDF为O的直径的平分线交O于点E BC的延长线于点(1)求证:DE 为O 切线;(2)若10AB = 6BC = 求DE 的长.18.如图 O 是ABC 的外接圆 点D 在BC 延长线上 且满足CAD B ∠=∠.(1)求证:AD 是O 的切线;(2)若AC 是BAD ∠的平分线 3sin 5B =4BC = 求O 的半径.参考答案:1.【分析】此题重点考查圆周角定理 切线的判定定理 勾股定理 三角形的中位线定理 等腰三角形的“三线合一” 线段的垂直平分线的性质等知识 正确地作出辅助线是解题的关键.是O的切线;+=314是O的直径90︒则22BE=+4(22)⊥AD BC是O的半径是O的切线.)连接EFDC=DF33+=+BD DF∠OE DOBDE=.3是O的直径90︒.中EF=中BE=(3)23312π- 【分析】此题考查了解直角三角形 切线的判定以及扇形的面积.注意掌握辅助线的作法 .(1)点D 是BC 的中点 可以得到BD CD = 即可得到DBC DCB ∠∠= 再根据角平分线的定义得到ACD BCD ∠∠= 进而得到结论;(2)连接OC OD OB 则可得到OD BC ⊥ 然后根据等边对等角可以得到90OCD ACD ∠∠+=︒ 即可得到结论(3)先求出60ODB ∠=︒ 继而利用OBD OBD S S S=-阴影部分扇形求得答案.【详解】(1)解:如图 ∵点D 是BC 的中点∵BD CD =∵DBC DCB ∠∠=又∵CD 是ABC 的角平分线∵ACD BCD ∠∠=∵ACD ABC ∠∠=;(2)证明:如图 连接OC OD OB∵点D 是BC 的中点∵OD BC ⊥∵90ODC BCD ∠∠+=︒∵OD OC =∵ODC OCD ∠∠=又∵ACD BCD ∠∠=∵90OCD ACD ∠∠+=︒即OC AC ⊥∵OC 是O 的半径∵AC 是O 的切线;Rt BDE 中 ODB ∠=60ODB =︒OB OD =∵OBD 是等边三角形BOD ∠=OBD S S==阴影部分.(1)见解析(2)23进而得出BFG 是等边三角形 是O 的切线;)解:如图所示∵OD AC ⊥∵AD CD =∵BD AC =∵BD AC =∵AD BC =∵AD CD BC ==;∵AB 为半圆O 的直径∵90CAB CBA ∠+∠=︒∵30DAC CAB ABD ∠=∠=∠=︒∵60GBF G ∠=∠=︒ 12GB AG =∵BFG 是等边三角形 223AB AG BG BG =-=∵3233BF BG AB ===. 【点睛】本题考查了切线的判定 弧与弦的关系 直径所对的圆周角是直角 勾股定理 等边三角形的性质与判定 垂径定理 熟练掌握以上知识是解题的关键.4.(1)证明(2)233【分析】本题主要考查切线的性质和判定及特殊角的三角函数的应用 掌握切线问题中的辅助线的作法是解题的关键.(1)连接OD 证明ODB C ∠=∠ 推出AC OD ∥ 即可证明结论成立;(2)连接AD 在Rt CED 中 求得利用三角形函数的定义求得30C ∠=︒ 60AOD ∠=︒ 在Rt ADB 中 利用勾股定理列式计算求得圆的半径即可.【详解】(1)证明:连接OD又OB OD=B ODB∴∠=∠ODB∴∠=∠AC OD∥DF AC⊥OD DF∴⊥DF∴是O的切线;(2)连接AD设O半径为Rt CED中3,CE CD=22ED CD∴=-又cosCE CCD ∠=30C∴∠=︒30B∴∠=︒60AOD=∠AB是O的直径.90ADB∴∠=︒12AD AB r ∴== ∵AB AC =∵2CD BD ==又222AD BD AB +=2222(2)r r ∴+=233r ∴=(负值已舍). 5.(1)证明见解析(2)3【分析】本题考查的是勾股定理的应用 等腰三角形的性质 切线的判定 熟练的证明圆的切线是解本题的关键;(1)连接OB 证明PCB PBC ∠=∠ OAB OBA ∠=∠ 再证明90PBC OBA ∠+∠=︒即可;(2)设O 的半径为r 表示()()22222255PC AC AP r =-=-- 222225PB OP OB r =-=- 再利用PB PC =建立方程求解即可.【详解】(1)解:连接OB∵PB PC = OA OB =∵PCB PBC ∠=∠ OAB OBA ∠=∠∵OP l ⊥ OAB PAC ∠=∠∵90BCP CAP BCP OAB ∠+∠=︒=∠+∠∵90PBC OBA ∠+∠=︒∵90OBP ∠=︒∵OB PB ⊥是O 的切线;)设O 的半径为l 2AC =2AC AP =-PB BP 2OP OB =-∵O 的半径为【点睛】.