最新八年级下册平行四边形的培优专题训练

合集下载

八年级初二数学数学平行四边形的专项培优练习题(附解析

八年级初二数学数学平行四边形的专项培优练习题(附解析

八年级初二数学数学平行四边形的专项培优练习题(附解析一、选择题1.如图,点P 是正方形ABCD 的对角线BD 上一点(点P 不与点B 、D 重合),PE ⊥BC 于点E ,PF ⊥CD 于点F ,连接EF 给出下列五个结论:①AP =EF ;②AP ⊥EF ;③仅有当∠DAP =45°或67.5°时,△APD 是等腰三角形;④∠PFE =∠BAP :⑤22PD =EC .其中有正确有( )个.A .2B .3C .4D .52.如图,正方形ABCD 的边长为4,点E 在边AB 上,AE =1,若点P 为对角线BD 上的一个动点,则△PAE 周长的最小值是( )A .3B .4C .5D .63.如图,正方形ABCD 中,点E F 、分别在边BC CD 、上,且AE EF FA ==,有下列结论:①ABE ADF ∆≅∆;②CE CF =;③75AEB ∠=︒;④BE DF EF +=;⑤A ABE DF CEF S S S ∆∆∆+=;其中正确的有( )个.A .2B .3C .4D .54.如图,菱形ABCD 中,∠A 是锐角,E 为边AD 上一点,△ABE 沿着BE 折叠,使点A 的对应点F 恰好落在边CD 上,连接EF ,BF ,给出下列结论: ①若∠A =70°,则∠ABE =35°;②若点F 是CD 的中点,则S △ABE 13=S 菱形ABCD 下列判断正确的是( )A .①,②都对B .①,②都错C .①对,②错D .①错,②对5.已知点M 是平行四边形ABCD 内一点(不含边界),设12MAD MBA θθ∠=∠=,,3 MCB θ∠=,4MDC θ∠=.若110,AMB ∠=︒ 90CMD ∠=︒,60BCD ∠=︒,则( )A .142310θθθθ+--=︒B .241330θθθθ+--=︒C .142330θθθθ+--=︒D .241340θθθθ+--=︒6.如图,在平行四边形ABCD 中,对角线AC 、BD 相交于O ,2BD AD =,E 、F 、G 分别是OC 、OD 、AB 的中点,下列结论:①BE AC ⊥;②EG GF =;③EFG GBE ∆∆≌;④EA 平分GEF ∠;⑤四边形BEFG 是菱形.其中正确的是( )A .①②③B .①③④C .①②⑤D .②③⑤7.在矩形ABCD 中,点E 、F 分别在AB 、AD 上,∠EFB=2∠AFE=2∠BCE ,CD=9,CE=20,则线段AF 的长为( ).A .32B .112C 19D .48.如图,在Rt ABC 中,90ACB ∠=︒,分别以AB ,AC ,BC 为边,在AB 的同侧作正方形ABHI ,ACFG ,BCED .若图中两块阴影部分的面积分别记为1S ,2S ,则对1S ,2S 的大小判断正确的是( )A .12S S >B .12S SC .12S S <D .无法确定9.如图,在ABC 中,ACB 90∠=︒,2AC BC ==,D 是AB 的中点,点E 在AC 上,点F 在BC 上,且AE CF =,给出以下四个结论:(1)DE DF =;(2)DEF 是等腰直角三角形;(3)四边形CEDF 面积ABC 1S 2=△;(4)2EF 的最小值为2.其中正确的有( ).A .4个B .3个C .2个D .1个10.如图,正方形ABCD 中,AB =6,点E 在边CD 上,且CD =3DE .将△ADE 沿AE 对折至△AFE ,延长EF 交边BC 于点G ,连结AG 、CF .下列结论:①△ABG ≌△AFG ;②BG =GC ;③AG ∥CF ;④S △FGC =185.其中正确结论的个数是( )A .1B .2C .3D .4二、填空题11.在平行四边形ABCD 中, BC 边上的高为4 ,AB =5 ,25AC =,则平行四边形ABCD的周长等于______________ .12.如图,正方形ABCD的边长为4,点E为CD边上的一个动点,以CE为边向外作正方形ECFG,连结BG,点H为BG中点,连结EH,则EH的最小值为______13.如图,在△ABC中,∠BAC=90°,点D是BC的中点,点E、F分别是直线AB、AC上的动点,∠EDF=90°,M、N分别是EF、AC的中点,连结AM、MN,若AC=6,AB=5,则AM-MN的最大值为________.14.如图,在平行四边形ABCD中,对角线AC,BD相交于点O,AB=OB,点E,F分别是OA,OD的中点,连接EF,EM⊥BC于点M,EM交BD于点N,若∠CEF=45°,FN=5,则线段BC的长为_____.15.如图,在矩形ABCD中,AD=2AB,∠BAD的平分线交BC于点E,DH⊥AE于点H,连接BH并延长交CD于点F,连接DE交BF于点O,下列结论:①∠AED=∠CED;②OE=OD;③BH=HF;④BC﹣CF=2HE;⑤AB=HF,其中正确的有_____.16.在ABC中,AB=12,AC=10,BC=9,AD是BC边上的高.将ABC按如图所示的方式折叠,使点A与点D重合,折痕为EF,则DEF的周长为______.17.如图,在Rt△ABC中,∠BAC=90°,AB=8,AC=6,以BC为一边作正方形BDEC设正方形的对称中心为O,连接AO,则AO=_____.18.在平面直角坐标系xOy中,点A、B分别在x轴、y轴的正半轴上运动,点M为线段AB的中点.点D、E分别在x轴、y轴的负半轴上运动,且DE=AB=10.以DE为边在第三象限内作正方形DGFE,则线段MG长度的最大值为_____.19.如图所示,已知AB=6,点C,D在线段AB上,AC =DB =1,P是线段CD上的动点,分别以AP,PB为边在线段AB的同侧作等边△AEP和等边△PFB,连接EF,设EF的中点为G,当点P从点C运动到点D时,则点G移动路径的长是_________.20.李刚和常明两人在数学活动课上进行折纸创编活动.李刚拿起一张准备好的长方形纸片对常明说:“我现在折叠纸片(图①),使点D落在AB边的点F处,得折痕AE,再折叠,使点C落在AE边的点G处,此时折痕恰好经过点B,如果AD=a,那么AB长是多少?”常明说;“简单,我会. AB应该是_____”.常明回答完,又对李刚说:“你看我的创编(图②),与你一样折叠,可是第二次折叠时,折痕不经过点B,而是经过了AB边上的M点,如果AD=a,测得EC=3BM,那么AB长是多少?”李刚思考了一会,有点为难,聪明的你,你能帮忙解答吗?AB=_____.三、解答题21.如图正方形ABCD ,DE 与HG 相交于点O (O 不与D 、E 重合).(1)如图(1),当90GOD ∠=︒,①求证:DE GH =; ②求证:2GD EH DE +>;(2)如图(2),当45GOD ∠=︒,边长4AB =,25HG =,求DE 的长.22.已知正方形ABCD .(1)点P 为正方形ABCD 外一点,且点P 在AB 的左侧,45APB ∠=︒.①如图(1),若点P 在DA 的延长线上时,求证:四边形APBC 为平行四边形.②如图(2),若点P 在直线AD 和BC 之间,以AP ,AD 为邻边作APQD □,连结AQ .求∠PAQ 的度数.(2)如图(3),点F 在正方形ABCD 内且满足BC=CF ,连接BF 并延长交AD 边于点E ,过点E 作EH ⊥AD 交CF 于点H ,若EH=3,FH=1,当13AE CF =时.请直接写出HC 的长________. 23.在矩形ABCD 中,将矩形折叠,使点B 落在边AD (含端点)上,落点记为E ,这时折痕与边BC 或者边CD (含端点)交于点F (如图1和图2),然后展开铺平,连接BE ,EF . (1)操作发现:①在矩形ABCD 中,任意折叠所得的△BEF 是一个 三角形;②当折痕经过点A 时,BE 与AE 的数量关系为 .(2)深入探究:在矩形ABCD 中,AB 3BC =3①当△BEF 是等边三角形时,求出BF 的长;②△BEF 的面积是否存在最大值,若存在,求出此时EF 的长;若不存在,请说明理由.24.如图,在矩形ABCD 中,E 是AD 的中点,将ABE ∆沿BE 折叠,点A 的对应点为点G .图1 图2(1)填空:如图1,当点G 恰好在BC 边上时,四边形ABGE 的形状是________; (2)如图2,当点G 在矩形ABCD 内部时,延长BG 交DC 边于点F .①求证:BF AB DF =+. ②若3AD AB =,试探索线段DF 与FC 的数量关系.25.我们知道平行四边形有很多性质,现在如果我们把平行四边形沿着它的一条对角线翻折,会发现这其中还有更多的结论.(发现与证明..)ABCD 中,AB BC ≠,将ABC ∆沿AC 翻折至'AB C ∆,连结'B D . 结论1:'AB C ∆与ABCD 重叠部分的图形是等腰三角形;结论2:'B D AC .试证明以上结论.(应用与探究)在ABCD 中,已知2BC =,45B ∠=,将ABC ∆沿AC 翻折至'AB C ∆,连结'B D .若以A 、C 、D 、'B 为顶点的四边形是正方形,求AC 的长.(要求画出图形)26.如图①,已知正方形ABCD 中,E ,F 分别是边AD ,CD 上的点(点E ,F 不与端点重合),且AE=DF ,BE ,AF 交于点P ,过点C 作CH ⊥BE 交BE 于点H .(1)求证:AF∥CH;(2)若AB=23,AE=2,试求线段PH的长;(3)如图②,连结CP并延长交AD于点Q,若点H是BP的中点,试求CPPQ的值.27.如图,矩形ABCD中,AB=4,AD=3,∠A的角平分线交边CD于点E.点P从点A出发沿射线AE以每秒2个单位长度的速度运动,Q为AP的中点,过点Q作QH⊥AB于点H,在射线AE的下方作平行四边形PQHM(点M在点H的右侧),设P点运动时间为t秒.(1)直接写出AQH的面积(用含t的代数式表示).(2)当点M落在BC边上时,求t的值.(3)在运动过程中,整个图形中形成的三角形是否存在全等三角形?若存在,请写出所有全等三角形,并求出对应的t的值;若不存在请说明理由(不能添加辅助线).28.如图,在平行四边形 ABCD中,AD=30 ,CD=10,F是BC 的中点,P 以每秒1 个单位长度的速度从 A向 D运动,到D点后停止运动;Q沿着A B C D→→→路径以每秒3个单位长度的速度运动,到D点后停止运动.已知动点 P,Q 同时出发,当其中一点停止后,另一点也停止运动.设运动时间为 t秒,问:(1)经过几秒,以 A,Q ,F ,P 为顶点的四边形是平行四边形(2)经过几秒,以A ,Q ,F , P为顶点的四边形的面积是平行四边形 ABCD面积的一半?29.如图,在长方形ABCD 中,AB =CD =6cm ,BC =10cm ,点P 从点B 出发,以2cm /秒的速度沿BC 向点C 运动,设点P 的运动时间为t 秒:(1)PC = cm .(用t 的代数式表示)(2)当t 为何值时,△ABP ≌△DCP ?(3)当点P 从点B 开始运动,同时,点Q 从点C 出发,以vcm /秒的速度沿CD 向点D 运动,是否存在这样v 的值,使得△ABP 与△PQC 全等?若存在,请求出v 的值;若不存在,请说明理由.30.如图①,在ABC 中,AB AC =,过AB 上一点D 作//DE AC 交BC 于点E ,以E 为顶点,ED 为一边,作DEF A ∠=∠,另一边EF 交AC 于点F .(1)求证:四边形ADEF 为平行四边形;(2)当点D 为AB 中点时,ADEF 的形状为 ;(3)延长图①中的DE 到点,G 使,EG DE =连接,,,AE AG FG 得到图②,若,AD AG =判断四边形AEGF 的形状,并说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】过P 作PG ⊥AB 于点G ,根据正方形对角线的性质及题中的已知条件,证明△AGP ≌△FPE 后即可证明①AP=EF ;④∠PFE=∠BAP ;在此基础上,根据正方形的对角线平分对角的性质,在Rt △DPF 中,DP 2=DF 2+PF 2=EC 2+EC 2=2EC 2,求得DP=2EC ,得出⑤正确,即可得出结论.【详解】过P 作PG ⊥AB 于点G ,如图所示:∵点P 是正方形ABCD 的对角线BD 上一点,∴GP=EP ,在△GPB 中,∠GBP=45°,∴∠GPB=45°,∴GB=GP ,同理:PE=BE ,∵AB=BC=GF ,∴AG=AB-GB ,FP=GF-GP=AB-GB ,∴AG=PF ,在△AGP 和△FPE 中,90AG PF AGP FPE PG PE ⎧⎪⎨⎪∠∠⎩︒====,∴△AGP ≌△FPE (SAS ),∴AP=EF ,①正确,∠PFE=∠GAP ,∴∠PFE=∠BAP ,④正确;延长AP 到EF 上于一点H ,∴∠PAG=∠PFH ,∵∠APG=∠FPH ,∴∠PHF=∠PGA=90°,∴AP⊥EF,②正确,∵点P是正方形ABCD的对角线BD上任意一点,∠ADP=45°,∴当∠PAD=45°或67.5°时,△APD是等腰三角形,除此之外,△APD不是等腰三角形,故③正确.∵GF∥BC,∴∠DPF=∠DBC,又∵∠DPF=∠DBC=45°,∴∠PDF=∠DPF=45°,∴PF=EC,∴在Rt△DPF中,DP2=DF2+PF2=EC2+EC2=2EC2,∴DP=2EC,即22PD=EC,⑤正确.∴其中正确结论的序号是①②③④⑤,共有5个.故选D.【点睛】本题考查了正方形的性质,全等三角形的判定及性质,垂直的判定,等腰三角形的性质,勾股定理的运用.本题难度较大,综合性较强,在解答时要认真审题.2.D解析:D【分析】连接AC、CE,CE交BD于P,此时AP+PE的值最小,求出CE长,即可求出答案.【详解】解:连接AC、CE,CE交BD于P,连接AP、PE,∵四边形ABCD是正方形,∴OA=OC,AC⊥BD,即A和C关于BD对称,∴AP=CP,即AP+PE=CE,此时AP+PE的值最小,所以此时△PAE周长的值最小,∵正方形ABCD的边长为4,点E在边AB上,AE=1,∴∠ABC=90°,BE=4﹣1=3,由勾股定理得:CE=5,∴△PAE的周长的最小值是AP+PE+AE=CE+AE=5+1=6,【点睛】本题考查了正方形的性质与轴对称——最短路径问题,知识点比较综合,属于较难题型.3.C解析:C【分析】由已知得AB AD =,AE AF =,利用“HL ”可证ABE ADF ∆≅∆,利用全等的性质判断①②③正确,在AD 上取一点G ,连接FG ,使AG GF =,由正方形,等边三角形的性质可知15DAF ∠=︒,从而得30DGF ∠=︒,设1DF =,则2AG GF ==,3DG =,分别表示AD ,CF ,EF 的长,判断④⑤的正确性.【详解】解:AB AD =,AE AF EF ==,()ABE ADF HL ∴∆≅∆,AEF ∆为等边三角形, BE DF ∴=,又BC CD =,CE CF ∴=,11()(9060)1522BAE BAD EAF ∴∠=∠-∠=︒-︒=︒, 9075AEB BAE ∴∠=︒-∠=︒, ∴①②③正确,在AD 上取一点G ,连接FG ,使AG GF =,则15DAF GFA ∠=∠=︒,230DGF DAF ∴∠=∠=︒,设1DF =,则2AG GF ==,3DG =23AD CD ∴==+13CF CE CD DF ==-=226EF CF ∴==2BE DF +=,∴④错误,⑤12232ABE ADF S S AD DF ∆∆+=⨯⨯= 1232CEF S CE CF ∆=⨯=∴⑤正确.∴正确的结论有:①②③⑤.故选C .本题考查了正方形的性质,全等三角形的判定与性质,勾股定理的运用.关键是利用全等三角形的性质,把条件集中到直角三角形中,运用勾股定理求解.4.A解析:A【解析】【分析】只要证明BF BC =,可得ABF BFC C 70∠∠∠===,即可得出ABE 35∠=;延长EF 交BC 的延长线于M ,只要证明DEF ≌CMF ,推出EF FM =,可得EMB BCDE S S =四边形,BEF MBE 1S S 2=,推出ABE ABCD 1S S 3菱形=. 【详解】 ①∵四边形ABCD 是菱形,∴AB ∥CD ,∠C=∠A=70°.∵BA=BF=BC ,∴∠BFC=∠C=70°,∴∠ABF=∠BFC=70°,∴∠ABE 12=∠ABF=35°,故①正确;②如图,延长EF 交BC 的延长线于M ,∵四边形ABCD 是菱形,F 是CD 中点,∴DF=CF ,∠D=∠FCM ,∠EFD=∠MFC ,∴△DEF ≌△CMF ,∴EF=FM ,∴S 四边形BCDE =S △EMB ,S △BEF 12=S △MBE ,∴S △BEF 12=S 四边形BCDE ,∴S △ABE 13=S 菱形ABCD .故②正确, 故选A .【点睛】 本题考查了菱形的性质、等腰三角形的判定和性质、全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.5.D解析:D【分析】依据平行四边形的性质以及三角形内角和定理,可得θ2-θ1=10°,θ4-θ3=30°,两式相加即可得到θ2+θ4-θ1-θ3=40°.【详解】解:∵四边形ABCD 是平行四边形,∴∠BAD=∠BCD=60°,∴∠BAM=60°-θ1,∠DCM=60°-θ3,∴△ABM中,60°-θ1+θ2+110°=180°,即θ2-θ1=10°①,△DCM中,60°-θ3+θ4+90°=180°,即θ4-θ3=30°②,由②+①,可得(θ4-θ3)+(θ2-θ1)=40°,2413 40θθθθ∴+--=︒;故选:D.【点睛】本题主要考查了平行四边形的性质以及三角形内角和定理等知识;熟练掌握平行四边形的对角相等是解题的关键.6.B解析:B【分析】由平行四边形的性质可得OB=BC,由等腰三角形的性质可判断①正确,由直角三角形的性质和三角形中位线定理可判断②错误,通过证四边形BGFE是平行四边形,可判断③正确,由平行线的性质和等腰三角形的性质可判断④正确,由∠BAC≠30°可判断⑤错误.【详解】解:∵四边形ABCD是平行四边形∴BO=DO=12BD,AD=BC,AB=CD,AB∥BC,又∵BD=2AD,∴OB=BC=OD=DA,且点E 是OC中点,∴BE⊥AC,故①正确,∵E、F分别是OC、OD的中点,∴EF∥CD,EF=12 CD,∵点G是Rt△ABE斜边AB上的中点,∴GE=12AB=AG=BG∴EG=EF=AG=BG,无法证明GE=GF,故②错误,∵BG=EF,AB∥CD∥EF∴四边形BGFE是平行四边形,∴GF=BE,且BG=EF,GE=GE,∴△BGE≌△FEG(SSS)故③正确∵EF∥CD∥AB,∴∠BAC=∠ACD=∠AEF,∵AG=GE,∴∠GAE=∠AEG,∴∠AEG=∠AEF,∴AE平分∠GEF,故④正确,若四边形BEFG是菱形∴BE=BG=12 AB,∴∠BAC=30°与题意不符合,故⑤错误故选:B.【点睛】本题考查了菱形的判定,平行四边形的性质,全等三角形的判定和性质,三角形中位线定理等知识,灵活运用相关的性质定理、综合运用知识是解题的关键.7.C解析:C【分析】如图,取CE的中点H,连接BH,设∠EFB=2∠AFE=2∠ECB=2a,则∠AFB=3a,进而求出BH=CH=EH=10,∠HBC=∠HCB=a,再根据AD∥BC求出EF∥BH,进而得出△EFG和△BGH 均为等腰三角形,则BF=EH=10,再根据勾股定理即可求解.【详解】如图,取CE的中点H,连接BH,设∠EFB=2∠AFE=2∠ECB=2a,则∠AFB=3a,∵在矩形ABCD中有AD∥BC,∠A=∠ABC=90°,∴△BCE为直角三角形,∵点H为斜边CE的中点,CE=20,∴BH=CH=EH=10,∠HBC=∠HCB=a,∵AD∥BC,∴∠AFB=∠FBC=3a,∴∠GBH=3a-a=2a=∠EFB,∴EF∥BH,∴∠FEG=∠GHB=∠HBC+∠HCB=2a=∠EFB=∠GBH,∴△EFG和△BGH均为等腰三角形,∴BF=EH=10,∵AB=CD=9,∴222210919AF BF AB=-=-=故选C.【点睛】本题考查直角三角形斜边上的中线等于斜边的一半、勾股定理等知识,解题的关键是根据题意正确作出辅助线.8.B解析:B【分析】连接EH,过点H作HK⊥BF于点K,令AE与BH交于点J,HL与BF交于点L,根据已知条件易证△BHK≌△ABC,继而由全等三角形的性质得S△BHK=S△ABC,BC=HK,∠ABC=∠BHK,再由全等三角形的判定可得△BCJ≌△HKL,进而可得S1=S△BHK=S△ABC,由正方形的性质和全等三角形的判定可知△ABC≌△AIG,继而可得S△ABC=S△AIG=S2,等量代换即可求解.