2020中考数学经典题型汇总

合集下载

中考数学十大必考题型

中考数学十大必考题型

中考数学十大必考题型有许多,这里列举一些常见的题型:
1. 方程问题:这是中考必考题型,主要考察方程的解法、方程组的解法以及应用题等。

2. 函数图像问题:主要考察函数图像的画法、图像的变化以及根据图像求函数解析式等。

3. 圆的相关问题:中考数学中,圆是必考内容之一,包括圆的性质、圆的有关定理、定理的应用等。

4. 三角形的问题:中考数学中,三角形也是一个重要的考点,包括三角形的内角和、三角形的分类讨论、直角三角形、等腰三角形、等边三角形的性质和定理等。

5. 最值问题:中考数学中,常常会涉及到一些最值问题,如一元二次方程的最值、三角函数的最值、几何图形的最值等。

6. 统计与概率问题:中考数学中,统计与概率也是一个重要的考点,包括数据的收集、数据的整理、数据的分析、概率的求法等。

7. 开放性试题:这类试题可以考查学生的发散性思维和创新能力,是中考数学的一个热点。

8. 跨学科问题:如与物理、化学、生物等结合在一起的应用题,考查综合运用数学知识解决实际问题的能力。

9. 阅读理解题:中考数学也常涉及到一些阅读理解题,需要学生认真阅读题目并理解题目的意思。

10. 方案设计题:这类题目需要学生设计出符合题意的方案,需要学生有一定的创新能力。

需要注意的是,中考数学试题千变万化,除了以上十大必考题型外,还有许多其他类型的题目,例如难题、新题等。

考生需要掌握好基础知识,并多做练习,才能应对各种不同类型的题目。

以上是中考数学十大必考题型的简要介绍,希望能对您有所帮助。

总之,考生在备考中考数学时,需要注重基础知识的学习和练习,同时要注意培养自己的思维能力和创新能力。

2020年中考总复习—经典应用题型汇总(含答案)经典应用题

2020年中考总复习—经典应用题型汇总(含答案)经典应用题

1、某农作物的生长率p与温度t(℃)有如下关系:如图1,当10≤t≤25时可近似用函数p=t﹣刻画;当25≤t≤37时可近似用函数p=﹣(t﹣h)2+0.4刻画.(1)求h的值.(2)按照经验,该作物提前上市的天数m(天)与生长率p满足函数关系:①请运用已学的知识,求m关于p的函数表达式;②请用含t的代数式表示m.(3)天气寒冷,大棚加温可改变农作物生长速度.在(2)的条件下,原计划大棚恒温20℃时,每天的成本为200元,该作物30天后上市时,根据市场调查:每提前一天上市售出(一次售完),销售额可增加600元.因此给大棚继续加温,加温后每天成本w(元)与大棚温度t(℃)之间的关系如图2.问提前上市多少天时增加的利润最大?并求这个最大利润(农作物上市售出后大棚暂停使用).2、某风景区内的公路如图1所示,景区内有免费的班车,从入口处出发,沿该公路开往草甸,途中停靠塔林(上下车时间忽略不计).第一班车上午8点发车,以后每隔10分钟有一班车从入口处发车.小聪周末到该风景区游玩,上午7:40到达入口处,因还没到班车发车时间,于是从景区入口处出发,沿该公路步行25分钟后到达塔林。

离入口处的路程y(米)与时间x(分)的函数关系如图2所示.(1)求第一班车离入口处的路程y(米)与时间x(分)的函数表达式(2)求第一班车从人口处到达塔林所蓄的时间。

(3)小聪在塔林游玩40分钟后,想坐班车到草甸,则小聘最早能够坐上第几班车?如果他坐这班车到草甸,比他在塔林游玩结束后立即步行到草甸提早了几分钟?(假设每一班车速度均相同,小聪步行速度不变)3、甲、乙两车分别从A,B两地同时出发,沿同一条公路相向行驶,相遇后,甲车继续以原速行驶到B地,乙车立即以原速原路返回到B地,甲、乙两车距B地的路程y(km)与各自行驶的时间x(h)之间的关系如图所示.⑴m=________,n=________;⑵求乙车距B地的路程y关于x的函数解析式,并写出自变量x的取值范围;⑶当甲车到达B地时,求乙车距B地的路程4、某出租公司有若干辆同一型号的货车对外出租,每辆货车的日租金实行淡季、旺季两种价格标准,旺季每辆货车的日租金比淡季上涨.据统计,淡季该公司平均每天有10辆货车未出租,日租金总收入为1500元;旺季所有的货车每天能全部租出,日租金总收入为4000元.(1)该出租公司这批对外出租的货车共有多少辆?淡季每辆货车的日租金多少元?(2)经市场调查发现,在旺季如果每辆货车的日租金每上涨20元,每天租出去的货车就会减少1辆,不考虑其它因素,每辆货车的日租金上涨多少元时,该出租公司的日租金总收入最高?5、某工厂用50天时间生产一款新型节能产品,每天生产的该产品被某网店以每件80元的价格全部订购,在生产过程中,由于技术的不断更新,该产品第x天的生产成本y(元/件)与x(天)之间的关系如图所示,第x天该产品的生产量z(件)与x(天)满足关系式z=﹣2x+120.(1)第40天,该厂生产该产品的利润是元;(2)设第x天该厂生产该产品的利润为w元.①求w与x之间的函数关系式,并指出第几天的利润最大,最大利润是多少?②在生产该产品的过程中,当天利润不低于2400元的共有多少天?6、快车从甲地驶向乙地,慢车从乙地驶向甲地,两车同时出发并且在同一条公路上匀速行驶,途中快车休息1.5小时,慢车没有休息.设慢车行驶的时间为x小时,快车行驶的路程为y1千米,慢车行驶的路程为y2千米.如图中折线OAEC表示y1与x之间的函数关系,线段OD表示y2与x之间的函数关系.请解答下列问题:(1)求快车和慢车的速度;(2)求图中线段EC所表示的y1与x之间的函数表达式;(3)线段OD与线段EC相交于点F,直接写出点F的坐标,并解释点F的实际意义.7、当今,越来越多的青少年在观看影片《流浪地球》后,更加喜欢同名科幻小说,该小说销量也急剧上升.书店为满足广大顾客需求,订购该科幻小说若干本,每本进价为20元.根据以往经验:当销售单价是25元时,每天的销售量是250本;销售单价每上涨1元,每天的销售量就减少10本,书店要求每本书的利润不低于10元且不高于18元.(1)直接写出书店销售该科幻小说时每天的销售量y(本)与销售单价x(元)之间的函数关系式及自变量的取值范围.(2)书店决定每销售1本该科幻小说,就捐赠a(0<a≤6)元给困难职工,每天扣除捐赠后可获得最大利润为1960元,求a的值.8、襄阳市某农谷生态园响应国家发展有机农业政策,大力种植有机蔬菜.某超市看好甲、乙两种有机蔬菜的市场价值,经调查,这两种蔬菜的进价和售价如下表所示:(1)该超市购进甲种蔬菜10kg和乙种蔬菜5kg需要170元;购进甲种蔬菜6kg和乙种蔬菜10kg 需要200元.求m,n的值;(2)该超市决定每天购进甲、乙两种蔬菜共100kg进行销售,其中甲种蔬菜的数量不少于20kg,且不大于70kg.实际销售时,由于多种因素的影响,甲种蔬菜超过60kg的部分,当天需要打5折才能售完,乙种蔬菜能按售价卖完.求超市当天售完这两种蔬菜获得的利润额y(元)与购进甲种蔬菜的数量x(kg)之间的函数关系式,并写出x的取值范围;(3)在(2)的条件下,超市在获得的利润额y(元)取得最大值时,决定售出的甲种蔬菜每千克捐出2a元,乙种蔬菜每千克捐出a元给当地福利院,若要保证捐款后的盈利率不低于20%,求a的最大值.9、某商店销售一种商品,童威经市场调查发现:该商品的周销售量y(件)是售价x(元/件)的一次函数,其售价、周销售量、周销售利润w(元)的三组对应值如下表:注:周销售利润=周销售量×(售价-进价)(1)①求y关于x的函数解析式(不要求写出自变量的取值范围)②该商品进价是_________元/件;当售价是________元/件时,周销售利润最大,最大利润是__________元(2)由于某种原因,该商品进价提高了m元/件(m>0),物价部门规定该商品售价不得超过65元/件,该商店在今后的销售中,周销售量与售价仍然满足(1)中的函数关系.若周销售最大利润是1400元,求m的值10、在综合与实践活动中,活动小组对学校400米的跑道进行规划设计,跑道由两段直道和两端是半圆弧的跑道组成.其中400米跑道最内圈为400米,两端半圆弧的半径为36米.(π取3.14).(1)求400米跑道中一段直道的长度;(2)在活动中发现跑道周长(单位:米)随跑道宽度(距最内圈的距离,单位:米)的变化而变化.请完成下表:若设x表示跑道宽度(单位:米),y表示该跑道周长(单位:米),试写出y与x的函数关系式:(3)将446米的跑道周长作为400米跑道场地的最外沿,那么它与最内圈(跑道周长400米)形成的区域最多能铺设道宽为1.2米的跑道多少条?11、某校开展校园艺术节系列活动,派小明到文体超市购买若干个文具袋作为奖品.这种文具袋标价每个10元,请认真阅读结账时老板与小明的对话:(1)结合两人的对话内容,求小明原计划购买文具袋多少个?(2)学校决定,再次购买钢笔和签字笔共50支作为补充奖品,两次购买奖品总支出不超过400元.其中钢笔标价每支8元,签字笔标价每支6元,经过沟通,这次老板给予8折优惠,那么小明最多可购买钢笔多少支?12、某超市拟于中秋节前50天里销售某品牌月饼,其进价为18元/kg.设第x天的销售价格为y(元/kg),销售量为m(kg).该超市根据以往的销售经验得出以下的销售规律:①当1≤x≤30时,y=40;当31≤x≤50时,y与x满足一次函数关系,且当x=36时,y=37;x=44时,y=33.②m与x的关系为m=5x+50.(1)当31≤x≤50时,y与x的关系式为;(2)x为多少时,当天的销售利润W(元)最大?最大利润为多少?(3)若超市希望第31天到第35天的日销售利润W(元)随x的增大而增大,则需要在当天销售价格的基础上涨a元/kg,求a的最小值.13、为拓展学生视野,促进书本知识与生活实践的深度融合,荆州市某中学组织八年级全体学生前往松滋洈水研学基地开展研学活动.在此次活动中,若每位老师带队14名学生,则还剩10名学生没老师带;若每位老师带队15名学生,就有一位老师少带6名学生,现有甲、乙两种大型客车,它们的载客量和租金如表所示:学校计划此次研学活动的租金总费用不超过3000元,为安全起见,每辆客车上至少要有2名老师.(1)参加此次研学活动的老师和学生各有多少人?(2)既要保证所有师生都有车坐,又要保证每辆车上至少要有2名老师,可知租车总辆数为辆;(3)学校共有几种租车方案?最少租车费用是多少?14、某县积极响应市政府加大产业扶贫力度的号召,决定成立草莓产销合作社,负责扶贫对象户种植草莓的技术指导和统一销售,所获利润年底分红.经市场调研发现,草莓销售单价y(万元)与产量x(吨)之间的关系如图所示(0≤x≤100).已知草莓的产销投入总成本p(万元)与产量x(吨)之间满足p=x+1.(1)直接写出草莓销售单价y(万元)与产量x(吨)之间的函数关系式;(2)求该合作社所获利润w(万元)与产量x(吨)之间的函数关系式;(3)为提高农民种植草莓的积极性,合作社决定按0.3万元/吨的标准奖励扶贫对象种植户,为确保合作社所获利润w′(万元)不低于55万元,产量至少要达到多少吨?15、如图,在平面直角坐标系中,四边形OABC的顶点坐标分别为O(0,0),A(12,0),B(8,6),C(0,6).动点P从点O出发,以每秒3个单位长度的速度沿边OA向终点A 运动;动点Q从点B同时出发,以每秒2个单位长度的速度沿边BC向终点C运动.设运动的时间为t秒,PQ2=y.(1)直接写出y关于t的函数解析式及t的取值范围:;(2)当PQ=3时,求t的值;(3)连接OB交PQ于点D,若双曲线y=(k≠0)经过点D,问k的值是否变化?若不变化,请求出k的值;若变化,请说明理由.16、甲、乙两台机器共同加工一批零件,一共用了6小时.在加工过程中乙机器因故障停止工作,排除故障后,乙机器提高了工作效率且保持不变,继续加工.甲机器在加工过程中工作效率保持不变.甲、乙两台机器加工零件的总数y(个)与甲加工时间x(h)之间的函数图象为折线OA﹣AB﹣BC,如图所示.(1)这批零件一共有个,甲机器每小时加工个零件,乙机器排除故障后每小时加工个零件;(2)当3≤x≤6时,求y与x之间的函数解析式;(3)在整个加工过程中,甲加工多长时间时,甲与乙加工的零件个数相等?17、为庆祝中华人民共和国七十周年华诞,某校举行书画大赛,准备购买甲、乙两种文具,奖励在活动中表现优秀的师生.已知购买2个甲种文具、1个乙种文具共需花费35元;购买1个甲种文具、3个乙种文具共需花费30元.(1)求购买一个甲种文具、一个乙种文具各需多少元?(2)若学校计划购买这两种文具共120个,投入资金不少于955元又不多于1000元,设购买甲种文具x个,求有多少种购买方案?(3)设学校投入资金W元,在(2)的条件下,哪种购买方案需要的资金最少?最少资金是多少元?18、小明放学后从学校回家,出发5分钟时,同桌小强发现小明的数学作业卷忘记拿了,立即拿着数学作业卷按照同样的路线去追赶小明,小强出发10分钟时,小明才想起没拿数学作业卷,马上以原速原路返回,在途中与小强相遇.两人离学校的路程y(米)与小强所用时间t(分钟)之间的函数图象如图所示.(1)求函数图象中a的值;(2)求小强的速度;(3)求线段AB的函数解析式,并写出自变量的取值范围.19、已知A.B两地之间有一条270千米的公路,甲、乙两车同时出发,甲车以每小时60千米/时的速度沿此公路从A地匀速开往B地,乙车从B地沿此公路匀速开往A地,两车分别到达目的地后停止。

2020中考数学应用题和证明题经典例题

2020中考数学应用题和证明题经典例题

2020应用题复习1.已知A、B两地相距80km,甲、乙两人沿同一公路从A地出发到B地,甲骑摩托车,乙骑电动车,图中直线DE,OC分别表示甲、乙离开A地的路程s (km)与时间t (h)的函数关系的图象。

根据图象解答下列问题。

(1)甲比乙晚出发几个小时?乙的速度是多少?(2)乙到达终点B地用了多长时间?(3)在乙出发后几小时,两人相遇?2.某果园有100棵橙子树,平均每棵树结600个橙子,现准备多种一些橙子树以提高果园产量,但是如果多种树,那么树之间的距离和每一棵树所接受的阳光就会减少。

根据经验估计,每多种一棵树,平均每棵果树就会少结5个橙子,假设果园多种x棵橙子树。

(1)直接写出平均每棵树结的橙子数y(个)与x之间的关系式。

(2)果园多种多少棵橙子树时,可以使橙子的总产量最大?最大为多少。

3.某宾馆有30个房间供游客住宿,当每个房间的房价为每天120元时,房间会全部住满.当每个房间每天的房价每增加10元时,就会有一个房间空闲.宾馆需对游客居住的每个房间每天支出20元的各种费用.根据规定,每个房间每天的房价不得高于210元.设每个房间的房价增加x元(x为10的正整数倍).(1)设一天订住的房间数为y,直接写出y与x的函数关系式及自变量x的取值范围;(2)设宾馆一天的利润为w元,求w与x的函数关系式;(3)一天订住多少个房间时,宾馆的利润最大?最大利润是多少元?4.把一边长为40cm的正方形硬纸板,进行适当的剪裁,折成一个长方形盒子(纸板的厚度忽略不计).(1)如图,若在正方形硬纸板的四角各剪一个同样大小的正方形,将剩余部分折成一个无盖的长方形盒子.①要使折成的长方形盒子的底面积为484cm2,那么剪掉的正方形的边长为多少?②折成的长方形盒子的侧面积是否有最大值?如果有,求出这个最大值和此时剪掉的正方形的边长;如果没有,说明理由.(2)若在正方形硬纸板的四周剪掉一些矩形(即剪掉的矩形至少有一条边在正方形硬纸板的边上),将剩余部分折成一个有盖的长方形盒子,若折成的一个长方形盒子的表面积为550cm2,求此时长方形盒子的长、宽、高(只需求出符合要求的一种情况).5.某商店经销某玩具每个进价60元,每个玩具不低于80元出售,玩具的销售单价m(元/个)与销售数量n(个)之间的函数关系如图.(1)试求表示线段AB的函数的解析式,并求出当销售数量n=20时的单价m的值;(2)写出该店当一次销售n(n>10)个时,所获利润w(元)与n(个)之间的函数关系式:(3)店长小明经过一段时间的销售发现:卖27个赚的钱反而比卖30个赚的钱多,你能用数学知识解释这一现象吗?为了不出现这种现象,在其他条件不变的情况下,店长应把最低价每个80元至少提高到________ 元?6.我市雷雷服饰有限公司生产了一款夏季服装,通过实体商店和网上商店两种途径进行销售,销售一段时间后,该公司对这种商品的销售情况,进行了为期30天的跟踪调查,其中实体商店的日销售量y1(百件)与时间t (t为整数,单位:天)的部分对应值如下表所示,网上商店的日销售量y2(百件)与时间t (t为整数,单位:天)的部分对应值如图所示.时间t (天)0510********日销售量y1 (百件)025*********(1)请你在一次函数、二次函数和反比例函数中,选择合适的函数能反映y1与t的变化规律,并求出y1与t的函数关系式及自变量t的取值范围;(2)求y2与t的函数关系式,并写出自变量t的取值范围;(3)在跟踪调查的30天中,设实体商店和网上商店的日销售总量为y(百件),求y与t的函数关系式;当t为何值时,日销售总量y达到最大,并求出此时的最大值.7.月电科技有限公司用160万元,作为新产品的研发费用,成功研制出了一种市场急需的电子产品,已于当年投入生产并进行销售。

初三数学考试题型及答案

初三数学考试题型及答案

初三数学考试题型及答案一、选择题(每题3分,共30分)1. 下列哪个选项是不等式的基本性质?A. 不等式两边同时乘以一个负数,不等号方向不变B. 不等式两边同时乘以一个正数,不等号方向不变C. 不等式两边同时加上同一个数,不等号方向不变D. 不等式两边同时除以一个正数,不等号方向不变答案:B2. 一个数的平方是9,那么这个数是:A. 3B. -3C. 3或-3D. 以上都不对答案:C3. 函数y=2x+1的图象不经过哪个象限?A. 第一象限B. 第二象限C. 第三象限D. 第四象限答案:C4. 一个圆的直径是10cm,那么这个圆的半径是:A. 5cmB. 10cmC. 15cmD. 20cm答案:A5. 一个等腰三角形的两个底角相等,那么这个三角形的顶角是:A. 90度B. 60度C. 30度D. 无法确定答案:D6. 一个数的相反数是-5,那么这个数是:A. 5B. -5C. 10D. -10答案:A7. 一个长方体的长、宽、高分别是2cm、3cm、4cm,那么这个长方体的体积是:A. 24cm³B. 12cm³C. 8cm³D. 6cm³答案:A8. 一个数的绝对值是5,那么这个数是:A. 5B. -5C. 5或-5D. 以上都不对答案:C9. 一个二次函数y=ax²+bx+c的图象开口向上,那么a的值是:A. 正数B. 负数C. 0D. 无法确定答案:A10. 一个等差数列的前三项是2,5,8,那么这个数列的公差是:A. 3B. 2C. 1D. 4答案:A二、填空题(每题3分,共30分)1. 一个数的立方是27,那么这个数是________。