(1)见解析(2)3【分析】本题主要考查切线的判定和性质证AOB EOB ≌ 得出的半径为r 则OE OA =根据AOB EOB ≌得求得4CE = 在Rt OCE 中运用勾股定理列式求出r 的值即可. )证明:在AOB 和EOB 中∵()SAS AOB EOB ≌OAF OEF ∠=∠BC 与O 相切OE BC ⊥90OAB OEB ∠=∠=︒AF是O 的半径是O 的切线;(2)解:在Rt CAB △中 90108CAB BC AC ∠=︒==,,∵22221086AB BC AC =-=-=设圆O 的半径为r 则,OE OA r ==∵8OC r =-∵,AOB EOB ≌∵6BE AB ==∵10,BC =∵1064,CE BC BE =-=-=在Rt OCE 中 222OE CE OC +=∵()22248r r +=-解得3r =.∵O 的半径为3.7.(1)作图见解析(2)4π3【分析】本题考查了作图 复杂作图 切线的性质 等边三角形的判定与性质 弧长的计算 熟练掌握切线的性质 弧长公式是解答本题的关键.(1)根据题意 连接OC 作OC CD ⊥ 交AB 的延长线于点D 由此得到答案. (2)根据题意 得到OBC △是等边三角形 求出120AOC ∠=︒ 再利用弧长公式 得到答案.【详解】(1)解:如图所示 CD 即为所求.(2)如图所示 连接BCBD)证明:在ABCD中AE AD ∴=∵AE BC =.(2)解:连接OA 过点O 作OF CE ⊥于点F 如图所示:AD 是O 的切线OA AD ∴⊥OA BC ∴⊥AB AC ∴=40AEC B D ︒∠=∠=∠=40ACB B ∴∠=∠=︒在ABCD 中 AD BC ∥40DAC ACB ∴∠=∠=︒又180100DAE D AEC ∠=︒-∠-∠=︒60CAE DAE CAD ∴∠=∠-∠=︒2120COE CAE ∴∠=∠=︒OC OE =30OCE ∴∠=︒OF CE ⊥22cos3063CE CF OC ∴==⋅︒=.【点睛】本题主要考查了切线的性质 解直角三角形 圆周角定理 平行四边形的性质垂径定理 等腰三角形的判定 解题的关键是作出辅助线 熟练掌握相关的判定和性质.9.(1)证明详见解析;(2)8.【分析】本题考查了切线的判定 勾股定理等知识 熟练掌握切线的判定定理 勾股定理是解题的关键.(1)连接OD 根据平行线判定推出OD AC ∥ 推出OD BC ⊥ 根据切线的判定推出即可;(2)根据勾股定理求出3OD OA OE === 再根据线段的和差求解即可.【详解】(1)证明:连接OD∵OA OD =∵OAD ODA ∠=∠∵AD 平分BAC ∠∵BAD CAD ∠=∠∵ODA CAD ∠=∠∵OD AC ∥∵180C ODC ∠+∠=︒∵90C ∠=︒∵90ODC ∠=︒∵OD BC ⊥∵OD 为半径∵BC 是O 的切线;(2)解:设OD OE r ==在Rt ODB △中 42BD BE ==,∵2OB r =+由勾股定理 得:()22242r r +=+ 解得:3r =∵3OD OA OE ===∵628AB =+=.10.(1)证明见解析;(2)63.【分析】(1)先证明OAB 是等边三角形 再由性质得出60AOB OAB OBA ∠=∠=∠=︒ 再由BC AB =和角度和差即可求解;(2)先根据等边三角形性质求出132OE OA == 再根据勾股定理求得33AE = 最后由垂径定理即可求解;此题考查了等边三角形的判定与性质 勾股定理和垂径定理 解题的关键是熟练掌握以上知识点的应用.【详解】(1)证明:∵AB OA OB ==∵OAB 是等边三角形∵60AOB OAB OBA ∠=∠=∠=︒∵BC OB =∵BC AB =∵1302BAC BCA OBA ∠=∠=∠=︒ ∵90OAC OAB BAC ∠=∠+∠=︒又∵OA 为O 的半径∵AC 是O 的切线;(2)解:∵6BC =∵6AB OA OB ===∵AD OB ⊥于点E∵30OAE ∠=︒∵132OE OA == ∵2233AE OA OE =-=∵AE OB ⊥∵263AD AE ==.11.(1)见解析∠=)证明:BAD60︒6090︒-︒=OD是O的半径∴直线BD是O的切线;==(2)解:设OD OC△中sin30在Rt BDO解得:1r==+OB OCDE是O的直径∴∠=︒DFE90∠=∠即DFB BDE∠=∠DBF DBE∴△∵BDEBFD△BF BD∴=BD BE337BF ∴= 解得:377BF =. 