人教版八年级下册数学教案:第18章平行四边形单元备课

合集下载

新人教版八年级数学下册《平行四边形》教案设计(10篇)

新人教版八年级数学下册《平行四边形》教案设计(10篇)

新人教版八年级数学下册《平行四边形》教案设计(10篇)八年级数学下册《平行四边形》教案设计篇1教学准备教师准备:投影仪,教具:课本“探究”内容;补充材料制成投影片.学生准备:复习,平行四边形性质;学具:课本“探究”内容.学法解析1.认知题后:学习了三角形全等、平行四边形定义、•性质以后学习本节课内容.2.知识线索:3.学习方式:采用动手操作来发现新的知识,通过交流形成知识体系.教学过程一、回顾交流,逆向思索教师提问:1.平行四边形定义是什么?如何表示?2.平行四边形性质是什么?如何概括?学生活动:思考后举手回答:回答:1.•两组对边分别平行的四边形叫做平行四边形(教师在黑板上画出下图:帮助学生直观理解)回答:2.平行四边形性质从边考虑:(1)对边平行,(2)对边相等,(3)•对边平行且相等(“”);从角考虑:对角相等;从对角线考虑:两条对角线互相平分.(借助上图直观理解).教师归纳:(投影显示)平行四边形【活动方略】教师活动:操作投影仪,显示课本P96和P97“探究”的问题.用问题牵引学生动手操作、思考、发现、归纳、论证,可以让学生分成4人小组讨论,•然后再进行小组汇报,教师同时也拿出教具同学在一起探索.学生活动:分四人小组,拿出准备好的学具探究.在活动中发现:(1)•将两长两短的四根细木条(或用硬纸片),用小钉铰合在一起,做成四边形,如果等长的木条成对边,那么无论如何转动这四边形,它的形状都是平行四边形;(2)•若将两根细木条中点用钉子钉合在一起,用像皮筋连接木条的顶点,做成一个四边形,转动两根木条,这个四边形是平行四边形.(3)将两条等长的木条平行放置,•另外用两根木条(不一定等长)用钉子予以加固,得到的四边形一定是平行四边形。

八年级数学下册《平行四边形》教案设计篇2教材分析:平行四边形的面积计算教学是在学生掌握了平行四边形的特征以及长方形、正方形面积计算的基础上进行的,它同时又是进一步学习三角形面积、梯形面积、圆的面积和立体图形表面积计算的基础。

【人教版】数学八下:第18章《平行四边形》全章名师说课稿

【人教版】数学八下:第18章《平行四边形》全章名师说课稿

【人教版】数学八下:第18章《平行四边形》全章名师说课稿一. 教材分析《人教版》数学八下第18章《平行四边形》是学生在学习了三角形、四边形的基础上,进一步研究平行四边形的性质和判定。

本章内容主要包括平行四边形的定义、性质、判定以及平行四边形的应用。

通过本章的学习,使学生能理解和掌握平行四边形的性质和判定方法,提高解决实际问题的能力。

二. 学情分析学生在学习本章内容前,已经掌握了三角形、四边形的基本知识,具备了一定的逻辑思维能力和空间想象能力。

但学生在学习过程中,可能对平行四边形的性质和判定方法容易混淆,需要通过实例和练习来加深理解和掌握。

三. 说教学目标1.理解平行四边形的定义,掌握平行四边形的性质和判定方法。

2.能够运用平行四边形的性质和判定方法解决实际问题。

3.培养学生的逻辑思维能力和空间想象能力。

四. 说教学重难点1.平行四边形的性质和判定方法的掌握。

2.平行四边形在实际问题中的应用。

五. 说教学方法与手段1.采用讲授法,讲解平行四边形的定义、性质、判定方法。

2.利用多媒体演示,直观展示平行四边形的性质和判定过程。

3.运用例题和练习,让学生在实际问题中应用平行四边形的性质和判定方法。

4.小组讨论,培养学生合作学习的能力。

六. 说教学过程1.引入新课:通过复习三角形、四边形的基本知识,引导学生学习平行四边形。

2.讲解平行四边形的定义、性质、判定方法:通过多媒体演示和板书,详细讲解平行四边形的定义、性质、判定方法。

3.例题讲解:选取典型例题,讲解平行四边形的性质和判定方法在实际问题中的应用。

4.练习巩固:学生自主完成练习题,巩固对平行四边形的性质和判定方法的理解。

5.小组讨论:学生进行小组讨论,分享解题心得和方法。

6.课堂小结:总结本节课所学内容,强调平行四边形的性质和判定方法。

7.作业布置:布置相关练习题,让学生课后巩固所学知识。

七. 说板书设计板书设计如下:1.对边平行且相等2.对角相等3.对边相等4.对角线互相平分5.两组对边分别平行的四边形是平行四边形6.两组对角分别相等的四边形是平行四边形7.对边平行且相等的四边形是平行四边形八. 说教学评价通过课堂讲解、练习完成情况、小组讨论参与度等方面,评价学生对平行四边形的性质和判定方法的掌握程度。

人教初中数学八年级下册 第18章 平行四边形教案1

人教初中数学八年级下册  第18章 平行四边形教案1
教学内容 分析:
1、平行四边形与各种特殊平行四边形的定义、性质、判定方法;
2、平行四边形与各种特殊平行四边形的联系与区别




知识

技能
1、平行四边形与各种特殊平行四边形的定义、性质、判定方法;
2、平行四边形与各种特殊平行四边形的联系与区别
过程

方法
梳理知识-----查漏补缺-----总结规律 -----练习,提高效率
情感态度
价值观
引导学生独立思考,通过归纳、概括、实践等系统数学活动,感受获得成功的体验,形成科学的学习习惯。
教学
重点

难点
重点
1、平行四边 形与各种特殊平行四边形的区 别。
2、梳理平行四边形、矩形、菱形、正方形的知识体系及应用方法。
难点
平行四边形与各种特殊平行四边形的定义、性质、判定的综合运用。
媒体教具
平行四 边形
课标
解读

教材
分析
【课标要求】
1、通过对几种平行四边形的回顾与思考,使学生梳理所学的知识,系统地复习平行四边形与各种特殊平行四边形的定义、性质、判定方法;
2、正确理解平行四边形与各种特殊平行四边形的联系与区别,在反思和交流过程中,逐渐建立知识体系;
3、引导学生独立思考,通过 归纳、概括、实践等系统数学活动,感受获得成功的体验,形成科学的学习习惯。
三角板
课时
1课时
教学过程
修改栏
教学内容
师生互动
配套练习P39:
评估与反思16-22
掌握知识、通过题型练 习提高效率
板书设计
作业布置
教学反思