答案:32. 一个直角三角形的两条直角边长分别是3cm和4cm,那么这个三角形的斜边长是________。

答案:5cm3. 一个数的倒数是1/2,那么这个数是________。

答案:24. 一个三角形的内角和是________度。

2020年全国数学中考试题精选50题(6)——一次函数及其应用

2020年全国数学中考试题精选50题(6)——一次函数及其应用

2020年全国数学中考试题精选50题(6)——一次函数及其应用一、单选题1.(2020·自贡)函数与的图象如图所示,则的大致图象为()A. B. C. D.2.(2020·达县)如图,直线与抛物线交于A、B两点,则的图象可能是()A. B. C. D.3.(2020·济宁)数形结合是解决数学问题常用的思思方法.如图,直线y=x+5和直线y=ax+b,相交于点P ,根据图象可知,方程x+5=ax+b的解是()A. x=20B. x=5C. x=25D. x=154.(2020·菏泽)一次函数与二次函数在同一平面直角坐标系中的图象可能是()A. B.C. D.5.(2020·德州)函数和在同一平面直角坐标系中的大致图象可能是()A. B. C. D.6.(2020·江西)在平面直角坐标系中,点O为坐标原点,抛物线与轴交于点A,与x 轴正半轴交于点B,连接,将向右上方平移,得到,且点,落在抛物线的对称轴上,点落在抛物线上,则直线的表达式为()A. B. C. D.7.(2020·湘西州)已知正比例函数的图象与反比例函数的图象相交于点,下列说法正确的是()A. 正比例函数的解析式是B. 两个函数图象的另一交点坐标为C. 正比例函数与反比例函数都随x的增大而增大D. 当或时,8.(2020·湘潭)如图,直线经过点,当时,则x的取值范围为()A. B. C. D.9.(2020·北京)有一个装有水的容器,如图所示.容器内的水面高度是10cm,现向容器内注水,并同时开始计时,在注水过程中,水面高度以每秒0.2cm的速度匀速增加,则容器注满水之前,容器内的水面高度与对应的注水时间满足的函数关系是()A. 正比例函数关系B. 一次函数关系C. 二次函数关系D. 反比例函数关系10.(2020·安徽)已知一次函数的图象经过点A,且y随x的增大而减小,则点A的坐标可以是()A. B. C. D.11.(2020·陕西)在平面直角坐标系中,O为坐标原点.若直线y=x+3分别与x轴、直线y=﹣2x交于点A、B,则△AOB的面积为()A. 2B. 3C. 4D. 6二、填空题12.(2020·南京)将一次函数的图象绕原点O逆时针旋转,所得到的图像对应的函数表达式是________.13.(2020·达县)已知k为正整数,无论k取何值,直线与直线都交于一个固定的点,这个点的坐标是________;记直线和与x轴围成的三角形面积为,则________,的值为________.14.(2020·临沂)点和点在直线上,则m与n的大小关系是________.15.(2020·德州)在平面直角坐标系中,点A的坐标是,以原点O为位似中心,把线段OA放大为原来的2倍,点A的对应点为.若点恰在某一反比例函数图象上,则该反比例函数的解析式为________.16.(2020·北京)在平面直角坐标系中,直线与双曲线交于A,B两点.若点A,B 的纵坐标分别为,则的值为________.三、综合题17.(2020·自贡)甲、乙两家商场平时以同样价格出售相同的商品,新冠疫情期间,为了减少库存,甲、乙两家商场打折促销,甲商场所有商品按9折出售,乙商场对一次购物中超过100元后的价格部分打8折.(1)以x(单位:元)表示商品原价,y(单位:元)表示实际购物金额,分别就两家商场的让利方式写出y关于x的函数关系式;(2)新冠疫情期间如何选择这两家商场去购物更省钱?18.(2020·重庆A)在初中阶段的函数学习中,我们经历了列表、描点、连线画函数图象,并结合图象研究函数性质的过程.以下是我们研究函数y=性质及其应用的部分过程,请按要求完成下列各小题.x …﹣5 ﹣4 ﹣3 ﹣2 ﹣1 0 1 2 3 4 5 …y=…﹣﹣﹣﹣3 0 3 …(2)根据函数图象,判断下列关于该函数性质的说法是否正确,正确的在答题卡上相应的括号内打“√”,错误的在答题卡上相应的括号内打“×”;①该函数图象是轴对称图形,它的对称轴为y轴.②该函数在自变量的取值范围内,有最大值和最小值.当x=1时,函数取得最大值3;当x=﹣1时,函数取得最小值﹣3.③当x<﹣1或x>1时,y随x的增大而减小;当﹣1<x<1时,y随x的增大而增大.(3)已知函数y=2x﹣1的图象如图所示,结合你所画的函数图象,直接写出不等式>2x﹣1的解集(保留1位小数,误差不超过0.2).19.(2020·南充)某工厂计划在每个生产周期内生产并销售完某型设备,设备的生产成本为10万元/件(1)如图,设第x(0<x≤20)个生产周期设备售价z万元/件,z与x之间的关系用图中的函数图象表示,求z关于x的函数解析式(写出x的范围).(2)设第x个生产周期生产并销售的设备为y件,y与x满足关系式y=5x+40(0<x≤20).在(1)的条件下,工厂在第几个生产周期创造的利润最大?最大为多少万元?(利润=收入-成本)20.(2020·荆州)为了抗击新冠疫情,我市甲乙两厂积极生产了某种防疫物资共500吨,乙厂的生产量是甲厂的2倍少100吨,这批防疫物资将运往A地240吨,B地260吨,运费如下:(单位:吨)(1)求甲乙两厂各生产了这批防疫多少吨?(2)设这批物资从乙厂运往A地x吨,全部运往A,B两地的总运费为y元,求y与x之间的函数关系式,并设计使总运费最少的调运方案;(3)当每吨运费降低m元,(且m为整数),按(2)中设计的调运方案运输,总运费不超过5200元,求m的最小值.21.(2020·无锡)在平面直角坐标系中,O为坐标原点,直线交二次函数的图像于点A,,点在该二次函数的图像上,设过点(其中)且平行于轴的直线交直线于点M,交直线于点N,以线段、为邻边作矩形.(1)若点A的横坐标为8.①用含m的代数式表示M的坐标;②点能否落在该二次函数的图像上?若能,求出m的值;若不能,请说明理由;(2)当时,若点恰好落在该二次函数的图像上,请直接写出此时满足条件的所有直线的函数表达式.22.(2020·苏州)某商店代理销售一种水果,六月份的销售利润y(元)与销售量之间函数关系的图像如图中折线所示.请你根据图像及这种水果的相关销售记录提供的信息,解答下列问题:日期销售记录6月1日库存,成本价8元/ ,售价10元/ (除了促销降价,其他时间售价保持不变). 6月9日从6月1日至今,一共售出.6月10、11日这两天以成本价促销,之后售价恢复到10元/ .6月12日补充进货,成本价8.5元/ .6月30日水果全部售完,一共获利1200元.(2)求图像中线段所在直线对应的函数表达式.23.(2020·连云港)如图,在平面直角坐标系中,反比例函数的图像经过点,点B在y轴的负半轴上,交x轴于点C,C为线段的中点.(1)________,点的坐标为________;(2)若点D为线段上的一个动点,过点D作轴,交反比例函数图像于点E,求面积的最大值.24.(2020·鄂州)一大型商场经营某种品牌商品,该商品的进价为每件3元,根据市场调查发现,该商品每周的销售量y(件)与售价x(元件)(x为正整数)之间满足一次函数关系,下表记录的是某三周的有x(元/件) 4 5 6y(件)10000 9500 9000(2)在销售过程中要求销售单价不低于成本价,且不高于15元/件.若某一周该商品的销售量不少于6000件,求这一周该商场销售这种商品获得的最大利润和售价分别为多少元?(3)抗疫期间,该商场这种商品售价不大于15元/件时,每销售一件商品便向某慈善机构捐赠m元(),捐赠后发现,该商场每周销售这种商品的利润仍随售价的增大而增大.请直接写出m的取值范围.25.(2020·河南)暑期将至,某健身俱乐部面向学生推出暑期优惠活动,活动方案如下.方案一:购买一张学生暑期专享卡,每次健身费用按六折优惠;方案二:不购买学生暑期专享卡,每次健身费用按八折优惠;设某学生暑期健身x(次),按照方案一所需费用为,(元),且;按照方案二所需费用为(元) ,且其函数图象如图所示.(1)求和b的值,并说明它们的实际意义;(2)求打折前的每次健身费用和的值;(3)八年级学生小华计划暑期前往该俱乐部健身8次,应选择哪种方案所需费用更少?说明理由.26.(2020·安顺)如图,一次函数的图象与反比例函数的图象相交,其中一个交点的横坐标是2.(1)求反比例函数的表达式;(2)将一次函数的图象向下平移2个单位,求平移后的图象与反比例函数图象的交点坐标;(3)直接写出一个一次函数,使其过点,且与反比例函数的图象没有公共点.27.(2020·遂宁)如图,在平面直角坐标系中,已知点A的坐标为(0,2),点B的坐标为(1,0),连结AB ,以AB为边在第一象限内作正方形ABCD ,直线BD交双曲线y═ (k≠0)于D、E两点,连结CE ,交x轴于点F .(1)求双曲线y=(k≠0)和直线DE的解析式.(2)求的面积.28.(2020·泸县)如图,在平面直角坐标系中,已知一次函数的图象与反比例函数的图象相交于A ,B两点.且点A的坐标为.(1)求该一次函数的解析式;(2)求的面积.29.(2020·广元)某网店正在热销一款电子产品,其成本为10元/件,销售中发现,该商品每天的销售量y (件)与销售单价x(元/件)之间存在如图所示的关系:(1)请求出y与x之间的函数关系式;(2)该款电子产品的销售单价为多少元时,每天销售利润最大?最大利润是多少元;(3)由于武汉爆发了“新型冠状病毒”疫情,该网店店主决定从每天获得的利润中抽出300元捐赠给武汉,为了保证捐款后每天剩余利润不低于450元,如何确定该款电子产品的销售单价?30.(2020·甘孜)某商品的进价为每件40元,在销售过程中发现,每周的销售量y(件)与销售单价x(元)之间的关系可以近似看作一次函数,且当售价定为50元/件时,每周销售30件,当售价定为70元/件时,每周销售10件.(1)求k ,b的值;(2)求销售该商品每周的利润w(元)与销售单价x(元)之间的函数解析式,并求出销售该商品每周可获得的最大利润.31.(2020·枣庄)如图,抛物线交x轴于,两点,与y轴交于点C ,AC ,BC .M为线段OB上的一个动点,过点M作轴,交抛物线于点P ,交BC于点Q .(1)求抛物线的表达式;(2)过点P作,垂足为点N .设M点的坐标为,请用含m的代数式表示线段PN 的长,并求出当m为何值时PN有最大值,最大值是多少?(3)试探究点M在运动过程中,是否存在这样的点Q ,使得以A ,C ,Q为顶点的三角形是等腰三角形.若存在,请求出此时点Q的坐标;若不存在,请说明理由.32.(2020·潍坊)因疫情防控需要,消毒用品需求量增加.某药店新进一批桶装消毒液,每桶进价50元,每天销售量y(桶)与销售单价x(元)之间满足一次函数关系,其图象如图所示.(1)求y与x之间的函数表达式;(2)每桶消毒液的销售价定为多少元时,药店每天获得的利润最大,最大利润是多少元?(利涧=销售价-进价)33.(2020·泰安)如图,已知一次函数的图象与反比例函数的图象交于点,点.(1)求反比例函数的表达式;(2)若一次函数图象与y轴交于点C ,点D为点C关于原点O的对称点,求的面积.34.(2020·青岛)为让更多的学生学会游泳,少年宫新建一个游泳池,其容积为,该游泳池有甲、乙两个进水口,注水时每个进水口各自的注水速度保持不变,同时打开甲、乙两个进水口注水,游泳池的蓄水量与注水时间之间满足一次函数关系,其图象如图所示.(1)根据图象求游泳池的蓄水量与注水时间之间的函数关系式,并写出同时打开甲、乙两个进水口的注水速度;(2)现将游泳池的水全部排空,对池内消毒后再重新注水.已知单独打开甲进水口注满游泳池所用时间是单独打开乙进水口注满游泳池所用时间的倍.求单独打开甲进水口注满游泳池需多少小时?35.(2020·聊城)今年植树节期间,某景观园林公司购进一批成捆的A,B两种树苗,每捆种树苗比每捆B种树苗多10棵,每捆A种树苗和每捆B种树苗的价格分别是630元和600元,而每棵A种树苗和每棵B种树苗的价格分别是这一批树苗平均每棵价格的0.9倍和1.2倍.(1)求这一批树苗平均每棵的价格是多少元?(2)如果购进的这批树苗共5500棵,A种树苗至多购进3500棵,为了使购进的这批树苗的费用最低,应购进A种树苗和B种树苗各多少棵?并求出最低费用.36.(2020·聊城)如图,已知反比例函数的图象与直线相交于点,.(1)求出直线的表达式;(2)在x轴上有一点使得的面积为18,求出点P的坐标.37.(2020·济宁)在△ABC中.BC边的长为x,BC边上的高为y,△ABC的面积为2.(1)y关于x的函数关系式是________,x的取值范围是________;(2)在平面直角坐标系中画出该函数图象;(3)将直线y=-x+3向上平移a(a>0)个单位长度后与上述函数图象有且只有一个交点,请求出此时a的值.38.(2020·菏泽)如图,一次函数的图象与反比例函数的图象相交于,两点.(1)求一次函数和反比例函数的表达式;(2)直线交x轴于点C,点P是x轴上的点,若的面积是,求点P的坐标.39.(2020·岳阳)如图,一次函数的图象与反比例函数(为常数且)的图象相交于,B两点.(1)求反比例函数的表达式;(2)将一次函数的图象沿轴向下平移个单位,使平移后的图象与反比例函数的图象有且只有一个交点,求b的值.40.(2020·湘潭)如图,在平面直角坐标系中,点O为坐标原点,菱形的顶点A的坐标为.(1)求过点B的反比例函数的解析式;(2)连接,过点B作交x轴于点D,求直线的解析式.41.(2020·怀化)某商店计划采购甲、乙两种不同型号的平板电脑共20台,已知甲型平板电脑进价1600元,售价2000元;乙型平板电脑进价为2500元,售价3000元.(1)设该商店购进甲型平板电脑x台,请写出全部售出后该商店获利y与x之间函数表达式.(2)若该商店采购两种平板电脑的总费用不超过39200元,全部售出所获利润不低于8500元,请设计出所有采购方案,并求出使商店获得最大利润的采购方案及最大利润.42.(2020·常德)已知一次函数y=kx+b(k≠0)的图象经过A(3,18)和B(﹣2,8)两点.(1)求一次函数的解析式;(2)若一次函数y=kx+b(k≠0)的图象与反比例函数y=(m≠0)的图象只有一个交点,求交点坐标.43.(2020·龙东)为抗击疫情,支持武汉,某物流公司的快递车和货车每天往返于物流公司、武汉两地,快递车比货车多往返一趟,如图表示两车离物流公司的距离y(单位:千米)与快递车所用时间x(单位:时)的函数图象,已知货车比快递车早1小时出发,到达武汉后用2小时装卸货物,按原速、原路返回,货车比快递车最后一次返回物流公司晚1小时.(1)求的函数解析式;(2)求快递车第二次往返过程中,与货车相遇的时间.(3)求两车最后一次相遇时离武汉的距离.(直接写出答案)44.(2020·福建)某公司经营甲、乙两种特产,其中甲特产每吨成本价为10万元,销售价为10.5万元;乙特产每吨成本价为1万元,销售价为1.2万元.由于受有关条件限制,该公司每月这两种特产的销售量之和都是100吨,且甲特产的销售量都不超过20吨.(1)若该公司某月销售甲、乙两种特产的总成本为235万元,问这个月该公司分别销售甲、乙两种特产各多少吨?(2)求该公司一个月销售这两种特产所能获得的最大总利润.45.(2020·北京)在平面直角坐标系中,一次函数的图象由函数的图象平移得到,且经过点(1,2).(1)求这个一次函数的解析式;(2)当时,对于的每一个值,函数的值大于一次函数的值,直接写出的取值范围.46.(2020·安徽)在平而直角坐标系中,已知点,直线经过点A.抛物线恰好经过三点中的两点.(1)判断点B是否在直线上.并说明理由;(2)求的值;(3)平移抛物线,使其顶点仍在直线上,求平移后所得抛物线与轴交点纵坐标的最大值.47.(2020·攀枝花)如图,过直线上一点作轴于点D,线段交函数的图像于点C,点C为线段的中点,点C关于直线的对称点的坐标为.(1)求k、m的值;(2)求直线与函数图像的交点坐标;(3)直接写出不等式的解集.48.(2020·河北)表格中的两组对应值满足一次函数 ,现画出了它的图象为直线l ,如图.而某同学为观察k ,b 对图象的影响,将上面函数中的k 与b 交换位置后得另一个一次函数,设其图象为直线x -1 0 y -2 1(1)求直线l 的解析式;(2)请在图上画出..直线 (不要求列表计算),并求直线 被直线l 和y 轴所截线段的长;(3)设直线 与直线l , 及 轴有三个不同的交点,且其中两点关于第三点对称,直接..写出a 的值.49.(2020·牡丹江)在一条公路上依次有A ,B ,C 三地,甲车从A 地出发,驶向C 地,同时乙车从C 地出发驶向B 地,到达B 地停留0.5小时后,按原路原速返回C 地,两车匀速行驶,甲车比乙车晚1.5小时到达C 地.两车距各自出发地的路程y (千米)与时间x (小时)之间的函数关系如图所示.请结合图象信息解答下列问题:(1)甲车行驶速度是________千米1时,B ,C 两地的路程为________千米;(2)求乙车从B 地返回C 地的过程中,y (千米)与x (小时)之间的函数关系式(不需要写出自变量x 的取值范围);(3)出发多少小时,行驶中的两车之间的路程是15千米?请你直接写出答案.50.(2020·陕西)某农科所为定点帮扶村免费提供一种优质瓜苗及大棚栽培技术.这种瓜苗早期在农科所的温室中生长,长到大约20cm时,移至该村的大棚内,沿插杆继续向上生长.研究表明,60天内,这种瓜苗生长的高度y(cm)与生长时间x(天)之间的关系大致如图所示.(1)求y与x之间的函数关系式;(2)当这种瓜苗长到大约80cm时,开始开花结果,试求这种瓜苗移至大棚后.继续生长大约多少天,开始开花结果?答案解析部分一、单选题1.【答案】D【解析】【解答】解:∵反比函数过一三象限,∴,由二次函数开口向下可得,又二次函数的对称轴,∴,∴同号,∴,∴∴一次函数经过第一、二、三象限,故答案为D.【分析】根据反比例函数过一、三象限可确定出k的符号,根据二次函数图像的对称轴可以确定出a,b的符号,进而求解.2.【答案】B【解析】【解答】解:由题图像得中k>0,中a<0,b<0,c<0,∴b-k<0,∴函数对称轴x= <0,交x轴于负半轴,∴当时,即,移项得方程,∵直线与抛物线有两个交点,∴方程有两个不等的解,即与x轴有两个交点,根据函数对称轴交x轴负半轴且函数图像与x轴有两个交点,∴可判断B符合题意.故答案为:B【分析】根据题目所给的图像,首先判断中k>0,其次判断中a<0,b<0,c <0,再根据k、b、的符号判断中b-k<0,又a<0,c<0可判断出图像.3.【答案】A【解析】【解答】解:由图可知:直线y=x+5和直线y=ax+b交于点P(20,25),∴方程x+5=ax+b的解为x=20.故答案为:A.【分析】两直线的交点坐标为两直线解析式所组成的方程组的解.4.【答案】B【解析】【解答】解:A、∵二次函数图象开口向上,对称轴在y轴右侧,∴a>0,b<0,∴一次函数图象应该过第一、三、四象限,A不符合题意;B、∵二次函数图象开口向上,对称轴在y轴左侧,∴a>0,b>0,∴一次函数图象应该过第一、二、三象限,B符合题意;C、∵二次函数图象开口向下,对称轴在y轴右侧,∴a<0,b>0,∴一次函数图象应该过第一、二、四象限,C不符合题意;D、∵二次函数图象开口向下,对称轴在y轴左侧,∴a<0,b<0,∴一次函数图象应该过第二、三、四象限,D不符合题意.故答案为:B.【分析】逐一分析四个选项,根据二次函数图象的开口以及对称轴与y轴的关系即可得出a、b的正负,由此即可得出一次函数图象经过的象限,再与函数图象进行对比即可得出结论.5.【答案】D【解析】【解答】∵反比例函数和一次函数∴当时,函数在第一、三象限,一次函数经过一、二、四象限,A、B不符合题意,选项D符合题意;当时,函数在第二、四象限,一次函数经过一、二、三象限,C不符合题意,故答案为:D.【分析】根据题目中的函数解析式,利用分类讨论的方法可以判断各个选项中的函数图象是否正确,从而可以解答本题.6.【答案】B【解析】【解答】解:当y=0时,,解得x1=-1,x2=3,当x=0时,y=-3,∴A(0,-3),B(3,0),对称轴为直线,经过平移,落在抛物线的对称轴上,点落在抛物线上,∴三角形向右平移1个单位,即B′的横坐标为3+1=4,当x=4时,y=42-2×4-3=5,∴B′(4,5),三角形向上平移5个单位,此时A′(0+1,-3+5),∴A′(1,2),设直线的表达式为y=kx+b,代入A′(1,2),B′(4,5),可得解得:,故直线的表达式为,故答案为:B.【分析】先求出A、B两点的坐标和对称轴,先确定三角形向右平移了1个单位长度,求得B′的坐标,再确定三角形向上平移5个单位,求得点A′的坐标,用待定系数法即可求解.7.【答案】D【解析】【解答】解:根据正比例函数的图象与反比例函数的图象相交于点,即可设,,将分别代入,求得,,即正比例函数,反比例函数,故A不符合题意;另一个交点与关于原点对称,即,故B不符合题意;正比例函数随x的增大而减小,而反比例函数在第二、四象限的每一个象限内y均随x 的增大而增大,故C不符合题意;根据图像性质,当或时,反比例函数均在正比例函数的下方,故D符合题意.故答案为:D.【分析】根据两个函数图像的交点,可以分别求得两个函数的解析式和,可判断A不符合题意;两个函数的两个交点关于原点对称,可判断B不符合题意,再根据正比例函数与反比例函数图像的性质,可判断C不符合题意,D符合题意,即可选出答案.8.【答案】A【解析】【解答】解:由题意将代入,可得,即,整理得,,∴,由图像可知,∴,∴,故答案为:A .【分析】将代入,可得,再将变形整理,得,求解即可.9.【答案】B【解析】【解答】解:设水面高度为注水时间为t分钟,则由题意得:所以容器内的水面高度与对应的注水时间满足的函数关系是一次函数关系,故答案为:B.【分析】设水面高度为注水时间为分钟,根据题意写出h与t的函数关系式,从而可得答案.10.【答案】B【解析】【解答】∵一次函数的函数值y随x的增大而减小,∴k﹤0,A.当x=-1,y=2时,-k+3=2,解得k=1﹥0,此选项不符合题意;B.当x=1,y=-2时,k+3=-2,解得k=-5﹤0,此选项符合题意;C.当x=2,y=3时,2k+3=3,解得k=0,此选项不符合题意;D.当x=3,y=4时,3k+3=4,解得k= ﹥0,此选项不符合题意,故答案为:B.【分析】先根据一次函数的增减性判断出k的符号,再将各项坐标代入解析式进行逐一判断即可.11.【答案】B【解析】【解答】解:在y=x+3中,令y=0,得x=﹣3,解得,,∴A(﹣3,0),B(﹣1,2),∴△AOB的面积=3×2=3,故答案为:B.【分析】根据方程或方程组得到A(﹣3,0),B(﹣1,2),根据三角形的面积公式即可得到结论.二、填空题12.【答案】【解析】【解答】∵一次函数的解析式为,∴设与x轴、y轴的交点坐标为、,∵一次函数的图象绕原点逆时针旋转,∴旋转后得到的图象与原图象垂直,旋转后的点为、,令,代入点得,,∴旋转后一次函数解析式为.故答案为.【分析】根据一次函数互相垂直时系数之积等于-1,进而得出答案;13.【答案】(-1,1);;【解析】【解答】解:联立直线与直线成方程组,,解得,∴这两条直线都交于一个固定的点,这个点的坐标是;∵直线与x轴的交点为,直线与x轴的交点为,∴,∴,故答案为:;;【分析】联立直线和成方程组,通过解方程组,即可得到交点坐标;分别表示出直线和与x轴的交点,求得交点坐标即可得到三角形的边长与高,根据三角形面积公式进行列式并化简,即可得到直线和与x轴围成的三角形面积为的表达式,从而可得到和,再依据分数的运算方法即可得解.14.【答案】m<n【解析】【解答】解:∵直线中,k=2>0,∴此函数y随着x的增大而增大,∵<2,∴m<n.故答案为:m<n.【分析】先根据直线的解析式判断出函数的增减性,再根据两点的横坐标大小即可得出结论.15.【答案】【解析】【解答】∵以原点O为位似中心,将线段OA放大为原来的2倍,得到OA',A(-2,1),∴点A的对应点A′的坐标是:(-4,2)或(4,-2).设反比例函数的解析式为( ),∴,∴反比例函数的解析式为:.故答案为:.【分析】直接利用位似图形的性质以及结合A点坐标直接得出点A′的坐标.利用待定系数法即可求得反比例函数的解析式.16.【答案】0【解析】【解答】解:∵正比例函数和反比例函数均关于坐标原点O对称,∴正比例函数和反比例函数的交点亦关于坐标原点中心对称,∴,故答案为:0.【分析】根据“正比例函数与反比例函数的交点关于原点对称”即可求解.三、综合题17.【答案】(1)解:由题意可得,,当时,,当时,,由上可得,;(2)解:由题意可知,当购买商品原价小于等于100时,甲商场打9折,乙商场不打折,所以甲商场购物更加划算;当购买商品原价超过100元时,若,即此时甲商场花费更低,购物选择甲商场;若,即,此时甲乙商场购物花费一样;若,即时,此时乙商场花费更低,购物选择乙商场;综上所述:当购买商品原价金额小于200时,选择甲商场更划算;当购买商品原价金额等于200时,选择甲商场和乙商场购物一样划算;当购买商品原价金额大于200时,选择乙商场更划算.【解析】【分析】(1)根据题意,可以分别写出两家商场对应的关于的函数解析式;(2)根据(1)中函数关系式,可以得到相应的不等式,从而可以得到新冠疫情期间如何选择这两家商场去购物更省钱.18.【答案】(1)解:补充完整下表为:x …﹣5 ﹣4 ﹣3 ﹣2 ﹣1 0 1 2 3 4 5 …y=…﹣﹣﹣﹣﹣3 0 3 …(2)解:根据函数图象:①该函数图象是轴对称图形,它的对称轴为y轴,说法错误;②该函数在自变量的取值范围内,有最大值和最小值.当x=1时,函数取得最大值3;当x=﹣1时,函数取得最小值﹣3,说法正确;③当x<﹣1或x>1时,y随x的增大而减小;当﹣1<x<1时,y随x的增大而增大,说法正确.(3)解:由图象可知:不等式>2x﹣1的解集为x<﹣1或﹣0.3<1.8.【解析】【分析】(1)把x=±3代入解析式即可求解;描点,连接成平滑的曲线即可;(2)观察图象,由图象的增减性和对称性可判断;(3)观察图象可得.19.【答案】(1)解:由图可知,当时,当时,z是关于x的一次函数,设则,得,即∴关于的函数解析式为(2)解:设第x个生产周期工厂创造的利润为W万元①时,。

