最新中考数学押题预测密卷 有答案 最新题必考题必考题型
2024年山东省中考数学模拟押题预测卷及答案
2024年初中学生学业水平考试数学押题预测试卷注意事项:1.本试题分为第1卷和第Ⅱ卷两部分。
第1卷为选择题,30分;第Ⅱ卷为非选择题,90分;共120分。
考试时间为120分钟。
2.答卷前务必将试题密封线内及答题卡上面的项目填涂清楚。
所有答案都必须涂、写在答题卡相应位置,答在本试卷上一律无效。
第Ⅰ卷(选择题 30分)一、选择题:本题共10小题,每小题3分,共30分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.计算82024×(−0.125)2023的结果为( )A. −8B. 8C. −2D. −0.1252.剪纸是中国优秀的传统文化.如图剪纸图案中,是中心对称图形的是( )A. B. C. D.3.中国倡导的“一带一路”建设将促进我国与世界各国的互利合作,根据规划,“一带一路”地区覆盖总人口约为4600000000人,这个数用科学记数法表示为( )A. 46×108B. 4.6×108C. 4.6×109D. 4.6×10104.如图是一个玻璃烧杯,图2是玻璃烧杯抽象的几何体,以箭头所指的方向为主视图方向,则它的俯视图为( )A. B. C. D.5.下列计算正确的是( )A. aa2+aa4=aa6B. (−aa3)2=aa6C. 2aa+3bb=5aabbD. aa6÷aa3=aa26.如图,把一块含有45°角的直角三角板的两个顶点放在直尺的对边上.若∠1=30°,则∠2的度数是( )A. 45°B. 55°C. 65°D. 75°7.乘坐高铁现在是人们非常方便快捷的一种出行方式,甲、乙两城市之间的铁路距离约2800kkkk,乘坐高铁列车比普通快车能提前8ℎ到达,已知高铁列车的平均行驶速度是普通快车的2倍.设普通快车的平均行驶速度为xx kkkk/ℎ,根据题意所列出的方程为( )A. 2800xx=2800×2xx+8B. 2800×2xx=2800xx+8C. 28002xx−2800xx=8D. 2800xx−28002xx=88.如图,点AA,BB分别在反比例函数yy=12xx和yy=kk xx的图象上,分别过AA,BB两点向xx轴,yy轴作垂线,形成的阴影部分的面积为7,则kk的值为( )A. 6B. 7C. 5D. 89.某品牌20寸的行李箱拉杆拉开后放置如图所示,经测量该行李箱从轮子底部到箱子上沿的高度AABB与从轮子底部到拉杆顶部的高度CCCC之比是黄金比.已知CCCC=80cckk,则AABB的长度是( )A. (20√ 5−20)cckkB. (80−40√ 5)cckkC. (40√ 5−40)cckkD. (120−40√ 5)cckk10.如图,在平面直角坐标系xxxxyy中,四边形xxAABBCC的顶点xx在原点上,xxAA边在xx轴的正半轴上,AABB⊥xx轴,AABB=CCBB=2,xxAA=xxCC,∠AAxxCC=60°,将四边形xxAABBCC绕点xx逆时针旋转,每次旋转90°,则第2024次旋转结束时,点CC的坐标为( )A. (√ 3,3)B. (3,−√ 3)C. (−√ 3,1)D. (1,−√ 3)第Ⅱ卷(非选择题 90分)二、填空题:本题共6小题,每小题3分,共18分。
最新中考数学押题预测密卷 有答题卡有答案 最新题必考题必考题型
最新中考数学押题预测密卷 有答案 最新题必考题必考题型第Ⅰ卷 (选择题,共30分)一、选择题(共10小题,每小题3分,共30分) 1. 下列数中,绝对值最大的是( )A .2B .0.C .-2.D .-1. 2. 函数y =2-x 中,自变量x 的取值范围是( )A .x ≠2B .x ≥2C .x ≤2D .全体实数 3. 下列计算正确的是( )A .(﹣4)+6=-2 B.9 =±3 C .-6-9=﹣15 D .8 + 3 =8+3 4. 某班为了解学生“多读书、读好书”活动的开展情况,对该班50名学生一周阅读课外书的时间进行了统计,统计结果如下:由上表知,这50名学生一周阅读课外书时间的极差和中位数分别为( )A .4,13B .15,19C .15,3D .4,2 5. 下列运算正确的是( ) A .x 2+x 3=x 5 B .2x 2-x 2=1 C .x 2•x 3=x 6 D .x 6÷x 3=x 36. 如图,正方形OABC 与正方形ODEF 是位似图形,O 为位似中心,点A 的坐标为(1,0),则E 点的坐标为( ) A .)0,2(- B .)23,23(--C .)2,2(--D .)2,2(-- 7. 由若干个大小相同的小正方体组成的几何体的三视图如图所示, 则这个几何体只能是( )A B C D8. 为了解某校学生的身高情况,随机抽取该校男生、女生进行抽样调查。
已知抽取的样本中,男生、女生的人数相同,利用所得数据绘制如下统计图表:x根据图表提供的信息,样本中,请身高在160≤x <170之间的女学生人数为( ) A .8 B .6 C .14 D .16.9. 如图是经典手机游戏“俄罗斯方块”中的图案, 图1 中有8个矩形, 图2中有11个矩形, 图3中有15个矩形, 根据此规律, 图5中共有( )个矩形A. 19B. 25C. 26D. 3110. 在平面直角坐标系xoy 中,以原点O 为圆心的圆过点A (0,53),直线y=kx -3k +4与⊙O 交于点B 、C 两点,则弦BC 长的最小值为 A .5B .52C .53D .54第Ⅱ卷 (非选择题,共90分)二、填空题(共6小题,每小题3分,共18分)11. 因式分解:2a 2-4ab +2b 2=12. 近年来,随着交通网络的不断完善,我市近郊游持续升温.据统计,在今年“五一”期间,某风景区接待游览的人数约为20.3万人,这一数据用科学记数法表示为13. 小明是9人队伍中的一员,他们随机排成一列队伍,从1开始按顺序报数,小明报到奇数的概率是14. 因长期干旱,甲水库水量降到了正常水位的最低值a ,为灌溉需要,由乙水库向甲水库匀速供水,20h 后,甲水库打开一个排灌闸为农田匀速灌溉,又经过20h ,甲水库打开另一个排灌闸同时灌溉,再经过40h 后,乙水库停止供水,甲水库每个排灌闸的灌溉速度相同,图中的折线表示甲书库蓄水量Q (万m 3)与时间t (h )之间的函数关系,则乙水库停止供水后,经过 小时后甲书库蓄水量又降到了正常水位的最低值. 15. 如图,在直角坐标系中,点A 在y 轴正半轴上,AC ∥x 轴,点B ,C 的横坐标都是3,且BC=2,点D 在AC 上,且横坐标为1,若反比例函数y =xk(x >0)的图象经过点B ,D ,则k= 16. 如图,△ABC 内接于⊙O ,∠B=90°,AB=BC ,D 是⊙O 上与点B 关于圆心O 成中心对称的点,P 是BC 边上一点,连接AD 、DC 、AP .已知AB=8,CP=2,Q 是线段AP 上一动点,连接BQ 并延长交四边形ABCD 的一边于点R ,且满足AP=BR ,则QRBQ=.第14题图 第15题图 第16题图图1图2图3三、解答题(共9小题,共72分)17. 解方程:5113--=-x xx 18. 已知一次函数2+=kx y 的图象经过A (-3, 1), 求不等式2kx +1≥0的解集19. 如图,AB=AE ,∠1=∠2,∠C=∠D .求证:△ABC ≌△AED .20. 在直角坐标系中, △ABC 的顶点坐标是A (-1, 2), B (-3, 1), C (0, -1).将ABC △向右平移2个单位,向下平移3个单位得到△A 1B 1C 1,将 △A 1B 1C 1绕O 点旋转90度得到△A 2B 2C 2. (1)画出三角形△A 2B 2C 2. (2)直接写出C 2的坐标. (3)求B 1运动的路径长21. 某校九年级为了解学生课堂发言情况,随机抽取该年级部分学生,对他们某天在课堂上发言的次数进行了统计,其结果如下表,并绘制了如图所示的两幅不完整的统计图,已知B 、E 两组发言人数的比为5:2,请结合图中相关数据回答下列问题:(1)求出样本容量,并补全直方图;(2)该年级共有学生500人,请估计全年级在这天里发言次数不少于12次的人数;(3)已知A 组发言的学生中恰有1位女生,E 组发言的学生中有2位男生.现从A 组与E 组中分别抽一位学生写报告,请用列表法或画树状图的方法,求所抽的两位学生恰好是一男一女的概率.22. 如图,⊙O 的半径r=25,四边形ABCD 内接圆⊙O ,AC ⊥BD 于点H ,P 为CA 延长线上的一点,且∠PDA=∠ABD . (1)试判断PD 与⊙O 的位置关系,并说明理由; (2)若tan ∠ADB=43,PA=3334-AH ,求BD 的长; 23. 某书店以每本20元的价格购进一批畅销书《莫言精品集》.销售过程中发现,每月销售量y(本)与销售单价x(元)(1)每月销售量y 反比例函数和二次函数)关系中的一种.试求出y 与x 之间的函数关系式,不要求写出自变量x 的取值范围. (2)销售单价在什么范围时,书店不亏损?每本进价×销售量)24. 我们知道,三角形的三条中线一定会交于一点,这一点就叫做三角形的重心.请你利用重心的概念完成如下问题:(1)如图1,若O 是△ABC 的重心(),连结AO 并延长交BC 于D ,证明:AD AO =32(2)如图2,若O 是△ABC 的重心,若AB =5,点G 从A 出发,在AB 边上以每秒一个单位的速度向B 运动,运动时间为t 秒,连GO ,直线GO 交直线AC 与H 点(G 、H 均不与△ABC 的顶点重合). ①求OHGO(用含有t 的式子表示) ③若G 、H 分别在边AB 、AC 上,S 四边形BCHG ,S △AGH 分别表示四边形BCHG 和△AGH 的面积,直接写出AGHBCHG S S △四边形的最大值.图1 图225. 如图1,点A 为抛物线21122c y x x =-的顶点,点B 的坐标为(3,0),直线AB 交抛物线C 1于另一点D 。
2024年中考数学考前押题密卷+全解全析(山西卷)
2024年中考数学考前押题密卷(山西卷)全解全析第Ⅰ卷一、选择题(本大题共10个小题,每小题3分,共30分.在每个小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑)1.2024年5月3日17时27分,嫦娥六号探测器开启世界首次月球背面采样返回之旅,月球表面的白天平均温度零上126C ︒,记作+126C ︒,夜间平均温度零下150C ︒,应记作( ) A .+150C ︒ B .150C −︒C .+276C ︒D .276C −︒【答案】B【分析】根据正负数表示相反意义的量,平均温度零上表示正,平均温度零下表示负即可求解. 【详解】解:平均温度零上126C ︒,记作+126C ︒,夜间平均温度零下150C ︒,应记作150C −︒, 故选:B .2.博物馆作为文明交流的载体,是一个国家、一座城市宣传文明成就的重要窗口.如今,越来越多的人们走进博物馆近距离感受中国文化.下面是我省几家著名博物馆的图标,其文字上方的图案是轴对称图形的是( )A .B .C .D .【答案】B【分析】本题考查了轴对称图形,根据轴对称图形的定义即可求解,熟练掌握基础知识是解题的关键.【详解】解:是轴对称图形的是,故选B .3.下面是某同学在作业中的计算摘录:①01a =,②235 a a a ⋅=,③2124−=−,④()323963()27x y xy x y −⋅=−,⑤2222x x x +=,⑥()3223a b a b =⋅,⑦4222()()bc bc b c −÷−=,其中计算正确的是( ) A .①②③④ B .①③⑤⑦C .②③④⑥D .②④⑤⑦【答案】D【分析】根据零指数幂的运算法则判断①,根据同底数幂的乘法运算法则判断②,根据负整数指数幂的运算法则判断③,根据幂的乘方与积的乘方,单项式乘单项式的运算法则判断④,根据合并同类项的运算法则判断⑤,根据幂的乘方与积的乘方运算法则判断⑥,根据积的乘方,同底数幂的除法运算法则判断⑦.【详解】解:①()010a a =≠,原计算错误;②235 a a a ⋅=,原计算正确;③2211224−==,原计算错误; ④()3236333963()2727x y xy x y x y x y −⋅=−⋅=−,原计算正确; ⑤2222x x x +=,原计算正确; ⑥()3263a b a b =,原计算错误;⑦42222()()()bc bc bc b c −÷−=−=,原计算正确; 其中计算正确的是:②④⑤⑦.4.鲁班锁也叫八卦锁、孔明锁,是中国古代传统的土木建筑固定结合器,也是广泛流传于中国民间的智力玩具.如图1是拼装后的三通鲁班锁,如图2是拆解后的三通鲁班锁中的一块,则图2中木块的主视图是( )A .B .C .D .【答案】A【分析】本题考查判断简单几何体的三视图,根据主视图是从正面看到的图形,即可得答案,掌握主视图是从正面看到的图形,左视图是从左面看到的图形,俯视图是从上面看到的图形是解题关键. 【详解】观察可知,图2中木块的主视图如下:,故选:A .5.电动曲臂式高空作业车在高空作业时只需一个人就可操作机器连续完成升降、前进、后退、转向等动作,极大地减少了操作人员的数量和劳动强度.如图所示是一辆正在工作的电动曲臂式高空作业车,其中AB CD EF ∥∥,B C E D ∥.若60ABC ∠=︒,则DEF ∠的度数为( )A .100︒B .120︒C .140︒D .160︒【答案】B【分析】本题考查平行线的性质、邻补角的定义,延长AB 交DE 于点G ,由平行线的性质得到60A BGD BC ∠=︒∠=,根据邻补角的定义得180120BGE BGD ∠︒=︒−∠=,最后根据平行线的性质可得结论.解题的关键是掌握:两直线平行,同位角相等;两直线平行,内错角相等. 【详解】解:延长AB 交DE 于点G , ∵B C E D ∥,60ABC ∠=︒, ∴60A BGD BC ∠=︒∠=,∴60102180018BGE BGD ∠︒=︒==︒−∠︒−, ∵AB EF ∥,∴120DEF BGE ︒∠=∠=. 故选:B .6.太原地铁“一号线”正在进行修建,预计2024年年底通车试运营,标志色为梦想蓝.现有大量的残土需要运输,某车队有载重量为8吨的卡车5辆,载重量为10吨的卡车7辆.该车队需要一次运输残土不低于166吨,为了完成任务,该车队准备新购进这两种卡车共6辆.若购进载重量为8吨的卡车a 辆,则a 需要满足的不等式为( )A .8(5)10(76)166a a +++−≥B .8(5)10(76)166a a +++−≤C .810(6)166a a +−≥D .810(6)166a a +−≤【答案】A【分析】本题考查了列一元一次不等式,根据购进载重量为8吨的卡车a 辆,因为共6辆,所以载重量为10吨的卡车为()6a −辆,再结合“载重量为8吨的卡车5辆,载重量为10吨的卡车7辆,该车队需要一次运输残土不低于166吨”,进行列式,即可作答. 【详解】解:该车队需要一次运输残土不低于166吨 ∵该车队准备新购进这两种卡车共6辆. ∴载重量为10吨的卡车为()6a −辆,∵该车队需要一次运输残土不低于166吨,且载重量为8吨的卡车5辆,载重量为10吨的卡车7辆 ∴则a 需要满足的不等式为8(5)10(76)166a a +++−≥ 故选:A7.如图,甲所示的是一款酒精浓度监测仪的简化电路图,其电源电压保持不变,0R 为定值电阻,R 为酒精气体浓度传感器(气敏电阻),R 的阻值与酒精浓度的关系如图乙所示,当接通电源时,下列说法正确的是( )A .当酒精浓度增大时,R 的阻值增大B .当酒精浓度增大时,电压表的示数与电流表的示数的比值不变C .当酒精浓度增大时,电流表的示数变小D .当酒精浓度增大时,电压表的示数变小 【答案】B【分析】由图甲知定值电阻于传感电阻串联,电压表测量的是定值电阻的电压,根据图乙知,当酒精浓度增大时,传感R 的阻值减小,由欧姆定律可得电流中的变化,定值电阻两端电压的变化,再由串联电路的特点可得传感电阻两端电压的变化.本题主要考查了物理知识与反比例函数的综合应用,根据反比例函数的图象弄清传感器电阻于酒精浓度的关系是解决问题的关键.【详解】解:.A 由图乙知R 的阻值与酒精浓度是反比例函数,且图像在第一象限,R ∴的阻值随酒精浓度增大而减小,∴当酒精浓度增大时,R 的阻值减小,故本选项不符合题意;B.由图甲可知,定值电阻R 与气敏电阻串联,电压表测量定值电阻R 两端电压, ∴电压表的示数与电流表的示数的比值是定值电阻R 的值,故本选项符合题意;C.当酒精浓度增大时,R 的阻值减小,根据欧姆定律知,电路电流增大,电流表示数增大,故本选项不符合题意;D.当酒精浓度增大时,电路电流增大,电流表示数增大,据欧姆定律知,定值电阻R 两端电压增大,故本选项不符合题意. 故选:B .8.如图1,一长方体容器,放置在水平桌面上,里面盛有水,绕底面一棱进行旋转倾斜后,水面恰好触到容器口边缘.图2是此时的示意图,若6cm BC =,16cm AB =,水面BF 离桌面的高度为9.6cm ,则此时点C 离桌面的高度为( )A .10cmB .13.2cmC .14.4cmD .16cm【答案】C【分析】本题考查了矩形的性质,勾股定理,相似三角形的判定和性质,过点C 作桌面的垂线CM ,垂足为点M ,交BF 于点N ;过点B 作桌面的垂线BP ,垂足为点P ;根据题意易得9.6cm BP MN ==,通过证明CNB APB ∽,求出 3.6BN =,再根据勾股定理求出 4.8CN ==,最后根据CM CN MN =+,即可求解.【详解】解:过点C 作桌面的垂线CM ,垂足为点M ,交BF 于点N ;过点B 作桌面的垂线BP ,垂足为点P ,∵水面BF 离桌面的高度为9.6cm , ∴9.6cm BP MN ==, ∵,BF AP CM AP ⊥∥, ∴CN BF ⊥,∵90CBN ABF ABP ABF ∠+∠=∠+∠=︒, ∴CBN ABP ∠=∠, 又∵CNB APB ∠=∠, ∴CNB APB ∽, ∴BN BC BP AB =,即69.616BN =, 解得: 3.6BN =,根据勾股定理可得: 4.8CN =, ∴ 4.89.614.4cm CM CN MN =+=+=, 即此时点C 离桌面的高度为14.4cm . 故选:C .9.某项目化学习小组的同学在水中掺入酒精,充分混合后,放入冰箱冷冻室.根据实验数据作出混合液温度y (℃)随时间t (min )变化而变化的图象.下列说法不正确的是( )A .在这个变化过程中,自变量是时间,因变量是混合液的温度.B .混合液的温度随着时间的增大而下降.C .当时间为19min 时,混合液的温度为7−℃D .当1018t <<时,混合液的温度保持不变 【答案】B【分析】观察函数图象,通过函数图象中的信息对每一项判断即可解答.【详解】解:根据图象可知:在这个变化过程中,自变量是时间,因变量是混合液的温度, ∴A 项的说法正确, 故A 项不符合题意;根据图象可知:混合液的温度0~10小时之间随着时间的增大而下降,在10~18小时之间随着时间的增大混合液的温度保持不变,在18~20小时之间随着时间的增大混合液的温度减小, ∴B 项的说法不正确, 故B 项符合题意;根据图象可知:当时间为19min 时,混合液的温度为7−℃, ∴C 项的说法正确, ∴C 项不符合题意;根据图象可知:当1018t <<时,混合液的温度保持不变, ∴D 项的说法正确, 故D 项不符合题意; 故选B .10.现在很多家庭都使用折叠型餐桌来节省空间,两边翻开后成为圆形桌面如图①,餐桌两边AD 和BC 平行且相等,AB AD ⊥如图②,小华用皮尺量得 1.2m AC =,0.6m AB =,那么桌面翻成圆桌后,桌子面积会增加( )A .26m 25π⎛ ⎝B .26m 25π⎛ ⎝C .23m 25π⎛ ⎝D .26m 25π⎛ ⎝ 【答案】D【分析】将圆形补全,设圆心为O ,连接DO ,过点O 作OE AD ⊥于点E ,进而得出AD ,EO 的长以及CAD ∠,AOD ∠的度数,进而勾股定理求得AE ,根据AODAD AOD S S S=−弓形扇形,即可求解.【详解】解:将圆形补全,设圆心为O ,连接DO ,过点O 作OE AD ⊥于点E ,由题意可得出:90DAB ABC ∠=∠=︒,AC ∴是O 的直径,1.2AC =,0.6AB =,∴1sin 2AB ACB AC ∠== 30ACB ∴∠=︒,餐桌两边AB 和CD 30ACB DAC ∴∠=∠=︒,10.32EO AO ∴==,AE ∴=2AD AE ∴==, 30CAD D ∠=∠=︒, 120AOD ∴∠=︒,AODAD AOD S S S∴=−弓形扇形1200.60.610.33602π⨯⨯=−,325π=,∴桌面翻成圆桌后,桌子面积会增加625π⎛ ⎝⎭平方米. 故选:D .第Ⅱ卷二、填空题(本大题共5个小题,每小题3分,共15分)11.的计算结果为 .【答案】33【分析】本题考查了二次根式的混合运算,解题的关键是掌握二次根式的运算法则.根据二次根式的乘法分配律计算即可.【详解】解:原式=3=故答案为:312.如图是由大小相同的正方形组成,第①个图形中有5个涂有阴影的正方形,第②个图形中有9个涂有阴影的正方形,第③个图形中有13个涂有阴影的正方形,…,按此规律摆下去,第n 个图形中共有 个涂有阴影的正方形.【答案】14n +/41n +【分析】本题主要考查了图形与数字的变化规律,通过分析图案个数与涂有阴影的小正方形的个数之间的关系即可得出结论. 【详解】解:由图形可知:第一个图案有涂有阴影的小正方形的个数为:1415+⨯=, 第二个图案有涂有阴影的小正方形的个数为:1429+⨯=, 第三个图案有涂有阴影的小正方形的个数为:14313+⨯=, ∴第四个图案有涂有阴影的小正方形的个数为:14521+⨯=,第n 个图案有涂有阴影的小正方形的个数为:14n +, 故答案为:14n +.13.如图,现有4张卡片,正面书写不同类型的变化,除此之外完全相同,把这4张卡片背面朝上洗匀,从中随机抽取两张,则这两张卡片呈现的变化都是物理变化的概率是 .【答案】16【分析】本题主要考查的是用列表法或树状图法求概率,列表法可以重复不遗漏的列出所有可能的结果,适合于两步完成的事件,树状图法适合两步或两步以上完成的事件,用到的知识点为:概率等于所求情况数与总情况数之比.画树状图得出所有等可能的结果数,再从中找到符合条件的结果数,然后再用概率公式求解即可.【详解】解:把4张卡片从左向右分别记为A B C D 、、、, 画树状图如下:共有12种等可能的结果,其中两张卡片呈现的变化都是物理变化的结果有2种,即AC 、CA , ∴两张卡片呈现的变化都是物理变化的概率是21126=. 14.如图,在ABCD Y 中,60D ∠=︒.以点B 为圆心,以BA 的长为半径作弧交边BC 于点E ,连接AE .分别以点,A E 为圆心,以大于12AE 的长为半径作弧,两弧交于点P ,作射线BP 交AE 于点O ,交边AD 于点F ,则OFOE的值为 .【分析】本题考查了平行四边形的性质,角平分线的定义,尺规作图—作角平分线,等边三角形的判定和性质,正切函数的定义.证明BO AE ⊥,AO OE =,60BAO FAO ∠=∠=︒,再利用正切函数的定义求解即可.【详解】解:∵在ABCD Y 中,60D ∠=︒, ∴60ABC ∠=︒,AD BC ∥,由作图知BP 平分ABC ∠,BA BE =,∴ABE 是等边三角形,1302ABF EBF ABC ∠=∠=∠=︒, ∴BO AE ⊥,AO OE =, ∵AD BC ∥,∴30AFB EBF ∠=∠=︒, ∴30AFB ABF ∠=∠=︒, ∴AB AF =, ∵BO AE ⊥, ∴()11803030602BAO FAO ∠=∠=︒−︒−︒=︒,∴tan tan 60OF OFFAO OE AO==∠=︒=15.如图,在菱形ABCD 中,60ABC ∠=︒,4BC =+P 为线段AB 上一动点,以PC 为折痕将四边形APCD 折叠得到四边形''A PCD ,''A D 与BC 交于点Q ,当'CQD 为直角三角形时,折痕PC 的长为 .【答案】【分析】当90CQD '∠=︒时,过点P 作PM BC ⊥交于M ,可得45PCB ∠=︒,则PM CM =,再由4BC BM CM PM =++=+求出PM ,即可求PC ;当90QCD '∠=︒时,连接AC ,过点P 作PN AC ⊥交于点N ,可得45PCA ∠=︒,则PN NC =,再由4AC AN NC PN =++=+PN =求PC .【详解】解:由折叠可知,PCD DCP '∠=∠,D D '∠=∠,60ABC ∠=︒,60D D '∴∠=∠=︒,四边形ABCD 是菱形, BC CD AD ∴==,如图1,当90CQD '∠=︒时,过点P 作PM BC ⊥交于M ,30QCD '∴∠=︒,1203075DCD '∴∠=︒+︒=︒,753045PCB ∴∠=︒−︒=︒,PM CM ∴=,在Rt PBM △ 中,=60B ∠︒,BM ∴,4BC BM CM PM =++=+PM ∴=PC ∴=当90QCD '∠=︒时,如图2,当90QCD '∠=︒时,连接AC ,过点P 作PN AC ⊥交于点N ,AB BC =,60ABC ∠=︒,ABC ∴是等边三角形,4AC BC ∴==+120BCD ∠=︒,12090210DCD '∴∠=︒+︒=︒, 1056045PCA ∴∠=︒−︒=︒,PN NC ∴=,在Rt APN 中,60PAN ∠=︒,AN ∴=,4AC AN NC PN ∴=++=+PN ∴=PC ∴=综上所述:PC 的长为,故答案为:三、解答题(本大题共8个小题,共75分.解答应写出文字说明,证明过程或演算步骤)16.(10分)(1(20113−⎛⎫−−−−− ⎪⎝⎭;(2)下面是王亮同学解方程2358224x x x +=−+−的过程,请阅读并完成相应任务.任务一:①以上求解过程中,第一步的依据是______;②王亮同学的求解过程从第______步开始出现错误,整个解答过程. 从前一步到后一步的变形共出现______处错误: ③分式方程检验的目的是______.任务二:请你直接写出这个方程的正确解______. 【答案】(1)10−(2)任务一:①等式的性质;②二,3;③判定解是否是增根 任务二:32x =【分析】(1)先计算乘方与开方,并去绝对符号,再计算加减即可; (2)先去分母,将分式方程转化成整式方程求解,然后检验即可.【详解】解:(1(2113−⎛⎫−−− ⎪⎝⎭91=−10=−;(2)任务一:①方程两边同乘以24x −,得()()32528x x ++−=,依据是等式的性质; ②第二步,()()32528x x ++−=,漏乘了项,应为365108x x ++−= ∴王亮同学的求解过程从第二步开始出现错误, 第三步,左边35x x +应为8x 不是2x , 第四步,计算错误,应为2x =不是6x =,∴整个解答过程,从前一步到后一步的变形第二步、第三步、第四步共出现3处错误; ③分式方程检验的目的是判定解是否是增根. 任务二:解:方程两边同乘以24x −,得()()32528x x ++−=,365108x x ++−=., 88106x =+−,32x =, 经检验:32x =是原方程的解. ∴原方程的解是32x =. 17.(8分)五四青年节前夕,某校开展了主题为“扬五四精神·展青春风采”的教育主题活动.为了解七、八年级学生的学习情况,从七、八年级中各随机抽取10名学生进行测试,成绩(百分制)统计如下: 七年级:98 96 86 85 84 94 77 69 59 94 八年级:99 96 73 82 96 79 65 96 55 96请根据以上数据,按要求补全数据描述、数据分析,并进行结论推断.(1)数据整理:根据上面得到的两组数据,分别绘制了如图所示的频数分布直方图,请补全八年级成绩的频数分布直方图.(2)数据分析:两组数据的平均数、中位数、方差如下表所示.表格中a的值为________,b的值为________.(3)结论推断:根据以上信息,对七、八两个年级各抽取的10名学生的测试成绩作出评价.(从“平均数”“中位数”“方差”这三个统计量中选择两个统计量进行评价)【答案】(1)见解析(2)84.2,89(3)见解析【分析】本题考查了补全频数分布直方图、平均数、中位数、方差,熟练掌握以上知识点并灵活运用是解此题的关键.(1)由成绩统计可得:八年级成绩在6070之间的有1人,在7080之间的有2人,由此补全八年级频数分布直方图即可;(2)根据平均数和中位数的定义计算即可;(3)根据平均数、中位数以及方差分析即可得出答案.【详解】(1)解:由成绩统计可得:八年级成绩在6070之间的有1人,在7080之间的有2人,补全八年级频数分布直方图如答图所示:(2)解:由题意得:9896868584947769599484.210a +++++++++==,8296892b +==, 故答案为:84.2,89;(3)解:答案不唯一,合理即可,从平均数来看:七年级抽取的10名学生成绩的平均数高于八年级抽取的10名学生成绩的平均数; 从中位数来看:八年级抽取的10名学生成绩的中位数高于七年级抽取的10名学生成绩的中位数; 从方差来看:七年级抽取的10名学生成绩的方差小于八年级抽取的10名学生成绩的方差, 说明七年级抽取的10名学生成绩波动小. 18.(9分)根据素材,完成活动任务:现木材市场的这种规格的围栏材料每根长为40dm ,价格为了深度参与学校蔬菜基地的建立,项目化小组打算自己购买材料,制作搭建蔬菜基地的围栏同时为了【答案】任务一:5 3 1;任务二:8根,1根,费用450元;任务三:5【分析】根据围栏材料不同裁剪方法,分别计算出需要的竖杠或横杠;利用方法②与方法③列出方程组求解即可;利用在单位时间内可以安装m 根竖杠或()7m −根横杠,所用的时间相同,建立分式方程,求解即可.【详解】任务一:5840=÷(根)方法①:当只裁剪8dm 长的竖杠时,最多可裁剪5根.()14015838−÷=, 方法②:当先裁剪下1根15dm 长的横杠时,余下部分最多能裁剪8dm 长的竖杠3根.()140215814−⨯÷=, 方法③:当先裁剪下2根15dm 长的横杠时,余下部分最多能裁剪8dm 长的竖杠1根. 任务二:设方法②需裁剪x 根,方法③需裁剪y 根,依据题意得:210325x y x y +=⎧⎨+=⎩,解得:81x y =⎧⎨=⎩. ()5081450⨯+=(元).答:方法②和方法③各裁剪8根与1根40dm 长的围栏材料,才能刚好得到所需要的相应数量的用料,购买围栏材料的费用共需45元. 任务三:依据题意得25107m m=−,解得:5m =. 19.(7分)某数学兴趣小组测量一栋居民楼高度的活动报告如下:请你根据该兴趣小组的测量结果求出该居民楼的高度AB . 【答案】34.5m【分析】本题主要考查了解直角三角形的实际应用.延长CD 交BE 的延长线于点G ,过点C 作CH AB ⊥于点H . 则四边形BGCH 是矩形,根据斜坡EF 的坡度3:4i =,可得3m DG =,4m EG =,从而得到40m CH BG ==.在Rt ACH 中,根据锐角三角函数可得30m AH ≈,即可求解.【详解】解:延长CD 交BE 的延长线于点G ,过点C 作CH AB ⊥于点H . 则四边形BGCH 是矩形,∴BG CH =,CG BH =.∵5m DE =,坡度34DG i EG ==, ∴3m DG =,4m EG =, ∴ 4.5m BH CG CD DG ==+=.36m BE =,∴40m CH BG BE EG ==+=.在Rt ACH 中,tan AHACH CH∠=, 即tan 370.75AHCH︒=≈ ∴0.7540AH≈,则30m AH ≈, ∴30 4.534.5m AB AH BH =+=+=, ∴该居民楼的高度AB 为34.5m .20.(8分)请阅读下面材料,并完成相应的任务.用“几何代数法”解分式方程.《几何原本》中的“几何代数法”是指用几何方法研究代数问题,这种方法是数学家处理问题的重要依据.在意大利数学家斐波那契(约1170—1250)编写的《计算之书》中频繁运用了这种方法.