人教版数学八年级下册18.1 平行四边形-教学设计 教案

人教版数学八年级下册18.1 平行四边形-教学设计 教案

18.1.1 平行四边形及其性质教学设计教学目标1. 理解平行四边形的概念和平行四边形对边、对角相等的性质.2. 掌握平行四边形的性质进行简单的平行四边形的有关计算和推理证明3. 培养学生发现问题、解决问题的能力及逻辑推理能力.教学重点平行四边形的定义,平行四边形对角、对边相等的性质.教学难点运用平行四边形的性质进行有关的计算和证明教学过程一:课前准备1、三角形全等的判定有哪些?2、整章的教材分析.3、生活中有哪些四边形?常见的四边形是什么?有些什么样的性质?二、新知探究1、情境导入:平行四边形是常见的图形.小区的伸缩门、庭院的竹篱笆、载重机的防护栏等,都有平行四边形的形象,你还能举出其他例子吗?设计目的:通过图片,让学生感受生活中存在大量平行四边形的原型,进而从实际背景中抽象出平行四边形,让学生经历将实物抽象为图形的过程.问题1:平行四边形的定义是什么?(教师引导学生回顾以前的知识,给出定义.)2、平行四边形的定义:两组对边分别平行的四边形叫做平行四边形.(板书)平行四边形用“□”表示,如图,记作“□ABCD”.问题2: 你能用符号语言把平行四边形的定义表示出来吗?.∵AB∥CD,AD∥BC(已知),∴四边形ABCD是平行四边形(平行四边形的定义)(判定)反过来∵四边形ABCD是平行四边形(已知),∴AB∥CD,AD∥BC(平行四边形的性质).(性质)随堂练习:如图,AB∥EF∥CD,AD∥GH∥BC, EF与GH 交于点O,则该图中平行四边形共有()A.7个B.8个C.9个D.11个归纳:将几何图形分类(按顺序或大小)数,做到不重不漏,要找平行四边形的个数,可以先找四边形,再看这些四边形是否都为平行四边形.探究:观察图18.1-2 □ABCD,除了“两组对边分别平行”外,它的边之间还有什么关系?它的角之间有什么关系?度量一下,和你的猜想一致吗?猜想1:两组对边分别相等(AD=BC,AB=CD).猜想2:两组对角分别相等(∠A=∠C,∠B=∠D).分析:①利用三角形全等得出全等三角形的对应边、对应角都相等,是证明线段相等、角相等的一种重要的方法.②通过添加辅助线,构造两个三角形,通过三角形全等进行证明.(连接对角线是解决四边形问题常用的辅助线,可以把四边形转化为已知的三角形的问题.)证明:如右图,连接AC.∵AD∥BC,AB∥CD,∴∠1=∠2,∠3=∠4(两直线平行,内错角相等).又AC=CA(公共边)∴△ABC≌△CDA(ASA).∴AD=CB,AB=CD,∠B=∠D.同理可证∠BAD=∠DCB.3、平行四边形的性质:平行四边形的对边相等;平行四边形的对角相等.问题3:不添加辅助线,你能否直接运用平行四边形的定义,证明其对角相等吗?(学生思考,回答,老师补充)问题4:你能用符号语言把平行四边形的定义表示出来吗?(1) ∵四边形ABCD是平行四边形,∴AB=CD,AD=BC.(2)∵四边形ABCD是平行四边形,∴∠A=∠C ∠B=∠D.三、应用新知例1:如图□ABCD中,(1)AD=8,其周长为24,则BC= ,AB= ,CD= 。

【人教版】数学八下:第18章《平行四边形》全章名师教学设计

【人教版】数学八下:第18章《平行四边形》全章名师教学设计

【人教版】数学八下:第18章《平行四边形》全章名师教学设计一. 教材分析人教版数学八下第18章《平行四边形》是学生在学习了四边形的性质和分类之后的内容,本章主要引导学生探究平行四边形的性质,并学会运用这些性质解决实际问题。

本章内容包括平行四边形的定义、性质、判定以及平行四边形的应用。

通过本章的学习,学生能进一步理解和掌握四边形的分类,提高解决几何问题的能力。

二. 学情分析学生在学习本章之前,已经掌握了四边形的性质和分类,具备一定的几何思维能力。

但部分学生对几何图形的理解和操作能力仍需提高,因此,在教学过程中,需要关注学生的学习差异,针对性地进行引导和辅导。

三. 教学目标1.理解平行四边形的定义和性质,掌握平行四边形的判定方法。

2.能够运用平行四边形的性质解决实际问题,提高解决问题的能力。

3.培养学生的空间想象能力、逻辑思维能力和团队合作能力。

四. 教学重难点1.平行四边形的定义和性质的理解与运用。

2.平行四边形的判定方法的掌握。

3.实际问题中平行四边形性质的应用。

五. 教学方法1.采用问题驱动的教学方法,引导学生通过探究、讨论、总结等方式主动学习。

2.利用多媒体课件和实物模型,直观展示平行四边形的性质和判定,增强学生的空间想象能力。

3.注重个体差异,实施分层教学,针对不同水平的学生给予适当的辅导和指导。

4.小组合作学习,培养学生的团队合作能力和沟通能力。

六. 教学准备1.多媒体课件和教学软件,用于展示平行四边形的性质和判定。

2.实物模型和教具,用于直观展示平行四边形的性质。

3.练习题和实际问题,用于巩固和拓展学生的知识。

4.教学计划和教学反思表,用于指导教学过程和评价教学效果。

七. 教学过程1.导入(5分钟)利用多媒体课件展示平行四边形的图片,引导学生回顾四边形的分类,激发学生对平行四边形的学习兴趣。

2.呈现(10分钟)介绍平行四边形的定义和性质,通过实物模型和教具直观展示平行四边形的性质,引导学生理解和掌握。

人教版八年级数学下册第十八章《平行四边形》第一节《平行四边形的性质》第一课时优秀教学案例

人教版八年级数学下册第十八章《平行四边形》第一节《平行四边形的性质》第一课时优秀教学案例
3.教师对学生的学习过程和结果进行综合评价,关注学生的知识掌握、能力发展和情感态度,以鼓励和赞赏的方式,帮助学生建立成功体验,增强学生克服困难的勇气和信心。
作为一名特级教师,我深知教学策略的重要性,它能够帮助我更好地实现教学目标,提高学生的学习效果。在教学过程中,我注重情景创设、问题导向、小组合作和反思与评价等策略的灵活运用,以激发学生的学习兴趣,培养学生的思维能力、合作意识和自我反思能力,促进学生的全面发展。
人教版八年级数学下册第十八章《平行四边形》第一节《平行四边形的性质》第一课时优秀教学案例
一、案例背景
本案例背景基于人教版八年级数学下册第十八章《平行四边形》第一节《平行四边形的性质》第一课时内容。本节课主要介绍平行四边形的性质,包括平行四边形的定义、对边相等、对角相等、对边平行和对角线互相平分等特点。
五、案例亮点
1.生活情境的创设:通过带领学生参观公园并观察现实生活中的平行四边形物体,我成功激发了学生对平行四边形性质的兴趣和好奇心。这种生活情境的创设使学生能够更好地将数学知识与实际生活联系起来,提高了学生的学习动力。
2.问题导向的运用:在教学过程中,我提出了一系列具有启发性的问题,引导学生进行思考和探索。这种问题导向的教学方法使得学生能够主动参与到学习过程中,培养了自己的逻辑思维和解决问题的能力。
5.教学策略的灵活运用:在教学过程中,我综合运用了情景创设、问题导向、小组合作和反思与评价等多种教学策略。这种策略的灵活运用使得学生能够在不同的学习活动中得到全面的发展,提高了学习效果。
作为一名特级教师,我深知教学案例亮点的重要性。这些亮点不仅体现了我对教学内容和方法的深入思考和精心设计,也体现了我对学生学习需求和发展的关注。在今后的教学中,我将继续努力,不断探索和创新,为学生提供更优质的教学服务。

人教版八年级数学下册第18章平行四边形(教案)

人教版八年级数学下册第18章平行四边形(教案)
3.重点难点解析:在讲授过程中,我会特别强调平行四边形的性质和判定方法这两个重点。对于难点部分,如特殊平行四边形的性质,我会通过举例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与平行四边形相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,如用直尺和三角板制作平行四边形,演示其性质。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解平行四边形的基本概念。平行四边形是具有两组对边分别平行的四边形,它在几何图形中具有重要的地位。它是研究其他更复杂数学概念的基础。
2.案例分析:接下来,我们来看一个具体的案例。通过分析实际生活中的平行四边形物体,了解平行四边形在实际中的应用,以及它如何帮助我们解决问题。
举例:分析不同类型的四边形,让学生判断其是否为平行四边形,并说明理由。
(3)特殊平行四边形的性质:掌握矩形、菱形、正方形的性质及判定方法。
举例:通过实际操作,让学生探索特殊平行四边形的性质,并运用性质解决相关问题。
(4)平行四边形的面积计算:掌握平行四边形面积的计算公式,并能解决实际问题。
举例:给出具体图形,让学生计算平行四边形的面积,并应用于实际情境。
4.学生小组讨论环节,大家围绕平行四边形在实际生活中的应用展开了热烈的讨论。通过这个环节,学生们的思维得到了拓展,但也有一些学生在提出问题和解决问题方面显得不够自信。在今后的教学中,我会鼓励这部分学生多参与讨论,提高他们的自信心和解决问题的能力。
5.总结回顾环节,我对本节课的教学内容进行了梳理,希望学生们能够掌握平行四边形的性质、判定方法以及在生活中的应用。但从学生的反馈来看,他们对某些知识点的掌握程度仍有待提高。在接下来的教学中,我会加强对这些知识点的讲解和练习,确保学生们能够熟练掌握。