【点睛】本题考查了切线的判定和性质 相似三角形的性质和判定 圆周角定理 勾股定理等知识点 作出辅助线构造出相似三角形是解题关键.12.(1)见详解(2)3【分析】(1)连接OC 由∠=∠OCB ABC ABC CBD ∠=∠ 得OCB CBD ∠=∠ 则OC BD ∥ 所以18090OCD D ∠=︒-∠=︒ 即可证明CD 为O 的切线;(2)由AB 为的直径 得90ACB ∠=︒ 则ACB D ∠=∠ 而ABC CBD ∠=∠ 所以C ABC BD ∽△△ 则AB CB CB BD = 可求得CB BD AB =⋅ 由勾股定理得22CD CB BD =-.【详解】(1)证明:连接OC 则OC OB =OCB ABC ∴∠=∠ABC CBD ∠=∠OCB CBD ∴∠=∠OC BD ∴∥CD BD ⊥90D ∴∠=︒18090OCD D ∴∠=︒-∠=︒OC 是O 的半径 且CD OC ⊥CD ∴为O 的切线.(2)解:AB 为的直径ABC∠=ABC CBD ∴∽∴AB CBCB BD=1,4BD AB==1 CB BD AB∴=⋅=22CD CB BD∴=-=CD∴的长是【点睛】此题重点考查等腰三角形的性质AD OC∥ADO∴∠OA OD=ADO DAO ∴∠=∠DOC BOC ∴∠=∠OD OB OC OC ==,ODC OBC ∴≌△△∴OBC ODC ∠=∠BC AB ⊥∴90OBC ODC ∠=∠=︒OD 为经过圆心的半径∴CD 是O 的切线;(2)如图所示:作DM BC ⊥交BC 于点M8AB = 1AE =1432OA OB OD AB OE OA AE ∴=====-=, 227DE BM OD OE ==-=令=7CM x CB CD x ==+, 7BE DM ==∴在222Rt DMC CM DM CD +=△,222(7)7x x ∴+=+解得:37x =47BC ∴=DE BC ∥ADE ABC ∴△△∽是O的切线.2)在Rt△是O的切线得出Rt EAD中【详解】(1)证明:连接.是O的直径+∠OCA OCBDCB OCB+∠OCD=︒.90是半径经过O的半径外端∵CD 是O 的切线.(2)解:在Rt OCD △中∵90OCD ∠=︒ 30D ∠=︒ 2OC =∵4OD =.∵6AD AO OD =+=.∵AE 是O 的切线 切点为A∵OA AE ⊥.在Rt EAD 中∵90EAD ∠=︒ 30D ∠=︒ 6AD =∵3tan 306233AE AD =⋅︒=⨯=. 15.(1)见解析(2)4π3【分析】本题考查圆与三角形的综合问题 掌握与圆有关的性质 正确作出辅助线是关键.(1)连接OC 根据条件证明OC BD ∥ 即可证明;(2)根据PCO PDB ∽可得PA 利用余弦值可求出COP ∠ 通过弧长公式求解即可.【详解】(1)证明:连接OC 如图∵OC OB =∵OCB OBC ∠=∠∵弦BC 平分PBD ∠∵DBC OBC ∠=∠∵OCB DBC ∠=∠.∵OC BD ∥∵BD PD ⊥∵OC PD ⊥.为O 的半径是O 的切线;)解:连接OC∵PCO PDB ∽OC PO BD PB= 8cm AB = BD =14cm 2OC AB ==4468PA PA +=+ Rt OCP 中cos COP ∠=60COP =︒AC 的长=(1)证明见解析; 是O 的切线;证明FBD FDA ∽ 得到1tan tan 4BD A BDF AD ∠=∠== 进而得到164DF = 即可求解; 本题考查了切线的判定 相似三角形的判定与性质 等腰三角形的性质 余角性质 根据题意 正确作出辅助线是解题的关键.【详解】(1)证明:连结OD∵CO AB ⊥∵90E C ∠+∠=︒∵FE FD = OD OC =∵E FDE ∠=∠ ∠=∠C ODC∵90FDE ODC ∠+∠=︒∵90ODF ∠=︒∵OD DF ⊥∵FD 是O 的切线;(2)解:连结AD ,OD BD 如图∵AB 为O 的直径∵90ADB ∠=︒∵90∠+∠=︒A ABD∵OB OD =∵OBD ODB ∠=∠∵90A ODB ∠+∠=︒∵FBD FDA ∽DF BD AF AD= 在Rt △ABD 中 tan ∠164DF = 3DF =的平分线交O 于点E∵ED OE ⊥∵DE 为O 切线.(2)过点O 作OM BC ⊥于点M 10AB = 6BC =则132MC MB BC ===,152OB OE AB === 四边形OEDM 时矩形∵DE OM =根据勾股定理 得224DE OM OB BM ==-=.18.