例如,运用面积关系将分式方程转化为整式方程,从而求解分式方程.例:《计算之书》中记载了一道题,译文如下:一组人平分90枚硬币,每人分得若干,若再加上6人,平分120枚硬币,则第二次每人所得与第一次相同.求第一次分硬币的人数.设第一次分硬币的人数为x 人,则可列方程为901206x x =+.解:构造如图1所示的图形,BC x =,6CE =,矩形ABCD 的面积为90,矩形ABEF 的面积为120,则90CD x=,1206EF x =+.显然,CD EF =. 根据图形可知ABCD CEFD S BC CD BCS CE CD CE⋅==⋅矩形矩形.所以90120906x=−.(将分式方程转化成了整式方程)解得18x =.图1答:第一次分硬币的人数为18人. 任务:(1) 如图2,AB x =,2BC =,矩形ABDE 和矩形ACGH 的面积均为60,下列代数式可以表示边DF 的是___________.(多选) A .60x B .602x + C .60602x x −+ D .()1202x x +(2)如图3,AB x =,2BC =,矩形ACDE 的面积为60,矩形ABFH 的面积为20,5FI =,则可列方程为___________.(3)请仿照材料中的方法,通过构造图形,求分式方程2131x x =+−的解. 【答案】(1)C 、D (2)602052x x−=+(3)图见解析,5x =【分析】本题考查了由实际问题抽象出分式方程,找准等量关系列出表达式和分式方程是解题的关键. (1)根据题意表示出BD 、BF ,利用DF BD BF =−,即可解题; (2)根据BI BF FI −=列出分式方程即可.(3)根据分式方程构造图形,并根据图形的面积关系求解,即可解题. 【详解】(1)解:AB x =,2BC =,矩形ABDE 和矩形ACGH 的面积均为60,∴60BD x=,602BF CG x ==+,∴()606012022DF BD BF x x x x =−=−=++, 故选:C 、D ;(2)解:根据题意可列方程为:602052x x−=+, 故答案为:602052x x−=+; (3)解:构造如图所示的图形,BC x =,3CE =,1CG =, 矩形ABGH 的面积为1,矩形ABEF 的面积为2, 则23EF x =+,11GH x =−. 矩形ABGH 中,AB GH =,矩形ABEF 中,AB EF =, ∴EF GH =.根据图形可知ABEF EFHGS EF BE BES EF GE GE⋅==⋅矩形矩形.所以232113x +=−+.解得5x =. 21 .(9分)阅读理解:阅读以下内容,完成后面任务: 材料一“最短路径问题”是数学中一类具有挑战性的问题.其实,数学史上也有不少相关的故事.如下即为其中较为经典的一则:古希腊有一位久负盛名的学者,名叫海伦.他精通数学,物理,聪慧过人.有一天,一位将军向他请教一个问题:如图①,将军从A 地骑马出发,要到河边让马饮水,然后再回到B 地的马棚,为使马走的路程最短,应该让马在什么地方饮水?大数学家海伦曾用轴对称的方法巧妙地解决了这个问题.如图②,作点B 关于直线l 的对称点B ',连接AB '与直线l 交于点P ,连接PB ,则AP BP +的和最小. 理由:如图③,在直线l 上另取任一点P ',连接'AP ,BP ',B P '', ∵直线l 是点B ,B '的对称轴,点P ,P '在l 上, ∴PB =______,P B '=______,(依据1______) ∴AP PB AP PB '+=+=______.在AP B ''△中,∵AB AP P B ''''<+,(依据2______), ∴A AP PB P P B ''+<+,即AP PB +最小. 材料二的几何意义,并求它的最小值.几何意义:如图④,建立平面直角坐标系,点()0P x ,是x 轴上一点,则P 与点()01A ,P 与点()32B ,的距离,所求代数式的值可以看成线段PA 与PB 长度之和,它的最小值就是PA PB +的最小值.任务一PB =______,P B '=______,依据1____________________________________ 依据2______________________________________ 任务二利用图④ 任务三的最小值. 【答案】任务一:PB ',P B '',轴对称的性质,AB ',三角形三边关系; 【分析】由轴对称的性质和三角形三边关系解答即可:【详解】理由:如图③,在直线l 上另取任一点P ',连接'AP ,BP ',B P '', ∵直线l 是点B ,B '的对称轴,点P ,P '在l 上, ∴PB PB '=,P B P B '''=,(依据轴对称的性质) ∴AP PB AP PB AB ''+=+=.在AP B ''△中,∵AB AP P B ''''<+,(依据三角形三边关系), ∴A AP PB P P B ''+<+,即AP PB +最小;故答案为:PB ',P B ''AB ',三角形三边关系; 任务二【答案】3√2【分析】设点A 关于x 轴对称点A ',则PA PA '=.因此,求PA PB +的最小值,只需求PA PB +的最小值,而点A 、B 间的直线段距离最短,所以PA PB '+的最小值为线段AB 的长度.为此,构造直角三角形A CB ',因为3A C '=,3CB =.所以由勾股定理得AB =【详解】设点A 关于x 轴对称点A ',作BC ⊥X 轴,A 'C ⊥Y 轴,交于点C ,在Rt∆A 'BC 中,A 'B 2=A 'C 2 +BC 2 =32+32A 'B=任务三5.系中点()0P x ,与点()12A ,、点()51B ,的距离之和,再根据勾股定理描出各点,利用勾股定理即可求解.=的值可以看成平面直角坐标系中点()0P x ,与点()12A ,、点()51B ,的距离之和, 如图所示,设点A 关于x 轴的对称点为A ',则PA PA '=,∴PA PB +的最小值,只需求PA PB '+的最小值,而点A '、B 间的直线距离最短, ∴PA PB '+的最小值为线段A B '的长度,∵点()12A ,,()51B ,, ∴()12A '−,,514A C '=−=,123BC =+−=,∴5A B ',的最小值为5. 22 .(11分)综合与实践 问题情境:在数学活动课上,李老师给同学们提供了一个矩形ABCD (如图1),其中2AB =,连接对角线AC ,且30DAC ∠=︒,要求各小组以图形的旋转为主题开展数学活动.以下是部分小组的探究过程,请你参与活动并解答所提出的问题:猜想证明:(1)如图2,“奋勇”小组将ADC △绕点D 旋转得到A DC '',当点C '落到对角线AC 上时,A C ''与AD 交于点F .试猜想线段CC '与AC '的数量关系,并加以证明;(2)“勤学”小组在“奋勇”小组的基础上,取A C ''的中点E ,连接AE ,DE ,试判断四边形AEDC '的形状,并说明理由; 深入探究:(3)在ADC △绕点D 旋转的过程中,当DC AC '∥时,求点A 与点A '之间的距离,请你思考此问题,直接写出答案.【答案】(1)CC AC ''=,理由见解析;(2)菱形,理由见解析;(3)6或【分析】(1)首先根据矩形的性质得到90ADC ∠=︒,然后利用30DAC ∠=︒得到12DC AC =,然后证明出DCC '△是等边三角形,得到12CC DC AC '=,即可证明出CC AC ''=; (2)首先由DCC '△是等边三角形得到60CDC '∠=︒,然后结合旋转的性质得到A C AD ''⊥,然后证明出12DE A C ''=,然后由A C AD ''⊥得到AD 与EC '互相平分,证明出四边形AEDC '是菱形; (3)根据题意分两种情况:当点C '在AD 上方时,连接AA ',首先由DC AC '∥得到30C DA DAC '∠=∠=︒,然后结合旋转的性质得到30DA A DA C '''∠=∠=︒,证明出点A ,C ',A '三点共线,然后得到246AA AC A C ''''=+=+=;当点C '在线段AD 下方时,首先由DC AC '∥和旋转的性质得到ADA '是等边三角形,然后利用勾股定理求解即可. 【详解】(1)CC AC ''=, 证明:∵四边形ABCD 是矩形, ∴90ADC ∠=︒, 又∵30DAC ∠=︒,∴12DC AC =,903060ACD ∠=︒−︒=︒, 由旋转可得,DC DC '=, ∴DCC '△是等边三角形, ∴12CC DC AC '==, ∴CC AC ''=;(2)四边形AEDC '是菱形.理由:由(1)得DCC '△是等边三角形, ∴60CDC '∠=︒,由旋转得30A DAC '∠=∠=︒,60A DA CDC ''∠=∠=︒,90A DC ADC ''∠=∠=︒,AC A C ''=, ∴18090A FD A A DA '''∠=︒−∠−∠=︒, ∴A C AD ''⊥, 又∵AC CC DC '''==, ∴AF DF =,∵90A DC ''∠=︒,点E 是线段A C ''的中点, ∴12DE A C ''=, 又∵12DC AC =,AC A C ''=,DC DC '=, ∴DE DC '=, 又∵A C AD ''⊥, ∴FE FC '=,∴AD 与EC '互相平分, ∴四边形AEDC '是平行四边形, 又∵A C AD ''⊥,∴平行四边形AEDC '是菱形;(3)如图所示,当点C '在AD 上方时,连接AA ',∵DC AC '∥,∴30C DA DAC '∠=∠=︒,由旋转可得,AD A D '=,90ADC A DC ''∠=∠=︒,30C A D DAC ''∠=∠=︒, ∴120ADA ADC A DC ''''∠=∠+∠=︒, ∴()1180302DAA DA A ADA ∠=∠=︒−'∠=''︒, ∵30C A D DAC ''∠=∠=︒, ∴30DA A DA C '''∠=∠=︒, ∴点A ,C ',A '三点共线, ∴30C AD C DA ''∠=∠=︒, ∴2C A C D ''==,4A C AC ''==, ∴246AA AC A C ''''=+=+=; 如图所示,当点C '在线段AD 下方时,由旋转可得,90ADC A DC ''∠=∠=︒,AD A D '=, ∵DC AC '∥,∴90AED A DC ''∠=∠=︒, ∵30DAC ∠=︒,∴903060ADE ∠=︒−︒=︒, ∴ADA '是等边三角形,∴AA AD '=综上所述,当DC AC '∥时,点A 与点A '之间的距离为6或 23.(13分)综合与探究如图,抛物线()220y ax bx a =+−≠与x 轴交于()4,0A −,()1,0B 两点,与y 轴交于C 点.点D 与点C 关于x 轴对称,直线AD 交抛物线于另一点E .(1)求抛物线的函数表达式,并直接写出直线AD 的函数表达式.(2)点P 是直线AE 下方抛物线上的一点,过点P 作直线AE 的垂线,垂足为F .设点P 的横坐标为m ,试探究当m 为何值时,线段PF 最大?请求出PF 的最大值.(3)在(2)的条件下,当PF 取最大值时,若点M 在抛物线上,点N 在抛物线的对称轴上,是否存在以点B ,P ,M ,N 为顶点的四边形是平行四边形?若存在,请直接写出所有符合条件的点M 的坐标;若不存在,请说明理由. 【答案】(1)213222y x x =+−,122y x =+(2)存在,当1m =−时,PF (3)存在,点M 的坐标为311,28⎛⎫ ⎪⎝⎭,79,28⎛⎫−− ⎪⎝⎭或19,28⎛⎫− ⎪⎝⎭【分析】(1)将()4,0A −,()1,0B 代入()220y ax bx a =+−≠得:1642020a b a b −−=⎧⎨+−=⎩,求解即可得出抛物线解析式,从而得出点C 的坐标,进而得出点D 的坐标,再利用待定系数法求解即可;(2)过点P 作y 轴的平行线交AD 于G ,AGP ADC ∠=∠,求出sin sin AGP ADO ∠=∠=。
2024年中考数学终极押题密卷(广东卷)数学试题及答案
广东省(统考新题型)2024年中考(新题型)猜题卷02数 学注意事项:1.本试卷分为第一部分(选择题)和第二部分(非选择题).全卷总分120分,考试时间120分钟.2.领到试卷和答题卡后,请用0.5毫米黑色墨水签字笔,分别在试卷和答题卡上填写姓名和准考证号,同时用2B 铅笔在答题卡上填涂对应的考生信息. 3.请在答题卡上各题的指定区域内作答,否则作答无效. 4.作图时,先用铅笔作图,再用规定签字笔描黑. 5.考试结束,本试卷和答题卡一并交回.第一部分(选择题 共30分)一、选择题(共(共30分)分) 1.比3−大1的数是( ) A .4−B .2−C .2D .42.2024年3月8日,我国在南海珠江口盆地发现首个深水深层大油田——开平南油田,探明油气地质储量1.02亿吨油当量.该油田是全球核杂岩型凹陷最大的商业发现.数据“1.02亿吨”用科学记数法表示为( ) A .81.0210×吨B .101.0210×吨C .1010210×吨D .70.10210×吨3.花窗是中国古代园林建筑中窗的一种装饰和美化形式,既具备实用功能,又带有装饰效果.下列花窗图案中,既是轴对称图形又是中心对称图形的是( )A .B .C .D .4.如图是由5个相同的小正方体组成的立体图形,它的主视图是( )A .B .C .D .5.下列计算正确的是( )A .325a a a +=B .325a a a ⋅=C .()22242a a a +=++ D .()235a a −=6.语文课上,同学们以“并州犹是诗故乡——唐代山西诗人群像”为主题展开研习活动.小彬和小颖计划从王维、柳宗元、白居易、王勃四位唐代山西诗人中任选一位撰写研习报告,则他们恰好选择的是同一位诗人的概率是( )A .14B .13C .12D .347.不等式组426231x x −< +≥ ,的解集是( )A .2x <B .1x ≥−C .12x −≤<D .1x ≤−8.圆的标准方程最早是笛卡尔发现的,如图,以坐标原点O 为圆心,r 为半径的圆,笛卡尔用222x y r +=来表示它.从而利用方程将一个静止不动的图形,转化成点P 连续运动的轨迹.这种研究方法体现的数学思想是( )A .整体思想B .归纳思想C .换元思想D .数形结合思想9.全民健身运动中,骑行运动颇受市民青睐.某自行车经销商为满足市民的健身需求,准备购进甲、乙两种不同品牌自行车.已知甲种品牌自行车的进价比乙种品牌自行车的进价低500元,若该自行车经销商分别用3万元购进甲、乙不同品牌的自行车时,购进甲种品牌自行车的数量是购进乙种品牌自行车数量的43.设购进甲种品牌的自行车x 辆,根据题意列出的方程是( )A .300003000050043x x =+ B .300003000045003x x =×−C .300003000045003x x =×− D .300003000050034x x =− 10.某地为落实乡村振兴战略,在每个乡镇自然村都建设老年活动中心,某村老年活动中心如图中三角形区域,现计划在活动区域外围建1m 宽的绿化带,为了美观,绿化带三个拐弯处设计为弧形,已知图中三角形周长为5m ,则绿化带的面积为( )A .25mB .()252πm +C .()25πm +D .()26πm +第二部分(非选择题 共75分)二、填空题(共15分) 11.因式分解:2a 2﹣8= .12.已知关于x 的一元二次方程260x kx +−=的一个根是2,则另一个根的值是 . 13.在如图所示的正方形网格中建立平面直角坐标系,已知每个小正方形的边长都是1,ABC 与'''A B C 的顶点都在正方形网格的格点上,且ABC 与'''A B C 为位似图形,则位似中心的坐标为 .14.如图,AB 是O 的直径,点C 是O 上一点(与点,A B 不重合),过点C 作O 的切线交AB的延长线于点D .若3,4BD CD ==,则O 的直径为 .15.如图,在正方形ABCD中,4AB=,点E是CD边的中点,ABE∠的平分线交AD于点F,连接EF,则tan DEF∠的值为.三、解答题(共75分)16.(511)2sin605π−−−°+.17.(5分)解方程组:7 22 x yx y−=+=①②18.(5分)如图,已知B C∠=∠,AD平分BAC∠,求证:ABD ACD△≌△.19.(5分)如图,点A是∠MON边OM上一点,AE//ON.(1)尺规作图:作∠MON的角平分线OB,交AE于点B(保留作图痕迹,不写作法);(2)若∠MAE=48°,则∠OBE的大小为________.20.(5分)微信名“文游台”和“高邮湖”的两个同学计划一起用60元在网店购买一些签字笔,请根据他们如图的聊天截屏信息,求出第一家网店每支签字笔的单价.21.(8分)推行“减负增效”政策后,为了解九年级学生每天自主学习的时长情况,学校随机抽取部分九年级学生进行调查,按四个组别;A组(0.5小时),B组(1小时),C组(1.5小时),D组(2小时)进行整理,绘制如下两幅不完整的统计图,根据图中提供的信息,解决下列问题:(1)本次调查的学生人数是人;A组(0.5小时)在扇形统计图中的圆心角α的大小是;(2)将条形统计图补充完整;(3)若该校九年级有600名学生,请估计其中每天自主学习时间不少于1.5小时的学生人数.22.(8分)北岳恒山索道被誉为“三晋第一索”,索道随山峦逐级起伏,绵延而上,可以俯瞰到恒山各处的秀丽美景,让游客的游览舒适惬意.恒山索道沿线有16座支架,用以保持索道悬空的状态.如图,A ,B ,C 为该索道的三处支架,且AB BC =,从支架B 处看支架A 的仰角为22°,从支架O 处看支架B 的仰角为30°,支架A 到支架C 的竖直距离AD 为320m ,已知点A ,B ,C ,D 在同一竖直平面内,求CD 的长.(结果精确到1m ;参考数据:sin 220.37°≈,cos 220.93°≈,tan 220.4°≈ 1.7≈)23.(10分)如图,一次函数()1110y k x b k =+≠的图象与反比例函数()2220k y k x=≠的图象在第一象限内交于点A ,与y 轴交于点C ,与x 轴交于点B ,C 为AB 的中点,4AOC S = .(1)求2k 的值;(2)当2OB =,120y y >>时,求x 的取值范围.24.(12分)综合与探究羽毛球是一项广受欢迎的运动.小明在网上查阅与这项运动相关的资料时,意外发现其中蕴含的数学原理.羽毛球在飞行过程中的运动轨迹可看作抛物线,因此运动员可以通过击球时的用力方向和大小控制球的落地点,这引起了小明的强烈兴趣.于是小明和同学小华来到附近的羽毛球场地,打算用所学二次函数的知识来描述羽毛球在飞行过程中的轨迹,并利用其解决相关的实际问题.小华从场地左侧点A 距地面1m 处发球,球飞行过程中在点C 处到达最高点,并落在了场地右侧的点B 处,如图1所示(A ,B ,C 三点共线).通过测量得知,A ,B 两点距离为8m ,A ,C两点距离为3m .(1)小明根据测量数据建立了如图2所示的平面直角坐标系,并描绘了相应的抛物线轨迹,求出此抛物线的解析式;(2)小明和小华所在的羽毛球场地并未设置球网,查阅资料可知标准羽毛球网高度为1.5m .小明又通过测量得到点A 和点B 距离球场中线l (球网所在位置)的距离分别为4m 和2.4m ,判断在球网存在的情况下小华此次击球是否能飞过球网,并说明理由;(3)小明通过测量得知场地内边线与场地中线的距离为6.7m ,假设小华站在点A 处发球,且击球时的用力方向和大小不变,为使球越过球网并且落在球场内边线内,求出小华发球时高度的取值范围.25.(12分)【问题发现】(1)如图1,将正方形ABCD 和正方形AEFG 按如图所示的位置摆放,连接BE 和DG ,延长DG 交BE 的延长线于点H ,求BE 与DG 的数量关系和位置关系.【类比探究】(2)若将“正方形ABCD 和正方形AEFG ”改成“矩形ABCD 和矩形AEFG ,且矩形ABCD ∽矩形AEFG ,3AE =,4AG =”,如图,点E 、D 、G 三点共线,点G 在线段DE 上时,若AD =,求BE 的长. 【拓展延伸】(3)若将“正方形ABCD 和正方形AEFG 改成“菱形ABCD 和菱形AEFG ,且菱形ABCD ∽菱形AEFG ,如图3,5AD =,6AC =,AG 平分DAC ∠,点P 在射线AG 上,在射线AF 上截取AQ ,使得35AQ AP =,连接PQ ,QC ,当4tan 3PQC ∠=时,直接写出AP 的长.广东省(统考新题型)2024年中考(新题型)猜题卷02数 学全解全析一、选择题(共(共30分)分) 1.比3−大1的数是( ) A .4− B .2− C .2 D .4【答案】B【分析】本题考查了有理数的加法运算,理解有理数加法运算法则,根据题意列出算式计算即可.【详解】解:比3−大1的数为:312−+=−, 故选:B .2.2024年3月8日,我国在南海珠江口盆地发现首个深水深层大油田——开平南油田,探明油气地质储量1.02亿吨油当量.该油田是全球核杂岩型凹陷最大的商业发现.数据“1.02亿吨”用科学记数法表示为( ) A .81.0210×吨 B .101.0210×吨 C .1010210×吨 D .70.10210×吨【答案】A【分析】此题考查了科学记数法的表示方法,科学记数法的表示形式为10n a ×的形式,其中110a ≤<,n 为整数,表示时关键要正确确定a 的值以及n 的值.【详解】解:81.021.0210=×亿, 故选:A .3.花窗是中国古代园林建筑中窗的一种装饰和美化形式,既具备实用功能,又带有装饰效果.下列花窗图案中,既是轴对称图形又是中心对称图形的是( )A .B .C .D .【答案】D【分析】本题考查了轴对称图形及中心对称图形,轴对称图形是沿着某条直线折叠,直线两旁的部分完全重合;中心对称图形是绕某点旋转180°与原图形完全重合;熟练掌握定义是解题的关键.根据轴对称图形和中心对称图形的定义判断即可.【详解】解:A.是轴对称图形,不是中心对称图形,故该选项不符合题意,B.是中心对称图形,不是轴对称图形,故该选项不符合题意,C.既不是轴对称图形也不是中心对称图形,故该选项不符合题意,D.既是轴对称图形又是中心对称图形,故该选项符合题意,故选:D.4.如图是由5个相同的小正方体组成的立体图形,它的主视图是()A.B.C.D.【答案】B【分析】此题主要考查了简单几何体的三视图,关键是掌握主视图所看的方向:从正面看所得到的图形.根据从正面看得到的图形是主视图,可得答案.【详解】解:从正面看第一层是三个小正方形,第二层中间一个小正方形,故选B.5.下列计算正确的是()A.325+=B.325a a a⋅=a a aC.()22+=++D.()235242a a a−=a a【答案】B【分析】本题考查了整式的混合运算,掌握整式的运算法则是解决本题的关键.利用整式的运算法则计算每一个,根据计算结果得结论.【详解】解:32a a不能合并,故选项A计算错误;,325⋅=,故选项B计算正确;a a a()22+=++,故选项C计算错误;244a a a()236a a −=,故选项D 计算错误;故选:B .6.语文课上,同学们以“并州犹是诗故乡——唐代山西诗人群像”为主题展开研习活动.小彬和小颖计划从王维、柳宗元、白居易、王勃四位唐代山西诗人中任选一位撰写研习报告,则他们恰好选择的是同一位诗人的概率是( )A .14B .13C .12D .34【答案】A【分析】本题主要考查了树状图法或列表法求解概率.先列表得到所有等可能性的结果数,再找到他们选择的诗人相同的结果数,最后依据概率计算公式求解即可.【详解】解:王维、柳宗元、白居易、王勃四位唐代山西诗人分别用A 、B 、C 、D 表示,列表如下: 小明小颖A B C DA(),A A (),B A (),C A (),D AB(),A B (),B B (),C B (),D BC(),A C (),B C (),C C (),D CD(),A D (),B D (),B D (),D D由表格可知,一共有16种等可能性的结果数,其中他们选择的诗人相同的结果数有4种, ∴他们选择的诗人相同的概率为41164=, 故选:A .7.不等式组426231x x −< +≥ ,的解集是( )A .2x <B .1x ≥−C .12x −≤<D .1x ≤−【答案】C 【分析】本题主要考查了解一元一次不等式组,先求出每个不等式的解集,再根据 “同大取大,同小取小,大小小大中间找,大大小小找不到(无解)”求出不等式组的解集即可.【详解】解:426231x x −< +≥①② 解不等式①得:2x <,解不等式②得:1x ≥−,∴不等式组的解集为12x −≤<,故选:C .8.圆的标准方程最早是笛卡尔发现的,如图,以坐标原点O 为圆心,r 为半径的圆,笛卡尔用222x y r +=来表示它.从而利用方程将一个静止不动的图形,转化成点P 连续运动的轨迹.这种研究方法体现的数学思想是( )A .整体思想B .归纳思想C .换元思想D .数形结合思想【答案】D 【分析】本题考查了平面直角坐标系,根据平面直角坐标系使得我们可以用代数的方法研究几何问题,又可以用几何的方法研究代数问题,即可确定答案.【详解】解:用代数的方法研究几何问题,可知这种研究方法体现了数形结合思想, 故选:D .9.全民健身运动中,骑行运动颇受市民青睐.某自行车经销商为满足市民的健身需求,准备购进甲、乙两种不同品牌自行车.已知甲种品牌自行车的进价比乙种品牌自行车的进价低500元,若该自行车经销商分别用3万元购进甲、乙不同品牌的自行车时,购进甲种品牌自行车的数量是购进乙种品牌自行车数量的43.设购进甲种品牌的自行车x 辆,根据题意列出的方程是( )A .300003000050043x x =+ B .300003000045003x x =×− C .300003000045003x x =×− D .300003000050034x x =− 【答案】D【分析】本题考查了列分式方程;设购进甲种品牌的自行车x 辆,则购进乙种品牌的自行车34x 辆,用总价除以单价表示出购进自行车的数量,根据两种自行车的数量相等列出方程求解即可.【详解】设购进甲种品牌的自行车x 辆,依题意得300003000050034x x =− 故选:D .10.某地为落实乡村振兴战略,在每个乡镇自然村都建设老年活动中心,某村老年活动中心如图中三角形区域,现计划在活动区域外围建1m 宽的绿化带,为了美观,绿化带三个拐弯处设计为弧形,已知图中三角形周长为5m ,则绿化带的面积为( )A .25mB .()252πm +C .()25πm +D .()26πm + 【答案】C 【分析】此题考查了矩形的性质,三角形内角和定理,过中间三角形的三个顶点分别向绿化带作垂线,首先根据题意得到1m AD BC MC GH GF DE ======,求出扇形ADE ,BCM ,GFH 正好拼成一个半径为1m 的圆,然后利用绿化带的面积2π1ADCB MCGH DEFG S S S +++×矩形矩形矩形求解即可.【详解】如图所示,过中间三角形的三个顶点分别向绿化带作垂线,根据题意得,1m ADBC MC GH GF DE ======,四边形ADCB ,DEFG ,GHMC 是矩形 ∴90ADC BCD MCG CGH DGF GDE ∠=∠=∠=∠=∠=∠=° ∴180AEDCDG ∠=°−∠,180BCM DCG ∠=°−∠,180FGH DGC ∠=°−∠ ∵180∠+∠+∠=°CDG DCG DGC∴360BCM ADE HGF∠+∠+∠=° ∴扇形ADE ,BCM ,GFH 正好拼成一个半径为1m 的圆,∴绿化带的面积2π1ADCB MCGH DEFG S S S +++×矩形矩形矩形2π1AD DC MC DC DE DC =⋅+⋅+⋅+×()2215π15πm =×+×=+. 故选:C .二、填空题(共15分)11.因式分解:2a 2﹣8= .【答案】2(a +2)(a -2).【分析】首先提取公因数2,进而利用平方差公式分解因式即可.【详解】2a 2-8=2(a 2-4)=2(a +2)(a -2).故答案为2(a +2)(a -2).考点:因式分解.【点睛】此题主要考查了提取公因式法以及公式法分解因式,熟练应用乘法公式是解题关键.12.已知关于x 的一元二次方程260x kx +−=的一个根是2,则另一个根的值是 .【答案】3−【分析】此题主要考查了解一元二次方程,以及根的定义.先把2x =代入原方程,求出k 的值,进而再将k 的值代入原方程,然后解方程即可求出方程的另一个根.【详解】解:∵2x =是方程260x kx +−=的一个根, ∴22260k +−=, 解得:1k =,将1k =代入原方程得:260x x +−=, 解得:122,3x x ==−,∴方程的另一个根为3−.故答案为:3−.13.在如图所示的正方形网格中建立平面直角坐标系,已知每个小正方形的边长都是1,ABC 与'''A B C 的顶点都在正方形网格的格点上,且ABC 与'''A B C 为位似图形,则位似中心的坐标为 .【答案】()4,3−−【分析】本题考查了作图—位似变换,对应顶点所在直线相交于一点即为位似中心,确定位似中心是解题的关键.连接'A A ,'B B 并延长交于一点,交点即为所求.【详解】解:如图,连接'A A ,'B B 并延长交于一点P ,点P 即为所求.由网格图形可知,点P 的坐标为()4,3−−. 故答案为:()4,3−−.14.如图,AB 是O 的直径,点C 是O 上一点(与点,A B 不重合),过点C 作O 的切线交AB的延长线于点D .若3,4BD CD ==,则O 的直径为 .【答案】73/123【分析】本题主要考查了切线的性质,勾股定理,如图所示,连接OC ,设O 的半径为r ,则OC OB r ==,3OD r =+,由切线的性质可得90OCD ∠=°,则由勾股定理可得()22234r r +=+,解方程即可得到答案.【详解】解:如图所示,连接OC ,设O 的半径为r ,则OCOB r ==, ∴3OD r =+,∵CD 是O 的切线,∴90OCD ∠=°, 在Rt COD 中,由勾股定理得222OD OC CD =+,∴()22234r r +=+, 解得76r =, ∴O 的直径为723r =, 故答案为:73.15.如图,在正方形ABCD 中,4AB =,点E 是CD 边的中点,ABE ∠的平分线交AD 于点F ,连接EF ,则tan DEF ∠的值为 .【答案】33+【分析】本题考查正方形的性质,角平分线的性质定理,勾股定理,全等三角形的判定与性质,求角的正切值等,作FG BE ⊥于点G ,由角平分线的性质可得AF FG =,再证Rt BGF ≌()Rt HL BAF ,推出4BG AB ==,AF GF =,设AF GF x ==,用勾股定理解Rt EDF 和Rt EGF ,求出x 的值,再根据tan DF DEF DE∠=即可求解.【详解】解:如图,作FG BE ⊥于点G , 正方形ABCD 中,4AB =,点E 是CD 边的中点,∴90A C D ∠=∠=∠=°,4CD BC AD AB ====, 122CE DE CD ===, ∴BEBF 平分ABE ∠,FG BE ⊥,FA AB ⊥,∴AF FG =,在Rt BAF △和Rt BGF 中,AF FG BF BF = =, ∴Rt BGF ≌()Rt HL BAF ,∴4BG AB ==,AF GF =,∴4GE BE BG =−=,设AFGF x ==,则4FD AD AF x =−=−, 在Rt EDF 中,222DE DF EF +=,在Rt EGF 中,222EG FG EF +=, ∴2222EG FG DE DF +=+,即()()2222424x x +=+−, 解得2x =,∴()426FD =−=−∴tan 3DF DEF DE ∠=故答案为:3三、解答题(共75分)16.(5101)2sin 605π− −−°+ . 【答案】4【分析】先化简绝对值,零次幂及特殊角的三角函数、负整数指数幂,然后计算加减法即可.【详解】解:原式125=−− 4=. 【点睛】题目主要考查绝对值,零次幂及特殊角的三角函数、负整数指数幂,熟练掌握各个运算法则是解题关键.17.