人教版八年级数学下册第18章平行四边形复习课教学设计

人教版八年级数学下册第18章平行四边形复习课教学设计
4.培养学生运用平行四边形的相关知识解决实际问题,如计算面积、周长、角度等。
(二)过程与方法
1.通过复习课的教学,引导学生自主探究、合作交流,提高学生的几何逻辑思维能力。
2.利用实际问题,激发学生的兴趣,培养学生的几何直观和空间想象能力。
3.设计具有层次性的练习题,使学生在解决问题的过程中,逐步提高解题能力和技巧。
(2)从生活中寻找一个实例,运用平行四边形的性质和判定方法进行分析,并简要说明。
2.选做题:
(1)探究题目:矩形、菱形、正方形各自具有哪些独特的性质?它们之间的关系是什么?
(2)拓展题目:运用平行四边形的性质,解决以下问题:一个平行四边形的对角线互相垂直,求证该平行四边形是菱形。
3.小组合作任务:
以小组为单位,设计一道关于平行四边形的实际问题,要求包含平行四边形性质和判定方法的应用。小组成员共同讨论,解决问题,并在课堂上进行展示。
7.总结提炼,形成知识体系
在复习课结束时,引导学生总结平行四边形的知识点,形成完整的知识体系,提高学生的归纳、总结能力。
8.拓展延伸,激发兴趣
设计一些拓展性问题和实际应用题,激发学生的学习兴趣,提高学生的创新思维和解决问题的能力。
四、教学内容与过程
(一)导入新课
1.教学活动:利用多媒体展示一组生活中常见的平行四边形实物图片,如建筑物的立面、操场上的跑道等,引导学生观察并说出这些图形的共同特征。
人教版八年级数学下册第18章平行四边形复习课教学设计
一、教学目标
(一)知识与技能
1.让学生掌握平行四边形的性质,如对边平行且相等、对角线互相平分等,并能运用这些性质解决实际问题。
2.培养学生运用平行四边形的判定方法,如两组对边分别平行、一组对边平行且相等、对角线互相平分等,识别和构造平行四边形。

【人教版】初中数学八下数学第18章《平行四边形》全章教学案(含解析)

【人教版】初中数学八下数学第18章《平行四边形》全章教学案(含解析)