(1)见解析(2)103【分析】(1)连接OA OC 与AB 相交于点E 如图 由OA OC = 可得OAC OCA ∠=∠ 根据圆周角定理可得12B AOC ∠=∠ 由已知CAD B ∠=∠ 可得2AOC CAD ∠=∠ 根据三角形内角和定理可得180OCA CAO AOC ∠+∠+∠=︒ 等量代换可得90CAO CAD ∠+∠=︒ 即可得出答案;(2)根据角平分线的定义可得BAC DAC ∠=∠ 由已知可得BAC B =∠∠ 根据垂径定理可得 OC AB ⊥ BE AE = 在Rt BEC △中 根据正弦定理可得3sin 45CE CE B BC === 即可算出CE 的长度 根据勾股定理可算出22BE BC CE =-的长度 设O 的半径为r 则125OE OC CE r =-=- 在Rt AOE △中 222OA OE AE =+ 代入计算即可得出答案. 【详解】(1)证明:连接OA OC 与AB 相交于点E 如图OA OC =OAC ∴∠AC AC =∴12B ∠=CAD ∠=AOC ∴∠=OCA ∠+2CAO ∴∠+CAO ∴∠+OAD ∴∠OA 是O 的半径AD ∴是O 的切线;(2)解:AC 是∠BAC DAC ∴∠=∠CAD B ∠=∠BAC B ∴∠=∠OC AB ∴⊥ BE =在Rt BEC △中4BC =sin CE B BC ∴=125CE ∴=BE BC ∴=设O 的半径为r ,则125OE OC CE r =-=-在Rt AOE △中222OA OE AE =+ 222121655r r ⎛⎫⎛⎫=-+ ⎪ ⎪⎝⎭⎝⎭ 解得:103r =. 【点睛】本题主要考查了切线的性质与判定,垂径定理,勾股定理及解直角三角形, 熟练掌握切线的性质与判定,垂径定理及解直角三角形的方法进行求解是解决本题的关键.。
圆的切线专题
1.如图,Rt△ABC中,∠C=90°,∠CAB的角平分线AD交BC于点D,过点D作DE⊥AD,交AB于点E.以AE为直径作⊙O.(1)求证:BC是⊙O的切线;(2)若AE=6,AC=24/ 5 ,求△ADB的面积.2.已知:如图,△ABC中,以AB为直径的⊙O交BC于点P,且P为BC中点,PD⊥AC 于点D.(1)求证:PD是⊙O的切线;(2)求证:AB=AC;(3)若∠CAB=120°,BC=4,求⊙O的直径.3.已知:如图,△ABC中,AB=AC,以AB为直径的⊙O交BC于点P,PD⊥AC于点D.(1)求证:PD是⊙O的切线;(2)若∠CAB=120°,AB=2,求BC的值.4.如图,已知⊙O是△ABC的外接圆,AB为直径,若PA⊥AB,PO过AC的中点M.(Ⅰ)求证:PC是⊙O的切线;(Ⅱ)若∠CAB=30°,⊙O的半径为2,求劣弧AC 的长度.5.如图,⊙O是△ABC的外接圆,AB是直径,∠CAB=30°,CD⊥AB于点D,(1)若CD= 3,求⊙O的半径;(2)把△ACD沿AC折叠得到△ACE,求证:EC是⊙O的切线.6.如图⊙O中,AB是直径,AC和AD是弦,且AD平分∠BAC,过D作AC的垂线交AC 的延长线于E,(1)求证:DE是⊙O的切线.(2)若AE=4,AB=5,求AD的长.7.如图,在△ABC,AB=AC,以AB为直径的⊙O分别交AC、BC于点D、E,点F在AC 的延长线上,且∠CBF=1/2 ∠CAB.(1)求证:直线BF是⊙O的切线;(2)若AB=5,sin∠CBF=5/ 5 ,求BC和BF的长.8.如图,在△ABC,AB=AC,以AB为直径的⊙O分别交AC、BC于点D、E,点F在AC 的延长线上,且∠CAB=2∠CBF.(1)试判断直线BF与⊙O的位置关系,并说明理由;(2)若AB=6,BF=8,求tan∠CBF.9.如图,AB是⊙O的直径,AC是弦,∠BAC的平分线AD交⊙O于点D,DE⊥AC,交AC的延长线于点E,OE交AD于点F.(1)求证:DE是⊙O的切线;(2)若AC/AB =3/5,求AF/DF的值.10.已知:如图,AF为△ABC的角平分线,以BC为直径的圆与边AB交于点D,点E为弧BD的中点,连接CE交AB于H,AH=AC.(1)求证:AC与⊙O相切;(2)若AC=6,AB=10,求EC的长.11.如图,AB是⊙O的直径,点P在AB的延长线上,弦CE交AB于点D.连接OE、AC,已知∠POE=2∠CAB,∠P=∠E.(1)求证:CE⊥AB;(2)求证:PC是⊙O的切线;(3)若BD=20D,PB=9,求⊙O的半径及tan∠P的值.12.