【详解】解:连接EH,过点H作HK⊥BF于点K,令AE与BH交于点J,HL与BF交于点L,由题意可知:四边形BCED是正方形,四边形ACFG是正方形,四边形ABHI是正方形,∠ACB=90°∴∠CEH=∠ECK=90° ,CE=BC∵∠BKH=90°,∴四边形CEHK是矩形,∴ CE=HK又∠HBK+∠ABC=90°, ∠BAC+∠ABC=90°∴∠HBK=∠BAC∴△BHK≌△ABC(AAS)∴S△BHK=S△ABC,BC=HK,∠ABC=∠BHK,∵∠ABC+∠CBJ=90°,∠BHK+∠KHL=90°∴∠CBJ=∠KHL∴△BCJ≌△HKL(ASA)∴S△BCJ=S△HKL,∴S1=S△BHK=S△ABC,∵四边形ACFG是正方形,四边形ABHI是正方形,∴AB=AI,AC=AG,∠G=∠ACB=90°∴△ABC≌△AIG(SAS)∴S△ABC=S△AIG=S2,即S1=S2故选:B【点睛】本题主要考查正方形的性质,全等三角形的判定及其性质,解题的关键是熟练掌握正方形的性质及全等三角形的判定方法.9.A解析:A【分析】根据等腰三角形的性质,可得到:CD AB ⊥,从而证明ADE ≌CDF 且ADC 90∠=︒,即证明DE DF =和DEF 是等腰直角三角形,以及四边形CEDF 面积ABC 1S 2=△;再根据勾股定理求得EF ,即可得到答案. 【详解】∵ACB 90∠=︒,2AC BC == ∴22AB 222=+=∴A B 45∠=∠=︒∵点D 是AB 的中点∴CD AB ⊥,且1AD BD CD AB 22====∴DCB 45∠=︒∴A DCF ∠∠=,在ADE 和CDF 中 AD CD A DCF AE CF =⎧⎪∠=∠⎨⎪=⎩∴ADE ≌()CDF SAS∴DE DF =,ADE CDF ∠∠=∵CD AB ⊥∴ADC 90∠=︒∴EDF EDC CDF EDC ADE ADC 90∠∠∠∠∠∠=+=+==︒∴DEF 是等腰直角三角形∵ADE ≌CDF∴ADE 和CDF 的面积相等∵D 为AB 中点∴ADC 的面积1ABC 2=的面积 ∴四边形CEDF 面积EDC CDF EDC ADE ADC ABC 1S S S S S S 2=+=+==;当DE AC ⊥,DF BC ⊥时,2EF 值最小根据勾股定理得:222EF DE DF =+此时四边形CEDF 是正方形即EF CD ==∴22EF 2==∴正确的个数是4个故选:A .【点睛】本题考察了等腰三角形、全等三角形、正方形、直角三角形、勾股定理的知识;解题的关键是熟练掌握等腰三角形、全等三角形、正方形、直角三角形的性质,从而完成求解.10.D解析:D【分析】由正方形和折叠的性质得出AF =AB ,∠B =∠AFG =90°,由HL 即可证明Rt △ABG ≌Rt △AFG ,得出①正确;设BG =x ,则CG =BC−BG =6−x ,GE =GF +EF =BG +DE =x +2,由勾股定理求出x =3,得出②正确;由等腰三角形的性质和外角关系得出∠AGB =∠FCG ,证出平行线,得出③正确; 根据三角形的特点及面积公式求出△FGC 的面积=185,得出④正确. 【详解】∵四边形ABCD 是正方形,∴AB =AD =DC =6,∠B =D =90°,∵CD =3DE ,∴DE =2,∵△ADE 沿AE 折叠得到△AFE ,∴DE =EF =2,AD =AF ,∠D =∠AFE =∠AFG =90°,∴AF =AB ,∵在Rt △ABG 和Rt △AFG 中, AG AG AB AF =⎧⎨=⎩, ∴Rt △ABG ≌Rt △AFG (HL ),∴①正确;∵Rt△ABG≌Rt△AFG,∴BG=FG,∠AGB=∠AGF,设BG=x,则CG=BC−BG=6−x,GE=GF+EF=BG+DE=x+2,在Rt△ECG中,由勾股定理得:CG2+CE2=EG2,∵CG=6−x,CE=4,EG=x+2∴(6−x)2+42=(x+2)2解得:x=3,∴BG=GF=CG=3,∴②正确;∵CG=GF,∴∠CFG=∠FCG,∵∠BGF=∠CFG+∠FCG,又∵∠BGF=∠AGB+∠AGF,∴∠CFG+∠FCG=∠AGB+∠AGF,∵∠AGB=∠AGF,∠CFG=∠FCG,∴∠AGB=∠FCG,∴AG∥CF,∴③正确;∵△CFG和△CEG中,分别把FG和GE看作底边,则这两个三角形的高相同.∴35CFGCEGS FGS GE==,∵S△GCE=12×3×4=6,∴S△CFG=35×6=185,∴④正确;正确的结论有4个,故选:D.【点睛】本题考查了正方形性质、折叠性质、全等三角形的性质和判定、等腰三角形的性质和判定、平行线的判定等知识点的运用;主要考查学生综合运用性质进行推理论证与计算的能力,有一定难度.二、填空题11.12或20【分析】根据题意分别画出图形,BC边上的高在平行四边形的内部和外部,进而利用勾股定理求出即可.【详解】解:情况一:当BC边上的高在平行四边形的内部时,如图1所示:在平行四边形ABCD中,BC边上的高为4,AB=5,AC=25,在Rt△ACE中,由勾股定理可知:2222CE AC AE,(25)42在Rt△ABE中,由勾股定理可知:2222BE AB AE543=-=-=,∴BC=BE+CE=3+2=5,此时平行四边形ABCD的周长等于2×(AB+BC)=2×(5+5)=20;情况二:当BC边上的高在平行四边形的外部时,如图2所示:在平行四边形ABCD中,BC边上的高为AE=4,AB=5,AC=25在Rt△ACE中,由勾股定理可知:2222CE AC AE,(25)42在Rt△ABE中,由勾股定理可知:2222-=-,BE AB AE543∴BC=BE-CE=3-2=1,∴平行四边形ABCD的周长为2×(AB+BC)=2×(5+1)=12,综上所述,平行四边形ABCD的周长等于12或20.故答案为:12或20.【点睛】此题主要考查了平行四边形的性质以及勾股定理等知识,分高在平行四边形内部还是外部讨论是解题关键.122【分析】过B点作HE的平行线交AC于O点,延长EG交AB于I点,得到BO=2HE,其中O点在线段AC上运动,再由点到直线的距离垂线段最短求出BO的长即可求解.【详解】解:过B点作HE的平行线交AC于O点,延长EG交AB于I点,如下图所示:∵H是BG的中点,且BO与HE平行,∴HE为△BOG的中位线,且BO=2HE,故要使得HE最短,只需要BO最短即可,当E点位于C点时,则O点与C点重合,当E点位于D点时,则O点与A点重合,故E点在CD上运动时,O点在AC上运动,由点到直线的距离垂线段最短可知,当BO⊥AC时,此时BO最短,∵四边形ABCD是正方形,∴△BOC为等腰直角三角形,且BC=4,、∴2222BO,∴122HE BO,2【点睛】本题考查了正方形的性质,等腰直角三角形的性质,点到直线的距离垂线段最短等知识点,本题的关键是要学会将要求的HE线段长转移到线段BO上.13.5 2【分析】连接DM,直角三角形斜边中线等于斜边一半,得AM=DM,利用两边之差小于第三边得到AM MN DN-≤,又根据三角形中位线的性质即可求解.【详解】连接DM,如下图所示,∵90BAC EDF ∠=∠=︒又∵M 为EF 中点∴AM=DM=12EF ∴AM MN DM MN DN -=-≤(当D 、M 、N 共线时,等号成立)∵D 、N 分别为BC 、AC 的中点,即DN 是△ABC 的中位线∴DN=12AB=52∴AM MN -的最大值为52 故答案为52. 【点睛】 本题考查了直角三角形斜边中线的性质,三角形的三边关系,关键是确定AM MN -的取值范围.14.5【分析】设EF =x ,根据三角形的中位线定理表示AD =2x ,AD ∥EF ,可得∠CAD =∠CEF =45°,证明△EMC 是等腰直角三角形,则∠CEM =45°,证明△ENF ≌△MNB ,则EN =MN =12x ,BN =FN =5,最后利用勾股定理计算x 的值,可得BC 的长.【详解】解:设EF =x ,∵点E 、点F 分别是OA 、OD 的中点,∴EF 是△OAD 的中位线,∴AD =2x ,AD ∥EF ,∴∠CAD =∠CEF =45°,∵四边形ABCD 是平行四边形,∴AD ∥BC ,AD =BC =2x ,∴∠ACB =∠CAD =45°,∵EM ⊥BC ,∴∠EMC =90°,∴△EMC 是等腰直角三角形,∴∠CEM =45°,连接BE ,∵AB =OB ,AE =OE∴BE ⊥AO∴∠BEM =45°,∴BM =EM =MC =x ,∴BM =FE ,易得△ENF ≌△MNB ,∴EN =MN =12x ,BN =FN =5, Rt △BNM 中,由勾股定理得:BN2=BM2+MN2, 即22215()2x x =+解得,x =5∴BC =2x =5 故答案为:5【点睛】本题考查了平行四边形的性质、等腰直角三角形的判定和性质、全等三角形的判定与性质、勾股定理;解决问题的关键是设未知数,利用方程思想解决问题.15.①②③④【分析】①根据角平分线的定义可得∠BAE =∠DAE =45°,可得出△ABE 是等腰直角三角形,根据等腰直角三角形的性质可得AE 2=,从而得到AE =AD ,然后利用“角角边”证明△ABE 和△AHD 全等,根据全等三角形对应边相等可得BE =DH ,再根据等腰三角形两底角相等求出∠ADE =∠AED =67.5°,根据平角等于180°求出∠CED =67.5°,从而判断出①正确; ②求出∠AHB =67.5°,∠DHO =∠ODH =22.5°,然后根据等角对等边可得OE =OD =OH ,判断出②正确;③求出∠EBH =∠OHD =22.5°,∠AEB =∠HDF =45°,然后利用“角边角”证明△BEH 和△HDF 全等,根据全等三角形对应边相等可得BH =HF ,判断出③正确;④根据全等三角形对应边相等可得DF =HE ,然后根据HE =AE ﹣AH =BC ﹣CD ,BC ﹣CF =BC ﹣(CD ﹣DF )=2HE ,判断出④正确;⑤判断出△ABH 不是等边三角形,从而得到AB ≠BH ,即AB ≠HF ,得到⑤错误.【详解】∵在矩形ABCD 中,AE 平分∠BAD ,∴∠BAE =∠DAE =45°,∴△ABE 是等腰直角三角形,∴AE =. ∵AD =,∴AE =AD .在△ABE 和△AHD 中,∵90BAE DAE ABE AHD AE AD ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩,∴△ABE ≌△AHD (AAS ),∴BE =DH ,∴AB =BE =AH =HD ,∴∠ADE =∠AED 12=(180°﹣45°)=67.5°,∴∠CED =180°﹣45°﹣67.5°=67.5°,∴∠AED =∠CED ,故①正确;∵∠AHB 12=(180°﹣45°)=67.5°,∠OHE =∠AHB (对顶角相等),∴∠OHE =∠AED ,∴OE =OH .∵∠DOH =90°﹣67.5°=22.5°,∠ODH =67.5°﹣45°=22.5°,∴∠DOH =∠ODH ,∴OH =OD ,∴OE =OD =OH ,故②正确;∵∠EBH =90°﹣67.5°=22.5°,∴∠EBH =∠OHD .在△BEH 和△HDF 中,∵EBH OHD BE DH AEB HDF ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△BEH ≌△HDF (ASA ),∴BH =HF ,HE =DF ,故③正确;由上述①、②、③可得CD =BE 、DF =EH =CE ,CF =CD ﹣DF ,∴BC ﹣CF =(CD +HE )﹣(CD ﹣HE )=2HE ,所以④正确;∵AB =AH ,∠BAE =45°,∴△ABH 不是等边三角形,∴AB ≠BH ,∴即AB ≠HF ,故⑤错误;综上所述:结论正确的是①②③④.故答案为①②③④.【点睛】本题考查了矩形的性质,全等三角形的判定与性质,角平分线的定义,等腰三角形的判定与性质,熟记各性质并仔细分析题目条件,根据相等的度数求出相等的角,从而得到三角形全等的条件或判断出等腰三角形是解题的关键,也是本题的难点.16.15.5【分析】先根据折叠的性质可得,AE DE EAD EDA =∠=∠,再根据垂直的定义、直角三角形的性质可得B BDE ∠=∠,又根据等腰三角形的性质可得BE DE =,从而可得6DE AE BE ===,同理可得出5DF AF CF ===,然后根据三角形中位线定理可得1 4.52EF BC ==,最后根据三角形的周长公式即可得. 【详解】由折叠的性质得:,AE DE EAD EDA =∠=∠AD 是BC 边上的高,即AD BC ⊥90B EAD ∴∠+∠=︒,90BDE EDA ∠+∠=︒B BDE ∴∠=∠BE DE ∴= 1112622DE AE BE AB ∴====⨯= 同理可得:1110522DF AF CF AC ====⨯= 又,AE BE AF CF ==∴点E 是AB 的中点,点F 是AC 的中点EF ∴是ABC 的中位线119 4.522EF BC ∴==⨯= 则DEF 的周长为65 4.515.5DE DF EF ++=++=故答案为:15.5.【点睛】本题考查了折叠的性质、等腰三角形的性质、三角形中位线定理、直角三角形的性质等知识点,利用折叠的性质和等腰三角形的性质得出BE DE =是解题关键.17.72;【分析】连接AO 、BO 、CO ,过O 作FO ⊥AO ,交AB 的延长线于F ,判定△AOC ≌△FOB (ASA ),即可得出AO=FO ,FB=AC=6,进而得到AF=8+6=14,∠FAO=45°,根据AO=AF×cos45°进行计算即可.【详解】解:连接AO 、BO 、CO ,过O 作FO ⊥AO ,交AB 的延长线于F ,∵O 是正方形DBCE 的对称中心,∴BO=CO ,∠BOC=90°,∵FO ⊥AO ,∴∠AOF=90°,∴∠BOC=∠AOF ,即∠AOC+∠BOA=∠FBO+∠BOA ,∴∠AOC=∠FBO ,∵∠BAC=90°,∴在四边形ABOC 中,∠ACO+∠ABO=180°,∵∠FBO+∠ABO=180°,∴∠ACO=∠FBO ,在△AOC 和△FOB 中,AOC FOB AO FOACO FBO ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△AOC ≌△FOB (ASA ),∴AO=FO ,FB=FC=6,∴AF=8+6=14,∠FAO=∠OFA=45°,∴AO=AF×cos45°=14×22=72. 故答案为72.【点睛】本题考查了正方形的性质和全等三角形的判定与性质.本题的关键是通过作辅助线来构建全等三角形,然后将已知和所求线段转化到直角三角形中进行计算.18.10+55【分析】取DE 的中点N ,连结ON 、NG 、OM .根据勾股定理可得55NG =.在点M 与G 之间总有MG ≤MO+ON+NG (如图1),M 、O 、N 、G 四点共线,此时等号成立(如图2).可得线段MG 的最大值.【详解】如图1,取DE 的中点N ,连结ON 、NG 、OM .∵∠AOB=90°,∴OM=12AB =5. 同理ON =5.∵正方形DGFE ,N 为DE 中点,DE =10,∴222210555NG DN DG ++===.在点M与G之间总有MG≤MO+ON+NG(如图1),如图2,由于∠DNG的大小为定值,只要∠DON=12∠DNG,且M、N关于点O中心对称时,M、O、N、G四点共线,此时等号成立,∴线段MG取最大值5故答案为:5【点睛】此题考查了直角三角形的性质,勾股定理,四点共线的最值问题,得出M、O、N、G四点共线,则线段MG长度的最大是解题关键.19.2【分析】分别延长AE,BF交于点H,易证四边形EPFH为平行四边形,得出点G为PH的中点,则G的运动轨迹为△HCD的中位线MN,再求出CD的长度,运用中位线的性质求出MN的长度即可.【详解】解:如图,分别延长AE,BF交于点H,∵∠A=∠FPB=60°,∴AH∥PF,∵∠B=∠EPA=60°,∴BH∥PE∴四边形EPFH为平行四边形,∴EF与HP互相平分,∵点G为EF的中点,∴点G为PH的中点,即在P运动的过程中,G始终为PH的中点,∴G的运动轨迹为△HCD的中位线MN,∵CD=6-1-1=4,∴MN=12CD=2,∴点G移动路径的长是2,故答案为:2.【点睛】本题考查了等边三角形及中位线的性质,以及动点的问题,是中考热点,解题的关键是得出G 的运动轨迹为△HCD 的中位线MN .202a3212a 【分析】(1)根据折叠的性质可得出,四边形AFED 为正方形,CE=GE=BF ,AEB GBE ABE EBC ∠∠∠∠+=+,即AEB ABE ∠∠=,得出AB=AE ,继而可得解;(2)结合(1)可知,AE AM 2a ==,因为EC=3BM ,所以有1BM 2FM =,求出BM ,继而可得解.【详解】解:(1)由折叠的性质可得,CE=GE=BF ,AEB GBE ABE EBC ∠∠∠∠+=+,即AEB ABE ∠∠=, ∴AB=AE , ∵2AE 22a a == ∴AB 2a =.(2)结合(1)可知,AE AM 2a ==, ∴FM 2a a =-,∵EC=3BM , ∴1BM 2FM = ∴2BM a a -= ∴2321AB 222a a a a -=+=. 2a ;3212a .【点睛】本题是一道关于折叠的综合题目,主要考查折叠的性质,弄清题意,结合图形找出线段间的数量关系是解题的关键.三、解答题21.(1)①证明见解析;②证明见解析;(2)DE =. 【分析】(1)过点D 作//DM GH 交BC 延长线于点M ,连接EH ,①由正方形的性质可得//AD BC ,AD CD =,90A ADC DCM ∠=∠=∠=︒,即可证明四边形DGHM 是平行四边形,可得DM=GH ,由90GOD ∠=︒可得∠EDM=90°,根据直角三角形两锐角互余的性质可得12∠=∠,利用ASA 可证明△ADE≌△CDM,可得DE=DM ,即可证明DE=GH ;②由①得DM=DE ,根据勾股定理可得,利用三角形三边关系即可得结论; (2)过点D 作DN//GH 交BC 于点N ,作ADM CDN ∠=∠,DM 交BA 延长线于点M ,可证明四边形GHND 为平行四边形,可得DN HG =,GD HN =,根据勾股定理可求出CN 的长,利用AAS 可证明ADM CDN ∆∆≌,可得AM NC =,DM DN =,根据平行线的性质∠EDN=45°,根据角的和差故选可得∠MDE=∠EDN ,利用SAS 可证明MDE NDE ∆∆≌,即可证明AE CN EN +=,设AE x =,利用勾股定理可求出x 的值,进而利用勾股定理求出DE 的值即可得答案.【详解】(1)如图(1),过点D 作//DM GH 交BC 延长线于点M ,连接EH ,EM , ①∵四边形ABCD 为正方形,∴//AD BC ,AD CD =,90A ADC DCM ∠=∠=∠=︒∴四边形DGHM 为平行四边形,∴DM=GH ,GD HM =,∵90GOD ∠=︒,∴90EDM EOH ∠=∠=︒,∴290EDC ∠+∠=︒,∵90ADC ∠=︒,∴190EDC ∠+∠=︒,∴12∠=∠,在ADE ∆和CDM ∆中12A DCM AD DC ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴ADE CDM ∆∆≌,∴DE DM =,∴DE GH =.②在DEM ∆中,∠EDM=90°,∴222DE DM EM +=,∵DE DM =,∴222DE EM =, ∴2EM DE =,在EHM ∆中,HM EH EM +>,∵GD HM =, ∴2GD EH GH +≥.(2)如图(2),过点D 作DN//GH 交BC 于点N ,则四边形GHND 为平行四边形, ∴DN HG =,GD HN =,∵90C ∠=︒,4CD AB ==,25HG DN == ∴222CN DN DC =-=,∴422BN BC CN =-=-=,作ADM CDN ∠=∠,DM 交BA 延长线于点M ,在ADM ∆和CDN ∆中90C MAD CDN ADM DC AD ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩,∴ADM CDN ∆∆≌,∴AM NC =,DM DN =,∵45GOD EOH ∠=∠=︒,∴45EDN ∠=︒,∴45ADE CDN ∠+∠=︒,∴45ADE ADN MDE ∠+∠=︒=∠,在MDE ∆和NDE ∆中MD ND MDE EDN DE DE =⎧⎪∠=∠⎨⎪=⎩,∴MDE NDE ∆∆≌,。