第十八章平行四边形1.理解平行四边形、矩形、菱形、正方形的概念,了解它们之间的关系.2.探索并证明平行四边形、矩形、菱形、正方形的性质定理和判定定理,并能运用它们进行证明和计算.3.了解两条平行线之间距离的意义,能度量两条平行线之间的距离.4.探索并证明中位线定理.1.通过经历平行四边形与各特殊平行四边形之间的联系与区别,使学生进一步认识一般与特殊的关系.2.通过经历平行四边形和特殊的平行四边形的性质和判定的探索、证明及相关计算的过程,以及相关问题证明和计算的过程,进一步培养和发展学生合情推理、演绎推理的能力.1.通过几何问题的证明和计算,体验证法和解法的多样性,渗透转化思想.2.通过动手实践,积极参与数学活动,对数学有好奇心和求知欲.平行四边形是特殊的四边形,它与三角形一样,既是几何中的基本图形,也是“空间与图形”领域主要的研究对象.本章内容也是在已经学过的多边形、平行线、三角形的基础上学习的,也可以说是在已有知识的基础上做出的进一步较系统的整理和研究,它是以后我们继续学习其他几何知识的基础.本章内容主要包括:平行四边形、特殊的平行四边形.其中平行四边形主要探索平行四边形的性质和判定,特殊的平行四边形主要介绍了矩形、菱形、正方形,并根据定义探索它们的性质和判定.【重点】理解和掌握平行四边形、特殊的平行四边形的定义、性质和判定,掌握三角形的中位线定理,会应用平行四边形和特殊的平行四边形的相关知识以及三角形中位线定理解决一些简单的实际问题.【难点】分清平行四边形与矩形、菱形、正方形之间的联系和区别,能够灵活运用平行四边形、特殊平行四边形的定义、性质和判定方法进行推理论证.1.关于平行四边形及特殊的平行四边形概念之间从属、种差、内涵与外延之间的关系.本章概念比较多,概念之间联系非常密切,关系复杂.由于平行四边形和各种特殊平行四边形的概念之间重叠交错,容易混淆,因此弄清它们的共性、特性及其从属关系非常重要.实际上,有时学生掌握了它们的特殊性质,而忽略了共同性质.如有的学生不知道正方形既是矩形,又是菱形,也是平行四边形,应用时常犯多用或少用条件的错误.教学时,不仅要讲清矩形、菱形、正方形的特殊性质,还要强调它们与平行四边形的从属关系和共同性质.也就是在讲清每个概念特征的同时,强调它们的属概念,弄清这些概念之间的关系.在原有属概念基础上附加一些条件(种差),通过扩大概念的内涵、减少概念的外延的方式引出新的种概念;同时在原有属概念的性质和判定方法的基础上,来研究种概念的性质和判定方法.弄清这些关系,最好是用图示的办法.在弄清这些图形之间关系的基础上,还要进一步向学生说明概念的内涵与外延之间的反变关系,即内涵越小,外延越大;反之外延越小,内涵越大.例如,正方形的性质中,包含四边形、平行四边形、矩形、菱形所有的特征,它的外延很小,而平行四边形的外延很大.弄清了各种特殊平行四边形的概念,各种平行四边形之间的从属关系也就清楚了,它们的性质定理、判定定理也就不会用错了.2.进一步培养学生的合情推理能力和演绎推理能力.从培养学生的推理论证能力的角度来说,本章处于学生初步掌握了推理论证方法的基础上,进一步巩固和提高的阶段.本章内容比较简单,证明方法相对比较单一,学生前面已经进行了一些推理证明的训练.但这种训练只是初步,要进一步巩固和提高.教学中同样要重视推理论证的教学,进一步提高学生的合情推理能力和演绎推理能力.在推理与证明的要求方面,除了要求学生对经过观察、实验、探究得出的结论进行证明以外,还要求学生直接由已有的结论对有些图形的性质通过推理论证得出.另外,为了巩固并提高学生的推理论证能力,本章定理证明中,除了采用严格规范的证明方法外,还有一些采用了探索式的证明方法.这种方法不是先有了定理再去证明它,而是根据题设和已有知识,经过推理,得出结论.另外也有一些文字叙述的证明题,要求学生自己写出已知、求证,再进行证明.这些对学生的推理能力要求较高,难度也有增加,但能激发学生的学习兴趣,活跃学生的思维,对发展学生的思维能力有好处.教学中要注意启发和引导,使学生在熟悉“规范证明”的基础上,推理论证能力有所提高和发展.18.1 平行四边形18.1.1平行四边形的性质(2课时)5课时18.1.2平行四边形的判定(3课时)18.2 特殊的平行四边形18.2.1矩形(2课时)5课时18.2.2菱形(2课时)18.2.3正方形(1课时)单元概括整合1课时18.1平行四边形1.理解平行四边形的概念,探究并掌握平行四边形的边、角、对角线的性质.2.理解并掌握平行四边形的判定条件,能利用平行四边形的判定条件证明四边形是平行四边形.3.掌握三角形的中位线的概念和定理.1.在运用平行四边形的性质和平行四边形的判定方法及三角形的中位线定理的过程中,进一步培养和发展学生自主学习能力及应用数学的意识,通过对平行四边形判定方法的探究,提高学生解决问题的能力.2.通过类比、观察、实验、猜想、验证、推理、交流等教学活动,进一步培养学生动手能力及合情推理能力,使学生会将平行四边形的问题转化成三角形的问题,渗透转化与化归意识.通过观察、猜测、归纳、证明,培养学生类比、转化的数学思想方法,锻炼学生的简单推理能力和逻辑思维能力,渗透“转化”的数学思想.让学生在观察、合作、讨论、交流中感受数学的实际应用价值,同时培养学生善于发现、积极思考、合作学习的学习态度.【重点】平行四边形的性质与判定方法的探究和运用,以及三角形中位线定理的理解和应用.【难点】平行四边形的判定与性质定理的综合运用.18.1.1平行四边形的性质1.理解平行四边形的概念.2.探究并掌握平行四边形的边、角、对角线的性质.3.利用平行四边形的性质来解决简单的实际问题.通过观察、猜测、归纳、证明,培养学生类比、转化的数学思想方法,锻炼学生的简单推理能力和逻辑思维能力,渗透“转化”的数学思想.让学生在观察、合作、讨论、交流中感受数学的实际应用价值,同时培养学生善于发现、积极思考、合作学习的学习态度.【重点】平行四边形的概念和性质的探索.【难点】平行四边形性质的运用.第课时1.理解平行四边形的定义及有关概念.2.探究并掌握平行四边形的对边相等、对角相等的性质,利用平行四边形的性质进行简单的计算和证明.3.了解平行线间距离的概念.1.经历利用平行四边形描述、观察世界的过程,发展学生的形象思维和抽象思维.2.在进行性质探索的活动过程中,发展学生的探究能力.3.在性质应用的过程中,提高学生运用数学知识解决实际问题的能力,培养学生的推理能力和逻辑思维能力.在性质应用过程中培养独立思考的习惯,让学生在观察、合作、讨论、交流中感受数学的实际应用价值,同时培养学生善于发现、积极思考、合作学习的学习态度.【重点】平行四边形边、角的性质探索和证明.【难点】如何添加辅助线将平行四边形问题转化成三角形问题解决的思想方法.【教师准备】教学中出示的教学插图和例题的投影图片.【学生准备】方格纸,量角器,刻度尺.导入一:[过渡语]前面我们已经学习了许多图形与几何知识,掌握了一些探索和证明几何图形性质的方法,本节开始,我们继续研究生活中的常见图形.我们一起来观察下图中的小区的伸缩门,庭院的竹篱笆和载重汽车的防护栏,它们是什么几何图形的形象?学生观察,积极踊跃发言,教师从实物中抽象出平行四边形.本节课我们主要研究平行四边形的定义及有关概念,探究并掌握平行四边形的对边相等、对角相等的性质,利用平行四边形的性质进行简单的计算和证明.[设计意图]通过图片展示,让学生真切感受生活中存在大量平行四边形的原型,进而从实际背景中抽象出平行四边形,让学生经历将实物抽象为图形的过程.导入二:(出示本章农田鸟瞰图)观察章前图,你能从图中找出我们熟悉的几何图形吗?学生自由说出图中的几何图形,教师结合学生说到的图中包含长方形、正方形等,明确本章主要研究对象——平行四边形.[过渡语]下面我们来认识特殊的四边形——平行四边形.[设计意图]以农田鸟瞰图作为本章的章前图,学生可以见识各种四边形的形状,通过查找长方形、正方形、平行四边形等,为进一步比较系统地学习这些图形做准备,并明确本章的学习任务.1.平行四边形的定义思路一提问:你知道什么样的图形叫做平行四边形吗?教师引导学生回顾小学学习过的平行四边形的概念:两组对边分别平行的四边形叫做平行四边形.说明定义的两方面作用:既可以作为性质,又可以作为判定平行四边形的依据.追问:平行四边形如何好记好读呢?画出图形,教师示范后,学生结合图练习,并提醒学生注意字母的顺序要按照顶点的顺序记.平行四边形用“▱”表示,平行四边形ABCD,记作“▱ABCD”.如右图所示,引导学生找出图中的对边,对角.对边:AD与BC,AB与DC;对角:∠A与∠C,∠B与∠D.进一步引导学生总结:四边形中不相邻的边,也就是没有公共顶点的边叫做对边;没有公共边的角,叫做对角.[设计意图]给出定义,强调定义的作用,让学生结合图形认识“对角”“对边”,为学习性质做好准备.思路二请举出你身边存在的平行四边形的例子.学生举出生活中常见的例子.如小区的伸缩门,庭院的竹篱笆和载重汽车的防护栏……教师点评,画出图形,如右图所示.提问:(1)你能说出平行四边形的定义吗?(2)你能表示平行四边形吗?(3)你能用符号语言来描述平行四边形的定义吗?学生阅读教材第41页,点名学生回答以上问题,教师进一步讲解:(1)两组对边分别平行的四边形叫做平行四边形.概念中有两个条件:①是一个四边形;②两组对边分别平行.(2)指出表示平行四边形错误的情况,如▱ACDB.(3)作为性质:∵四边形ABCD是平行四边形,∴AD∥BC,AB∥CD.作为判定:∵AD∥BC,AB∥CD,∴四边形ABCD是平行四边形.[设计意图]学生结合实例和教材中的图片,师引导学生归纳这些四边形的共同特征,即:两组对边分别平行.2.平行四边形边、角的性质思路一[过渡语]同学们回忆我们的学习经历,研究几何图形的一般思路是什么?一起回顾全等三角形的学习过程,得出研究的一般过程:先给出定义,再研究性质和判定.教师进一步指出:性质的研究,其实就是对边、角等基本要素的研究.提问:平行四边形是一种特殊的四边形,它除具有四边形的性质和两组对边分别平行外,还有什么特殊的性质呢?教师画出图形,如右图所示,引导学生通过观察、度量,提出猜想.猜想1:四边形ABCD是平行四边形,那么AB=CD,AD=BC.猜想2:四边形ABCD是平行四边形,那么∠A=∠C,∠B=∠D.追问:你能证明这些结论吗?学生讨论,发现不添加辅助线可以证明猜想2.∵AB∥CD,∴∠A+∠D=180°,∵AD∥BC,∴∠A+∠B=180°,∴∠B=∠D.同理可得∠A=∠C.在学生遇到困难时,教师引导学生构造全等三角形进行证明.[过渡语]我们知道,利用全等三角形的对应边、对应角都相等是证明线段相等、角相等的一种重要方法.学生尝试,连接平行四边形的对角线,并证明猜想,如右图所示.证明:连接AC.∵AD∥BC,AB∥CD,∴∠1=∠2,∠3=∠4.又AC是△ABC和△CDA的公共边,∴△ABC≌△CDA.∴AD=CB,AB=CD.∠B=∠D.∵∠BAD=∠1+∠4,∠DCB=∠2+∠3,∠1+∠4=∠2+∠3,∴∠BAD=∠DCB.引导学生归纳平行四边形的性质:平行四边形的对边相等;平行四边形的对角相等.追问:通过证明,发现上述两个猜想正确.这样得到平行四边形的两个重要性质.你能说出这两个命题的题设与结论,并运用这两个性质进行推理吗?教师引导学生辨析定理的题设和结论,明确应用性质进行推理的基本模式:∵四边形ABCD是平行四边形(已知),∴AB=CD,AD=BC(平行四边形的对边相等),∠A=∠C,∠B=∠D(平行四边形的对角相等).[设计意图]让学生领悟证明线段相等或角相等通常采用证明三角形全等的方法,而图形中没有三角形,只有四边形,我们需要添加辅助线,构造全等三角形,将四边形问题转化为三角形问题来解决,突破难点.进而总结、提炼出将四边形问题化为三角形问题的基本思路.[知识拓展](1)运用平行四边形的这两条性质可以直接证明线段相等和角相等.(2)四边形的问题,常常通过连接对角线转化成三角形的问题解决.