如图,AB是半圆O的直径,C为半圆上一点,N是线段CB延长线上一点,过N作AB的垂线交AB于M,交AC的延长线于E,F是EN的中点.(1)求证:CF是半圆的切线;(2)若BC=BN=4,CF=5,求半⊙O的直径.13.如图,已知△ABC,以边BC为直径的圆与边AB交于点D,点E为弧BD的中点,AF 为△ABC角平分线,且AF⊥EC.(1)求证:AC与⊙O相切;(2)若AC=6,BC=8,求EC的长.14.如图所示,在Rt△ABC中,∠C=90°,BC=3,CA=4,∠ABC的角平分线BD交AC于点D,点E是线段AB上的一点,以BE为直径的圆O过点D.(1)求证:AC是圆O的切线;(2)求AE的长.15.如图,Rt△ABC,以AB为直径作⊙O交AC于点D,弧BD=弧DE ,过D作AE的垂线,F为垂足.(1)求证:DF为⊙O的切线;(2)若DF=12,⊙O的半径为13,求EF.16.如图所示,△ABC内接于⊙O,AB是⊙O的直径,点D在⊙O上,连接CD且DC=BC,过C点作AD的垂线交AD延长线于E,(1)求证:CE是⊙O的切线;(2)若AB=5,AC=4,求tan∠DCE的值.17.如图,AB是半圆O的直径,过点O作弦AD的垂线交半圆O于点E,交AC于点C,使∠BED=∠C.(1)判断直线AC与圆O的位置关系,并证明你的结论;(2)若AC=8,cos∠BED=4/5,求AD的长.18.如图,AB是⊙O的直径,点C是⊙O上一点,∠BAC的平分线AD交⊙O于点D,过点D垂直于AC的直线交AC的延长线于点E.(1)求证:DE是⊙O的切线;(2)如图AD=5,AE=4,求⊙O的直径19.如图,在Rt△ABC中,已知∠C=90°,以AB为直径作⊙O,P是AB上一点,过点P作AB的垂线交AC的延长线于点Q,D是PQ上一点,DC=DQ.(1)求证:DC是⊙O的切线;(2)若∠A=60°,BC=QC,求BP/OP的值.20.已知:如图,AB是⊙O的直径,AC是弦,∠BAC的平分线与⊙O的交点为D,DE⊥AC,与AC的延长线交于点E.(1)求证:直线DE是⊙O的切线;(2)若OE与AD交于点F,cos∠BAC=4/5,求DF/AF 的值.21.如图,AB是⊙O的直径,BC是弦,∠ABC的平分线BD交⊙O于点D,DE⊥BC,交BC的延长线于点E,BD交AC于点F.(1)求证:DE是⊙O的切线;(2)若CE=1,ED=2,求⊙O的半径.22.如图,已知以Rt△ABC的边AB为直径作△ABC的外接圆⊙O,∠B的平分线BE交AC 于D,交⊙O于E,过E作EF∥AC交BA的延长线于F.(1)求证:EF是⊙O切线;(2)若AB=15,EF=10,求AE的长.23.如图,已知:以Rt△ABC的边AB为直径作△ABC的外接圆⊙O,∠B的平分线BE交AC于D,交⊙O于E,过E作EF∥AC交BA的延长线于F.AF=5,EF=10,(1)求证:EF是⊙O切线;(2)求⊙O的半径长;(3)求sin∠CBE的值.24.已知:如图,在△ABC中,AB=AC,AE是角平分线,BM平分∠ABC交AE于点M,经过B,M两点的⊙O交BC于点G,交AB于点F,FB恰为⊙O的直径.(1)求证:AE与⊙O相切;(2)当BC=4,AC=6,求⊙O的半径.25.如图,AB为⊙O的直径,C为⊙O上一点,∠BAC的平分线交⊙O于点D,过D点作EF∥BC交AB的延长线于点E,交AC的延长线于点F.(1)求证:EF为⊙O的切线;(2)若sin∠ABC=4/5 ,CF=1,求⊙O的半径及EF的长.26.已知:如图,AB是⊙O的直径,点C是⊙O上的一点,CD交AB的延长线于D,∠DCB=∠CAB.(1)求证:CD为⊙O的切线.(2)若CD=4,BD=2,求⊙O的半径长.。
圆的切线综合练习题与答案
切线的判定与性质练习题一、选择题(答案唯一,每小题3分)1.下列说法中,正确的是( )A.与圆有公共点的直线是圆的切线 B.经过半径外端的直线是圆的切线C.经过切点的直线是圆的切线 D.圆心到直线的距离等于半径的直线是圆的切线2. 如图,AB是⊙O的直径,AC切⊙O于A,BC交⊙O于点D,若∠C=70°,则∠AOD的度数为( )A.70° B.35° C.20° D.40°第2题第3题第4题第5题3. 如图,线段AB是⊙O的直径,点C,D为⊙O上的点,过点C作⊙O的切线交AB的延长线于点E,若∠E=50°,则∠CDB等于( )A.20° B.25° C.30° D.40°4.