(5分)解方程组:722x y x y −=+=①② 【答案】34x y = =− 【分析】本题考查的是二元一次方程组的解法,掌握解法步骤是解本题的关键,直接利用加减消元法解方程组即可.【详解】解:722x y x y −= +=①②, ①+②得39x =,解得3x =.将3x =代入②,得4y =−.所以 34x y = =− ,. 18.(5分)如图,已知B C ∠=∠,AD 平分BAC ∠,求证:ABD ACD △≌△.【答案】见解析【分析】本题主要考查对全等三角形的判定,三角形的角平分线定义;根据角平分线的定义得出BAD CAD ∠=∠,根据AAS 即可证出答案. 【详解】证明:AD 平分BAC ∠,BAD CAD ∴∠=∠,在ABD △和ACD 中B C BAD CAD AD AD ∠=∠ ∠=∠ =, ()AAS ABD ACD ∴ ≌.19.(5分)如图,点A 是∠MON 边OM 上一点,AE//ON .(1)尺规作图:作∠MON 的角平分线OB ,交AE 于点B (保留作图痕迹,不写作法);(2)若∠MAE=48°,则∠OBE 的大小为________.【答案】(1)见解析;(2)156°【分析】(1)利用基本作图作OB 平分∠MON ;(2)先利用平行线的性质得到∠MON =∠MAE =48°,再根据角平分线的定义得到∠NOB =24°,接着根据平行线的性质得到∠OBA 的度数,然后利用邻补角的定义计算∠OBE 的度数.【详解】解:(1)如图,OB 为所作;(2)∵AE∥ON,∴∠MON=∠MAE=48°,∵OB平分∠MON,∴∠NOB=12∠MON=24°,∵AB∥ON,∴∠OBA=∠NOB=24°,∴∠OBE=180°-∠OBA=180°-24°=156°.【点睛】本题考查了作图-基本作图:熟练掌握5种基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了平行线的性质.20.(5分)微信名“文游台”和“高邮湖”的两个同学计划一起用60元在网店购买一些签字笔,请根据他们如图的聊天截屏信息,求出第一家网店每支签字笔的单价.【答案】第一家网店每支签字笔的价格是10元【分析】本题主要考查了分式方程的应用等知识点,首先设第一家网店每支签字笔的单价是x 元,现在每支签字笔的价格是1.5x元,即可根据题意列出方程,解此分式方程即可求得答案,注意分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.【详解】解:设第一家网店每支签字笔的单价是x元,现在每支签字笔的价格是1.5x元,依题意得:606021.5x x=+,解得:10x=,经检验:10x=是原方程的解,答:第一家网店每支签字笔的价格是10元.21.(8分)推行“减负增效”政策后,为了解九年级学生每天自主学习的时长情况,学校随机抽取部分九年级学生进行调查,按四个组别;A组(0.5小时),B组(1小时),C组(1.5小时),D组(2小时)进行整理,绘制如下两幅不完整的统计图,根据图中提供的信息,解决下列问题:(1)本次调查的学生人数是人;A组(0.5小时)在扇形统计图中的圆心角α的大小是;(2)将条形统计图补充完整;(3)若该校九年级有600名学生,请估计其中每天自主学习时间不少于1.5小时的学生人数.【答案】(1)40,54°(2)画图见解析(3)不少于1.5小时的学生有330人【分析】(1)根据统计图中的数据可以求得本次调查的学生数;根据A组的学生人数以及总人数即可求得A组对应的圆心角的度数;(2)求出C组的学生人数,补全条形统计图即可;(3)利用用样本估计总体的计算方法列式计算即可求得.【详解】(1)解:本次调查的学生人数为:1230%=40÷(人);A组(0.5小时)在扇形统计图中的圆心角α的大小为:6360=54°×°,40故答案为:40,54°;(2)解:C 组的人数为:40-6-12-8=14(人), 补全条形统计图如下:(3)解:14860033040+×=(人) 答:估计该校九年级每天自主学习时间不少于1.5小时的学生人数有330人.【点睛】本题考查了条形统计图、扇形统计图、用样本估计总体,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.22.(8分)北岳恒山索道被誉为“三晋第一索”,索道随山峦逐级起伏,绵延而上,可以俯瞰到恒山各处的秀丽美景,让游客的游览舒适惬意.恒山索道沿线有16座支架,用以保持索道悬空的状态.如图,A ,B ,C 为该索道的三处支架,且AB BC =,从支架B 处看支架A 的仰角为22°,从支架O 处看支架B 的仰角为30°,支架A 到支架C 的竖直距离AD 为320m ,已知点A ,B ,C ,D 在同一竖直平面内,求CD 的长.(结果精确到1m ;参考数据:sin 220.37°≈,cos 220.93°≈,tan 220.4°≈ 1.7≈)【答案】653m【分析】本题主要考查了解直角三角形的实际应用,矩形的性质与判定,过点B 作BE AD ⊥于E ,BF CD ⊥于F ,则四边形BEDF 是矩形,可得BF DE DF BE ==,,设m AE x =,则()320m BF DE x ==−,解Rt ABE △得到 2.7m AB x ≈,解Rt BCF 得到()6402m BC x =−,进而得到2.76402x x =−,解方程得到136m 184m AE BF ==,,再解直角三角形求出BE CF ,的长即可得到答案.【详解】解:如图所示,过点B 作BE AD ⊥于E ,BF CD ⊥于F ,则四边形BEDF 是矩形,∴BF DEDF BE ==,, 设m AE x =,则()320m BF DE AD AE x ==−=−, 在Rt ABE △中, 2.7m sin AEABx ABE =≈∠,在Rt BCF 中,()6402m sin BF BC x C==−,∵AB BC =,∴2.76402x x =−, 解得136x ≈,∴136m184m AE BF ==,, 在Rt ABE △中,136340m tan 0.4AE BE ABE =≈=∠,在Rt BCF 中,313m tan BFCF C=≈, ∴653m CD DF CF =+=, ∴CD 的长约为653m .23.(10分)如图,一次函数()1110y k x b k =+≠的图象与反比例函数()2220k y k x=≠的图象在第一象限内交于点A ,与y 轴交于点C ,与x 轴交于点B ,C 为AB 的中点,4AOC S = .(1)求2k 的值;(2)当2OB =,120y y >>时,求x 的取值范围.【答案】(1)216k = (2)2x >【分析】本题考查反比例函数的图象与性质,全等三角形的判定与性质,解题的关键是灵活运用所学知识解决问题,(1)过点A 作y 轴的垂线,垂足为D ,证明ADC BOC ≌进而求出结论; (2)先求出()2,8A ,根据图象写出结论即可. 【详解】(1)解:过点A 作y 轴的垂线,垂足为D .点C 为AB 的中点,BC AC ∴=,又90BOC ADC ∠=∠=°;BCO ACD ∠=∠, ∴ADC BOC ≌, ∴DC OC =,设(),A x y ,点A 在第一象限, 则111142222x y x y ⋅=⋅=,即16xy =, ∴216k =.(2)因为2OB =, 所以()2,0B −,由ADC BOC ≌,得2ADOB ==, 所以,()2,8A .当120y y >>时,x 的取值范围是:2x >. 24.(12分)综合与探究羽毛球是一项广受欢迎的运动.小明在网上查阅与这项运动相关的资料时,意外发现其中蕴含的数学原理.羽毛球在飞行过程中的运动轨迹可看作抛物线,因此运动员可以通过击球时的用力方向和大小控制球的落地点,这引起了小明的强烈兴趣.于是小明和同学小华来到附近的羽毛球场地,打算用所学二次函数的知识来描述羽毛球在飞行过程中的轨迹,并利用其解决相关的实际问题.小华从场地左侧点A 距地面1m 处发球,球飞行过程中在点C 处到达最高点,并落在了场地右侧的点B 处,如图1所示(A ,B ,C 三点共线).通过测量得知,A ,B 两点距离为8m ,A ,C 两点距离为3m .(1)小明根据测量数据建立了如图2所示的平面直角坐标系,并描绘了相应的抛物线轨迹,求出此抛物线的解析式;(2)小明和小华所在的羽毛球场地并未设置球网,查阅资料可知标准羽毛球网高度为1.5m .小明又通过测量得到点A 和点B 距离球场中线l (球网所在位置)的距离分别为4m 和2.4m ,判断在球网存在的情况下小华此次击球是否能飞过球网,并说明理由;(3)小明通过测量得知场地内边线与场地中线的距离为6.7m ,假设小华站在点A 处发球,且击球时的用力方向和大小不变,为使球越过球网并且落在球场内边线内,求出小华发球时高度的取值范围.【答案】(1)()212531616y x =−−+ (2)小华此次击球不能飞过球网 (3)小华击球高度取值范围大于1916m 小于12731024m【分析】本题考查了二次函数的实际应用,待定系数法求解析式,相似三角形的判定与应用,熟练掌握知识点是解题的关键. (1)待定系数法求解析式即可;(2)连接AB ,交直线l 于点M ,分别过点A ,B 向直线l 作垂线,垂足分别为N ,P ,由ANM BPM △△∽求得M 的坐标为()5,0,再代入函数解析式即可;(3)设此次小华击球的羽毛球飞行轨迹抛物线解析式为()21316y x k =−−+,直线AB 与场地右侧边线的交点为Q ,可求67,08Q,将()5,1.5,67,08分别代入,得到174k =,218491024k =,再将将0x =分别代入即可.【详解】(1)解:根据题意,得()0,1D ,()3,C b ,()8,0B , 设此抛物线的解析式为()23y a x b =−+, 将点()0,1D ,()8,0B 代入,得19,025,a b a b =+=+解得1,1625.16a b=−=所以此抛物线的解析式为()212531616y x =−−+. (2)解:连接AB ,交直线l 于点M ,分别过点A ,B 向直线l 作垂线,垂足分别为N ,P ,如图所示.根据题意,得8AB =,4AN =, 2.4BP . ∵,BP l AN l ⊥⊥, ∴BP AN , ∴ANM BPM △△∽,452.43AM AN BM BP ∴===, 558AM AB ∴, 即点M 的坐标为()5,0.将点()5,0M 代入()212531616y x =−−+,得2116y =.2124 1.51616<=, ∴小华此次击球不能飞过球网.(3)解:∵小华仍从点A 处发球,且击球时的用力方向和大小不变,∴设此次小华击球的羽毛球飞行轨迹抛物线解析式为()21316y x k =−−+,直线AB 与场地右侧边线的交点为Q .场地内边线距离场地中线的距离为6.7m,∴由(2)同理可得67,08Q.要求球越过球网且落在球场内边线内,∴将()5,1.5,67,08分别代入()21316y x k =−−+,得174k =,218491024k =.将0x =分别代入()211316y x k =−−+,()221316y x k =−−+, 得11916y =,212731024y =. ∴小华击球高度取值范围大于19m 16小于1273m 1024. 25.(12分)【问题发现】(1)如图1,将正方形ABCD 和正方形AEFG 按如图所示的位置摆放,连接BE 和DG ,延长DG 交BE 的延长线于点H ,求BE 与DG 的数量关系和位置关系.【类比探究】(2)若将“正方形ABCD 和正方形AEFG ”改成“矩形ABCD 和矩形AEFG ,且矩形ABCD ∽矩形AEFG ,3AE =,4AG =”,如图,点E 、D 、G 三点共线,点G 在线段DE 上时,若AD =,求BE 的长. 【拓展延伸】(3)若将“正方形ABCD 和正方形AEFG 改成“菱形ABCD 和菱形AEFG ,且菱形。
2024年中考数学考前押题密卷(全国卷)(全解全析)
2024年中考考前押题密卷(全国卷)数学·全解全析第Ⅰ卷一、选择题(本大题共10个小题,每小题3分,共30分.在每个小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑)1.下列各数中,相反数是它本身的数是()A .2-B .1-C .0D .11.C【分析】根据相反数的意义,只有符号不同的数为相反数.【解析】相反数等于本身的数是0.故选:C .【点睛】本题考查了相反数的意义.注意掌握只有符号不同的数为相反数,0的相反数是0.2.如图所示的几何体是由7个相同的小正方体组合成的,则这个几何体的左视图是()A .B .C .D .2.D【分析】根据观察几何体,从左边看,底层有2个正方体,上层有一个正方体,即可得到答案.【解析】从左边看,底层有2个正方体,上层有一个正方体,∴几何体的左视图为:,故选:D .【点睛】本题考查三视图的知识,解题的关键是学会找几何体的三视图.3.据国家统计局预测,截止2024年底,我国GDP 将突破23万亿美元,23万亿用科学记数法表示为()A .132.310⨯B .142.310⨯C .140.2310⨯D .122310⨯3.A【分析】本题考查科学记数法的表示方法.科学记数法的表示形式为10n a ⨯的形式,其中110a ≤<,n 为整数,表示时关键要正确确定a 的值以及n 的值.【解析】23万亿23000000000000=元132.310=⨯元.故选:A .4.下列运算中,正确的是()A .326326x x x ⋅=B .4482x x x +=C .633x x x ÷=D .()32528x x =4.C【分析】分别利用单项式乘单项式、合并同类项、同底数幂的除法和积的乘方运算法则化简求出即可.【解析】A 、3x 3•2x 2=6x 5,故此选项错误;B 、x 4+x 4=2x 4,故此选项错误;C 、x 6÷x 3=x 3,故此选项正确;D 、(2x 2)3=8x 6,故此选项错误.故选:C .【点睛】此题主要考查了单项式乘单项式、合并同类项、同底数幂的除法和积的乘方等知识,熟练掌握相关运算法则是解题关键.5.如图,在平面直角坐标系中,点P 坐标为()1,2,以点O 为圆心,以OP 的长为半径画弧,交x 轴的正半轴于点A ,则点A 的横坐标介于()A .1和2之间B .2和3之间C .3和4之间D .4和5之间5.B【分析】先根据勾股定理计算出OP 的长度,OP OA =可以知道A 点的横坐标,再利用估算无理数的方法得出答案.【解析】22125OP =+=,则A 点横坐标为5,459<<,即253<<,∴A 的横坐标介于2和3之间,故选B .【点睛】本题主要考查了估算无理数的大小和勾股定理,正确估计5最接近的整数是解题的关键.6.某居民小区开展节约用电活动,对该小区30户家庭的节电量情况进行了统计,五月份与四月份相比,节电情况如下表:节电量(度)10203040户数215103则五月份这30户家庭节电量的众数与中位数分别为()A .20,20B .20,25C .30,25D .40,206.A【分析】根据表格中的数据可以得到这组数据的众数和中位数,本题得以解决.【解析】由表格中的数据可得,五月份这30户家庭节电量的众数是:20,中位数是20,故选:A .【点睛】本题考查众数、统计表、中位数,解题的关键是明确它们各自的含义,会找一组数据的众数和中位数.7.如图,Rt ABC △中,90ACB ∠=︒,30B ∠=︒,2AC =,23BC =,将ABC 绕点C 逆时针旋转至A B C ''△,使得点A '恰好落在AB 上,A B ''与BC 交于点D ,则A CD '△的面积为()A .32B .53C .5D .237.A【分析】由已知结合旋转的性质可知CA CA '=,60A CA B ''∠=∠=︒,可证得ACA ' 是等边三角形,可得2A C A B ''==,30A CB B '∠=∠=︒,进而可知A D BC '⊥,由等腰三角形的性质和含30度的直角三角形的性质可知112A D A C ''==,132CD BC ==,进而利用面积公式即可求解.【解析】在Rt ABC △中,90ACB ∠=︒,2AC =,30B ∠=︒,∴9060A B ∠=︒-∠=︒,24AB AC ==,由旋转可知,CA CA '=,60A CA B ''∠=∠=︒,∴ACA ' 是等边三角形,∴2AA AC A C ''===,∴2A C A B ''==,∴30A CB B '∠=∠=︒,∵60CA B ∠=''︒,∴18090CDA A CD CA D '''∠=︒-∠-∠=︒,则A D BC '⊥,∴112A D A C ''==,132CD BC ==,∴131322A CD S '=⨯⨯=△.故选:A .【点睛】本题考查直角三角形30度角的性质、勾股定理、等边三角形的判定和性质、旋转的性质等知识,解题的关键是灵活运用这些知识解决问题,属于中考常考题型.8.小明骑自行车上学,开始以正常速度匀速行驶,但行至途中自行车出了故障,只好停下来修车,车修好后,因怕耽误上课,加快了骑车速度.下面是小明距离学校的路程s 关于行驶时间t 的函数图象,那么符合小明行驶情况的图象大致是()A .B .C .D .8.D【分析】根据函数图象与因变量和自变量的关系判断选项即可.【解析】根据题意,小明距离学校的路程s 关于行驶时间t 的函数图象应该分为三段:第一段随着时间的增加,路程s 逐渐减小;第二段小明停下修车,路程s 随着时间的增加没有发生变化;第三段小明加速行驶,随着时间的增加,路程s 减小的更快,所以只有D 选项符合题意,故选:D .【点睛】本题考查函数的图象,熟练掌握函数的图象与因变量和自变量的变化关系是解答的关键.9.如图,AB 为O 的直径.弦CD AB ⊥于点E ,5OC cm =,8CD cm =,则BE 的值为()A .2cmB .3cmC .5cmD .8cm9.A【分析】根据垂径定理得出4CE DE ==cm ,根据勾股定理得出222OC CE OE =+,代入求出答案即可.【解析】AB 是O 的直径,5OB OC ∴==(厘米),弦CD AB ⊥,4CE DE ∴==(厘米),在Rt OCE ∆中,5OC =(厘米),22543OE ∴=-=(厘米),532BE OB OE ∴=-=-=(厘米).故选:A .【点睛】本题考查了勾股定理和垂径定理,能熟记垂直于弦的直径平分这条弦是解此题的关键.10.如图,在正方形ABCD 中,O 是对角线AC ,BD 的交点.过点O 作OE OF ⊥,分别交AB ,BC 于点E ,F .若3AE =,1CF =,则EF =()A .2B 10C .4D .2210.B【分析】本题考查正方形的性质,证明()ASA BOE COF ≌,得到1BE CF ==,继而得到3BF AE ==,最后在Rt BEF △中,利用勾股定理可得EF 的值.掌握正方形的性质及勾股定理是解题的关键.【解析】∵四边形ABCD 是正方形,3AE =,1CF =,∴AB BC =,OB OC =,90BOC ∠=︒,90ABC ∠=︒,45OBE OCF ∠=∠=︒,∵OE OF ⊥,∴90EOF BOC ∠=︒=∠,∴EOB FOC ∠=∠,在BOE △和COF 中,OBE OCF OB OCEOB FOC ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴()ASA BOE COF ≌,∴1BE CF ==,∴3BF BC CF AB BE AE =-=-==,在Rt BEF △中,3BF =,1BE =,∴22221310EF BE BF =+=+=.故选:B .第Ⅱ卷二、填空题(本大题共6个小题,每小题3分,共18分)11.因式分解:236m m -=.11.()32m m -【分析】提取公因式3m 即可.【解析】()23632.m m m m -=-故答案为:()32m m -【点睛】本题考查的是利用提公因式分解因式,掌握“公因式的确定”是解本题的关键.12.有一个圆形飞镖盘,上面画有五个圆,半径由小到大依次为2cm 4cm 6cm 、、、8cm 10cm 、,如图所示,投中镖盘时,飞镖落在阴影部分的概率为.12.35/0.6【分析】本题考查了概率,掌握相关知识并熟练使用是解题的关键.根据概率的定义,分别求出阴影部分的面积和大圆的面积,它们的比值就是所求.【解析】∵()2224cm S ππ=⨯=小阴影,()()2226420cm S ππ=⨯-=中阴影,()()22210836cm S ππ=⨯-=大阴影,()2210100cm S ππ=⨯=大圆,∴飞镖落在阴影部分的概率4203631005ππππ++==.故答案为:35.13.如图,直线4y x =-+与双曲线=y x交于A B ,两点,若AOB △的面积为4,则k 的值为.13.3【分析】根据直线4y x =-+与双曲线=ky x关于直线=y x 对称,得出AOC BOD ≌,求得2AOC S = ,根据三角形面积求得点A 的坐标,代入一次函数求得纵坐标,即可求解.【解析】如图,设4y x =-+与y 轴交于点C ,与x 轴交于点D ,∵直线4y x =-+与双曲线=ky x关于直线=y x 对称,∴AOC BOD ≌,由4y x =-+,令=0x ,得=4y ,令=0y 得=4x ,∴(0,4),(4,0)C D ,∴14482COD S ∆=⨯⨯=,∵AOB △的面积是4,∴()18422AOC S =-= ,∴1422A x ⨯⨯=,解得1A x =,代入4y x =-+得,43y x =-+=,∴(1,3)A ,∴133k =⨯=,∴k 的值为3,故答案为:3.【点睛】本题是反比例函数与一次函数的交点问题,考查了函数的对称性,三角形的面积,一次函数图象上点的坐标特征,求得A 的坐标是解题的关键.14.将一张长方形纸条ABCD 沿EF 折叠,点B ,A 分别落在B ',A '位置上,FB '与AD 的交点为G .若∠DGF =110°,则∠FEG 的度数为.14.55°/55度【分析】根据平行的性质可知∠DGF=∠GFB,再根据翻折的性质可知∠BFE=∠EFG,即可求解.【解析】∵四边形ABCD是长方形,∴AD BC∥,∴∠GFB=∠DGF,∵∠DGF=110°,∴∠GFB=∠DGF=110°,∵根据翻折的性质有∠BFE=∠EFG,∴∠BFE=∠EFG=12∠GFB,∴∠FEG=1110552⨯=o o,故答案为:55°.【点睛】本题考查了平行的性质、矩形的性质以及翻折的性质,掌握平行的性质是解答本题的关键.15.如图,MN是半圆O的直径,K是MN延长线上一点,直线KP交半圆于点Q,P.若20K∠=︒,40PMQ∠=︒,则MQP∠=.15.35°【分析】连接PO、QO,根据圆周角定理,得∠POQ=2∠PMQ=80°,则∠OPQ=∠OQP=50°,则∠POM=70°,再根据圆周角定理即可求解.【解析】连接PO、QO.根据圆周角定理,得∠POQ=2∠PMQ=80°,又OP =OQ ,则∠OPQ =∠OQP =50°,则∠POM =∠K +∠OPK =70°,所以∠PQM =12∠POM =35°.故答案为:35°.【点睛】此题综合运用了圆周角定理,等腰三角形的性质,三角形的外角的性质,难度适中.16.如图,ABC ∆的顶点都在正方形网格纸的格点上,则sin C =.16.31010【分析】连接AD ,利用勾股定理的逆定理先证明ACD ∆是直角三角形,从而可得90ADC ∠=︒,然后在Rt ACD ∆中,利用锐角三角函数的定义进行计算即可解答.【解析】如图:连接AD ,由题意得:2221750AC =+=,222125CD =+=,2226345AD =+=,∴222AD CD AC +=,∴ACD ∆是直角三角形,∴90ADC ∠=︒,在Rt ACD ∆中,35AD =,52AC =,∴35310sin 1052AD C AC ===,故答案为:31010.【点睛】本题考查了解直角三角形,勾股定理的逆定理,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.三、解答题(本大题共8个小题,共52分.解答应写出文字说明,证明过程或演算步骤)17.(4分)计算:202321(1)|13()231--+--.【解析】2023221(1)|13|()231--+-----=()131314-+--+-=131314-+----=7-【点睛】本题主要考查了实数的运算,熟练掌握运算法则是解答本题的关键.18.(5分)为提高病人免疫力,某医院精选甲、乙两种食物为确诊病人配制营养餐,两种食物中的蛋白质含量和铁质含量如表.如果病人每餐需要35单位蛋白质和40单位铁质,那么每份营养餐中,甲、乙两种食物各需多少克?每克甲种食物每克乙种食物其中所含蛋白质0.5单位0.7单位其中所含铁质1单位0.4单位【解析】设甲、乙两种食物各需x 克、y 克,则0.50.7350.440x y x y +=⎧⎨+=⎩,解得2830x y =⎧⎨=⎩.答:每份营养餐中,甲、乙两种食物分别要28,30克.【点睛】本题考查了二元一次方程组的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.19.(6分)如图,AM BN ∥,AC 平分BAM ∠,交BN 于点C ,过点B 作BD AC ⊥,交AM 于点D ,垂足为O ,连接CD ,求证:四边形ABCD是菱形.【解析】证明:∵AC 平分BAM ∠,AM BN ∥,∴12∠=∠,23∠∠=.∴13∠=∠.∴BA BC =.又∵BD AC ⊥于点O ,∴OA OC =.在AOD △和COB △中,23OA OC AOD COB ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴()AOD COB ASA ≌.∴OD OB =.∴四边形ABCD 是平行四边形.又∵BA BC =,∴平行四边形ABCD 是菱形.【点睛】本题主要考查了菱形的判定,涉及平行四边形的判定和性质,全等三角形的判定和性质,角平分线的性质,平行线的性质等知识,熟练掌握菱形的判定方法是解题的关键.20.(6分)某校九年级为了解学生课堂发言情况,随机抽取该年级部分学生,对他们某天在课堂上发言的次数进行了统计,其结果如下表,并绘制了如图所示的两幅不完整的统计图,已知B 、E 两组发言的人数比为10:3,请结合图中相关数据回答下列问题:(1)A组有人,C组有人,E组有人,并补全直方图;(2)该年级共有学生600人,请估计全年级在这天发言次数不少于20的人数;(3)已知A组发言的学生中恰有一位女生,E组发言的学生中恰有两位男生,现从A组与E组中分别抽一位学生写报告,求所抽的两位学生至多有一位男生的概率.【解析】试题分析:(1)根据B、E两组发言的人数比为10:3,即可求得B组发言人数的百分比,从而可以求得抽取的总人数,即可求得结果;(2)先求得发言次数不少于20的人数所占的百分比,再乘以600即可得到结果;(3)先列树状图表示出所有等可能的情况,再根据概率公式求解即可.(1)∵B、E两组发言的人数比为10:3,E组发言人数的百分比为6%∴B组发言人数的百分比为20%∴B组发言的人数=10÷20%=50人∴A组有50×4%=2人,C组有50×40%=20人,E组有50×6%=3人(2)由题意得(人)答:全年级在这天发言次数不少于20的人数为60人;(3)列树状图:共有6六种等可能情况,符合至多有一位男生的情况有4种因此P (至多有一位男生)4263==.21.(6分)电力公司在高山上建设如图1所示的输电铁塔,其示意图如图2所示,铁塔A 沿着坡面到山脚的距离200m AC =,铁塔B 沿着坡面到山脚的距离60m BD =,坡面AC 与山脚水平线CD 的夹角140ACD ∠=︒,坡面BD 与山脚水平线CD 的夹角120BDC ∠=︒.(1)求铁塔A 到山脚水平线CD 的距离;(2)若从铁塔A 看铁塔B 的俯角为10°,求铁塔A 与铁塔B 的距离AB 的长(结果精确到1m ).(参考数据:sin 400.643︒≈,cos 400.766︒≈,tan 400.839︒≈,sin100.174︒≈,cos100.985︒≈,tan100.176︒≈,3 1.732≈)【解析】(1)解:如下图,过A 作AE CD ⊥交DC 延长线于E ,90AEC ∴∠=︒,140ACD ∠=︒,18014040ACE ∴∠=︒-︒=︒,200m AC =Q .∴在Rt ACE 中,sin AE ACE AC∠=,sin 200sin 402000.643128.6m AE AC ACE ∴=⋅∠=︒≈⨯=.答:铁塔A 到山脚水平线CD 的距离约为128.6m .(2)如上图,过B 作BF CD ⊥交CD 的延长线于F ,过A 作AH CD ∥交FB 的延长线于H ,则90AEC BFE H ∠=∠=∠=︒,∴四边形AEFH 为矩形,128.6m HF AE ∴==.120BDC ∠=︒ ,60BDF ∴∠=︒;60m BD = ,∴在Rt BDF △中,sin BF BDF BD∠=,3sin 60sin 6060303301.73251.96m 2BF BD BDF ∴=⋅∠=⨯≈︒=⨯=⨯=,128.651.9676.64m BH HF BF ∴=-=-=.在Rt ABH △中,sin BH BAH AB ∠=,76.6476.64440m sin sin100.174BH BA AB H ∴==≈≈∠︒.答:铁塔A 到铁塔B 的距离AB 的长约为440m .22.(7分)如图,直线MN 交⊙O 于A ,B 两点,AC 是直径,AD 平分∠CAM 交⊙O 于D ,过点D 作DE ⊥MN 于点E .(1)求证:DE 是⊙O 的切线;(2)若DE =4cm ,AE =3cm ,求⊙O 的半径.【解析】(1)证明:连接OD ,∵OA=OD,∴∠1=∠2,∵AD平分∠CAM,∴∠2=∠3,∴∠1=∠3,∴MN∥OD,∵DE⊥MN,∴DE⊥OD,∴DE是⊙O的切线;(2)解:连接CD,∵AC是⊙O的直径,∴∠ADC=90°,43+=5,∴AD=22+=22DE AE∵DE⊥MN,∴∠AED=90°,∴∠ADC=∠AED,又∵∠2=∠3,∴△ADC ∽△AED ,∴AC AD AD AE =,即553AC =,∴AC =253,∴OA =12AC =256,即⊙O 的半径为256cm .【点睛】本题考查了切线的判定、等腰三角形的性质、平行线的判定与性质、相似三角形的判定与性质、勾股定理等知识;本题综合性强,有一定难度.23.(8分)如图,已知抛物线22y ax bx =++()0a <与y 轴交于点C ,与x 轴交于()1,0A -,()2,0B 两点.(1)求抛物线的函数表达式;(2)若点D 是第二象限抛物线上的动点,DE x 轴,交直线BC 于点E ,点G 在x 轴上,点F 在坐标平面内,是否存在点D ,使以D ,E ,F ,G 为顶点的四边形是正方形?若存在,求点D 的坐标;若不存在,请说明理由.【解析】(1)将()1,0A -,()2,0B 代入22y ax bx =++()0a <中,得204220a b a b -+=⎧⎨++=⎩,解得:11a b =-⎧⎨=⎩∴抛物线的函数表达式为22y x x =-++.(2)由题意和22y x x =-++可得()0,2C ,()2,0B ,可设直线BC 的函数表达式为:2y kx =+,将()2,0B 代入得:220k +=,∴1k =-,∴直线BC 的函数表达式为2y x =-+.设()2,2D t t t -++(0t <),分两种情况:①当DE 为边时,如图1,四边形DEFG 是正方形(点G 、F 可互换位置).则22DG D t E t ==-++,故E 的纵坐标与D 的纵坐标相等为22t t -++,将22y t t =-++代入2y x =-+中,可得E 的横坐标为2t t -,则点E 的坐标为()22,2t t t t --++,2t t tDE =--∴DE EF =,即222t t t t t --=-++,解得2t =(0t <,要舍)或12t =-,∴点D 的坐标为15,24⎛⎫- ⎪⎝⎭.②当DE 为对角线时,如图2,连接FG ,过点D 作DH x ⊥轴于点H ,DE HG ∥,DH FG ∥,易得2DE FG DH ==,则()2222224DE t t t t =-++=-++,则E 的纵坐标为2224t t t -+++,∴点E 的坐标为()22224,2t t t t t -+++-++.点E 在直线2y x =-+上,∴2222342t t t t -++=--+,解得23t =-或2(0t <,要舍),∴点D 的坐标为28,39⎛⎫- ⎪⎝⎭.综上可得:存在点D ,使以D ,E ,F ,G 为顶点的四边形是正方形,点D 的坐标为15,24⎛⎫- ⎪⎝⎭或28,39⎛⎫- ⎪⎝⎭.24.(10分)如图1,在正方形ABCD 中,E ,F 分别在边AB BC ,上,且CE DF ⊥于点O .(1)试猜想线段CE 与DF 的数量关系为______;(2)数学小组的同学在此基础上进行了深入的探究:①如图2,在正方形ABCD 中,若点E ,F ,G ,H 分别在边AB BC CD DA ,,,上,且EG FH ⊥于点O ,求证:EG FH =;②如图3,将①中的条件“在正方形ABCD 中”改为“在矩形ABCD 中,AB a =,2BC a =”,其他条件不变,试推理线段EG 与FH 的数量关系;③如图4,在四边形ABCD 中,90ABC ∠=︒,60BCD ∠=︒,6AB BC CD ===,点M 为AB 的三等分点,连接CM ,过点D 作DN CM ⊥,垂足为点O ,直接写出线段DN 的长.【解析】(1)证明:∵四边形ABCD 是正方形,90,B DCF BC CD ︒∴∠=∠==,90BCE DCE ∴∠+∠=︒,CE DF ⊥ ,90CPD ︒∴∠=,90CDF DCE ∴∠+∠=︒,BCE CDF ∴∠=∠,()CBE DCF ASA ∴ ≌,CE DF ∴=.(2)①证明:过点H 作HN BC ⊥交于N ,过点G 作GM BA ⊥交于M ,∵四边形ABCD 是正方形,BC CD∴= 四边形BCGM 为矩形,四边形CDHN 为矩形,MG BC ∴=,HN CD=∴MG HN =,∵HF EG ⊥,∴90MGE OPG NHF OPG ∠+∠=∠+∠=︒,∴MGE NHF ∠=∠,∴()HFN GEM ASA ≌,∴HF EG =;②解:2EG FH =;理由:过点H 作HQ BC ⊥交于Q ,过点G 作GP ⊥AB 交于P ,由①可得,QHF PGE ∠=∠,QHF PGE ∴V V ∽,HF HQ GE PG∴=,,2AB a BC a ==Q ,2,PG a HQ a ∴==,122HF a GE a ∴==,2EG FH ∴=;③解:如图3,过点D 作DS BC ⊥于S ,90DSN DSC B ∴∠=∠=∠=︒,60,6DCS CD ∠=︒=Q ,3sin 60332DS CD CD ∴=⋅︒==, 点M 是AB 的三等分点,6AB =,2BM ∴=或4BM =,6BC = ,22210CM BC BM ∴=+=或213,DN CM ⊥Q ,BM DS ∴∥,BMC DJM ∴∠=∠,90DJM NDS NDS DNS ∠+∠=∠+∠=︒Q ,DNS DJM ∴∠=∠,BMC DJM DNS ∴∠=∠=∠,∴BCM SDN ∽,CM BC DN SD ∴=,210633DN ∴=,或213633DN =,解得30DN 或39.【点睛】本题考查了四边形的综合题,正方形的性质,矩形的性质,全等三角形的判定和性质,相似三角形的判定和性质,勾股定理,正确地作出辅助线是解题的关键.。