人教版八年级下学期期末复习 :《平行四边形》 培优训练(附答案)

人教版八年级下学期期末复习 :《平行四边形》 培优训练(附答案)

八年级下学期期末复习:《平行四边形》培优训练一.选择题1.在▱ABCD中,已知AB=6,AD为▱ABCD的周长的,则AD=()A.4 B.6 C.8 D.102.在平行四边形ABCD中,AE与DE交于点E,若AE平分∠BAD,AE⊥DE,则()A.∠ADE=30°B.∠ADE=45°C.∠ADC=2∠ADE D.∠ADC=3∠ADE 3.下列说法中能判定四边形是矩形的是()A.有两个角为直角的四边形B.对角线互相平分的四边形C.对角线相等的四边形D.四个角都相等的四边形4.如图,菱形ABCD的面积为96,正方形AECF的面积为72,则菱形的边长为()A.10 B.12 C.8 D.165.如图,在Rt△ABC中,CD是斜边AB上的中线,若∠A=26°,则∠BDC的度数是()A.26°B.38°C.42°D.52°6.如图,在正方形ABCD中,G为CD的中点,连结AG并延长,交BC边的延长线于点E,对角线BD交AG于点F,已知AE=12,则线段FG的长是()A.2 B.4 C.5 D.67.如图,矩形ABCD的对角线AC=8cm,∠AOD=120°,则AB的长为()A.2cm B.4cm C. cm D.2cm8.将正方形ABCD与正方形BEFG如图摆放,点G恰好落在线段AE上.已知AB=,AG=1,连接CE,则CE长为()A.B.C.D.3.59.如图,在平行四边形ABCD中,AC与BD交于点M,点F在AD上,AF=6cm,BF=12cm,∠FBM=∠CBM,点E是BC的中点,若点P以1cm/秒的速度从点A出发,沿AD向点F运动:点Q同时以2cm/秒的速度从点C出发,沿CB向点B运动,点P运动到F点时停止运动,点Q也时停止运动,当点P运动()秒时,以点P、Q、E、F为顶点的四边形是平行四边形.A.2 B.3 C.3或5 D.4或510.如图,正方形ABCD的对角线AC,BD相交于点O,E是AC上的一点,且AB=AE,过点A 作AF⊥BE,垂足为F,交BD于点G.点H在AD上,且EH∥AF.若正方形ABCD的边长为2,下列结论:①OE=OG;②EH=BE;③AH=2﹣2;④AG•AF=2.其中正确的有()A.1个B.2个C.3个D.4个二.填空题11.在Rt△ABC中,∠C=90°,AC=3,BC=4,点D、E、F是三边的中点,则△DEF的周长是.12.如图,CE、BF分别是△ABC的高线,连接EF,EF=6,BC=10,D、G分别是EF、BC的中点,则DG的长为.13.如图,矩形ABCD中,DE⊥AC于点F,交BC边于点E,已知AB=6,AD=8,则CE的长为.14.如图,在▱ABCD中,AD=2AB,点F是BC的中点,作AE⊥CD于点E,点E在线段CD上,连接EF、AF,下列结论:①2∠BAF=∠C;②EF=AF;③S△ABF =S△AEF;④∠BFE=3∠CEF.其中一定正确的是.15.如图,在平行四边形ABCD中,∠ABC=45°,AB=4,BC=9,直线MN平分平行四边形ABCD的面积,分别交边AD、BC于点M、N,若△BMN是以MN为腰的等腰三角形,则BN =.16.如图,在正方形ABCD中,E是对角线BD上一点,DE=4BE,连接CE,过点E作EF⊥CE 交AB的延长线于点F,若AF=8,则正方形ABCD的边长为.17.如图,在平行四边形ABCD中,以点A为圆心,AB长为半径画弧交AD于点F,再分别以点B、F为圆心,大于BF的相同长度为半径画弧,两弧交于点P;连接AP并延长交BC 于点E,连接EF.若四边形ABEF的周长为16,∠C=60°,则四边形ABEF的面积是.18.如图,将边长为13的菱形ABCD沿AD方向平移至DCEF的位置,作EG⊥AB,垂足为点G,GD的延长线交EF于点H,已知BD=24,则GH=.19.如图,在平行四边形ABCD中,连接BD,且BD=CD,过点A作AM⊥BD与于点M,过点D 作DN⊥AB于点N,在DB的延长线上取一点P,PM=DN,若∠BDC=70°,则∠PAB的度数为.20.如图,正方形ABCD中,点E、F分别在AB、CD上,DG⊥EF于点H,交BC于点G,点P 在线段BG上.若∠PEF=45°,AE=CG=5,PG=5,则EP=.三.解答题21.如图,已知△ABC 是等边三角形,点D 、F 分别在线段BC 、AB 上,DC =BF ,以BF 为边在△ABC 外作等边三角形BEF .(1)求证:四边形EFCD 是平行四边形.(2)△ABC 的边长是6,当点D 是BC 三等分点时,直接写出平行四边形CDEF 的面积.22.如图,正方形ABCD 边长为4,点O 在对角线DB 上运动(不与点B ,D 重合),连接OA ,作OP ⊥OA ,交直线BC 于点P .(1)判断线段OA ,OP 的数量关系,并说明理由.(2)当OD =时,求CP 的长.(3)设线段DO ,OP ,PC ,CD 围成的图形面积为S 1,△AOD 的面积为S 2,求S 1﹣S 2的最值.23.已知菱形的一个角与三角形的一个角重合,然后它的对角顶点在这个重合角的对边上,这个菱形称为这个三角形的亲密菱形,如图,在△CFE中,CE=12,∠FCE=60°,∠AFE=90°,以点C为圆心,以任意长为半径作AD,再分别以点A和点D为圆心,大于AD 长为半径做弧,交EF于点B,AB∥CD.(1)求证:四边形ACDB为△CFE的亲密菱形;(2)求四边形ACDB的面积.24.问题探究:如图①,在正方形ABCD中,点E在边AD上,点F在边CD上,且AE=DF.线段BE与AF相交于点G,GH是△BFG的中线.(1)求证:△ABE≌△DAF.(2)判断线段BF与GH之间的数量关系,并说明理由.问题拓展:如图②,在矩形ABCD中,AB=4,AD=6.点E在边AD上,点F在边CD上,且AE=2,DF=3,线段BE与AF相交于点G.若GH是△BFG的中线,则线段GH的长为.25.老师布置了一个作业,如下:已知:如图1▱ABCD的对角线AC的垂直平分线EF交AD于点F,交BC于点E,交AC于点O求证:四边形AECF是菱形.某同学写出了如图2所示的证明过程,老师说该同学的作业是错误的,请你解答下列问题:(1)能找出该同学错误的原因吗?请你指出来;(2)请你给出本题的正确证明过程.26.如图,在△ABC中,AB=AC,D是BC上任一点,AD=AE且∠BAC=∠DAE.(1)若ED平分∠AEC,求证:CE∥AD;(2)若∠BAC=90°,且D在BC中点时,试判断四边形A DCE的形状,并说明你的理由.27.正方形ABCD,点E在边BC上,点F在对角线AC上,连AE.(1)如图1,连EF,若EF⊥AC,4AF=3AC,AB=4,求△AEF的周长;(2)如图2,若AF=AB,过点F作FG⊥AC交CD于G,点H在线段FG上(不与端点重合),连AH.若∠EAH=45°,求证:EC=HG+FC.28.如图,在平行四边形ABCD中,点H为DC上一点,BD、AH交于点O,△ABO为等边三角形,点E在线段AO上,OD=OE,连接BE,点F为BE的中点,连接AF并延长交BC于点G,且∠GAD=60°.(1)若CH=2,AB=4,求BC的长;(2)求证:BD=AB+AE.参考答案一.选择题1.解:∵四边形ABCD是平行四边形,∴CD=AB=6,AD=BC,∵AD=(AB+BC+CD+AD),∴AD=(2AD+12),解得:AD=8,∴BC=8;故选:C.2.解:∵平行四边形ABCD,∴AB∥CD,∴∠BAD+∠CDA=180°,∵AE⊥DE,∴∠DAE+∠ADE=90°,∴∠BAE+∠EDC=90°,∵AE平分∠BAD,∴∠BAE=∠EAD,∴∠ADE=∠EDC,即∠ADC=2∠ADE,故选:C.3.解:A、有3个角为直角的四边形是矩形,故错误;B、对角线互相平分的平行四边形是矩形,故错误;C、对角线相等的平行四边形,故错误;D、四个角都相等的四边形是矩形,故正确;故选:D.4.解:连接EF、BE、DF.∵四边形AECF是正方形,∴∠AEC=90°,∠AEF=45°.又△ABE≌△CBE(SSS),∴∠AEB=∠CEB=(360°﹣90°)÷2=135°.∴∠AEB+∠AEF=180°,∴B、E、F三点共线.同理可证D、F、E三点共线,∴BD过点E、F.∵AC2=72,∴AC=12.又AC•BD=96,∴BD=16.则菱形的边长为=10.故选:A.5.解:∵∠ACB=90°,CD是斜边AB上的中线,∴BD=CD=AD,∴∠A=∠DCA=26°,∴∠BDC=∠A+∠DCA=26°+26°=52°.故选:D.6.解:∵四边形ABCD为正方形,∴AB=CD,AB∥CD,∴∠ABF=∠GDF,∠BAF=∠DGF,∴△ABF∽△GDF,∴=,∴FG=AF,∵CG∥AB,AB=2CG,∴CG为△EAB的中位线,∴AG=AE=6,∴FG=AG=2.故选:A.7.解:∵∠AOD=120°,∴∠AOB=60°,∵四边形ABCD是矩形,∴AC=BD,AO=OC=×8=4cm,BO=OD,∴AO=BO=4cm,∴△ABO是等边三角形,∴AB=AO=4cm,故选:B.8.解:如图1所示,分别过点A、C作EB的垂线,交EB的延长线于点K、M,过点B作BH垂直AE,交AE于点H,设BH=GH=a,则有a2+(1+a)2=()2,解得a=1,∴BG=,AE=3,∴AK=EK=,BK=,∵∠AKB=∠M=90°,∠MBC=∠BAK,BC=AB,∴△ABK≌△BCM(AAS),∴CM=,EM=,∴CE=故选:A.9.解:∵四边形ABCD是平行四边形∴AD∥BC,AD=BC∴∠ADB=∠MBC,且∠FBM=∠MBC∠ADB=∠FBM∴BF=DF=12cm∴AD=AF+DF=18cm=BC,∵点E是BC的中点∴EC=BC=9cm,∵以点P、Q、E、F为顶点的四边形是平行四边形∴PF=EQ∴6﹣t=9﹣2t,或6﹣t=2t﹣9∴t=3或5故选:C.10.解:①∵四边形ABCD是正方形,∴AC⊥BD,OA=OB,∴∠AOG=∠BOE=90°,∵AF⊥BE,∴∠FGB=90°,∴∠OBE+∠BGF=90°,∠FAO+∠AGO=90°,∵∠AGO=∠BGF,∴∠FAO=∠EBO,在△AFO和△BEO中,,∴△AGO≌△BEO(ASA),∴OE=OG.②∵EH⊥AF,AF⊥BE,∴EH⊥BE,∴∠BEH=90°,如图1,过E作MN∥CD交AD于M,交BC于N,则MN⊥AD,MN⊥BC,∵四边形ABCD是正方形,∴∠ACB=∠EAM=45°,∴△ENC是等腰直角三角形,∴EN=CN=DM,∵AD=BC,∴AM=EM=BN,∵∠NBE+∠BEN=∠BEN+∠HEM=90°,∴∠NBE=∠HEM,∴△BNE≌△EMH(ASA),∴EH=BE,故②正确;③如图2,Rt△ABC中,AB=BC=2,∴AC=2,∴EC=AC﹣AE=2﹣2,∵AC=AB=AE,∴∠AEB=∠ABE,∴∠EBC=∠AEH,由②知:EH=BE,∴△BCE≌△EAH(SAS),∴AH=CE=2﹣2;故③正确;④Rt△AME中,AE=2,∠EAM=45°,∴AM=BN=,∵∠NBE=∠BAF,∠AFB=∠ENB=90°,∴△ABF∽△BEN,∴,∴AF•BE=AF•AG=AB•BN=2,故④正确;本题正确的有:①②③④,4个,故选:D.二.填空题(共10小题)11.解:∵Rt△ABC中,∠C=90°,AC=3,BC=4,∴AB==5,∵点D、E、F是三边的中点,∴DE=AC,DF=AB,EF=BC,∴△DEF的周长=DE+EF+DF=AC+AB+BC=(AC+AB+BC)=(3+4+5)=6,故答案为:6.12.解:连接EG、FG,∵CE,BF分别是△ABC的高线,∴∠BEC=90°,∠BFC=90°,∵G是BC的中点,∴EG=FG=BC=5,∵D是EF的中点,∴ED=EF=3,GD⊥EF,由勾股定理得,DG==4,故答案为:4.13.解:∵四边形ABCD是矩形,∴CD=AB=6,BC=AD=8,∠B=∠ADC=∠DCE=90°,∴AC==10,∵DE⊥AC,∴∠CFE=90°,∵∠DCF=∠ACD,∴△CDF∽△CAD,∴=,∴CF===3.6,∵∠ECF=∠ACB,∴△CEF∽△CAB,∴=,∴CE==4.5;故答案为:4.5.14.解:①∵F是BC的中点,∴BF=FC,∵在▱ABCD中,AD=2AB,∴BC=2AB=2CD,∴BF=FC=AB,∴∠AFB=∠BAF,∵AD∥BC,∴∠AFB=∠DAF,∴∠BAF=∠DAF,∴2∠BAF=∠BAD,∵∠BAD=∠C,∴∠BAF=2∠C故①正确;②延长EF,交AB延长线于M,∵四边形ABCD是平行四边形,∴AB∥CD,∴∠MBF=∠C,∵F为BC中点,∴BF=CF,在△MBF和△ECF中,,∴△MBF≌△ECF(ASA),∴FE=MF,∠CEF=∠M,∵CE⊥AE,∴∠AEC=90°,∴∠AEC=∠BAE=90°,∵FM=EF,∴EF=AF,故②正确;③∵EF=FM,∴S△AEF =S△A FM,∴S△ABF <S△AEF,故③错误;④设∠FEA=x,则∠FAE=x,∴∠BAF=∠AFB=90°﹣x,∴∠EFA=180°﹣2x,∴∠EFB=90°﹣x+180°﹣2x=270°﹣3x,∵∠CEF=90°﹣x,∴∠BFE=3∠CEF,故④正确,故答案为:①②④.15.解:如图,过点C作CE⊥AD于E,过点N作NF⊥AD于F,过点B作BG⊥AD,与DA的延长线交于点G.∵直线MN平分平行四边形ABCD的面积,∴AM=CN,设AM=CN=x,则EF=x,BN=9﹣x∵∠ABC=45°,AB=4,∴GB=GA=4,DE=4,∴MF=5﹣2x,在Rt△BGM中,BM2=42+(4+x)2,在Rt△NFM中,MN2=42+(5﹣2x)2,∵△BMN是以MN为腰的等腰三角形,∴①当MN=MB时,易证Rt△MFN≌Rt△MGB(HL),MF=MG,即5﹣2x=x+4,解得x=,即CN=,∴BN=BC﹣CN=9﹣=②当MN=BN时,MN2=BN2,∴42+(5﹣2x )2=(9﹣x )2,解得x 1=4,x 2=﹣(不符合题意,舍去),MN 2=42+(5﹣2x )2=16+(5﹣2×4)2=25,∴MN =5,∴BN =5故答案为或5.16.解:如图所示:过点E 作EM ⊥BC ,EN ⊥AB ,分别交BC 、AB 于M 、N 两点,且EF 与BC 相交于点H .∵EF ⊥CE ,∠ABC =90°,∠ABC +∠HBF =180°,∴∠CEH =∠FBH =90°,又∵∠EHC =∠BHF ,∴△ECH ∽△BFH (AA ),∴∠ECH =∠BFH ,∵EM ⊥BC ,EN ⊥AB ,四边形ABCD 是正方形,∴四边形ENBM 是正方形,∴EM =EN ,∠EMC =∠ENF =90°,在△EMC 和△ENF 中∴△EMC ≌△ENF (AAS )∴CM =FN ,∵EM ∥DC ,∴△BEM ∽△BDC ,∴.又∵DE=4BE,∴=,同理可得:,设BN=a,则AB=5a,CM=AN=NF=4a,∵AF=8,AF=AN+FN,∴8a=8解得:a=1,∴AB=5.故答案为:5.17.解:由作法得AE平分∠BAD,AB=AF,则∠1=∠2,∵四边形ABCD为平行四边形,∴BE∥AF,∠BAF=∠C=60°,∴∠2=∠BEA,∴∠1=∠BEA=30°,∴BA=BE,∴AF=BE,∴四边形AFEB为平行四边形,△ABF是等边三角形,而AB=AF,∴四边形ABEF是菱形;∴BF⊥AE,AG=EG,∵四边形ABEF的周长为16,∴AF=BF=AB=4,在Rt△ABG中,∠1=30°,∴BG=AB=2,AG=BG=2,∴AE=2AG=4,∴菱形ABEF的面积=BF×AE=×4×4=8;故答案为:8.18.解:连接DE,连接AC交BD于O,如图所示:∵四边形ABCD和四边形DCEF是菱形,∴OA=OC,OB=OD=B D=12,AC⊥BD,AB∥CD∥EF,AB=AD=CD=DF=CE=13,AD∥CE,∴OA===5,∠GAD=∠F,四边形ACED是平行四边形,∴DE=AC=2OA=10,在△ADG和△FDH中,,∴△ADG≌△FDH(ASA),∴DG=DH,∵EG⊥AB,∴∠BGE=∠GEF=90°,∴DE=DG=DH,∴GH=2DE=20,故答案为:20.19.解:在平行四边形ABCD中,∵AB=CD,∵BD=CD,∴BD=BA,又∵AM⊥BD,DN⊥AB,∴∠AMB=∠DNB=90°,在△ABM与△DBN中,∴△ABM≌△DBN(AAS),∴AM=DN,∵PM=DN,∴△AMP是等腰直角三角形,∴∠MAP=∠APM=45°,∵AB∥CD,∴∠ABD=∠CDB=70°,∴∠PAB=∠ABD﹣∠P=25°,故答案为:25°20.解:过点F作FM⊥AB于点M,连接PF、PM,如图所示:则FM=AD,AM=DF,∠FME=∠MFD=90°,∵DG⊥EF,∴∠MFE=∠CDG,∵四边形ABCD是正方形,∴∠B=∠C=90°,AB=BC=DC=AD,∴FM=DC,在△MFE和△CDG中,,∴△MFE≌△CDG(ASA),∴ME=CG=5,∴AM=DF=10,∵CG=PG=5,∴CP=10,∴AM=CP,∴BM=BP,∴△BPM是等腰直角三角形,∴∠BMP=45°,∴∠PMF=45°,∵∠PEF=45°=∠PMF,∴E、M、P、F四点共圆,∴∠EPF=∠FME=90°,∴△PEF是等腰直角三角形,∵∠BEP+∠BPE=90°,∠BPE+∠CPF=90°,∴∠BEP=∠CPF,在△BPE和△CFP中,,∴△BPE≌△CFP(AAS),∴BE=CP=10,∴AB=AE+BE=15,∴BP=5,在Rt△BPE中,由勾股定理得:EP===5;故答案为:5.三.解答题(共8小题)21.证明:(1)∵△ABC是等边三角形,∴∠ABC=60°,∵∠EFB=60°,∴∠ABC=∠EFB,∴EF∥DC(内错角相等,两直线平行),∵DC=EF,∴四边形EFCD是平行四边形;(2)解:过E作EH⊥BC交CB的延长线于H,∵△ABC和△BEF是等边三角形,∴∠ABC=∠EBF=60°,∴∠EBH=180°﹣60°﹣60°=60°,∴EH=BE=BF=CD,∵点D是BC三等分点,∴当CD=BC=2时,平行四边形CDEF的面积=2×=2,当CD=BC=4时,平行四边形CDEF的面积=4×2=8,综上所述,平行四边形CDEF的面积为2或8.22.解:(1)OA=OP,理由是:如图1,过O作OG⊥AB于G,过O作OH⊥BC于H,∵四边形ABCD是正方形,∴∠ABO=∠CBO,AB=BC,∴OG=OH,∵∠OGB=∠GBH=∠BHO=90°,∴四边形OGBH是正方形,∴BG=BH,∠GOH=90°,∵∠AOP=∠GOH=90°,∴∠AOG=∠POH,∴△AGO≌△PHO(ASA),∴OA=OP;(2)如图2,过O作OQ⊥CD于Q,过O作OH⊥BC于H,连接OC,∴∠OQD=90°,∵∠ODQ=45°,∴△ODQ是等腰直角三角形,∵OD=,∴OQ=DQ=1,∵AD=CD,∠ADO=∠CDO,OD=OD,∴△ADO≌△CDO(SSS),∴AO=OC=OP,∵OH⊥PC,∴PH=CH=OQ=1,∴PC=2;(3)如图3,连接OC,过O作OG⊥BC于G,OH⊥CD于H,设OH=x,则DH=x,CH=OG=4﹣x,PC=2x,由(2)知:△AOD≌△COD,∴S△AOD =S△COD,∴S1﹣S2=S1﹣S△COD=S△POC===﹣x2+4x=﹣(x﹣2)2+4,当x=2时,S1﹣S2有最大值是4.23.证明:(1)∵由已知得:AC=CD,AB=DB,由已知尺规作图痕迹得:BC是∠FCE的角平分线,∴∠ACB=∠DCB,又∵AB∥CD,∴∠ABC=∠DCB,∴∠ACB=∠ABC,∴AC=AB,又∵AC=CD,AB=DB,∴AC=CD=DB=BA,∴四边形ACDB是菱形,∵∠ACD与△FCE中的∠FCE重合,它的对角∠ABD顶点在EF上,∴四边形ACDB为△FEC的亲密菱形(2)过点A作AG⊥CE于G∵四边形ACDB是菱形∴AB=AC,AB∥CD∴∠FAB=∠FCE=60°∴∠E=∠FBA=30°∴CE=2CF AB=2AF∵CE=12∴CF=6,CA=4在Rt△ACG中,可得AG=,∴菱形ACDB的面积=CD▪AG=4×=24.(1)证明:∵四边形ABCD是正方形,∴∠BAD=∠D=90°,AB=DA,在△ABE和△DAF中,,∴△ABE≌△DAF(SAS);(2)解:BF=2GH;理由如下:∵△ABE≌△DAF,∴∠ABE=∠DAF,∵∠DAF+∠BAG=∠BAD=90°,∴∠ABE+∠BAG=90°,∴∠BGF=∠ABE+∠BAG=90°,在Rt△BFG中,GH是边BF的中线,∴BF=2GH;问题拓展:解:∵tan ∠ABE ===,tan ∠DAF ===,∴∠ABE =∠DAF , ∵∠DAF +∠BAG =∠BAD =90°,∴∠ABE +∠BAG =90°,∴∠AGB =90°,∴∠BGF =90°,在Rt △BFG 中,GH 是边BF 的中线,∴BF =2GH ,∵四边形ABCD 是矩形,∴∠C =90°,BC =AD =6,CD =AB =4,∴CF =CD ﹣DF =1,∴BF ===,∴GH =BF =;故答案为:. 25.解:(1)能;该同学错在AC 和EF 并不是互相平分的,EF 垂直平分AC ,但未证明AC 垂直平分EF ,需要通过证明得出;(2)证明:∵四边形ABCD 是平行四边形,∴AD ∥BC .∴∠FAC =∠ECA .∵EF 是AC 的垂直平分线,∴OA =OC .∵在△AOF 与△COE 中,∴△AOF ≌△COE (ASA ).∴EO =FO .∴AC 垂直平分EF .∴EF 与AC 互相垂直平分.∴四边形AECF是菱形.26.解:(1)证明:∵AD=AE,∴∠ADE=∠AED.又∵ED平分∠AEC,∴∠DEC=∠AED.∴∠ADE=∠DEC.∴CE∥AD;(2)四边形ADCE是正方形,理由如下:∵AB=AC,D是BC的中点,∴AD⊥BC,即∠ADC=90°.又∵∠DAE=∠BAC=90°,∴∠ADC+∠DAE=180°.∴AE∥CD.又∵∠BAC=90°且D是BC的中点,∴AD=CD.∴AE=AD.∴AE=CD∴四边形ADCE是平行四边形.∵∠ADC=90°,∴四边形ADCE是正方形.27.(1)解:∵四边形ABCD是正方形,∴AB=BC=CD=AD=4,∠B=∠D=90°,∠ACB=∠ACD=∠BAC=∠ACD=45°,∴AC=AB=4,∵4AF=3AC=12,∴AF=3,∴CF=AC﹣AF=,∵EF⊥AC,∴△CEF是等腰直角三角形,∴EF=CF=,CE=CF=2,在Rt△AEF中,由勾股定理得:AE==2,∴△AEF的周长=AE+EF+AF=2++3=2+4;(2)证明:延长GF交BC于M,连接AG,如图2所示:则△CGM和△CFG是等腰直角三角形,∴CM=CG,CG=CF,∴BM=DG,∵AF=AB,∴AF=AD,在Rt△AFG和Rt△ADG中,,∴Rt△AFG≌Rt△ADG(HL),∴FG=DG,∴BM=FG,∵∠BAC=∠EAH=45°,∴∠BAE=∠FAH,∵FG⊥AC,∴∠AF H=90°,在△ABE和△AFH中,,∴△ABE≌△AFH(ASA),∴BE=FH,∵BM=BE+EM,FG=FH+HG,∴EM=HG,∵EC=EM+CM,CM=CG=CF,∴EC=HG+FC.28.解:延长AH、BC相交于点M,∵▱ABCD∴CD=AB=4,CD∥AB∵CH=2∴DH=CD=2∵CD∥AB∴∠MHC=∠MAB,∠MCH=∠MBA∴△MCH∽△MBA∴∴=∴MH=AH,BM=2BC∵△ABO为等边三角形∴∠AOB=∠OAB=∠OBA=60°,OA=AB=4∴∠DO H=∠AOB=60°∴∠ODH=∠OBA=60°,∠OHD=∠OAB=60°∴∠DOH=∠ODH=∠OHD∴△DOH是等边三角形∴OH=OD=DH=2∴MH=AH=OA+OH=4+2=6,EM=OE+OH+MH=10 ∵OD=OE=2∴AE=OA﹣OE=4﹣2=2∴点E是OA的中点∵△ABO为等边三角形∴BE⊥OA,∠ABE=30°∴BE=AE=2在Rt△BEM中,∠BEM=90°∴BE2+EM2=BM2∴(2)2+102=BM2∴BM=4∴BC=2(2)∵△ABO为等边三角形∴AB=OB由(1)知,AE=OE=OD∵BD=OB+OD∴BD=AB+AE。

人教版八年级数学下册第十八章《平行四边形》专题练习卷(培优班)(答案解析)

人教版八年级数学下册第十八章《平行四边形》专题练习卷(培优班)(答案解析)

知识像烛光,能照亮一个人,也能照亮无数的人。

--培根[答案]3-1 斜边中线一、选择题1. C二、填空题1.② ① 2.2 3.7 4.2.5 5三、解答题 (共1小题 , 共45分)1. 解:方法一:(1)连接DE ;∵AD ⊥BC ,E 是AB 的中点,∴DE 是R t △ABD 斜边上的中线,即AB DE 21=;∴DC=DE=BE ;又∵DG=DG ,∴R t △EDG ≌R t △CDG ;(HL) ∴GE=CG ,∴G 是CE 的中点.(2)由(1)知:BE=DE=CD ;∴∠B=∠BDE ,∠DEC=∠DCE ;∴∠B=∠BDE=2∠BCE .方法二:(1)连接DE. ∵E 是AB 中点,∠ADB=90°DE=BE= AB∴BE AB DE ==21∵BE=CD∴DE=CD 又DG ⊥CE ∴G 是CE 的中点.(2)∵BE=DE∴∠B = ∠EDB∵ED=DC ,∴∠DEC = ∠BCE∴∠EDB = ∠DEC + ∠BCE = 2∠BCE即 :∠B = 2∠BCE[答案]3-2 最短距离一、填空题1. 5 (作点A或E关于BC的对称点,然后再连接另一个点)2. 10 (连接CD,CD=PA+PD的最小值)3. 4 (连接AC,AE=PC+PE的最小值)34. 3 (连接AC,CM,CM=PM+PN的最小值)5. 5 (连接CM,点M、A’、C在同一直线上时,A’C有最小值)[答案]3-3 动点问题一、选择题1. A(PD=CQ ,即24-t=3t) 2. B(循环节是AD--CD--点C--BC--AB--...) 3. A (连接PO ,三角形AOD 的面积等于两个小三角形AOP 和DOP 面积之和)二、填空题1. 310 (PB=6-t 为底,BC 为高) 2. )43,43(- (两点之间用时是4秒) 三、解答题1. 解:(1)设t 秒时两点相遇, 根据题意得,t +2t =2(4+8), 解得t =8,(2)①如图1,点M 在E 点右侧时,当AN=ME 时,四边形AEMN 为平行四边形, 得:8-t =9-2t , 解得t =1,∵t =1时,点M 还在DC 上,∴t =1舍去;②如图2,点M 在E 点左侧时,当AN=ME 时,四边形AEMN 为平行四边形, 得:8-t =2t -9,解得317=t ∴经过317秒钟,点A 、E 、M 、N 组成平行四边形.。

人教版 八年级数学下册 18.1 平行四边形 培优训练(含答案)

人教版 八年级数学下册 18.1 平行四边形 培优训练(含答案)