如图,等腰直角三角形ABC中,AB=AC=8,O为BC的中点,以O为圆心作半圆,使它与AB,AC都相切,切点分别为D,E,则⊙O的半径为( )A.8 B.6 C.5 D.45.如图,CD是⊙O的直径,弦AB⊥CD于点G,直线EF与⊙O相切于点D,则下列结论中不一定正确的是( )A.AG=BG B.AB∥EF C.AD∥BC D.∠ABC=∠ADC二.填空题(每小题3分)6.如图,在⊙O中,弦AB=OA,P是半径OB的延长线上一点,且PB=OB,则PA与⊙O的位置关系是_________.第6题第7题第8题7.如图,△ABC的一边AB是⊙O的直径,请你添加一个条件,使BC是⊙O的切线,你所添加的条件为________________.8.如图,AB是⊙O的直径,O是圆心,BC与⊙O切于点B,CO交⊙O于点D,且BC=8,CD=4,那么⊙O的半径是______.9. 如图,若以平行四边形一边AB为直径的圆恰好与对边CD相切于点D,则∠C=_______度.第9题第10题第11题10. 如图,AB为⊙O的直径,直线l与⊙O相切于点C,AD⊥l,垂足为D,AD交⊙O于点E,连接OC,BE.若AE=6,OA=5,则线段DC的长为______.11.如图,已知△ABC内接于⊙O,BC是⊙O的直径,MN与⊙O相切,切点为A,若∠MAB=30°,则∠B=________度.三、解答题(写出详细解答或论证过程)12.(7分)如图,在Rt△ABC中,∠C=90°,BD是角平分线,点O在AB上,以点O为圆心,OB为半径的圆经过点D,交BC于点E.求证:AC是⊙O的切线.第12题第13题第14题13.(7分)如图,AB是⊙O的直径,点C在AB的延长线上,CD与⊙O相切于点D,CE⊥AD,交AD的延长线于点E.求证:∠BDC=∠A.14.(7分)如图,在Rt△ABC中,∠ABC=90°,∠BAC的平分线交BC于D,以D为圆心,DB长为半径作⊙D,求证:AC与⊙D相切.15.(10分)如图,AB为⊙O的直径,PD切⊙O于点C,交AB的延长线于点D,且∠D=2∠CAD.(1)求∠D的度数;(2)若CD=2,求BD的长.第15题第16题16.(12分)已知△ABC内接于⊙O,过点A作直线EF.(1)如图①,若AB为⊙O的直径,要使EF成为⊙O的切线,还需要添加的一个条件是(至少说出两种):__________________________或者_______________________;(2)如图②,如果AB是不过圆心O的弦,且∠CAE=∠B,那么EF是⊙O的切线吗试证明你的判断.17.(12分)如图,已知直线PA交⊙O于A,B两点,AE是⊙O的直径,点C为⊙O上一点,且AC平分∠PAE,过C作CD⊥PA,垂足为D.(1)求证:CD为⊙O的切线;(2)若DC+DA=6,⊙O的直径为10,求AB的长.答案:DDADC 6. 相切 7. ∠ABC=90°不排除等效答案 8. 6 9. 45 10. 4 11. 60 12. 解:连接OD,∵BD为∠ABC平分线,∴∠OBD=∠CBD,∵OB=OD,∴∠OBD=∠ODB,∴∠CBD=∠ODB,∴OD∥BC,∵∠C=90°,∴∠ODA=90°,则AC为⊙O的切线13. 解:连接OD,∵CD是⊙O的切线,∴∠ODC=90°,∴∠ODB+∠BDC=90°,∵AB是⊙O的直径,∴∠ADB=90°,即∠ODB+∠ADO=90°,∴∠BDC=∠ADO,∵OA=OD,∴∠ADO=∠A,∴∠BDC=∠A14. 解:过D作DH⊥AC于H,由角平分线的性质可证DB=DH,∴AC与⊙D相切15. 解:(1)∵∠COD=2∠CAD,∠D=2∠CAD,∴∠D=∠COD.∵PD与⊙O相切于点C,∴OC⊥PD,即∠OCD=90°,∴∠D=45°(2)由(1)可知△OCD是等腰直角三角形,∴OC=CD=2,由勾股定理,得OD=22+22=22,∴BD =OD-OB=22-216. (1) ∠BAE=90°∠EAC=∠ABC(2) (2)EF是⊙O的切线.证明:作直径AM,连接CM,则∠ACM=90°,∠M=∠B,∴∠M+∠CAM=∠B+∠CAM=90°,∵∠CAE=∠B,∴∠CAM+∠CAE=90°,∴AE⊥AM,∵AM为直径,∴EF是⊙O的切线17. 解:(1)连接OC,证∠DAC=∠CAO=∠ACO,∴PA∥CO,又∵CD⊥PA,∴CO⊥CD,∴CD为⊙O的切线(2)过O作OF⊥AB,垂足为F,∴四边形OCDF为矩形.∵DC+DA=6,设AD=x,则OF=CD=6-x,AF=5-x,在Rt△AOF中,有AF2+OF2=OA2,即(5-x)2+(6-x)2=25,解得x1=2,x2=9,由AD<DF知0<x<5,故x=2,从而AD=2,AF=5-2=3,由垂径定理得AB=2AF=6。