最新甘肃省中考数学押题预测密卷有答案 最新题必考题必考题型
最新甘肃省中考数学押题预测密卷一、选择题(本大题共10小题,每小题4分,共40分,)1.如果零上6℃记作+6℃,哪么零下6℃记作 ( ) A.6℃ B.-6℃ C.6 D.-62.如果x 2-3x +a 可分解为(x +2)(x -5),那么a 的值为 ( ) A. -3 B. -5 C. 10 D. -103.如图,已知︒=∠701,要使AB//CD ,则须具备的另一个条件是 ( ) A.︒=∠702 B.︒=∠1002 C.︒=∠1102 D.︒=∠11034.在反比例函数y=的图象的每一条曲线上,y 都随x 的增大而增大,则k 的1-x A.x ≥0 B.x >0且x ≠1 C.x >0 D.x ≥0且x ≠1 6.如图所示,在△ABC 中,AB=AC ,∠BAC =36°,∠ABC 与∠ACB 的角平分线相交于点p ,则∠BPC 的度数为 ( )A. 72°B. 108°C. 144°D. 126°7.下列命题中,正确的是 ( ) A. 有两边和一角对应相等的两个三角形全等B. 有一边和两角对应相等的两个三角形全等C. 有三个角对应相等的两个三角形全等D. 以上答案都不对8.为了解某校计算机等级考试的情况,抽取60名学生的计算机考试成绩进行了统计,统计结果如表所示,则这60名学生计算机考试成绩的众数..、中位数...分别是 ( )A.20,16 B.16,20 C.20,12 D.16,129.抛物线的图形如图,则下列结论:①>0;②;③>21;④<1.其中正确的结论是 ( )A.①②B.②③C.②④D.③④ 10.如图,两块完全重合的正方形纸片,如果上面的一块绕正方形的中心O 作0°~90°的旋转,那么旋转时露出的△ABC 的面积(S)随着旋转角度(n)的变化而变化,下面表示S 与n 的关系的图象大致是 ( )8小题,每小题4分,共32分,只要求填写最后结果)11.如图,数轴上A B ,两点表示的数分别为1-点B 关于点A 的对称点为C ,则点C 所表示的数为__________。
2024年广东省深圳市中考数学模拟押题预测试卷
2024年广东省深圳市中考数学模拟押题预测试卷一、选择题(每题3分,共24分)1.(★)(3分)二次根式的值是()A.-3B.3或-3C.9D.32.(★)(3分)函数y=的自变量x的取值范围是()A.x≠-2B.x≥-2C.x>-2D.x<-23.(★)(3分)下列式子、、、、、,二次根式的个数()A.4B.3C.2D.14.(★)(3分)下列各式中,运算正确的是()A.a6÷a3=a2B.C.D.5.(★)(3分)下列根式中,不是最简二次根式的是()A.B.C.D.6.(★★)(3分)已知a为实数,那么等于()A.a B.-a C.-1D.07.(★★)(3分)已知实数a在数轴上对应的点如图所示,则-的值等于() A.2a+1B.-1C.1D.-2a-18.(★)(3分)已知是正整数,则实数n的最大值为()A.12B.11C.8D.3二、填空题(每题3分,共36分)9.(★★)(3分)化简:=.10.(★)(3分)计算:=2.11.(★★)(3分)使在实数范围内有意义的x应满足的条件是x≥1.12.(★★★)(3分)计算=8-4.13.(★★)(3分)当x≤0时,化简|1-x|-的结果是1.14.(★★)(3分)在实数范围内分解因式:x4-25=.15.(★★★)(3分)若|a-2|++(c-4)2=0,则a-b+c=3.16.(★★★)(3分)已知y=--1,求x+y=2.17.(★★)(3分)若成立,则x满足2≤x<3.18.(★★★)(3分)下列各式:①3+3=6;②=1;③+==2;④=2,其中错误的有①②③.19.(★★★)(3分)=-1-.20.(★★★)(3分)观察下列各式:…请你将发现的规律用含自然数n(n≥1)的代数式表达出来(n≥1).三、计算题:(每题6分,共24分)21.(★★★)(6分).22.(★★)(6分)计算:.23.(★★)(6分)化简:.24.(★★)(6分)计算:-++.四、解答题(每题9分,共36分)25.(★★★)(8分)先化简,再求值:,其中x=+1.26.(★★)(10分)设长方形的长与宽分别为a,b,面积为S.①已知a=cm,b=2cm,求S;②已知S=cm2, b=cm,求a.五.阅读理解:(6分)27.(★★★★)(6分)对于任意不相等的两个数a,b,定义一种运算※如下:a※b=,如3※2=.试求12※4的值.六、综合题(12分)28.(★★★)(6分)阅读下面问题:;;.…试求:(1)的值;(2)的值; (3)(n为正整数)的值.29.(★★★)(6分)计算:(+)2007×(-)2006.。
最新中考数学押题预测密卷 最新题必考题必考题型
成都市最新中考数学押题预测密卷一、选择题(共10小题,每小题3分,共30分)1.在0,3,-1,-3这四个数中,最大的数是( )A .0.B .3.C .-1.D .-3. 2.式子3x -在实数范围内有意义,则x 的取值范围是( ) A .x >3. B .x ≥3. C .x <3. D .x ≤3.3.如图,△ ABO 的顶点坐标分别是A (-3,3)、B (3,3)、O (0,0),试将△ABO 放大,使放大后的△EFO 与△ABO 对应边的比为1︰2,则点E 和点F 的坐标分别为( ) A .(-6,6),(6,6) B .(6,-6),(6,6)C .(-6,6),(6,-6)D .(6,6),(-6,-6) 4.五箱苹果的质量分别为(单位:千克):18,20,21,22,19.则这五箱苹果质量的平均数和中位数分别为( ).A. 19和20B. 20和19C. 20和20D. 20和21 5.下列计算正确的是 ( ) A .a 3÷a 2=a B .a 3+a 2=a 5C .(a 3)2=a5D .a 2·a 3=a66.下列等式正确的是( ).A 、()233-=- B 、2(3)3-=- C 、822= D 、4(2)2-=7.如图,甲、乙两图是分别由五个棱长为“1是( )A .主视图.B .左视图.C .俯视图.D .三视图都一致.8.今年的“六·一”儿童节是个星期五,某校学生会在初一年级进行了学生对学校作息安排的三种期望(全天休息、半天休息、全天上课)的抽样调查,并把调查结果绘成了如图1、2的统计图,已知此次被调查的男、女学生人数相同.根据图中信息,下列判断:①在被调查的学生中,期望全天休息的人数占53%;②本次调查了200名学生;③在被调查的学生中,有30%的女生期望休息半天;④若该校现有初一学生900人,根据调查结果估计期望至少休息半天的学生超过了720人.其中正确的判断有( ) A .4个. B .3个. C .2个. D .1个.9.课题研究小组对附着在物体表面的三个微生物(课题小组成员把他们分别标号为1,2,3)的生长情况进行观察记录.这三个微生物第一天各自一分为二,产生新的微生物(分别被标号为4,5,6,7,8,甲乙yxF E B AO9),接下去每天都按照这样的规律变化,即每个微生物一分为二,形成新的微生物(课题组成员用如图所示的图形进行形象的记录).那么标号为100的微生物会出现在( ) A .第3天. B .第4天. C .第5天. D .第6天.10.B 为线段OA 的中点,P 为以O 为圆心,OB 为半径的圆上的动点,当PA 的中点Q 落在⊙O 上时,如图,则cos ∠OQB 的值等于( ) A .12 . B .13 . C .14 . D .23.二、填空题(共6小题,每小题3分,共18分)11.分解因式:3ax 2-3ay 4= .12.2月28日15时,据统计大约有1.97亿海内外网民纷纷登陆新华网发展论坛,就他们关心的热点问题向总理提问.将1.97亿用科学记数法表示为13.一只袋内装有2个红球、3个白球、5个黄球(这些球除颜色外没有其它区别),从中任意取出一球,则取得红球的概率是___________。
2024年中考数学考前押题密卷+全解全析(山东济南卷)
2024年中考数学考前押题密卷全解全析第Ⅰ卷一、选择题(本大题共10个小题,每小题4分,共40分.在每个小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑) 1.下列各数的相反数中,最大的是( ) A .23B .23−C .1D .1−【答案】D【分析】此题主要考查了有理数大小比较的方法,首先求出所给个数的相反数,然后根据有理数大小比较的方法,判断出所给的各数的相反数中,最大的是哪个数即可,解答此题的关键是要明确:(1)正数都大于0;(2)负数都小于0;(3)正数大于一切负数;(4)两个负数,绝对值大的其值反而小. 【详解】解:23、23−、1、1−的相反数分别是23−、23、1−、1,221133−<−<<, ∴所给的各数的相反数中,最大的是1−.故选:D .2 )A .B .C .D .【答案】B【分析】本题考查了几何体的三视图,结合俯视图是从上面往下面看到的,据此即可作答. 【详解】解:结合几何体的特征,俯视图是长方形且中间是有一条实线 ,即是俯视图为,故选:B3.据中国国家铁路集团有限公司消息:在2024年为期40天的春运期间,全国铁路累计发送旅客4.84亿人次,日均发送12089000人次.将12089000用科学记数法表示应为( ) A .612.08910⨯ B .61.208910⨯ C .71.208910⨯ D .80.1208910⨯【答案】C【分析】此题考查科学记数法的表示方法.科学记数法的表示形式为10na ⨯的形式,其中1||10a ≤<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同. 【详解】解:将12089000用科学记数法表示应为71.208910⨯, 故选:C .4.直尺和三角板如图摆放,若155∠=︒,则2∠的大小为( )A .35︒B .55︒C .135︒D .145︒【答案】D【分析】本题主要考查了平行线的性质,三角板中角度的计算,熟知两直线平行,内错角相等是解题的关键.根据平行线的性质得到3435∠∠==︒,再由邻补角互补即可得出结果. 【详解】解:如图所示:1+3=90∠∠︒,∵155∠=︒, ∴335∠=︒,由题意得,直尺的两边平行, ∴3435∠∠==︒, ∴21804145=︒−=︒∠∠, 故选D .5.陇南康县王坝生态民俗旅游区,环境优美,群山叠翠,被誉为“陇上田园、诗画王坝”.下面四个艺术字中,既是轴对称图形又是中心对称图形的是( )A .B .C .D .【答案】C【分析】本题考查中心对称图形和轴对称图形的定义,根据中心对称图形的定义(把一个图形绕着某一个点旋转180度,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,)和轴对称图形的定义(如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形;)进行逐一判断即可.【详解】解:A 、既不是中心对称图形,也不是轴对称图形,不符合题意; B 、既不是中心对称图形,也不是轴对称图形,不符合题意; C 、既是轴对称图形又是中心对称图形,符合题意;D 、既不是中心对称图形,也不是轴对称图形,不符合题意; 故选:C .6.若0a b <<,则下列结论正确的是( ) A .a b a b −<−<< B .b a a b −<−<< C .a b b a <<−<− D .a b a b <<−<−【答案】C【分析】本题考查的是不等式的性质.根据不等式的性质解答即可. 【详解】解:0a b <<Q ,0a b ∴−>−>, a b b a ∴<<−<−.故选:C .7.不透明袋子中装有红、蓝小球各一个,除颜色外无其他差别,随机摸出一个小球后,放回并摇匀,再从中随机摸出一个小球,则两次都摸到蓝球的概率为( )A .14 B .13C .12D .23【答案】A【分析】本题考查列表法与树状图法,列表可得出所有等可能的结果数以及两次都摸到蓝球的结果数,再利用概率公式可得出答案. 【详解】解:列表如下:共有4种等可能的结果,其中两次都摸到蓝球的结果有1种,∴两次都摸到蓝球的概率为14. 故选:A .8.已知ABCD Y 中,∠A =55°,分别以点B ,点C 为圆心,以大于12BC 的长为半径画弧,分别交于点M ,N ,作直线MN 交DC 于点E ,则ABE ∠的度数为( )A .55°B .60°C .65°D .70°【答案】D【分析】由ABCD Y 得55C A ∠=∠=︒,根据题意得MN 是BC 得垂直平分线,则BE CE =,得55C EBC ∠=∠=︒,即求得ABE ∠的度数.【详解】∵解:四边形ABCD 是平行四边形,∴55C A ∠=∠=︒,180A ABC ∠+∠=︒,则18055125ABC ∠=︒−︒=︒,∵以点B ,点C 为圆心,以大于12BC的长为半径画弧,分别交于点M ,N ,作直线MN 交DC 于点E , ∴MN 是BC 得垂直平分线,则BE CE =, 所以55C EBC ∠=∠=︒,那么1255570ABE ABC EBC ∠=∠−∠=︒−︒=︒, 故选:D .【点睛】本题主要考查的是平行四边形性质以及垂直平分线等知识内容,熟练掌握垂直平分线性质是解题的关键.9.如图,点P 是平行四边形ABCD 边上一动点,A D C B →→→的路径移动,设点Р经过的路径长为x ,BAP △的面积是y ,则大致能反映y 与x 之间的函数关系的图象是( )A .B .C .D .【答案】C【分析】本题考查动点问题的函数图像,一次函数的图像,平行四边形的性质.注意分段考虑.解题的关键是数形结合的应用.根据题意分三段来考虑,点P 沿A D →移动,BAP △的面积逐渐变大;点P 沿→D C 移动,BAP △的面积不变;点P 沿C B →移动,BAP △的面积逐渐减小,据此选择即可.【详解】解:如图,过点B 作BH AD ⊥交DA 的延长线于H ,设BH h =,AB 与CD 之间的距离为m ,点P 沿A D →移动,1122BAPSAP BH hx =⋅=,h 是定值,则y 是x 的一次函数,且BAP △的面积逐渐变大; 点P 沿→D C 移动,12BAPSAB m =⋅,m 与AB 是定值,即BAP △的面积不变; 点P 沿C B →移动,()()1122BAPSAD CD BC x BH h AD CD BC x =++−⋅=++−,h 是定值,则y 是x 的一次函数,且BAP △的面积逐渐减小; 故选:C .10.在平面直角坐标系中,横、纵坐标都是整数的点叫做整点,记函数()20y x a a =−+>的图象在x 轴上方的部分与x 轴围成的区域(不含边界)为W .例如当2a =时,区域W 内的整点个数为1,若区域W 内恰有7个整点,则a 的取值范围是( )A .23a <≤B .23a ≤<C .34a <≤D .34a ≤<【答案】C【分析】根据题意对2,3,4a =时的二次函数图象进行分析,发现每次向上平移1即将上一次的边界整点包括在内,找到规律即可求得a 的取值范围【详解】当2a =时,区域W 内的整点个数为1,此时22y x =−+令0y =,解得x =0x =,解得2y =故函数22y x =−+的图像在x 轴上方的部分与x 轴围成的区域中,整数点有(0,1)有()()()1,11,1,0,2−,三个整数点在边界上如图,当3a =时,此时顶点为(0,3),在W 区域内有点()()()()1,11,1,0,2,0,1−,四个整数点,边界上有()()()0,31,2,1,2−,三个整数点,当4a =时,W 将3a =时,在边界上是的整数点包括进来,即此时恰好有7个点, 所以34a <≤ 故选C【点睛】本题考查了二次函数平移,二次函数的图像的性质,找到规律是解题的关键.第Ⅱ卷二、填空题(本大题共5个小题,每小题3分,共15分) 11.分解因式:21236x y xy y −+= . 【答案】()26y x −【分析】本题考查了因式分解,熟练掌握因式分解的方法是解题的关键. 先提取公因式,再运用完全平方公式进行分解即可. 【详解】解:()()222123612366x y xy y y x x y x −+=−+=−.故答案为:()26y x −.12.在平面直角坐标系中,已知点()3,2P −与点()3,Q a −关于原点对称,则=a . 【答案】2【分析】本题主要考查了平面直角坐标系内关于原点对称两点坐标特征,根据关于原点对称的点横、纵坐标均互为相反数这一特征求解即可. 【详解】解:已知点()3,2P −与点()3,Q a −关于原点对称,则2a −=−,即2a =故答案为:213.若关于x 的一元二次方程2(2)26k x kx k −−+=有实数根,则k 的取值范围为 . 【答案】32k ≥且2k ≠【分析】根据二次项系数非零及根的判别式△0≥,即可得出关于k 的一元一次不等式,解之即可得出k 的取值范围.【详解】解:关于x 的方程2(2)26k x kx k −−+=有两个实数根, 2Δ(2)4(2)(6)0k k k ∴=−−−−≥,解得:32k ≥,20k −≠, 2k ∴≠,k ∴的取值范围为32k ≥且2k ≠,故答案为:32k ≥且2k ≠.【点睛】本题考查了根的判别式以及一元二次方程的定义,根据二次项系数非零及根的判别式0∆≥,列出关于k 的一元一次不等式组是解题的关键.14.如图,△ABC 在边长为1个单位的方格纸中,△ABC 的顶点在小正方形顶点位置,那么∠ABC 的正切值为 .【答案】12/0.5【分析】根据题意和图形,可以求得AC 、BC 和AB 的长,然后根据勾股定理的逆定理可以判断ACB △的形状,然后即可求得ABC ∠的正弦值.【详解】解:由图可得,AC =AB BC =∴222AC BC AB +=,∴ACB △是直角三角形,∴1tan 2AC ABC BC ∠===,故答案为:12.【点睛】本题考查勾股定理的逆定理、解直角三角形,解答本题的关键是明确题意,利用数形结合的思想解答.15.如图,菱形ABCD 的边长为2,以C 为圆心,BC 为半径画弧至点D ,恰好经过点A ,再以A 为圆心,AD 为半径画弧至点B ,恰好经过点C ,求图中的阴影面积 .【答案】83π−【分析】此题主要考查了菱形的性质以及等边三角形判定和扇形的面积公式的应用,根据已知得出ABC 是等边三角形是解题关键.先证得ABC 是等边三角形,进而利用扇形面积和菱形面积求出即可. 【详解】解:连接AC BD ,,交于点O ,∵菱形ABCD 的边长为2,2AB BC ∴==,AC BD ⊥, AB AC =,ABC ∴是等边三角形,60BAC ∴∠=︒,2AB AC ==,1OA =,OB OD =,OB OD ∴=,BD ∴=,2120CD BC BAD ∴==∠=︒,,∴图中阴影部分的面积为:21202182236023ππ⎛⨯⨯−⨯⨯=− ⎝故答案为:83π−16.如图,线段AC 与BD 相交于点E ,保持60BEC ∠=︒,已知3AC =,2BD =,则AD BC +的最小值是 .【分析】过点B 作BF AC ∥,过点A 作AF BC ∥交BF 于F ,过点D 作DH BF ⊥于H ,连接DF ,则四边形ACBF 为平行四边形,从而得AF BC =,3BF AC ==,60DBH BEC ∠=∠=︒,在Rt BDH △中分别求出1BH =,DH 2HF BF BH ==,由此可求出DF =AD BC AD AF DF +=+≥可得出AD BC +的最小值.此题主要考查了平行四边形的性质,直角三角形的性质,勾股定理等,正确地作出辅助线构造平行四边形和直角三角形,理解两点之间线段最短是解决问题的关键.【详解】解:过点B 作BF AC ∥,过点A 作AF BC ∥交BF 于F ,过点D 作DH BF ⊥于H ,连接DF ,如下图所示:BF AC ∥,AF BC ∥,3AC =,∴四边形ACBF 为平行四边形,AF BC ∴=,3BF AC ==,又60BEC ∠=︒,60DBH BEC ∴∠=∠=︒,在Rt BDH △中,9030BDH DBH ∠=︒−∠=︒,2BD =,1BH ∴=,由勾股定理得:DH312HF BF BH ∴=−=−=,在Rt DHF △中,由勾股定理得:DF ==AF BC =,AD BC AD AF ∴+=+,根据“两点之间线段最短”得:AF AD DF +≥,即AF AD +≥AF AD ∴+AD BC ∴+三、解答题(本大题共10个小题,共86分.解答应写出文字说明,证明过程或演算步骤)17.(6分)计算:()()220241312π−⎛⎫−−+ ⎪⎝⎭. 【答案】6【分析】本题主要考查了实数的运算,零指数幂,负整数指数幂,先计算零指数幂,负整数指数幂和算术平方根,再计算加减法即可.【详解】解:()()220241312π−⎛⎫−−+ ⎪⎝⎭1214=+−+6=.18.(6分)计算(1)解不等式组23789x xx x⎧>⎪⎨⎪−<⎩;(2)化简22211444a a a a a −−÷−+−.【答案】(1)0x > (2)222a a a −−−−【分析】本题主要考查解不等式组、分式的混合运算等知识点,掌握相关计算方法和步骤成为解题的关键. (1)先分别求出各不等式的解集,然后再确定不等式组的解集即可; (2)根据分式的混合运算法则计算即可. 【详解】(1)解:23789x xx x ⎧>⎪⎨⎪−<⎩①②解不等式①可得:0x >, 解不等式②可得:4x >−, 所以原不等式组的解集为:0x >.(2)解:22211444a a a a a −−÷−+− ()()()()()2111222a a a a a a +−−=−÷+−− ()()()()()2221112a a a a a a +−−=−⨯+−−()()221a a a +=−−+222a a a −−=−−.19.(6分)如图,点A 、F 、C 、D 在一条直线上,AB DE ∥且AB DE =,AF DC =.(1)求证:ACB DFE ∠=∠;(2)求证:四边形BFEC 是平行四边形. 【答案】(1)见解析 (2)见解析【分析】本题考查了平行线的判定与性质,全等三角形的判定与性质,平行四边形的判定,解题关键是掌握全等三角形的判定与性质及平行四边形的判定方法.(1)根据平行线的性质“两直线平行,内错角相等”得A D ∠=∠,再根据AF CD =,等量交换得AC DF =,结合已知条件AB DE =,根据全等三角形判定(边角边),得ABC DEF ≌△△,即可得ACB DFE ∠=∠; (2)根据(1)得ABC DEF ≌△△,由全等三角形的性质得BC EF =,ACB DFE ∠=∠,根据平行线的判定“内错角相等,两直线平行”得BC EF ∥,再根据平行四边形的判定“一组对边平行且相等的四边形是平行四边形”,即可证得结论. 【详解】(1)证明:AB DE ∥,A D ∴∠=∠,又AF CD =,AF CF CD CF ∴+=+,即AC DF =,在ABC 和DEF 中,AB DEA D AC DF =⎧⎪∠=∠⎨⎪=⎩,()SAS ABC DEF ∴≌,ACB DFE ∴∠=∠.(2)证明:由(1)得ABC DEF ≌△△, BC EF ∴=,ACB DFE ∠=∠, BC EF ∴∥,四边形BFEC是平行四边形.20.(8分)某学校组织学生采摘山楂制作冰糖葫芦(每串冰糖葫芦由5颗山楂制成).同学们经过采摘、筛选、洗净等环节,共得到7.6kg的山楂.甲、乙两位同学各随机分到了15颗山楂,他们测量了每颗山楂的重量(单位:g),并对数据进行整理、描述和分析.下面给出了部分信息.a.甲同学的山楂重量的折线图:b.乙同学的山楂重量:8,8.8,8.9,9.4,9.4,9.4,9.6,9.6,9.6,9.8,10,10,10,10,10c.甲、乙两位同学的山楂重量的平均数、中位数、众数:根据以上信息,回答下列问题:(1)写出表中m,n的值;(2)对于制作冰糖葫芦,如果一串冰糖葫芦中5颗山楂重量的方差越小,则认为这串山楂的品相越好.①甲、乙两位同学分别选择了以下5颗山楂制作冰糖葫芦.据此推断:品相更好的是(填写“甲”或“乙”);②甲同学从剩余的10颗山楂中选出5颗山楂制作一串冰糖葫芦参加比赛,首先要求组成的冰糖葫芦品相尽可能好,其次要求冰糖葫芦的山楂重量尽可能大.他已经选定的三颗山楂的重量分别为9.4,9.5,9.6,则选出的另外两颗山楂的重量分别为和;(3)估计这些山楂共能制作多少串冰糖葫芦.【答案】(1)9.4,10(2)①甲,②9.3,9.6(3)160串【分析】(1)根据中位数和众数的概念,即可求解;(2)①根据方差的定义,即可求解;②根据题意可知,剩余两个山楂的重量应该尽可能大,且接近已有的三个山楂的重量,以保证方差最小,据此解答即可.(3)已知总重量和调查的平均数,用总数量除以调查的平均数先求出大概有多少个山楂,再用山楂数除以每串冰糖葫芦的山楂数即可求出能制作多少串冰糖葫芦.【详解】(1)解:根据甲的折线图可以看出,这组数据从小到大排列,中间第8个数为9.4,也就是说这组数据的中位数为9.4,所以9.4m=;根据乙同学的山楂重量数据可以发现,重量为10克出现的次数最多,也就是说这组数据的众数为10,所以10n=.(2)解:①根据题意可知甲同学的5个冰糖葫芦重量分布于9.19.2−之间,乙同学的5个冰糖葫芦重量分布于8.89.4−,从中可以看出,甲同学的5个数据比乙同学的5个数据波动较小,所以,甲同学的5个冰糖葫芦重量的方差较小,故甲同学冰糖葫芦品相更好.②要求数据的差别较小,山楂重量尽可能大,∴可供选择的有9.3、9.6、9.9,当剩余两个为9.3、9.6,这组数据的平均数为9.48,方差为:222221[(9.39.48)(9.49.48)(9.59.48)(9.69.48)(9.69.48)]0.01365−+−+−+−+−⨯=,当剩余两个为9.6、9.9,这组数据的平均数为9.6,方差为:222221[(9.49.6)(9.59.6)(9.69.6)(9.69.6)(9.99.6)]0.0285−+−+−+−+−⨯=,当剩余两个为9.3、9.9,这组数据平均数为9.54,方差为:222221[(9.39.54)(9.49.54)(9.59.54)(9.69.54)(9.99.54)]0.04245−+−+−+−+−⨯=,据此,可发现当剩余两个为9.3、9.6,方差最小,山楂重量也尽可能大.(3)解:7.6千克7600=克,76009.5800÷=(个),8005160÷=(串),答:能制作160串冰糖葫芦.【点睛】本题考查了折线统计图,平均数,众数,中位数和方差,熟记方差的计算公式以及方差的意义是解题的关键.21.(8分)如图1,是一款手机支架图片,由底座、支撑板和托板构成.图2是其侧面结构示意图,量得托板长17cm AB =,支撑板长16CD cm =,底座长14cm DE =,托板AB 连接在支撑板顶端点C 处,且7cm CB =,托板AB 可绕点C 转动,支撑板CD 可绕D 点转动.如图2,若7060DCB CDE ∠=︒∠=︒,.(参考数值sin400.64cos400.77︒≈︒≈,,tan400.84︒≈ 1.73≈)(1)求点C 到直线DE 的距离(精确到; (2)求点A 到直线DE 的距离(精确到0.1cm). 【答案】(1)点C 到直线DE 的距离约为13.8cm (2)点A 到直线DE 的距离约为21.5cm【分析】(1)如图2,过点C 作CN DE ⊥,垂足为N ,然后根据三角函数可得sin CNCDN CD ∠=,即·sin CN CD CDN ∠=,最后将已知条件代入即可解答;(2)如图2,过A 作AM DE ⊥,交DE 的延长线于点M ,过点C 作CF AM ⊥,垂足为F ,再说明Rt ACF 中,9040AFC A ∠=︒∠=︒,,10cm AC =,然后根据三角函数和线段的和差即可解答. 【详解】(1)解:如图2,过点C 作CN DE ⊥,垂足为N由题意可知,16cm 60CD CDE =∠=︒,, 在Rt CDN △中,sin CNCDN CD ∠=,∴·sin 1613.8cm CN CD CDN ∠====.答:点C 到直线DE 的距离约为13.8cm .(2)解:如图3,过A 作AM DE ⊥,交DE 的延长线于点M ,过点C 作CF AM ⊥,垂足为F ,∴CN FM CN FM =,∥在Rt ACF 中,90703040AFC A BCN ∠=︒∠=∠=︒−︒=︒,,17710cm AC AB BC =−=−=, ∴·cos40100.777.7cm AF AC =︒≈⨯≈, ∴7.713.821.5cm AM AF FM =+=+=. 