人教版 八年级数学 18.1 平行四边形 培优训练一、选择题(本大题共8道小题)1. 以三角形的三个顶点作平行四边形,最多可以作( ) A .2个 B .3个 C .4个 D .5个2. 如图,将▱ABCD 沿对角线AC 折叠,使点B 落在点B′处.若∠1=∠2=44°,则∠B 为( )A . 66°B . 104°C . 114°D . 124°3. 如图,平行四边形ABCD 的周长是26 cm ,对角线AC 与BD 交于点O ,AC ⊥AB ,E 是BC 中点,△AOD 的周长比△AOB 的周长多3 cm ,则AE 的长度为( ) A . 3 cm B . 4 cm C . 5 cm D . 8 cm4. 如图,ABCD 中,AB=2,AD=4,对角线AC ,BD 相交于点O ,且E ,F ,G ,H 分别是AO ,BO ,CO ,DO 的中点,则下列说法正确的是A .EH=HGB .四边形EFGH 是平行四边形C .AC ⊥BDD .△ABO 的面积是△EFO 的面积的2倍5. 在平行四边形ABCD 中,点1A 、2A 、3A 、4A 和1C 、2C 、3C 、4C 分别为AB 和CD 的五等分点,点1B 、2B 和1D 、2D 分别是BC 和DA 的三等分点,已知四边形4242A B C D 的面积为1,则平行四边形ABCD 面积为( )A .2B .35C .53D .156. (2019▪广西池河)如图,在△ABC中,D ,E 分别是AB ,BC 的中点,点F 在DE 延长线上,添加一个条件使四边形ADFC 为平行四边形,则这个条件是A .∠B=∠FB .∠B=∠BCFC .AC=CFD .AD=CF7.已知四边形的四条边长分别是a b c d ,,,,其中a b ,为对边,并且满足222222a b c d ab cd +++=+则这个四边形是( )A .任意四边形B .平行四边形C .对角线相等的四边形D .对角线垂直的四边形8.(2020·临沂)如图,P 是面积为S 的ABCD 内任意一点,PAD ∆的面积为1S ,PBC ∆的面积为2S ,则( )A.122SS S +>B.122SS S +<C.212SS S += D.21S S +的大小与P 点位置有关二、填空题(本大题共8道小题)9. 如图所示,四边形ABCD 的对角线相交于点O ,若AB ∥CD ,请添加一个条件________(写一个即可),使四边形ABCD 是平行四边形.10.(2020·牡丹江)如图,在四边形ABCD 中,AD//BC ,在不添加任何辅助线的情况下,请你添加一个条件__________________,使四边形ABCD 是平行四边形(填一个即可).11. 已知平行四边形ABCD 的周长为60cm ,对角线AC 、BD 相交于O 点,AOB ∆的周长比BOC ∆的周长多8cm ,则AB的长度为cm .OD CBA12. 如图所示,在▱ABCD中,∠C =40°,过点D 作AD 的垂线,交AB 于点E ,交CB 的延长线于点F ,则∠BEF 的度数为__________.13. (2020·凉山州)如图,平行四边形ABCD 的对角线AC 、BD 相交于点O ,OE ∥AB 交AD 于点E .若OA =1,△AOE 的周长等于5,则平行四边形ABCD 的周长等于 .O EDCB A14. 如图,在ABCD 中,E.F 是对角线AC 上两点,AE=EF=CD ,∠ADF=90°,∠BCD=63°,则∠ADE 的大小为__________.15. 如图,在▱ABCD中,E 为边CD 上一点,将△ADE 沿AE 折叠至△AD′E 处,AD ′与CE 交于点F ,若∠B =52°,∠DAE =20°,则∠FED′的大小为________.ABC16. 如图,一个平行四边形被分成面积为1S 、2S 、3S 、4S 四个小平行四边形,当CD 沿AB 自左向右在平行四边形内平行滑动时.① 14S S 与23S S 的大小关系为.② 已知点C 与点A 、B 不重合时,图中共有 个平行四边形,S 4S 3S 2S 1(3)DCBA三、解答题(本大题共4道小题) 17. (2020·重庆B 卷)如图,在平行四边形ABCD 中,AE ,CF 分别平分∠BAD 和∠DCB ,交对角线BD 于点E ,F . (1)若∠BCF =60°,求∠ABC 的度数; (2)求证:BE =DF .18. 如图所示,P 为平行四边形ABCD 内一点,求证:以AP 、BP 、CP 、DP 为边可以构成一个四边形,并且所构成的四边形的对角线的长度恰好分别等于AB 和BC .DPCBA19. (2020·泰安)(12分)若△ABC 和△AED 均为等腰三角形,且∠BAC ﹦∠EAD﹦90°.(1)如图(1),点B 是DE 的中点,判断四边形BEAC 的形状,并说明理由;(2)如图(2),若点G 是EC 的中点,连接GB 并延长至点F ,使CF ﹦CD . 求证:①EB ﹦DC ,②∠EBG ﹦∠BFC .GFABCDEABCDE20. 如图,AC 是平行四边形ABCD 较长的一条对角线,点O 是ABCD 内部一点,OE AB ⊥于点E ,OF AD ⊥于点F ,OG AC ⊥于点G ,求证:AE AB AF AD AG AC ⋅+⋅=⋅.人教版 八年级数学 18.1 平行四边形 培优训练-答案一、选择题(本大题共8道小题) 1. 【答案】B2. 【答案】C 【解析】设∠ACD =x ,∠B =y ,则根据题意可列方程组⎩⎨⎧x +y +44°=180°180°-y -(44°-x )=44°,解得y =114°.3. 【答案】B【解析】在▱ABCD 中,AD =BC ,AB =CD ,BO =DO ,∵平行四边形ABCD 的周长为26 cm ,∴AB +BC =13 cm ,又∵△AOD 的周长比△AOB 的周长多3 cm ,∴AD -AB =BC -AB =3 cm ,解得AB =5 cm ,BC =8 cm ,又AB ⊥AC ,E 是BC 的中点,∴AE =BE =CE =12BC =4 cm.4. 【答案】B【解析】∵E,F,G,H分别是AO,BO,CO,DO的中点,在ABCD中,A B=2,AD=4,∴EH=12AD=2,HG=1122CD=AB=1,∴EH≠HG,故选项A 错误;∵E,F,G,H分别是AO,BO,CO,DO的中点,∴EH=1122AD BC FG==,∴四边形EFGH是平行四边形,故选项B正确;由题目中的条件,无法判断AC和BD是否垂直,故选项C错误;∵点E、F分别为OA和OB的中点,∴EF=12AB,EF∥AB,∴△OEF∽△OAB,∴214AEFOABS EFS AB⎛⎫==⎪⎝⎭,即△ABO的面积是△EFO的面积的4倍,故选项D错误,故选B.5. 【答案】C6. 【答案】B【解析】∵在△ABC中,D,E分别是AB,BC的中点,∴DE是△ABC的中位线,∴DE=12 AC.A.根据∠B=∠F不能判定AC∥DF,即不能判定四边形ADFC为平行四边形,故本选项错误.B.根据∠B=∠BCF可以判定CF∥AB,即CF∥AD,由“两组对边分别平行的四边形是平行四边形”得到四边形ADFC为平行四边形,故本选项正确.C.根据AC=CF不能判定AC∥DF,即不能判定四边形ADFC为平行四边形,故本选项错误.D.根据AD=CF,FD∥AC不能判定四边形ADFC为平行四边形,故本选项错误.故选B.7. 【答案】B8. 【答案】C【解析】可以利用割补法对平行四边形进行分割,然后使分割后的图形与PAD ∆的面积1S ,PBC ∆的面积2S 发生关联,然后求出其数量关系,如下图,过点P 作AD 的平行线,分别交ABCD 的边于点M 、N :2111(21222)AMND MbCN AMND MbCN SS S S S S S =+++==.二、填空题(本大题共8道小题) 9. 【答案】AD ∥BC (答案不唯一) 【解析】根据平行四边形的判定,在已有AB ∥DC 的条件下,可再加另一组对边平行即可证得它是平行四边形,即加“AD ∥BC”.10. 【答案】AD=BC【解析】当添加条件AD=BC 时,根据一组对边平行且相等的四边形是平行四边形,可得四边形ABCD 是平行四边形.11. 【答案】19【解析】如图,AOB ∆的周长为AB AO BO ++,BOC ∆的周长为BC BO CO ++ 由平行四边形的对角线互相平分可得()()8AB AO BO BC BO CO AB BC ++-++=-= ∴6082194AB +⨯==.12. 【答案】50°【解析】在平行四边形ABCD 中,AB ∥CD ,AD ∥BC ,∴∠FBA=∠C =40°,∵FD ⊥AD ,∴∠ADF =90°,∵AD ∥BC ,∴∠F =∠ADF =90°,∴∠BEF =180°-90°-40°=50°.13. 【答案】16【解析】∵四边形ABCD 是平行四边形,∴OA =OC ,AB =CD ,AD =BC .∵OE ∥AB ,∴OE 是△ACD 的中位线.∴AE =12AD ,OE =12CD .∵OA =1,△AOE 的周长等于5,∴AE +OE =4.∴AD +CD =8.∴平行四边形ABCD 的周长=16.故答案为16.14. 【答案】21° 【解析】设∠ADE=x ,∵AE=EF ,∠ADF=90°,∴∠DAE=∠ADE=x ,DE=12AF=AE=EF ,∵AE=EF=CD ,∴DE=CD , ∴∠DCE=∠DEC=2x ,∵四边形ABCD 是平行四边形,∴AD ∥BC , ∴∠DAE=∠BCA=x ,∴∠DCE=∠BCD ﹣∠BCA=63°﹣x ,∴2x=63°﹣x ,解得x=21°,即∠ADE=21°; 故答案为:21°.15. 【答案】36°【解析】∵在▱ABCD 中,∠D =∠B =52°,∴∠AEF =∠DAE +∠D =20°+52°=72°,∴∠AED =180°-∠AEF =108°,由折叠的性质得,∠AED ′=∠AED =108°,∴∠FED ′=∠AED′-∠AEF =108°-72°=36°.16. 【答案】①1423S S S S =;②9三、解答题(本大题共4道小题)17. 【答案】(1)解: ∵CF 平分∠BCD ,∴∠BCD =2∠BCF .∵∠BCF =60°,∴∠BCD =2×60°=120°.∵四边形ABCD 是平行四边形,∴AB ∥CD ,∴∠ABC +∠BCD =180°. ∴∠ABC =180°-120°=60°.(2)证明:∵四边形ABCD 是平行四边形,∴AB =CD ,AB ∥CD ,∠BAD =∠DCB .∴∠ABE =∠CDF .∵AE ,CF 分别平分∠BAD 和∠DCB ,∴∠BAE =12∠BAD =12∠DCB =∠DCF .在△ABE 和△CDF 中,∵∠ABE =∠CDF ,AB =CD ,∠BAE =∠DCF , ∴△ABE ≌△CDF . ∴BE =DF .18. 【答案】如图所示,将PAB ∆平移至QDC ∆的位置,易证DQ AP =,CQ BP =,则四边形DPCQ 恰好是一个以AP 、BP 、CP 、DP 为边的四边形,并且它的对角线恰好等于平行四边形ABCD 的两条邻边.QDPCBA19. 【答案】(1)证明:四边形BEAC 是平行四边形. 理由如下:∵△EAD 为等腰三角形且∠EAD ﹦90°, ∴∠E ﹦45°.∵B 是DE 的中点, ∴AB ⊥DE . ∴∠BAE ﹦45°.∵△ABC 为等腰三角形且∠BAC ﹦90°, ∴∠CBA ﹦45°. ∴∠BAE ﹦∠CBA . ∴BC ∥EA . 又∵AB ⊥DE ,∴∠EBA ﹦∠BAC ﹦90°. ∴BE ∥AC .∴四边形BEAC 是平行四边形.(2)证明:①∵△AED 和△ABC 为等腰三角形, ∴AE ﹦AD ,AB ﹦AC . ∵∠EAD ﹦∠BAC ﹦90°,∴∠EAD +∠DAB ﹦∠BAC +∠DAB .即∠EAB ﹦∠DAC . ∴△AEB ≌△ADC . ∴EB ﹦DC .②延长FG 至点H ,使GH ﹦FG . ∵G 是EC 中点,∴EG ﹦CG .又∠EGH ﹦∠FGC , ∴△EHG ≌△CFG ,∴∠BFC ﹦∠H ,CF ﹦EH . 又∵CF ﹦CD , ∴BE ﹦CF . ∴BE ﹦EH .∴∠EBG ﹦∠H . ∴∠EBG ﹦∠BFC .AB CDEEDCBA FGH20. 【答案】如图所示,,分别过点B 、C 、D 作直线AO 的垂线,EG CP DL ∥∥、Q 、N 为垂足;分别过B 、D 作AC 的垂线,L 、K 为垂足. 显然,A 、E 、O 、G 、F 五点共圆,AO 是直径.由DN AO ⊥,CQ AO ⊥,BM AO ⊥,DC AB ∥且DC AB =可知NQ AM =. 已知AF AD AN AO ⋅=⋅,AE AB AM AO ⋅=⋅, 则AF AD AE AB ⋅+⋅ AN AO AM AO =⋅+⋅ ()AO AN AM =+ ()AO AN NQ =+ AO AQ =⋅ AG AC =⋅故AE AB AF AD AG AC ⋅+⋅=⋅.点评:ab cd ef +=类型的问题一般要转化为ab mn =型的问题(当然,如果能够使用勾股定理、余弦定理等,大家也可以踊跃尝试),把握了这一点,就能及时调整思路,确保解题不会误入歧途.图(1)图(2)。

八年级初二数学 数学平行四边形的专项培优易错试卷练习题附解析

八年级初二数学 数学平行四边形的专项培优易错试卷练习题附解析

八年级初二数学 数学平行四边形的专项培优易错试卷练习题附解析一、选择题1.如图,在菱形ABCD 中,点F 为边AB 的中点,DF 与对角线AC 交于点G ,过点G 作GE AD ⊥于点E ,若2AB =,且12∠=∠,则下列结论不正确的是( )A .DF AB ⊥ B .2CG GA =C .CG DF GE =+D .31BFGC S =-四边形2.如图,正方形ABCD 内有两条相交线段MN ,EF ,M ,N ,E ,F 分别在边AB ,CD ,AD ,BC 上.小明认为:若MN =EF ,则MN ⊥EF ;小亮认为:若MN ⊥EF ,则MN =EF ,你认为( )A .仅小明对B .仅小亮对C .两人都对D .两人都不对3.如图,90MON ∠=︒边长为2的等边三角形ABC 的顶点A B 、分别在边OM ,ON 上当B 在边ON 上运动时,A 随之在边OM 上运动,等边三角形的形状保持不变,运动过程中,点C 到点O 的最大距离为( )A .2.4B .5C .31+D .524.如图,菱形ABCD 的边长为4,∠DAB =60°,E 为BC 的中点,在对角线AC 上存在一点P ,使△PBE 的周长最小,则△PBE 的周长的最小值为 ( )A .3B .4C .232D .43+5.如图,在一张矩形纸片ABCD 中,AB=4,BC=8,点E ,F 分别在AD ,BC 上,将ABCD 沿直线EF 折叠,点C 落在AD 上的一点H 处,点D 落在点G 处,有以下四个结论:①四边形CFHE 是菱形;②EC 平分∠DCH ;③线段BF 的取值范围为3≤BF ≤4;④当点H 与点A 重合时,EF=25.其中正确的结论是()A .①②③④B .①④C .①②④D .①③④ 6.如图,在平行四边形ABCD 中,E 、F 是对角线AC 上的两点且AE CF =,下列说法中正确的是( ) ①BE DF =;②//BE DF ;③AB DE =;④四边形EBFD 为平行四边形;⑤ADE ABE S S ∆∆=;⑥AF CE =.A .①⑥B .①②④⑥C .①②③④D .①②④⑤⑥7.如图所示,在四边形ABCD 中,AD BC =,E 、F 分别是AB 、CD 的中点,AD 、BC 的延长线分别与EF 的延长线交于点H 、G ,则( )A .AHE BGE ∠>∠B .AHE BGE ∠=∠C .AHE BGE ∠<∠D .AHE ∠与BGE ∠的大小关系不确定8.如图,直角梯形ABCD 中AD ∥BC ,∠D =90°.∠A 的平分线交DC 于E ,EF ⊥AB 于F .已知AD =3.5cm ,DC =4cm ,BC =6.5cm .那么四边形BCEF 的周长是( )A .10cmB .11cmC .11.5cmD .12cm9.如图,在平行四边形ABCD 中,过点A 作AG BC ⊥于G ,作AH CD ⊥于H ,且45GAH ∠=︒,2AG =,3AH =,则平行四边形的面积是( )A .62B .122C .6D .1210.如图,矩形ABCD 中,O 为AC 中点,过点O 的直线分别与AB ,CD 交于点E ,F ,连接BF 交AC 于点M ,连接DE ,BO .若60COB ∠=,FO FC =,则下列结论:①FB OC ⊥,OM CM =;②EOB CMB ≅;③四边形EBFD 是菱形;④:3:2MB OE =.其中正确结论的个数是( )A .1B .2C .3D .4二、填空题11.如图,在平行四边形ABCD 中,AB =6,BC =4,∠A =120°,E 是AB 的中点,点F 在平行四边形ABCD 的边上,若△AEF 为等腰三角形,则EF 的长为_____.12.如图,长方形纸片ABCD 中,AB =6 cm,BC =8 cm 点E 是BC 边上一点,连接AE 并将△AEB 沿AE 折叠, 得到△AEB′,以C ,E ,B′为顶点的三角形是直角三角形时,BE 的长为___________cm.13.如图,在平行四边形ABCD ,AD =2AB ,F 是AD 的中点,作CE ⊥AB ,垂足E 在线段AB 上,连接EF 、CF ,则下列结论:①∠BCD =2∠DCF ;②EF =CF ;③S △CDF =S △CEF ;④∠DFE =3∠AEF ,-定成立的是_________.(把所有正确结论的序号都填在横线上)14.在ABCD 中,5AD =,BAD ∠的平分线交CD 于点E ,∠ABC 的平分线交CD 于点F ,若线段EF=2,则AB 的长为__________.15.如图,在菱形ABCD 中,AC 交BD 于P ,E 为BC 上一点,AE 交BD 于F ,若AB=AE ,EAD 2BAE ∠∠=,则下列结论:①AF=AP ;②AE=FD ;③BE=AF .正确的是______(填序号).16.在平面直角坐标系xOy 中,点A 、B 分别在x 轴、y 轴的正半轴上运动,点M 为线段AB 的中点.点D 、E 分别在x 轴、y 轴的负半轴上运动,且DE =AB =10.以DE 为边在第三象限内作正方形DGFE ,则线段MG 长度的最大值为_____.17.定理:直角三角形斜边上的中线等于斜边的一半,即:如图1,在Rt △ABC 中,∠ACB =90°,若点D 是斜边AB 的中点,则CD =12AB ,运用:如图2,△ABC 中,∠BAC =90°,AB =2,AC =3,点D 是BC 的中点,将△ABD 沿AD 翻折得到△AED 连接BE ,CE ,DE ,则CE 的长为_____.18.如图,在△ABC 中,AB =AC ,E ,F 分别是BC ,AC 的中点,以AC 为斜边作Rt △ADC ,若∠CAD =∠BAC =45°,则下列结论:①CD ∥EF ;②EF =DF ;③DE 平分∠CDF ;④∠DEC =30°;⑤AB =2CD ;其中正确的是_____(填序号)19.如图,在四边形ABCD 中, //,5,18,AD BC AD BC E ==是BC 的中点.点P 以每秒1个单位长度的速度从点A 出发,沿AD 向点D 运动;点Q 同时以每秒3个单位长度的速度从点C 出发,沿CB 向点B 运动.点P 停止运动时,点Q 也随之停止运动,当运动时间为t 秒时,以点,,,P Q E D 为顶点的四边形是平行四边形,则t 的值等于_______.20.如图所示,已知AB = 6,点C ,D 在线段AB 上,AC =DB = 1,P 是线段CD 上的动点,分别以AP ,PB 为边在线段AB 的同侧作等边△AEP 和等边△PFB ,连接EF ,设EF 的中点为G ,当点P 从点C 运动到点D 时,则点G 移动路径的长是_________.三、解答题21.如图,在矩形ABCD 中,点E 是AD 上的一点(不与点A ,D 重合),ABE ∆沿BE 折叠,得BEF ,点A 的对称点为点F .(1)当AB AD =时,点F 会落在CE 上吗?请说明理由.(2)设()01AB m m AD=<<,且点F 恰好落在CE 上. ①求证:CF DE =.②若AEnAD=,用等式表示m n,的关系.22.如图,正方形ABCO的边OA、OC在坐标轴上,点B坐标为(6,6),将正方形ABCO绕点C逆时针旋转角度α(0°<α<90°),得到正方形CDEF,ED交线段AB于点G,ED 的延长线交线段OA于点H,连结CH、CG.(1)求证:CG平分∠DCB;(2)在正方形ABCO绕点C逆时针旋转的过程中,求线段HG、OH、BG之间的数量关系;(3)连结BD、DA、AE、EB,在旋转的过程中,四边形AEBD是否能在点G满足一定的条件下成为矩形?若能,试求出直线DE的解析式;若不能,请说明理由.23.如图,在矩形ABCD中,E是AD的中点,将ABE∆沿BE折叠,点A的对应点为点G.图1 图2(1)填空:如图1,当点G恰好在BC边上时,四边形ABGE的形状是________;(2)如图2,当点G在矩形ABCD内部时,延长BG交DC边于点F.①求证:BF AB DF=+.②若3AD=,试探索线段DF与FC的数量关系.24.如图,在矩形ABCD中,∠BAD的平分线交BC于点E,AE=AD,作DF⊥AE于点F.(1)求证:AB=AF;(2)连BF并延长交DE于G.①EG=DG;②若EG=1,求矩形ABCD的面积.25.如图①,已知正方形ABCD 中,E ,F 分别是边AD ,CD 上的点(点E ,F 不与端点重合),且AE=DF ,BE ,AF 交于点P ,过点C 作CH ⊥BE 交BE 于点H .(1)求证:AF ∥CH ;(2)若AB=23 ,AE=2,试求线段PH 的长;(3)如图②,连结CP 并延长交AD 于点Q ,若点H 是BP 的中点,试求 CP PQ的值. 26.已知在平行四边形ABCD 中,AB BC ≠,将ABC 沿直线AC 翻折,点B 落在点尽处,AD 与CE 相交于点O ,联结DE . (1)如图1,求证://AC DE ;(2)如图2,如果90B ∠=︒,3AB =,6=BC ,求OAC 的面积;(3)如果30B ∠=︒,23AB =,当AED 是直角三角形时,求BC 的长.27.类比等腰三角形的定义,我们定义:有三条边相等的凸四边形叫做“准等边四边形”.(1)已知:如图1,在“准等边四边形”ABCD 中,BC ≠AB ,BD ⊥CD ,AB =3,BD =4,求BC 的长;(2)在探究性质时,小明发现一个结论:对角线互相垂直的“准等边四边形”是菱形.请你判断此结论是否正确,若正确,请说明理由;若不正确,请举出反例;(3)如图2,在△ABC 中,AB =2,∠BAC =90°.在AB 的垂直平分线上是否存在点P ,使得以A ,B ,C ,P 为顶点的四边形为“准等边四边形”. 若存在,请求出该“准等边四边形”的面积;若不存在,请说明理由.28.定义:只有一组对角是直角的四边形叫做损矩形,连结它的两个非直角顶点的线段叫做这个损矩形的直径。

人教版八年级下册 第18章《平行四边形》解答题培优专题练习(含答案解析)

人教版八年级下册 第18章《平行四边形》解答题培优专题练习(含答案解析)