2020年全国数学中考试题精选50题(8)——二次函数及其应用

2020年全国数学中考试题精选50题(8)——二次函数及其应用

2020年全国数学中考试题精选50题(8)——二次函数及其应用一、单选题1.(2020·玉林)把二次函数y=ax2+bx+c(a>0)的图象作关于x轴的对称变换,所得图象的解析式为y =﹣a(x﹣1)2+4a,若(m﹣1)a+b+c≤0,则m的最大值是()A. ﹣4B. 0C. 2D. 62.(2020·铁岭)如图,二次函数的图象的对称轴是直线,则以下四个结论中:①,②,③,④.正确的个数是()A. 1B. 2C. 3D. 43.(2020·盘锦)如图,四边形是边长为1的正方形,点是射线上的动点(点不与点,点重合),点在线段的延长线上,且,连接,将绕点顺时针旋转90°得到,连接.设,四边形的面积为,下列图象能正确反映出与的函数关系的是()A. B.C. D.4.(2020·阜新)已知二次函数,则下列关于这个函数图象和性质的说法,正确的是()A. 图象的开口向上B. 图象的顶点坐标是C. 当时,y随x的增大而增大D. 图象与x轴有唯一交点5.(2020·丹东)如图,二次函数()的图象与轴交于,两点,与轴交于点,点坐标为,点在与之间(不包括这两点),抛物线的顶点为,对称轴为直线,有以下结论:①;②若点,点是函数图象上的两点,则;③;④可以是等腰直角三形.其中正确的有()A. 1个B. 2个C. 3个D. 4个6.(2020·镇江)点P(m,n)在以y轴为对称轴的二次函数y=x2+ax+4的图象上.则m﹣n的最大值等于()A. B. 4 C. ﹣ D. ﹣7.(2020·绵阳)三孔桥横截面的三个孔都呈抛物线形,两小孔形状、大小完全相同.当水面刚好淹没小孔时,大孔水面宽度为10米,孔顶离水面1.5米;当水位下降,大孔水面宽度为14米时,单个小孔的水面宽度为4米,若大孔水面宽度为20米,则单个小孔的水面宽度为()A. 4 米B. 5 米C. 2 米D. 7米8.(2020·眉山)已知二次函数(为常数)的图象与x轴有交点,且当时,y随x的增大而增大,则a的取值范围是()A. B. C. D.9.(2020·凉山州)二次函数的图象如图所示,有如下结论:①;②;③;④(m为实数).其中符合题意结论的个数是()A. 1个B. 2个C. 3个D. 4个10.(2020·威海)如图,抛物线交x轴于点A,B,交轴于点C.若点A坐标为,对称轴为直线,则下列结论错误的是()A. 二次函数的最大值为B.C.D.11.(2020·东营)如图,已知抛物线的图象与x轴交于两点,其对称轴与x 轴交于点C其中两点的横坐标分别为-1和1下列说法错误的是()A. B. C. D. 当时,y随x的增大而减小12.(2020·滨州)对称轴为直线x=1的抛物线(a、b、c为常数,且a≠0)如图所示,小明同学得出了以下结论:①abc<0,②b2>4ac,③4a+2b+c>0,④3a+c>0,⑤a+b≤m(am+b)(m为任意实数),⑥当x<-1时,y随x的增大而增大,其中结论正确的个数为()A. 3B. 4C. 5D. 613.(2020·昆明)如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,与y轴交于点B(0,﹣2),点A(﹣1,m)在抛物线上,则下列结论中错误的是()A. ab<0B. 一元二次方程ax2+bx+c=0的正实数根在2和3之间C. a=D. 点P1(t,y1),P2(t+1,y2)在抛物线上,当实数t>时,y1<y214.(2020·山西)竖直上抛物体离地面的高度与运动时间之间的关系可以近似地用公式表示,其中是物体抛出时离地面的高度,是物体抛出时的速度.某人将一个小球从距地面的高处以的速度竖直向上抛出,小球达到的离地面的最大高度为()A. B. C. D.15.(2020·呼和浩特)关于二次函数,下列说法错误的是()A. 若将图象向上平移10个单位,再向左平移2个单位后过点,则B. 当时,y有最小值C. 对应的函数值比最小值大7D. 当时,图象与x轴有两个不同的交点16.(2020·长沙)“闻起来臭,吃起来香”的臭豆腐是长沙特色小吃,臭豆腐虽小,但制作流程却比较复杂,其中在进行加工煎炸臭豆腐时,我们把焦脆而不糊的豆腐块数的百分比称为“可食用率”,在特定条件下,“可食用率”p与加工煎炸的时间t(单位:分钟)近似满足函数关系式:(a,b,c 为常数),如图纪录了三次实验数据,根据上述函数关系和实验数据,可以得到加工煎炸臭豆腐的最佳时间为( )A. 3.50分钟B. 4.05分钟C. 3.75分钟D. 4.25分钟17.(2020·深圳)二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列说法错误的是()A. B. 4ac-b2<0 C. 3a+c=0 D. ax2+bx+c=n+1无实数根18.(2020·广东)把函数的图象向右平移1个单位长度,平移后图象的函数解析式为()A. B. C. D.19.(2020·广东)如图,抛物线的对称轴是.下列结论:①;②;③;④,正确的有()A. 4个B. 3个C. 2个D. 1个20.(2020·襄阳)二次函数的图象如图所示,下列结论:①;②;③;④当时,y随x的增大而减小,其中正确的有()A. 4个B. 3个C. 2个D. 1个21.(2020·鄂州)如图,抛物线与轴交于点和B,与y轴交于点.下列结论:①;②;③;④,其中正确的结论个数为()A. 4B. 2个C. 3个D. 4个22.(2020·安顺)已知二次函数的图象经过与两点,关于x的方程有两个根,其中一个根是3.则关于x的方程有两个整数根,这两个整数根是()A. -2或0B. -4或2C. -5或3D. -6或423.(2020·遂宁)二次函数y=ax2+bx+c(a≠0)的图象如图所示,对称轴为直线x=﹣1,下列结论错误的是()A. b2>4acB. abc>0C. a﹣c<0D. am2+bm≥a﹣b(m为任意实数)24.(2020·泸县)已知二次函数(其中x是自变量)的图象经过不同两点,,且该二次函数的图象与x轴有公共点,则的值()A. -1B. 2C. 3D. 425.(2020·甘孜)如图,二次函数的图象与轴交于,B两点,下列说法错误的是()A. B. 图象的对称轴为直线C. 点B的坐标为D. 当时,y随x的增大而增大26.(2020·枣庄)如图,已知抛物线的对称轴为直线.给出下列结论:①;②;③;④.其中,正确的结论有()A. 1个B. 2个C. 3个D. 4个27.(2020·泰安)在同一平面直角坐标系内,二次函数与一次函数的图象可能是()A. B. C. D.28.(2020·青岛)已知在同一直角坐标系中二次函数和反比例函数的图象如图所示,则一次函数的图象可能是()A. B. C. D.29.(2020·株洲)二次函数,若,,点,在该二次函数的图象上,其中,,则()A. B. C. D. 、的大小无法确定30.(2020·湘西州)已知二次函数图象的对称轴为,其图象如图所示,现有下列结论:①;②;③;④;⑤.正确的是()A. ①③B. ②⑤C. ③④D. ④⑤二、填空题31.(2020·朝阳)抛物线与x轴有交点,则k的取值范围是________.32.(2020·雅安)从中任取一数作为,使抛物线的开口向上的概率为________.33.(2020·烟台)二次函数y=ax2+bx+c的图象如图所示,下列结论:①ab>0;②a+b﹣1=0;③a>1;④关于x的一元二次方程ax2+bx+c=0的一个根为1,另一个根为﹣.其中正确结论的序号是________.34.(2020·威海)下表中y与x的数据满足我们初中学过的某种函数关系,其函数表达式为________.…… -1 0 1 3 ………… 0 3 4 0 ……y=x2向上平移3个单位,那么所得新抛物线的表达式是________.36.(2020·包头)在平面直角坐标系中,已知和是抛物线上的两点,将抛物线的图象向上平移n(n是正整数)个单位,使平移后的图象与x轴没有交点,则n的最小值为________.37.(2020·黑龙江)将抛物线y=(x-1)2-5关于y轴对称,再向右平移3个单位长度后顶点的坐标是________.38.(2020·荆州)我们约定:为函数的关联数,当其图象与坐标轴交点的横、纵坐标均为整数时,该交点为“整交点”,若关联数为的函数图象与x轴有两个整交点(m为正整数),则这个函数图象上整交点的坐标为________.39.(2020·无锡)二次函数的图像过点,且与y轴交于点B,点M在该抛物线的对称轴上,若是以为直角边的直角三角形,则点M的坐标为________.40.(2020·南京)下列关于二次函数(为常数)的结论,①该函数的图象与函数的图象形状相同;②该函数的图象一定经过点;③当时,y随x的增大而减小;④该函数的图象的顶点在函数的图像上,其中所有正确的结论序号是________.三、综合题41.(2020·盘锦)某服装厂生产品种服装,每件成本为71元,零售商到此服装厂一次性批发品牌服装件时,批发单价为元,与之间满足如图所示的函数关系,其中批发件数为10的正整数倍.(1)当时,与的函数关系式为________.(2)某零售商到此服装厂一次性批发品牌服装200件,需要支付多少元?(3)零售商到此服装厂一次性批发品牌服装件,服装厂的利润为元,问:为何值时,最大?最大值是多少?42.(2020·锦州)某水果超市以每千克20元的价格购进一批樱桃,规定每千克樱桃售价不低于进价又不高于40元,经市场调查发现,樱桃的日销售量y(千克)与每千克售价x(元)满足一次函数关系,其部分每千克售价x(元)… 25 30 35 …日销售量y(千克)… 110 100 90 …(2)该超市要想获得1000的日销售利润,每千克樱桃的售价应定为多少元?(3)当每千克樱桃的售价定为多少元时,日销售利润最大?最大利润是多少?43.(2020·朝阳)某公司销售一种商品,成本为每件30元,经过市场调查发现,该商品的日销售量y(件)销售单价x(元) 40 60 80日销售量y(件) 80 60 40________;(2)求公司销售该商品获得的最大日利润;(3)销售一段时间以后,由于某种原因,该商品每件成本增加了10元,若物价部门规定该商品销售单价不能超过a元,在日销售量y(件)与销售单价x(元)保持(1)中函数关系不变的情况下,该商品的日销售最大利润是1500元,求a的值.44.(2020·泰州)如图,在中,,,,为边上的动点(与、不重合),,交于点,连接,设,的面积为.(1)用含的代数式表示的长;(2)求与的函数表达式,并求当随增大而减小时的取值范围.45.(2020·雅安)如图,已知边长为10的正方形是边上一动点(与不重合),连结是延长线上的点,过点E作的垂线交的角平分线于点F,若.(1)求证:;(2)若,求的面积;(3)请直接写出为何值时,的面积最大.46.(2020·威海)已知,在平面直角坐标系中,抛物线的顶点为A,点B的坐标为(1)求抛物线过点B时顶点A的坐标(2)点A的坐标记为,求y与x的函数表达式;(3)已知C点的坐标为,当m取何值时,抛物线与线段只有一个交点47.(2020·呼伦贝尔)某商店销售一种销售成本为每件40元的玩具,若按每件50元销售,一个月可售出500件,销售价每涨1元,月销量就减少10件.设销售价为每件x元,月销量为y件,月销售利润为w元.(1)写出y与x的函数解析式和w与x的函数解析式;(2)商店要在月销售成本不超过10000的情况下,使月销售利润达到8000元,销售价应定为每件多少元;(3)当销售价定为每件多少元时会获得最大利润?求出最大利润.48.(2020·昆明)如图,两条抛物线,相交于A,B两点,点A在x 轴负半轴上,且为抛物线的最高点.(1)求抛物线的解析式和点B的坐标;(2)点C是抛物线上A,B之间的一点,过点C作x轴的垂线交于点D,当线段CD取最大值时,求.49.(2020·营口)某超市销售一款“免洗洗手液”,这款“免洗洗手液”的成本价为每瓶16元,当销售单价定为20元时,每天可售出80瓶.根据市场行情,现决定降价销售.市场调查反映:销售单价每降低0.5元,则每天可多售出20瓶(销售单价不低于成本价),若设这款“免洗洗手液”的销售单价为x(元),每天的销售量为y(瓶).(1)求每天的销售量y(瓶)与销售单价x(元)之间的函数关系式;(2)当销售单价为多少元时,销售这款“免洗洗手液”每天的销售利润最大,最大利润为多少元?50.(2020·宿迁)某超市经销一种商品,每千克成本为50元,经试销发现,该种商品的每天销售量y(千(2)为保证某天获得600元的销售利润,则该天的销售单价应定为多少?(3)当销售单价定为多少时,才能使当天的销售利润最大?最大利润是多少?答案解析部分一、单选题1.【答案】D【解析】【解答】解:∵把二次函数y=ax2+bx+c(a>0)的图象作关于x轴的对称变换,所得图象的解析式为y=﹣a(x﹣1)2+4a,∴原二次函数的顶点为(1,﹣4a),∴原二次函数为y=a(x﹣1)2﹣4a=ax2﹣2ax﹣3a,∴b=﹣2a,c=﹣3a,∵(m﹣1)a+b+c≤0,∴(m﹣1)a﹣2a﹣3a≤0,∵a>0,∴m﹣1﹣2﹣3≤0,即m≤6,∴m的最大值为6,故答案为:D.【分析】根据关于x对称的点的坐标特征得出原二次函数的顶点为(1,﹣4a),即可得出原二次函数为y =a(x﹣1)2﹣4a=ax2﹣2ax﹣3a,和y=ax2+bx+c比较即可得出b=﹣2a,c=﹣3a,代入(m﹣1)a+b+c≤0,即可得到m≤6.2.【答案】B【解析】【解答】解:由函数图像的开口向下得<由对称轴为>所以>由函数与轴交于正半轴,所以><故①错误;,故②正确;由交点位置可得:>,<>,<<故③错误;由图像知:当此时点在第三象限,<<故④正确;综上:正确的有:②④,故答案为:B.【分析】由开口方向,对称轴方程,与轴的交点坐标判断的符号,从而可判断①②,利用与轴的交点位置得到>,结合<可判断③,利用当结合图像与对称轴可判断④.3.【答案】B【解析】【解答】连接DC,如图所示,由题可得DE=GE,AE=AF,∠DAE=∠BAF=90°,∴△DAE≌△BAF,∴DE=BF,∠EDA=∠FBA,又∵DE=EG,∴GE=BF,∵∠GEB+∠DEA=∠EDA+∠DEA =90°,∴∠GEB=∠EDA,∴∠GEB=∠FBA,∴GE//BF,且GE=BF,∴四边形GEFB是平行四边形,∵,当∴,,,∴,当x>1时,∴,,,∴,故答案为:B.【分析】连接DC,根据已知条件证明所求得四边形是平行四边形,从而可得,再分类讨论即可得到结果;4.【答案】C【解析】【解答】解:<所以抛物线的开口向下,故A错误,所以抛物线的顶点为:故B错误,当,即在抛物线的对称轴的左侧,y随x的增大而增大,故C正确,>所以抛物线与轴有两个交点,故D错误,故答案为:C.【分析】由抛物线的二次项的系数判断A,把抛物线写成顶点式,可判断B,由得抛物线的图像在对称轴的左侧,从而得到y随x的增大而增大,利用的值,判断D.5.【答案】B【解析】【解答】解:①由开口可知:a<0,∴对称轴x=−>0,∴b>0,由抛物线与y轴的交点可知:c>0,∴abc<0,故①错误;②由于<2<,且(,y1)关于直线x=2的对称点的坐标为(,y1),∵<,∴y1<y2,故②正确,③∵− =2,∴b=-4a,∵x=-1,y=0,∴a-b+c=0,∴c=-5a,∵2<c<3,∴2<-5a<3,∴,故③正确④根据抛物线的对称性可知,AB=6,∴,假定抛物线经过(0,2),(-1,0),(5,0),设抛物线的解析式为y=a(x+1)(x-5),则a=- ,∴y=- (x-2)2+∵>3∴不可以是等腰直角三形.故④错误.所以正确的是②③,共2个.故答案为:B.【分析】观察抛物线的开口方向,可确定出a的取值范围,抛物线与y轴的交点位置,可以确定出c的取值范围,根据对称轴的位置:左同右异,结合a的值,可确定出b的取值范围,由此可得到abc的符号,可对①作出判断;利用二次函数的增减性,可得到y1和y2的大小关系,可对②作出判断;利用二次函数的对称轴为直线x=2,可得到b=-4a,再根据当x=-1时y=0,可推出c=-5a,然后由函数图像可知2<c<3,由此可得到a的取值范围,可对③作出判断;利用二次函数的对称性,可以设抛物线的解析式为y=a(x+1)(x-5),由a的值及等腰直角三角形的性质,可对④作出判断;综上所述可得到正确结论的个数。

2020中考数学各类经典题型汇总

2020中考数学各类经典题型汇总

2020中考数学各类经典题型汇总1.中点①中线:D为BC中点,AD为BC边上的中线()有全等平行线中有中点,容易是斜边的一半直角三角形的斜边中线,可得使得到延长.6.5BDAD2cb.4CDEABDDEADEAD.3SS.2CDBD.12222ACDABD+=+∆≅∆===∆∆1.例.如图,在菱形ABCD中,tan∠ABC=,P为AB上一点,以PB为边向外作菱形PMNB,连结DM,取DM中点E,连结AE,PE,则的值为()A. B.C.D.2.角平分线②角平分线:AE平分∠BAC有等腰三角形平行线间有角平分线易作全等三角形有相同角有公共边极易.5.4.3.2BAE.1CEBEACABDFDECAE==∠=∠3.高线③垂线:AF ⊥BC角形多个直角,易有相似三充分利用求高线可用等面积法即.4Rt .3.290AFC BC AF .1∆︒=∠⊥②直角三角形:AD 为中线AE 为垂线∆︒︒︒•=•==+•=•====︒=∠+∠∆Rt AE BC AB AC S BC CD ABC ,构造充分利用特殊角;勾股定理:等面积法::斜边中线为斜边的一半两角互余:,60,45305.BC CE AC BC BE AB BC AB AC .42121.321BD AD .290C B .1222224.函数坐标公式公式1:两点求斜率k2121x x y y k AB --=113531203330360145-=︒-=︒=︒=︒=︒k x k x k x k x k x 时,轴正方向夹角为⑤与时,轴正方向夹角为④与时,轴正方向夹角为③与时,轴正方向夹角为②与时,轴正方向夹角为①与公式2:两点之间距离221221)()(AB y y x x -+-=应用:弦长公式公式3:中点公式)2,3(ABC )2,2(AB 3213212121y y y x x x y y x x ++++=∆++=重心中点 应用:求中点坐标公式4:两直线平行与垂直1//21212121-=•⇔⊥=⇔k k l l k k l l ②①应用:①平行与垂直②直角三角形5.相似中的特殊角βαβαβαtan tan 1tan tan tan -+=+)(6.将军引马7.旋转8.对称9.反比例函数看坐标求面积对称反比例函数关于系直线与反比例交点的关坐标点的表示的关系面积与.5x y .4.3.2k .110.二次函数最值二次函数中的三种线段与铅垂高二次函数当中的水平长二次函数的移动不等式二次函数与二次方程或关系对称轴与顶点及三大表达式及转化.6.5.4.3c.b.a.2.111.圆 扇形的面积与弧长弧度,圆心角,圆周角弦长,弦心距,弧长,园中的对称与翻折内心外心,内切圆外接圆与弧度园中的圆周角,圆心角园中的内接四边形园中的两个等腰三角形园中的三个直角三角形.8.7.6--.5.4.3.2.112规律题圆14应用题。

2020年中考数学压轴题:9种题型+5种策略

2020年中考数学压轴题:9种题型+5种策略

2020年中考数学压轴题:9种题型+5种策略目前,初三学生正在紧张备考,对于数学这一科来说,最难的就是压轴题,想要在压轴题上拿高分,就要下功夫了。

下面小编给大家带来中考数学压轴题:9种题型+5种策略,希望对大家有所帮助。

中考数学压轴题:9种题型+5种策略九种题型1.线段、角的计算与证明问题中考的解答题一般是分两到三部分的。

第一部分基本上都是一些简单题或者中档题,目的在于考察基础。

第二部分往往就是开始拉分的中难题了。

对这些题轻松掌握的意义不仅仅在于获得分数,更重要的是对于整个做题过程中士气,军心的影响。

线段与角的计算和证明,一般来说难度不会很大,只要找到关键“题眼”,后面的路子自己就“通”了。

2.图形位置关系中学数学当中,图形位置关系主要包括点、线、三角形、矩形/正方形以及圆这么几类图形之间的关系。

在中考中会包含在函数,坐标系以及几何问题当中,但主要还是通过圆与其他图形的关系来考察,这其中最重要的就是圆与三角形的各种问题。

3.动态几何从历年中考来看,动态问题经常作为压轴题目出现,得分率也是最低的。

动态问题一般分两类,一类是代数综合方面,在坐标系中有动点,动直线,一般是利用多种函数交叉求解。

另一类就是几何综合题,在梯形,矩形,三角形中设立动点、线以及整体平移翻转,对考生的综合分析能力进行考察。

所以说,动态问题是中考数学当中的重中之重,只有完全掌握,才有机会拼高分。

4.一元二次方程与二次函数在这一类问题当中,尤以涉及的动态几何问题最为艰难。

几何问题的难点在于想象,构造,往往有时候一条辅助线没有想到,整个一道题就卡壳了。

相比几何综合题来说,代数综合题倒不需要太多巧妙的方法,但是对考生的计算能力以及代数功底有了比较高的要求。

中考数学当中,代数问题往往是以一元二次方程与二次函数为主体,多种其他知识点辅助的形式出现的。

一元二次方程与二次函数问题当中,纯粹的一元二次方程解法通常会以简单解答题的方式考察。

但是在后面的中难档大题当中,通常会和根的判别式,整数根和抛物线等知识点结合。

中考数学试卷题目分类汇总

中考数学试卷题目分类汇总

一、选择题1. 数与代数- 实数的运算- 代数式的化简- 分式的运算- 根据方程求未知数- 解不等式及不等式组- 函数的性质与应用2. 几何与图形- 直线、射线、线段的概念及性质- 角的概念及性质- 平行线、相交线、垂直线的判定- 四边形、多边形的概念及性质- 圆的概念及性质- 三角形的概念及性质,如三角形全等、相似3. 统计与概率- 数据的收集、整理、描述- 平均数、中位数、众数的计算- 概率的基本概念及计算- 事件的相互关系及概率的运算二、填空题1. 数与代数- 实数的性质及运算- 代数式的化简及求值 - 分式的化简及运算- 根据方程求未知数- 解不等式及不等式组2. 几何与图形- 几何图形的性质及判定 - 几何图形的变换- 几何问题的解决方法 - 圆的相关计算3. 统计与概率- 数据的描述及分析- 概率的计算与应用三、解答题1. 数与代数- 复杂方程的求解- 函数问题及实际应用 - 代数问题的综合应用 - 函数与几何的结合问题2. 几何与图形- 几何图形的证明- 几何问题的解决方法 - 几何图形的应用- 几何问题的综合应用3. 统计与概率- 统计数据的分析及处理- 概率的计算与应用- 统计与概率的实际问题四、实验题1. 数与代数- 使用计算器进行计算- 利用计算机软件进行数据处理2. 几何与图形- 利用计算机软件绘制几何图形- 利用计算机软件进行几何问题的探究3. 统计与概率- 利用计算机软件进行数据分析- 利用计算机软件进行概率问题的探究五、应用题1. 数与代数- 生活、生产、科技等领域的实际问题 - 经济、金融、物理等领域的实际问题2. 几何与图形- 建筑设计、城市规划等领域的实际问题 - 物理实验、天文观测等领域的实际问题3. 统计与概率- 社会调查、市场分析等领域的实际问题- 医学研究、生物统计等领域的实际问题总结:中考数学试卷题目分类汇总涵盖了数与代数、几何与图形、统计与概率三个主要模块,旨在考查学生对数学知识的掌握程度、应用能力及创新思维。