圆切线练习题(题型全面)
圆切线练习题(1)1、 已知:直线AB 经过⊙O 上的点C ,并且OA=OB ,CA=CB . 求证:直线AB 是⊙O 的切线.2、如图7-51,AB 是⊙O 的直径,∠ABT=45°,AT=AB . 求证:AT 是⊙O 的切线.3.如右图,AB 是⊙O 的直径,点D 在AB 的延长线上,BD=OB ,点C 在圆上,∠CAB=30°,求证:DC 是⊙O 的切线.4、如图7-53,AB 为⊙O 的直径,C 为⊙O 上一点,AD 和过C 点切线互相垂直,垂足为D . 求证:AC 平分∠DAB .5、如图,AN 是⊙O 的直径,⊙O 过BC 的中点D .DE ⊥AC . 求证:DE 是⊙O 的切线.6、已知:如图,AB 是⊙O 的直径,P 是⊙O 外一点,PA ⊥AB ,•弦BC ∥OP ,求证:PC 为⊙O 的切线7、 已知:如图,在Rt △ABC 中,∠ABC=900,以AB 为直径的⊙O 交AC 于E 点,D 为BC 的中点。
求证:DE 与⊙O 相切。
8、 已知:AB 为⊙O 的直径,AC 为弦,D 为AB 上一点,过D 点作AB 的垂线DE 交AC 于F ,EF=EC 。
求证:EC 与⊙O 相切。
9、 已知:△ABC 中AB=AC ,O 为BC 的中点,以O 为圆心的圆与AC 相切于点E ,求证:AB 与⊙O 也相切。
10.已知:在以O 为圆心的两个同心圆中,大圆的弦AB 和CD 相等,且AB与小圆相切于点E , 求证:CD 与小圆相切。
CD A圆切线练习题(2)1、已知:以等腰△ABC的一腰AB为直径的⊙O交BC于D,,过D作DE⊥AC于E,求证:DE是⊙O的切线。
2、如图,AB是⊙O的弦,OAOC⊥交AB于点C,过点B的直线交OC的延长线于点E,当BECE=时,直线BE与⊙O有怎样的位置关系?并证明你的结论.3.已知:如图,P是∠AOB的角平分线OC上一点.PE⊥OA于E.以P点为圆心,PE长为半径作⊙P.求证:⊙P与OB相切.4.已知:如图,Rt△ABC中,∠ACB=90°,以AC为直径的半圆O交AB于F,E是BC的中点.求证:直线EF是半圆O的切线.5.已知:如图,△ABC中,AD⊥BC于D点,.21BCAD=以△ABC的中位线为直径作半圆O,试确定BC与半圆O的位置关系,并证明你的结论.6.已知:如图,△ABC中,AC=BC,以BC为直径的⊙O交AB于E点,直线EF⊥AC于F.求证:EF与⊙O相切.7.如图,P为⊙O外一点,PO交⊙O于C,过⊙O上一点A作弦AB⊥PO于E,若∠EAC=∠CAP,求证:PA是⊙O的切线.8.经过⊙O上的点T的切线和弦AB的延长线相交于点C,求证:∠ATC=∠TBC圆切线练习题(3)一、填空题1、⊙O是ΔABC的外接圆,∠BOC=120°,∠BAC=2、⊙O半径为5,点O (0,0),则点P(4,2)在⊙O (填外、内)3、ΔABC中,AB=6,BC=8,AC=12,⊙O与ΔABC三边AB,BC,CA分别切于D、E、,F,则AD= ,BE= ,CF=4、直角三角形两直角边为3、4,则内切圆半径为,外接圆半径为5、如图1,PA,PB切⊙O于A,B,点C、E分别在PA、PB上,且CE切⊙O于D,若PA=5cm ,则ΔPCE周长为;若∠P=50°,∠COE=6、圆的外切梯形ABCD中,AD∥BC,周长为20,则中位线长为7、等腰梯形各边与圆都相切,腰长为9cm,圆的直径为6cm,则梯形面积为8、⊙O内切于ΔABC,BC切⊙O于D,BD=3,DC=2, ΔABC周长为18,则AB长为18、正三角形的内切圆半径为,则正三角形边长为19、如图2,⊙O切ΔABC三边于D、E、F,∠A=40°,则∠FDE=20、如图3,AB、AC切⊙O于B、C,∠A=50 °,点P是⊙O上异于B、C的一个动点,∠BPC=二、解答题1、如图4,ΔABC中,AB=AC,以AB为直径作⊙O交BC于D,DE⊥AC于E。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
圆的切线练习题
例1、如图,已知AB是⊙O的直径,锐角∠DAB的平分线AC 交⊙O于点C,作CD⊥AD,垂足为D,直线CD与AB的
延长线交于点E.求证:直线CD为⊙O的切线;
对应练: 如图,AD是⊙O的弦,AB经过圆心O,交⊙O于点C,∠DAB=∠B=30°.