人教版八年级下册第18章《平行四边形》解答题培优专题练习1.如图,已知平行四边形ABCD中,BD是它的一条对角线,过A、C两点作AE⊥BD,CF ⊥BD,垂足分别为E、F,延长AE、CF分别交CD、AB于点M、N.(1)求证:四边形CMAN是平行四边形(2)已知DE=8,FN=6,求BN的长.2.如图,在Rt△ABC中,∠BAC=90°,D是BC的中点,E是AD的中点,过点A作AF ∥BC交BE的延长线于点F.(1)求证:四边形ADCF是菱形;(2)若AC=12,AB=16,求菱形ADCF的面积.3.如图,在四边形ABCD中,AD∥BC,E为AD的中点,延长CE交BA的延长线上于点F,CE=EF.(1)如图1,求证:四边形ABCD是平行四边形;(2)如图2,若CE⊥AD,连接AC、DF,请直接写出图中和线段CD相等的所有线段.4.已知:如图,M为平行四边形ABCD边AD的中点,且MB=MC.求证:四边形ABCD 是矩形.5.如图,在四边形ABCD中,AD∥BC,AB=BC,对角线AC、BD交于点O,BD平分∠ABC,过点D作DE⊥BC,交BC的延长线于点E,连接OE.(1)求证:四边形ABCD是菱形;(2)若DC=2,AC=4,求OE的长.6.已知:如图,菱形ABCD的对角线AC与BD相交于点O,若∠CAD=∠DBC.(1)求证:四边形ABCD是正方形.(2)E是OB上一点,DH⊥CE,垂足为H,DH与OC相交于点F,求证:OE=OF.7.四边形ABCD的对角线AC和BD交于点O,AB=BC,AD=CD,分别过点C、D作CE ∥BD.DE∥AC,CE和DE交于点E.(1)如图1.求证:四边形ODEC是矩形;(2)如图2.连接OE,AD∥BC时.在不添加任何辅助线及字母的情况下.请直接写出图中所有的平行四边形.8.在▱ABCD中,E,F分别是AB,DC上的点,且AE=CF,连接DE,BF,AF.(1)求证:四边形DEBF是平行四边形;(2)若AF平分∠DAB,AE=3,DE=4,BE=5,求AF的长.9.如图,在▱ABCD中,AB=AD,DE平分∠ADC,AF⊥BC于点F交DE于G点,延长BC至H使CH=BF,连接DH.(1)证明:四边形AFHD是矩形;(2)当AE=AF时,猜想线段AB、AG、BF的数量关系,并证明.10.如图,已知四边形ABCD为正方形,AB=4,点E为对角线AC上一动点,连接DE、过点E作EF⊥DE.交BC点F,以DE、EF为邻边作矩形DEFG,连接CG.(1)求证:矩形DEFG是正方形;(2)探究:CE+CG的值是否为定值?若是,请求出这个定值;若不是,请说明理由.11.如图,已知四边形ABCD为正方形,点E为对角线AC上的一动点,连接DE,过点E 作EF⊥DE,交BC于点F,以DE,EF为邻边作矩形DEFG,连接CG.(1)求证:矩形DEFG是正方形;(2)判断CE,CG与AB之间的数量关系,并给出证明.12.已知:如图,在四边形ABCD中,点G在边BC的延长线上,CE平分∠BCD,CF平分∠GCD,EF∥BC交CD于点O.(1)求证:OE=OF;(2)若点O为CD的中点,求证:四边形DECF是矩形.13.如图,平行四边形ABCD,E、F两点在对角线BD上,且BE=DF,连接AE,EC,CF,F A.(1)求证:四边形AECF是平行四边形.(2)若AF=EF,∠BAF=108°,∠CDF=36°,直接写出图中所有与AE相等的线段(除AE外).14.如图1,在正方形ABCD中,点P是对角线BD上的一点,点E在AD的延长线上,且P A=PE,PE交CD于点F,(1)证明:PC=PE;(2)求∠CPE的度数;(3)如图2,把正方形ABCD改为菱形ABCD,其他条件不变,当∠ABC=120°,连接CE,试探究线段AP与线段CE的数量关系,并说明理由.15.如图,在平行四边形ABCD中,∠BAD的平分线交BC于点E,交DC的延长线于F,以EC、CF为邻边作平行四边形ECFG.(1)证明平行四边形ECFG是菱形;(2)若∠ABC=120°,连结BG、CG、DG,①求证:△DGC≌△BGE;②求∠BDG的度数;(3)若∠ABC=90°,AB=8,AD=14,M是EF的中点,求DM的长.16.如图,点E是正方形ABCD对角线AC上一点,EF⊥AB,EG⊥BC,垂足分别为E,F,若正方形ABCD的周长是40cm.(1)求证:四边形BFEG是矩形;(2)求四边形EFBG的周长;(3)当AF的长为多少时,四边形BFEG是正方形?参考答案一.解答题(共16小题)1.【解答】(1)证明:∵AE⊥BD,CF⊥BD,∴AM∥CN,∵四边形ABCD是平行四边形,∴CM∥AN∴四边形CMAN是平行四边形;(2)解:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴∠ADE=∠CBF,∵AE⊥BD,CF⊥BD,∴∠AED=∠CFB=90°,在△ADE与△CBF中,∠ADE=∠CBF,∠AED=∠CFB,AD=BC,∴△ADE≌△CBF(AAS);∴DE=BF=8,∵FN=6,∴.2.【解答】(1)证明:∵E是AD的中点,∴AE=DE,∵AF∥BC,∴∠AFE=∠DBE,在△AEF和△DEB中,∵,∴△AEF≌△DEB(AAS),∴AF=DB,∴四边形ADCF是平行四边形,∵∠BAC=90°,D是BC的中点,∴AD=CD=BC,∴四边形ADCF是菱形;(2)解:设AF到CD的距离为h,∵AF∥BC,AF=BD=CD,∠BAC=90°,∴S菱形ADCF=CD•h=BC•h=S△ABC=AB•AC=×12×16=96.3.【解答】(1)证明:∵E是AD的中点,∴DE=AE,在△DEC和△AEF中,,∴△DEC≌△AEF(SAS),∴∠D=∠EDF,∴CD∥AB,又∵AD∥BC,∴四边形ABCD是平行四边形;(2)解:图中和线段CD相等的所有线段为AC、AF、DF、AB,理由如下:∵四边形ABCD是平行四边形,CE⊥AD,∴AB=CD,四边形ABCD是菱形,∴AC=AF=DF=CD,∴AC=AF=DF=CD=AB.4.【解答】证明:∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∴∠A+∠D=180°,在△ABM和△DCM中,,∴△ABM≌△DCM(SSS),∴∠A=∠D=90°,即可得出平行四边形ABCD是矩形.5.【解答】(1)证明:∵AD∥BC,∴∠ADB=∠CBD,∵BD平分∠ABC,∴∠ABD=∠CBD,∴∠ADB=∠ABD,∴AD=AB,∵AB=BC,∴AD=BC,∵AD∥BC,∴四边形ABCD是平行四边形,又∵AB=BC,∴四边形ABCD是菱形;(2)解:∵四边形ABCD是菱形,∴AC⊥BD,OB=OD,OA=OC=AC=2,在Rt△OCD中,由勾股定理得:OD==4,∴BD=2OD=8,∵DE⊥BC,∴∠DEB=90°,∵OB=OD,∴OE=BD=4.6.【解答】(1)证明:∵四边形ABCD是菱形,∴AD∥BC,∠BAD=2∠DAC,∠ABC=2∠DBC,∴∠BAD+∠ABC=180°,∵∠CAD=∠DBC,∴∠BAD=∠ABC,∴2∠BAD=180°,∴∠BAD=90°,∴四边形ABCD是正方形;(2)证明:∵四边形ABCD是正方形,∴AC⊥BD,AC=BD,CO=AC,DO=BO,∴∠COB=∠DOC=90°,CO=DO,∵DH⊥CE,垂足为H,∴∠DHE=90°,∠EDH+∠DEH=90°,∵∠ECO+∠DEH=90°,∴∠ECO=∠EDH,在△ECO和△FDO中,,∴△ECO≌△FDO(ASA),∴OE=OF.7.【解答】(1)证明:∵AB=BC,AD=CD,∴BD垂直平分AC,∴∠COD=90°,∵CE∥BD,DE∥AC,∴四边形ODEC是平行四边形,∵∠COD=90°,∴四边形ODEC是矩形;(2)解:∵AB=BC,AD=CD,∴BD垂直平分AC,∴AO=OC,∠BOC=∠AOD,∵AD∥BC,∴∠BCO=∠DAO,∴△AOD≌△COB(ASA),∴AD=BC,∴四边形ABCD是平行四边形,∵CE∥BD.DE∥AC,∴四边形ODEC是平行四边形,∴DE=CO,∴DE=AO,∴四边形AOED是平行四边形,∴AD=OE,AD∥OE,∴BC=OE,BC∥OE,∴四边形OECB是平行四边形,综上所述,四边形ABCD,四边形ODEC,四边形AOED,四边形OECB是平行四边形.8.【解答】(1)证明:∵四边形ABCD是平行四边形,∴∠A=∠C,AD=CB,在△DAE和△BCF中,∴△DAE≌△BCF(SAS),∴DE=BF,∵AB=CD,AE=CF,∴AB﹣AE=CD﹣CF,即DF=BE,∵DE=BF,BE=DF,∴四边形DEBF是平行四边形;(2)解:∵AB∥CD,∴∠DF A=∠BAF,∵AF平分∠DAB,∴∠DAF=∠BAF,∴∠DAF=∠AFD,∴AD=DF,∵四边形DEBF是平行四边形,∴DF=BE=5,BF=DE=4,∴AD=5,∵AE=3,DE=4,∴AE2+DE2=AD2,∴∠AED=90°,∵DE∥BF,∴∠ABF=∠AED=90°,∴AF===4.9.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∵CH=BF,∴FH=BC,∴AD=FH,∴四边形AFHD是平形四边形,∵AF⊥BC,∴∠AFH=90°,∴平行四边形AFHD是矩形;(2)猜想:AB=BF+AG,证明:如图,延长BF到M,使HM=AG,连接DM,∵四边形ABCD是平行四边形,∴AB∥CD,∴∠1=∠2,∵DE平分∠ADC,∴∠2=∠3,∴∠1=∠3,∴AE=AD,∵AE=AF,∴AF=AD,四边形AFHD是正方形,∴AD=DH,∠GAD=∠DHM=90°,在△DAG和△DHM中,∴△DAG≌△DHM(SAS),∴∠2=∠3=∠HDM,∠AGD=∠M,∵AF∥DH,∴∠AGD=∠HDG=∠2+∠CDH=∠MDH+∠CDH,∴∠M=∠CDM,∴CD=CM=CH+HM,∵BC=AD=FH,∴BC﹣CF=FH﹣CF,∴BF=CH,∵AB=CD,HM=AG,∴AB=BF+AG.10.【解答】解:(1)如图所示,过E作EM⊥BC于M点,过E作EN⊥CD于N点,∵正方形ABCD,∴∠BCD=90°,∠ECN=45°,∴∠EMC=∠ENC=∠BCD=90°,且NE=NC,∴四边形EMCN为正方形,∵四边形DEFG是矩形,∴EM=EN,∠DEN+∠NEF=∠MEF+∠NEF=90°,∴∠DEN=∠MEF,又∠DNE=∠FME=90°,在△DEN和△FEM中,,∴△DEN≌△FEM(ASA),∴ED=EF,∴矩形DEFG为正方形,(2)CE+CG的值为定值,理由如下:∵矩形DEFG为正方形,∴DE=DG,∠EDC+∠CDG=90°,∵四边形ABCD是正方形,∵AD=DC,∠ADE+∠EDC=90°,∴∠ADE=∠CDG,在△ADE和△CDG中,,∴△ADE≌△CDG(SAS),∴AE=CG,∴AC=AE+CE=AB=×4=8,∴CE+CG=8是定值.11.【解答】证明:(1)过E作EM⊥BC于M点,过E作EN⊥CD于N点,如图所示:∵四边形ABCD是正方形,∴∠BCD=90°,∠ECN=45°,∴∠EMC=∠ENC=∠BCD=90°,且NE=NC,∴四边形EMCN为正方形,∵四边形DEFG是矩形,∴EM=EN,∠DEN+∠NEF=∠MEF+∠NEF=90°,∴∠DEN=∠MEF,又∠DNE=∠FME=90°,在△DEN和△FEM中,∴△DEN≌△FEM(ASA),∴ED=EF,∴矩形DEFG为正方形;(2)∵矩形DEFG为正方形,∴DE=DG,∠EDC+∠CDG=90°,∵四边形ABCD是正方形,∴AD=DC,∠ADE+∠EDC=90°,∴∠ADE=∠CDG,在△ADE和△CDG中,,∴△ADE≌△CDG(SAS),∴AE=CG,∴在Rt△ABC中,,∴12.【解答】证明:(1)∵CE平分∠BCD、CF平分∠GCD,∴∠BCE=∠DCE,∠DCF=∠GCF,∵EF∥BC,∴∠BCE=∠FEC,∠EFC=∠GCF,∴∠DCE=∠FEC,∠EFC=∠DCF,∴OE=OC,OF=OC,∴OE=OF;(2)∵点O为CD的中点,∴OD=OC,又OE=OF,∴四边形DECF是平行四边形,∵CE平分∠BCD、CF平分∠GCD,∴∠DCE=∠BCD,∠DCF=∠DCG∴∠DCE+∠DCF=(∠BCD+∠DCG)=90°,即∠ECF=90°,∴四边形DECF是矩形.13.【解答】(1)证明:如图,连接AC交BD于点O,在▱ABCD中,OA=OC,OB=OD,∵BE=DF,∴OB﹣BE=OD﹣DF,即OE=OF,∴四边形AECF是平行四边形(对角线互相平分的四边形是平行四边形);(2)解:∵AB∥CD,∴∠ABF=∠CDF=36°,∵AF=EF,∴∠F AE=∠FEA=72°,∵∠AEF=∠EBA+∠EAB,∴∠EBA=∠EAB=36°,∴EA=EB,同理可证CF=DF,∵AE=CF,∴与AE相等的线段有BE、CF、DF.14.【解答】(1)证明:在正方形ABCD中,AB=BC,∠ABP=∠CBP=45°,在△ABP和△CBP中,,∴△ABP≌△CBP(SAS),∴P A=PC,∵P A=PE,∴PC=PE;(2)解:由(1)知,△ABP≌△CBP,∴∠BAP=∠BCP,∴∠DAP=∠DCP,∵P A=PE,∴∠DAP=∠E,∴∠DCP=∠E,∵∠CFP=∠EFD(对顶角相等),∴180°﹣∠PFC﹣∠PCF=180°﹣∠DFE﹣∠E,即∠CPE=∠EDF=90°(3)解:AP=CE;理由如下:在菱形ABCD中,AB=BC,∠ABP=∠CBP=60°,在△ABP和△CBP中,,∴△ABP≌△CBP(SAS),∴P A=PC,∠BAP=∠BCP,∵P A=PE,∴PC=PE,∴∠DAP=∠DCP,∵P A=PC,∴∠DAP=∠AEP,∴∠DCP=∠AEP∵∠CFP=∠EFD(对顶角相等),∴180°﹣∠PFC﹣∠PCF=180°﹣∠DFE﹣∠AEP,即∠CPF=∠EDF=180°﹣∠ADC=180°﹣120°=60°,∴△EPC是等边三角形,∴PC=CE,∴AP=CE.15.【解答】解:(1)证明:∵AF平分∠BAD,∴∠BAF=∠DAF,∵四边形ABCD是平行四边形,∴AD∥BC,AB∥CD,∴∠DAF=∠CEF,∠BAF=∠CFE,∴∠CEF=∠CFE,∴CE=CF,又∵四边形ECFG是平行四边形,∴四边形ECFG为菱形;(2)①∵四边形ABCD是平行四边形,∴AB∥DC,AB=DC,AD∥BC,∵∠ABC=120°,∴∠BCD=60°,∠BCF=120°由(1)知,四边形CEGF是菱形,∴CE=GE,∠BCG=∠BCF=60°,∴CG=GE=CE,∠DCG=120°,∵EG∥DF,∴∠BEG=120°=∠DCG,∵AE是∠BAD的平分线,∴∠DAE=∠BAE,∵AD∥BC,∴∠DAE=∠AEB,∴∠BAE=∠AEB,∴AB=BE,∴BE=CD,∴△DGC≌△BGE(SAS);②∵△DGC≌△BGE,∴BG=DG,∠BGE=∠DGC,∴∠BGD=∠CGE,∵CG=GE=CE,∴△CEG是等边三角形,∴∠CGE=60°,∴∠BGD=60°,∵BG=DG,∴△BDG是等边三角形,∴∠BDG=60°;(3)如图2中,连接BM,MC,∵∠ABC=90°,四边形ABCD是平行四边形,∴四边形ABCD是矩形,又由(1)可知四边形ECFG为菱形,∠ECF=90°,∴四边形ECFG为正方形.∵∠BAF=∠DAF,∴BE=AB=DC,∵M为EF中点,∴∠CEM=∠ECM=45°,∴∠BEM=∠DCM=135°,在△BME和△DMC中,∵,∴△BME≌△DMC(SAS),∴MB=MD,∠DMC=∠BME.∴∠BMD=∠BME+∠EMD=∠DMC+∠EMD=90°,∴△BMD是等腰直角三角形.∵AB=8,AD=14,∴BD=2,∴DM=BD=.16.【解答】解:(1)证明:∵四边形ABCD为正方形,∴AB⊥BC,∠B=90°.∵EF⊥AB,EG⊥BC,∴EF∥GB,EG∥BF.∵∠B=90°,∴四边形BFEG是矩形;(2)∵正方形ABCD的周长是40cm,∴AB=40÷4=10cm.∵四边形ABCD为正方形,∴△AEF为等腰直角三角形,∴AF=EF,∴四边形EFBG的周长C=2(EF+BF)=2(AF+BF)=20cm.(3)若要四边形BFEG是正方形,只需EF=BF,∵AF=EF,AB=10cm,∴当AF=5cm时,四边形BFEG是正方形.。

人教版八年级下册《平行四边形》 培优训练(含答案)

人教版八年级下册《平行四边形》 培优训练(含答案)

人教版 八年级下册 平行四边形 培优训练(含答案)一、选择题(本大题共6道小题)1. 以三角形的三个顶点作平行四边形,最多可以作()A .2个B .3个C .4个D .5个2. 点A 、B 、C 、D 在同一平面内,从①AB CD ∥,①AB CD =,①BC AD ∥,①BC AD =.这四个条件中任选两个,能使四边形ABCD 是平行四边形的选法有( )种A .3B .4C .5D .63. 在平行四边形ABCD 中,点1A 、2A 、3A 、4A 和1C 、2C 、3C 、4C 分别为AB 和CD 的五等分点,点1B 、2B 和1D 、2D 分别是BC 和DA 的三等分点,已知四边形4242A B C D 的面积为1,则平行四边形ABCD 面积为( )A .2B .35C .53D .154. 如图,在平行四边ABCD 中,AC 、BD 为对角线,6BC =,BC 边上的高为4,则阴影部分的面积为( ).A .3B .6C .12D .245. 如图,点E F G H M N ,,,,,分别在ABC ∆的BC AC AB ,,边上,且NH MG BC ME NF AC ∥∥,∥∥,GF EH AB ∥∥,有黑、白两只蚂蚁,它们同时同速从F 点出发,黑蚂蚁沿路线F N H E M G F →→→→→→爬行,白蚂蚁沿路线F B A C F →→→→爬行,那么( ) A . 黑蚂蚁先回到F 点 B . 白蚂蚁先回到F 点 C . 两只蚂蚁同时回到F 点D . 哪只蚂蚁先回到F 点视各点的位置而定6.已知四边形的四条边长分别是a b c d ,,,,其中a b ,为对边,并且满足222222a b c d ab cd +++=+则这个四边形是( )A .任意四边形B .平行四边形C .对角线相等的四边形D .对角线垂直的四边形二、填空题(本大题共6道小题)(1)DBN MH GFECBA7. 如图,在平行四边ABCD 中,120A ∠=︒,则D ∠= ︒.8. 如图,在平行四边ABCD 中,已知8cm AD =,6cm AB =,DE 平分ADC ∠交BC 边于点E ,则BE 等于 cm .9. 已知平行四边形ABCD 的周长为60cm ,对角线AC 、BD 相交于O 点,AOB ∆的周长比BOC ∆的周长多8cm ,则AB 的长度为 cm .10. 如图,在平行四边形ABCD 中,EF BC GH AB EF∥,∥,与GH 相交于点O ,图中共有 个平行四边形11. 如图,一个平行四边形被分成面积为1S 、2S 、3S 、4S 四个小平行四边形,当CDEABC图图1DCBAE ABCD图3DOD CBAO HGF EDC BA沿AB 自左向右在平行四边形内平行滑动时.① 14S S 与23S S 的大小关系为 .① 已知点C 与点A 、B 不重合时,图中共有 个平行四边形,12.如图,已知等边三角形的边长为10,P 是ABC ∆内一点,PD AC ∥,PE AB PF BC ∥,∥,点D E F ,,分别在AB BC AC ,,上,则PD PE PF ++=三、解答题(本大题共4道小题)13. 如图,E 、F分别是平行四边形ABCD 的AD 、BC 边上的点,且AE CF =.①求证:ABE ∆①CDF ∆;①若M N ,、分别是BE 、DF 的中点,连接MF 、EN ,试判断四边形MFNE 是怎样的四边形,并证明你的结论.S 4S 3S 2S 1(3)DCBA PFEDCBA EN M CDFBA14. 已知:如图,平行四边形ABCD 内有一点E 满足ED AD ⊥于点D ,EBC EDC ∠=∠,45ECB ∠=︒,请找出与BE 相等的一条线段,并给予证明.15. 如图,在等腰ABC ∆中,延长边AB 到点D ,延长边CA 到点E ,连接DE ,恰有AD BC CE DE ===.求证:100BAC ∠=︒.16. 如图所示,在平行四边形ABCD 中,求证222222AC BD AB BC CD DA +=+++.EDCBAFABCD EEDCB A人教版 八年级下册 18.1 平行四边形 培优训练-答案一、选择题(本大题共6道小题)1. 【答案】B2. 【答案】B3. 【答案】C4. 【答案】C5. 【答案】C【解析】可知四边形CFNH AHEM BMGF ,,均为平行四边形,可知选CDCBA6. 【答案】B二、填空题(本大题共6道小题)7. 【答案】60︒ 8. 【答案】2cm【解析】①8cm BC AD ==,6cm CE CD AB ===,①2cm BE =.9. 【答案】19【解析】如图,AOB ∆的周长为AB AO BO ++,BOC ∆的周长为BC BO CO ++ 由平行四边形的对角线互相平分可得()()8AB AO BO BC BO CO AB BC ++-++=-=①6082194AB +⨯==. 10. 【答案】9个11. 【答案】①1423S S S S =;①9 12. 【答案】10三、解答题(本大题共4道小题)13. 【答案】①由ABCD 是平行四边形可知,AB CD =,BAE DCF ∠=∠ 又AE CF =,故ABE ∆①CDF ∆①由(1)可知,AEB CFD ∠=∠,BE DF =又FN DN =,BM ME =,①ME NF = 而AD ①BC ,①有AEB CBE ∠=∠ ①CBE CFD ∠=∠,①BE ①DF ①四边形MFNE 为平行四边形14. 【答案】AB 或CD .证明:延长DE 交BC 于F ,①ED AD ⊥且AD BC ∥ ①DF BC ⊥ 又①45ECB ∠=︒①CEF ∆为等腰直角三角形 ①EF CF = 在BEF ∆和DCF ∆中EBF CDF BFE DFC EF CF ∠=∠⎧⎪∠=∠⎨⎪=⎩①BEF DCF ∆∆≌①BE DC AB ==15. 【答案】由AD DE =,知ADE ∆是等腰三角形,其底角EAD ∠必为钝角,所以等腰ABC ∆中,BAC ∠必为钝角,因此必为等腰ABC ∆的顶角,则AB 、AC 是腰,即AB AC =.过C 作AD 的平行线CF ,与过D 所作BC 的平行线交于点F ,则四边形BCFD 为平行四边形,故DB CF =,DF BC =,FDB BCF ∠=∠. 从而,EAD ACB ABC ACB FDB ACB BCF ECF ∠=∠+∠=∠+∠=∠+∠=∠. 连EF ,在ADE ∆和CEF ∆中,AD CE =,EAD ECF ∠=∠, AE CE AC AD AB DB CF =-=-==,则ADE CEF ∆∆≌,于是ED EF =.而ED BC DF ==,即知DEF ∆是等边三角形,从而60EDF ∠=︒.设BAC α∠=,则()11802ADF ABC α∠=∠=︒-, 180DAE α∠=︒-,()180218021802180ADE DAEαα∠=︒-∠=︒-︒-=-︒.由60ADF ADE EDF∠+∠=∠=︒,得()()11802180602αα︒-+-︒=︒.解得100α=︒,即100BAC∠=︒.16. 【答案】本题实质是证明()22222AC BD AB AD+=+.如图所示,过点C作CE DB∥交AB的延长线于点E,因为CE DB∥,DC BE∥,故BECD是平行四边形,从而CE DB=,BE DC=.作CH AE⊥,H是垂足,则:222AC AH CH=+()22AB BH CH=++2222AB AB BH BH CH=+⨯++,()()2222222222 DB CE EH CH BE BH CH AB BH CH AB AB ==+=-+=-+=-⨯22BH BH CH++,故()222222222222222AC BD AB CH BH AB BC AB AD+=++=+=+.1、最困难的事就是认识自己。