2020年中考数学十大题型专练04二次函数的实际应用题(含解析)

2020年中考数学十大题型专练04二次函数的实际应用题(含解析)

题型04 二次函数的实际应用题一、单选题1.如图,隧道的截面由抛物线和长方形OABC构成,长方形的长OA是12m,宽OC是4m.按照图中所示的平面直角坐标系,抛物线可以用y=﹣ x2+bx+c表示.在抛物线型拱璧上需要安装两排灯,使它们离地面的高度相等,如果灯离地面的高度不超过8m.那么两排灯的水平距离最小是( )A.2m B.4m C. m D. m【答案】D【分析】根据长方形的长OA是12m,宽OC是4m,可得顶点的横坐标和点C的坐标,即可求出抛物线解析式,再把y=8代入解析式即可得结论.【详解】根据题意,得OA=12,OC=4.所以抛物线的顶点横坐标为6,即﹣ = =6,∴b=2.∵C(0,4),∴c=4,所以抛物线解析式为:y=﹣ x2+2x+4=﹣(x﹣6)2+10当y=8时,8=﹣(x﹣6)2+10,解得:x1=6+2 ,x2=6﹣2 .则x1﹣x2=4 .所以两排灯的水平距离最小是4 .故选:D.【点睛】本题考查了二次函数的应用,解决本题的关键是把实际问题转化为二次函数问题解决.2.使用家用燃气灶烧开同一壶水所需的燃气量y(单位:m3)与旋钮的旋转角度x(单位:度)(0°<x≤90°)近似满足函数关系y=ax2+bx+c(a≠0).如图记录了某种家用节能燃气灶烧开同一壶水的旋钮的旋转角度x与燃气量y的三组数据,根据上述函数模型和数据,可推断出此燃气灶烧开一壶水最节省燃气的旋钮的旋转角度约为()A.33° B.36° C.42° D.49°【答案】C【分析】据题意和二次函数的性质,可以确定出对称x的取值范围,从而可以解答本题.【详解】解:由图象可知,物线开口向上,该函数的对称轴x>且x<54,∴36<x<54,即对称轴位于直线x=36与直线x=54之间且靠近直线x=36,故选:C.【点睛】本题考查二次函数的应用,解答本题的关键是明确题意,利用数形结合的思想解答.3.某校校园内有一个大正方形花坛,如图甲所示,它由四个边长为3米的小正方形组成,且每个小正方形的种植方案相同.其中的一个小正方形ABCD如图乙所示,DG=1米,AE=AF=x米,在五边形EFBCG区域上种植花卉,则大正方形花坛种植花卉的面积y与x的函数图象大致是()A. B. C. D.【答案】A【详解】S△AEF= AE×AF= ,S△DEG= DG×DE= ×1×(3﹣x)= ,S五边形EFBCG=S正方形ABCD﹣S△AEF﹣S△DEG= = ,则y=4×()= ,∵AE<AD,∴x<3,综上可得:(0<x<3).故选A.考点:动点问题的函数图象;动点型.4.某建筑物,从10m高的窗口A,用水管向外喷水,喷出的水呈抛物线状(抛物线所在的平面与墙面垂直),如图所示,如果抛物线的最高点M离墙1m,离地面 m,则水流落地点B离墙的距离OB是()A.2m B.3m C.4m D.5m【答案】B【分析】以OB为x轴,OA为y轴建立平面直角坐标系,A点坐标为(0,10),M点的坐标为(1,),设出抛物线的解析式,代入解答球的函数解析式,进一步求得问题的解.【详解】解:设抛物线的解析式为y=a(x﹣1)2+ ,把点A(0,10)代入a(x﹣1)2+ ,得a(0﹣1)2+ =10,解得a=﹣,因此抛物线解析式为y=﹣ (x﹣1)2+ ,当y=0时,解得x1=3,x2=﹣1(不合题意,舍去);即OB=3米.故选B.【点睛】本题是一道二次函数的综合试题,考查了利用待定系数法求函数的解析式的运用,运用抛物线的解析式解决实际问题.解答本题是时设抛物线的顶点式求解析式是关键.5.超市有一种“喜之郎“果冻礼盒,内装两个上下倒置的果冻,果冻高为4cm,底面是个直径为6cm的圆,轴截面可以近似地看作一个抛物线,为了节省成本,包装应尽可能的小,这个包装盒的长不计重合部分,两个果冻之间没有挤压至少为A. B. C. D.【答案】A【分析】设:左侧抛物线的方程为:,点A的坐标为,将点A坐标代入上式并解得:,由题意得:点MG是矩形HFEO的中线,则点N的纵坐标为2,将代入抛物线表达式,即可求解.【详解】解:设左侧抛物线的方程为:,点A的坐标为,将点A坐标代入上式并解得:,则抛物线的表达式为:,由题意得:点MG是矩形HFEO的中线,则点N的纵坐标为2,将代入抛物线表达式得:,解得: (负值已舍去),则,故选:A.【点睛】本题考查了二次函数的性质在实际生活中的应用首先要吃透题意,确定变量,建立函数模型,然后求解.6.小悦乘座中国最高的摩天轮“南昌之星”,从最低点开始旋转一圈,她离地面的高度y(米)与旋转时间x(分)之间的关系可以近似地用二次函数来刻画.经测试得出部分数据如表.根据函数模型和数据,可推断出南昌之星旋转一圈的时间大约是()x(分)… 13.5 14.7 16.0 …y(米)… 156.25 159.85 158.33 …A.32分 B.30分 C.15分 D.13分【答案】B【分析】利用二次函数的性质,由题意,最值在自变量大于14.7小于16.0之间,由此不难找到答案.【详解】最值在自变量大于14.7小于16.0之间,所以最接近摩天轮转一圈的时间的是30分钟.故选:B.【点睛】此题考查二次函数的实际运用,利用表格得出函数的性质,找出最大值解决问题.7.如图,排球运动员站在点O处练习发球,将球从O点正上方2m的A处发出,把球看成点,其运行的高度y(m)与运行的水平距离x(m)满足关系式y=a(x ﹣k)2+h.已知球与D点的水平距离为6m时,达到最高2.6m,球网与D点的水平距离为9m.高度为2.43m,球场的边界距O点的水平距离为18m,则下列判断正确的是()A.球不会过网 B.球会过球网但不会出界C.球会过球网并会出界 D.无法确定【答案】C【分析】(1)将点A(0,2)代入求出a的值;分别求出x=9和x=18时的函数值,再分别与2.43、0比较大小可得.【详解】根据题意,将点A(0,2)代入得:36a+2.6=2,解得:∴y与x的关系式为当x=9时,∴球能过球网,当x=18时,∴球会出界.故选C.【点睛】考查二次函数的应用题,求范围的问题,可以利用临界点法求出自变量的值,根据题意确定范围.8.北中环桥是省城太原的一座跨汾河大桥(如图1),它由五个高度不同,跨径也不同的抛物线型钢拱通过吊桥,拉锁与主梁相连,最高的钢拱如图2所示,此钢拱(近似看成二次函数的图象-抛物线)在同一竖直平面内,与拱脚所在的水平面相交于A,B两点,拱高为78米(即最高点O到AB的距离为78米),跨径为90米(即AB=90米),以最高点O为坐标原点,以平行于AB的直线为轴建立平面直角坐标系,则此抛物线钢拱的函数表达式为( )A. B. C. D.【答案】B【分析】设抛物线解析式为y=ax2,由已知可得点B坐标为(45,-78),利用待定系数法进行求解即可.【详解】∵拱高为78米(即最高点O到AB的距离为78米),跨径为90米(即AB=90米),以最高点O为坐标原点,以平行于AB的直线为轴建立平面直角坐标系,∴设抛物线解析式为y=ax2,点B(45,-78),∴-78=452a,解得:a= ,∴此抛物线钢拱的函数表达式为,故选B.【点睛】本题考查了二次函数的应用,熟练掌握待定系数法是解本题的关键.9.如图,公园中一正方形水池中有一喷泉,喷出的水流呈抛物线状,测得喷出口高出水面0.8m,水流在离喷出口的水平距离1.25m处达到最高,密集的水滴在水面上形成了一个半径为3m的圆,考虑到出水口过高影响美观,水滴落水形成的圆半径过大容易造成水滴外溅到池外,现决定通过降低出水口的高度,使落水形成的圆半径为2.75m,则应把出水口的高度调节为高出水面()A.0.55米 B.米 C.米 D.0.4米【答案】B【分析】如图,以O为原点,建立平面直角坐标系,由题意得到对称轴为x=1.25=,A(0,0.8),C(3,0),列方程组求得函数解析式,即可得到结论.【详解】解:如图,以O为原点,建立平面直角坐标系,由题意得,对称轴为x=1.25=,A(0,0.8),C(3,0),设解析式为y=ax2+bx+c,∴ ,解得:,所以解析式为:y= x2+ x+ ,当x=2.75时,y=,∴使落水形成的圆半径为2.75m,则应把出水口的高度调节为高出水面08﹣=,故选:B.【点睛】本题考查了二次函数的实际应用,根据题意建立合适的坐标系,找到点的坐标,用待定系数法解出函数解析式是解题的关键10.小翔在如图1所示的场地上匀速跑步,他从点A出发,沿箭头所示方向经过点B跑到点C,共用时30秒.他的教练选择了一个固定的位置观察小翔的跑步过程.设小翔跑步的时间为t(单位:秒),他与教练的距离为y(单位:米),表示y与t的函数关系的图象大致如图2所示,则这个固定位置可能是图1中的()A.点M B.点N C.点P D.点Q【答案】D【详解】解:A、假设这个位置在点M,则从A至B这段时间,y不随时间的变化改变,与函数图象不符,故本选项错误;B、假设这个位置在点N,则从A至C这段时间,A点与C点对应y的大小应该相同,与函数图象不符,故本选项错误;C、,假设这个位置在点P,则由函数图象可得,从A到C的过程中,会有一个时刻,教练到小翔的距离等于经过30秒时教练到小翔的距离,而点P不符合这个条件,故本选项错误;D、经判断点Q符合函数图象,故本选项正确;故选D.二、填空题11.某运动员对自己某次实心球训练的录像进行分析,发现实心球飞行高度y(米)与水平距离x(米)之间的关系为,由此可知该运动员此次实心球训练的成绩为____米.【答案】10【分析】根据铅球落地时,高度y=0,把实际问题可理解为当y=0时,求x的值即可.【详解】当y=0时,解得,x=-2(舍去),x=10.故答案为:10.【点睛】本题考查了二次函数的应用中函数式中自变量与函数表达的实际意义,需要结合题意,取函数或自变量的特殊值列方程求解是解题关键.12.汽车刹车后行驶的距离 (单位: )关于行驶的时间 (单位: )的函数解析式是.汽车刹车后到停下来前进了 ______.【答案】6【分析】根据二次函数的解析式可得出汽车刹车时时间,将其代入二次函数解析式中即可得出s的值.【详解】解:根据二次函数解析式 =-6(t²-2t+1-1)=-6(t-1) ²+6可知,汽车的刹车时间为t=1s,当t=1时, =12×1-6×1²=6(m)故选:6【点睛】本题考查了二次函数性质的应用,理解透题意是解题的关键.13.如图,一款落地灯的灯柱AB垂直于水平地面MN,高度为1.6米,支架部分的形为开口向下的抛物线,其顶点C距灯柱AB的水平距离为0.8米,距地面的高度为2.4 米,灯罩顶端D距灯柱AB的水平距离为1.4米,则灯罩顶端D距地面的高度为______米.【答案】1.95【分析】以点B为原点建立直角坐标系,则点C为抛物线的顶点,即可设顶点式y=a(x−0.8)2+2.4,点A的坐标为(0,1.6),代入可得a的值,从而求得抛物线的解析式,将点D的横坐标代入,即可求点D的纵坐标就是点D距地面的高度【详解】解:如图,以点B为原点,建立直角坐标系.由题意,点A(0,1.6),点C(0.8,2.4),则设顶点式为y=a(x−0.8)2+2.4 将点A代入得,1.6=a(0−0.8)2+2.4,解得a=−1.25∴该抛物线的函数关系为y=−1.25(x−0.8)2+2.4∵点D的横坐标为1.4∴代入得,y=−1.25×(1.4−0.8)2+2.4=1.95故灯罩顶端D距地面的高度为1.95米故答案为1.95.【点睛】本题考查了二次函数的性质在实际生活中的应用.为数学建模题,借助二次函数解决实际问题.14.如图,一块矩形土地ABCD由篱笆围着,并且由一条与CD边平行的篱笆EF分开.已知篱笆的总长为900m(篱笆的厚度忽略不计),当AB=_____m时,矩形土地ABCD的面积最大.【答案】150【分析】根据题意可以用相应的代数式表示出矩形绿地的面积,利用函数的性质即可解答本题.【详解】解:设AB=xm,则BC= (900﹣3x),由题意可得,S=AB×BC= (900﹣3x)x=﹣(x2﹣300x)=﹣(x﹣150)2+33750,∴当x=150时,S取得最大值,此时,S=33750,∴AB=150m,故答案为150.【点睛】本题考查了二次函数的应用,解答本题的关键是明确题意,列出相应的函数关系式,利用二次函数的性质求出最值.15.如图,一小球沿与地面成一定角度的方向飞出,小球的飞行路线是一条抛物线,如果不考虑空气阻力,小球的飞行高度y(单位:m)与飞行时间x(单位:s)之间具有函数关系y=﹣5×2+20x,在飞行过程中,当小球的行高度为15m时,则飞行时间是_____.【答案】1s或3s【分析】根据题意可以得到15=﹣5×2+20x,然后求出x的值,即可解答本题.【详解】∵y=﹣5×2+20x,∴当y=15时,15=﹣5×2+20x,得x1=1,x2=3,故答案为1s或3s.【点睛】本题考查二次函数的应用、一元二次方程的应用,解答本题的关键是明确题意,利用二次函数的性质和一元二次方程的知识解答.16.某种商品每件进价为20元,调查表明:在某段时间内若以每件x元(20≤x≤30,且x为整数)出售,可卖出(30﹣x)件.若使利润最大,每件的售价应为______元.【答案】25试题分析:设最大利润为w元,则w=(x﹣20)(30﹣x)=﹣(x﹣25)2+25,∵20≤x≤30,∴当x=25时,二次函数有最大值25,故答案为25.考点:1.二次函数的应用;2.销售问题.17.廊桥是我国古老的文化遗产.如图,是某座抛物线型的廊桥示意图,已知抛物线的函数表达式为y=-1/40 x^2+10,为保护廊桥的安全,在该抛物线上距水面AB 高为8米的点E,F处要安装两盏警示灯,则这两盏灯的水平距离EF是______米.(精确到1米)【答案】8√5由于两盏E、F距离水面都是8m,因而两盏景观灯之间的水平距离就是直线y=8与抛物线两交点的横坐标差的绝对值.故有-1/40 x^2+10=8,即x^2=80,x_1=4√5,x_2=-4√5.所以两盏警示灯之间的水平距离为:|x_1-x_2 |=|4√5-(-4√5)|=8√5≈18(”m”)18.小明制作了一张如图所示的贺卡. 贺卡的宽为,长为,左侧图片的长比宽多 . 若,则右侧留言部分的最大面积为_________ .【答案】320【分析】先求出右侧留言部分的长,再根据矩形的面积公式得出面积与x的函数解析式,利用二次函数的图像与性质判断即可得出答案.【详解】根据题意可得,右侧留言部分的长为(36-x)cm∴右侧留言部分的面积又14≤x≤16∴当x=16时,面积最大 (故答案为320.【点睛】本题考查的是二次函数的实际应用,比较简单,解题关键是根据题意写出面积的函数表达式.19.甲、乙两人进行羽毛球比赛,甲发出一颗十分关键的球,出手点为,羽毛球飞行的水平距离(米)与其距地面高度(米)之间的关系式为,如图,已知球网距原点米,乙(用线段表示)扣球的最大高度为米,设乙的起跳点的横坐标为,若乙原地起跳,因球的高度高于乙扣球的最大高度而导致接球失败,则的取值范围是__________.【答案】当时,,解得;∵扣球点必须在球网右边,即,∴ .点睛:本题主要考查了二次函数的应用题,求范围的问题,可以选取h等于最大高度,求自变量的值,再根据题意确定范围.20.扫地机器人能够自主移动并作出反应,是因为它发射红外信号反射回接收器,机器人在打扫房间时,若碰到障碍物则发起警报.若某一房间内A、B两点之间有障碍物,现将A、B两点放置于平面直角坐标系xOy中(如图),已知点A,B的坐标分别为(0,4),(6,4),机器人沿抛物线y=ax2﹣4ax﹣5a运动.若机器人在运动过程中只触发一次报警,则a的取值范围是_____.【答案】﹣<a<【分析】根据题意可以知道抛物线与线段AB有一个交点,根据抛物线对称轴及其与y轴的交点即可求解.【详解】解:由题意可知:∵点A、B坐标分别为(0,4),(6,4),∴线段AB的解析式为y=4.机器人沿抛物线y=ax2﹣4ax﹣5a运动.抛物线对称轴方程为:x=2,机器人在运动过程中只触发一次报警,所以抛物线与线段y=4只有一个交点.所以抛物线经过点A下方.∴﹣5a<4解得a>﹣.4=ax2﹣4ax﹣5a,△=0即36a2+16a=0,解得a1=0(不符合题意,舍去),a2=.当抛物线恰好经过点B时,即当x=6,y=4时,36a﹣24a﹣5a=4,解得a=综上:a的取值范围是﹣<a<【点睛】本题考查二次函数的应用,关键在于熟悉二次函数的性质,结合图形灵活运用.三、解答题21.在“我为祖国点赞”征文活动中,学校计划对获得一、二等奖的学生分别奖励一支钢笔,一本笔记本.已知购买2支钢笔和3个笔记本共38元,购买4支钢笔和5个笔记本共70元.(1)钢笔、笔记本的单价分别为多少元?(2)经与商家协商,购买钢笔超过30支时,每增加一支,单价降低0.1元;超过50支,均按购买50支的单价销售.笔记本一律按原价销售.学校计划奖励一、二等奖学生共计100人,其中一等奖的人数不少于30人,且不超过60人,这次奖励一等学生多少人时,购买奖品金额最少,最少为多少元?【答案】(1)钢笔、笔记本的单价分别为10元,6元;(2)当一等奖人数为50时花费最少,最少为700元.【分析】(1)钢笔、笔记本的单价分别为x、y元,根据题意列方程组即可得到结论;(2)设钢笔的单价为a元,购买数量为b元,支付钢笔和笔记本的总金额w元,①当30≤b≤50时,求得w=-0.1(b-35)2+722.5,于是得到700≤w≤722.5;②当50<b≤60时,求得w=8b+6(100-b)=2b+600,700<w≤720,于是得到当30≤b≤60时,w的最小值为700元,于是得到结论.【详解】(1)设钢笔、笔记本的单价分别为、元.根据题意可得解得: .答:钢笔、笔记本的单价分别为10元,6元.(2)设钢笔单价为元,购买数量为b支,支付钢笔和笔记本总金额为W元.①当30≤b≤50时,w=b(-0.1b+13)+6(100-b)∵当时,W=720,当b=50时,W=700∴当30≤b≤50时,700≤W≤722.5②当50<b≤60时,a=8,∵∴当30≤b≤60时,W的最小值为700元∴当一等奖人数为50时花费最少,最少为700元.【点睛】本题考查了二次函数的应用,二元一次方程组的应用,正确的理解题意求出二次函数的解析式是解题的关键.22.某超市销售一种文具,进价为5元/件.售价为6元/件时,当天的销售量为100件.在销售过程中发现:售价每上涨0.5元,当天的销售量就减少5件.设当天销售单价统一为元/件(,且是按0.5元的倍数上涨),当天销售利润为元.(1)求与的函数关系式(不要求写出自变量的取值范围);(2)要使当天销售利润不低于240元,求当天销售单价所在的范围;(3)若每件文具的利润不超过,要想当天获得利润最大,每件文具售价为多少元?并求出最大利润.【答案】(1);(2)当天销售单价所在的范围为;(3)每件文具售价为9元时,最大利润为280元.【分析】(1)根据总利润=每件利润×销售量,列出函数关系式,(2)由(1)的关系式,即,结合二次函数的性质即可求的取值范围(3)由题意可知,利润不超过即为利润率=(售价-进价)÷售价,即可求得售价的范围.再结合二次函数的性质,即可求.【详解】解:由题意(1)故与的函数关系式为:(2)要使当天利润不低于240元,则,∴解得,∵ ,抛物线的开口向下,∴当天销售单价所在的范围为(3)∵每件文具利润不超过∴ ,得∴文具的销售单价为,由(1)得∵对称轴为∴ 在对称轴的左侧,且随着的增大而增大∴当时,取得最大值,此时即每件文具售价为9元时,最大利润为280元【点睛】考核知识点:二次函数的应用.把实际问题转化为函数问题解决是关键.23.某驻村扶贫小组实施产业扶贫,帮助贫困农户进行西瓜种植和销售.已知西瓜的成本为6元/千克,规定销售单价不低于成本,又不高于成本的两倍.经过市场调查发现,某天西瓜的销售量y(千克)与销售单价x(元/千克)的函数关系如下图所示:(1)求y与x的函数解析式(也称关系式);(2)求这一天销售西瓜获得的利润的最大值.【答案】(1)y与x的函数解析式为;(2)这一天销售西瓜获得利润的最大值为1250元.【分析】(1)当6 x≤10时,由题意设y=kx+b(k=0),利用待定系数法求得k、b的值即可;当10<x≤12时,由图象可知y=200,由此即可得答案;(2))设利润为w元,当6≦x≤10时,w=-200 +1250,根据二次函数的性质可求得最大值为1250;当10<x≤12时,w=200x-1200,由一次函数的性质结合x的取值范围可求得w的最大值为1200,两者比较即可得答案.【详解】(1)当6 x≤10时,由题意设y=kx+b(k=0),它的图象经过点(6,1000)与点(10,200),∴,解得,∴当6 x≤10时, y=-200x+2200,当10<x≤12时,y=200,综上,y与x的函数解析式为;(2)设利润为w元,当6 x≤10时,y=-200x+2200,w=(x-6)y=(x-6)(-200x+200)=-200 +1250,∵-200<0,6≦x≤10,当x=时,w有最大值,此时w=1250;当10<x≤12时,y=200,w=(x-6)y=200(x-6)=200x-1200,∴200>0,∴w=200x-1200随x增大而增大,又∵10<x≤12,∴当x=12时,w最大,此时w=1200,1250>1200,∴w的最大值为1250,答:这一天销售西瓜获得利润的最大值为1250元.【点睛】本题考查了一次函数的应用,二次函数的应用,涉及了待定系数法,二次函数的性质,一次函数的性质等,弄清题意,找准各量间的关系是解题的关键.24.某山区不仅有美丽风光,也有许多令人喜爱的土特产,为实现脱贫奔小康,某村组织村民加工包装土特产销售给游客,以增加村民收入.已知某种士特产每袋成本10元.试销阶段每袋的销售价x(元)与该士特产的日销售量y(袋)之间的关系如表:x(元) 15 20 30 …y(袋) 25 20 10 …若日销售量y是销售价x的一次函数,试求:(1)日销售量y(袋)与销售价x(元)的函数关系式;(2)假设后续销售情况与试销阶段效果相同,要使这种土特产每日销售的利润最大,每袋的销售价应定为多少元?每日销售的最大利润是多少元?【答案】(1)y=﹣x+40;(2)要使这种土特产每日销售的利润最大,每袋的销售价应定为25元,每日销售的最大利润是225元.【分析】(1)根据表格中的数据,利用待定系数法,求出日销售量y(袋)与销售价x(元)的函数关系式即可(2)利用每件利润×总销量=总利润,进而求出二次函数最值即可.【详解】(1)依题意,根据表格的数据,设日销售量y(袋)与销售价x(元)的函数关系式为y=kx+b得,解得,故日销售量y(袋)与销售价x(元)的函数关系式为:y=﹣x+40;(2)依题意,设利润为w元,得w=(x﹣10)(﹣x+40)=﹣x2+50x+400,整理得w=﹣(x﹣25)2+225,∵﹣1<0,∴当x=2时,w取得最大值,最大值为225,故要使这种土特产每日销售的利润最大,每袋的销售价应定为25元,每日销售的最大利润是225元.【点睛】本题考查了一次函数的应用,二次函数的应用,正确分析得出各量间的关系并熟练掌握二次函数的性质是解题的关键.25.某政府工作报告中强调,2019年着重推进乡村振兴战略,做优做响湘莲等特色农产品品牌.小亮调查了一家湘潭特产店两种湘莲礼盒一个月的销售情况,A种湘莲礼盒进价72元/盒,售价120元/盒,B种湘莲礼盒进价40元/盒,售价80元/盒,这两种湘莲礼盒这个月平均每天的销售总额为2800元,平均每天的总利润为1280元.(1)求该店平均每天销售这两种湘莲礼盒各多少盒?(2)小亮调査发现,种湘莲礼盒售价每降3元可多卖1盒.若种湘莲礼盒的售价和销量不变,当种湘莲礼盒降价多少元/盒时,这两种湘莲礼盒平均每天的总利润最大,最大是多少元?【答案】(1)该店平均每天销售礼盒10盒,种礼盒为20盒;(2)当种湘莲礼盒降价9元/盒时,这两种湘莲礼盒平均每天的总利润最大,最大是1307元.【分析】(1)根据题意,可设平均每天销售礼盒盒,种礼盒为盒,列二元一次方程组即可解题(2)根据题意,可设种礼盒降价元/盒,则种礼盒的销售量为:()盒,再列出关系式即可.【详解】解:(1)根据题意,可设平均每天销售礼盒盒,种礼盒为盒,则有,解得故该店平均每天销售礼盒10盒,种礼盒为20盒.(2)设A种湘莲礼盒降价元/盒,利润为元,依题意总利润化简得∵∴当时,取得最大值为1307,故当种湘莲礼盒降价9元/盒时,这两种湘莲礼盒平均每天的总利润最大,最大是1307元.【点睛】本题考查了二次函数的性质在实际生活中的应用.最大销售利润的问题常利函数的增减性来解答,我们首先要吃透题意,确定变量,建立函数模型,然后结合实际选择最优方案.26.随着技术的发展,人们对各类产品的使用充满期待.某公司计划在某地区销售第一款产品,根据市场分析,该产品的销售价格将随销售周期的变化而变化.设该产品在第(为正整数)个销售周期每台的销售价格为元,与之间满足如图所示的一次函数关系.(1)求与之间的关系式;(2)设该产品在第个销售周期的销售数量为(万台),与的关系可用来描述.根据以上信息,试问:哪个销售周期的销售收入最大?此时该产品每台的销售价格是多少元?【答案】(1)与之间的关系式为;(2)第个销售周期的销售收入最大,此时该产品每台的销售价格是元.【分析】(1)根据两点坐标即可求出一次函数的解析式;(2)根据题意令销售收入W=py,再根据二次函数的性质即可求解.【详解】(1)设与之间的关系式为y=kx+b,把(1,7000),(5,5000)代入y=kx+b,得,解得∴ 与之间的关系式为;(2)令销售收入W=py= =∴当x=7时,W有最大值为16000,此时y=-500×7+7500=4000故第个销售周期的销售收入最大,此时该产品每台的销售价格是元.【点睛】此题主要考查一次函数与二次函数的应用,解题的关键是熟知待定系数法确定函数关系式与二次函数的图像与性质.27.某超市拟于中秋节前天里销售某品牌月饼,其进价为元/ .设第天的销售价格为(元/ ),销售量为.该超市根据以往的销售经验得出以下的销售规律:①当时,;当时,与满足一次函数关系,且当时,;时,.② 与的关系为.(1)当时,与的关系式为;(2)为多少时,当天的销售利润(元)最大?最大利润为多少?(3)若超市希望第天到第天的日销售利润(元)随的增大而增大,则需要在当天销售价格的基础上涨元/ ,求的最小值.【答案】(1);(2)为时,当天的销售利润(元)最大,最大利润为元;(3)3【分析】(1)依据题意利用待定系数法,易得出当时,与的关系式为:,(2)根据销售利润=销售量×(售价﹣进价),列出每天的销售利润(元)与销售价(元/箱)之间的函数关系式,再依据函数的增减性求得最大利润.(3)要使第天到第天的日销售利润(元)随的增大而增大,则对称轴,求得即可【详解】(1)依题意,当时,时,,。