答:点A 到直线DE 的距离约为21.5cm .【点睛】本题主要考查了解直角三角形,正确的理解正弦、余弦的定义是解答本题的关键.22.(8分)如图,AB 是O 的直径,C ,D 是O 上的两点,且BC DC =,BD 交AC 于点E ,点F 在AC 的延长线上,BE BF =.(1)求证:BF 是O 的切线; (2)若12EF =,3cos 5ABC ∠=. ①求BF 的长; ②求O 的半径. 【答案】(1)见解析(2)①10;②O 的半径为203【分析】此题考查了切线的判定、圆周角定理、解直角三角形等知识,熟练掌握相关定理并结合图形进行正确推理是解题的关键.(1)证明90ABF ∠=︒,根据切线的判定定理即可得到得到结论; (2)①由(1)得:BE BF =,由AB 为O 的直径得到BC EF ⊥,则162CF CE EF ===,证明F ABC ∠=∠,利用cos CFF BF ∠=即可得到答案; ②在Rt BCF 中,由勾股定理求出8BC =,由cos 35ABC BC AB ∠==即可得到403AB =,即可得到答案.【详解】(1)证明:∵BC DC =, ∴D CBD ∠=∠, 又∵BC BC = ∴A D ∠=∠, ∴A CBD ∠=∠ ∵BE BF =, ∴BEC F ∠=∠.∵AB 为O 的直径, ∴90ACB ∠=︒, ∴90BEC CBE ∠+∠=︒, ∴90F A ∠+∠=︒. ∴90ABF ∠=︒, ∴OB BF ⊥, ∵OB 是圆的半径, ∴BF 是O 的切线;(2)解:①由(1)得:BE BF =, ∵AB 为O 的直径, ∴BC EF ⊥, ∴162CF CE EF ===,∵90,90ABC CBF CBF F ∠+∠=︒∠+∠=︒, ∴F ABC ∠=∠, 在Rt BCF 中,∵cos CF F BF ∠=, ∴3610cos 5CF BF F ==÷=∠;②在Rt BCF 中,8BC =,在Rt ABC △中,cos 35ABC BC AB ∠==, ∴3408cos 53BC AB ABC ==÷=∠. ∴O 的半径为203.23.(10分)党的二十大报告提出:“加快建设高质量教育体系,发展素质教育”.为扎实做好育人工作,某校深入开展“阳光体育”活动.该校计划购买乒乓球拍和羽毛球拍用于“阳光体育大课间”和学生社团活动.已知一副羽毛球拍比一副乒乓球拍多30元,且用1000元购买乒乓球拍的数量和用2000元购买羽毛球拍的数量相等.(1)求每副乒乓球拍和每副羽毛球拍的价格;(2)学校计划采购乒乓球拍和羽毛球拍共100副,且乒乓球拍的数量不超过羽毛球拍数量的2倍,要想花费的资金总额最少,则最多购买乒乓球拍多少副?资金总额最少为多少元? 【答案】(1)每副乒乓球拍的价格是30元,每副羽毛球拍的价格是60元(2)要想花费的资金总额最少,则最多购买乒乓球拍66副,资金总额最少为4020元【分析】本题考查一次函数和分式方程的应用.(1)设每副乒乓球拍的价格是x 元,则每副羽毛球拍的价格是()30x +元,根据题意列方程并求解即可;(2)设购买乒乓球拍a 副,则购买羽毛球拍()100a −副,根据题意列关于a 的一元一次不等式并求解;设花费的资金总额为W 元,写出W 关于a 的函数,根据该函数的增减性,确定当a 取何值时W 取最小值,求出最小值即可.【详解】(1)解:设每副乒乓球拍的价格是x 元,则每副羽毛球拍的价格是()30x +元.根据题意,得1000200030x x =+, 解得30x =,经检验,30x = 303060+=(元),∴每副乒乓球拍的价格是30元,每副羽毛球拍的价格是60元. (2)解:设购买乒乓球拍a 副,则购买羽毛球拍()100a −副.根据题意,得:()2100a a ≤−,解得2003a ≤,设花费的资金总额为W 元,则()3060100306000W a a a =+−=−+,∵300−<,∴W 随a 的增大而减小, ∵2003a ≤且x 为整数,∴当66a =时,W 取最小值,306660004020W =−⨯+=最小,∴要想花费的资金总额最少,则最多购买乒乓球拍66副,资金总额最少为4020元.24.(10分)如图①,已知点(1,0)A −,(0,2)B −,ABCD Y 的边AD 与y 轴交于点E ,且E 为AD 的中点,双曲线ky x=经过C 、D 两点.(1)求k 的值; (2)点P 在双曲线ky x=上,点Q 在y 轴上,若以点A 、B 、P 、Q 为顶点的四边形是平行四边形,直接写出满足要求的所有点Q 的坐标;(3)以线段AB 为对角线作正方形AFBH (如图③),点T 是边AF 上一动点,M 是HT 的中点,MN HT ⊥,交AB 于N ,当点T 在AF 上运动时,MNHT的值是否发生改变?若改变,求出其变化范围:若不改变,请求出其值,并给出你的证明. 【答案】(1)4k =(2)1(0,6)Q ,2(0,6)Q −,3(0,2)Q(3)结论:MNHT 的值不发生改变,12MN HT =证明见解析【分析】(1)设(1,)D t ,由DC AB ∥,可知(2,2)C t −,再根据反比例函数的性质求出t 的值即可; (2)由(1)知4k =可知反比例函数的解析式为4y x =,再由点P 在双曲线4y x =上,点Q 在y 轴上,设(0,)Q y ,4(,)P x x ,再分以AB 为边和以AB 为对角线两种情况求出x 的值,故可得出P 、Q 的坐标;(3)连NH 、NT 、NF ,易证NF NH NT ==,故NTF NFT AHN ∠=∠=∠,90TNH TAH ∠=∠=︒,12MN HT =由此即可得出结论. 【详解】(1)解:(1,0)A −,(0,2)B −,E 为AD 中点,1D x ∴=,设(1,)D t , 又DC AB ∥,(2,2)C t ∴−,24t t ∴=−,4t ∴=,4k ∴=;(2)解:由(1)知4k =,∴反比例函数的解析式为4y x =,点P 在双曲线4x 上,点Q 在y 轴上,∴设(0,)Q y ,4(,)P x x , ①当AB 为边时:如图1,若ABPQ 为平行四边形,则102x−+=,解得1x =,此时1(1,4)P ,1(0,6)Q ;如图2,若ABQP 为平行四边形,则122x −=,解得=1x −,此时2(1,4)P −−,2(0,6)Q −; ②如图3,当AB 为对角线时,AP BQ =,且AP BQ ∥;∴122x −=,解得=1x −,3(1,4)P ∴−−,3(0,2)Q ;故1(1,4)P ,1(0,6)Q ;2(1,4)P −−,2(0,6)Q −;3(1,4)P −−,3(0,2)Q ; (3)解:结论:MNHT 的值不发生改变,理由:如图4,连NH 、NT 、NF ,MN 是线段HT的垂直平分线,NT NH ∴=,四边形AFBH 是正方形,ABF ABH ∴∠=∠,在BFN 与BHN △中,BF BH ABF ABH BN BN =⎧⎪∠=∠⎨⎪=⎩,()BFN BHN SAS ∴≌,NF NH NT ∴==,NTF NFT AHN ∴∠=∠=∠,四边形ATNH 中,180ATN NTF ∠+∠=︒,而NTF NFT AHN ∠=∠=∠, 所以,180ATN AHN ∠+∠=︒,所以,四边形ATNH 内角和为360︒, 所以3601809090TNH ∠=︒−︒−︒=︒.12MN HT ∴=,∴12MN HT =.【点睛】此题是反比例函数综合题,主要考查了待定系数法求反比例函数的解析式、正方形的性质、等腰三角形的判定与性质、全等三角形的判定与性质等相关知识,解题的关键是学会用分类讨论的思想思考问题,学会添加常用辅助线,构造全等三角形解决问题.25.(12分)如图1所示,抛物线()21:0F y ax c a =+≠与直线34y x =相交于A 、B 两点(点B 在y 轴右侧),与y 轴相交于点C .已知点A 的横坐标为4−,点C 的纵坐标为325−.(1)求抛物线1F 的解析式;(2)如图2,将抛物线1F 以每秒b 个单位(259b <)沿射线AB 方向平移,5秒后得到新的抛物线2F ,抛物线2F 与x 轴相交于D 、E 两点(点D 在点E 左侧),与y 轴相交于点F .求DE 的长度(用含b 的式子表示); (3)在(2)的条件下,令214W DE CF =+,求W 的最小值. 【答案】(1)212533y x =−(2)(3)37316【分析】(1)先求出点A 的坐标,再用待定系数法求二次函数的解析式,即得答案; (2)将抛物线1F 沿射线AB 方向平移5b 个单位,即抛物线2F 是由抛物线1F 向右平移4b 个单位,再向上平移3b 个单位得到,所以抛物线2F 的解析式为()21254333y x b b =−+−,令0y =,求得抛物线2F 与x 轴的交点的横坐标,即得答案;(3)先求出点C ,点F 的坐标,得到21633b CF b=+,求得2166253W b b =−+,由此即可求出W 的最小值.【详解】(1)解:当4x =−时,()3434y =⨯−=− ,∴点()4,3A −−,将()4,3A −−,250,3C ⎛⎫− ⎪⎝⎭代入2y ax c =+中,得163253a c c +=−⎧⎪⎨=−⎪⎩,解得13253a c ⎧=⎪⎪⎨⎪=−⎪⎩, ∴抛物线1F 的解析式为212533y x =−;(2)将抛物线1F 沿射线AB 方向平移5b 个单位,∴抛物线2F 是由抛物线1F 向右平移4b 个单位,再向上平移3b 个单位得到, ∴抛物线2F 的解析式为()21254333y x b b =−+−,令()212543033y x b b =−+−=,即()21254333x b b−=−,解得:14x b =,24x b =21DE x x ∴=−=(3)令0x =,则()22125162504333333b y b b b =−+−=+−, 216250,333b F b ⎛⎫∴+− ⎪⎝⎭, 250,3C ⎛⎫− ⎪⎝⎭, 2216252516333333b b CF b b⎛⎫∴=+−−−=+ ⎪⎝⎭,由(2)知,DE = (22211163443W DE CF b b ∴=+=++2166253b b =−+,∴当69161623b −=−=⨯时,W 最小,最小值为37316.【点睛】本题考查了二次函数的图象与性质,用待定系数法求二次函数的解析式,二次函数与一次函数的交点问题,二次函数的平移,正确表示抛物线平移后的表达式是解题的关键.26.(12分)(1)如图1,在矩形ABCD 中,点E ,F 分别在边,DC BC 上,AE DF ⊥,垂足为点G .求证:ADE DCF △∽△. 【问题解决】(2)如图2,在正方形ABCD 中,点E ,F 分别在边,DC BC 上,AE DF =,延长BC 到点H ,使CH DE =,连接DH .求证:ADF H ∠=∠. 【类比迁移】(3)如图3,在菱形ABCD 中,点E ,F 分别在边,DC BC 上,11,8AE DF DE ===,60AED ∠=︒,求CF 的长.【答案】(1)见解析;(2)见解析;(3)3【分析】(1)矩形的性质,得到90C ADE ∠=∠=︒,由同角的余角相等,得到AED DFC ∠=∠,即可得证; (2)先证明()Rt Rt HL ADE DCF ≌,得到DE CF =,再证明()SAS DCF DCH ≌,得到DFC H ∠=∠,平行得到ADF DFC ∠=∠,即可得证;(3)延长BC 至点G ,使8CG DE ==,连接DG ,证明()SAS ADE DCG ≌,推出DFG 是等边三角形,得到11FG DF ==,再根据CF CG FG +=,求解即可. 【详解】(1)证明:∵四边形ABCD 是矩形, ∴90C ADE ∠=∠=︒, ∴90CDF DFC ∠+∠=︒, ∵AE DF ⊥, ∴90DGE ∠=︒, ∴90CDF AED ∠+∠=︒, ∴AED DFC ∠=∠, ∴ADE DCF △∽△;(2)证明:∵四边形ABCD 是正方形,∴,,90AD DC AD BC ADE DCF =∠=∠=︒∥, ∵AE DF =, ∴()Rt Rt HL ADE DCF ≌,∴DE CF =, ∵CH DE =, ∴CF CH =,∵点H 在BC 的延长线上, ∴90DCH DCF ∠=∠=︒, 又∵DC DC =, ∴()SAS DCF DCH ≌,∴DFC H ∠=∠, ∵AD BC ∥, ∴ADF DFC ∠=∠, ∴ADF H ∠=∠;(3)解:如图3,延长BC 至点G ,使8CG DE ==,连接DG ,∵四边形ABCD 是菱形, ∴,AD DC AD BC =∥, ∴ADE DCG ∠=∠, ∴()SAS ADE DCG ≌,∴60,DGC AED AE DG ∠=∠=︒=, ∵AE DF =,∴DG DF =,∴DFG 是等边三角形, ∴11FG DF ==, ∵CF CG FG +=,∴1183CF FG CG =−=−=, 即CF 的长为3.【点睛】本题考查矩形的性质,正方形的性质,菱形的性质,等边三角形的判定和性质,全等三角形的判定和性质,相似三角形的判定,掌握相关知识点,并灵活运用,是解题的关键.。
最新中考数学押题预测密卷 有答案 最新题必考题必考题型1
最新中考数学押题预测密卷(考试时间120分钟满分120分)一、填空题(共8道题,每小题3分,共24分) 1、8的相反数是________。
2、因式分解:3244x x x -+==____________________________。
3、函数y =中自变量x 的取值范围是_________________________。
4、设函数2y x =与1y x =-的图象的交战坐标为(a ,b ),则11a b-的值为__________.5、如图,已知正方形ABCD 的边长为12cm ,E 为CD 边上一点,DE =5cm .以点A 为中心,将△ADE 按顺时针方向旋转得△ABF ,则点E 所经过的路径长为 cm .6、已知关于x 的一次函数n mx y +=的图象如图所示,则2||m m n --可 化简为_________________.7、如图,在平面直角坐标系中有一正方形AOBC,反比例函数过正方形AOBC 对角线的交点,半径为(4-的圆内切于△ABC ,则k 的值为________。
8、如图,在平面直角坐标系中,⊙P 的圆心是(2,a )(a>2),半径为2,函数y =x 的图象被⊙P 割的弦AB的长为a 的值是________。
二、选择题(A ,B ,C ,D 四个答案中,有且只有一个是正确的,每小题3分,共24分) 9、下列运算正确的是( )A 、 532a a a =+ B 、 ()4222-=-a aC 、 22232a a a -=- D 、 ()()2112-=-+a a a10、如图,在直角三角形ABC 中(∠C =900),放置边长分别3,4,x 的三个正方形,则x 的值为( )A 、 5B 、 6C 、7D 、 12FED CAk y x=11、某市6月上旬前5天的最高气温如下(单位:℃):28,29,31,29,32.对这组数据,下列说法正确的是( ) A 、平均数为30 B 、众数为29 C 、中位数为31 D 、极差为512、下面四个几何体中,俯视图为四边形的是( )13、如图,直径为10的⊙A 山经过点C(0,5)和点0(0,0),B 是y 轴右侧⊙A 优弧上一点,则∠OBC 的余弦值为( ) A 、12 B 、34 C 、D 、4514、小明从家里骑自行车到学校,每小时骑15km ,可早到10分钟,每小时骑12km 就会迟到5分钟.问他家到学校的路程是多少km?设他家到学校的路程是xkm ,则据题意列出的方程是( )A 、60512601015-=+x x B 、 60512601015+=-x xC 、60512601015-=-x xD 、 5121015-=+xx15、如图,Rt ⊿ABC 中AB=3,BC=4,∠B=90°,点B 、C 在两坐标轴上滑动。
陕西省西安市西安铁一中学2024届中考押题数学预测卷含解析
陕西省西安市西安铁一中学2024届中考押题数学预测卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。
选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.如图,在△ABC中,∠C=90°,AD是∠BAC的角平分线,若CD=2,AB=8,则△ABD的面积是()A.6 B.8 C.10 D.122.据相关报道,开展精准扶贫工作五年以来,我国约有55000000人摆脱贫困,将55000000用科学记数法表示是()A.55×106B.0.55×108C.5.5×106D.5.5×1073.一个几何体的三视图如图所示,该几何体是()A.直三棱柱B.长方体C.圆锥D.立方体4.将不等式组2(23)3532x xx x-≤-⎧⎨+⎩>的解集在数轴上表示,下列表示中正确的是( )A.B.C.D.5.下列说法中,正确的是()A.不可能事件发生的概率为0B.随机事件发生的概率为1 2C.概率很小的事件不可能发生D.投掷一枚质地均匀的硬币100次,正面朝上的次数一定为50次6.(2016四川省甘孜州)如图,在5×5的正方形网格中,每个小正方形的边长都为1,若将△AOB绕点O顺时针旋转90°得到△A′OB′,则A点运动的路径'AA的长为()A.πB.2πC.4πD.8π7.化简16的结果是()A.±4 B.4 C.2 D.±28.比较4,17,363的大小,正确的是()A.4<17<363B.4<363<17C.363<4<17D.17<363<49.如图,在4×4正方形网格中,黑色部分的图形构成一个轴对称图形,现在任意选取一个白色的小正方形并涂黑,使黑色部分的图形仍然构成一个轴对称图形的概率是()A.613B.513C.413D.31310.如图,在五边形ABCDE中,∠A+∠B+∠E=300°,DP,CP分别平分∠EDC、∠BCD,则∠P的度数是( )A.60°B.65°C.55°D.50°二、填空题(共7小题,每小题3分,满分21分)11.二次函数y=ax2+bx+c的图象如图所示,以下结论:①abc>0;②4ac<b2;③2a+b>0;④其顶点坐标为(12,﹣2);⑤当x<12时,y随x的增大而减小;⑥a+b+c>0中,正确的有______.(只填序号)12.分解因式:2x3﹣4x2+2x=_____.13.一个布袋中装有1个蓝色球和2个红色球,这些球除颜色外其余都相同,随机摸出一个球后放回摇匀,再随机摸出一个球,则两次摸出的球都是红球的概率是_____.14.下面是“作已知圆的内接正方形”的尺规作图过程.已知:⊙O.求作:⊙O的内接正方形.作法:如图,(1)作⊙O的直径AB;(2)分别以点A,点B为圆心,大于AB的长为半径作弧,两弧分别相交于M、N两点;(3)作直线MN与⊙O交于C、D两点,顺次连接A、C、B、D.即四边形ACBD为所求作的圆内接正方形.请回答:该尺规作图的依据是_____.15.如图,矩形ABCD中,AB=3,BC=5,点P是BC边上的一个动点(点P与点B,C都不重合),现将△PCD沿直线PD折叠,使点C落到点F处;过点P作∠BPF的角平分线交AB于点E.设BP=x,BE=y,则下列图象中,能表示y与x的函数关系的图象大致是()16.圆锥的底面半径是4cm,母线长是5cm,则圆锥的侧面积等于_____cm1.17.因式分解:a2﹣a=_____.三、解答题(共7小题,满分69分)18.(10分)如图,一盏路灯沿灯罩边缘射出的光线与地面BC交于点B、C,测得∠ABC=45°,∠ACB=30°,且BC =20米.(1)请用圆规和直尺画出路灯A到地面BC的距离AD;(不要求写出画法,但要保留作图痕迹)(2)求出路灯A离地面的高度AD.(精确到0.1米)(参考数据:2≈1.414,3≈1.732).19.(5分)为了落实国务院的指示精神,某地方政府出台了一系列“三农”优惠政策,使农民收入大幅度增加.某农户生产经销一种农产品,已知这种产品的成本价为每千克20元,市场调查发现,该产品每天的销售量y(千克)与销售价x(元/千克)有如下关系:y=﹣2x+1.设这种产品每天的销售利润为w元.求w与x之间的函数关系式.该产品销售价定为每千克多少元时,每天的销售利润最大?最大利润是多少元?如果物价部门规定这种产品的销售价不高于每千克28元,该农户想要每天获得150元的销售利润,销售价应定为每千克多少元?20.(8分)某市飞翔航模小队,计划购进一批无人机.已知3台A型无人机和4台B型无人机共需6400元,4台A 型无人机和3台B型无人机共需6200元.(1)求一台A型无人机和一台B型无人机的售价各是多少元?(2)该航模小队一次购进两种型号的无人机共50台,并且B型无人机的数量不少于A型无人机的数量的2倍.设购进A型无人机x台,总费用为y元.①求y与x的关系式;②购进A型、B型无人机各多少台,才能使总费用最少?21.(10分)在汕头市中小学标准化建设工程中,某学校计划购进一批电脑和电子白板,经过市场考察得知,电子白板的价格是电脑的3倍,购买5台电脑和10台电子白板需要17.5万元,求每台电脑、每台电子白板各多少万元?22.(10分)某中学为开拓学生视野,开展“课外读书周”活动,活动后期随机调查了九年级部分学生一周的课外阅读时间,并将结果绘制成两幅不完整的统计图,请你根据统计图的信息回答下列问题:(1)本次调查的学生总数为_____人,被调查学生的课外阅读时间的中位数是_____小时,众数是_____小时;并补全条形统计图;(2)在扇形统计图中,课外阅读时间为5小时的扇形的圆心角度数是_____;(3)若全校九年级共有学生800人,估计九年级一周课外阅读时间为6小时的学生有多少人?23.(12分)在锐角△ABC 中,边BC 长为18,高AD 长为12如图,矩形EFCH 的边GH 在BC 边上,其余两个顶点E 、F 分别在AB 、AC 边上,EF 交AD 于点K ,求EF AK的值;设EH =x ,矩形EFGH 的面积为S ,求S 与x 的函数关系式,并求S 的最大值.24.(14分)解方程(1)2430x x --=;(2)()22(1)210x x ---=参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、B【解题分析】分析:过点D 作DE ⊥AB 于E ,先求出CD 的长,再根据角平分线上的点到角的两边的距离相等可得DE =CD =2,然后根据三角形的面积公式列式计算即可得解.详解:如图,过点D 作DE ⊥AB 于E ,∵AB =8,CD =2,∵AD 是∠BAC 的角平分线,90C ,∠=︒∴DE =CD =2,∴△ABD 的面积11828.22AB DE =⋅=⨯⨯= 故选B.点睛:考查角平分线的性质,角平分线上的点到角两边的距离相等.2、D【解题分析】试题解析:55000000=5.5×107, 故选D .考点:科学记数法—表示较大的数3、A【解题分析】根据三视图的形状可判断几何体的形状.【题目详解】观察三视图可知,该几何体是直三棱柱.故选A .本题考查了几何体的三视图和结构特征,根据三视图的形状可判断几何体的形状是关键.4、B【解题分析】先解不等式组中的每一个不等式,再把不等式的解集表示在数轴上即可. 解:不等式可化为:11x x ≤⎧⎨>-⎩,即11x -<≤. ∴在数轴上可表示为.故选B .“点睛”不等式组的解集在数轴上表示的方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.5、A【解题分析】试题分析:不可能事件发生的概率为0,故A正确;随机事件发生的概率为在0到1之间,故B错误;概率很小的事件也可能发生,故C错误;投掷一枚质地均匀的硬币100次,正面向上的次数为50次是随机事件,D错误;故选A.考点:随机事件.6、B【解题分析】试题分析:∵每个小正方形的边长都为1,∴OA=4,∵将△AOB绕点O顺时针旋转90°得到△A′OB′,∴∠AOA′=90°,∴A点运动的路径'AA的长为:904180π⨯=2π.故选B.考点:弧长的计算;旋转的性质.7、B【解题分析】根据算术平方根的意义求解即可.【题目详解】=4,故选:B.【题目点拨】本题考查了算术平方根的意义,一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根,正数a有一个正的算术平方根,0的算术平方根是0,负数没有算术平方根.8、C【解题分析】根据【题目详解】解:易得:且所以363<4<17,故选C.【题目点拨】本题主要考查开平方开立方运算。
2024年浙江中考数学最后一卷终极押题卷及答案
2024年浙江中考最后一卷数学注意事项:1.本试卷共有三个大题,分为单项选择题、填空题、解答题,满分120分,考试时间100分钟。
2.本试卷上不要答题,请按答题卡上注意事项的要求直接把答案填写在答题卡上,答在试卷上的答案无效。
一、单选题(本大题共有10小题,每小题3分,共30分)1.下列各数中最大的数是()A.5−B.0 C.1−D2.下面计算正确的是()A.3a﹣2a=1 B.2a2+4a2=6a4C.(x3)2=x5D.x8÷x2=x63.今年春节电影《热辣滚烫》《飞驰人生2》《熊出没•逆转时空》《第二十条》在网络上持续引发热议,根据国家电影局2月18日发布数据,我国2024年春节档电影票房达80.16亿元,创造了新的春节档票房纪录.其中数据80.16亿用科学记数法表示为()A.8×80.16108.01610×B.9C.10×80.1610×D.100.8016104.下列立体图形中,主视图是三角形的是()A.B.C.D.5.在数轴上表示不等式x﹣2≤0的解集,正确的是()A.B.C .D .6.随着自动驾驶技术的不断发展,某知名汽车制造公司近期对研发的自动驾驶汽车进行了一次大规模的路测,有45辆自动驾驶汽车参与了这次测试.测试结束后,技术部门对每辆汽车的性能进行评估(车辆的自动驾驶技术、安全性、反应速度等综合表现),得分如下:得分(分) 75 80 85 90车辆(辆) 5 16 14 10得分的中位数和众数分别是( )A .80,80B .82.5,80C .80,85D .85,807.如图,线段CD 是O 的直径,CD AB ⊥于点E ,若8AB =,3OE =,则CE 的长是( )A .8B .7C .6D .58.《九章算术》中曾记载:“今有牛五羊二,直金十两;牛二羊五,直金八两.问牛、羊各直金几何?”译文:“假设有5头牛,2只羊,值金10两;2头牛、5只羊,值金8两.问:每头牛、每只羊各值金多少两?若设每头牛值金x 两,每只羊值金y 两,则可列方程组为( )A .5210258x y x y += +=B .2510528x y x y += +=C .51058x y x y += +=D .21028x y x y += +=9.二次函数2y =的图象如图所示,点O 为坐标原点,点A 在y 轴的正半轴上,点B ,C 在函数图象上,四边形OBAC 为菱形,且120ABO ∠=°,则点C 的坐标为( )A .14 −B .14 −C . −D .(− 10.如图,四边形ABCD 是一张矩形纸片.折叠该矩形纸片,使AB 边落在AD 边上,点B 的对应点为点F ,折痕为AE ,展平后连接EF ;继续折叠该纸片,使FD 落在FE 上,点D 的对应点为点H ,折痕为FG ,展平后连接HG .若矩形HECG ∽矩形ABCD ,1AD =,则CD 的长为( ).A .0.5B 1−C D二、填空题(本大题共有6小题,每小题4分,共24分)11.因式分解: 34t t −=12.实现中国梦,必须弘扬中国精神.在如图所示除正面图案不同外,其余无差别的四张不透明卡片上分别写有“红船精神”、“长征精神”、“延安精神”、“特区精神”,将卡片置于暗箱摇匀后随机抽取一张,则所抽取卡片为“特区精神”的概率为 .13x 的值可以是 .(写出一个即可) 14.如图,《掷铁饼者》是希腊雕刻家米隆于约公元前450年雕刻的青铜雕塑,掷铁饼者张开的双臂与肩宽可以近似看像一张拉满弦的弓,若弧长为2π3米,“弓”所在圆的半径1.2米,则“弓”所对的圆心角θ的度数为 .15.如图,点A 为反比例函数(0,0)k y k x x=<<的图象上一点,AB x ⊥轴于点B ,点C 是y 轴正半轴上一点,连接BC ,AD BC ∥交y 轴于点D ,若0.5ABCD S =四边形,则k 的值为 .16.如图,正方形ABCD 的边长为2,以AB 边上的动点O 为圆心,OB 为半径作圆,将AOD △沿OD 翻折至A OD ′ ,若O 过A OD ′ 一边上的中点,则O 的半径为 .三、解答题(本大题共有8小题,共66分)(共66分)17.(本题6分)计算或化简:(1)()201253π− +−−+−; (2)()()()2m n n m m n +−−−.18.(本题6分)如图,在平面直角坐标系中,ABC 的顶点坐标分别为()2,4A ,()3,1B ,()5,3C .(1)作ABC 关于y 轴对称的111A B C △;(2)将ABC 绕原点O 顺时针旋转90°,得到222A B C △,作出222A B C △并求点C 旋转到点2C 所经过的路径长.19.(本题6分)2023年全国教育工作会议提出要把开展读书活动作为一件大事来抓.引导学生爱该书.读好书,善读书,贵阳市某校为了推进这项工作,对全校学生一周内平均读书时间进行抽样调查.将调查结果的数据分成A 、B 、C 、D 、E 五个等级并绘制成表格和扇形统计图如下.等级 周平均读书时间t (单位:小时) 人数A01t ≤< 4 B12t ≤< a C23t ≤< 20 D34t ≤< 15 E 4t ≥5 每个等级人数扇形统计图(1)求统计图表中=a ______,m =______.(2)已知该校共有2800名学生,试估计该校每周读书时间至少3小时的人数为______.(3)请写出一条你对读书的建议.20.(本题8分)我国是世界上最早发明历法的国家之一,《周礼》中记载:垒土为圭,立木为表,测日影,正地中,定四时,如图1,圭是地面上一根水平标尺,指向正北,表是一根垂直于地面的杆,正午,表的日影(即表影)落在圭上,根据表影的长度可以测定节气.在一次数学活动课上,要制作一个圭表模型,如图2,地面上放置一根长2米的杆AB ,向正北方向画一条射线BC ,在BC 上取点D ,测得 1.5m BD =, 2.5m AD =.(1)判断:这个模型中AB 与BC 是否垂直.答:______(填“是”或“否”);你的理由是:______.(2)利用这个圭表模型,测定某市冬至正午阳光与日影夹角30°,夏至正午阳光与日影夹角为60°,请求出这个模型中该市冬至与夏至的日影的长度差(结果保留根号).21.(本题8分)如图,在矩形ABCD 中,沿EF 将矩形折叠,使A 、C 重合,AC 与EF 交于点H .(1)求证:AE =AF ;(2)若AB =4,BC =8,求△ABE 的面积.22.(本题10分)我市某镇组织20辆汽车装运完A 、B 、C 三种脐橙共100吨到外地销售.按计划,20辆车都要装运,每辆汽车只能装运同一种脐橙.且必须装满,根据下表组织的信息,解答以下问题.脐橙品种A B C 每辆汽车运载量(吨) 6 5 4每吨脐橙获利(元) 1200 1600 1000(1)设转运A 种脐橙的车辆数为x ,转运B 种脐橙的车辆数为y ,求y 与x 的函数表达式;(2)如果转运每种脐橙的车辆数都不少于4,那么车辆的安排方案有几种?(3)若要使此次销售获利最大,应采用哪种安排方案?并求出此时最大利润的值.23.(本题10分)定义:平面直角坐标系xOy 中,当点N 在图形M 的内部,或在图形M 上,且点N 的横坐标和纵坐标相等时,则称点N 为图形M 的“梦之点”.(1)如图①,矩形ABCD 的顶点坐标分别是(1,2)A −,(1,1)B −−,(3,1)C −,(3,2)D ,在点1(2,2)P −−,2(0,0)P ,3(1,1)P ,4(2,2)P 中,是矩形ABCD “梦之点”的是________;(2)如图②,已知A 、B 是抛物线21922y x x =−++上的“梦之点”,点C 是抛物线的顶点: ①求出AC ,AB ,BC 三条线段的长度;②判断ABC 的形状,并说明理由.24.