部编数学八年级下册考前必做30题之平行四边形小题培优提升(压轴篇,八下册人教)2023复习备考含答案

部编数学八年级下册考前必做30题之平行四边形小题培优提升(压轴篇,八下册人教)2023复习备考含答案

2022-2023学年八年级数学下学期复习备考高分秘籍【人教版】专题6.3考前必做30题之平行四边形小题培优提升(压轴篇,八下人教)本套试题主要针对期中期末考试的选择填空压轴题,所选题目典型性和代表性强,均为中等偏上和较难的题目,具有一定的综合性,适合学生的培优拔高训练.试题共30题,选择20道,每题3分,填空10道,每题4分,总分100分.涉及的考点主要有以下方面:1.平行四边形的性质:平行四边形的边与角的计算、平行四边形的对角线问题平行四边形的判定:平行四边形的判定方法的认识、判断能否构成平行四边2.形、添加条件成为平行四边形、已知三点构成平行四边形、平行四边形的性质与判定综合3.三角形的中位线:三角形中位线有关线段计算、三角形的中位线与面积一、单选题1.(2023春·江苏·八年级专题练习)如图所示,在四边形ABCD中,已知∠1=∠2,添加下列一个条件,不能判断四边形ABCD成为平行四边形的是( )A.∠D=∠B B.AB∥CD C.AD=BC D.AB=DC2.(2023春·全国·八年级专题练习)如图,平行四边形ABCD的对角线AC、BD相交于点O,OE//AB交AD于点E.若OA=2,ΔAOE的周长为10,则平行四边形ABCD的周长为()A.16B.32C.36D.403.(2023秋·山东烟台·八年级统考期末)如图,在▱ABCD中,∠DAB的平分线交CD于点E,交BC的延长线于点G,∠ABC的平分线交CD于点F,交AD的延长线于点H,AG与BH交于点O,连接BE,下列结论错误的是()A.BO=OH B.DF=CE C.DH=CG D.AB=AE4.(2023春·湖北武汉·八年级武汉外国语学校(武汉实验外国语学校)校考阶段练习)如图,P为▱ABCD内一点,且△PAB和△PAD的面积分别为5和2,则△PAC的面积为()A.3B.4C.5D.65.(2023春·江苏·八年级专题练习)如图,在▱ABCD中,BF平分∠ABC交AD于点F,CE平分∠BCD交AD于点E,若AB=6,AD=8,则EF的长度为( )A.4B.5C.6D.76.(2023春·江苏·八年级专题练习)如图,四边形ABCD中,∠A=90°,AB=12,AD=5,点M、N分别为线段BC、AB上的动点,点E、F分别为DM、MN的中点,则EF长度的可能为()A.2B.2.3C.4D.77.(2023春·江苏·八年级专题练习)如图,△ABC周长20,D,E在边BC上,BN和CM分别是∠ABC和∠ACB 的平分线,BN⊥AE,CM⊥AD,若BC=8,则MN的长为()A.1B.2C.3D.8.(2023春·湖北武汉·八年级武汉外国语学校(武汉实验外国语学校)校考阶段练习)已知,在▱ABCD中,点M、N分别是AB、CD的中点,AN、CM交DB于P、Q两点,下列结论:①DP=PQ=QB;②AP=CQ③CQ=2MQ;④S△ADP=1S▱ABCD.其中正确的结论的个数是()4A.4个B.3个C.2个D.1个9.(2023春·湖北武汉·八年级武汉外国语学校(武汉实验外国语学校)校考阶段练习)如图,E为平行四边形ABCD内一点,且EA=EB=EC,若∠D=50°,则∠AEC的度数是()A.90°B.95°C.100°D.110°10.(2023春·江苏·八年级专题练习)如图,在△ABC中,∠ACB=90°,M、N分别是AB、AC的中点,延BC.连接DM、DN、MN.若AB=6,则DN的长为()长BC至点D,使CD=12A.1B.2C.3D.411.(2022春·黑龙江哈尔滨·八年级校考阶段练习)如图,BD为平行四边形ABCD的对角线,∠DBC=45°,DE⊥BC于E,BF⊥CD于F,DE、BF相交于H,直线BF交线段AD的延长线于G,下面结论:①BD=BE;②∠A=∠BHE;③AB=BH;④∠BHD=∠BDG;其中正确的个数是( )A.1B.2C.3D.412.(2023秋·浙江宁波·八年级校考期末)如图,分别以直角三角形的三边向外作等边三角形,然后将较小的两个等边△AFG和△BDE放在最大的等边△ABC内(如图),DE与FG交于点P,连结AP,FE.欲求△GEC 的面积,只需要知道下列哪个三角形的面积即可( )A.△APG B.△ADP C.△DFP D.△FEG13.(2023春·八年级课时练习)如图,在四边形ABCD中,AB∥CD,∠B=∠D,点E为BC延长线上一点,连接AC、AE,AE交CD于点H,∠DCE的平分线交AE于点G.若AB=2AD=10,点H为CD的中点,HE=6,则AC的长为( )A.9B C.10D.14.(2023秋·山东东营·八年级统考期末)如图,平行四边形ABCD的对角线AC、BD交于点O,DE平分∠ADCAB,连接OE.下列结论:①S▱ABCD=AD⋅BC;②DB平分∠CDE;③交AB于点E,∠BCD=60°,AD=12AO=DE;④OE垂直平分BD.其中正确的个数有()A.1个B.2个C.3个D.4个15.(2023春·八年级课时练习)如图,△ABC的面积为1.第一次操作:分别延长AB,BC,CA至点A1,B1,C1,使A1B=AB,B1C=BC,C1A=CA,顺次连接A1,B1,C1,得到△A1B1C1.第二次操作:分别延长A1B1,B1C1,C1A1至点A2,B2,C2;使A2B1=A1B1,B2C1=B1C1,C2A1=C1A1,顺次连接A2,B2,C2,得到△A2B2C2,…按此规律,要使得到的三角形的面积超过2021,最少经过()次操作.A.2B.3C.4D.516.(2023春·全国·八年级专题练习)如图,在平行四边形ABCD中,∠BCD=30°,BC=4,CD=M 是AD边的中点,点N是AB边上的一个动点.将△AMN沿MN所在的直线翻折到△A′MN,连接A′C.则线段A′C长度的最小值为()A.5B.7C.D.17.(2023春·八年级单元测试)如图所示,在△ABC中,已知点D,E,F,G分别为边BC,AD,CE,BE的中点,且S△ABC=8cm2,则S阴影=()A.2cm2B.1cm2C.0.5cm2D.0.25cm218.(2023春·八年级课时练习)如图,在▱ABCD中,∠BCD=60°,DC=6,点E、F分别在AD,BC上,将,则B′F的值为()四边形ABFE沿EF折叠得四边形A′B′FE,A′E恰好垂直于AD,若AE=52DA.3B.C.−1219.(2023春·八年级课时练习)如图,四边形ABCD中.AC⊥BC,AD∥BC,BD为∠ABC的平分线,BC=3,AC=4,E,F分别是BD,AC的中点,则EF的长为( )A.1B.1.5C.2D.2.520.(2022春·江西赣州·八年级校考阶段练习)如图,Rt△ABC中,BC=∠ACB=90°,∠A=30°,D1是斜边AB的中点,过D1作D1E1⊥AC于E1,连接B E1交C D1于D2;过D2作D2E2⊥AC于E2,连接B E2交C D1于D3;过D3作D3E3⊥AC于E3,…,如此继续,可以依次得到点E4、E5、…、E2013,分别记△BC E1、△BC E2、△BC E3、…、△BC E2013的面积为S1、S2、S3、…、S2013.则S2013的大小为()A B C D.4671二、填空题21.(2023春·湖北武汉·八年级武汉外国语学校(武汉实验外国语学校)校考阶段练习)如图,▱ABCD,∠C 的平分线交AB于点E,交DA延长线于点F,且AE=3cm,EB=5cm,则▱ABCD的周长为______ .22.(2022春·浙江杭州·八年级校考期中)在▱ABCD中,BE,CF分别平分∠ABC,∠BCD,交AD于点E,F,若AD=6,EF=2,则AB的长为______.23.(2022秋·山东济宁·八年级济宁学院附属中学校考期末)如图,在四边形ABCD中,AD∥BC,AD=12 cm,BC=18cm,点P在AD边上以每秒3cm的速度从点A向点D运动,点Q在BC边上,以每秒2cm的速度从点C向点B运动.若P、Q同时出发,当直线PQ在四边形ABCD内部截出一个平行四边形时.点P运动了_____秒.24.(2022秋·山东泰安·八年级统考期末)如图,△A1B1C1中,A1B1=4,A1C1=5,B1C1=7.点A2、B2、C2分别是边B1C1、A1C1、A1B1的中点;点A3、B3、C3分别是边B2C2、A2C2、A2B2的中点;…;以此类推,则第2022个三角形的周长是________.25.(2023春·八年级单元测试)如图,平行四边形ABCD的对角线AC和BD相交于点O,EF过点O与AD、BC 相交于点E、F,若AB=5,BC=6,OF=2,那么四边形ABFE的周长是______.26.(2022春·江苏宿迁·八年级校考阶段练习)如图,矩形ABCD的边AB=4,BC=8,E是AD上一点,DE=2,F是BC上一动点,P、Q分别是EF、AE的中点,则PE+PQ的最小值为_____.27.(2022春·山西晋城·八年级统考期末)如图,点A,B,C的坐标分别是0,2,2,2,0,−1,在平面直角坐标系内有一点D,使以A,B,C,D为顶点的四边形是平行四边形,那么点D的坐标是________.28.(2021春·浙江宁波·八年级校考期中)如图,△ABC边长分别为AB=14,BC=16,AC=26.P为∠A的平分线AD上一点,且BP⊥AD,M为BC的中点,则PM的值是__________.29.(2023春·湖北武汉·八年级武汉外国语学校(武汉实验外国语学校)校考阶段练习)如图,平行四边形ABCD中,∠ABC=60°,AB=2,BC=6,P为边AD上的一动点,则PC的最小值等于______.30.(2022·全国·八年级专题练习)如图,△APB中,AB=4,∠APB=90°,在AB的同侧作正△ABD、正△APE和正△BPC,则四边形PCDE面积的最大值是______________.。

八年级初二数学 数学平行四边形的专项培优练习题(及解析

八年级初二数学 数学平行四边形的专项培优练习题(及解析
八年级初二数学 数学平行四边形的专项培优练习题(及解析
一、选择题
1.如图,在正方形ABCD中,点E、F、H分别是AB、BC、CD的中点,CE、DF交于点G,连接AG、HG.下列结论:①CE⊥DF;②AG=DG;③∠CHG=∠DAG.其中,正确的结论有()
A.0个B.1个C.2个D.3个
2.□ABCD中,∠A=60°,点E、F分别在边AD、DC上,DE=DF,且∠EBF=60°.若AE=2,FC=3,则EF的长度为( )
二、填空题
11.如图,菱形 的 边在 轴上,顶点 坐标为 ,顶点 坐标为 ,点 在 轴上,线段 轴,且点 坐标为 ,若菱形 沿 轴左右运动,连接 、 ,则运动过程中,四边形 周长的最小值是_______.
12.已知:点B是线段AC上一点,分别以AB,BC为边在AC的同侧作等边 和等边 ,点M,N分别是AD,CE的中点,连接MN.若AC=6,设BC=2,则线段MN的长是__________.
(1)求证:四边形 是菱形;
(2)若 , ,求线段 的长.
22.在数学的学习中,有很多典型的基本图形.
(1)如图①, 中, , ,直线 经过点 , 直线 , 直线 ,垂足分别为 、 .试说明 ;
(2)如图②, 中, , ,点 、 、 在同一条直线上, , , .则菱形 面积为______.
(3)如图③,分别以 的直角边 、 向外作正方形 和正方形 ,连接 , 是 的高,延长 交 于点 ,若 , ,求 的长度.
13.如图正方形ABCD中,E是BC边的中点,将△ABE沿AE对折至△AFE,延长EF交CD于G,接CF,AG.下列结论:①AE∥FC;②∠EAG45°,且BEDGEG;③ ;④AD3DG,正确是_______(填序号).

八年级下期数学培优思维训练(平行四边形)

八年级下期数学培优思维训练(平行四边形)

八年级下期数学培优思维训练三、平行四边形 (一)知识梳理: (二)方法归纳: (三)范例精讲:1.如图,△ABC 中,点D 、E 、F 分别为BC 、AD 、CE 的中点,S △ABC =4cm 2,求阴影部分的面积.2.下列平行四边形中,其图中阴影部分面积不一定等于平行四边形面积一半的是( )A. B.C.D.3.如图,在□ABCD 中,过对角线BD 上一点P ,作EF∥BC,HG∥AB,若四边形AEPH 和四边形CFPG 的面积分别为S 1和S 2,则S 1与S 2的大小关系为( ) A.S 1>S 2B. S 1=S 2C.S 1<S 2D.不能确定4.如图,一个平行四边形被分成面积为S1,S2,S3,S4的四个小平行四边形,当CD 沿AB 自左向右在平行四边形内平行滑动时,14S S 与23S S 的大小关系为( )A.1423S S S S >B.1423S S S S <C.1423S S S S =D.不能确定5.在□ABCD 中,点A 1,A 2,A 3,A 4和C 1,C 2,C 3,C 4分别AB 和CD 的五等分点,点B 1,B 2,和D 1,D 2分别是BC 和DA 的三等分点,已知四边形A 4B 2C 4D 2的面积为1,则□ABCD 面积为( )A.2B.3/5C.5/3D.156.如图,在△ABC 中,AB=AC .M 、N 分别是AB 、AC 的中点,D 、E 为BC 上的点,连接DN 、EM .若AB=13cm ,BC=10cm ,DE=5cm ,则图中阴影部分的面积是_____________.7.如图,四边形ABCD是一块某地示意图,EFG是流经这块菜地的水渠,水渠东边的地属张家承包,西边的地属李家承包,现村委会在田园规划中需将流经菜地的水渠取直,并要保持张、李两家的承包土地面积不变,请你设计一个挖渠的方案,就在给出的图形上画出设计示意图,并说明理由.8.已知等边△ABC的边长为a,P为△ABC内任意一点,且PD∥AB,PE∥BC,PF∥AC. 则,PD+PE+PF的值是一个定值吗?如果是,求出这个定值.9.如图,□ABCD的对角线AC、BD交于O,EF过点O交AD于E,交BC于F,G是OA的中点,H是OC的中点. 求证:四边形EGFH是平行四边形.10.如图,以△ABC的三条边为边向BC的同侧作等边△ABP、等边△ACQ,等边△BCR.求证:四边形PAQR是平行四边形.11.如图,DE是△ABC的中位线,F是DE的中点,CF的延长线交AB于点G. (1)探索AG与GD的数量关系,并证明你的结论.(2)求△DFG与四边形AEFG的面积比.12.如图,四边形ABCD中,对角线AC、BD相交于点O,AC=BD,M、N分别是AB、CD 的中点,MN分别交BD、AC于E、F. 求证:△OEF是等腰三角形.13.如图(1),BD、CE分别是△ABC的外角平分线,过点A作AF⊥BD,AG⊥CE,垂足分别为F、G,连接FG,延长AF、AG,与直线BC相交于M、N.(1)求证:FG=12(AB+BC+AC).(2)如图(2),BD、CE分别是△ABC的内角平分线,探索线段FG与△ABC三边的数量关系?并证明你的结论.(3)如图(3),BD为△ABC的内角平分线,CE为△ABC的外角平分线.探索线段FG 与△ABC三边的数量关系?并证明你的结论.(四)思维训练:1.如图,小红作出了边长为1的第1个正三角形△A 1B 1C 1,算出了正△A 1B 1C 1的面积,然后分别取△A 1B 1C 1三边的中点A 2、B 2、C 2,作出了第二个正三角形△A 2B 2C 2,算出第2个正△A 2B 2C 2的面积,用同样的方法作出了第3个正△A 3B 3C 3,算出第3个正△A 3B 3C 3的面积,依此方法作下去,由此可得第n 次作出的正△A n B n C n 的面积是 _________ .2.如图,四边形ABCD 中,对角线AC⊥BD,且AC=8,BD=4,各边中点分别为A 1、B 1、C 1、D 1,顺次连接得到四边形A 1B 1C 1D 1,再取各边中点A 2、B 2、C 2、D 2,得到四边形A 2B 2C 2D 2,…,依此类推,得到四边形A n B n C n D n ,则四边形A n B n C n D n 的面积为 ______ .3.如图所示,□ABCD 中,点E 在边AD 上,以BE 为折痕,将△ABE 向上翻折,点A 正好落在CD 上的点F ,若△FDE 的周长为8,△FCB 的周长为22,求CF 的长.4.已知:如图,在四边形ABCD中,AD=BC,M、N分别是AB、CD的中点,AD、BC的延长线分别交直线MN于E、F.求证:∠DEN=∠F.5.如图,已知AD为△ABC的角平分线,AB<AC,在AC上截取CE=AB,M、N分别为BC、AE的中点.求证:MN∥AD.6.如图所示.D,E分别在AB,AC上,BD=CE,BE,CD的中点分别是M,N,直线MN 分别交AB,AC于P,Q.求证:AP=AQ.7.如图:AD是△ABC的高,M、N、E分别是AB、AC、BC边上的中点.(1)求证:ME=DN;(2)若BC=AD=12,AC=13,求四边形DEMN的面积.8.如图所示,M、N分别为平行四边形ABCD边BC、CD上的点,且MN∥BD,则△AND的面积△ABM的面积有什么关系?说明理由.9.如图1,图2,△ABC是等边三角形,D、E分别是AB、BC边上的两个动点(与点A、B、C不重合),始终保持BD=CE.(1)当点D、E运动到如图1所示的位置时,求证:CD=AE.(2)把图1中的△ACE绕A点顺时针旋转60°到△ABF的位置(如图2),连接DF、EF.①找出图中所有的等边三角形(△ABC除外),并对其中一个给予证明;②试判断四边形CDFE的形状,并说明理由.10.如图1,P为Rt△ABC所在平面内任意一点(不在直线AC上),∠ACB=90°,M为AB边中点.操作:以PA、PC为邻边作平行四边形PADC,连续PM并延长到点E,使ME=PM,连接DE.探究:(1)请猜想与线段DE有关的三个结论;(2)请你利用图2,图3选择不同位置的点P按上述方法操作;(3)经历(2)之后,如果你认为你写的结论是正确的,请加以证明;如果你认为你写的结论是错误的,请用图2或图3加以说明;(注意:错误的结论,只要你用反例给予说明也得分)(4)若将“Rt△ABC”改为“任意△AB C”,其他条件不变,利用图4操作,并写出与线段DE有关的结论(直接写答案).11.在△ABC中,AB=AC,点P为△ABC所在平面内的一点,过点P分别作PE∥AC交AB于点E,PF∥AB交BC于点D,交AC于点F.(1)如图1,若点P在BC边上,∥此时PD=0,猜想并写出PD、PE、PF与AB满足的数量关系,然后证明你的猜想;(2)如图2,当点P在△ABC内,猜想并写出PD、PE、PF与AB满足的数量关系,然后证明你的猜想;(3)如图3,当点P在△ABC外,猜想并写出PD、PE、PF与AB满足的数量关系.(不用说明理由)12.平行四边形ABCD中,AB=2 cm,BC=12 cm,∠B=45°,点P在边BC上,由点B向点C运动,速度为每秒2 cm,点Q在边AD上,由点D向点A运动,速度为每秒1 cm,连接PQ,设运动时间为t秒.(1)当t为何值时,四边形ABPQ为平行四边形;(2)设四边形ABPQ的面积为y cm2,用含t的代数式表示y的值;(3)当P运动至何处时,四边形ABPQ的面积是□ABCD面积的四分之三?13.在□ABCD中,∠BAD的平分线交直线BC于点E,交直线DC于点F.(1)在图1中证明CE=CF;(2)若∠ABC=90°,G是EF的中点(如图2),直接写出∠BDG的度数;(3)若∠ABC=120°,FG∥CE,FG=CE,分别连接DB、DG(如图3),求∠BDG的度数.14.已知在□ABCD中,AE⊥BC于E,DF平分∠ADC 交线段AE于F.(1)如图1,若AE=AD,∠ADC=60°,请直接写出线段CD与AF+BE之间所满足等量关系;(2)如图2,若AE=AD,你在(1)中得到的结论是否仍然成立,若成立,对你的结论加以证明,若不成立,请说明理由;15.已知:如图,在梯形ABCD中,AD∥BC,AD=24 cm,BC=30cm,点P自点A向D以1 cm/s的速度运动,到D点即停止.点Q自点C向B以2 cm/s 的速度运动,到B点即停止,直线PQ截梯形为两个四边形.问当P,Q同时出发,几秒后其中一个四边形为平行四边形?16.如图a、b,在□ABCD中,∠BAD,∠ABC的平分线AF,BG分别与线段CD两侧的延长线(或线段CD)相交于点F,G,AF与BG相交于点E.(1)在图a中,求证:AF⊥BG,DF=CG;(2)在图b中,仍有(1)中的AF⊥BG,DF=CG成立.请解答下面问题:①若AB=10,AD=6,BG=4,求FG和AF的长;②是否能给□ABCD的边和角各添加一个条件,使得点E恰好落在CD边上且△ABE为等腰三角形?若能,请写出所给条件;若不能,请说明理由.17.小刘遇到这样一个问题:如图1,在□ABCD中,AE⊥BC于点E,AF⊥CD于点F,连接EF,△AEF的三条高线交于点H,如果AC=4,EF=3,求AH的长.小刘是这样思考的:要想解决这个问题,应想办法将题目中的已知线段与所求线段尽可能集中到同一个三角形中.他先后尝试了翻折、旋转、平移的方法,发现可以通过将△AEH平移至△GCF的位置(如图2),可以解决这个问题.请你参考小刘同学的思路回答:(1)图2中AH的长等于_________.(2)如果AC=a,EF=b,则AH的长等于_________.18.如图1,已知在△ABC中,AB=AC,点P为底边BC上(端点B、C除外)的任意一点,且PE∥AC,PF∥AB.(1)试问线段PE、PF、AB之间有什么数量关系,并说明理由;(2)如图2,将“点P为底边BC上任意一点”改为“点P为底边BC延长线上任意一点”,其它条件不变,上述结论还成立吗?如果不成立,你能得出什么结论?请说明你的理由..。

人教版-八年级数学下册-第18章-平行四边形培优练习(含答案)

人教版-八年级数学下册-第18章-平行四边形培优练习(含答案)

人教版八年级数学下册第18章平行四边形培优练习(含答案)一、单选题(共有9道小题)1.在数学活动课上,老师和同学们判断一个四边形门框是否为矩形,下面是某合作学习小组的4位同学拟定的方案,其中正确的是().A.测量对角线是否相互平分B.测量两组对边是否分别相等C.测量一组对角是否都为直角D.测量其中三角形是否都为直角2.如图,已知四边形ABCD是平行四边形,下列结论中不正确的是()…A.当AB=BC时,它是菱形B.当AC⊥BD时,它是菱形C.当∠ABC=90°时,它是矩形D.当AC=BD时,它是正方形3.如图,矩形ABCD的两条对角线相交于点O,∠AOB=60°,AD=2,则AC的长是()《A.2 B.4 C..4.下列说法正确的是()A.有一组对角是直角的四边形一定是矩形B.有一组邻角是直角的四边形一定是矩形C.对角线互相平分的四边形是矩形,D.对角互补的平行四边形是矩形5.下列命题是假命题的是()A.四个角相等的四边形是矩形 B.对角线相等的平行四边形是矩形C.对角线垂直的四边形是菱形 D.对角线垂直的平行四边形是菱形6.在Rt△ABC中,∠ACB=90°,AC=BC,CD是斜边AB的中线,若AB=,则点D到BC的距离为()D.27.下列命题是真命题的有()①对顶角相等;%ODBA②两直线平行,内错角相等;③两个锐角对应相等的两个直角三角形全等; ④有三个角是直角的四边形是矩形;⑤平分弦的直径垂直于弦,并且平分弦所对的弧。

A .1个 B .2个 C .3个 D .4个8.如图,已知点P 是矩形ABCD 内一点(不含边界),设1=PADθ∠,2=PBA θ∠,3=PCB θ∠,4=PDC θ∠,若∠APB =80°,∠CPD =50°,则( )A .1423()()30+-+=θθθθ︒B .2413()()40+-+=θθθθ︒>C .1234()()70+-+=θθθθ︒D .1234()()180+++=θθθθ︒9.如图,四边形ABCD 是矩形,AB=6cm ,BC=8cm ,把矩形沿直线BD 折叠,点C 落在点E 处,BE 与AD 相交于点F ,连接AE.下列结论中结论正确的个数有 ( ) ①△FBD 是等腰三角形; ②四边形ABDE 是等腰梯形; ③图中有6对全等三角形; ④四边形BCDF 的周长为532; ⑤AE 的长为145cm.|A .2个B .3个个D .5个二、填空题(共有8道小题)10.如图,□ABCD 的对角线相交于点O ,请你添加一个条件 (只添一个即可),使□ABCD 是矩形.11.如图,在矩形ABCD 中,AB <BC ,AC,BD 相交于点O ,则图中等腰三角形的个数是__。