2020中考数学常考线段最值题型

2020中考数学常考线段最值题型

2020中考数学常考线段最值题型一.将军饮马1.如图,点P 是∠AOB 内任意一点,∠AOB =30°,OP =8,点M 和点N 分别是射线OA 和射线OB 上的动点,则△PMN 周长的最小值为___________.2.如图,正方形ABCD 的边长是4,M 在DC 上,且DM =1, N 是AC 边上的一动点,则△DMN 周长的最小值是___________.3.如图,在Rt △ABO 中,∠OBA =90°,A (4,4),点C 在边AB 上,且AC :CB =1:3,点D 为OB 的中点,点P 为边OA 上的动点,当点P 在OA 上移动时,使四边形PDBC 周长最小的点P 的坐标为( )A .(2,2)B .5(2,5)2C .8(3,8)3D .(3,3)4.如图,在△ABC 中,AC =BC ,∠ACB =90°,点D 在BC 上,BD =3,DC =1,点P 是AB 上的动点,则PC +PD 的最小值为() A .4B .5C .6D .75.如图,在等边△ABC 中,AB =6, N 为AB 上一点且BN =2AN , BC 的高线AD 交BC 于点D ,M 是AD 上的动点,连结BM ,MN ,则BM +MN 的最小值是___________.6.如图,在Rt △ABD 中,AB =6,∠BAD =30°,∠D =90°,N 为AB 上一点且BN =2AN , M 是AD 上的动点,连结BM ,MN ,则BM +MN 的最小值是___________.P OBAMNNMDCBAPD CBAA BCDMNN MDBA7.如图,在Rt △ABC 中,∠ACB =90°,AC =6.AB =12,AD 平分∠CAB ,点F 是AC 的中点,点E 是AD 上的动点,则CE +EF 的最小值为( )A .3B .4 C.D.8.如图,在锐角三角形ABC 中,BC =4,∠ABC =60°, BD 平分∠ABC ,交AC 于点D ,M 、N 分别是BD ,BC 上的动点,则CM +MN 的最小值是( ) AB .2C.D .49.如图,在菱形ABCD 中,AC=BD =6,E 是BC 的中点,P 、M 分别是AC 、AB 上的动点,连接PE 、PM ,则PE +PM 的最小值是( )A .6B.C.D .4.510.如图,矩形ABOC 的顶点A 的坐标为(-4,5),D 是OB 的中点,E 是OC 上的一点,当△ADE 的周长最小时,点E 的坐标是( )A .4(0,)3B .5(0,)3C .(0,2) D .10(0,)311.如图,在矩形ABCD 中,AB =6,AD =3,动点P 满足13PAB ABCD S S ∆=矩形,则点P 到A 、B两点距离之和P A +PB 的最小值为( )A .B .C .D 12.如图,矩形ABCD 中,AB =10,BC =5,点E 、F 、G 、H 分别在矩形ABCD 各边上,且AE =CG ,BF =DH ,则四边形EFGH 周长的最小值为( )A .B .C .D .E AFCDBNMDCBAEP DCBAMDC BAPHFGEDCB A13.如图,∠AOB =60°,点P 是∠AOB 内的定点且OPM 、N 分别是射线OA 、OB 上异于点O 的动点,则△PMN 周长的最小值是( )ABC .6D .3 14.如图,∠AOB 的边OB 与x 轴正半轴重合,点P 是OA 上的一动点,点N (3,0)是OB 上的一定点,点M 是ON 的中点,∠AOB =30°,要使PM +PN 最小,则点P 的坐标为 .15.如图,已知正比例函数y =kx (k >0)的图像与x 轴相交所成的锐角为70°,定点A 的坐标为(0,4),P 为y 轴上的一个动点,M 、N 为函数y =kx (k >0)的图像上的两个动点,则AM +MP +PN 的最小值为____________.16.如图,在平面直角坐标系中,矩形ABCD 的顶点B 在原点,点A 、C 在坐标轴上,点D 的坐标为(6,4),E 为CD 的中点,点P 、Q 为BC 边上两个动点,且PQ =2,要使四边形APQE 的周长最小,则点P 的坐示应为______________.17.如图,矩形ABCD 中,AD =2,AB =4,AC 为对角线,E 、F 分别为边AB 、CD 上的动点,且EF ⊥AC 于点M ,连接AF 、CE ,求AF +CE 的最小值.ABMOPNxABCDEFM二.辅助圆1.如图,已知圆C 的半径为3,圆外一定点O 满足OC =5,点P 为圆C 上一动点,经过点O 的直线l 上有两点A 、B ,且OA =OB ,∠APB =90°,l 不经过点C ,则AB 的最小值为________.2.如图,在边长为2的菱形ABCD 中,∠A =60°,M 是AD 边的中点,N 是AB 边上的一动点,将△AMN 沿MN 所在直线翻折得到△A ’MN ,连接A ’C ,则A ’C 长度的最小值是__________.3.如图,在Rt △ABC 中,∠C =90°,AC =6,BC =8,点F 在边AC 上,并且CF =2,点E 为边BC 上的动点,将△CEF 沿直线EF 翻折,点C 落在点P 处,则点P 到边AB 距离的最小值是__________.4.如图,矩形ABCD 中,AB =4,BC =8,P 、Q 分别是直线BC 、AB 上的两个动点,AE =2,△AEQ 沿EQ 翻折形成△FEQ ,连接PF 、PD ,则PF +PD 的最小值是_________. 5.已知正方形ABCD 边长为2,E 、F 分别是BC 、CD 上的动点,且满足BE =CF ,连接AE 、BF ,交点为P 点,则PD 的最小值为_________.6.如图,E 、F 是正方形ABCD 的边AD 上的两个动点,满足AE =DF ,连接CF 交BD 于点G ,连接BE 交AG 于点H ,若正方形边长为2,则线段DH 长度的最小值是________.7.如图,Rt △ABC 中,AB ⊥BC ,AB =6,BC =4,P 是△ABC 内部的一个动点,且满足∠PAB =∠PBC ,则线段CP 长的最小值是_________.lA'NMABCDABCEFPQ ABCDEFPEFA BCDP HGABCDE F PABC8.如图, AB 是半圆O 的直径,点C 在半圆O 上,AB =5,AC =4.D 是弧BC 上的一个动点,连接AD ,过点C 作CE ⊥AD 于E ,连接BE .在点D 移动的过程中,BE 的最小值为 .9.如图,在Rt △ABC 中,∠ACB =90°,BC =4,AC =10,点D 是AC 上的一个动点,以CD 为直径作圆O ,连接BD 交圆O 于点E ,则AE 的最小值为_________.10.如图,正方形ABCD 的边长为4,动点E 、F 分别从点A 、C 同时出发,以相同的速度分别沿AB 、CD 向终点B 、D 移动,当点E 到达点B 时,运动停止,过点B 作直线EF 的垂线BG ,垂足为点G ,连接AG ,则AG 长的最小值为 .11.如图,正方形ABCD 的边长是4,点E 是AD 边上一动点,连接BE ,过点A 作AF ⊥BE 于点F ,点P 是AD 边上另一动点,则PC +PF 的最小值为________.12.如图,在Rt △ABC 中,∠ACB =90°,∠B =30°,AB =4,D 是BC 上一动点,CE ⊥AD于E ,EF ⊥AB 交BC 于点F ,则CF 的最大值是_________.13.如图,等边△ABC 边长为2,E 、F 分别是BC 、CA 上两个动点,且BE =CF ,连接AE 、BF ,交点为P 点,则CP 的最小值为________.14.如图,△ABC 为等边三角形,AB =2,若P 为△ABC 内一动点,且满足∠PAB =∠ACP ,则线段PB 长度的最小值为_________.BGFEDCB AABCDE FP FEDCBAEFCBAPABCP15.在△ABC 中,AB =4,∠C =60°,∠A >∠B ,则BC 的长的取值范围是________. 16.如图,AB 是圆O 的直径,M 、N 是弧AB (异于A 、B )上两点,C 是弧MN 上一动点,∠ACB 的角平分线交圆O 于点D ,∠BAC 的平分线交CD 于点E ,当点C 从点M 运动到点N 时,则C 、E 两点的运动路径长的比是_______.三.瓜豆模型1.如图,点P (3,4),圆P 半径为2,A (2.8,0),B (5.6,0),点M 是圆P 上的动点,点C 是MB 的中点,则AC 的最小值是_______.2.如图,在等腰Rt △ABC 中,AC =BC=P 在以斜边AB 为直径的半圆上,M 为PC 的中点,当半圆从点A 运动至点B 时,点M 运动的路径长为________. 3.如图,正方形ABCD中,AB O 是BC 边的中点,点E 是正方形内一动点,OE =2,连接DE ,将线段DE 绕点D 逆时针旋转90°得DF ,连接AE 、CF .求线段OF 长的最小值.4.△ABC 中,AB =4,AC =2,以BC 为边在△ABC 外作正方形BCDE ,BD 、CE 交于点O ,则线段AO 的最大值为_____________.4ABC60°ABOABCDEFAB CDE O5.如图,在等边△ABC 中,AB =10,BD =4,BE =2,点P 从点E 出发沿EA 方向运动,连结PD ,以PD 为边,在PD 的右侧按如图所示的方式作等边△DPF ,当点P 从点E 运动到点A 时,点F 运动的路径长是________.6.如图,已知点A是第一象限内横坐标为AC ⊥x 轴于点M ,交直线y =-x 于点N ,若点P 是线段ON 上的一个动点,∠APB =30°,BA ⊥PA ,则点P 在线段ON 上运动时,A 点不变,B 点随之运动.求当点P 从点O 运动到点N 时,点B 运动的路径长是________.7.如图,在平面直角坐标系中,A (-3,0),点B 是y 轴正半轴上一动点,点C 、D 在x 正半轴上,以AB 为边在AB 的下方作等边△ABP ,点B 在y 轴上运动时,求OP 的最小值.8.如图,正方形ABCD 的边长为4,E 为BC 上一点,且BE连接EF ,以EF 为边向右侧作等边△EFG ,连接CG ,则CG 的最小值为 .9.如图,在反比例函数2y x=-的图像上有一个动点A ,连接AO 并延长交图像的另一支于点B ,在第一象限内有一点C ,满足AC =BC ,当点A 运动时,点C 始终在函数ky x=的图像上运动,若tan ∠CAB =2,则k 的值为( ) A .2B .4C .6D .810.如图所示,AB =4,AC =2,以BC 为底边向上构造等腰直角三角形BCD ,连接AD 并延长至点P ,使AD =PD ,则PB 的取值范围为___________.AGABCDEF A BCDPP四.胡不归模型1.如图,△ABC 中,AB =AC =10,tan A =2,BE ⊥AC 于点E ,D 是线段BE上的一个动点,则CD +的最小值是_______.2.如图,平行四边形ABCD 中,∠DAB =60°,AB =6,BC =2,P 为边CD上的一动点,则PB +的最小值等于________.3.如图,在等腰△ABC 中,AB=AC=10,∠BAC=30°,AD ⊥BC ,点 P 在线段 AD 上,则PA+PB+PC 的最小值为 .4.如图,在△ABC 中,AB=4,AC=6,∠A=30°,点 D 为 AC 边上一动点,则最小值为 .5. 如图,四边形 ABCD 是菱形,AB=6,且∠ABC=60°, 点 M是对角线 BD 上任意一点,则2AM + BM 的最小值为.6.如图,AB 为半圆 O 的直径,AB=4,点 P 为半圆 O 圆弧上的一动点,点 Q 为线段 AB 上一点, 且∠PQA=60°,则 PQ+AQ 的最大值为.ABCDEABCD PDB五.阿氏圆模型1.如图,在ABC ∆中,∠ACB=90°,BC=12,AC=9,以点C 为圆心,6为半径的圆上有一个动点D .连接AD 、BD 、CD ,则2AD+3BD 的最小值是 .2.如图,已知正方ABCD 的边长为4,圆B 的半径为2,点P 是圆B 上的一个动点,则12PD PC -的最大值为_______.3.如图,在△ABC 中,∠B ﹦90°,AB ﹦CB ﹦2,以点B 为圆心作圆B 与AC 相切,点P为圆B上任一动点,则2PA PC +的最小值是 .4.如图,菱形ABCD 的边长为2,锐角大小为60°,⊙A 与BC 相切于点E ,在⊙A 上任取一点P ,则PB +的最小值为. 5.如图,半圆的半径为1,AB 为直径,AC 、BD 为切线,AC=1,BD=2,P 为上一动点,求PC+PD 的最小值______________.6.如图,已知AC=6,BC=8,AB=10, ○C 的半径为4,点D 是○C 上的一个动点,连接AD ,BD ,则12AD BD +的最小值_________.23+BD AD 的最小值_______7.在Rt△ABC 中,∠ACB=90°,AC=4,BC=3,点D 是△ABC 内一动点,且满足CD=2,则23AD BD +的最小值____________.12+BD AD 的最小值_______ABCDABCDPA8.如图,○O,MO=2,∠POM=90°,Q 为○O 上一动点,则PQ+2QM 的最小值____________.5+MQ PQ 的最小值_______ 9.如图,已知菱形ABCD 的边长为4,∠B=60°,○B 的半径为2,P 为○B 上一动点,则PD+12PC 的最小值_______.PC PD 的最小值_______ 10.在△ABC 中,AB=9,BC=8,∠ABC=60°,○A 的半径为6,P 是○A 上一动点,连接PB,PC ,则3PC+2PB 的最小值_____________73+PB PC 的最小值_______11.如图点A,B 在○O 上,OA ⊥OB ,OA=OB=12,点C 是OA 的中点,D 在OB上,OD=10,点D 是○O 上一动点,则2PC+PD 的最小值________,PC+65PD 的最小值_________. 12.如图,在扇形CAB 中,CA=4,∠CAB=120°,D 是CA 的中点,P 是弧BC 上一动点(不与C,B 重合),则2PC+PB 的最小值______13.如图抛物线223y x x =-++与x 轴交于点A,B 两点(A 在B 的左侧),与y 轴交于C 点,○D 过A,B,C 三点,P是○D 上一动点,连接PO,PC 的最小值______C六.费马点模型1.如图,在△ABC中,∠ACB=90°,AB=AC=1,P是△ABC内一点,求PA+PB+PC 的最小值.2.如图,已知矩形ABCD,AB=4,BC=6,点M为矩形内一点,点E为BC边上任意一点,则MA+MD+ME的最小值为______.C AB CDME。

2020年数学中考最值问题试题总汇【含答案】

2020年数学中考最值问题试题总汇【含答案】

⎭ ⎝⎝ ⎝ 4 4 6 4 ⎭ 初中代数、几何所有最值问题一代数问题中的最值问题1、从 - 3,- 2,-1,4,5中任取两个数相乘,所得积中最大值为a ,最小值为b ,求-4答案: 32、若a , b , c 都是大于1的自然数,且a c= 252b , 求a 的最小值? 答案:42.a 的值?b 解析:252b 可以分成某数幂的形式。

252b=6×6×7 b , × 即 b=7,即 a=6×7=42.3、下面是按一定规律排列的一组数:1 ⎛ -1 ⎫第一个数: - 1+ ⎪2 ⎝ 2 ⎭1 ⎛ -1 ⎫⎛(-1)2 ⎫⎛ (-1)3 ⎫第二个数: - 1+ ⎪ 1+ ⎪1+ ⎪3 ⎝ 2 ⎪ ⎪ ⎭⎝ ⎭1 ⎛ -1 ⎫⎛ (-1)2 ⎫⎛ (-1)3 ⎫⎛ (-1)4 ⎫⎛ (-1)5 ⎫第三个数: - 1+ ⎪ 1+ ⎪1+ ⎪1+ ⎪1+ ⎪4 ⎝ 2 ⎭⎪ ⎪ ⎭⎝ ⎭⎝ ⎪ ⎪ ⎭⎝ ⎭……第 n 个数:1⎛ -1 ⎫⎛(-1)2 ⎫⎛ (-1)3 ⎫ ⎛ (-1)2n -1 ⎫ - 1+ ⎪ 1+ ⎪1+ ⎪…… 1+ ⎪n +1 ⎝ 2 ⎭ ⎪ ⎪ ⎭⎝ ⎭ ⎝2n ⎪ ;那么在第 10 个数,第 11 个数,第 12个数中,最大数是?答案:第 10 个。

解析:第n 个数是 1- n2(n +1), 把n = 10, n = 11, n = 12, n = 13分别代入得出答案。

4、已知: 20n 是整数,求满足条件的 最小整正数n 的值?答案:5解析:20n=4×5×n ,因为20n 是整数,∴ 20n 是一个完全平方数,∴ n 的最小值为54、当(m+n )²+1 取最小值时,求m 2 - n 2 + 2 m - 2 n 的值?答案:0解析:(m+n )²+1 取最小值,m+n=0 时最小。

2020广东中考数学题型分析

2020广东中考数学题型分析
题号
年份
考查内容
23题
2019
函数小综合(一次函数、反比例函数)
2018
函数小综合(一次函数、二次函数、分类讨论点的存在性)
2017
函数小综合(一次函数、二次函数、锐角三角函数)
2016
函数小综合(二次函数、反比例函数)
2015
函数小综合(一次函数、反比例函数)
题号
年份
考查内容
24题
2019
①等弧等弦等角的转换②圆切线证明
③相似三角形应用和勾股定理
2018
①平行线的判定②圆切线证明
③全等三角形和相似三角形
2017
①圆切线的性质、圆的基本性质、角平分线
②切线的性质、平行和等腰三角形
③全等、相似的证明和性质、求弧长
2016
①相似的证明②三角形性质③圆的切线
2015
①平行线的判定②平行四边形的证明③三角形全等
题号
年份
考查内容
2020年广东中考题型分析
授课:林老师
1、选择题(10题,共30分)
2、填空题(6题,共24分)
3、解答题(一)(3题,共18分)17题、18题、19题
①计算或解方程②分式化简求值③尺规作图及求边长或角度
4、解答题(二)(3题,共21分)20题、21题、22题
①概率②方程的应用③三角形(全等、勾股定理、解直角三角形、阴影面积)
2016
①平行四边形的判定②全等三角形的性质和判定③二次函数、分类讨论、数形结合等求面积最大值
2015
①求边长②求距离③求最值
2016
解直角三角形(利用三角函数依次求值)
2015
①三角形全等证明②矩形折叠、勾股定理求边长

2020年全国中考数学试题精选分类(1)——数与式(含解析)

2020年全国中考数学试题精选分类(1)——数与式(含解析)