(本题12分)如图,ABC 内接于圆O ,AD 是ABC 的高线,9AD =,12CD =,tan 3ABD ∠=,连接OC .(1)求证:ABC 是等腰三角形;(2)求证:BCO BAD ∠=∠;(3)若点E 是OC 上一动点,EF AB ∥交BC 于点F .①若OEF 与ABD △相似,求EF 的长;②当OEF 的面积与CEF △的面积差最大时,直接写出此时CF 的长.2024年浙江中考最后一卷数学解析及参考答案一、单选题1.D【分析】此题考查了实数的大小比较法则:正数大于零,零大于负数,两个负数绝对值大的反而小,据此判断.【详解】∵510−<−<<故选:D .2.D【分析】根据各个选项中的式子可以计算出正确的结果,本题得以解决.【详解】解:∵3a ﹣2a =a ,故选项A 错误;∵2a 2+4a 2=6a 2,故选项B 错误;∵(x 3)2=x 6,故选项C 错误;∵x 8÷x 2=x 6,故选项D 正确;故选D .【点睛】本题考查整式的混合运算,解答本题的关键是明确整式混合运算的计算方法.3.B【分析】此题考查科学记数法的表示方法.科学记数法的表示形式为10n a ×的形式,其中110a ≤<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值10≥时,n 是正数;当原数的绝对值1<时,n 是负数.【详解】解:80.16亿98.01610×,故选:B .4.B【分析】本题考查立体几何的三视图.根据题意,逐项判断即可.【详解】解:A.主视图为长方形,此项不符合题意;B.主视图为三角形,此项符合题意;C.主视图为圆,此项不符合题意;D.主视图为长方形,此项不符合题意.故选:B .5.C【分析】先解不等式,求出解集,然后在数轴上表示出来.【详解】解:不等式x ﹣2≤0,得:2x ≤ ,把不等式的解集在数轴上表示出来为:.故选:C【点睛】本题主要考查了解不等式,并在数轴上表示解集,解题的关键是熟练掌握解不等式的步骤,不等式的解集在数轴表示时空心圈不包含该点,实心圈包含该点.6.D【分析】本题为统计题,考查众数与中位数的意义,根据众数的定义,找到该组数据中出现次数最多的数即为众数;根据中位数定义,将该组数据按从小到大依次排列,处于中间位置的两个数的平均数即为中位数.【详解】有45辆自动驾驶汽车参与了这次测试,45个分数,按大小顺序排列最中间的数据是第23个数:85,故得分的中位数是85(分),得80分的人数最多,有16人,故众数为80,故选D .7.A【分析】本题考查了垂径定理和勾股定理的应用,根据垂径定理求出AE 的长是解此题的关键.连接OA ,根据垂径定理求出AE ,再根据勾股定理求出OA ,最后根据线段的和差求解即可.【详解】解:如图,连接OA ,线段CD 是O 的直径,CD AB ⊥于点E ,∴12AE AB =,8AB =, ∴4AE =,3OE =,∴5OA ,∴5OC OA ==,∴8CE OC OE =+=,故选:A .8.A【分析】本题考查由实际问题抽象出二元一次方程组,解答本题的关键是设每头牛、每只羊分别值金x 两、y 两,根据“5头牛,2只羊,值金10两;2头牛,5只羊,值金8两”列出方程组即可得答案.【详解】解:设每头牛值金x 两,每只羊值金y 两,则可列方程组为5210258x y x y += +=, 故选A .9.B【分析】本题考查了菱形的性质、二次函数图象上点的坐标特征,根据二次函数图象上点的坐标性质得出BD 的长是解题关键.连接BC 交OA 于D ,如图,根据菱形的性质得BC OA ⊥,60OBD ∠=°,利用含30度的直角三角形三边的关系得OD =,设BD t =,则OD =,()B t ,利用二次函数图象上点的坐标特征得2=,得出14BD =,OD =C 点坐标. 【详解】解:连接BC 交OA 于D ,如图,四边形OBAC 为菱形,BC OA ,120ABO ∠=° ,60OBD ∴∠=°,OD ∴,设BD t =,则OD =,()B t ∴,把()B t 代入2y =,得2=,解得10t =(舍去), 214t =,14BD ∴=,OD =故C 点坐标为:14 − .故答案为:B .10.C【分析】本题考查的是矩形的性质、翻折的性质及相似多边形性质,熟练应用矩形和相似多边形性质是解题关键,设CD x =,则()1,1EC x CG x x =-=--,根据两矩形相似求出即可.【详解】解:在矩形ABCD 中,设CD x =,则ABCD x ==,1AD BC ==, 由翻折得,90AB AF x AFE B BAF ==∠=∠=∠=︒,∴四边形ABEF 是正方形,同理,四边形DFHG 是正方形,,1BE AB x DF DG x ∴====-,()1,121CE x CG x x x ∴=-=--=-,矩形HECG ∽矩形ABCD ,EC CG BC CD∴=,即1211x x x --=,解得:x =,经检验,xCD ∴ 故选:C .二、填空题11.()()22t t t +−【分析】本题考查了因式分解,先提取公因式,再利用公式法即可求解,熟练掌握提公因式法及公式法分解因式是解题的关键.【详解】解:()()()324422t t t t t t t −=−=+−,故答案为:()()22t t t +−.12.14/0.25 【分析】本题考查了概率公式的应用,用到的知识点为:概率所求情况数与总情况数之比.全部情况的总数是四种,符合条件的情况的是一种,二者的比值就是其发生的概率.【详解】由于概率为所求情况数与总情况数之比,而抽取卡片为“特区精神”的情况数只有一种,从暗箱随机抽取一张的情况数为四种,故抽取卡片为“特区精神”的概率为14, 故答案为14. 13.0(答案不唯一)【分析】本题主要考查了二次根式有意义的条件,分式有意义的条件,根据二次根式有意义的条件的条件是被开方数大于等于0,分式有意义的条件是分母不为0进行求解即可.∴10x −>,解得1x <.∴x 的值可以是0,故答案为:0(答案不唯一).14.100°/100度【分析】本题考查的是已知弧长与半径求解弧所对的圆心角,熟记弧长公式是解本题的关键.直接利用弧长公式计算即可.【详解】解: 设“弓”所在的圆的弧长圆心角度数是n °, 则1.2π2π1803n =, 解得:100n =,故答案为:100°.15.0.5−【分析】本题考查了反比例函数k 值的几何意义,熟练掌握k 值的几何意义是解答本题的关键.根据反比例函数k 值的几何意义进行解答即可.【详解】AB x ⊥ 轴于点B ,CD x ⊥轴,∴AB CD ,又 AD BC ,∴四边形ABCD 是平行四边形,过点作AM y ⊥轴,则四边形ABOM 是矩形, ∴0.5,ABOMABCD S S k ===矩形平行四边形∵反比例函数图象在第二象限,0.5k ∴=−,故答案为:0.5−.16.23、54【分析】本题考查了折叠的性质,正方形的性质,勾股定理,圆的定义;分三种情况讨论,设O 的半径为r ,分别根据勾股定理,即可求解.【详解】设O 的半径为r ,当O 经过A O ′的中点,即经过AO 的中点, ∴1233r AB =,当O 经过OD 的中点,则12r OB OD ==, ∴2OD r =,2AO AB OB r =−=−, 在Rt AOD 中,222AD AO OD +=∴()()222222r r +−=解得:r = 当O 经过A D ′的中点,即经过AD 的中点,设AD 的中点为M ,∴2,1,AO r AM OM r =−== ∴()22221r r −+= 解得:54r =综上所述,半径为23、54故答案为:23、54 三、解答题17.(1)5(2)222m mn −+【分析】此题考查了实数的运算以及整式的混合运算,熟练掌握运算法则是解本题的关键.(1)原式利用零指数幂、绝对值的代数意义以及负整数指数幂法则计算即可求出值;(2)根据平方差公式和完全平方公式化简,再合并同类项即可.【详解】(1)解:原式159=-+5=;(2)原式()22222n m m mn n =−−−+22222n m m mn n =−−+−222m mn =−+18.(1)图见解析(2)【分析】本题考查作图-轴对称变换,旋转变换,以及求弧长,熟练掌握相关作图方法是解题关键; (1)根据点关于y 轴对称的性质分别找到对应的点1A ,1B ,1C ,然后进一步连接即可;(2)利用旋转变换的性质分别作出A ,B ,C 的对应点2A ,2B ,2C ,再顺次连接即可,利用弧长公式求得点C 经过的路径长.【详解】(1)解:如图,111A B C △即为所求;(2)如图,222A B C △即为所求,由题意可知,OC∴点C 旋转到点2C =. 19.(1)6,40(2)1120(3)全校学生一周内平均读书时间23t ≤<(答案不唯一)【分析】本题考查了扇形统计图,样本估计总体等知识.(1)由等级得到学生总数,即可得出a ,再求C 等级的占比即可;(2)用样本估计总体即可得出结果;(3)根据表格可题建议合理即可.【详解】(1)解:由等级D 得到学生总数1530%50÷=人, ∴504201556a −−−−,()%2050100%40%m =÷×=,40m =,故答案为:6,40.(2)1552800112050+×=人, 故该校2800名学生每周读书时间至少3小时的人数为1120人.故答案为:1120.(3)根据表格可建议:全校学生一周内平均读书时间23t ≤<.20.(1)是;222AB BD AD +=,由勾股定理的逆定理可知AB BC ⊥.(2).【分析】本题考查的勾股定理的逆定理的应用,解直角三角形的应用,理解题意是解本题的关键. (1)利用勾股定理的逆定理判断即可;(2)先画图,利用三角函数再计算BE=BF =,从而可得答案. 【详解】(1)解:是, 理由:由测量结果可知得 1.5m BD =, 2.5m AD =,而2m AB =,∴2226.25AB BD AD +==,∴90ABD ,∴AB BC ⊥.故答案是:是;222AB BD AD +=,由勾股定理的逆定理可知AB BC ⊥.(2)如图,由题意可得:90ABC ∠=°,2AB =,30AFB ∠=°,60AEB ∠=°,∴tan tan 60AB AEB BE∠=°=,∴BE =, 同理:tan tan 30AB AFBBF ∠=°=,∴BF =,∴FE BF BE =−==. 21.(1)证明见解析(2)6【分析】(1)依据平行线的性质以及矩形的性质,即可得到∠AFE =∠AEF ,进而得出AE =AF .(2)设BE =x ,则AE =EC =8-x ,在Rt △ABE 中,根据勾股定理可得方程,即可得到BE 的长,再根据三角形面积计算公式求解.【详解】(1)证明:∵四边形ABCD 矩形,∴AD ∥BC ,∴∠AFE =∠FEC ,由折叠的性质得:∠AEF =∠FEC ,∴∠AFE =∠AEF ,∴AE =AF .(2)解:根据折叠的性质可得AE =EC ,设BE =x ,则AE =EC =8-x ,在Rt △ABE 中,根据勾股定理可得:222AB BE AE +=,即()22248x x +=−,解得:x =3,∴BE =3,∴ABE S = 12AB •BE =12×4×3=6. 【点睛】本题主要考查了折叠问题以及矩形的性质的运用,解题的方法是设要求的线段长为x ,然后根据折叠和轴对称的性质用含x 的代数式表示其他线段的长度,选择适当的直角三角形,运用勾股定理列出方程求出答案.22.(1)220y x =−+ (2)5种(3)当转运A 种脐橙的车4辆,转运B 种脐橙的车12辆,转运C 种脐橙的车4辆时,利润最大为140800元【分析】(1)根据题意列式:()20651040x x y y −−=++,整理后即可得到220y x =−+; (2)根据装运每种水果的车辆数都不少于4辆,4x ≥,2204x −+≥,解不等式组即可;(3)设利润为W 元,则()480016000048W x x =−+≤≤,根据一次函数的增减性求解即可. 【详解】(1)根据题意,装运A 种水果的车辆数为x ,装运B 种水果的车辆数为y ,∴装运C 种水果的车辆数为()20x y −−,∴()20651040x x y y −−=++, 整理得220y x =−+. (2)由(1)知,装运A ,B ,C 三种水果的车辆数分别为x ,220x −+,x ,由题意得2204x −+≥,解得8x ≤,∵4x ≥,∴48x ≤≤.∵x 为整数,∴x 的值为4,5,6,7,8,∴安排方案共有5种.(3)设利润为W 元,∴()612005220160041000W x x x =×+−+×+× 4800160000x =−+,因为48000−<,且x 的值为4,5,6,7,8,∴W 的值随x 的增大而减小,∴当4x =时,销售利润最大.当装运A 种水果4车,B 种水果12车,C 种水果4车,销售获利最大.最大利润48004160000140800W =−×+=(元).【点睛】主要考查利用一次函数的模型解决实际问题的能力.要先根据题意列出函数关系式,再代数求值.解题的关键是要分析题意根据实际意义求解.注意要根据自变量的实际范围确定函数的最值.23.(1)2(0,0)P ,3(1,1)P ,4(2,2)P(2)①AC =BC =AB =ABC 是直角三角形,理由见解析【分析】本题考查了二次函数的图象与性质、勾股定理以及勾股定理逆定理:(1)根据“梦之点”的定义判断这几个点是否在矩形的内部或者边上即可得到答案;(2)①根据“梦之点”的定义求出A ,B 的坐标,再求出顶点的坐标,计算出AC ,AB ,BC 的长; ②根据勾股定理逆定理,即可求解.【详解】(1)解:∵矩形ABCD 的顶点坐标分别是(1,2)A −,(1,1)B −−,(3,1)C −,(3,2)D ,∴矩形ABCD 的“梦之点”(),x y 满足2,131x y −−≤≤≤≤,∴点2(0,0)P ,3(1,1)P ,4(2,2)P 是矩形ABCD 的“梦之点”,1(2,2)P −−不是矩形的“梦之点”.故答案为:2(0,0)P ,3(1,1)P ,4(2,2)P(2)解:①A 、B 是抛物线21922y x x =−++上的“梦之点”, ∴21922x x x =−++, 解得:123,3x x ==−,当3x =时,3y =,当3x =−时,=3y −,∴()()3,3,3,3A B −−, ∵()2219115222y x x x =−++=−−+, ∴顶点坐标为()1,5C ,∴AC =BC =AB =; ②ABC 是直角三角形,理由如下:∵AC =BC =AB =∴((2222280AB AC BC +=+==,∴ABC 是直角三角形.24.(1)证明见解析(2)证明见解析(3)①EF =253CF =【分析】本题考查了圆的性质,等腰三角形的判定与性质,相似三角形的判定与性质,锐角三角函数等知识,掌握相关知识是解题的关键.(1)利用勾股和锐角三角函数求得AC BC =即可证明;(2)连接,OA OB ,延长CO 交AD 于点M ,交AB 于点N ,先证明CO 是ACB ∠的角平分线,再证明ANM CDM ∽即可得出结论;(3)①过O 点作OH BC ⊥交BC 于点H ,点E 是OC 上一动点,EF AB ∥交BC 于点F ,先证明CHO CFB ∽,设EF x =3x =即可求解,②要使OEF 的面积与CEF △的面积差最大,必须使EF 和()CE OE −最大,当E 点与O 点重合时,EF 最大,CE OE OC −=最大,先求得EF =即可求出CF . 【详解】(1)证明:∵AD 是ABC 的高线,∴90ADC ADB ∠=∠=°, ∵9AD =,12CD =,∴15AC ===,∵tan 3ABD ∠=, ∴tan 3AD ABD BD∠==, ∴3BD =,∴31215BC BD CD =+=+=, ∴AC BC =,∴ABC 是等腰三角形.(2)证明:连接,OA OB ,延长CO 交AD 于点M ,交AB 于点N ,如图:∵AC BC =,∴CAB CBA ∠=∠, ∵OA OB =,∴OAB OBA ∠=∠, ∴CAO CBO ∠=∠, ∵OA OC =,∴CAO ACO ∠=∠, ∵OB OC =,∴BCO CBO ∠=∠, ∴ACO BCO ∠=∠, ∴CO 是ACB ∠的角平分线, 又∵ AC BC =,∴CN AB ⊥,∴90ANC BNC ∠=∠=°, ∴90MDC ANE ∠=∠=°, 又∵AMN CMD ∠=∠, ∴ANM CDM ∽,∴DCM NAM ∠=∠, ∴BCO BAD ∠=∠. (3)解:①过O 点作OH BC ⊥交BC 于点H ,点E 是OC 上一动点,EF AB ∥交BC 于点F ,如图:∵,,15OB OC OH BC BC =⊥=, ∴17.52CH BC ==,90CHO CFB ∠=∠=°, ∴CHO CFB ∽,∴COH CBF ∠=∠, ∵tan 3ABD ∠=, ∴tan tan 3CH COH CBF OH∠=∠==, ∴ 2.5OH =,∴OC =, ∵EF AB ∥,90BNC ∠=°, ∴CEF CNB ∽,∴90CEF CNB ∠=∠=°, 设EF x =,∴tan tan 3CE CE CFE CBN EF x∠=∠===, ∴3CE x =,∵OEF ADB ∽,∴OE EF AD BD=, ∵OEOC CE =−, 3x =, 解得:x =∴EF ②∵90CEF ∠=°,即EF OC ⊥, ∴12CEF S CE EF =⋅ ,12OEF S OE EF =⋅ , ∴()111222CEF OEF S S CE EF OE EF EF CE OE −=⋅−⋅=⋅− , 由题知,要使OEF 的面积与CEF △的面积差最大,必须使EF 和()CE OE −最大,∴当E 点与O 点重合时,EF 最大,CE OE OC −=最大,如图:∵EF AB ∥,∴CEF CNB ∽,∴CFE CBN ∠=∠,CE OC ==,∴tan tan 3CE CFE CBN EF ∠=∠==,∴EF∴253CF =.。
最新中考数学押题预测密卷 最新题必考题必考题型4
最新中考数学押题预测密卷一、选择题1.4-的相反数是( ) A .4- B .4 C .41 D .41-2.下面的图形中,既是轴对称图形又是中心对称图形的是( )A .B .C .D .3.下列运算正确的是( )A .422a a a =+B .2222=-a aC .632a a a =∙ D .338)2(a a = 2.若式子x 的取值范围是( ) A.x<2 B .x≤2 C.x>2 D .x≥2 5.方程052=-x x 的解是( )A .5-=xB .5=xC .01=x ,52=xD .01=x ,52-=x6.如图,由几个相同的小正方体搭成的一个几何体,它的主视图为( )7.为了了解某班学生每天使用零花钱数(单位:元)的情况,小王随机调查了15名同学, 结果如下表:则这15名同学每天使用零花钱的众数和中位数分别是( )A .2元、3元B .2.5元、3元C .2元、2.5元D .3元、2.5元8.在实数π、13、2、︒30sin ,无理数的个数为 ( ) A .1 B .2 C .3 D .49.设0>>n m ,mn n m 322=+,则m nn m 22-的值等于 ( )A .32B .3C .52D.5A .B .C .D . 第4题图10.在数-1,1,2中任取两个数作为点坐标,那么该点刚好在一次函数2y x =-图象上的概率是( ) A .12 B . 13 C .14 D .1611.如图,1BA 和1CA 分别是ABC ∆的内角平分线和外角平分线,2BA 是∠A 1BD 的角平分线,2CA 是CD A 1∠的角平分线,3BA 是BD A 2∠的角平分线,3CA 是CD A 2∠的角平分线,若α=∠1A ,则2014A ∠为( ) A .20142αB .2014αC .20132αD .2013α12.设3333111112399S =++++,则4S 的整数部分等于( ). (A )4 (B )5 (C )6 (D )713.有若干张面积分别为的正方形和长方形纸片,阳阳从中抽取了1张面积为的正方形纸片,4张面积为的长方形纸片,若他想拼成一个大正方形,则还需要抽取面积为的正方形纸片( )A. 2张B.4张C.6张D.8张14.设点()11,y x A 和()22,y x B 是反比例函数xky =图象上的两个点,当1x <2x <0时,1y <2y ,则一次函数k x y +-=2的图象不经过的象限是( ).A.第一象限B.第二象限C.第三象限D.第四象限15.用固定的速度向如图所示形状的杯子里注水,则能表示杯子里水面的高度和注水时间的关系的大致图象是( ).16.如图,⊙O 的直径AB=12,CD 是⊙O 的弦,CD ⊥AB ,垂足为P ,且BP :AP=1:5,则CD 的长为( ).A.24B.28C.52D.5422a b ab 、、2a ab 2b 第8题图A 3A 2A 1CBAD17.一渔船在海岛A 南偏东20°方向的B 处遇险,测得海岛A 与B 的距离为20海里,渔船将险情报告给位于A 处的救援船后,沿北偏西80°方向向海岛C 靠近.同时,从A 处出发的救援船沿南偏西10°方向匀速航行.20分钟后,救援船在海岛C 处恰好追上渔船,那么救援船航行的速度为( ).A.310海里/小时B. 30海里/小时C.320海里/小时D.330海里/小时18.已知关于x 的方程()0112=--+x k kx ,下列说法正确的是( ).A.当0=k 时,方程无解B.当1=k 时,方程有一个实数解C.当1-=k 时,方程有两个相等的实数解D.当0≠k 时,方程总有两个不相等的实数解19.为了研究吸烟是否对肺癌有影响,某肿瘤研究所随机地调查了10000人,并进行统计分析.结果显示:在吸烟者中患肺癌的比例是2.5%,在不吸烟者中患肺癌的比例是0.5%,吸烟者患肺癌的人数比不吸烟者患肺癌的人数多22人.如果设这10000人中,吸烟者患肺癌的人数为x ,不吸烟者患肺癌的人数为y ,根据题意,下面列出的方程组正确的是( ).A.⎩⎨⎧=⨯+⨯=-10000%5.0%5.222y x y xB.⎪⎩⎪⎨⎧=+=-10000%5.0%5.222yx y x C.⎩⎨⎧=⨯-⨯=+22%5.0%5.210000y x y x D.⎪⎩⎪⎨⎧=-=+22%5.0%5.210000yx y x 20.对于实数x ,我们规定[]x 表示不大于x 的最大整数,例如[]12.1=,[]33=,[]35.2-=-,若5104=⎥⎦⎤⎢⎣⎡+x ,则x 的取值可以是( ).A.40B.45C.51D.56二、填空题21.如图,二次函数)0(2≠++=a c bx ax y 的图象开口向上,对称轴为直线1=x ,图象经过)0,3(,则c b a +-的值是 .22.如图,在平面直角坐标系xOy 中,OAB Rt ∆的顶点A 的坐标为)0,9(,︒=∠30AOB ,点C 的坐标为)0,2(,点P 为斜边OB 上的一个动点,则PC PA +的最小值为 .23.当白色小正方形个数n 等于1,2,3…时,由白色小正方形和和黑色小正方形组成的图形分别如图所示.则第n 个图形中白色小正方形和黑色小正方形的个数总和等于_____________.(用n 表示,n 是正整数)24.如图,直角三角形ABC 中,︒=∠90ACB ,10=AB ,6=BC ,在线段AB 上取一点D ,作AB DF ⊥交AC 于点F .现将ADF ∆沿DF 折叠,使点A 落在线段DB 上,对应点记为1A ;AD 的中点E 的对应点记为1E .若11FA E ∆∽BF E 1∆,则AD =__________.三、解答题25.(1)计算:︒+⎪⎭⎫⎝⎛---45sin 43121(2)解不等式:1)6(310≤+-x26.先化简,再求值:xx x 1)111(2-∙-+,再选择一个使原式有意义的x 值代入求值.第21题图27.如图,将□ABCD 的边DC 延长到点E ,使DC CE =,连接AE ,交BC 于点F . (1)求证:ABF ∆≌ECF ∆;(2)若D AFC ∠=∠2,连接AC 、BE .求证:四边形ABEC 是矩形.28.如图,在等腰ABC ∆中,CA=CB ,AD 是腰BC 边上的高,ACD ∆的内切圆⊙E 分别与边AD 、BC 相切于点F 、G ,连AE 、BE . (1)求证:AF=BG ; (2)过E 点作EH ⊥AB 于H ,试探索线段EH 与线段AB 的数量关系,并说明理由.D 第27题图第28题图29.已知:如图,在平面直角坐标系xOy 中,二次函数)0(42≠++=a bx ax y 与x 轴交于点A 、B ,点A 的坐标为)0,4(,点B 的坐标为)0,2(-. (1)求该二次函数的表达式;(2)点Q 是线段AB 上的动点,过点Q 作QE ∥AC ,交BC 于点E ,连接CQ . 当CQE ∆的面积最大时,求点Q 的坐标;(3)若平行于x 轴的动直线l 与该抛物线交于点P ,与直线AC 交于点F ,点D 的坐标为)0,2(.问:是否存在这样的直线l ,使得ODF ∆是等腰三角形?若存在,请求出点P 的坐标;若不存在,请说明理由.第29题图备用图。
2024年中考押题预测卷(广东卷)数学试题及答案
绝★启2024年中考押题预测卷数学(考试时间:120分钟试卷满分:120分)注意事项1.答卷前2.回答第Ⅰ卷时2B铅笔把答题卡上对应题目的答案标号涂黑。
如需改动干净后3.回答第Ⅱ卷时4.考试结束后一10小题3分30分的.1.下列实数中()A.πB.3C.-3D.02.中国信息通信研究院测算2020-2025年5G商用带动的信息消费规模将超过8万亿元经济总产出达10.6万亿元.其中数据10.6万亿用科学记数法表示为()A.10.6×104B.1.06×1013C.10.6×1013D.1.06×1083.如图是我国几家银行的标志()A. B.C. D.4.如图c与直线a、b都相交.若a∥b,∠1=35°,∠2=()A.145°B.65°C.55°D.35°5.下列计算正确的是()A.-3ab22=6a2b4 B.-6a3b÷3ab=-2a2bC.a 2 3--a 3 2=0D.(a +1)2=a 2+16.不等式组x -1<0x +3≥2x 的解集是()A.无解B.x <1C.x ≥3D.1<x ≤37.若关于x 的方程kx 2-2x -1=0有两个不相等的实数根,则k 的取值范围是()A.k >-1且k ≠0B.k >-1C.k <-1D.k <1且k ≠08.不透明的袋子中装有红、绿小球各一个,除颜色外两个小球无其他差别,从中随机摸出一个小球,放回并摇匀,再从中随机摸出一个小球,那么第一次摸到红球、第二次摸到绿球的概率是()A.14B.13C.12D.349.如图,A 、D 是⊙O 上的两点,BC 是直径,若∠D =35°,则∠OCA 的度数是()A.35°B.55°C.65°D.70°10.如图,在平面直角坐标系xOy 中,菱形ABDC 的边AB 在x 轴上,顶点C 在y 轴上,A -3,0 ,C 0,4 ,抛物线y =ax 2-8ax +c 经过点C ,且顶点M 在直线BC 上,则a 的值为()A.25B.12C.34D.23二、填空题:本大题共6小题,每小题3分,共18分.11.因式分解:x 2-x =.12.已知点A (-2,b )与点B (a ,3)关于原点对称,则a -b =.13.设5-7的整数部分为a ,小数部分为b ,则32a +7b =.14.中国清代算书《御制数理精蕴》中有这样一题:“马四匹、牛六头,共价四十八两;马三匹、牛五头,共价三十八两.问马、牛各价几何?”根据题意可得每匹马两.15.如图,已知△ABC在边长为1的小正方形的格点上,△ABC的外接圆的一部分和△ABC的边AB、BC组成的两个弓形(阴影部分)的面积和为.16.如图,在▱ABCD中,AB=6,AD=9,∠BAD的平分线交BC于点E,交DC的延长线于点F,BG⊥AE,垂足为G.若BG=42,则△CEF的面积是.三、解答题(一):本大题共4小题,第17、18题各4分,第19、20题各6分,共20分.17.(1)计算:16+|2-2|+3-64-2(1+2)0.(2)已知y与x-1成正比例,当x=-1时,y=4,当x=-8时,求y的函数值.18.如图,A、B两地被建筑物阻隔,为测量A、B两地的距离,连接CA、CB,分别取CA、CB的中点D、E.若DE的长为36m,求A、B两地的距离.19.某社区积极响应正在开展的“创文活动”,安排甲、乙两个工程队对社区进行绿化改造.已知甲工程队每天能完成的绿化改造面积是乙工程队每天能完成的绿化改造面积的2倍,且甲工程队完成400m2的绿化改造比乙工程队完成400m2的绿化改造少用4天.分别求甲、乙两工程队每天能完成绿化改造的面积.20.已知:如图在△ABC中,AD是边BC上的高,E为边AC的中点,BC=14,AD=12,sin B=45.求:(1)线段DC的长;(2)tan∠EDC的值.四、解答题(二):本大题共3小题,第21题8分,第22、23题各10分,共28分.21.如图,在矩形ABCD中,对角线BD=8.(1)实践与操作:作对角线BD的垂直平分线EF,与AB、CD分别交于点E、F(用尺规作图法,保留作图痕迹,不要求写作法)(2)应用与计算:在(1)的条件下,连结BF,若∠BDC=30°,求△BFC的周长.22.为了使二十大精神深入人心,某地区举行了学习宣传贯彻党的二十大精神答题竞赛,试卷题目共10题,每题10分.现分别从三个小区中各随机取10名群众的成绩(单位:分),收集数据如下:锦绣城:90,70,80,70,80,80,80,90,80,100;万和城:70,70,80,80,60,90,90,90,100,90;龙泽湾:90,60,70,80,70,80,80,90,100,100.整理数据:分数人数小区60708090100锦绣城02a21万和城122141龙泽湾12322分析数据:平均数中位数众数锦绣城828080万和城82b90龙泽湾8280c根据以上信息回答下列问题:(1)请直接写出表格中a,b,c的值;(2)比较这三组样本数据的平均数,中位数和众数,你认为哪个小区的成绩比较好?请说明理由;(3)为了更好地学习宣传贯彻党的二十大精神,该地区将给竞赛成绩满分的群众颁发奖品,统计该地区参赛的选手数为3000人,试估计需要准备多少份奖品?23.如图,一次函数y=kx+2k≠0的图象与反比例函数y=mx(m≠0,x>0)的图象交于点A2,n,与y轴交于点B,与x轴交于点C-4,0.(1)求k与m的值;(2)P a,0为x轴上的一动点,当△APB的面积为72时,求a的值.(3)请直接写出不等式kx+2>mx的解集.五、解答题(三):本大题共2小题,每小题12分,共24分.24.如图,ABCD是正方形,BC是⊙O的直径,点E是⊙O上的一动点(点E不与点B,C重合),连接DE,BE,CE.(1)若∠EBC=60°,求∠ECB的度数;(2)若DE为⊙O的切线,连接DO,DO交CE于点F,求证:DF=CE;(3)若AB=2,过点A作DE的垂线交射线CE于点M,求AM的最小值.25.综合运用:在平面直角坐标系中,点C的坐标为5,0,以OC长构建菱形OABC,cos∠BOC=45,点D是射线OB上的动点,连接AD,CD.(1)如图1,当CD⊥OC时,求线段BD的长度;(2)如图2,将点A绕着点D顺时针旋转90°,得到对应点A ,连接DA ,并延长DA 交BC边于点E,若点E 恰好为BC的中点,求BD的长度;(3)将点A绕着点D逆时针旋转一个固定角α,∠α=∠OCB,点A落在点A 处,射线DA 交x轴正半轴于点F,若△ODF是等腰三角形,请直接写出点F的横坐标.绝★启2024年中考押题预测卷数学(考试时间:120分钟试卷满分:120分)注意事项1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
最新数学中考押题预测密卷(含答案)最新题必考题必考题型