【3套试卷】人教版数学八年级下册 第18章 平行四边形 培优单元卷

【3套试卷】人教版数学八年级下册 第18章 平行四边形 培优单元卷

人教版数学八年级下册第18章平行四边形培优单元卷一.选择题(共10小题)1.下列命题正确的是()A.平行四边形的对角线一定相等B.三角形任意一条边上的高线、中线和角平分线三线合一C.三角形的中位线平行于第三边并且等于它的一半D.三角形的两边之和小于第三边2.已知?ABCD的周长是22,△ABC的周长是17,则AC的长为()A.5 B.6 C.7 D.83.在四边形ABCD中,对角线AC与BD交于点O,下列各组条件,其中不能判定四边形ABCD 是平行四边形的是()A.OA=OC,OB=OD B.OA=OC,AB∥CDC.AB=CD,OA=OC D.∠ADB=∠CBD,∠BAD=∠BCD4.如图,在平行四边形ABCD中,对角线AC、BD相交成的锐角α=30°,若AC=8,BD=6,则平行四边形ABCD的面积是()A.6 B.8 C.10 D.125.用两块完全相同的直角三角形拼下列图形:①等腰三角形;②等边三角形;③平行四边形;④菱形;⑤矩形;⑥正方形.一定能拼成的图形是( )A.①②⑤B.①③⑤C.③⑤⑥D.①③④6.若菱形的两条对角线分别长8、6,则菱形的面积为()A.48 B.24 C.14 D.127.在直角坐标系中,正方形ABCD一条对角线的端点坐标分别为(2,3),(0,-1),则另一条对角线的端点坐标为()A.(3,0),(-1,2) B.(1,1),(-1,2)C.(1,1),(3,0) D.(2,0),(0,2)8.如图,矩形ABCD的周长是28,点O是线段AC的中点,点P是AD的中点,△AOD的周长与△COD的周长差是2(且AD>CD),则△AOP的周长为()A.12 B.14 C.16 D.189.下列说法中正确的是()A.两条对角线互相垂直的四边形是菱形B.两条对角线互相平分的四边形是平行四边形C.两条对角线相等的四边形是矩形D.两条对角线互相垂直且相等的四边形是正方形10.如图,把矩形ABCD沿EF翻折,点B恰好落在AD边的B′处,若AE=2,DE=6,∠EFB=60°,则矩形ABCD的面积是( )A.12 B.24 C.D.二.填空题(共6小题)11.如图,在?ABCD中,E为AD边上一点,且AE=AB,若∠BED=160°,则∠D的度数为.12.如图,在平行四边形ABCD中,E是BC边上的一点,且AB=AE,若AE平分∠DAB,∠EAC=27°,则∠ACD= .13.如图,在平行四边形ABCD中,AE⊥BC于点E,AF⊥CD于点F,若AE=4,AF=6,AD+CD=20,则平行四边形ABCD的面积为.14.如图,正方形ABCD的对角线AC,BD相交于点O,将BD向两个方向延长,分别至点E 和点F,且使BE=DF.若AC=4,BE=1,则四边形AECF的周长为.15.菱形ABCD在直角坐标系中的位置如图所示,其中点A的坐标为(1,0),点B的坐标为(0,3),动点P从点A出发,沿A→B→C→D→A→B→…的路径,在菱形的边上以每秒1个单位长度的速度移动,移动到第2019秒时,点P的坐标为.16.如图,矩形ABCD的周长为36,点O为对角线BD的中点,点E是线段BA延长线上的一点,且满足AE=5,3AB连接OA,OE,若∠AOD=120°,则线段OE的长为.三.解答题(共7小题)17.已知:如图,平行四边形ABCD中,AC,BD交于点O,AE⊥BD于点E,CF⊥BD于点F.求证:OE=OF.18.如图,分别延长?ABCD的边AB、CD至点E、点F,连接CE、AF,其中∠E=∠F.求证:四边形AECF为平行四边形.19.如图,在四边形ABCD中,对角线AC、BD相交于点E,∠CBD=90°,BC=4,BE=ED=3,AC=10.(1)求证:四边形ABCD是平行四边形.(2)求四边形ABCD的面积.20.如图,矩形ABCD的对角线AC的中点为O,过点O作EF⊥AC,交BC边于点E,交AD边于点F,分别连接AE、CF.(1)求证:四边形AECF是菱形;(2)若AB=6,BC=8,请直接写出EF的长为.21.已知E、F分别是?ABCD的边BC、AD上的点,且BE=DF.(1)求证:△ABE≌△CDF;(2)若BC=10,∠BAC=90°,且四边形AECF是菱形,求BE的长.22.如图,点A,B,C,D依次在同一条直线上,点E,F分别在直线AD的两侧,已知BE∥CF,∠A=∠D,AE=DF.(1)求证:四边形BFCE是平行四边形.(2)若AD=10,EC=3,∠EBD=60°,当四边形BFCE是菱形时,求AB的长.23.如图1,在▱ABCD中,过对角线BD上一点P作EF∥BC,GH∥AB.图中哪两个平行四边形的面积相等?为什么?根据习题背景,写出面积相等的一对平行四边形的名称为和;(2)如图2,点P为▱ABCD内一点,过点P分别作AD、AB的平行线分别交▱ABCD的四边于点E、F、G、H.已知S▱BHPE=3,S▱PFDG=5,求S△PAC;(3)如图3,若①②③④⑤五个平行四边形拼成一个含30°内角的菱形EFGH(不重复、无缝隙).已知①②③④四个平行四边形面积的和为14,四边形ABCD的面积为11,求菱形EFGH的周长.答案:1-5 CBCDB6-10 BAABD11. 40°12. 87°13.4814.415.16.717. 证明:∵四边形ABCD是平行四边形,∴OA=OC,∵AE⊥BD于点E,CF⊥BD于点F,∴∠AEO=∠CFO=90°,在△AOE和△COF中,∴△AOE≌△COF(AAS),∴OE=OF.18. 证明:∵四边形ABCD是平行四边形∴AB=CD,AD=BC,∠ADC=∠ABC∴∠ADF=∠CBE,且∠E=∠F,AD=BC∴△ADF≌△CBE(AAS)∴AF=CE,DF=BE∴AB+BE=CD+DF∴AE=CF,且AF=CE∴四边形AECF是平行四边形19. (1)证明:∵∠DBC=90°,BE=3,BC=4,∴又∵AE=AC-CE,且AC=10∴AE=10-5=5∴AE=EC,又∵DE=EB,∴四边形ABCD是平行四边形.(2)解:S平行四边形ABCD=BC·BD=4×6=24.20. 证明:(1)∵四边形ABCD是矩形∴AD∥BC∴∠ACB=∠DAC,∵O是AC的中点,∴AO=CO,在△AOF和△COE中,∴△AOF≌△COE(ASA),∴OE=OF,且AO=CO∴四边形AECF是平行四边形又∵EF⊥AC,∴四边形AECF是菱形(2)∵四边形AECF是菱形∴AE=EC,AO=CO,EO=FO∵AB2+BE2=AE2,∴36+(8-CE)2=CE2,∴CE=∵AB=6,BC=8,∴AC==10∴AO=CO=5∵EO==∴EF=2EO=21. (1)证明:∵四边形ABCD是平行四边形,∴AB=CD,∠B=∠D,∵BE=DF,∴△ABE≌△CDF(SAS).(2)∵四边形AECF是菱形,∴EA=EC,∴∠EAC=∠ECA,∵∠BAC=90°,∴∠BAE+∠EAC=90°,∠B+∠ECA=90°,∴∠B=∠EAB,∴EA=EB,∴BE=CE=5.22. (1)证明:∵BE∥CF,∴∠EBC=∠FCB,∴∠EBA=∠FCD,∵∠A=∠D,AE=DF,∴△ABE≌△DCF(AAS),∴BE=CF,AB=CD,∴四边形BFCE是平行四边形.(2)解:∵四边形BFCE是菱形,∠EBD=60°,∴△CBE是等边三角形,∴BC=EC=3,∵AD=10,AB=DC,∴AB=(10-3)=.23.解:(1)∵▱ABCD中,EF∥BC,HG∥AB,∴S△ABD=S△BCD,S△PBE=S△PBG,S△PDH=S△PDF,∴S▱AEPH=S▱PGCF,S▱ABGH=S▱EBCF,S▱AEFD=S▱HGCD,故答案为:▱AEPH和▱PGCF或▱ABGH和▱EBCF或▱AEFD和▱HGCD;(2)易得S△ABC=S△ADC,S△PAE=S△PAG,S△PCH=S△PCF,∵S▱BHPE=3,S▱PFDG=5,∴S△PAC=S△PAG+S△PCF+S▱PFDG-S△ACD=S△PAG+S△PCF+S▱PFDG-S▱ABCD=S△PAG+S△PCF+S▱PFDG-(2S△PAG+2S△PCF+S▱BHPE+S▱PFDG)=S▱PFDG-(S▱BHPE+S▱PFDG)=1;(3)∵①②③④四个平行四边形面积的和为14,∴S△ABE+S△BCF+S△CDG+S△ADH=7,∵四边形ABCD的面积为11,∴S菱形EFGH=11+7=18,∵菱形EFGH的一个内角为30°,∴设菱形EFGH的边长为x,则高为x,∴x•x=18,解得x=6,∴菱形EFGH的周长为24.人教版八年级数学下册第十八章平行四边形单元测试题(含答案)一、选择题。

八年级初二数学数学平行四边形的专项培优练习题(含答案

八年级初二数学数学平行四边形的专项培优练习题(含答案
运用:如图②在四边形 中, , , , 是 上一点,且 , ,求 的长.
7.如图,在正方形 中,点 、 是正方形内两点, , ,为探索这个图形的特殊性质,某数学兴趣小组经历了如下过程:
(1)在图1中,连接 ,且
①求证: 与 互相平分;
②求证: ;
(2)在图2中,当 ,其它条件不变时, 是否成立?若成立,请证明:若不成立,请说明理由.
∴ ,
∵ ,
∴四边形 是平行四边形,
∵ ,
∴ 是菱形;
(2)
∵四边形 是菱形




在 中,
故答案为(2) .
【点睛】
本题主要考查了菱形的判定和性质,平行四边形的判定和性质,角平分线的定义,Байду номын сангаас股定理,熟练掌握菱形的判定与性质是解题的关键.
2.(1)见解析;(2)四边形 为平行四边形,理由见解析;(3)AC=2AB.
(1)求证:AF∥CE;
(2)当t为何值时,△ADF的面积为 cm2;
(3)连接GE、FH.当t为何值时,四边形EHFG为菱形.
4.如图,在长方形 中, .动点 分别从点 同时出发向点 运动,点 的运动速度为每秒2个单位,点 的运动速度为每秒1个单位,当点 运动到点 时,两个点都停止运动,设运动的时间为 .
【分析】
(1)根据平行四边形的性质得到OE=OF即可证得结论;
(2)利用 得到∠EAO=∠FCO,AE=CF,由此推出AE∥CF,EG=CF即可证得四边形 是平行四边形;
(3)AC=2AB,根据平行四边形的性质推出AB=AO,利用点E是OB的中点,得到AG⊥OB,即可得到四边形 是矩形.
【详解】
(1) 四边形 为平行四边形,

人教版八年级数学下册期末复习专题训练--平行四边形培优(含答案)

人教版八年级数学下册期末复习专题训练--平行四边形培优(含答案)

八年级数学下册 期末复习专题--平行四边形培优、选择题1.如图所示,E 、F 分别是正方形 ABCD 勺边CD AD 上的点,且 CE=DF AE, BF 相交于点0,下列结论①AE=BF ;②AE ± BF ;③A0=0E④S ^AO=S 四边形DE 。

中,正确的有()的周长为18,则0F 的长为(3.如图,在边长为 12的正方形 ABCD 中, E 是边CD 的中点,将△ ADE 沿 AE 对折至△ AFE 延长EF 交BC 于°如图,把边长为3的正方形ABCD 绕点A 顺时针旋转45°得到正方形 AB C D',边BC 与 D' C'交 于 点0则四边形ABOD 的周长是()A. 1个B. 2个C. 3个D. 4个2.如图,在正方形ABCD 中,对角线 AC 与BD 相交于点 0 E 为BC 上一点,CE=5 F 为DE 的中点.若厶CEFB. 4C. 2.5D. 3.5B. 4C. 3D. 2AF D3 CA. 3点G.则BG 的长为(A. 5A.七.乜B. 65.如图,E是边长为4的正方形ABCD勺对角线BD上一点,且BE=BC P为CE上任意一点,PQL BC于点Q,PRL BR于点R,贝U PQ+PR勺值是()8.如图,正方形ABCD中,点E、F分别在BC CD上, △ AEF是等边三角形,连接AC交EF于G.B. 2_ OC. 2D.6.如图,把正方形纸片ABCD沿对边中点所在的直线对折后展开,折痕为在MN再过点B折叠纸片,使点A落D. 17.如图,正方形ABCD勺面积为12,A ABE是等边三角形,点E在正方形ABCC内,在对角线AC上有一点P, 使PD+PE最小,则这个最小值为(B. 2 一C. 2 一A. 2 _A. 2A.-a下列结论:①BE=DF②/ DAF=15 :③AC垂直平分EF;④BE+DF=EF⑤S ME=2S M BE.其中正确结论有()个.A. 4B. 3C. 2D. 19.如图,正方形ABCD中, AB=6点E在边CD上,且CD=3DE将△ ADE沿AE对折至△ AFE,延长EF交边BC 于点G,连接AG CF.则下列结论:①厶ABG^A AFG ② BG=CG ③AG// CF;④ S^EGC=&AFE;⑤/ AGB+Z AED=145其中正确的个数是()A. 2B.C. 4D.10.如图,边长12的正方形ABCD中,有一个小正方形EFGH其中E、F、G分别在AB BC FD上.若BF=3,A.—B. 157 C. 5 D.11.如图,将n个边长都为2的正方形按如图所示摆放,点Al, A2,…A n分别是正方形的中心,则这n个正方形重叠部分的面积之和是()则小正方形的边长为(12.如图,已知小正方形 ABCD 勺面积为1,把它的各边延长一倍得到新正方形 ABCD ;把正方形 ABCD 边长按原法延长一倍得到正方形AB 2C 2D ;以此进行下去…,则正方形A nB n C.C n 的面积为()A.( _) n B. 5n C. 5n “ D. 5n+1二、填空题:对角线AC 的中点为0,过O 乍EF 丄AC,分别交AB DC 于 E 、F ,若AB=4, BC=2那么线A. nB. n — 1C.()n 「14,0为原点.若/ a =15° ,则点B 的坐标为 15.如图,每个小正方形的边长为1, 在厶ABC 中,点D 为AB 的中点,则线段 CD 的长为OAB (如图放置段EF 的长为 ________16. _______________________________________________ 如图,四边形OABC为矩形,点A C分别在x轴和y 轴上,连接AC,点B的坐标为(4, 3),/ CAO勺平分线与y轴相交于点D,则点D的坐标为•17. __________________________________________ 如图,正方形ABC啲两条对角线AC BD相交于点O,延长BA 至点F,使BF=AC连接DF, / DBA勺平分线交DF于点P,连接PA PQ如果AB=匚,那么PA+PO= •1 8.如图,已知△ ABC的周长为1,分别连接AB BC, CA各边的中点得△ A i BQ,再连接AB, BC, CA的中点得△ AE2C2,……,这样延续下去,最后得厶ABnG.那么△ ABG的周长等于________________ .、解答题19.如图,四边形ABCD是边长为a的正方形,点G E分别是边AB, BC的中点,/ AEF=90,且EF交正方形外角的平分线CF于点F.(1 )证明:/ BAE=/ FEC;(2)证明:△ AGE^A ECF;(3)求厶AEF的面积.20.如图,已知四边形 ABCD 勺对角线AC 与BD相交于点0,且AC=BD,M,N 分别是AB 、CD 的中点,MN分别交BD AC 于点E 、F.你能说出0E 与0F 的大小关系并加以证明吗 ?21.如图,在矩形 ABCD 中, AB=4cm BC=8cm 点P 从点D 出发向点A 运动,运动到点 A 即停止;同时点 Q从点B 出发向点C 运动,运动到点 C 即停止.点P 、Q 的速度的速度都是 Q 运动的时间为t (s ). (1 )当t 为何值时,四边形 (2) 当t 为何值时,四边形 (3) 分别求出(2)中菱形22.如图,/ ABC 玄ADC=90 , M N 分别是AC BD 的中点.求证: MNL BD.ABQP 是矩形? AQCP 是菱形? AQCP 的周长和面1cm/s ,连结 PQ AQ CP 设点 P 、23.将一矩形纸片OAB放在平面直角坐标系中,O为原点,点A在x轴上,点C在y轴上,0A=1Q OC=8如图在0(边上取一点。

人教版八年级下册数学 第十八章 平行四边形 单元培优测试题

人教版八年级下册数学 第十八章  平行四边形  单元培优测试题

人教版八年级下册数学第十八章平行四边形单元培优测试题一.选择题(本大题共10小题,每小题3分,共30分)1.如图,▱ABCD的对角线AC、BD相交于点O,下列说法错误的是()A.AD∥BC B.∠ABC=∠ADC C.OA=OC D.∠ACD=2∠ABD2.正方形具有而矩形不一定具有的性质是()A.四个角都为直角B.对角线互相平分C.对角线相等D.对角线互相垂直3.如图,在矩形ABCD纸片中,E为AD上一点,将△CDE沿CE翻折至△CFE.若点F恰好落在AB 上,AF=3,BC=9,则AE=()A.9B.32C.23D.44.已知四边形ABCD是平行四边形,下列结论中不正确的是()A.当AB=BC时,它是菱形B.当AC⊥BD时,它是菱形C.当AC=BD时,它是正方形D.当∠ABC=90°时,它是矩形5.如图,菱形ABCD的对角线AC,BD相交于点O,过点D作DH⊥BC于点H,连接OH,若OA=4,=()OH的长为3,则S菱形ABCDA.12B.24C.36D.486.如图,菱形ABCD的对角线AC.BD相交于点O,过点D作DH⊥AB于点H,连接CH,若AB=2,AC=23,则CH的长是()A.5B.3C.7D.47.如图,矩形AEFG 的顶点E、F 分别在菱形ABCD 的边AB 和对角线BD 上,连接EG、CF,若EG=5,则CF 的长为()A.4B.5C.5D.78.如图,在平面直角坐标系中,AD∥BC∥x 轴,AD=BC=7,且A(0,3),C(5,﹣1),则四边形ABCD 的面积为()A.14B.21C.28D.309.如图,正方形ABCD 和正方形DEFG 中,A,D,E 在同一条直线上,AD=2DE,M 为BC 的中点,延长FG 交AB 于点N,连接MN,CN,CF,连接FM 分别交CN,CD 于点P、Q,下列说法:①△FQG≌△MQC;②∠BCN=∠MFG;③S △CFQ :S 四边形BMPN =3:7;④FQ=2PQ,其中正确的结论有()A.4个B.3个C.2个D.1个10.如图,在正方形ABCD 中,E、F 是对角线AC 上的两个动点,P 是正方形四边上的任意一点,且AB=4,EF=2,设AE=x.当0<x<42−2,△PEF 是等腰三角形时,下列关于P 点个数的说法中,P 点最多有()A.8个B.10个C.12个D.14个二.填空题(本大题共6小题,每小题3分,共18分)11.如图,菱形ABCD中,过顶点C作CE⊥BC交对角线BD于点E,若∠A=130°,则∠BEC=°.12.如图,延长矩形ABCD的边BC至点E,使CE=BD,连接AE,如果∠ADB=38°,则∠E的值是.13.如图,在▱ABCD两对角线A,BD相交于点O,且AC+BD=36,AB=11,则△COD的周长是.14.如图,在矩形ABCD中,AB=4,AD=6,点E是边BC的中点,连接AE,若将△ABE沿AE翻折,点B落在点F处,连接FC,则CF=.15.如图,正方形ABCD的边长为6,点P为BC边上一动点,以P为直角顶点,AP为直角边作等腰Rt△APE,M为边AE的中点,当点P从点B运动到点C,则点M运动的路径长为.16.如图,在矩形ABCD中,AB=6,AD=2,E、F分别是AB和DC上的两个动点,M为BC的中点,则DE+EF+FM的最小值是;若∠EFD=45°,则DE+EF+FM的最小值为.三.解答题(本大题共9小题,共72分)17.(6分)如图,在四边形ABCD中,点E、F在BD上,且AE∥FC,AB∥CD,BE=DF.(1)求证:四边形ABCD是平行四边形;(2)若BH⊥CD,∠DBC=90°,BC=3,CD=5,则BH=.18.(6分)已知:如图,在▱ABCD中,E、F是对角线AC上的两点,且AE=CF.求证:四边形BFDE 是平行四边形.19.(6分)如图,在矩形ABCD中,过对角线BD的中点O作BD的垂线EF,分别交AD,BC于点E,F.(1)四边形BFDE是什么特殊四边形?请说明理由;(2)若AB=6,AD=8,连接BE,DF,求四边形BFDE的周长.20.(6分)如图,点O是△ABC内一点,连接OB、OC,并将AB、OB、OC、AC的中点D、E、F、G依次连接,得到四边形DEFG.(1)求证:四边形DEFG是平行四边形;(2)若M为EF的中点,OM=3,∠OBC和∠OCB互余,求DG的长度.21.(8分)如图,矩形ABCD的对角线相交于点O,DE∥AC,CE∥BD,连接BE.(1)求证:四边形OCED是菱形;(2)若∠AOB=60°,AB=2,求BE的长.22.(10分)如图,四边形ABCD中,AD∥BC,∠B=90°,AB=8,BC=20,AD=18,点Q为BC中点,动点P在线段AD边上以每秒2个单位的速度由点A向点D运动,设动点P的运动时间为t秒.(1)当t为何值时,四边形PBQD是平行四边形,请说明理由?(2)在AD边上是否存在一点R,使得B、Q、R、P四点为顶点的四边形是菱形?若存在,请直接写出t的值;若不存在,请说明理由.(3)在线段PD上有一点M,且PM=10,当点P从点A向右运动秒时,四边形BCMP的周长最小,其最小值为.23.(10分)如图1,以▱ABCD的邻边AB和BC为边向外作正方形ABFE和正方形BCHG,连接BD、FG,线段BD和FG之间存在怎样的数量关系和位置关系?(1)先将问题特殊化,如图2,当∠ADC=90°时,直接写出BD和FG之间的数量关系和位置关系.(2)再探究一般情况,当∠ADC≠90°时,证明(1)中的结论依然成立.(3)在(2)的条件下,连接EH,M为EH的中点,连接MF,试给出FM和BD的数量关系并证明.24.(10分)如图,点B(m,n)为平面直角坐标系内一点,且m,n满足n=m−6+6−m+6,过点B分别作BA⊥y轴于点A,BC⊥x轴于点C.(1)求证:四边形ABCO是正方形;(2)点E(0,b)为y轴上一点,点F(a,0)为x轴上一点.①如图1,若a=2,b=4,点G为线段BE上一点,且∠EGF=45°,求线段FG的长;②如图2,若a+b=6,直线AF与BE交于点H,连接CH,则CH的最小值为.25.(10分)菱形ABCD中,∠ABC=60°,△BEF为等边三角形,将△BEF绕点B顺时针旋转,M为线段DF的中点,连接AM、EM.(1)如图1,E为边AB上一点(点A、E不重合),则EM、AM的位置关系是,EM、AM的数量关系是;(2)将△BEF旋转至如图2所示位置,(1)中的结论是否仍成立?若成立,请证明;若不成立,请说明理由;(3)若AB=23,EF=1,在旋转过程中,CM的最小值为,此时DF的长为.。