(教材例1)如图所示,在▱ABCD中,DE⊥AB,BF⊥CD,垂足分别为E,F.求证AE=CF.引导学生分析:要证明线段AE=CF,它不是平行四边形的对边,无法直接用平行四边形的性质证明,考虑证明△ADE≌△CBF.由题意容易得到∠AED=∠CFB=90°,再根据平行四边形的性质可以得出∠A=∠C,AD=CB.在此基础上,引导学生写出证明过程,并组织学生进行点评.证明:∵四边形ABCD是平行四边形,∴∠A=∠C,AD=CB.又∠AED=∠CFB=90°,∴△ADE≌△CBF.∴AE=CF.[设计意图]应用性质进行推理,体会得到证明思路的方法.思路二1.提问:根据定义画一个平行四边形ABCD,并观察这个四边形除了“两组对边分别平行”外,它的边、角之间还有哪些关系?度量一下,是不是和你的猜想一致?AB=BC=CD=AD=猜想:∠A=∠B=∠C=∠D=猜想:小组合作完成,交流自己的猜想.教师强调平行四边形的对边、邻边、对角、邻角等概念,再引导学生归纳:平行四边形的对边相等;平行四边形的对角相等.2.你能证明你发现的上述结论吗?已知:如图(1)所示,四边形ABCD中,AB∥CD,AD∥BC.求证:(1)AD=BC,AB=CD;(2)∠B=∠D,∠BAD=∠DCB.小组讨论,发现:需要连接对角线,将平行四边形的问题转化成两个三角形全等的问题来解决.证明:(1)连接AC,如图(2)所示.∵AD∥BC,AB∥CD,∴∠1=∠2,∠3=∠4.又AC是△ABC和△CDA的公共边,∴△ABC≌△CDA.∴AD=CB,AB=CD.(2)∵△ABC≌△CDA(已证),∴∠B=∠D.∵∠BAD=∠1+∠4,∠DCB=∠2+∠3,∠1+∠4=∠2+∠3,∴∠BAD=∠DCB.一组代表发言后,另一小组补充,我们发现不作辅助线也可以证明平行四边形的对角相等.∵AB∥CD,∴∠BAD+∠D=180°,∵AD∥BC,∴∠BAD+∠B=180°,∴∠B=∠D.同理可得∠BAD=∠DCB.教师根据学生的证明情况进行评价、总结.证明线段相等或角相等时,通常证明三角形全等,图中没有三角形怎么办?一般是连接对角线将四边形的问题转化为三角形的问题.引导学生将文字语言转化为符号语言表述,并进行笔记.∵四边形ABCD是平行四边形(已知),∴AB=CD,AD=BC(平行四边形的对边相等),∠A=∠C,∠B=∠D(平行四边形的对角相等).(补充)如图,在▱ABCD中,AC是平行四边形ABCD的对角线.(1)请你说出图中的相等的角、相等的线段;(2)对角线AC需添加一个什么条件,能使平行四边形ABCD的四条边相等?学生认真读题、思考、分析、讨论,得出有关结论.因为平行四边形的对边相等,对角相等.所以AB=CD,AD=BC,∠DAB=∠BCD,∠B=∠D,又因为平行四边形的两组对边分别平行,所以∠DAC=∠BCA,∠DCA=∠BAC.教师根据学生回答,板书有关正确的结论.解决第(2)个问题时,学生思考、交流、讨论得出:只要添加AC平分∠DAB即可.说明理由:因为平行四边形的两组对边分别平行,所以∠DCA=∠BAC,而∠DAC=∠BAC,所以∠DCA=∠DAC,所以AD=DC,又因为平行四边形的对边相等,所以AB=DC=AD=BC.[设计意图]学生通过亲自动手,提出猜想,验证猜想,得出结论,并初步应用.3.平行线间的距离[过渡语]距离是几何中的重要度量之一.前面我们已经学习了点与点之间的距离、点到直线的距离,那么平行线间的距离又是怎样的呢?思路一提问:在教材的例1中,DE=BF吗?学生思考,都容易发现:由△ADE≌△CBF,容易得到DE=BF.追问:如图所示,直线a∥b,A,D为直线a上任意两点,点A到直线b的距离AB和点D到直线b的距离DC 相等吗?为什么?学生讨论,发现容易证明AB∥CD,由已知得AD∥BC,所以四边形ABCD是平行四边形,所以AB=CD.教师引导归纳:如果两条直线平行,那么一条直线上所有的点到另一条直线的距离都相等.此时教师适时介绍两条平行线间的距离的概念及性质.两条平行线中,一条直线上任意一点到另一条直线的距离,叫做这两条平行线之间的距离,平行线间的距离相等.学生结合图指出:a∥b,点A是a上的任意一点,AB⊥b,B是垂足,线段AB的长就是a,b之间的距离.教师点评,并强调:任意两条平行线之间的距离都是存在的、唯一的,都是夹在两条平行线之间的最短的线段的长度.[设计意图]结合例1的进一步追问,自然引出平行线间距离的概念.思路二请同学们拿出方格纸,在方格纸上画两条互相平行的直线,在其中一条直线上任取若干点,过这些点作另一条直线的垂线.老师边看边指导学生画图.追问:请同学们用刻度尺量一下方格纸上两平行线间的所有垂线段的长度,你发现了什么现象?学生发现:平行线间的所有垂线段的长度相等.教师引导归纳:如果两条直线平行,那么一条直线上所有点到另一条直线的距离都相等.此时教师适时介绍两条平行线间的距离的概念及性质.两条平行线中,一条直线上任意一点到另一条直线的距离,叫做这两条平行线之间的距离,平行线间的距离相等.如右图所示,用符号语言表述为:∵l1∥l2,AB⊥l2,CD⊥l2,∴AB=CD.教师进一步强调:两平行线l1,l2之间的距离是指什么?指在一条直线l1上任取一点A,过A作AB⊥l2于点B,线段AB的长度叫做两平行线l1,l2间的距离.引导学生归纳:两平行线之间的距离、点与直线的距离、点与点之间的距离的区别与联系.两平行线间的距离⇒点到直线的距离⇒点与点之间的距离.l1,l2间的距离转化为点A到l2间的距离,再转化为点A到点B的距离.追问:如果AB,CD是夹在两平行线l1,l2之间的两条平行线段,那么AB和CD仍相等吗?教师引导学生思考:(出示教材第43页图18.1-5)如图所示,a∥b,c∥d,c,d与a,b分别相交于A,B,C,D四点.由平行四边形的概念和性质可知,四边形ABDC是平行四边形,AB=CD.说明:两条平行线之间的任何两条平行线段都相等.[设计意图]借助学生熟悉的方格纸引出平行线间距离的概念,浅显易懂,并注重两平行线间的距离、点到直线的距离、点与点间的距离之间的知识整合.[知识拓展](1)当两条平行线确定后,两条平行线之间的距离是一定值,不随垂线段位置的变化而改变.(2)平行线之间的距离处处相等,因此在作平行四边形的高时,可以灵活选择位置.4.例题讲解(补充)在▱ABCD中,BC边上的高为4,AB=5,AC=2,试求▱ABCD的周长.引导学生根据题意作图分析,教师根据学生考虑不周全的问题进行引导,明确思路后学生写解答过程.〔解析〕本题考查了平行四边形的性质及勾股定理的应用,解题的关键是分别画出符合题意的图形.设BC边上的高为AE,分AE在▱ABCD的内部和AE在▱ABCD的外部两种情况计算.解:在▱ABCD中,AB=CD=5,AD=BC.设BC边上的高为AE.(1)若AE在▱ABCD的内部,如图①所示,在Rt△ABE中,AB=5,AE=4,根据勾股定理,得:BE====3;在Rt△ACE中,AC=2,AE=4,根据勾股定理,得:CE== ==2.∴BC=BE+CE=3+2=5.∴▱ABCD的周长为2×(5+5)=20.(2)若AE在▱ABCD的外部,如图②所示,同理可得BE=3,CE=2,∴BC=BE-CE=3-2=1,∴▱ABCD的周长为2×(5+1)=12.综上,▱ABCD的周长为20或12.[解题策略]本题相当于已知一个三角形的两条边以及第三条边上的高,求第三条边的长度,因为三角形的高可能在三角形的内部、也可能在三角形的外部,所以作图时应分两种情况讨论,如下图所示.本节课我们主要学习了平行四边形的定义,探索了平行四边形的两个特征,同时还学习了平行线间的距离,平行线的一些特征.平行四边形的定义:两组对边分别平行的四边形叫做平行四边形.平行四边形的性质:平行四边形的对边相等;平行四边形的对角相等.平行线间的距离:两条平行线中,一条直线上任意一点到另一条直线的距离,叫做这两条平行线之间的距离.平行线间的距离相等,两条平行线之间的任何两条平行线段都相等.1.已知▱ABCD中,∠A+∠C=200°,则∠B的度数是()A.100°B.160°C.80°D.60°解析:∵∠A+∠C=200°,∠A=∠C,∴∠A=100°,又AD∥BC,∴∠A+∠B=180°,∴∠B=180°-∠A=80°.故选C.2.如图所示,在平行四边形ABCD中,EF∥BC,GH∥AB,EF,GH相交于点O,则图中共有平行四边形的个数为()A.6B.7C.8D.9解析:图中的平行四边形有:平行四边形AEOG、平行四边形BHOE、平行四边形CHOF、平行四边形OFDG、平行四边形ABHG、平行四边形CHGD、平行四边形AEFD、平行四边形BEFC、平行四边形ABCD.故选D.3.如图所示,在▱ABCD中,AD=2AB,CE平分∠BCD交AD边于点E,且AE=3,则AB的长为()A.4B.3C.D.2解析:∵四边形ABCD是平行四边形,∴AB=DC,AD∥BC,∴∠DEC=∠BCE,∵CE平分∠DCB,∴∠DCE=∠BCE,∴∠DEC=∠DCE,∴DE=DC=AB,∵AD=2AB=2CD,CD=DE,∴AD=2DE,∴AE=DE=3,∴DC=AB=DE=3.故选B.4.如图所示,在▱ABCD中,△ABC和△DBC的面积的大小关系是.解析:∵两平行线AD,BC间的距离相等,∴△ABC与△DBC是同底等高的两个三角形,∴它们的面积相等.故填相等.5.如图所示,已知在平行四边形ABCD中,∠C=60°,DE⊥AB于E,DF⊥BC于F.(1)求∠EDF的度数;(2)若AE=4,CF=7,求平行四边形ABCD的周长.解:(1)∵四边形ABCD是平行四边形,∴AB∥CD,∠A=∠C=60°,∴∠C+∠B=180°.∵∠C=60°,∴∠B=180°-∠C=120°.∵DE⊥AB,DF⊥BC,∴∠DEB=∠DFB=90°,∴∠EDF=360°-∠DEB-∠DFB-∠B=60°.(2)在Rt△ADE和Rt△CDF中,∠A=∠C=60°,∴∠ADE=∠CDF=30°,∴AD=2AE=8,CD=2CF=14,∴平行四边形ABCD 的周长为2×(8+14)=44.第1课时1.平行四边形的定义2.平行四边形边、角的性质例1例23.平行线间的距离4.例题讲解例3一、教材作业【必做题】教材第43页练习第1,2题;教材第49页习题18.1第1,2题.【选做题】教材第50页习题18.1第8题.二、课后作业【基础巩固】1.如图所示,在平行四边形ABCD中,∠B=110°,延长AD至F,延长CD至E,连接EF,则∠E+∠F等于()A.110°B.30°C.50°D.70°2.如图所示,l 1 ∥l 2,BE ∥CF ,BA ⊥l 1 于点A ,DC ⊥l 2于点C ,有下面的四个结论;(1)AB =DC ;(2)BE =CF ;(3)S △ABE =S △DCF ;(4)S 四边形ABCD =S 四边形BCFE .其中正确的有 ( ) A.4个 B.3个 C.2个 D.1个3.如图所示,点E 是▱ABCD 的边CD 的中点,AD ,BE 的延长线相交于点F ,DF =3,DE =2,则▱ABCD 的周长为 ( )A.5B.7C.10D.144.如图所示,在平行四边形ABCD 中,AB =4,∠BAD 的平分线与BC 的延长线交于点E ,与DC 交于点F ,且点F 为边DC 的中点,DG ⊥AE ,垂足为G ,若DG =1,则AE 的长为 ( ) A.2 B.4 C.4 D.85.如图所示,▱ABCD 与▱DCFE 的周长相等,且∠BAD =60°,∠F =110°,则∠DAE 的度数为 .【能力提升】6.如图所示,在平面直角坐标系中,平行四边形ABCD 的顶点A ,B ,C 的坐标分别是(0,0),(3,0),(4,2),则顶点D 的坐标为 .7.如图所示,在▱ABCD 中,DE 平分∠ADC ,AD =6,BE =2,则▱ABCD 的周长是 .。