(1)直线BD是否与⊙O相切?为什么?
(2)连接CD,若CD=5,求AB的长.
例2、已知:△ABC是边长为4的等边三角形,点O在边AB上,
⊙O过点B且分别与边AB,BC相交于点D,E,EF⊥AC,垂足为F.
(1)求证:直线EF是⊙O的切线;
(2)当直线DF与⊙O相切时,求⊙O的半径.
对应练:如图,在Rt△ABC中,∠C=90°,O、D分别为AB、BC上的点.经过A、D两点的⊙O分别交AB、AC于点E、F,且D为弧EF的中点.
(1)求证:BC与⊙O相切;
(2)当AD=23;∠CAD=30°时.求弧AD的长.
3.如图,AB 是半圆O 的直径,点C 是⊙O 上一点(不与A ,B 重合),连接AC ,BC ,过点O 作OD ∥AC 交BC 于点D ,在OD 的延长线上取一点E ,连接EB ,使∠OEB=∠ABC . ⑴求证:BE 是⊙O 的切线;⑵若OA=10,BC=16,求BE 的长.
4.如图,⊙ O 经过点B 、D 、E ,BD 是⊙ O 的直径,∠C =90°,BE 平分∠ABC. (1)试说明直线AC 是⊙ O 的切线; (2)当AE =4,AD =2时,求⊙ O 的半径及BC 的长.
5、如图,在⊙O 中,AB 为直径,AC 为弦,过点C 作CD⊥AB 与点D ,
将△ACD 沿AC 翻折,点D 落在点E 处,AE 交⊙O 于点F ,连接OC 、FC. (1)求证:CE 是⊙O 的切线。
(2)若FC∥AB,求证:四边形 AOCF 是菱形。
6、如图,AB 是⊙O 的直径,CD 是⊙O 的切线,切点为C .延长AB 交CD 于点E .连接AC ,
C
F O
E
A
B
D
E
O C
D
B A
作∠DAC=∠ACD,作AF⊥ED于点F,交⊙O于点G.(1)求证:AD是⊙O的切线;
(2)如果⊙O的半径是6cm,EC=8cm,求GF的长.
7、如图,△ABC内接于⊙O,CA=CB,CD∥AB且与OA的延长线交于
点D.(1)判断CD与⊙O的位置关系并说明理由;
(2)若∠ACB=120°,OA=2.求CD的长.
8、如图,在Rt△ABC中,∠C=90°,点D是AC的中点,
且∠A+∠CDB=90°,过点A,D作⊙O,使圆心O在AB
上,⊙O与AB交于点E.(1)求证:直线BD与⊙O相切;
(2)若AD:AE=4:5,BC=6,求⊙O的直径.
9、如图,在△ABC中,AB=AC,以AB为直径作⊙O,交BC
于点D,过点D作DE⊥AC,垂足为E.(1)求证:DE是⊙O
的切线;
(2)如果BC=8,AB=5,求CE的长
10、在△ABC中,AB=AC,点O是△ABC的外心,连接AO并延长交BC于D,交△ABC的外
接圆于E,过点B作⊙O的切线交AO的延长线于Q,设OQ=9
2
,
BQ=32.(1)求⊙O的半径;(2)若DE=3
5
,求四边形ACEB
的周长
11、如图,已知直线PA交⊙O于A、B两点,AE是⊙O的直径.点C为⊙O上一点,且AC平分∠PAE,过C作CD⊥PA,垂足为D。
(1)求证:CD为⊙O的切线;(2)若DC+DA=6,
⊙O的直径为l0,求AB的长度.
12如图,在△ABC中,D为AB上一点,⊙ O经过B、C、D三点,∠COD=90°,∠ACD
=∠BCO+∠BDO. (1)求证:直线AC是⊙ O的切线;(2)若∠BCO=15°,⊙ O的半径为2,求BD的长.。