CED A 第3题B 最新数学中考押题预测密卷(试卷满分150分,考试时间120分钟)一、选择题(共12小题,每小题4分,共48分) 1 . 2014的倒数的相反数是 ( ) A .2014 B.2014-C.20141D.20141-2. 下列各式中,运算正确的是( )A. 624)(a a = B. 2312=÷ C. 326a a a =÷ D. 553322=+ 3. 如图,在△ABC 中,D 、E 分别是AB 、AC 边上的中点,若∠ADE=45°,∠A=75°,则tanC 为 ( )A.33 B. 1C. 3D.234.若反比例函数的图象经过点P (-2 ,1),则它的函数表达式是 ( ) A. x y 2=B. xy 2-=C. x y 21-=D. x y 2-=5. 在凉山州某中学一次田径运动会上,参加男子跳高的A 组15名运动员的成绩如下表所示:成绩(m ) 1.50 1.60 1.65 1.70 1.75 1.80 人数 1 2 4 3 3 2 这些运动员跳高成绩的中位数和众数分别是( ) A.1.70, 1.65 B. 1.70,1.70 C. 1.65,1.65 D. 3,4 6. 若函数122++=x mx y 的图像与x 轴只有一个公共点,则常数m 的值为( )A. 1B. -1C. 1±D. 0或1 7. 如图所示为凉山州某农村一古老的捣碎器,已知支撑柱AB 的高为 0.3米,踏板DE 长为1.6米,支撑点A 到踏脚D 的距离为0.6米,现在踏脚着地,则捣头点E 上升了( ) A. 0.6 米 B. 0.8米 C. 1米 D. 1.2米8. 如图,AB 是半圆O 的直径,点P 从点O 出发,沿OA →AB →BO 的路径运动一周,设点P 到点O 的距离为S ,运动时间为t ,则下列图形能大致地刻画S 与t 之间的关系的是( )9. 已知一个多边形的内角和是外角和的3倍,则这个多边形的边数是( )A. 8B. 6C. 5D. 310. 如图,在平面直角坐标系中,已知⊙O 的半径为1,动直线AB 与x 轴交于点P (x ,0),直线AB 与x 轴正方向夹角为45°,若直线AB 与⊙O 有公共点, 则x 的取值范围是( ) A.﹣1≤x ≤1 B.22<<-xC.11<<-xD. 22≤≤-x11. 在芦山地震抢险时,太平镇部分村庄需8组战士步行运送物资,要求每组分配的人数相同,若按每组人数比预定人数多分配1人,则总数会超过100人;若按每组人数比预定人数少分配1人,则总数不够90人,那么预定每组分配的人数是( )A. 10人B. 11人C. 12人D. 13人12. 已知圆锥侧面展开图的扇形半径为2cm ,面积是234cm π,则扇形的弧长和圆心角的度数分别为( ) A. B.C.D.二、填空题(共5小题,每小题4分,共20分) 13. 若51x y x -=-有意义,则x 的取值范围是 . 14. 因式分解:a ab 42-= . 15. 如果一个正比例函数的图像与反比例函数16-=x y 的图像交于A ()11,y x 、B ()22,y x 两点,那么()()2112y y x x --的值为 .16. 如图,是一个工件的三视图 ,则此工件的全面积是 .17.如图, AB 是⊙O 的直径,CD 是⊙O 的切线,切点为C,BE ⊥CD ,垂足为E,连接AC,BC.∠A =60o,OA =2cm,则CE= 三、解答题(共52分) 18.(6分)计算:201401122(1)(cos 45)π----+--学校: 西城中学 班级: 姓名: 考号: ……………………密…………封…………线…………内…………不…………得…………答…………题………………………………………… ………………………………………………………………………………………………………………………………………………………………s tOs tOstOOts D CB A(第7题)ADEB P OBA(第8题) 第16题第10题第17题OBEC D A19. (本小题6分)作图题:(不要求写作法)如图,正方形网格中,每个小正方形的边长均为1个单位 .(提示:一定要用铅笔作图)(1)将ABC ∆向下平移5个单位,画出所得C B A '''∆. (2)将C B A '''∆绕点C '顺时针旋转90°,画出所得A B C '''''∆.(3)求出A A '''的长.20. (本小题8分)凉山州某中学为了解本校学生对苦荞茶知识的了解程度,在全校范围内随机抽查了部分学生,将收集的数据绘制成如下两幅不完整的统计图.请根据图中提供的信息,解答下列问题:(1)在本次抽样调查中,共抽取了 名学生. (2)在扇形统计图中,“比较了解”部分所对应的圆心角的度数为 .(3)补全条形统计图.(提示:一定要用铅笔作图) (4)若该校有1860名学生,根据调查结果,请估算出对苦荞茶知识“了解一点”的学生人数?21.(本小题8分)如图, 在ABC ∆中, D 是BC 边上的一点, E 是AD 的中点,过A 点作BC 的平行线交CE 的延长线于点F , 且BD AF =, 连接BF . (1) 求证: D 是BC 的中点.(2) 假如AC AB =, 试猜想四边形AFBD 的形状 , 并证明你的猜想.816了解程度不了解了解一点比较了解人数05648403224168……………………………………………………………………………………………………………………………………………………………………………………………密…………封…………线…………内…………不…………得…………答…………题……………………………ABC不了解比较了解了解一点20%10%22.(本小题6分)有3张背面相同的纸牌A ,B ,C ,其正面分别画有三个不同的几何图形(如图). 将这3张纸牌背面朝上洗匀后摸出一张,放回洗匀后再摸出一张.(1) 求两次摸牌的所有等可能结果(用树状图或列表法求解,纸牌用A ,B ,C 表示).(2) 求摸出两张牌面图形都是中心对称图形的纸牌的概率 .23. (本小题8分)如图,凉山州某中学一大楼顶部有一块标语牌CD ,甲、乙两人分别在相距10米的A ,B 两处测得点D 和点C 的仰角分别为30°和45°,且A ,B ,E 三点在一条直线上,若BE=26米,求这块标语牌的高度.(最后结果精确到0.1米,414.12≈,3≈1.732)24.(本小题10分)在凉山州火把节前期 ,西昌茶行协会订购了甲种茶90吨 ,乙种茶80吨 ,准备用A 、B 两种型号的货车共20辆运往外地.已知A 型货车每辆运费为0.4万元 ,B 型货车每辆运费为0.6万元.设A 型货车安排x 辆,总运费为y 万元.(1)写出y 与x 的函数关系式.(2)若一辆A 型货车可装甲种茶6吨,乙种茶2吨;一辆B 型货车可装甲种茶3吨,乙种茶7吨.按此要求安排A 、B 两种型号货车一次性运完这批茶,共有哪几种运输方案? (3)说明哪种方案运费最少?最少运费是多少万元?A 正三角形B 圆C平行四边形45°30°EDC B A学校: 西城中学 班级: 姓名: 考号:………………………密…………封…………线…………内…………不…………得…………答…………题………………………………………… …………………………………………………………………………………………………………………………………………………………………四、填空题(共2小题,每小题5分,共10分)25、若222450x y x y +-++=,则x y += . 26、若()22122120x x x k x k -+++=、是方程的两个实数根,且()()12+1+1=8x x ,则k= . 五、解答题(共20分)27、(8分)如图,AB 是⊙O 的直径,C 是AB 延长线上一点,点D 在⊙O 上,且∠A=30°,∠ABD=2∠BDC. (1)求证:CD 是⊙O 的切线;(2)过点O 作OF∥AD,分别交BD 、CD 于点E 、F .若OB=2,求OE 和CF 的长.28.(本小题12分)如图,已知抛物线c bx x y ++=2经过点(1,-5)和(-2,4) (1)求这条抛物线的解析式 .(2)设此抛物线与直线x y =相交于点A ,B (点B 在点A 的右侧),平行于y 轴的直线m x =(150+<<m )与抛物线交于点M ,与直线x y =交于点N ,交x 轴于点P ,求线段M N 的长(用含m 的代数式表示).(3)在条件(2)的情况下,连接O M 、B M ,是否存在m 的值,使△BOM 的面积S 最大?若存在,请求出m 的值 ,若不存在,请说明理由.…………………………………………………………………………………………………………………………………………………………… ………………………………密…………封…………线…………内…………不…………得…………答…………题……………………………x参考答案一、选择题(共12小题,每小题4分,共48分) 1~12 DBCBA DBCAD CA二、填空题(共5小题,每小题4分,共20分)13、5x ≥ 14、()()22a b b +- 15、 -24 16、290cm π 17、cm 3三、解答题(共52分)()1218221.......42 12212= 2.................................................6-⎛⎫-+- ⎪ ⎪⎝⎭=--++--、解:原式=-1-分分19、解:(1) A B C '''∆如图所示。
最新中考数学押题预测密卷 有答题卡有答案 最新题必考题必考题型
最新中考数学押题预测密卷 有答案 最新题必考题必考题型一、选择题(以下每小题均有A 、B 、C 、D 四个选项,其中只有一个选项正确,请用2B 铅笔在《答题卡》上填涂正确选项的字母框,每小题3分,共30分) 1.|-2|的值等于( )(A )2 (B )-2 (C )±2 (D )21 2.遵义市是国家级红色旅游城市,每年都吸引众多海内外游客前来观光、旅游.据有关部门统计报道:2012年全市共接待游客3354万人次.将3354万用科学记数法表示为( ) (A )3.354×102万 (B )3.354×103万 (C )3.354×104万 (D )33.54×102万 3.如图,∠1=50°,要使a ∥b ,则∠2等于( ) (A )40° (B )50° (C )120° (D )130°4.某班开展以“提倡勤俭节约,反对铺张浪费”为主题教育活动.为了解学生每天使用零花钱的情况,小明随机调查了10名同学,结果如下表:每天使用零花钱(单位:元)0 2 3 4 5 人数12412关于这10名同学每天使用的零花钱,下列说法正确的是( )(A )平均数是2.5 (B )中位数是3 (C )众数是2 (D )方差是4 5.如图所示的几何体为圆台,其俯视图正确的是( )6.口袋里有相同的2个红球、4个白球和6个黑球,从口袋里摸出2个球,若两个都是红色,则甲胜;若两个都是黑球,则乙胜.谁获胜的概率大( ) (A )甲 (B )乙 (C )甲乙一样大 (D )不能确定7.在Rt △ABC 中,∠C =90°,若sin A =135,则cos A 的值为( ) (A )125 (B )135 (C )32 (D )13128.如图,点A ,B ,C ,D 的坐标分别是(1,7),(1,1), (4,1),(6,1),以C ,D ,E 为顶点的三角形与△ABC 相似,则点E 的坐标不可能是( )(A )(4,2) (B )(6,0) (C )(6,3) (D )(6,5)9.如图,已知A 、B 是反比例函数y =xk(k >0,x >0)上的两点, (第3题图) (第5题图)(第8题图)(第9题图)(A ) (B ) (C ) (D )(第18题图)(A ) (B ) (C ) (D ) BC ∥x 轴,交y 轴于C ,动点P 从坐标原点O 出发,沿O →A →B →C 匀速运动,终点为C ,过运动路线上任意一点P 作PM ⊥x 轴于M ,PN ⊥y 轴于N ,设四边形OMPN 的面积为S ,P 点运动的时间为t ,则S 关于t 的函数图象大致是( ) 10.如图,圆O 与正方形ABCD 的两边AB 、AD 相切,且DE 与圆O 相切于E 点.若圆O 的半径为5,且AB =11,则DE 的长度为何?( ) (A )5 (B )211(C )6 (D )61 二、填空题(每小题4分,共20分)11.在方程x +5y =6中,当x =1时,y =____ .12.为了估计鱼塘中鱼的条数,养鱼者首先从鱼塘中打捞30条鱼做上标记,然后放归鱼塘,经过一段时间,等有标记的鱼完全混合于鱼群中,再打捞200条鱼,发现其中带标记的鱼有5条,则鱼塘中估计有_____条鱼.13.如图,△ABC 是⊙O 的内接三角形,点D 是︵BC 的中点,已知∠AOB =98°,∠COB =120°,则∠ABD 的度数是____度. 14.如图,第四象限的角平分线OM 与反比例函数y =xk(k ≠0)的图象交于点A ,已知OA =4,则该反比例函数解析式为_____ . 15.二次函数y =x x 2212+-,当x ____时y <0,且y 随x 的增大而减小. 三、解答题16.(本题满分8分)先化简,再求值:121)111(22+-+÷-+-+x x x x x x x ,其中x =2. 17.(本题满分10分)三张卡片的正面分别写有数字2,5,5,卡片除数字外完全相同,将它们洗匀后,背面朝上放置在桌面上.(1)从中任意抽取一张卡片,该卡片上数字是5的概率为____;(2)学校将组织部分学生参加夏令营活动,九年级(1)班只有一个名额,小刚和小芳都想去,于是利用上述三张卡片做游戏决定谁去,游戏规则是:从中任意抽取一张卡片,记下数字放回,洗匀后再任意抽取一张,将抽取的两张卡片上的数字相加,若和等于7,小钢去;若和等于10,小芳去;和是其他数,游戏重新开始.你认为游戏对双方公平吗?请用画树状图或列表的方法说明理由. 18.(本题满分10分)某学校的校门是伸缩门(如图1),伸缩门中的每一行菱形有20个,每个菱形边长为30厘米.校门关闭时,每个菱形的锐角度数为60°(如图2);校门打开时,每个菱形的锐角度数从60°缩小为10°(如图3).问:校门打开了多少米?(结果精确到 1米).(第13题图)(第10题图)(第14题图)19.(本题满分10分)体考在即,初三(1)班的课题研究小组对本年级530名学生的体育达标情况进行调查,制作出如图所示的统计图,其中1班有50人.(注:30人以上为达标,满分50分)根据统计图,解答下面问题:(第19题图)(1)初三(1)班学生体育达标率和本年级其余各班学生体育达标率各是多少?(2)若除初三(1)班外其余班级学生体育考试成绩在30--40分的有120人,请补全扇形统计图;(注:请在图中注明分数段所对应的圆心角的度数)(3)如果要求全年级学生的体育达标率不低于90%,试问在本次调查中,该年级全体学生的体育达标率是否符合要求?20.(本题满分10分)(1)顺次连接菱形的四条边的中点,得到的四边形是____.(2)顺次连接矩形的四条边的中点,得到的四边形是____.(3)顺次连接正方形的四条边的中点,得到的四边形是____.(4)小青说:顺次连接一个四边形的各边的中点,得到的一个四边形如果是正方形,那么原来的四边形一定是正方形,这句话对吗?如果正确请证明,如果不正确请举出反例.21.(本题满分10分)根据国家发改委实施“阶梯电价”的有关文件要求,江西省上饶市决定从2012年7月1日起对居民生活用电试行“阶梯电价”收费,具体收费标准见下表:一户居民一个月用电量的范围电费价格(单位:元/千瓦时)不超过180千瓦时的部分a超过180千瓦时,但不超过350千瓦时的部分b超过350千瓦时的部分a+0.3(1)若上饶市一户居民8月份用电300千瓦时,应缴电费186元,9月份用电400千瓦时,应缴电费263.5元.求a,b的值;(2)实行“阶梯电价”收费以后,该户居民用电多少千瓦时,其当月的平均电价每千瓦时不超过0.62元?22.(本题满分10分)如图,在矩形ABCD中,AB=2DA,以点A为圆心,AB为半径的圆弧交DC于点E,交AD的延长线于点F,设DA=2.(第22题图)(1)求线段EC 的长;(2)求图中阴影部分的面积.23.(本题满分10分)仅用尺规作图是不能完成“三等分任意角”的,但是如果我们利用有刻度的直尺能够完成这个不可能任务,下面是两种不同的做法,任选一种方法......,先填空再证明.方法一:如图,将∠MAN 放置在每个小正方形的边长为1cm 的网格中,角的一边AM 与水平方向的网格线平行,另一边AN 经过格点B ,量出AB =2.5cm .让直尺有刻度一边过点A ,设该边与过点B 的竖直方向的网格线交于点C ,与过点B 水平方向的网格线交于点D ,调整点C 、D 的位置,使CD =____cm ,画射线AD ,此时∠MAD =31∠MAN .方法二:如图,1.设任意锐角∠MAN ;2.以A 为圆心,2.5cm 为半径作圆A ,∠MAN 与圆A 相交于M ,N 点;3.将直尺有刻度的一边过点N ,交圆A 于另一点P ,同时和MA 的延长线交于O 点; 4.适当的调整直尺的位置,当PO =____cm 时,∠MON =31∠MAN . 24.(本题满分10分)如图,已知抛物线y =x 2+bx +c 与x 轴交于点A ,B ,AB =2,与y 轴交于点C ,对称轴为直线x =2. (1)求抛物线的函数表达式;(2)设P 为对称轴上一动点,求△APC 周长的最小值;(3)设D 为抛物线上一点,E 为对称轴上一点,若以点A ,B ,D ,E 为顶点的四边形是菱形,则点D 的坐标为____.25.(本题满分12分)如图,直线MN 与x 轴,y 轴分别相交于A ,C 两点,分别过A ,C 两点作x 轴,y 轴的垂线相交于B 点,且OA ,OC (OA >OC )的长分别是一元二次方程x 2-14x +48=0的两个实数根. (1)求C 点坐标;(2)求直线MN 的解析式;(3)在直线MN 上存在点P ,使以点P ,B ,C 三点为顶点的三角形是等腰三角形,请直接写出P 点的坐标.NOMP A 方法二方法一(第23题图)(第24题图)(第25题图)答题卡一.选择题1.[A][B][C][D] 5.[A][B][C][D] 8.[A][B][C][D] 2.[A][B][C][D] 6.[A][B][C][D] 9.[A][B][C][D] 3.[A][B][C][D] 7.[A][B][C][D] 10.[A][B][C][D] 4.[A][B][C][D]二.填空题11.12.13.14.15.三.解答题16.17.(1)_____(2)18.19.(1)(3)20.(1)____.(2)____.(3)____.(4)21.(1)(2)(2)23.我选择方法_____方法一:CD=____cm方法二:PO=____cmNOM PA(2)(3)_____25.(1)(2)(3)一、选择题(每小题3分,共30分)1.A 2.B 3.D 4.B 5.C 6.B 7.D 8.C 9.A 10.C 二、填空题(每小题4分,共20分) 11. 1 12. 1200 13. 101° 14. xy 8-= 15. >4 三、解答题16.(本题满分8分)解:原式=1)1()111(2+-⋅-+-x x x x x ………………………………………………………(2分) =1)1(112+-⋅-+x x x x ……………………………………………………………………………(4分) =x -1,………………………………………………………………………………………(6分) 当x =2时,原式=2-1=1.…………………………………………………………………(8分) 17.(本题满分10分)解:(1)∵三张卡片的正面分别写有数字2,5,5,卡片除数字外完全相同,∴从中任意抽取一张卡片,该卡片上数字是5的概率为:32;…………………………(4分) (2)根据题意列表如下: 2552 (2,2)(4) (2,5)(7) (2,5)(7) 5 (5,2)(7) (5,5)(10) (5,5)(10) 5(5,2)(7) (5,5)(10) (5,5)(10)………………………………………………………………………………………………(7分) ∵共有9种可能的结果,其中数字和为7的共有4种,数字和为10的共有4种, ∴P (数字和为7)=94,P (数字和为10)=94,………………………………………(9分) ∴P (数字和为7)=P (数字和为10),∴游戏对双方公平.………………………………………………………………………(10分) 18.(本题满分10分)解:如图,校门关闭时,取其中一个菱形ABCD , 根据题意,得∠BAD =60°,AB =0.3米. ∵在菱形ABCD 中,AB =AD , ∴△BAD 是等边三角形, ∴BD =AB =0.3米,∴大门的宽是:0.3×20≈6(米);………………………………(4分) 校门打开时,取其中一个菱形A 1B 1C 1D 1. 根据题意,得∠B 1A 1D 1=10°,A 1B 1=0.3米.∵在菱形A 1B 1C 1D 1中,A 1C 1⊥B 1D 1,∠B 1A 1O 1=5°, ∴在Rt △A 1B 1O 1中,B 1O 1=sin ∠B 1A 1O 1•A 1B 1=sin5°×0.3=0.02616(米), ∴B 1D 1=2B 1O 1=0.05232米, ∴伸缩门的宽是:0.05232×20=1.0464米;………………………………………………(8分) ∴校门打开的宽度为:6-1.0464=4.9536≈5(米).故校门打开了5米.………………………………………………………………………(10分) 19.(本题满分10分)解:(1)根据条形统计图得:初三(1)班学生体育达标率为0.6+0.3=0.9=90%;根据扇形统计图得:本年级其余各班学生体育达标率为1-12.5%=87.5%;……………………………(3分) (2)其余各班的人数为530-50=480(人), 30-40分人数所占的角度为480120×360°=90°, 补全扇形统计图,如图所示:…………………(7分) (3)由扇形统计图得到其余各班体育达标率为 87.5%<90%,则该年级全体学生的体育达标率不符合要求.…(10分) 20.(本题满分10分)解:(1)矩形;………………………………………………(2分) (2)菱形;……………………………………………………(4分) (3)正方形;…………………………………………………(6分) (4)小青说的不正确.反例如图,四边形ABCD 中AC ⊥BD ,AC =BD ,BO ≠DO ,E 、F 、G 、H 分别为AD 、AB 、BC 、CD 的中点显然四边形ABCD 不是正方形.………………………………(9分) ∴小青的说法是错误的.………………………………………(10分) 21.(本题满分10分)解:(1)根据题意得:⎩⎨⎧=+++=+5.263)3.0(50170180173100180a b a b a ,………………………(3分)解得:⎩⎨⎧==65.06.0b a .答:a =0.6,b =0.65.…………………………………………………………………………(5分) (2)设该户居民用电x 千瓦时,月平均电价每千瓦时不超过0.62元,………………(6分) 由题意,得180×0.6+0.65(x -180)≤0.62x ,……………………………………………(8分) 解得:x ≤300.………………………………………………………………………………(9分) 答:该户居民用电量不超过300千瓦时,月平均电价每千瓦时不超过0.62元.……(10分) 22.(本题满分10分)解;(1)∵在矩形ABCD 中,AB =2DA ,DA =2,∴AB =AE =4, ∴DE =3222=-AD AE ,……………………………………………………………(4分) ∴EC =CD -DE =4-23……………………………………………………………………(5分)(2)∵s i n ∠DEA =AE AD =21,∴∠DEA =30°,∴∠EAB =30°,…………………………(7分) ∴图中阴影部分的面积为:S 扇形FAB -S △DAE -S 扇形EAB =3604303222136049022⨯-⨯⨯-⨯ππ =3238-π.………………………………………………………………………………(10分) 23.(本题满分10分)方法一:CD =5cm ……………………………(5分)证明:取CD 的中点E ,连接BE ,………………(6分)则在Rt △BCD 中,中线BE =21CD =DE =2.5cm =AB , ∴∠D =∠DBE ,∠BEA =∠BAE∵∠BEA =2∠D ,∴∠BAE =2∠D ,又∵BD ∥AM ,∴∠D =∠DAM =21∠BAE , ……………………………………………(9分) ∴∠DAM =31∠MAN ………………………………………………………………………(10分) 方法二:PO =2.5cm …………………………(5分) 证明:连接AP ,则AP =AN =PO =2.5cm ……(6分) ∴∠O =∠PAO ,∠APN =∠ANP ∵∠APN =2∠O ,∴∠ANP =2∠O ……………(8分)∵∠MAN =∠ANP +∠O =3∠O ∴∠MON =31∠MAN …………………………(10分) 24.(本题满分10分)解:(1)如图,∵AB =2,对称轴为直线x =2.∴点A 的坐标是(1,0),点B 的坐标是(3,0).∵抛物线y =x 2+bx +c 与x 轴交于点A ,B ,∴⎩⎨⎧=++=++03901c b c b …………………………………………………………………………(2分) ∴b =-4,c =3,∴抛物线的函数表达式为y =x 2-4x +3;……………………………………………………(4分)(2)如图1,连接AC 、BC ,BC 交对称轴于点P ,连接PA由(1)知抛物线的函数表达式为y =x 2-4x +3,A (1,0),B (3,0),∴C (0,3),∴BC =2233+=23,AC =2213+=10.………(6分)∵点A 、B 关于对称轴x =2对称,∴PA =PB ,∴PA +PC =PB +PC ,此时,PB +PC =BC ,…………………(7分)∴点P 在对称轴上运动时,(PA +PB )的最小值等于BC∴△APC 的周长的最小值=AC +AP +PC =AC +BC =23+10;…(8分)NOM PA E(3)如图2,根据“菱形ADBE 的对角线互相垂直平分,抛物线的对称性”得到点D 是抛物线y =x 2-4x +3的顶点坐标,即(2,-1).………………(10分)25.(本题满分12分)解:(1)解方程x 2-14x +48=0得 x 1=6,x 2=8.…………(2分)∵OA ,OC (OA >OC )的长分别是一元二次方程x 2-14x +48=0的两个实数根,∴OC =6,OA =8.∴C (0,6);…………………………………………………(4分)(2)设直线MN 的解析式是y =kx +b (k ≠0).由(1)知,OA =8,则A (8,0).∵点A 、C 都在直线MN 上,∴⎩⎨⎧==+608b b k ,解得⎪⎩⎪⎨⎧=-=643b k ,…………………(7分) ∴直线MN 的解析式为y =-43x +6;………………(8分) (3)∵A (8,0),C (0,6),∴根据题意知B (8,6).∵点P 在直线MN :y =-43x +6上, ∴设P (a ,-43a +6) 当以点P ,B ,C 三点为顶点的三角形是等腰三角形时,需要分类讨论:①当PC =PB 时,点P 是线段BC 的中垂线与直线MN 的交点,则P 1(4,3);②当PC =BC 时,a 2+(-43a +6-6)2=64, 解得,a =±532,则P 2(-532,554),P 3(532,56); ③当PB =BC 时,(a -8)2+(-43a +6-6)2=64, 解得,a =25256,则-43a +6=-2542,∴P 4(25256,-2542). 综上所述,符合条件的点P 有:P 1(4,3),P 2(-532,554)P 3(532,56), P 4(25256,-2542).……………………………………………………………………(12分)。
数学-2024年中考终极押题猜想(湖南通用)(解析版)
2024年中考数学终极押题猜想(湖南长沙专用)(高分的秘密武器:终极密押+押题预测)押题猜想一求函数的取值范围 (1)押题猜想二求函数的解析式 (13)押题猜想三函数中的对称点问题 (21)押题猜想四假设法求比值问题 (28)押题猜想五母子型反A相似模型..................................................错误!未定义书签。
押题猜想一求函数的取值范围押题解读本考点为历年长沙中考卷出现频率最高的压轴题考点,也属于湖南省统一命题后需重点盯防的压轴题题型,多以函数的新定义压轴题形式考查,建议掌握,属难度和计算量都比较大的压轴题。
一般而言,第一二问考查反比例函数的取值范围和一次函数的取值范围,第三问考查二次函数的取值范围。