2020年全国中考数学试题精选分类(1)——数与式一.选择题(共13小题)1.(2020•西藏)观察下列两行数:1,3,5,7,9,11,13,15,17,…1,4,7,10,13,16,19,22,25,…探究发现:第1个相同的数是1,第2个相同的数是7,…,若第n个相同的数是103,则n等于()A.18 B.19 C.20 D.212.(2020•呼和浩特)下列运算正确的是()A.•==±B.(ab2)3=ab5C.(x﹣y+)(x+y+)=(x+y)2D.÷=﹣3.(2020•聊城)人行道用同样大小的灰、白两种不同颜色的小正方形地砖铺设而成,如图中的每一个小正方形表示一块地砖.如果按图①②③…的次序铺设地砖,把第n个图形用图ⓝ表示,那么第50个图形中的白色小正方形地砖的块数是()A.150 B.200 C.355 D.5054.(2020•常德)如图,将一枚跳棋放在七边形ABCDEFG的顶点A处,按顺时针方向移动这枚跳棋2020次.移动规则是:第k次移动k个顶点(如第一次移动1个顶点,跳棋停留在B处,第二次移动2个顶点,跳棋停留在D处),按这样的规则,在这2020次移动中,跳棋不可能停留的顶点是()A.C、E B.E、F C.G、C、E D.E、C、F5.(2020•西藏)今年以来,西藏自治区劳动就业服务局积极落实失业保险稳岗返还政策,在相关部门的配合与大力帮助下,兑现稳岗返还资金16000000元,将16000000用科学记数法表示为()A.16×106B.1.6×107C.1.6×108D.0.16×1086.(2020•西藏)下列分解因式正确的一项是()A.x2﹣9=(x+3)(x﹣3)B.2xy+4x=2(xy+2x)C.x2﹣2x﹣1=(x﹣1)2D.x2+y2=(x+y)27.(2020•大连)下列四个数中,比﹣1小的数是()A.﹣2 B.﹣C.0 D.18.(2020•葫芦岛)下列运算正确的是()A.a2•a3=a6B.a8÷a4=a2C.5a﹣3a=2a D.(﹣ab2)2=﹣a2b49.(2020•赤峰)2020年6月23日9时43分,我国成功发射了北斗系统第55颗导航卫星,其授时精度为世界之最,不超过0.0000000099秒.数据“0.0000000099”用科学记数法表示为()A.99×10﹣10B.9.9×10﹣10C.9.9×10﹣9D.0.99×10﹣810.(2020•赤峰)估计(2+3)×的值应在()A.4和5之间B.5和6之间C.6和7之间D.7和8之间11.(2020•沈阳)下列有理数中,比0小的数是()A.﹣2 B.1 C.2 D.312.(2020•南通)计算|﹣1|﹣3,结果正确的是()A.﹣4 B.﹣3 C.﹣2 D.﹣113.(2020•大庆)若|x+2|+(y﹣3)2=0,则x﹣y的值为()A.﹣5 B.5 C.1 D.﹣1二.填空题(共17小题)14.(2020•赤峰)一个电子跳蚤在数轴上做跳跃运动.第一次从原点O起跳,落点为A1,点A1表示的数为1;第二次从点A1起跳,落点为OA1的中点A2,第三次从A2点起跳,落点为OA2的中点A3;如此跳跃下去…最后落点为OA2019的中点A2020,则点A2020表示的数为.15.(2020•呼和浩特)“书法艺术课”开课后,某同学买了一包纸练习软笔书法,且每逢星期几写几张,即每星期一写1张,每星期二写2张,……,每星期日写7张,若该同学从某年的5月1日开始练习,到5月30日练习完后累积写完的宣纸总数超过120张,则可算得5月1日到5月28日他共用宣纸张数为,并可推断出5月30日应该是星期几.16.(2020•鸡西)如图是由同样大小的圆按一定规律排列所组成的,其中第1个图形中一共有4个圆,第2个图形中一共有8个圆,第3个图形中一共有14个圆,第4个图形中一共有22个圆……按此规律排列下去,第9个图形中圆的个数是个.17.(2020•宜宾)定义:分数(m,n为正整数且互为质数)的连分数(其中a1,a2,a3,…,为整数,且等式右边的每个分数的分子都为1),记作+++…,例如:======,的连分数为,记作+++,则++.18.(2020•张家界)观察下面的变化规律:=1﹣,=﹣,=﹣,=﹣,…根据上面的规律计算:=.19.(2020•长沙)某数学老师在课外活动中做了一个有趣的游戏:首先发给A、B、C三个同学相同数量的扑克牌(假定发到每个同学手中的扑克牌数量足够多),然后依次完成以下三个步骤:第一步,A同学拿出二张扑克牌给B同学;第二步,C同学拿出三张扑克牌给B同学;第三步,A同学手中此时有多少张扑克牌,B同学就拿出多少张扑克牌给A同学.请你确定,最终B同学手中剩余的扑克牌的张数为.20.(2020•常德)阅读理解:对于x3﹣(n2+1)x+n这类特殊的代数式可以按下面的方法分解因式:x3﹣(n2+1)x+n=x3﹣n2x﹣x+n=x(x2﹣n2)﹣(x﹣n)=x(x﹣n)(x+n)﹣(x﹣n)=(x﹣n)(x2+nx﹣1).理解运用:如果x3﹣(n2+1)x+n=0,那么(x﹣n)(x2+nx﹣1)=0,即有x﹣n=0或x2+nx﹣1=0,因此,方程x﹣n=0和x2+nx﹣1=0的所有解就是方程x3﹣(n2+1)x+n=0的解.解决问题:求方程x3﹣5x+2=0的解为.21.(2020•张家界)因式分解:x2﹣9=.22.(2020•邵阳)在如图方格中,若要使横、竖、斜对角的3个实数相乘都得到同样的结果,则2个空格的实数之积为.3 21 6323.(2020•海南)海南黎锦有着悠久的历史,已被列入世界非物质文化遗产名录.如图是黎锦上的图案,每个图案都是由相同菱形构成的,若按照第1个图至第4个图中的规律编织图案,则第5个图中有个菱形,第n个图中有个菱形(用含n的代数式表示).24.(2020•昆明)观察下列一组数:﹣,,﹣,,﹣,…,它们是按一定规律排列的,那么这一组数的第n个数是.25.(2020•呼和浩特)分式与的最简公分母是,方程﹣=1的解是.26.(2020•十堰)对于实数m,n,定义运算m*n=(m+2)2﹣2n.若2*a=4*(﹣3),则a=.27.(2020•江西)公元前2000年左右,古巴比伦人使用的楔形文字中有两个符号(如图所示),一个钉头形代表1,一个尖头形代表10.在古巴比伦的记数系统中,人们使用的标记方法和我们当今使用的方法相同,最右边的数字代表个位,然后是十位,百位.根据符号记数的方法,如图符号表示一个两位数,则这个两位数是.28.(2020•通辽)如图,用大小相同的小正方形拼大正方形,拼第1个正方形需要4个小正方形,拼第2个正方形需要9个小正方形…,按这样的方法拼成的第(n+1)个正方形比第n个正方形多个小正方形.29.(2020•山西)如图是一组有规律的图案,它们是由边长相等的正三角形组合而成,第1个图案有4个三角形,第2个图案有7个三角形,第3个图案有10个三角形…按此规律摆下去,第n个图案有个三角形(用含n的代数式表示).30.(2020•青海)分解因式:﹣2ax2+2ay2=;不等式组的整数解为.三.解答题(共20小题)31.(2020•锦州)先化简,再求值:,其中.32.(2020•呼和浩特)(1)计算:|1﹣|﹣×+﹣()﹣2;(2)已知m是小于0的常数,解关于x的不等式组:.33.(2020•湖北)(1)先化简,再求值:÷,其中a=﹣1.(2)解不等式组,并把它的解集在数轴上表示出来.34.(2020•山西)(1)计算:(﹣4)2×(﹣)3﹣(﹣4+1).(2)下面是小彬同学进行分式化简的过程,请认真阅读并完成相应任务.﹣=﹣…第一步=﹣…第二步=﹣…第三步=…第四步=…第五步=﹣…第六步任务一:填空:①以上化简步骤中,第步是进行分式的通分,通分的依据是.或填为:;②第步开始出现错误,这一步错误的原因是;任务二:请直接写出该分式化简后的正确结果;任务三:除纠正上述错误外,请你根据平时的学习经验,就分式化简时还需要注意的事项给其他同学提一条建议.35.(2020•烟台)先化简,再求值:(﹣)÷,其中x=+1,y=﹣1.36.(2020•自贡)先化简,再求值:•(+1),其中x是不等式组的整数解.37.(2020•鞍山)先化简,再求值:(x﹣1﹣)÷,其中x=﹣2.38.(2020•德阳)计算:(﹣2)﹣2﹣|﹣2|+(﹣)0﹣﹣2cos30°.39.(2020•桂林)计算:(π+)0+(﹣2)2+|﹣|﹣sin30°.40.(2020•呼伦贝尔)先化简,再求值:÷+3,其中x=﹣4.41.(2020•赤峰)先化简,再求值:m﹣÷,其中m满足:m2﹣m﹣1=0.42.(2020•呼伦贝尔)计算:(﹣)﹣1++2cos60°﹣(π﹣1)0.43.(2020•雅安)(1)计算:(﹣1)2020+(π﹣1)0×()﹣2;(2)先化简(﹣x+1)÷,再从﹣1,0,1中选择合适的x值代入求值.44.(2020•鄂尔多斯)(1)解不等式组,并求出该不等式组的最小整数解.(2)先化简,再求值:(﹣)÷,其中a满足a2+2a﹣15=0.45.(2020•鸡西)先化简,再求值:﹣÷,其中x=1﹣2tan45°.46.(2020•益阳)先化简,再求值:(﹣)÷,其中a=﹣2.47.(2020•娄底)先化简(﹣)÷,然后从﹣3,0,1,3中选一个合适的数代入求值.48.(2020•恩施州)先化简,再求值:(﹣)÷,其中m=.49.(2020•娄底)计算:|﹣1|﹣3tan30°+(3.14﹣π)0+()﹣1.50.(2020•云南)先化简,再求值:÷,其中x=.2020年全国中考数学试题精选分类(1)——数与式参考答案与试题解析一.选择题(共13小题)1.(2020•西藏)观察下列两行数:1,3,5,7,9,11,13,15,17,…1,4,7,10,13,16,19,22,25,…探究发现:第1个相同的数是1,第2个相同的数是7,…,若第n个相同的数是103,则n等于()A.18 B.19 C.20 D.21【答案】A【解答】解:第1个相同的数是1=0×6+1,第2个相同的数是7=1×6+1,第3个相同的数是13=2×6+1,第4个相同的数是19=3×6+1,…,第n个相同的数是6(n﹣1)+1=6n﹣5,所以6n﹣5=103,解得n=18.答:第n个相同的数是103,则n等于18.故选:A.2.(2020•呼和浩特)下列运算正确的是()A.•==±B.(ab2)3=ab5C.(x﹣y+)(x+y+)=(x+y)2D.÷=﹣【答案】C【解答】解:A、,故选项错误;B、(ab2)3=a3b6,故选项错误;C、===(x+y)2,故选项正确;D、,故选项错误;故选:C.3.(2020•聊城)人行道用同样大小的灰、白两种不同颜色的小正方形地砖铺设而成,如图中的每一个小正方形表示一块地砖.如果按图①②③…的次序铺设地砖,把第n个图形用图ⓝ表示,那么第50个图形中的白色小正方形地砖的块数是()A.150 B.200 C.355 D.505【答案】C【解答】解:由图形可知:第1个图形12块白色小正方形,第2个图形19个白色小正方形,第3个图形26个白色小正方形则图ⓝ的白色小正方形地砖有(7n+5)块,当n=50时,7n+5=350+5=355.故选:C.4.(2020•常德)如图,将一枚跳棋放在七边形ABCDEFG的顶点A处,按顺时针方向移动这枚跳棋2020次.移动规则是:第k次移动k个顶点(如第一次移动1个顶点,跳棋停留在B处,第二次移动2个顶点,跳棋停留在D处),按这样的规则,在这2020次移动中,跳棋不可能停留的顶点是()A.C、E B.E、F C.G、C、E D.E、C、F【答案】D【解答】解:经实验或按下方法可求得顶点C,E和F棋子不可能停到.设顶点A,B,C,D,E,F,G分别是第0,1,2,3,4,5,6格,因棋子移动了k次后走过的总格数是1+2+3+…+k=k(k+1),应停在第k(k+1)﹣7p格,这时p是整数,且使0≤k(k+1)﹣7p≤6,分别取k=1,2,3,4,5,6,7时,k(k+1)﹣7p=1,3,6,3,1,0,0,发现第2,4,5格没有停棋,若7<k≤2020,设k=7+t(t=1,2,3)代入可得,k(k+1)﹣7p=7m+t(t+1),由此可知,停棋的情形与k=t时相同,故第2,4,5格没有停棋,即顶点C,E和F棋子不可能停到.故选:D.5.(2020•西藏)今年以来,西藏自治区劳动就业服务局积极落实失业保险稳岗返还政策,在相关部门的配合与大力帮助下,兑现稳岗返还资金16000000元,将16000000用科学记数法表示为()A.16×106B.1.6×107C.1.6×108D.0.16×108【答案】B【解答】解:16000000=1.6×107,故选:B.6.(2020•西藏)下列分解因式正确的一项是()A.x2﹣9=(x+3)(x﹣3)B.2xy+4x=2(xy+2x)C.x2﹣2x﹣1=(x﹣1)2D.x2+y2=(x+y)2【答案】A【解答】解:A、原式=(x+3)(x﹣3),符合题意;B、原式=2x(y+2),不符合题意;C、原式不能分解,不符合题意;D、原式不能分解,不符合题意.故选:A.7.(2020•大连)下列四个数中,比﹣1小的数是()A.﹣2 B.﹣C.0 D.1【答案】A【解答】解:根据有理数比较大小的方法,可得﹣2<﹣1,0>﹣1,﹣>﹣1,1>﹣1,∴四个数中,比﹣1小的数是﹣2.故选:A.8.(2020•葫芦岛)下列运算正确的是()A.a2•a3=a6B.a8÷a4=a2C.5a﹣3a=2a D.(﹣ab2)2=﹣a2b4【答案】C【解答】解:(A)原式=a5,故A错误.(B)原式=a4,故B错误.(D)原式=a2b4,故D错误.故选:C.9.(2020•赤峰)2020年6月23日9时43分,我国成功发射了北斗系统第55颗导航卫星,其授时精度为世界之最,不超过0.0000000099秒.数据“0.0000000099”用科学记数法表示为()A.99×10﹣10B.9.9×10﹣10C.9.9×10﹣9D.0.99×10﹣8【答案】C【解答】解:0.0000000099=9.9×10﹣9,故选:C.10.(2020•赤峰)估计(2+3)×的值应在()A.4和5之间B.5和6之间C.6和7之间D.7和8之间【答案】A【解答】解:原式=2+,∵,∴,故选:A.11.(2020•沈阳)下列有理数中,比0小的数是()A.﹣2 B.1 C.2 D.3【答案】A【解答】解:由于﹣2<0<1<2<3,故选:A.12.(2020•南通)计算|﹣1|﹣3,结果正确的是()A.﹣4 B.﹣3 C.﹣2 D.﹣1【答案】C【解答】解:原式=1﹣3=﹣2.故选:C.13.(2020•大庆)若|x+2|+(y﹣3)2=0,则x﹣y的值为()A.﹣5 B.5 C.1 D.﹣1【答案】A【解答】解:∵|x+2|+(y﹣3)2=0,∴x+2=0,y﹣3=0,解得:x=﹣2,y=3,故x﹣y=﹣2﹣3=﹣5.故选:A.二.填空题(共17小题)14.(2020•赤峰)一个电子跳蚤在数轴上做跳跃运动.第一次从原点O起跳,落点为A1,点A1表示的数为1;第二次从点A1起跳,落点为OA1的中点A2,第三次从A2点起跳,落点为OA2的中点A3;如此跳跃下去…最后落点为OA2019的中点A2020,则点A2020表示的数为.【答案】.【解答】解:第一次落点为A1处,点A1表示的数为1;第二次落点为OA1的中点A2,点A2表示的数为;第三次落点为OA2的中点A3,点A3表示的数为()2;…则点A2020表示的数为()2019,即点A2020表示的数为;故答案为:.15.(2020•呼和浩特)“书法艺术课”开课后,某同学买了一包纸练习软笔书法,且每逢星期几写几张,即每星期一写1张,每星期二写2张,……,每星期日写7张,若该同学从某年的5月1日开始练习,到5月30日练习完后累积写完的宣纸总数超过120张,则可算得5月1日到5月28日他共用宣纸张数为112,并可推断出5月30日应该是星期几五、六、日.【答案】112;五、六、日.【解答】解:∵5月1日~5月30日共30天,包括四个完整的星期,∴5月1日~5月28日写的张数为:4×=112,若5月30日为星期一,所写张数为112+7+1=120,若5月30日为星期二,所写张数为112+1+2<120,若5月30日为星期三,所写张数为112+2+3<120,若5月30日为星期四,所写张数为112+3+4<120,若5月30日为星期五,所写张数为112+4+5>120,若5月30日为星期六,所写张数为112+5+6>120,若5月30日为星期日,所写张数为112+6+7>120,故5月30日可能为星期五、六、日.故答案为:112;五、六、日.16.(2020•鸡西)如图是由同样大小的圆按一定规律排列所组成的,其中第1个图形中一共有4个圆,第2个图形中一共有8个圆,第3个图形中一共有14个圆,第4个图形中一共有22个圆……按此规律排列下去,第9个图形中圆的个数是92个.【答案】见试题解答内容【解答】解:因为第1个图形中一共有1×(1+1)+2=4个圆,第2个图形中一共有2×(2+1)+2=8个圆,第3个图形中一共有3×(3+1)+2=14个圆,第4个图形中一共有4×(4+1)+2=22个圆;可得第n个图形中圆的个数是n(n+1)+2;所以第9个图形中圆的个数9×(9+1)+2=92.故答案为:92.17.(2020•宜宾)定义:分数(m,n为正整数且互为质数)的连分数(其中a1,a2,a3,…,为整数,且等式右边的每个分数的分子都为1),记作+++…,例如:======,的连分数为,记作+++,则++.【答案】见试题解答内容【解答】解:++====.故答案为:.18.(2020•张家界)观察下面的变化规律:=1﹣,=﹣,=﹣,=﹣,…根据上面的规律计算:=.【答案】见试题解答内容【解答】解:由题干信息可抽象出一般规律:(a,b均为奇数,且b=a+2).故=1﹣+﹣+﹣+…+﹣=1﹣=.故答案:.19.(2020•长沙)某数学老师在课外活动中做了一个有趣的游戏:首先发给A、B、C三个同学相同数量的扑克牌(假定发到每个同学手中的扑克牌数量足够多),然后依次完成以下三个步骤:第一步,A同学拿出二张扑克牌给B同学;第二步,C同学拿出三张扑克牌给B同学;第三步,A同学手中此时有多少张扑克牌,B同学就拿出多少张扑克牌给A同学.请你确定,最终B同学手中剩余的扑克牌的张数为7.【答案】见试题解答内容【解答】解:设每人有牌x张,B同学从A同学处拿来二张扑克牌,又从C同学处拿来三张扑克牌后,则B同学有(x+2+3)张牌,A同学有(x﹣2)张牌,那么给A同学后B同学手中剩余的扑克牌的张数为:x+2+3﹣(x﹣2)=x+5﹣x+2=7.故答案为:7.20.(2020•常德)阅读理解:对于x3﹣(n2+1)x+n这类特殊的代数式可以按下面的方法分解因式:x3﹣(n2+1)x+n=x3﹣n2x﹣x+n=x(x2﹣n2)﹣(x﹣n)=x(x﹣n)(x+n)﹣(x﹣n)=(x﹣n)(x2+nx ﹣1).理解运用:如果x3﹣(n2+1)x+n=0,那么(x﹣n)(x2+nx﹣1)=0,即有x﹣n=0或x2+nx﹣1=0,因此,方程x﹣n=0和x2+nx﹣1=0的所有解就是方程x3﹣(n2+1)x+n=0的解.解决问题:求方程x3﹣5x+2=0的解为x=2或x=﹣1+或x=﹣1﹣.【答案】见试题解答内容【解答】解:∵x3﹣5x+2=0,∴x3﹣4x﹣x+2=0,∴x(x2﹣4)﹣(x﹣2)=0,∴x(x+2)(x﹣2)﹣(x﹣2)=0,则(x﹣2)[x(x+2)﹣1]=0,即(x﹣2)(x2+2x﹣1)=0,∴x﹣2=0或x2+2x﹣1=0,解得x=2或x=﹣1,故答案为:x=2或x=﹣1+或x=﹣1﹣.21.(2020•张家界)因式分解:x2﹣9=(x+3)(x﹣3).【答案】见试题解答内容【解答】解:原式=(x+3)(x﹣3),故答案为:(x+3)(x﹣3).22.(2020•邵阳)在如图方格中,若要使横、竖、斜对角的3个实数相乘都得到同样的结果,则2个空格的实数之积为.3 21 63【答案】.【解答】解:由题意可得:xy=,xy=.故答案为:.23.(2020•海南)海南黎锦有着悠久的历史,已被列入世界非物质文化遗产名录.如图是黎锦上的图案,每个图案都是由相同菱形构成的,若按照第1个图至第4个图中的规律编织图案,则第5个图中有41个菱形,第n个图中有2n2﹣2n+1个菱形(用含n的代数式表示).【答案】41,2n2﹣2n+1.【解答】解:∵第1个图中菱形的个数1=12+02,第2个图中菱形的个数5=22+12,第3个图中菱形的个数13=32+22,第4个图中菱形的个数25=42+32,∴第5个图中菱形的个数为52+42=41,第n个图中菱形的个数为n2+(n﹣1)2=n2+n2﹣2n+1=2n2﹣2n+1,故答案为:41,2n2﹣2n+1.24.(2020•昆明)观察下列一组数:﹣,,﹣,,﹣,…,它们是按一定规律排列的,那么这一组数的第n个数是(﹣1)n..【答案】见试题解答内容【解答】解:观察下列一组数:﹣=﹣,=,﹣=﹣,=,﹣=﹣,…,它们是按一定规律排列的,那么这一组数的第n个数是:(﹣1)n.故答案为:(﹣1)n.25.(2020•呼和浩特)分式与的最简公分母是x(x﹣2),方程﹣=1的解是x=﹣4.【答案】(1)x(x﹣2);(2)x=﹣4.【解答】解:∵x2﹣2x=x(x﹣2),∴分式与的最简公分母是x(x﹣2),方程,去分母得:2x2﹣8=x(x﹣2),去括号得:2x2﹣8=x2﹣2x,移项合并得:x2+2x﹣8=0,变形得:(x﹣2)(x+4)=0,解得:x=2或﹣4,∵当x=2时,x(x﹣2)=0,当x=﹣4时,x(x﹣2)≠0,∴x=2是增根,∴方程的解为:x=﹣4.故答案为:x(x﹣2),x=﹣4.26.(2020•十堰)对于实数m,n,定义运算m*n=(m+2)2﹣2n.若2*a=4*(﹣3),则a=﹣13.【答案】﹣13.【解答】解:∵m*n=(m+2)2﹣2n,∴2*a=(2+2)2﹣2a=16﹣2a,4*(﹣3)=(4+2)2﹣2×(﹣3)=42,∵2*a=4*(﹣3),∴16﹣2a=42,解得a=﹣13,故答案为:﹣13.27.(2020•江西)公元前2000年左右,古巴比伦人使用的楔形文字中有两个符号(如图所示),一个钉头形代表1,一个尖头形代表10.在古巴比伦的记数系统中,人们使用的标记方法和我们当今使用的方法相同,最右边的数字代表个位,然后是十位,百位.根据符号记数的方法,如图符号表示一个两位数,则这个两位数是25.【答案】见试题解答内容【解答】解:由题意可得,表示25.故答案为:25.28.(2020•通辽)如图,用大小相同的小正方形拼大正方形,拼第1个正方形需要4个小正方形,拼第2个正方形需要9个小正方形…,按这样的方法拼成的第(n+1)个正方形比第n个正方形多2n+3个小正方形.【答案】见试题解答内容【解答】解:∵第1个正方形需要4个小正方形,4=22,第2个正方形需要9个小正方形,9=32,第3个正方形需要16个小正方形,16=42,…,∴第n+1个正方形有(n+1+1)2个小正方形,第n个正方形有(n+1)2个小正方形,故拼成的第n+1个正方形比第n个正方形多(n+2)2﹣(n+1)2=2n+3个小正方形.故答案为:2n+3.29.(2020•山西)如图是一组有规律的图案,它们是由边长相等的正三角形组合而成,第1个图案有4个三角形,第2个图案有7个三角形,第3个图案有10个三角形…按此规律摆下去,第n个图案有(3n+1)个三角形(用含n的代数式表示).【答案】见试题解答内容【解答】解:第1个图案有4个三角形,即4=3×1+1第2个图案有7个三角形,即7=3×2+1第3个图案有10个三角形,即10=3×3+1…按此规律摆下去,第n个图案有(3n+1)个三角形.故答案为:(3n+1).30.(2020•青海)分解因式:﹣2ax2+2ay2=﹣2a(x﹣y)(x+y)或2a(y+x)(y﹣x);不等式组的整数解为2.【答案】见试题解答内容【解答】解:﹣2ax2+2ay2=﹣2a(x2﹣y2)=﹣2a(x﹣y)(x+y);或原式=2a(y+x)(y﹣x);,解①得:x≥2,解②得:x<3,∴2≤x<3,∴不等式的整数解为:2.故答案为:﹣2a(x﹣y)(x+y)或2a(y+x)(y﹣x);2.三.解答题(共20小题)31.(2020•锦州)先化简,再求值:,其中.【答案】.【解答】解:原式=﹣×=+=+==.当x=时,原式==.32.(2020•呼和浩特)(1)计算:|1﹣|﹣×+﹣()﹣2;(2)已知m是小于0的常数,解关于x的不等式组:.【答案】(1);(2)x>4﹣6m.【解答】解:(1)原式==;(2),解不等式①得:x>﹣2,解不等式②得:x>4﹣6m,∵m是小于0的常数,∴4﹣6m>0>﹣2,∴不等式组的解集为:x>4﹣6m.33.(2020•湖北)(1)先化简,再求值:÷,其中a=﹣1.(2)解不等式组,并把它的解集在数轴上表示出来.【答案】见试题解答内容【解答】解:(1)原式=•=,当a=﹣1时,原式==2;(2),∵解不等式①得:x>﹣2,解不等式②得:x≤4,∴不等式组的解集是:﹣2<x≤4,在数轴上表示为:.34.(2020•山西)(1)计算:(﹣4)2×(﹣)3﹣(﹣4+1).(2)下面是小彬同学进行分式化简的过程,请认真阅读并完成相应任务.﹣=﹣…第一步=﹣…第二步=﹣…第三步=…第四步=…第五步=﹣…第六步任务一:填空:①以上化简步骤中,第三步是进行分式的通分,通分的依据是分式的基本性质.或填为:分式的分子分母都乘(或除以)同一个不为0的整式,分式的值不变;②第五步开始出现错误,这一步错误的原因是括号前面是“﹣”,去掉括号后,括号里面的第二项没有变号;任务二:请直接写出该分式化简后的正确结果;任务三:除纠正上述错误外,请你根据平时的学习经验,就分式化简时还需要注意的事项给其他同学提一条建议.【答案】见试题解答内容【解答】解:(1)(﹣4)2×(﹣)3﹣(﹣4+1)=16×(﹣)+3=﹣2+3=1;(2)①以上化简步骤中,第三步是进行分式的通分,通分的依据是分式的基本性质.或填为:分式的分子分母都乘(或除以)同一个不为0的整式,分式的值不变;②第五步开始出现错误,这一步错误的原因是括号前面是“﹣”,去掉括号后,括号里面的第二项没有变号;任务二:﹣=﹣…第一步=﹣…第二步=﹣…第三步=…第四步=…第五步=﹣…第六步;任务三:答案不唯一,如:分式的混合运算,一般按常规运算顺序,但有时应先根据题目的特点,运用乘法的运算律运算,会简化运算过程.故答案为:三;分式的基本性质;分式的分子分母都乘(或除以)同一个不为0的整式,分式的值不变;五;括号前面是“﹣”,去掉括号后,括号里面的第二项没有变号.35.(2020•烟台)先化简,再求值:(﹣)÷,其中x=+1,y=﹣1.【答案】见试题解答内容【解答】解:(﹣)÷,=[﹣]÷,=×,=,当x=+1,y=﹣1时,原式==2﹣.36.(2020•自贡)先化简,再求值:•(+1),其中x是不等式组的整数解.【答案】见试题解答内容【解答】解:•(+1)===,由不等式组,得﹣1≤x<1,∵x是不等式组的整数解,∴x=﹣1,0,∵当x=﹣1时,原分式无意义,∴x=0,当x=0时,原式==﹣.37.(2020•鞍山)先化简,再求值:(x﹣1﹣)÷,其中x=﹣2.【答案】1﹣2.【解答】解:(x﹣1﹣)÷,=(﹣),=,=,当x=﹣2时,原式====1﹣2.38.(2020•德阳)计算:(﹣2)﹣2﹣|﹣2|+(﹣)0﹣﹣2cos30°.【答案】﹣2.【解答】解:(﹣2)﹣2﹣|﹣2|+(﹣)0﹣﹣2cos30°=﹣2++1﹣2﹣2×=﹣2.39.(2020•桂林)计算:(π+)0+(﹣2)2+|﹣|﹣sin30°.【答案】5.【解答】解:原式=1+4+﹣=5.40.(2020•呼伦贝尔)先化简,再求值:÷+3,其中x=﹣4.【答案】﹣1.【解答】解:原式==x+3,将x=﹣4代入得:原式=﹣4+3=﹣1.41.(2020•赤峰)先化简,再求值:m﹣÷,其中m满足:m2﹣m﹣1=0.【答案】1.【解答】解:原式=m﹣=m﹣=,∵m2﹣m﹣1=0,∴m2=m+1,∴原式=.42.(2020•呼伦贝尔)计算:(﹣)﹣1++2cos60°﹣(π﹣1)0.【答案】0.【解答】解:原式==0,故答案为:0.43.(2020•雅安)(1)计算:(﹣1)2020+(π﹣1)0×()﹣2;(2)先化简(﹣x+1)÷,再从﹣1,0,1中选择合适的x值代入求值.【答案】(1);(2),﹣1.【解答】解:(1)原式=1+1×=1+=;(2)原式=(﹣)÷=•=,∵x≠±1,∴取x=0,则原式=﹣1.44.(2020•鄂尔多斯)(1)解不等式组,并求出该不等式组的最小整数解.(2)先化简,再求值:(﹣)÷,其中a满足a2+2a﹣15=0.【答案】(1)﹣<x≤4,﹣2;(2),.【解答】解:(1)解不等式①,得:x>﹣,解不等式②,得:x≤4,则不等式组的解集为﹣<x≤4,∴不等式组的最小整数解为﹣2;(2)原式=[+]÷=(+)•=•==,∵a2+2a﹣15=0,∴a2+2a=15,则原式=.45.(2020•鸡西)先化简,再求值:﹣÷,其中x=1﹣2tan45°.【答案】.【解答】解:原式=﹣•=﹣==﹣,当x=1﹣2tan45°=1﹣2=﹣1时,原式=﹣=.46.(2020•益阳)先化简,再求值:(﹣)÷,其中a=﹣2.【答案】见试题解答内容【解答】解:原式=÷=•=,当a=﹣2时,原式===2.47.(2020•娄底)先化简(﹣)÷,然后从﹣3,0,1,3中选一个合适的数代入求值.【答案】见试题解答内容【解答】解:原式=[﹣]•=•=(m﹣3)﹣2(m+3)=m﹣3﹣2m﹣6=﹣m﹣9,当m=﹣3,0,3时,原式没有意义,舍去;当m=1时,原式=﹣1﹣9=﹣10.48.(2020•恩施州)先化简,再求值:(﹣)÷,其中m=.【答案】见试题解答内容【解答】解:====;当时,原式=.49.(2020•娄底)计算:|﹣1|﹣3tan30°+(3.14﹣π)0+()﹣1.【答案】见试题解答内容【解答】解:原式=﹣1﹣3×+1+2=﹣1﹣+1+2=2.50.(2020•云南)先化简,再求值:÷,其中x=.【答案】见试题解答内容【解答】解:原式=÷=•=,当x=时,原式=2.。