人教版八年级数学下册第十八章《平行四边形》教学设计

人教版八年级数学下册第十八章《平行四边形》教学设计
4.布置课后作业,要求学生在作业中巩固所学知识,提高自己的几何素养。
五、作业布置
为了巩固学生对平行四边形性质的理解和应用,以及提高他们解决实际问题的能力,特布置以下作业:
1.请学生完成课本第十八章相关练习题,特别是涉及到平行四边形性质和判定方法的题目,要求学生独立完成,并在作业中体现解题思路和过程。
5.针对不同层次的学生,布置分层次的作业,使每个学生都能在作业中找到适合自己的挑战点。例如:
-基础层次:完成基本的性质和判定题目;
-提高层次:解决实际问题,如计算平行四边形面积、周长等;
-拓展层次:研究特殊平行四边形的性质和应用,或探索平行四边形与其他几何图形的关系。
6.要求学生在完成作业后进行自我检查,对错误进行反思和总结,以便在下次课堂中得以纠正和巩固。
二、学情分析
八年级学生在前两年的学习中,已经积累了丰富的几何图形知识,对三角形、四边形等基本图形有了较为深入的了解。在此基础上,学生对平行四边形的认识处于一个关键阶段。他们已经能够把握平行四边形的基本概念,但对于其性质和判定方法的理解尚需加强。此外,学生在解决实际问题时,可能存在将理论知识与实际问题相结合的困难。因此,在教学过程中,应注重引导学生从生活实例中发现平行四边形的性质,提高他们运用几何知识解决实际问题的能力。同时,针对学生个体差异,关注不同层次学生的学习需求,激发他们的学习兴趣,帮助他们建立自信,使全体学生都能在原有基础上得到提高。
-特殊平行四边形有哪些性质和应用?
2.各小组汇报讨论成果,其他小组进行补充和评价;
3.教师点评,总结讨论过程中的优点和不足,指导学生正确理解和掌握平行四边形的性质。
(四)课堂练习
1.设计具有梯度、层次的练习题,让学生巩固平行四边形的性质和判定方法;

人教版数学八年级下册18.1平行四边形说课稿

人教版数学八年级下册18.1平行四边形说课稿
(二)学习障碍
在学习本节课之前,学生已经掌握了四边形的基本概念、一元一次方程、不等式等前置知识。然而,他们在学习平行四边形时可能遇到以下障碍:1.对平行四边形性质的理解不够深入,容易混淆;2.对平行四边形判定方法的掌握不够熟练,难以运用到实际问题中;3.空间想象能力和逻辑推理能力有限,导致解题困难。
1.知识与技能目标:掌握平行四边形的定义、性质及判定方法,能够运用这些知识解决实际问题。
2.过程与方法目标:通过自主探究、合作交流的方式,培养学生的空间想象能力、逻辑推理能力和解决问题的能力。
3.情感态度与价值观目标:激发学生对几何学习的兴趣,培养学生的团队合作意识和勇于探索的精神。
(三)教学重难点
为了帮助学生巩固所学知识并提升应用能力,我计划设计以下巩固练习或实践活动:
1.课堂练习:设计具有代表性的题目,让学生独立完成,及时巩固所学知识。
2.小组讨论:组织学生进行小组讨论,共同解决练习中的难题,培养学生的合作能力和解决问题的能力。
3.实践活动:让学生在课后观察生活中的平行四边形,并尝试运用所学知识解释其性质和判定方法。
(三)学习动机
为了激发学生的学习兴趣和动机,我将采取以下策略或活动:
1.创设生活情境,让学生认识到平行四边形在实际生活中的广泛应用,从而激发他们的学习兴趣;
2.设计有趣的问题和例题,引导学生积极参与课堂讨论,培养他们的主动思考能力;
3.组织小组合作学习,让学生在互相交流、探讨中共同进步,提高合作能力;
此外,培养学生的空间想象能力和逻辑推理能力也是本节课的教学难点。在教学过程中,教师应注重引导学生观察、思考、总结,从而提高学生的几何素养。总之,本节课的教学难点在于让学生在掌握知识的同时,培养其几何思维能力。
二、学情分析导