1.(长郡)对于一个函数给出如下定义:对于函数y,若当a≤x≤b,函数值y满足m≤y≤n,且满足n﹣m=k (b﹣a),则称此函数为“k属和合函数”,例如:正比例函数y=﹣3x,当1≤x≤3时,﹣9≤y≤﹣3,则﹣3﹣(﹣9)=k(3﹣1),求得:k=3,所以函数y=﹣3x为“3属和合函数”.(1)若一次函数y=kx﹣1(1≤x≤3)为“4属和合函数”,求k的值;(2)反比例函数kyx(k>0,a≤x≤b,且0<a<b)是“k属和合函数”,且a+b=3,请求出a﹣b的值;(3)已知二次函数y=﹣x2+2ax+3,当﹣1≤x≤1时,y是“k属和合函数”,求k的取值范围.【分析】(1)分k>0和k<0两种情况,分别利用“k属和合函数”的定义解答即可;(2)先判断出函数的增减性,再利用“k属和合函数”的定义得出ab=1,然后利用完全平方公式解答即可;(3)分a≤﹣1、﹣1<a≤0、0<a≤1、a>1四种情况,分别求出最大值和最小值,最后利用“k属和合函数”的定义解答即可.【详解】解:(1)当k>0时,y随x的增大而增大,∵1≤x≤3,∴k﹣1≤y≤3k﹣1,∵函数y=kx﹣1(1≤x≤3)为“k属和合函数”,∴(3k﹣1)﹣(k﹣1)=4(3﹣1),∴k=4;【点睛】本题属于函数综合题,掌握各种函数的增减性、理解题目中的定义并灵活运用函数的性质成为解答本题的关键.2.(广益)“凡此变数中函彼变数者,则此为彼之函数”这是我国著名数学家李善兰给出的“()function 函数”翻译,一次函数、二次函数、反比例函数是初中阶段必须掌握的三大初等函数.(1)已知一次函数y kx b =+与反比例函数my x=相交于(1,6)A ,(,2)B n 两点,求这两个函数的解析式及由坐标原点O ,A ,B 围成的三角形的面积;(2)已知实数m ,()n m n <在二次函数234y x x =+-对称轴的同一侧,当m x n 时,y 的取值范围为1212y n m,求出m ,n 的值;(3)已知直线22y tx =-和抛物线22(1)1y t x =--在y 轴左边相交于A ,B 两点,点C 是线段AB 的中点,经过C ,(2,0)D -的直线交y 轴于点(0,)H h ,求h 取值范围.1.(一中)在y 关于x 的函数中,对于实数a ,b ,当a x b ≤≤且3b a =+时,函数y 有最大值max y ,最小值min y ,设max min h y y =-,则称h 为y 的“极差函数”(此函数为h 关于a 的函数);特别的,当max min h y y =-为一个常数(与a 无关)时,称y 有“极差常函数”.(1)判断下列函数是否有“极差常函数”?如果是,请在对应()内画“√”,如果不是,请在对应()内画“⨯”.2(y x =①______);22(y x =-+②______);2(y x =③______).(2)y 关于x 的一次函数y px q =+,它与两坐标轴围成的面积为1,且它有“极差常函数”3h =,求一次函数解析式;(3)32a ≤≤,当()3a xb b a ≤≤=+时,写出函数24y ax bx =-+的“极差函数”h ;并求4ah 的取值范围.【答案】(1)①√;②√;③⨯2.(师大博才)已知a 、b 是两个不相等的实数且a b <,我们规定:满足不等式a x b ≤≤的实数x 的所有取值的全体叫做闭区间,表示为[],.a b 对于一个函数,如果它的自变量x 与函数值y 满足:当a x b ≤≤时,有(ta y tb t ≤≤为正数),我们就称此函数是闭区间[],a b 上的“t 倍函数”.例如:正比例函数2y x =,当13x ≤≤时,26y ≤≤,则2y x =是13x ≤≤上的“2倍函数”.(1)已知反比例函数4yx=是闭区间[],m n 上的“2倍函数”,且m n +=22m n +的值;(2)①已知正比例函数y x =是闭区间[]1,2023上的“t 倍函数”,求t ;②一次函数()0y kx b k =+≠是闭区间[],m n 上的“2倍函数”,求此函数的解析式.(3)若二次函数269y x x =--是闭区间[],a b 上的“7倍函数”,求实数a 、b 的值.【分析】(1)根据新定义和函数增减性对应代入得到24mn =,利用完全平方公式求出22m n +的值;(2)①根据新定义和正比例函数y x =的增减性,发现当12023x ≤≤时,12023y ≤≤,得出t 值;②根据新定义和一次函数y kx b =+的增减性,分情况讨论0k >和0k <的x 与y 的对应变化,综合分析,得3.雅礼()如图,已知二次函数2y x bx c =++的顶点P 的横坐标为2-,且与y 轴交于点C (0,-4).(1)求b ,c 的值;(2)直线y=m(m>0)与该抛物线的交点为M ,N (点M 在点N 的左侧)点M 关于y 轴的对称点为点M´,点H 的坐标为(3,0).若四边形ONM´H 的面积为18.求点H 到OM´的距离;(3)是否在对称轴的同侧存在实数m 、n(m<n),当m x n时,y 的取值范围为1212y n m?若存在,求出m ,n 的值;若不存在,说明理由.【点睛】本题考查二次函数综合,解题的关键是掌握待定系数法求解,分情况讨论m 、n.4.已知抛物线()2212y x m x m =-+---(22m -<<),直线l :y px q =+(0p q <<).(1)若该抛物线与y 轴交点的纵坐标为3,求该抛物线的顶点坐标;(2)在第(1)条件下,将函数()2212y x m x m =-+---(22m -<<)图象x 轴上方部分沿x 轴向下翻折,得到的新图象与直线y n =恒有四个交点,从左到右,四个交点依次记为A ,B ,C ,D ,当以BC 为直径的圆与x 轴相切时,求n 的值;(3)若该抛物线经过点(t ,4),且对任意实数x ,不等式()22124x m x m -+---≤都成立;当p x q ≤≤时,恰好有10112202210112p q q p y q ≤≤+++,求直线l 的解析式.22图1(3)解:∵抛物线经过点(t,4),且对任意实数∴点(t,4)为抛物线的顶点,∴()( 41⨯-⨯-∵-2<m<2,∴m=32-,∴该抛物线解析式为:∵210112202210112p qp y q≤≤+++,0p q<<,∴10112202210112p y q图2【点睛】本题考查了二次函数解析式,二次函数的图象与性质,二次函数与圆综合,二次函数与反比例函数综合,一次函数解析式等知识.解题的关键在于对知识的熟练掌握与灵活运用.押题猜想二函数的解析式押题解读1.(青竹湖)我们不妨约定:在平面直角坐标系中,若某直线l 经过抛物线2:L y ax bx c =++(a ,b ,c 是常数,0a ≠)的顶点和该抛物线与y 轴的交点,则把该直线l 称为抛物线L 的“心心相融线”.根据该约定,请完成下列各题:(1)若直线1y kx =+是抛物线221y x x =-+的“心心相融线”,求k 的值.(2)若过原点的抛物线2:L y x bx c =-++(b ,c 是常数,且0b ≠)的“心心相融线”为(0)y mx n m =+≠,则代数式b m是否为定值?若是,请求出该定值;若不是,请说明理由.(3)当常数k 满足122k <≤时,求抛物线()22:321L y ax k k x k =+-++(a ,b ,c 是常数,0a ≠)的“心心相融线”l 与x 轴,y 轴所围成的三角形面积的取值范围.2.(广益)我们不妨约定:若某函数图像上至少存在不同的两点关于直线y =x 对称,则把该函数称为“Q 函数”,其图像上关于直线y =x 对称的两点叫做一对“Q 点”.根据该约定,完成下列各题:(1)在下列关于x 的函数中,是“Q 函数”的,请在相应题目后面的括号中打“√”,不是“Q 函数”的打“×”①y =2x ();②2y x =();③()21y x =-()(2)关于x 的函数y =kx -2k +2(k 是常数)是“Q 函数”吗?如果是,写出距离为“Q 点”坐标:如果不是,请说明理由;(3)若关于x 的“Q 函数”2y ax bx c =++(a ,b ,c 是常数,a >0)的一对“Q 点”A 、C 分别位于x 轴、y 轴上,求同时满足下列两个条件的“Q 函数”的解析式:①该“Q 函数”截x 轴所得的线段长AB 为2:②该“Q 函数”截直线y =x 所得的线段长MN .∴1k =或1k =-时,22y kx k =-+是“Q 函数以P 为圆心,2为半径作圆,则圆与y =如图,设,C D 为P 与直线4y x =-+的交点,则设(),4C m m -+,则2PC =,即()22m -∴一对Q 点的坐标分别为()1,3与()3,1,(3) 该“Q 函数”截x 轴所得的线段长AB 则122x x -=,∴()2121244x x x x +-=,即b a,M N 在y x =上,则MNC 是等腰直角三角形,则2132CN MN ==,联立y y ⎧⎨⎩得()210ax b x c +-+=,设两根分别为12,x x ,1213NC x x =-=,∴()21214x x x +-即()221413b c a a --=②,根据定义可知一对“Q 点”A 、C 分别位于x 轴、y 轴上,则OA 由2y ax bx c =++,令0y =,得2212b b 4ac b b 4ac x ,x 2a 2a -+----==,令0x =,则c =24b b ac -+-或c =24b b ac ---1.(青竹湖)我们约定:记m =(a ,b ),n =(c ,d ),m 可表示平面直角坐标系中一点的坐标,作如下运算规定:m +n =(a +c ,b +d ),m ⋅n =ac +bd .例如:若m =(2,3),n =(﹣3,4),则m +n =(2﹣3,3+4)=(﹣1,7),m •n=2×(﹣3)+3×4=6.(1)已知m =(3a ﹣2b ,a ),n =(a ﹣2b ,2a +2b ),若m +n =(4,8),则m •n =;(2)已知m =(t ,﹣2t 2+t ﹣4),n =(2,3t 2+t ﹣2)(其中t >0),若直线y =﹣2x +3经过点m +n ,求以m为顶点且图象经过n的抛物线解析式;(3)已知有关于x 的二次函数y =ax 2+bx +c (a ≠0),m =(2b +c ,3a +b +2c ),n =(3a +b +2c ,﹣a ﹣b +c ),若满足:①m +n 表示的点在y 轴上,②m •n <0,记该二次函数与x 轴的两交点的横坐标为x 1,x 2(x 1<0<x 2),求L =|x 1﹣x 2|的取值范围.【分析】(1)根据题目中规定运算法则代入m +n 解方程求出a 和b 的值,进而求出m 和n ,然后再代入m •n 求解即可;(2)首先根据题意表示出m +n ,然后将m +n 代入直线y =﹣2x +3中求出t 的值,进而得到m +n ,然后利用待定系数法即可求出以m 为顶点且图象经过n的抛物线解析式;(3)首先根据题意表示出m +n ,根据m +n 表示的点在y 轴上,得出a +b +c =0,进而求出x 2=1,然后由m •n<0,结合x 1<0<x 2,得出﹣2<c a<0,即可求出L =|x 1﹣x 2|的取值范围.【详解】(1)由题意的m +n=(3a ﹣2b +a ﹣2b ,a +2a +2b )=(4,8),可得方程组444328a b a b -=⎧⎨+=⎩,解得21a b =⎧⎨=⎩,∴m =(4,2),n =(0,6),∴m •n =4×0+2×6=12.故答案为:12.(2)m +n=(t +2,﹣2t 2+t ﹣4+3t 2+t ﹣2)=(t +2,t 2+2t ﹣6),把(t +2,t 2+2t ﹣6)代入y =﹣2x +3得t 2+2t ﹣6=﹣2(t +2)+3,解得t =1或t =﹣5(舍).∴m =(1,﹣5),n =(2,2),设抛物线解析式为y =a (x ﹣1)2﹣5,把(2,2)代入y =a (x ﹣1)2﹣5得2=a ﹣5,解得a =7,∴y =7(x ﹣1)2﹣5.2.(广益)已知1y ,2y 分别是关于x 的函数,如果函数1y 和2y 的图象有交点,那么称1y ,2y 为“亲密函数”,交点称为函数1y 和2y 的“亲密点”;若两函数图象有两个交点,横坐标分别是1x ,2x ,称12||L x x =-为函数1y 和2y 的“亲密度”,特别地,若两函数图象只有一个交点,则两函数的“亲密度”0L =.(1)已知一次函数125y x =-与反比例函数23y x=,请判断函数1y 和2y 是否为“亲密函数”,若是,请写出“亲密点”及“亲密度”L ,若不是,请说明理由;(2)已知二次函数26y ax x c =-+与x 轴只有一个交点,与一次函数1y x =-的“亲密度”3L =,求二次函数的解析式;(3)已知“亲密函数”12y ax =-和21y x-=的“亲密度”0L =,“亲密点”为0(P x ,0)y ,将过P 的抛物线2(0)y ax bx c b =++>进行平移,点P 的对应点为1(1,21)P m b --,平移后的抛物线仍经过点P ,当32m - 时,求平移后抛物线的顶点所能达到的最高点的坐标.【解答】解:(1)联立125y x =-与反比例函数23y x =并整理得:22530x x --=,解得:3x =或12-,故“亲密点”为:1(2-,6)或(3,1);“亲密度”17322L =+=;(2)由题意得:△3640ac =-=,解得:9ac =,联立26y ax x c =-+、1y x =-并整理得:2710ax x c -++=,则127x x a +=,1217c x x +=;3L =,则29L =,即:21212()49x x x x +-=,则2271()4()9c a a+-=,解得:1a =或139-,9c =或8113-;故抛物线的表达式为:269y x x =-+或213816913y x x =---;(3)联立12y ax =-和21y x-=并整理得:2210ax x -+=,△440a =-=,解得:1a =,当1a =时,1x =,故点(1,1)P -;由平移前的抛物线2y x bx c =++,可得22(24b b y x c =+-+,即22()224b b y x b =+---.因为平移后(1,1)P -的对应点为1(1,21)P m b --可知,抛物线向左平移m 个单位长度,向上平移2b 个单位长度.则平移后的抛物线解析式为22()2224b b y x m b b =++---+,即22()224b b y x m b =++--+.把(1,1)-代入,得22(1)2124b b m b ++--+=-.22(1)124b b m b ++=-+.22(1)(1)22b b m ++=-.所以1(1)22b b m ++=±-.当1122b b m ++=-时,2m =-(不合题意,舍去);当1(1)22b b m ++=--时,m b =-,因为32m - ,所以32b .所以302b < ,所以平移后的抛物线解析式为22()224b b y x b =--+.即顶点为(2b ,22)4b b -+,设224b p b =--+,即21(2)14p b =---.因为104-<,所以当2b <时,p 随b 的增大而增大.因为302b < ,所以当32b =时,p 取最大值为1716-,此时,平移后抛物线的顶点所能达到的最高点坐标为3(4,17)16-.【点评】本题考查的是二次函数综合运用,涉及到一次函数的性质、图形的平移等,这种新定义的题目,通常按照题设的顺序逐次求解.3.(广益)“穆尔说:所谓科学,包指逻辑和数学在内,都是有关时代的函数”我们约定:经过点G 的所有函数称之为“G -函数系”.(1)已知关于x 的一次函数32y mx m =-+,不论m 为何值,该函数的图象都经过定点G ,若反比例函数k y x=也是“G -函数系”家族一员,直接写出点G 的坐标以及k 的值;(2)已知二次函数2y ax bx c =++图象的顶点为G ,若反比例函数4y x =-和一次函数22y x =--都属于“G -函数系”,且该二次函数经过(3,3),求此二次函数的解析式;(3)已知点(0,1)G k -,关于x 的“G 函数系”中二次函数22(386)y ax k k x c =+-++的顶点为P ,若实数k 满足22990k k -+<,求经过P ,G 两点的直线l 与坐标轴所围成的三角形面积S 的取值范围.【解答】解:(1)32(3)2y mx m m x =-+=-+ ,∴当3x =时,2y =,即定点(3,2)G ,反比例函数k y x =也是“G -函数系”家族一员,23k ∴=,6k ∴=;(2)由422y x y x ⎧=-⎪⎨⎪=--⎩得14x y =⎧⎨=-⎩或22x y =-⎧⎨=⎩,(1,4)G ∴-或(2,2)-,当(1,4)G -时,二次函数顶点为(1,4)-,设解析式为2(1)4y a x =--,将(3,3)代入得:23(31)4a =--,74a ∴=,∴二次函数解析式为227779(1)44424y x x x =--=--,当(2,2)G -时,二次函数顶点为(2,2)-,设解析式为2(2)2y a x =++,将(3,3)代入得:23(32)2a =++,解得125a =,∴二次函数解析式为2211454(2)225252525y x x x =++=++;综上所述,二次函数的解析式为2779424y x x =--或21454252525y x x =++;(3)将(0,1)G k -代入22(386)y ax k k x c =+-++得:1c k =-,∴二次函数为22(386)1y ax k k x k =+-++-,由顶点坐标公式得2(386)(2k k P a --+,224(1)(386))4a k k k a---+,设直线l 解析式为1y mx k =+-,将2(386)(2k k P a --+,224(1)(386)))4a k k k a ---+代入得:2224(1)(386)386142a k k k k k m k a a ---+-+=-⋅+-,解得23862k k m -+=,∴直线l 解析式为238612k k y x k -+=+-,令0y =得:2386102k k x k -++-=,解得22(1)386k x k k --=-+,∴直线l 与坐标轴所围成的三角形面积22212(1)(1)|1|||2386|386|k k S k k k k k ---=⋅-⋅=-+-+,设1t k =-,则1k t =+,22|321|t S t t ∴=-+,而22123213()033t t t -+=-+>,2222112113213(1)2t S t t t t t∴===-+-+-+,22990k k -+< ,(23)(3)0k k ∴--<,∴332k <<,即3132t <+<,∴122t <<,∴1122t <<,∴当11t =时,S 最大值为12,若12t =时,则13S =,若112t =时,则49S =,∴1132S < .【点评】本题考查二次函数综合应用,涉及新定义、待定系数法、三角形面积、换元法、配方法等知识,综合性较强,解题的关键是用含k 的代数式表示直线l 与坐标轴所围成的三角形面积.押题猜想三对称点问题押题解读本考点为近几年长沙中考卷出现频率较高的压轴题考点,一般在压轴题的前两问中出现,难度不算很大但学生们一般容易丢分的重要题型,重点考查关于x 轴对称的两点关系、关于y 轴对称的两点关系、原点对称以及关于中心对称的中点公式使用以及中点公式的灵活应用。
2024年浙江省中考数学模拟押题预测卷及答案
2024年浙江省中考数学模拟押题预测卷一、选择题:本题共10小题,每小题3分,共30分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.在−3.14,−ππ,0,√ 3中,绝对值最大的数是( )A. −3.14B. −ππC. 0D. √ 32.据公开资料显示,到2030年,氢能产业将成为我国新的经济增长点和新能源战略的重要组成部分,产业产值将突破10000亿元,数据“10000亿”用科学记数法表示为( )A. 1×104B. 1×108C. 1×1010D. 1×10123.计算(1.5)2023×(23)2024的结果是( )A. 23B. 32C. −23D. −324.甲、乙、丙、丁四名射击运动员参加射击预选赛,每人射击20发子弹.他们射击成绩的平均数及标准差如下表所示:人员成绩甲乙丙丁平均数(环)8.78.79.19.1标准差(环) 1.3 1.5 1.0 1.2若要选一名成绩较好且发挥稳定的运动员参赛,则应选择( )A. 甲B. 乙C. 丙D. 丁5.已知点PP(aa−1,4)在第二象限,则aa的取值范围正确的是( )A. aa>1B. aa≥1C. aa≤1D. aa<16.如图,电线杆AAAA的中点CC处有一标志物,在地面DD点处测得标志物的仰角为32°,若点DD到电线杆底部点AA的距离为aa米,则电线杆AAAA的长可表示为( )(6题)(7题)A. 2aa⋅cccccc32°米B. 2aa⋅ttaatt32°米C. 2aa ccss tt32∘米D. 2aa tt aa tt32∘米7.如图,在菱形AAAACCDD中,AAAA=6cccc,∠AADDCC=120°,点EE、FF同时从AA、CC两点出发,分别沿AAAA,CCAA方向匀速运动(到点AA停止),点EE的速度为1cccc/cc,点FF的速度为2cccc/cc.若经过tt秒时,△DDEEFF为等边三角形,则tt的值为( )A. 1B. 12C. 43D. 28.为培养青少年的创新意识、动手实践能力、现场应变能力和团队精神,湘潭市举办了第10届青少年机器人竞赛.组委会为每个比赛场地准备了四条腿的桌子和三条腿的凳子共12个,若桌子腿数与凳子腿数的和为40条,则每个比赛场地有几张桌子和几条凳子?设有xx张桌子,有yy条凳子,根据题意所列方程组正确的是( )A. �xx+yy=404xx+3yy=12 B. �xx+yy=124xx+3yy=40 C. �xx+yy=403xx+4yy=12 D. �xx+yy=123xx+4yy=409.设二次函数yy=xx2−ccxx−3cc(cc为实数)的图象过点(1,yy1),(2,yy2),(3,yy3),(4,yy4),设yy1−yy3=aa,yy2−yy4=bb,下列结论正确的是( )A. 若aabb<0,且aa+bb<0,则cc>4B. 若aabb<0,且aa+bb>0,则5<cc<7C. 若aabb>0,且aa+bb<0,则cc>5D. 若aabb>0,且aa+bb>0,则cc>610.如图,EE,FF是正方形AAAACCDD的边AACC上两个动点,AAEE=CCFF.连接AAEE,AADD交于点GG,连接CCGG,DDFF交于点MM.若正方形的边长为2,则线段AAMM的最小值是( )A. 1B. √ 2−1C. √ 3−1D. √ 5−1二、填空题:本题共6小题,每小题4分,共24分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
最新中考数学押题预测密卷考生注意:1.本试卷含三个大题,共25题;2.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效;3.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题:(本大题共6题,每题4分,满分24分) 【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上】1.点A 是数轴上的任意一点,则下列说法正确的是( ▲ ) (A )点A 表示的数一定是整数; (B )点A 表示的数一定是分数; (C )点A 表示的数一定是有理数;(D )点A 表示的数可能是无理数.2.下列关于x 的方程一定有实数解的是( ▲ )(A )21011x x x ++=--; (B1x =-; (C )210x x --=; (D )210x x -+=.3.某学校为了了解九年级学生体能情况,随机选取30名 学生测试一分钟仰卧起坐次数,并绘制了直方图(如图), 学生仰卧起坐次数在25~30之间的频率为( ▲ ) (A )0.1; (B )0.4;(C )0.33;(D )0.17.4.将抛物线22y x =-平移到抛物线222y x x =+-的位置,以下描述正确的是( ▲ ) (A )向左平移1个单位,向上平移1个单位;(B )向右平移1个单位,向上平移1个单位;(C )向左平移1个单位,向下平移1个单位;(D )向右平移1个单位,向下平移1个单位. 5.下列图形既是中心对称又是轴对称的是( ▲ )(A )菱形; (B )梯形; (C )正三角形; (D )正五边形. 6.下列条件一定能推得△ABC 与△DEF 全等的是( ▲ ) (A )在△ABC 和△DEF 中,∠A =∠B ,∠D =∠E ,AB =DE ; (B )在△ABC 和△DEF 中,AB =AC ,∠A =∠F , FD =FE ;(C )在△ABC 和△DEF 中,1,AB DEB E BC EF ==∠=∠; (D )在△ABC 和△DEF 中,1,AB BCB E DE EF==∠=∠. 二、填空题:(本大题共12题,每题4分,满分48分) 【请将结果直接填入答题纸的相应位置上】(第3题图)7= ▲ . 8x =的解是 ▲ .9.如果反比例函数1ky x-=的图像在第二、四象限,那么k 的取值范围是 ▲ . 10.函数y kx b =+的大致图像如图所示,则当0x <时,y 的取值范围是 ▲ .11.黄老师在数学课上给出了6道习题,要求每位同学独立完成。
则这些同学平均答对 ▲ 道题.12.从分别标有1、2、3、4的四张卡片中,一次同时抽2张,其中和为奇数的概率是 ▲ . 13.在Rt △ABC 中,∠C =90°,点D 为AB 边上中点,如果,AB a CD b ==,那么CA = ▲ (用,a b 表示).14.如果人在一斜坡坡面上前行100米时,恰好在铅垂方向上上升了10米,那么该斜坡的坡度是 ▲ .15.如图,△ABC 中,∠A =80°,∠B =40°,BC 的垂直平分线交AB 于点D ,联结DC 。
如果AD =2,BD =6,那么△ADC 的周长为 ▲ .16.如图,在Rt △ABC 中,∠A =90°,∠B =30°,BC =10,以A 为圆心画圆,如果⊙A 与直线BC 相切,那么⊙A 的半径长为 ▲ .17.如果将点(-b ,-a )称为点(a ,b )的“反称点”,那么点(a ,b )也是点(-b ,-a )的“反称点”,此时,称点(a ,b )和点(-b ,-a )是互为“反称点”。
容易发现,互为“反称点”的两点有时是重合的,例如(0,0)的“反称点”还是(0,0)。
请再写出一个这样的点: ▲ .18.如图,在菱形ABCD 中,AB =a ,∠ABC =α。
将菱形ABCD 绕点B 顺时针旋转(旋转角小于90°),点A 、C 、D 分别落在A ’、C ’、D ’处,当 A ’C ’⊥BC 时A ’D = ▲ (用含a 和α的代数式表示).三、解答题:(本大题共7题,满分78分) 19.(本题满分10分)(第18题图)(第15题图) A B C D A B C (第16题图)先化简,再求值:11123213222-+++--÷--x x x x x x x ,12+=x . 20.(本题满分10分)解不等式组:⎪⎩⎪⎨⎧+<+≤+-,2235,3)3(2x x x x 且写出使不等式组成立的所有整数。
21.(本题满分10分)甲、乙两名运动员进行长跑训练,两人距终点的路程y (米)与跑步时间x (分)之间的函数关系如图所示,根据图像所提供的信息解答问题:(1) 他们在进行 ▲ 米的长跑训练,在0<x <15的时段内,速度较快的人是 ▲ ; (2)求甲距终点的路程y (米)和跑步时间 x (分)之间的函数关系式; (3)当x =15时,两人相距多少米?(4)在15<x <20的时段内,求两人速度之差.22.(本题满分10分)如图,已知:⊙O 是△ABC 的外接圆,半径长为5,点D 、E 分别是边AB 和边AC 的中点,AB =AC ,BC =6。
求∠OED 的正切值。
23.(本题满分12分,其中第(1)小题7分,第(2)小题小题5分)分)A BCD E O (第22题图)梯形ABCD 中,AD //BC ,DC ⊥BC ,CE ⊥AB 于点E ,点F 在边CD 上,且BE CE BC CF ⋅=⋅。
(1)求证:AE CF BE DF ⋅=⋅;(2)若点E 为AB 中点,求证:222AD BC EC BC ⋅=-24.(本题满分12分,其中第(1)小题3分,第(2)小题5分,第(3)小题4分) 直线6y kx =-过点A (1,-4),与x 轴交于点B ,与y 轴交于点D ,以点A 为顶点的抛物线经过点B ,且交y 轴于点C 。
(1)求抛物线的表达式;(2)如果点P 在x 轴上,且△ACD 与△PBC 相似,求点P(3)如果直线l 与直线6y kx =-关于直线BC 对称, 求直线l 的表达式。
25.(本题满分14分,其中第(1)小题4分,第(2)、(3)小题各5分) 已知梯形ABCD 中,AD //BC ,AD =1,BC =2,sin B =35。
过点C 在∠BCD 的内部作射线交射 线BA 于点E ,使得∠DCE =∠B 。
(1)如图1,当ABCD 为等腰梯形时,求AB 的长; (2)当点E 与点A 重合时(如图2),求AB 的长; (3)当△BCE 为直角三角形时,求AB 的长。
x(第24题图)(备用图)BCABCD(图1)BCD(E ) (图2)A(第25题图)A BCD EF(第23题图)一、选择题1、D ;2、C ;3、B ;4、C ;5、A ;6、D ; 二、填空题7、;8、2x =;9、1k >;10、1y <;11、4.5;12、23;13、12b a -;14、;15、14;1617、(3,-3);18、2cos 2a a α-; 三、解答题19、解:原式=11)1)(3()1()1)(1(32-++-+⋅-+-x x x x x x x -----------------------------------------(6分)=1111-+-x x =12-x --------------------------------------------------------(2分) 当12+=x 时, 原式=222=-------------------------------------(2分) 20、解:⎩⎨⎧+<+≤+-.123102,362x x x x ----------------------------------------------------------------------(2分)⎩⎨⎧<-≤.2,93x x -----------------------------------------------------------------------------------(2分) 得⎩⎨⎧->≤.2,3x x ---------------------------------------------------------------------------------(2分)∴不等式组的解集是-2<x ≤3.-----------------------------------------------------(2分) 使不等式组成立的所有整数是-1、0、1、2、3.----------------------------------(2分)21、解:(1)5000-------------------------------------------------------------------------------------(1分)甲 -------------------------------------------------------------------------------------(1分) (2)设所求直线的解析式为:y =kx +5000,-----------------------------------------(1分)由图象可知:当x =20时,y =0,∴0=20k +5000,解得k = -250. --------------------------------------------------(1分) 即y = -250x +5000 ------------------------------------------------------------------(1分) (3)当x =15时,y = -250x +5000= -250×15+5000=5000-3750=1250. ------------(2分)两人相距: 2000-1250=750(米). ----------------------------------------------(1分)(4) 两人速度之差:750÷(20-15)=150(米/分) ---------------------------------(2分) 22、解:联结AO 并延长交BC 于点H ,联结OC , ∵AB=AC ,∴AB AC =,∵O 为圆心,∴AH ⊥BC ,BH=HC ,---------------------------------------------------------------(2分) ∴HC=3,∵半径OC=5,∴OH=4,AH=9,------------------------------------------(2分) ∴在Rt △AHC 中,tan ∠HAC=3193HC AH ==,即tan ∠OAE=13,----------------(2分)∵D 、E 分别是边AB 和边AC 的中点,∴DE//BC ,∴AH ⊥DE ,∴∠OAE+∠AED=90°,∵E 是边AC 的中点,O 为圆心,∴OE ⊥AC ,∴∠AED+∠OED=90°,∴∠OAE=∠OED ,--------------------------------------------------------------------------(2分) ∴tan ∠OED= tan ∠OAE=13.----------------------------------------------------------------(2分) 23、证明:(1)∵CE ⊥AB ,∴∠B+∠BCE=90°,∵DC ⊥BC ,∴∠DCE+∠BCE=90°,∴∠B=∠DCE ,-----------(2分)∵BE CE BC CF ⋅=⋅,∴BE CFBC CE=,∴△BCE ∽△CEF ,------(2分) ∴∠BCE=∠CEF ,------------------------------------------------------------(1分) ∴EF//BC ,----------------------------------------------------------------------(1分)∴AE DFBE CF=,即AE CF BE DF ⋅=⋅。