人教版八年级下册数学 平行四边形 培优专练

人教版八年级下册数学  平行四边形  培优专练

人教版八年级下册数学平行四边形培优专练一.选择题1. 下列条件中,不能判定四边形ABCD是平行四边形的是()A. AB=CD,AD=BCB. AB//CD,∠B=∠DC. ∠A=∠B,∠C=∠DD. AB=CD,∠BAC=∠ACD2. 下列命题中,属于真命题的是()A. 对角线互相垂直的四边形是平行四边形B. 对角线互相垂直平分的四边形是菱形C. 对角线互相垂直且相等的四边形是矩形D. 对角线互相平分且相等的四边形是正方形3. 检查一个门框是否为矩形,下列方法中正确的是()A. 测量两条对角线,是否相等B. 测量两条对角线,是否互相平分C. 测量两条对角线,是否互相垂直D. 测量门框的三个角,是否都是直角4. 如图,任意四边形ABCD中,E,F,G,H分别是AB,BC,CD,DA上的点,对于四边形EFGH的形状,某班学生在一次数学活动课中,通过动手实践,探索出如下结论,其中错误的是()A 当E,F,G,H是各边中点,且AC=BD时,四边形EFGH为菱形B. 当E,F,G,H是各边中点,且AC⊥BD时,四边形EFGH为矩形C. 当E,F,G,H不是各边中点时,四边形EFGH可以为平行四边形D. 当E,F,G,H不是各边中点时,四边形EFGH不可能为菱形5. 如图,▱ABCD的周长为24,对角线AC、BD相交于点O,点E是CD的中点,BD=10,则△DOE的周长为()A. 5B. 11C. 12D. 146.如图,四边形ABCD中.AC⊥BC,AD//BC,BD为∠ABC的平分线,BC=3,AC=4.E,F分别是BD,AC的中点,则EF的长为()A. 1B. 1.5C. 2D. 2.5二、填空题7.如图,在Rt△ABC中,∠C=90°,AC=3cm,BC=4cm,D是AB上一点,DE⊥AC于点E,DF⊥BC于点F,连接EF,则EF的最小值为________cm.8. 菱形ABCD中,∠A=60°,其周长为32,则菱形的面积为______.9. 若三角形的三条中位线分别为2cm、3cm、4cm,则原三角形的周长为______ .10.已知菱形ABCD的两条对角线长分别为6和8,M、N分别是边BC,CD的中点,P是对角线BD上一点,则PM+PN 的最小值为____________.12.如图,在菱形ABCD中,对角线AC、BD相交于点O,若AC=6,BD=8,则菱形ABCD的周长是______.三、解答题13.图①、图②都是由边长为1的小菱形构成的网格,每个小菱形的顶点称为格点.点O,M,N,A,B均在格点上,请仅用无刻度直尺在网格中完成下列画图.(1)在图①中,画出∠MON的平分线OP;(2)在图②中,画一个Rt△ABC,使点C在格点上.14. 如图,E、F是口ABCD的对角线BD上两点,BE=DF.(1)求证:四边形AECF是平行四边形;(2)连接AC交BD于O,若AE⊥EC,AC=6,求OE的长.15. 如图,矩形ABCD沿着直线BD折叠,使点C落在C’处,BC’交AD于点E,AD=8,AB=6,求AE的长.16.如图,矩形ABCD中,AB=6,BC=4,过对角线BD中点O的直线分别交AB,CD边于点E,F.(1)求证:四边形BEDF是平行四边形;(2)当四边形BEDF是菱形时,求EF的长.。

人教版数学八年级下册:第十八章 平行四边形 解答题专题练习(培优篇)

人教版数学八年级下册:第十八章 平行四边形 解答题专题练习(培优篇)

人教版数学八年级下册:第十八章平行四边形解答题专题练习(培优篇)1.如图,平行四边形ABCD中,AC,BD相交于点O,EF⊥BD于点O,EF分别交AD,BC于点E,F.且AE=EO=DE,那么平行四边形ABCD是否是矩形,为什么?2.如图,在△ABC中,AB=AC,∠BAC=120°,D为BC的中点,DE⊥AC于E.(1)求∠EDC的度数;(2)若AE=2,求CE的长.3.如图,在△ABC中,D、E、F分别是AB、BC、AC的中点,AH⊥BC,垂足为H.求证:(1)HD=EF.(2)∠DHF=∠DEF.4.如图,在Rt△ABC中,∠B=90°,AC=40cm,∠A=60°,点D从点C出发沿CA方向以4cm/秒的速度向点A匀速运动,同时点E从点A出发沿AB方向以2cm/秒的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D、E运动的时间是t秒(0<t≤10).过点D作DF⊥BC于点F,连接DE,EF.(1)四边形AEFD能够成为菱形吗?如果能,求出相应的t值;如果不能,请说明理由;(2)当t为何值时,△DEF为直角三角形?请说明理由.5.如图,已知△OAB中,OA=OB,分别延长AO、BO到点C、D.使得OC=AO,OD =BO,连接AD、DC、CB.(1)求证:四边形ABCD是矩形;(2)以OA、OB为一组邻边作▱AOBE,连接CE,若CE⊥BD,求∠AOB的度数.6.如图,已知正方形ABCD和等边△DCE,点F为CE的中点,AE与DF相交于点G,AG=2.(1)直接写出GE=;(2)求出DG的长;(3)如图,若将题中“等边△DCE”改为“DC=DE的等腰△DCE”,其他条件不变,求出BG+DG的值.7.如图,已知矩形ABCD中,点P为AD边上的一个动点,O为对角线BD的中点,PO 的延长线交BC于点E.(1)求证:OP=OE;(2)若AD=8厘米,AB=6厘米,点P从点A出发,以2cm/min的速度向D运动(不与D重合).设点P的运动时间为tmin,当t为何值时,四边形PBED是菱形.8.两组邻边分别相等的四边形我们称它为筝形.如图,在筝形ABCD中,AB=AD,BC=DC,AC与BD相交于点O.(1)下列判断正确的有(填序号).①AC、BD互相垂直;②AC、BD互相平分;③AC平分∠BAD、∠BCD;④BD平分∠ABD、∠ADC.(2)求证:△ABC≌△ADC.9.如图,在矩形ABCD中,点E在AD上,EC平分∠BED.(1)△BEC是否为等腰三角形?为什么?(2)若AB=a,∠ABE=45°,求BC的长.10.如图,长方形ABCD的顶点A,D在x轴上,OA=OD=2,AB=6.点P从原点出发,沿O﹣A﹣B﹣C﹣D﹣O的路径,以每秒2个单位的速度移动.(1)写出长方形4个顶点的坐标.(2)经过3s,指出点P的坐标.(3)经过多长时间,△POA的面积为5平方单位.(4)经过多长时间,△POA的面积最大.11.如图,△ABC中,AB=AC,点D、O分别为BC、AB的中点,连接并延长DO到点E,使AE∥BC.(1)求证:四边形AEBD是矩形;(2)当△ABC满足什么条件时,矩形AEBD是正方形?证明你的结论.12.如图,在▱ABCD中,对角线AC与BD相交于点O.(1)如图1,过点O作EF⊥AC交BC于点E,交AD于点F,连接AE、CF,求证:四边形AECF是菱形:(2)如图2,过点O作EF⊥BD交BC于点E,交AD于点F,连接DE、BF,AB ⊥BD,在不添加任何辅助线的情况下,请直接写出所有的锐角等腰三角形.13.如图,正方形ABCD的边长为6,点E是边AB上一点,点P是对角线BD上一点,且PE⊥PC.(1)求证:PC=PE;(2)若BE=2,求PB的长.14.已知正方形ABCD,点F是射线DC上一动点(不与C、D重合).连接AF并延长交直线BC于点E,交BD于H,连接CH,过点C作CG⊥HC交AE于点G.(1)若点F在边CD上,如图1①证明:∠DAH=∠DCH②猜想△GFC的形状并说明理由.(2)取DF中点M,MG.若MG=2.5,正方形边长为4,求BE的长.15.已知正方形ABCD,E、F分别为边BC、CD上的点,DE=AF.(1)求证:△ADF≌△DCE;(2)求证:AF⊥DE.参考答案1.解:平行四边形ABCD是矩形.如图所示,取DE的中点G,连接OG,∵EF⊥BD,∴Rt△DOE中,OG=DE=EG=DG,∵AE=EO=DE,∴EO=OG=EG,∴△OEG是等边三角形,∴∠AEO=∠DGO=120°,又∵AE=DG,OE=OG,∴△AOE≌△DOG,∴AO=DO,又∵四边形ABCD是平行四边形,∴AC=2AO=2DO=BD,∴平行四边形ABCD是矩形.2.解:(1)连接AD,∵AB=AC,∠BAC=120°,D为BC的中点,∴AD⊥BC,AD平分∠BAC,∠B=∠C=30°∴∠DAC=∠BAC=60°,∵DE⊥AC于E,∴∠AED=∠CED=90°,∴∠EDC=90°﹣30°=60°;(2)∵∠AED=90°,∠DAE=60°,∴∠ADE=30°,在Rt△ADE中,AE=1,∠ADE=30°,∴AD=2AE=4,在Rt△ADC中,AD=4,∠C=30°,∴AC=2AD=8,则CE=AC﹣AE=8﹣2=6.3.(1)证明:在△ABC中,AH⊥BC,∴∠AHB=90°,∵D为AB中点,∴DH=AB,∵E,F分别为BC,AC边中点,∴EF=AB,∴DH=EF;(2)∵D、E分别为AB、BC中点,∴DE∥AC,DE=AC,∵F为AC中点,∴AF=AC,∴DE=AF,∴四边形DEFA为平行四边形,∴∠DEF=∠BAC,∵DH=AB=AD,∴∠BAH=∠DHA,∵F为AC中点,∠AHC=90°,∴FH=AC=AF,∴∠HAC=∠AHF,∴∠DHA+∠AHF=∠DAH+∠FAH,即∠DHF=∠BAC,∴∠DHF=∠DEF.4.(1)证明:能.理由如下:在△DFC中,∠DFC=90°,∠C=30°,DC=4t,∴DF=2t,又∵AE=2t,∴AE=DF,∵AB⊥BC,DF⊥BC,∴AE∥DF,又∵AE=DF,∴四边形AEFD为平行四边形,当AE=AD时,四边形AEFD为菱形,即40﹣4t=2t,解得t=.∴当t=秒时,四边形AEFD为菱形.(2)①当∠DEF=90°时,由(1)知四边形AEFD为平行四边形,∴EF∥AD,∴∠ADE=∠DEF=90°,∵∠A=60°,∴∠AED=30°,∴AD=AE=t,又AD=40﹣4t,即40﹣4t=t,解得t=8;②当∠EDF=90°时,四边形EBFD为矩形,在Rt△AED中∠A=60°,则∠ADE=30°,∴AD=2AE,即40﹣4t=4t,解得t=5.③若∠EFD=90°,则E与B重合,D与A重合,此种情况不存在.综上所述,当t=8或5秒时,△DEF为直角三角形.5.(1)证明:∵OC=AO,OD=BO,∴四边形ABCD是平行四边形,∴AO=AC,BO=BD,∵AO=BO,∴AC=BD,∴四边形ABCD是矩形;(2)解:连接OE,设EC与BD交于F,∵EC⊥BD,∴∠CFD=90°,∵四边形AEBO是平行四边形,∴AE∥BO,∴∠AEC=∠CFD=90°,即△AEC是直角三角形,∵EO是Rt△AEC中AC边上的中线,∴EO=AO,∵四边形AEBO是平行四边形,∴OB=AE,∵OA=OB,∴AE=OA=OE,∴△AEO是等边三角形,∴∠OAE=60°,∵∠OAE+∠AOB=180°,∴∠AOB=120°.6.解:(1)如图1,连接AC,∵四边形ABCD是正方形,∴∠DAC=45°,∵点F为等边△DCE边CE的中点,∴DF是CE的垂直平分线,∴GE=GC,∵∠ADE=90°+60°=150°,AD=DE,∴∠DAE=∠DEA=15°,∴∠GEC=∠GCE=60°﹣15°=45°,∴GC⊥AE,∴△AGC为直角三角形,∵∠GAC=∠DAC﹣∠DAE=45°﹣15°=30°,AG=2,∴GC=GE=AG=2;故答案为:2;(2)由(1)可得AC=4,则DC=2,在等边△DCE中DF=,在等腰直角△CGE中,由斜边上中线等于斜边的一半得GF=,∴DG=﹣.(3)如图2,过D作DN⊥AE于N,过A作AM⊥AE交GD的延长线于M,∵∠ADN+∠CDN=90°,∠ADN+∠DAN=90°,∴∠DAN=∠CDN,∵AD=DC=DE,∴∠DAN=∠CDN=∠DEA,∵F是CE中点,∴∠CDF=∠EDF,∵∠NDG=∠CDN+∠CDF,∠DGN=∠DEA+∠EDF,∴∠NDG=∠DGN=45°,∴∠M=45°,∴AM=AG,∵∠DAM+∠DAN=90°,∠BAG+∠DAN=90°,∴∠DAM=∠BAG,在△MAD和△GAB中,,∴△MAD≌△GAB(SAS),∴BG=DM,∴BG+DG=DM+DG=MG=AG=×2=2.7.解:(1)∵四边形ABCD是矩形,∴AD∥BC,∴∠PDO=∠EBO,∵O为BD的中点,∴DO=BO,在△PDO和△EBO中,,∴△PDO≌△EBO(ASA),∴OP=OE;(2)由题意知:AD=8cm,AP=2tcm,∴PD=8﹣2t,由题意:PB=PD,∴PB2=PD2,即AB2+AP2=PD2,∴62+4t2=(8﹣2t)2,解得t=,∴当t=时,四边形PBED是菱形.8.(1)解:∵AB=AD,BC=DC,AC=AC,∴△ABC≌△ADC.∴∠BAO=∠DAO,∠BCO=∠DCO,即AC平分∠BAD、∠BCD.∵AC平分∠BAD、∠BCD,△ABD与△BCD均为等腰三角形,∴AC、BD互相垂直.故选①、③.(2)证明:∵AB=AD,BC=DC,AC=AC,∴△ABC≌△ADC(SSS).9.解:(1)△BEC是等腰三角形,理由如下:∵四边形ABCD是矩形,∴AD∥BC,∴∠DEC=∠BCE,∵EC平分∠DEB,∴∠DEC=∠BEC,∴∠BEC=∠ECB,∴BE=BC,即△BEC是等腰三角形.(2)∵四边形ABCD是矩形,∴∠A=90°,∵∠ABE=45°,∴∠ABE=AEB=45°,∴AB=AE=a,由勾股定理得:BE==a,即BC=BE=a.10.解:(1)由题意:A(2,0),B(2,6),C(﹣2,6),D(﹣2,0);(2)经过3s运动的路程为6,6﹣2=4,∴点P在线段AB上,P(2,4);(3)∵OA=2,△POA的面积为5平方单位.∴点P到AD的距离为5,∴t==3.5s或=6.5s,∴经过3.5s或6.5s时间,△POA的面积为5平方单位.(4)当点P在线段BC上时,△POA的面积最大,需要经过=4s,=6s,∴当4≤t≤6s时,△POA的面积最大.11.解:(1)∵AE∥BC,∴∠EAO=∠DBO、∠AEO=∠BDO,∵O是AB的中点,∴AO=BO,在△AOE和△BOD中,∵,∴△AOE≌△BOD(AAS),∴AE=BD,∴四边形AEBD是平行四边形,∵AB=AC、D是BC中点,∴AD⊥BC,即∠ADB=90°,∴四边形AEBD是矩形;(2)当∠BAC=90°时,理由:∵∠BAC=90°,AB=AC,AD是BC边的中线,∴AD=BD=CD,∵由(1)得四边形AEBD是矩形,∴矩形AEBD是正方形.12.证明:(1)∵在▱ABCD中,对角线AC与BD相交于点O,∴AO=CO,∠AFO=∠CEO,∴在△AFO和△CEO中,∴△AFO≌△CEO(AAS),∴FO=EO,∴四边形AECF为平行四边形,∵EF⊥AC,∴平行四边形AECF是菱形.(2)∵AF=BF,CE=DE,BF=BE,DF=DE,∴△ABF,△CDE,△BEF,△DEF都是等腰三角形.13.证明:(1)过点P作PF⊥AB,PG⊥BC,∴∠PFB=∠PGB=∠PGC=90°,∵四边形ABCD是正方形,∴∠A=∠ABC=90°,AB=AD=BC,∴∠ABD=∠ADB=45°,四边形FBGP是矩形,∴∠FPB=90°﹣∠ABD=90°﹣45°=45°,∴∠ABD=∠FPB,∴FP=FB,∴矩形FBGP是正方形,∴PF=PG,∠FPG=90°,∴∠FPE+∠EPG=90°,∵EP⊥PC,∴∠EPC=90°,∴∠GPC+∠EPG=90°,∴∠FPE=∠GPC,在△PFE与△PGC中,,∴△PFE≌△PGC(ASA),∴PE=PC;(2)设EF=x,∵△PFE≌△PGC,∴GC=EF=x,由BE=2得:BF=x+2,由正方形FBGP得:BG=x+2,∵BC=6,∴BG+GC=6,∴(x+2)+x=6,解得:x=2,∴PF=BF=2+2=4,△PFB中,∠PFB=90°,由勾股定理得:PB2=42+42=32,∵PB>0,∴PB=.14.(1)①证明:∵四边形ABCD是正方形,∴∠ADB=∠CDB=45°,DA=DC,在△DAH和△DCH中,,∴△DAH≌△DCH,∴∠DAH=∠DCH;②解:结论:△GFC是等腰三角形,理由:∵△DAH≌△DCH,∴∠DAF=∠DCH,∵CG⊥HC,∴∠FCG+∠DCH=90°,∴∠FCG+∠DAF=90°,∵∠DFA+∠DAF=90°,∠DFA=∠CFG,∴∠CFG=∠FCG,∴GF=GC,∴△GFC是等腰三角形.(2)①如图当点F在线段CD上时,连接DE.∵∠GFC=∠GCF,∠GEC+∠GFC=90°,∠GCF+∠GCE=90°,∴∠GCE=∠GEC,∴EG=GC=FG,∵FG=GE,FM=MD,∴DE=2MG=5,在Rt△DCE中,CE===3,∴BE=BC+CE=4+3=7.②当点F在线段DC的延长线上时,连接DE.同法可证GM是△DEC的中位线,∴DE=2GM=5,在Rt△DCE中,CE===3,∴BE=BC﹣CE=4﹣3=1.综上所述,BE的长为7或1.15.证明:(1)∵四边形ABCD为正方形,∴AD=DC,∠ADC=∠C=90°,在Rt△ADF与Rt△DCE中,∴Rt△ADF≌Rt△DCE(HL);(2)设AF与DE交于G,∵Rt△ADF≌Rt△DCE(HL),∴∠DAF=∠CDE,∴∠DGF=∠DAF+∠ADE=∠ADC=90°,∴AF⊥DE.。

(完整版)八年级平行四边形培优练习题

(完整版)八年级平行四边形培优练习题

八年级平行四边形培优练习题
1.已知:如图,四边形ABCD 是平行四边形,DE//AC ,交BC 的延长线于点E ,EF ⊥AB 于点F ,
求证:AD=CF 。

2. .如图,已知ΔABC 中,E 、F 分别是AB 、BC 中点,M 、N 是AC 的两个三等分点,EM 与FN 的延长线相交于点D,
求证:四边形ABCD 是平行四边形。

3.如图,平行四边形ABCD 中,点E 为AB 边上一点,连接DE ,点F 为DE 的中点,且CF ⊥DE ,点M 为线段CF 上一点,使DM=BE ,CM=BC .
(1)若AB=13,CF=12,求DE 的长度;
(2)求证:13DCM DMF ∠=
∠.
4.已知:在□ABCD 中,AE ⊥BC ,垂足为E ,CE =CD ,点F 为CE 的中点,点G 为CD 上的一点,连接DF ,EG ,AG ,∠1=∠2.
(1)若CF =2,AE =3,求BE 的长; A B C D E F
M F
E D C B
A 第3题
(2)求证:∠CEG=∠AGE.
7.如图:已知Y ABCD中,以长为斜边在Y ABCD内作等腰直角△ABE,且AE=AD,连接DE,过E作EF⊥DE交AB于F交DC于G,且∠AEF=15°
(1)若EF=3,求AB的长.
(2)求证:2GE+EF=AB.
8、已知:如图,在ABCD中,AC与BD相交于点O,∠ABD=2∠DBC,AE⊥BD于点E,
(1)、若∠ADB=25°,求∠BAE的度数;
(2)、求证:AB=2OE
A D
E
B
C。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级数学下册平行四边形的培优专题训练
一、基础归纳
1.性质:按边、角、对角线三方面分类记忆.
平行四边形的性质 ...⎧⎧⎪⎨
⎩⎪⎪⎧⎪
⎨⎨⎩
⎪⎪⎪⎪⎩
对边平行;边对边相等对角相等;角邻角互补对角线:对角线互相平分
另外,由“平行四边形两组对边分别相等”的性质,可推出下面的推论:夹在两条平行线间的平行线段相等.
2.判定方法:同样按边、角、对角线三方面分类记忆.
边 ⎧⎪
⎨⎪⎩
两组对边分别平行
一组对边平行且相等两组对边分别相等
角:两组对角分别相等
对角线:对角线互相平分
3.注意的问题:
平行四边形的判定定理,有的是相应性质定理的逆定理. 学习时注意它们的联系和区别,对照记忆.
4.特殊的平行四边形(矩形、菱形、正方形)
二、基本思想方法
研究平行四边形问题的基本思想方法是转化法,即把平行四边形的问题转化为三角形及平移、旋转和对称图形的问题来研究.
【典例分析】
的四边形是 平行四边形
例1.已知:如图1,在ABCD 中,AB =4cm ,AD =7cm ,∠ABC 的平分线
交AD 于点E ,交CD 的延长线于点F ,则DF = cm .
解析:由平行四边形的性质知,AD ∥BC ,得∠AEB =∠EBC , 又BF 是∠ABC 的平分线,
即∠ABE =∠EBC ,所以∠AEB =∠ABE .则AB = AE = 4cm
.所以DE = AD -AE = 7-4 =3(cm ).
又由AB ∥CD ,则∠F =∠ABE ,所以∠F =∠AEB . 因为∠AEB=∠FED ,所以∠F =∠FED ,故DF = DE = 3cm .
例2.已知:如图2,在平形四边形ABCD 中,E ,F 是对角线AC 上的两点,且AF =CE .
求证:DE =BF .
例3.已知:如图3,在△ABC 中,AB =AC ,E 是AB 的中点,D 在BC 上,延长ED 到F ,使
ED = DF = EB ,连接FC .求证:四边形AEFC 是平行四边形.
A
D
C
B
F
E
(图1)
(图2)






C
例4.已知:如图,D是△ABC的BC边上的中点,DE⊥
垂足分别是E、F,且BF=CE.
求证:(1)△ABC是等腰三角形;
(图4)(2)当∠A=90°时,试判断四边形AFDE是
怎样的四边形,证明你的判断结论.
例5.如图,以△ABC三边为边在BC同侧作三个等边△ABD、△BCE、△ACF,
(1)求证:四边形ADEF是平行四边形;
(2)当△ABC满足什么条件时,四边形ADEF是矩形.
练习题
一、选择题(每小题3分,共24分)
1.下列命题中正确的是()
A.对角线互相平分的四边形是菱形
B.对角线互相平分且相等的四边形是菱形
C.对角线互相垂直的四边形是菱形
D.对角线互相垂直平分的四边形是菱形
2.某花木场有一块等腰梯形ABCD 的空地,其各边的中点分别是E 、F 、G 、H 测量得对角线AC=10米,现想用篱笆围成四边形EFGH 场地,则需篱笆总长度是( ) A. 40米 B. 30米 C.20米 D.10米
3.在梯形ABCD 中,AD ∥BC,对角线AC ⊥BD,且AC=10,BD=6,则该梯形的面积是( )
A. 30
B. 15
C.
2
15
4.如图,已知矩形ABCD,R 、P 分别是DC 、BC 上 的点,E 、F 分别是AP 、RP 的中点,当P 在BC 上从B 向C 移动而R 不动时,那么下列结论成立 的是( )
A. 线段Ef 的长逐渐增大.
B.线段Ef 的长逐渐减少
C.线段EF 的长不改变.
D.线段EF 的长不能确定. (第4题) 5.在平行四边形、矩形、正方形、等腰梯形、直角 梯形中,不是轴对称图形的有( ) A. 1个 B.2个 C.3个 D.4个
二、填空(中考题)
1.(2002,云南)如图所示,已知平行四边形ABCD 的周长为56cm,AB=12cm,则AD 的长为()
A.14cm;
B.16cm;
C.18cm;
D.20cm
B
A D C
B
A D C
E
2.(2002,浙江)如图所示,在平行四边形ABCD中,若DB=CD,∠C=70°,AE⊥BD 于E,则∠
DAE=_______.
三、解答题
1.如图,已知直线m∥n,A、B为直线n上的两点,C、P为直线m上的两
.
(2)如果A、B、C为三个定点,点P在m上移动
那么无论P点移动到任何位置时总有
与△ABC的面积相等;
理由是: .
2.(2002.四川)如图所示,已知在四边形ABCD中,AB=CD,AD=BC,点E在BC上,点F在AD
上,AF=CE,EF与对角线BD相交于点O,试说明O是BD的中点.
B A D
F
C
E
O
3.如图,在菱形ABCD中,E为AD中点,EF⊥AC交CB的延长线于F.
求证:AB与EF互相平分。

相关文档
最新文档