中考数学常见题型解析

中考数学常见题型解析

中考数学常见题型解析数学作为中考必考科目之一,对于学生来说是一项不可忽视的重要考试内容。

而在数学中,各种题型也是我们必须熟练掌握的。

本文将对中考数学中常见的题型进行解析,帮助同学们更好地备考。

一、选择题选择题是中考数学中最常见的题型之一。

它的特点是给出若干个选项,只有一个选项是正确的,考生需要根据题目的要求选择正确答案。

下面以常见的三种选择题为例进行解析。

1. 单项选择题单项选择题是中考数学中最基础的题型,也是最容易的题型之一。

在这类题目中,通常有一个问题和四个选项。

【例题】若函数y=ax²+bx+c的图象与x轴交于两个点,且交点的横坐标之和等于3,纵坐标之和等于2,则a+b+c=?A. -2B. -1C. 0D. 1解析:由题意可知,函数图象与x轴交点的纵坐标之和等于零。

根据函数的定义可知,纵坐标为0时,横坐标为3。

因此,该函数的一个根为x=3。

另一个根为x=0。

根据二次函数性质可知,两根之和为-x₁/x₂。

所以,x₁+x₂=-3。

因此,a+b+c=0。

所以答案为C。

2. 判断题判断题是中考数学中常见的题型之一。

它的特点是给出一个命题,考生需要判断该命题的正确性。

【例题】对于任意的实数a,有a^2≥0。

解析:根据平方的性质可知,任意实数的平方都大于等于零,因此该命题为真。

3. 完形填空完形填空是一种较为复杂的选择题类型。

它通常给出一篇文章,文章中有若干个空格,考生需要根据上下文的意思选择正确的答案来填充空格。

【例题】阅读下面的短文,从每题所给的A、B、C、D四个选项中选出可以填入空白处的最佳选项。

Life is like a marathon. We may start at the ____1____ time, but we have to run our own race on our own course. We can't go too fast, or we may die before reaching __2__ finish. We can't go too slow, or everyone may__3__ us and make fun of us.Along the way, we will make many friends. Some will __4__ with us for a while, and some will stay with us for the long run. Friends are like running shoes----they help ________ (5) the journey much better. They may ____6__ us or encourage us when we're feeling ____7__. The most important thing is they __8__ us for who we are.Along the way, there will be a lot of _______ (9). We may lose the race, feel pain and want to give up. But we __10__ give up. We have to keeprunning. After all, life is not about __11__, it's about how __12__ we can get up and keep ____13____.【例题】1. A. same B. different C. right D. wrong 解析:根据上下文可知,该句意为"人生就像一场马拉松,我们可能在不同时间开始,但必须按照自己的路线去跑",因此填入不同。

中考必考数学题型总结归纳

中考必考数学题型总结归纳

中考必考数学题型总结归纳随着教育体制的改革和高考的变革,中考的重要性逐渐凸显出来。

作为中考的一科必考科目,数学题型的掌握至关重要。

本文将对中考必考数学题型进行总结归纳,帮助同学们更好地备战中考。

一、选择题选择题是中考数学中常出现的一种题型,主要考察对知识点的掌握和运算能力。

常见的选择题包括单选题和多选题。

在解答选择题的时候,同学们需要仔细审题,将选项与题目进行对照,并且排除干扰项。

二、填空题填空题也是中考数学中经常出现的一类题型。

主要考察对基础概念和计算能力的理解和掌握。

在解答填空题的时候,同学们需要明确给定的条件,利用已知信息进行计算,将结果填入相应的空格中。

三、解答题解答题是中考数学中较为复杂和综合性的一种题型,一般需要进行多个步骤的推导和计算。

常见的解答题包括选择题中的证明题、计算题等,以及应用题中的解决问题题、综合运用题等。

在解答解答题的时候,同学们需要仔细分析题目要求,合理运用所学知识,严格按照解题步骤进行推导和计算,并注意书写规范。

四、应用题应用题是中考数学中考查实际问题解决能力的一类题型。

常见的应用题包括几何题、统计题、比例题等。

在解答应用题的时候,同学们需要将数学知识与实际问题相结合,理清思路,分析问题,运用所学知识解决问题。

五、解析几何题解析几何题是中考数学中较为复杂和综合性的一种题型,主要考察同学们对平面几何和立体几何的理解和应用。

在解答解析几何题的时候,同学们需要根据已知条件建立方程或者利用几何关系进行推导,最后得出答案。

六、证明题证明题是中考数学中常见的一类题型,考察同学们推理和证明的能力。

在解答证明题的时候,同学们需要明确所要证明的命题,运用逻辑推理、数学定理或者几何性质进行推导和证明,最终得出结论。

七、计算题计算题是中考数学中常见的一类题型,主要考察同学们的计算能力和运算技巧。

在解答计算题的时候,同学们需要根据所给条件进行相关计算,注意计算步骤和结果的准确性。

总结起来,中考数学题型多样,涉及面广,要求同学们同时掌握基本概念和运算能力,善于分析和解决问题。

2020中考数学经典题型汇总

2020中考数学经典题型汇总

2020中考数学经典题型汇总2020中考数学经典题型汇总1.中点①中线:D为BC中点,AD为BC边上的中线1.BD=CD2.S△ABD=S△ACD3.延长AD到E使得AD=DE,可得△ABD∼△CDE4.b+c=2AD+BD/25.直角三角形的斜边中线是斜边的一半6.平行线中有中点,容易有全等例:如图,在菱形ABCD中,tan∠ABC=,P为AB上一点,以PB为边向外作菱形PMNB,连结DM,取DM中点E,连结AE,PE,则的值为()A.B.C.D.2.角平分线②角平分线:AE平分∠BAC1.∠BAE=∠CAE2.DE=DF3.XXX4.有相同角有公共边极易作全等三角形5.平行线间有角平分线易有等腰三角形3.高线③垂线:XXX⊥BC1.AF⊥BC即∠AFC=90°2.求高线可用等面积法3.充分利用Rt△4.多个直角,易有相似三角形1.两角互余:∠B+∠C=90°2.斜边中线为斜边的一半:BC/23.等面积法:S△ABC=AC·AB=BC·AE4.勾股定理:AC²+AB²=BC²5.充分利用特殊角30°,45°,60°,构造Rt△②直角三角形:AD为中线AE为垂线4.函数坐标公式公式1:两点求斜率kk=(y1-y2)/(x1-x2)①与x轴正方向夹角为45°时,k=1②与x轴正方向夹角为60°时,k=√3③与x轴正方向夹角为30°时,k=1/√3④与x轴正方向夹角为120°时,k=-√3⑤与x轴正方向夹角为135°时,k=-1公式2:两点之间距离AB=√[(x1-x2)²+(y1-y2)²]应用:弦长公式公式3:中点公式x1+x2)/2,(y1+y2)/2应用:求中点坐标公式4:两直线平行与垂直①l1//l2 ⇔ k1=k2②l1⊥l2 ⇔ k1·k2=-1应用:①平行与垂直②直角三角形5.相似中的特殊角tan(α+β)= (tanα+tanβ)/(1-tanαtanβ)6.将军引马7.旋转8.对称9.反比例函数1.面积与k的关系2.坐标点的表示3.直线与反比例交点的关系直线与反比例函数的交点,可以用解方程的方法求得。

2020中考数学考点必杀30题(选择题-压轴)(解析版)

2020中考数学考点必杀30题(选择题-压轴)(解析版)