人教版八年级数学下册第十八章平行四边形单元整体优秀教学案例

人教版八年级数学下册第十八章平行四边形单元整体优秀教学案例
(二)问题导向
我注重引导学生通过问题来驱动学习,培养他们的问题意识和解决问题的能力。我会提出一系列问题,引导学生进行思考和讨论,激发他们的思维。例如,我可以提出问题:“平行四边形的性质有哪些?如何判定一个四边形是平行四边形?”通过这样的问题导向,学生能够更深入地理解平行四边形的性质和判定方法,提高他们的逻辑思维能力。
(四)总结归纳
在总结归纳环节,我会引导学生回顾本节课所学的平行四边形的性质和判定方法,并帮助他们进行归纳和总结。我会鼓励学生用自己的话来表述平行四边形的性质,并通过实际例子来说明如何运用这些性质解决实际问题。通过这样的总结归纳,学生能够更好地巩固所学的知识,并提高他们的总结能力。
(五)作业小结
在作业小结环节,我会布置一些与平行四边形相关的练习题,让学生在课后进行巩固和应用。我会提醒学生在做题时要注意审题,认真思考,并强调在做题过程中要注重逻辑思维和推理能力的培养。同时,我还会鼓励学生在课后进行自主学习,查找相关的学习资料,提高他们的自主学习能力。
四、教学内容与过程
(一)导入新课
在导入新课时,我会利用多媒体展示一些生活中的平行四边形图片,如电梯门、滑滑梯等,引导学生观察并思考这些图形的特点。接着,我会提出问题:“你们对这些图形有什么发现?它们有什么特殊的性质?”通过这样的导入方式,学生能够激发对平行四边形的兴趣,并引发他们对问题的思考。
(二)讲授新知
此外,我还注重培养学生的团队合作精神。通过小组合作,学生能够学会与他人合作,共同解决问题,从而培养他们的团队合作精神。通过这些教学目标,我希望学生能够全面发展,提高他们的数学素养和综合素质。
三、教学策略
(一)情景创设
在教学过程中,我注重情景创设,以激发学生的学习兴趣和积极性。我会利用实际问题情景,引导学生主动参与课堂,激发他们的思维。例如,我可以利用生活中的实际问题,如设计一个公园的绿化方案,让学生运用平行四边形的性质和判定方法来解决问题。通过这样的情景创设,学生能够更好地理解平行四边形的应用,提高他们的实践能力。

(完整版)人教版八年级数学下册教案第十八章平行四边形

(完整版)人教版八年级数学下册教案第十八章平行四边形

备课人:郝永昌朱亮审核人:罗更新第十八章平行四边形本章内容的重点是平行四边形的定义、性质和判定。

矩形、菱形、正方形都是特殊的平行四边形,它们的性质和判定都是在平行四边形的基础上扩充的。

它们的探索方法,也都与平行四边形性质和判定的探索方法一脉相承。

三角形中位线定理等的推证,也都是以平行四边形的有关定理为依据的,是平行四边形知识的综合应用。

另外,平行四边形的有关定理,也常常是证明两条线段相等、两角相等、两直线平行或垂直的重要依据,所以掌握平行四边形的概念、性质和判定,并能应用这些知识解决问题,是学好本章的关键。

本章的教学内容联系比较紧密,研究问题的思路和方法也类似,推理论证的难度也不太大。

相对来说,平行四边形与各种特殊平行四边形之间的联系与区别,则是本章的教学难点。

因为各种平行四边形概念交错,容易混淆,常会出现“张冠李戴”的现象。

在应用它们的性质和判定的时候,也常常会出现用错或多用或少用条件的错误。

教学中要注意用“集合”的思想,结合教科书中的关系图,分清这些四边形的从属关系,梳理它们的性质和判定方法,是克服这一难点的关键。

18.1.1 平行四边形及其性质(一)平行四边形是我们常见的图形,你还能举出平行四边形在生活中应用的例子吗?你能总结出平行四边形的定义吗?(1)定义:两组对边分别平行的四边形是平行四边形.(2)表示:平行四边形用符号“”来表示.如图,在四边形ABCD中,AB∥DC,AD∥BC,那么四边形ABCD是平行四边形.平行四边形ABCD记作“ ABCD”,读作“平行四边形ABCD”.①∵AB//DC ,AD//BC,∴四边形ABCD是平行四边形(判定);②∵四边形ABCD是平行四边形∴AB//DC,AD//BC(性质).注意:平行四边形中对边是指无公共点的边,对角是指不相邻的角,邻边是指有公共端点的边,邻角是指有一条公共边的两个角.而三角形对边是指一个角的对边,对角是指一条边的对角.(教学时要结合图形,让学生认识清楚)2.【探究】平行四边形是一种特殊的四边形,它除具有四边形的性质和两组对边分别平行外,还有什么特殊的性质呢?我们一起来探究一下.让学生根据平行四边形的定义画一个一个平行四边形,观察这个四边形,它除具有四边形的性质和两组对边分别平行外以,它的边和角之间有什么关系?度量一下,是不是和你猜想的一致?(1)由定义知道,平行四边形的对边平行.根据平行线的性质可知,在平行四边形中,相邻的角互为补角.观察图片、观察图形得出平行四边形的定义和图形的性质特点,学生在教师的指导下学习用符号语言表示平行四边形的性质定理。

人教版八年级数学下册第十八章平行四边形单元整体教学设计

人教版八年级数学下册第十八章平行四边形单元整体教学设计
4.了解特殊平行四边形(如矩形、菱形、正方形)的性质和判定方法,能够解决相关的问题。
-引导学生通过观察、分析,掌握特殊平行四边形的性质和判定方法,如矩形的对边相等、菱形的对角线垂直等。
(二)过程与方法
1.通过观察、分析、归纳等思维活动,培养学生解决问题的能力。
-设计丰富的实例,引导学生通过观察、分析,发现平行四边形的性质和判定方法。
6.拓展延伸,提升素养。
-结合本章内容,引入一些拓展性知识,如几何图形的变换、立体图形的表面展开图等,提升学生的数学素养。
-鼓励学生参加数学竞赛、研究性学习等活动,培养他们的创新精神和实践能力。
四、教学内容与过程
(一)导入新课
1.教学活动设计:
-通过展示生活中常见的平行四边形实物图片,如建筑物的立面图、篮球场、田地等,引发学生对平行四边形的关注。
(三)学生小组讨论
1.教学活动设计:
-将学生分成若干小组,针对教师提出的问题进行讨论。
-问题设计:平行四边形的性质有哪些?如何判断一个四边形是平行四边形?特殊平行四边形有哪些性质和判定方法?
2.教学目的:
-培养学生的合作意识,提高团队协作能力。
-通过小组讨论,让学生主动发现平行四边形的性质和判定方法,加深理解。
1.基础巩固题:
-请学生完成课本第十八章的相关练习题,特别是涉及到平行四边形性质、判定方法的应用题。
-设计一些生活情境题,让学生运用所学的平行四边形知识解决实际问题,如计算不规则平行四边形的面积等。
2.提高拓展题:
-选择一些具有一定难度的题目,要求学生运用平行四边形的性质和判定方法进行证明或计算。
-鼓励学生尝试使用不同的方法解决问题,培养他们的创新思维和解决问题的能力。
2.学会使用平行四边形的判定方法,能够判断一个四边形是否为平行四边形。

人教版八年级下册数学教案:第18章平行四边形单元备课

人教版八年级下册数学教案:第18章平行四边形单元备课

人教版八年级下册数学教案:第18章平行四边形单元备课目标要求学生掌握平行四边形、矩形、菱形、正方形的概念,还要理解它们之间的关系。

同时,要探索并证明它们的性质定理和判定定理,并能运用它们进行证明和计算。

此外,学生还需要了解两条平行线之间距离的意义,能够度量两条平行线之间的距离,并探索并证明中位线定理。

教学重点是分清平行四边形与矩形、菱形、正方形之间的联系和区别,能够灵活运用平行四边形、特殊平行四边形的定义、性质和判定方法进行推理论证。

为了达到这个目标,教师需要讲清矩形、菱形、正方形的特殊性质,强调它们与平行四边形的从属关系和共同性质,并在讲解每个概念特征的同时,强调它们的属概念,弄清这些概念之间的关系。

在原有属概念基础上附加一些条件,通过扩大概念的内涵、减少概念的外延的方式形成既是矩形,又是菱形,也是平行四边形,应用时常犯多用或少用条件的错误。

因此,在教学中需要注意避免这些错误。

教学方法可以采用多媒体课件,通过图形、文字、动画等多种形式进行讲解,让学生更加直观地理解概念和性质。

在教学过程中,可以通过提问、讨论、演示等方式,引导学生积极参与,提高教学效果。

教学步骤包括以下几个方面:首先,讲解平行四边形及特殊的平行四边形概念之间的关系,弄清它们的共性、特性及其从属关系。

其次,讲解矩形、菱形、正方形的特殊性质,并强调它们与平行四边形的从属关系和共同性质。

最后,通过练和实例演示,让学生掌握如何灵活运用平行四边形、特殊平行四边形的定义、性质和判定方法进行推理论证,并解决一些简单的实际问题。

在教学过程中,除了注重知识的传授,还要注重德育目标的实现。

通过几何问题的证明和计算,体验不同的解法和思维方式,培养学生的创新思维和求知欲。

同时,通过动手实践,积极参与数学活动,让学生对数学产生好奇心和兴趣,提高学生的研究动力。

最新人教版八年级数学下册 第十八章《平行四边形》教案

最新人教版八年级数学下册 第十八章《平行四边形》教案

《平行四边形的判定》教案1教学设计说明:本节教学过程的设计体现了建构主义的以创设“学习环境”为主要任务的理念.基于这种教学理念,整个教学过程按以下流程展开:创设情境、建立模型、应用拓展、小结作业.经历平行四边形判别条件的探索过程,在有关活动中发展学生的合情推理意识,使学生逐步掌握说理基本方法.本教学过程设计体现以知识为载体,思维为主线,能力为目标的原则,通过引导启发、合作学习突破重难点.教材分析:本节内容是平行四边形的判定,其探究的主要课题是“两组对边分别相等的四边形是平行四边形”;“两组对角分别相等的四边形是平行四边形”;“对角线互相平分的四边形是平行四边形”“一组对边平行且相等的四边形是平行四边形”四种判定方法和三角形的中位线.“平行四边形的判定”是初中数学几何部分一节十分重要的内容.主要体现在知识技能和思想方法两个方面.从知识技能上讲,它既是对前面所学的全等三角形和平行四边形性质的一个回顾和延伸,又是以后学习特殊平行四边形的基础,在教学内容上起着承上启下的作用.本节导入新课的时候就是类比性质引入判定的.同时它还进一步培养学生简单的推理能力和图形迁移能力;从思想方法上讲,通过平行四边形和三角形之间的相互转化,渗透了化归思想.综上所述,本节内容不论从知识技能还是思想方法上,都是一节十分难得的素材,它对培养学生的探索精神、动手能力、应用意识和抽象建模能力都有很好的作用.学情分析:学生的知识技能基础:学生在前面已学过全等三角形、平行四边形的定义、平行四边形性质;学生已掌握了简单的推理能力和图形迁移能力,具备了学习平行四边形判定的基本技能.学生活动经验基础:在相关知识的学习过程中,学生已经经历了很多合作学习的过程,具有了一定的合作学习的经验和数学思考,具备了一定的合作与交流的能力.教学目标:1.掌握平行四边形的判定定理及推论;会用平行四边形的判定方法进行简单的推理.2.经历平行四边行判别条件的探索过程,在有关活动中发展学生的合情推理意识,使学生逐步掌握说理基本方法.3.通过平行四边形判别条件的探索,培养学生面对挑战、勇于克服困难的意志,鼓励学生大胆尝试,从中获得成功的体验,激发学生的学习热情.4.理解三角形中位线的概念,掌握三角形中位线定理.能熟练地应用三角形中位线性质进行有关的证明和计算.5.能运用综合法证明有关三角形中位线性质的结论;理解在证明过程中所运用的归纳类比、转化等思想方法.教学重点:由于学生已学过全等三角形和平行四边形定义、性质,由边和对角线数量关系分别判别四边形为平行四边形就比较容易解决,并且学生在探索过程中所经历的“观察—猜想—验证—说理—建模”的思维过程也是以后学习和认识世界的重要方法,具有广泛的应用价值,所以本节课的重点为探索平行四边形的判别方法.教学难点:由于从理论上说明平行四边形的判别方法,对于几何逻辑思维尚处于起始阶段的学生来讲,认知难度较大,所以本节课的难点是:平行四边形的判别方法的理解和应用,突破难点的关键是:采用教师引导和学生合作的教学方法及化归的教学思想.课时设计:2课时教学方式:本节主要采用以类比发现法为主,以讨论探究法、练习法为辅的教学方法.教学过程:一、创设情景,引入课题我给刚学完平行四边形性质的侄女提了一个问题,你们能解决吗?问题:给你四根木条做边围成一个四边(每两根是等长的),能确定它的形状吗?教学设想与目的:这是感知阶段,教师给出生活实例让学生观察讨论。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.了解两条平行线之间距离的意义,能度量两条平行线之间的距离.
4.探索并证明中位线定理.
德育目标:1.通过几何问题的证明和计算,体验证法和解法的多样性,渗透转化思想.
2.通过动手实践,积极参与数学活动,对数学有好奇心和求知欲.
教学重点
理解和掌握平行四边形、特殊的平行四边形的定义、性质和判定,掌握三角形的中位线定理,会应用平行四边形和特殊的平行四边形的相关知识以及三角形中位线定理解决一些简单的实际问题.
精练
教科书习题.
精记
平行四边形、特殊的平行四边形的定义、性质和判定,三角形的中位线定理
板书设计
18.1平行四边形
18.1.1平行四边形的性质(2课时)
18.1.2平行四边形的判定(3课时)
5课时
18.2特殊的平行四课时)
18.2.3正方形(1课时)
5课时
单元概括整合
1课时
教学反思
坝陵中学2018年春备课(课时)记录表
年级:八年级科目:数学第一备课人:简建平第二备课人:总课时:
教学内容
第18章平行四边形
课型
单元备课
教学目标
知识目标:1.理解平行四边形、矩形、菱形、正方形的概念,了解它们之间的关系.
2.探索并证明平行四边形、矩形、菱形、正方形的性质定理和判定定理,并能运用它们进行证明和计算.
教学难点
分清平行四边形与矩形、菱形、正方形之间的联系和区别,能够灵活运用平行四边形、特殊平行四边形的定义、性质和判定方法进行推理论证.
教学用具
多媒体课件
教学过程
内容、方法、步骤


1.关于平行四边形及特殊的平行四边形概念之间从属、种差、内涵与外延之间的关系.
本章概念比较多,概念之间联系非常密切,关系复杂.由于平行四边形和各种特殊平行四边形的概念之间重叠交错,容易混淆,因此弄清它们的共性、特性及其从属关系非常重要.实际上,有时学生掌握了它们的特殊性质,而忽略了共同性质.如有的学生不知道正方形既是矩形,又是菱形,也是平行四边形,应用时常犯多用或少用条件的错误.教学时,不仅要讲清矩形、菱形、正方形的特殊性质,还要强调它们与平行四边形的从属关系和共同性质.也就是在讲清每个概念特征的同时,强调它们的属概念,弄清这些概念之间的关系.在原有属概念基础上附加一些条件(种差),通过扩大概念的内涵、减少概念的外延的方式引出新的种概念;同时在原有属概念的性质和判定方法的基础上,来研究种概念的性质和判定方法.弄清这些关系,最好是用图示的办法.在弄清这些图形之间关系的基础上,还要进一步向学生说明概念的内涵与外延之间的反变关系,即内涵越小,外延越大;反之外延越小,内涵越大.例如,正方形的性质中,包含四边形、平行四边形、矩形、菱形所有的特征,它的外延很小,而平行四边形的外延很大.弄清了各种特殊平行四边形的概念,各种平行四边形之间的从属关系也就清楚了,它们的性质定理、判定定理也就不会用错了.
2.进一步培养学生的合情推理能力和演绎推理能力.
从培养学生的推理论证能力的角度来说,本章处于学生初步掌握了推理论证方法的基础上,进一步巩固和提高的阶段.本章内容比较简单,证明方法相对比较单一,学生前面已经进行了一些推理证明的训练.但这种训练只是初步,要进一步巩固和提高.教学中同样要重视推理论证的教学,进一步提高学生的合情推理能力和演绎推理能力.在推理与证明的要求方面,除了要求学生对经过观察、实验、探究得出的结论进行证明以外,还要求学生直接由已有的结论对有些图形的性质通过推理论证得出.另外,为了巩固并提高学生的推理论证能力,本章定理证明中,除了采用严格规范的证明方法外,还有一些采用了探索式的证明方法.这种方法不是先有了定理再去证明它,而是根据题设和已有知识,经过推理,得出结论.另外也有一些文字叙述的证明题,要求学生自己写出已知、求证,再进行证明.这些对学生的推理能力要求较高,难度也有增加,但能激发学生的学习兴趣,活跃学生的思维,对发展学生的思维能力有好处.教学中要注意启发和引导,使学生在熟悉“规范证明”的基础上,推理论证能力有所提高和发展.
相关文档
最新文档