2020中考考点必杀500题专练03(选择题-压轴)(30道)1.(2019·山东省中考模拟)关于二次函数21y x kx k =-+-,以下结论:①抛物线交x 轴有两个不同的交点;①不论k 取何值,抛物线总是经过一个定点;①设抛物线交x 轴于A 、B 两点,若1AB =,则4k =;①抛物线的顶点在2(1)y x =--图象上;①抛物线交y 轴于C 点,若ABC 是等腰三角形,则k =0,1.其中正确的序号是( )A .①①①B .①①①C .①①①D .①①【答案】D【解析】解:△=k 2-4k+4=(k -2)2≥0,当k=2时,抛物线与x 轴只有1个交点,△错误;当x=1时,y=1-k+k -1=0,即抛物线过定点(1,0),△正确;当k=4时,y=x 2-4x+3,则抛物线与x 轴的交点为:x 2-4x+3=0,解得x 1=3,x 2=1,则AB=3-1=2,故△错误; 二次函数21y x kx k =-+-的顶点为(2k ,2444k k -+-),代入2(1)y x =--进行验证: 当x=2k 时,2244(1)4k k x -+-=--=,故△正确; 当k=1时,221y x kx k x x =-+-=-,解得抛物线与x 轴的两个交点为:(0,0)、(1,0),此时ABC 不是等腰三角形,故△错误.【点睛】深刻理解一元二次方程是二次函数y=0的特殊情况,二者之间具有一些本质的共同点,故二次函数很多问题往往都转化为一元二次方程的问题来解决.2.(2019·黑龙江省中考模拟)如图,二次函数y=ax 2+bx+c (a≠0)的图象与x 轴正半轴相交于A 、B 两点,与y 轴相交于点C ,对称轴为直线x=2,且OA=OC ,则下列结论:①abc >0;①9a+3b+c <0;①c >﹣1;①关于x 的方程ax 2+bx+c=0(a≠0)有一个根为1a-,其中正确结论的个数为( )A .1B .2C .3D .4【答案】C【解析】 解:由图象开口向下,可知a<0,与y 轴的交点在x 轴的下方,可知c<0,又对称轴方程为x=2,所以02b a ->,所以b>0, △abc>0,故△正确;由图象可知当x=3时,y>0,△9a+3b+c>0,故△错误;由图象可知OA<1,△OA=OC ,△OC<1,即-c<1,c>-1,故△正确:假设方程的一个根为x=1a -,把x=1a -代入方程可得10b c a a-+= , 整理可得ac -b+1=0,两边同时乘c 可得ac 2-bc+c=0,即方程有一个根为x=-c ,由△可知-c=OA,而x=OA是方程的根,△x=-c是方程的根,即假设成立,故△正确;综上可知正确的结论有三个;故答案为C.【点睛】本题主要考查二次函数的图象和性质.熟练掌握图象与系数的关系以及二次函数与方程、不等式的关系是解题的关键.特别是利用好题目中的OA=OC,是解题的关键.3.(2019·山东省初三二模)二次函数y=ax2+bx+c(a≠0)的图象如图所示,对称轴是直线x=1,下列结论:①ab<0;①b2>4ac;①a+b+2c<0;①3a+c<0.其中正确的是()A.①①B.①①C.①①①D.①①①①【答案】C【解析】△抛物线开口向上,△a>0,△抛物线与y轴的交点在x轴下方,△c<0,△ab<0,所以△正确;△抛物线与x轴有2个交点,△△=b2-4ac>0,所以△正确;△x=1时,y<0,△a+b+c<0,而c<0,△a+b+2c<0,所以△正确;△抛物线的对称轴为直线x=-b 2a =1, △b=-2a ,而x=-1时,y>0,即a -b+c>0,△a+2a+c>0,所以△错误.故选C .【点睛】本题考查了二次函数的图像与性质,属于简单题,熟悉二次函数的图像性质是解题关键.4.(2019·合肥市第四十八中学初三月考)如图,已知二次函数y=ax 2+bx+c (a≠0)的图象与x 轴交于点A (﹣1,0),与y 轴的交点B 在(0,﹣2)和(0,﹣1)之间(不包括这两点),对称轴为直线x=1.下列结论:①abc >0 ①4a+2b+c >0 ①4ac ﹣b 2<8a ①13<a <23①b >c .其中含所有正确结论的选项是( )A .①①B .①①①C .①①①D .①①①①【答案】D【解析】 △△函数开口方向向上,△a >0;△对称轴在y 轴右侧,△ab 异号,△抛物线与y 轴交点在y 轴负半轴,△c <0,△abc >0,故△正确;△△图象与x 轴交于点A (﹣1,0),对称轴为直线x=1,△图象与x 轴的另一个交点为(3,0),△当x=2时,y <0,△4a+2b+c <0,故△错误;△△图象与x 轴交于点A (﹣1,0),△当x=﹣1时,y=()()211a b c -+⨯-+=0,△a ﹣b+c=0,即a=b ﹣c ,c=b ﹣a ,△对称轴为直线x=1,△2b a -=1,即b=﹣2a ,△c=b ﹣a=(﹣2a )﹣a=﹣3a ,△4ac ﹣2b =4•a•(﹣3a )﹣()22a -=216a -<0,△8a >0,△4ac ﹣2b <8a ,故△正确;△△图象与y 轴的交点B 在(0,﹣2)和(0,﹣1)之间,△﹣2<c <﹣1,△﹣2<﹣3a <﹣1,△23>a >13,故△正确;△△a >0,△b ﹣c >0,即b >c ,故△正确.故选D .【点睛】本题考查二次函数的图像与系数的关系,熟练掌握图像与系数的关系,数形结合来进行判断是解题的关键. 5.(2019·安徽省初三期末)抛物线y=ax 2+bx+c 的顶点为D (﹣1,2),与x 轴的一个交点A 在点(﹣3,0)和(﹣2,0)之间,其部分图象如图,则以下结论:①b 2﹣4ac <0;①当x >﹣1时,y 随x 增大而减小;①a+b+c <0;①若方程ax 2+bx+c ﹣m=0没有实数根,则m >2; ①3a+c <0.其中正确结论的个数是( )A .2个B .3个C .4个D .5个【答案】C【解析】 (1)△抛物线与x 轴有两个交点,△b 2−4ac >0,△结论△不正确.(2)抛物线的对称轴x =−1,△当x >−1时,y 随x 增大而减小,△结论△正确.(3)△抛物线与x 轴的一个交点A 在点(−3,0)和(−2,0)之间,△抛物线与x 轴的另一个交点在点(0,0)和(1,0)之间,△当x =1时,y <0,△a +b +c <0,△结论△正确.(4)△y =ax 2+bx +c 的最大值是2,△方程ax 2+bx +c −m =0没有实数根,则m >2,△结论△正确.(5)△抛物线的对称轴x =2b a=−1, △b =2a ,△a +b +c <0,△a +2a +c <0,△3a +c <0,△结论△正确.综上,可得正确结论的序号是:△△△△,正确的结论有4个.故选C.6.(2019·山东省中考模拟)如图,已知二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,对称轴为直线x =1.有下列4个结论:①abc >0;①4a +2b +c >0;①2c <3b ;①a +b >m (am +b )(m 是不等于1的实数).其中正确的结论个数有( )A .1个B .2个C .3个D .4个【答案】C【解析】 解:△由图象可知:a <0,c >0,△﹣2b a>0, △b >0,△abc <0,故△错误;△由对称知,当x =2时,函数值大于0,即y =4a+2b+c >0,故△正确;△当x =3时函数值小于0,y =9a+3b+c <0,且x =2b a-=1, 即a =2b -,代入得9(2b -)+3b+c <0,得2c <3b ,故△正确; △当x =1时,y 的值最大.此时,y =a+b+c ,而当x =m 时,y =am 2+bm+c ,所以a+b+c >am 2+bm+c ,故a+b >am 2+bm ,即a+b >m (am+b ),故△正确.故选C .【点睛】本题考查了二次函数的图像和性质,属于简单题,熟悉函数的图像和性质是解题关键.7.(2019·山东省中考模拟)如图是二次函数2(0)y ax bx c a =++≠图象的一部分,对称轴为12x =,且经过点(2,0)下列说法:①abc<0;①-2b+c=0;①4a+2b+c<0;①若(-52,y 1),(52,y 2)是抛物线上的两点,则y 1<y 2;①1142a b +>m(am+b)其中(m≠12)其中说法正确的是A .①①①①B .①①C .①①D .①①①【答案】A【解析】解:△由抛物线的开口可知:a <0,又抛物线与y 轴的交点可知:c >0,对称轴−2ba >0,△b >0,△abc <0,故△正确;△将(2,0)代入y=ax 2+bx+c (a≠0),△4a+2b+c=0,△−221ba =,△a=-b ,△-4b+2b+c=0,△-2b+c=0,故△正确;△由△可知:4a+2b+c=0,故△错误;△由于抛物线的对称轴为x=12, △(−52,y 1)与(72,y 1)关于x=12对称, 由于x >12时,y 随着x 的增大而减小, △72>52, △y 1<y 2,故△正确;△由图象可知:x=12时,y 可取得最大值,且最大值为14a+12b , △m≠12△14a+12b+c >am 2+bm+c , △14a+12b >m(am+b), 故△正确;故答案为:△△△△;8.(2019·山东省中考模拟)如图,抛物线()20y ax bx c a =++≠的对称轴为1x =-,与x 轴的一个交点在()3,0-和()2,0-之间,其部分图象如图所示,则下列结论:()2140b ac ->;()22a b =;()3点17,2y ⎛⎫- ⎪⎝⎭、23,2y ⎛⎫- ⎪⎝⎭、35,4y ⎛⎫ ⎪⎝⎭是该抛物线上的点,则123y y y <<; ()4320b c +<;()()5t at b a b +≤-(t 为任意实数). 其中正确结论的个数是( )A .2B .3C .4D .5【答案】C【解析】 (1)抛物线与x 轴有两个交点,所以方程ax 2+bx +c =0(a ≠0)有两个不相等的实数根,所以b 2﹣4ac >0,此结论正确;(2)对称轴为x =﹣1=﹣2b a,即b =2a ,此结论正确; (3)由二次函数的对称性可得,x =54与x =﹣134的函数值相等,当x <﹣1时,y 随着x 的增大而增大,所以y 1<y 3<y 2,此结论错误;(4)由图像得,x =﹣3时,y <0,即9a ﹣3b +c <0,因为b =2a ,所以2b ×9﹣3b +c <0,即3b +2c <0,此结论正确; (5)要证明t (at +b )≤a ﹣b ,即要证明at 2+bt +c ≤a ﹣b +c ,即要证明抛物线在x =﹣1时取最大值,由图像可得当x =﹣1时,y 最大,此结论正确.正确结论的个数是4.故选C.【点睛】本题主要考查二次函数的图像与性质以及对二次函数系数相关式子的判断.9.(2018·江苏省中考模拟)二次函数y=ax 2+bx+c (a≠0)的图象如图,下列四个结论:①4a+c <0;①m (am+b )+b >a (m≠﹣1);①关于x 的一元二次方程ax 2+(b ﹣1)x+c=0没有实数根;①ak 4+bk 2<a (k 2+1)2+b (k 2+1)(k 为常数).其中正确结论的个数是( )A .4个B .3个C .2个D .1个【答案】D【解析】 △因为二次函数的对称轴是直线x=﹣1,由图象可得左交点的横坐标大于﹣3,小于﹣2, 所以﹣2b a=﹣1,可得b=2a , 当x=﹣3时,y <0,即9a ﹣3b+c <0,9a ﹣6a+c <0,3a+c <0,△a <0,△4a+c <0,所以△选项结论正确;△△抛物线的对称轴是直线x=﹣1,△y=a ﹣b+c 的值最大,即把x=m (m≠﹣1)代入得:y=am 2+bm+c <a ﹣b+c ,△am2+bm<a﹣b,m(am+b)+b<a,所以此选项结论不正确;△ax2+(b﹣1)x+c=0,△=(b﹣1)2﹣4ac,△a<0,c>0,△ac<0,△﹣4ac>0,△(b﹣1)2≥0,△△>0,△关于x的一元二次方程ax2+(b﹣1)x+c=0有实数根;△由图象得:当x>﹣1时,y随x的增大而减小,△当k为常数时,0≤k2≤k2+1,△当x=k2的值大于x=k2+1的函数值,即ak4+bk2+c>a(k2+1)2+b(k2+1)+c,ak4+bk2>a(k2+1)2+b(k2+1),所以此选项结论不正确;所以正确结论的个数是1个,故选D.,点C为半圆上动点,以BC为边向形10.(2019·湖北省中考模拟)如图,AB为半圆O的直径,AB2外作正方形BCDE,连接OD,则OD的最大值为()A .2B C 1 D .1【答案】C【解析】 解:通过旋转观察如图,可知当DO AB ⊥时,DO 最长,设DO 与O 交于点M ,连接CM ,BD ,OC .理由:OBM ,BCD 都是等腰直角三角形,OBM CBD 45∠∠∴==,OBC MBD ∠∠∴=,OB BC BM BD 2==, OBC ∴△MBD ,MD ∴:OC BD =:BC =MD ∴==∴点D 的运动轨迹是以M为半径的圆,∴当D ,M ,O 共线,即DO AB ⊥时,DO 最长.11MCB MOB 904522∠∠==⨯=,DCM BCM 45∠∠∴==,四边形BCDE 是正方形, C ∴、M 、E 共线,DEM BEM ∠∠=,在EMD 和EMB 中,DE BC MED MEB ME ME =⎧⎪∠=∠⎨⎪=⎩,MED ∴△()MEB SAS ,DM BM ∴====OD ∴的最大值1=+.故选:C .【点睛】本题考查正方形的性质、全等三角形的判定与性质以及旋转的性质等知识,解题的关键是OD 取得最大值时的位置,学会通过特殊位置探究得出结论,属于中考常考题型.11.(2019·广东省中考模拟)如图,在矩形ABCD 中,E 是AB 边的中点,沿EC 对折矩形ABCD ,使B 点落在点P 处,折痕为EC ,连结AP 并延长AP 交CD 于F 点,连结CP 并延长CP 交AD 于Q 点.给出以下结论:①四边形AECF 为平行四边形;①①PBA=①APQ;①①FPC为等腰三角形;①①APB①①EPC;其中正确结论的个数为()A.1B.2C.3D.4【答案】B【解析】△如图,EC,BP交于点G;△点P是点B关于直线EC的对称点,△EC垂直平分BP,△EP=EB,△△EBP=△EPB,△点E为AB中点,△AE=EB,△AE=EP,△△PAB=△PBA,△△PAB+△PBA+△APB=180°,即△PAB+△PBA+△APE+△BPE=2(△PAB+△PBA)=180°,△△PAB+△PBA=90°,△AP△BP,△AF△EC;△AE△CF,△四边形AECF是平行四边形,故△正确;△△△APB=90°,△△APQ+△BPC=90°,由折叠得:BC=PC,△△BPC=△PBC,△四边形ABCD是正方形,△△ABC=△ABP+△PBC=90°,△△ABP=△APQ,故△正确;△△AF△EC,△△FPC=△PCE=△BCE,△△PFC是钝角,当△BPC是等边三角形,即△BCE=30°时,才有△FPC=△FCP,如右图,△PCF不一定是等腰三角形,故△不正确;△△AF=EC,AD=BC=PC,△ADF=△EPC=90°,△Rt△EPC△△FDA(HL),△△ADF=△APB=90°,△FAD=△ABP,当BP=AD或△BPC是等边三角形时,△APB△△FDA,△△APB△△EPC,故△不正确;其中正确结论有△△,2个,故选B.点睛:本题考查了全等三角形的判定和性质,等腰三角形的性质和判定,矩形的性质,翻折变换,平行四边形的判定,熟练掌握全等三角形的判定与性质是解本题的关键.12.(2019·云南省中考模拟)如图,菱形ABCD中,①BAD=60°,AC与BD交于点O,E为CD延长线上的一点,且CD=DE,连结BE分别交AC,AD于点F、G,连结OG,则下列结论:①OG=12AB;①与①EGD全等的三角形共有5个;①S四边形ODGF>S①ABF;①由点A、B、D、E构成的四边形是菱形.其中正确的是()A .①①B .①①①C .①①①D .①①①【答案】A【解析】 △四边形ABCD 是菱形,△AB =BC =CD =DA ,AB △CD ,OA =OC ,OB =OD ,AC △BD ,△△BAG =△EDG ,△ABO △△BCO △△CDO △△AOD ,△CD =DE ,△AB =DE ,在△ABG 和△DEG 中,BAG EDG AGB DGE AB DE ∠=∠⎧⎪∠=∠⎨⎪=⎩,△△ABG △△DEG (AAS ),△AG =DG ,△OG 是△ACD 的中位线,△OG =12CD =12AB , △△正确;△AB △CE ,AB =DE ,△四边形ABDE 是平行四边形,△△BCD =△BAD =60°,△△ABD 、△BCD 是等边三角形,△AB =BD =AD ,△ODC =60°,△OD=AG,四边形ABDE是菱形,△正确;△AD△BE,由菱形的性质得:△ABG△△BDG△△DEG,在△ABG和△DCO中,OD AGODC BAG60 AB DC ︒=⎧⎪∠=∠=⎨⎪=⎩,△△ABG△△DCO(SAS),△△ABO△△BCO△△CDO△△AOD△△ABG△△BDG△△DEG,△△不正确;△OB=OD,AG=DG,△OG是△ABD的中位线,△OG△AB,OG=12 AB,△△GOD△△ABD,△ABF△△OGF,△△GOD的面积=14△ABD的面积,△ABF的面积=△OGF的面积的4倍,AF:OF=2:1,△△AFG的面积=△OGF的面积的2倍,又△△GOD的面积=△AOG的面积=△BOG的面积,△S四边形ODGF=S△ABF;△不正确;正确的是△△.故选A.【点睛】本题考查菱形的判定与性质, 全等三角形的判定与性质,三角形中位线的性质,熟练掌握性质,能通过性质推理出图中线段、角之间的关系是解题关键.13.(2019·广东省中考模拟)如图,在矩形ABCD中,①ADC的平分线与AB交于E,点F在DE的延长线上,①BFE=90°,连接AF、CF,CF与AB交于G,有以下结论:①AE=BC①AF=CF①BF2=FG•FC①EG•AE=BG•AB其中正确的个数是()A.1B.2C.3D.4【答案】C【解析】△DE平分△ADC,△ADC为直角,△△ADE=12×90°=45°,△△ADE为等腰直角三角形,△AD=AE,又△四边形ABCD矩形,△AD=BC,△AE=BC△△△BFE=90°,△BEF=△AED=45°,△△BFE为等腰直角三角形,△则有EF=BF又△△AEF=△DFB+△ABF=135°,△CBF=△ABC+△ABF=135°,△△AEF=△CBF在△AEF和△CBF中,AE=BC,△AEF=△CBF,EF=BF,△△AEF△△CBF(SAS)△AF=CF△假设BF2=FG•FC,则△FBG△△FCB,△△FBG=△FCB=45°,△△ACF=45°,△△ACB=90°,显然不可能,故△错误,△△△BGF=180°-△CGB,△DAF=90°+△EAF=90°+(90°-△AGF)=180°-△AGF,△AGF=△BGC,△△DAF=△BGF,△△ADF=△FBG=45°,△△ADF△△GBF,△AD DF DF BG BF EF==,△EG△CD,△EF EG EG DF CD AB==,△AD ABBG GE=,△AD=AE,△EG•AE=BG•AB,故△正确,故选C.【点睛】本题考查相似三角形的判定和性质、矩形的性质、等腰直角三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题.14.(2019·山东省中考模拟)如图,平行四边形ABCD的对角线AC、BD相交于点O,AE平分①BAD,分别交BC、BD于点E、P,连接OE,①ADC=60°,AB=12BC=1,则下列结论:①S平行四边形ABCD=AB•AC①OE=14AD①S①APO=12,正确的个数是()A.2B.3C.4D.5【答案】D【解析】△△AE平分△BAD,△△BAE=△DAE,△四边形ABCD是平行四边形,△AD△BC,△ABC=△ADC=60°,△△DAE=△BEA,△△BAE=△BEA,△AB=BE=1,△△ABE是等边三角形,△AE=BE=1,△BC=2,△EC=1,△AE=EC,△△EAC=△ACE,△△AEB=△EAC+△ACE=60°,△△ACE=30°,△AD△BC,△△CAD=△ACE=30°,故△正确;△△BE=EC,OA=OC,△OE=12AB=12,OE△AB,△△EOC=△BAC=60°+30°=90°,Rt△EOC中,=△四边形ABCD是平行四边形,△△BCD=△BAD=120°,△△ACB=30°,△△ACD=90°,Rt△OCD中,=,,故△正确;△由△知:△BAC=90°,△S△ABCD=AB•AC,故△正确;△由△知:OE是△ABC的中位线,又AB=12BC,BC=AD,△OE=12AB=14AD,故△正确;△△四边形ABCD是平行四边形,△S△AOE=S△EOC=12OE•OC=12×12=△OE△AB,△12 EP OEAP AB==,△12POEAOPSS=,△S△AOP=23S△AOE=23△正确;本题正确的有:△△△△△,5个,故选D .【点睛】本题考查了平行四边形的性质、等腰三角形的性质、直角三角形30度角的性质、三角形面积和平行四边形面积的计算;熟练掌握平行四边形的性质,证明△ABE 是等边三角形是解决问题的关键,并熟练掌握同高三角形面积的关系.15.(2019·广东省蛇口育才二中初三二模)正方形 A BCD 中,对角线 A C 、BD 相交于点 O ,DE 平分①A DO 交 AC 于点 E ,把 ∆A DE 沿AD 翻折,得到∆A DE’,点 F 是 DE 的中点,连接 A F 、BF 、E’F ,若下列结论 :①AD 垂直平分 EE’,-1,① C ∆A DE - C ∆ODE -1, ① S 四边形AEFB = 32+ 其中结论正确的个数是 ( ) .A .4 个B .3 个C .2 个D .1 个【答案】B【解析】 解:如图,连接EB 、EE ',作EM ⊥AB 于M ,EE '交AD 于N .△四边形ABCD 是正方形,△AB=BC=CD=DA ,AC ⊥BD ,AO=OB=OD=OC ,△DAC=△CAB=△DAE '=45°,根据对称性,△ADE ≅△ADE '≅ABE ,△DE=DE ',AE=AE ',△AD 垂直平分EE ',故△正确,△EN=NE ',△△NAE=△NEA=△MAE=△MEA=45°,,△AM=EM=EN=AN=1,△ED 平分△ADO ,EN ⊥DA ,EO ⊥DB ,△EN=EO=1,+1,△tan△ADE=tan△ODE=OE DO -1,故△正确,,△C △ADE -C △ODE =AD+AE -DO -,故△错误,△S △AEB =S △AED =12⨯1⨯()S △BDE = S △ADB -2 S △AEB =1+△DF=EF ,△S △EFB =2△S 四边形AEFB = S △AEB + S △EFB =2,故△错误, 故选C .【点睛】考查翻折变换(折叠问题),全等三角形的性质,面积计算,综合性比较强,对学生能力要求较高.16.(2019·四川省中考模拟)如图,边长一定的正方形ABCD,Q为CD上一个动点,AQ交BD 于点M,过M作MN①AQ交BC于点N,作NP①BD于点P,连接NQ,下列结论:①AM=MN;①MP=12BD;①BN+DQ=NQ;①AB BNBM为定值.其中一定成立的是A.①①①B.①①①C.①①①D.①①①①【答案】D【解析】如图:作AU△NQ于U,连接AN,AC,△△AMN=△ABC=90°,△A ,B ,N ,M 四点共圆,△△NAM=△DBC=45°,△ANM=△ABD=45°,△△ANM=△NAM=45°,△由等角对等边知,AM=MN ,故△正确.由同角的余角相等知,△HAM=△PMN ,△Rt△AHM△Rt△MPN △MP=AH=12AC=12BD ,故△正确, △△BAN+△QAD=△NAQ=45°,△三角形ADQ 绕点A 顺时针旋转90度至ABR ,使AD 和AB 重合,在连接AN ,证明三角形AQN△ANR ,得NR=NQ则BN=NU ,DQ=UQ ,△点U 在NQ 上,有BN+DQ=QU+UN=NQ ,故△正确.如图,作MS△AB ,垂足为S ,作MW△BC ,垂足为W ,点M 是对角线BD 上的点,△四边形SMWB 是正方形,有MS=MW=BS=BW ,△△AMS△△NMW ,△AS=NW ,△AB+BN=SB+BW=2BW ,△BW :BM=1:2, △=22AB BN BM +=,故△正确. 故选D .17.(2019·浙江省中考模拟)如图,以G(0,1)为圆心,半径为2的圆与x轴交于A、B两点,与y轴交于C、D两点,点E为①G上一动点,CF①AE于F,当点E从点B出发顺时针运动到点D时,点F所经过的路径长为()A B C D【答案】B连接AC,AG,△GO△AB,△O为AB的中点,即AO=BO=12 AB,△G(0,1),即OG=1,△在Rt△AOG中,根据勾股定理得:,又CO=CG+GO=2+1=3,△在Rt△AOC 中,根据勾股定理得:,△CF△AE , △△ACF 始终是直角三角形,点F 的运动轨迹为以AC 为直径的半圆,当E 位于点B 时,CO△AE ,此时F 与O 重合;当E 位于D 时,CA△AE ,此时F 与A 重合,△当点E 从点B 出发顺时针运动到点D 时,点F 所经过的路径长AO ,在Rt△ACO 中,tan△ACO=AO CO = △△ACO=30°,△AO 度数为60°,△直径△AO 的长为601803π=,则当点E 从点B 出发顺时针运动到点D 时,点F 所经过的路径长3. 故选B .点睛:此题属于圆综合题,涉及的知识有:坐标与图形性质,勾股定理,锐角三角函数定义,弧长公式,以及圆周角定理,其中根据题意得到点E 从点B 出发顺时针运动到点D 时,点F 所经过的路径长AO 是解本题的关键.18.(2019·广东省深圳外国语学校初三一模)如图,在正方形ABCD 中,E 、F 分别为BC 、CD 的中点,连接AE ,BF 交于点G ,将①BCF 沿BF 对折,得到①BPF ,延长FP 交BA 延长线于点Q ,下列结论正确的个数是( )①AE=BF;①AE①BF;①sin①BQP=45;①S四边形ECFG=2S①BGE.A.4B.3C.2D.1【答案】B【解析】解:△E,F分别是正方形ABCD边BC,CD的中点,△CF=BE,在△ABE和△BCF中,△AB=BC,△ABE=△BCF,BE=CF,△Rt△ABE△Rt△BCF(SAS),△△BAE=△CBF,AE=BF,故△正确;又△△BAE+△BEA=90°,△△CBF+△BEA=90°,△△BGE=90°,△AE△BF,故△正确;根据题意得,FP=FC,△PFB=△BFC,△FPB=90°.△CD△AB,△△CFB=△ABF,△△ABF=△PFB,△QF=QB,令PF=k(k>0),则PB=2k在Rt△BPQ中,设QB=x,△x2=(x﹣k)2+4k2,△x=52k,△sin=△BQP=BPQB=45,故△正确;△△BGE=△BCF,△GBE=△CBF,△△BGE△△BCF,△BE=12BC,BF BC,△BE:BF=1△△BGE的面积:△BCF的面积=1:5,△S四边形ECFG=4S△BGE,故△错误.故选B.点睛:本题主要考查了四边形的综合题,涉及正方形的性质、全等三角形的判定和性质、相似三角形的判定和性质以及折叠的性质的知识点,解决的关键是明确三角形翻转后边的大小不变,找准对应边,角的关系求解.19.(2019·安徽省初三期末)如图,在矩形ABCD中,AB=3,BC=4,O 为矩形ABCD对角线的交点,以D为圆心1为半径作①D,P为①D上的一个动点,连接AP、OP,则①AOP面积的最大值为()A.4B.215C.358D.174【答案】D【解析】解:当P点移动到平行于OA且与△D相切时,△AOP面积的最大,如图,△P是△D的切线,△DP垂直与切线,延长PD交AC于M,则DM△AC,△在矩形ABCD中,AB=3,BC=4,△AC= =5,△OA= 52,△△AMD=△ADC=90°,△DAM=△CAD,△△ADM△△ACD,△DM AD CD AC=,△AD=4,CD=3,AC=5,△DM= 125,△PM=PD+DM=1+ 125=175,△△AOP的最大面积= 12OA•PM=1517225⨯⨯=174,故选D.【点睛】本题考查了圆的切线的性质,矩形的性质,平行线的性质,勾股定理的应用以及三角形相似的判定和性质,本题的关键是判断出P处于什么位置时面积最大.20.(2019·广东省初三期中)如图,菱形ABCD中,AB=AC,点E、F分别为边AB、BC上的点,且AE =BF,连接CE、AF交于点H,则下列结论:①①ABF①①CAE;①①AHC=120°;①①AEH①①CEA;①AE•AD =AH•AF;其中结论正确的个数是()A.1个B.2个C.3个D.4个【答案】D【解析】△四边形ABCD是菱形,△AB=BC,△AB=AC,△AB=BC=AC,即△ABC是等边三角形,同理:△ADC是等边三角形△△B=△EAC=60°,在△ABF和△CAE中,{BF AEB EAC BC AC=∠=∠=,△△ABF△△CAE(SAS);故△正确;△△BAF=△ACE,△△AEH=△B+△BCE,△△AHC=△BAF+△AEH=△BAF+△B+△BCE=△B+△ACE+△BCE=△B+△ACB=60°+60°=120°,故△正确;△△BAF=△ACE,△AEC=△AEC,△△AEH△△CEA,故△正确;在菱形ABCD中,AD=AB,△△AEH△△CEA,△ABF△△CAE,△△AEH△△AFB,△AE AH AF AB=,△AE AH AF AD=,△AE•AD=AH•AF,故△正确,故选D.考点:1.相似三角形的判定与性质;2.全等三角形的判定与性质;3.菱形的性质.21.(2019·邢台市第八中学中考模拟)如图,四边形ABCD、CEFG都是正方形,点G在线段CD上,连接BG,DE和FG相交于点O.设AB=a,CG=b(a>b).下列结论:①①BCG①①DCE;①BG①DE;①CEGO GC DG =;①(a ﹣b )2•S ①EFO =b 2•S ①DGO .其中结论正确的个数是( )A .4个B .3个C .2个D .1个 【答案】B【解析】△△四边形ABCD 和四边形CEFG 是正方形,△BC=DC ,CG=CE ,△BCD=△ECG=90°,△△BCG=△DCE ,在△BCG 和△DCE 中,{BC DCBCG DCE CG CE=∠=∠=,△△BCG△△DCE (SAS ),故△正确;△延长BG 交DE 于点H ,△△BCG△△DCE ,△△CBG=△CDE ,又△△CBG+△BGC=90°,△△CDE+△DGH=90°,△△DHG=90°,△BH△DE ;△BG△DE .故△正确;△△四边形GCEF 是正方形,△GF△CE , △DG GO DC CE=, △CE GO GC DG =是错误的. 故△错误;△△DC△EF ,△△GDO=△OEF ,△△GOD=△FOE ,△△OGD△△OFE , △22()()DGO EFO SDG a b S EF b-==, △(a -b )2•S △EFO =b 2•S △DGO .故△正确;故选B .考点:1.相似三角形的判定与性质;2.全等三角形的判定与性质;3.正方形的性质.22.(2019·四川省初二期末)如图,平行四边形ABCD 中,AB①BC=3①2,①DAB=60°,E 在AB 上,且AE①EB=1①2,F 是BC 的中点,过D 分别作DP①AF 于P ,DQ①CE 于Q ,则DP①DQ 等于( )A .3①4B .CD 【答案】B【解析】连接DE 、DF ,过F 作FN△AB 于N ,过C 作CM△AB 于M ,△根据三角形的面积和平行四边形的面积得:DEC DFA ABCD 1S S S 2∆∆==平行四边形,即11AF DP CE DQ 22⋅=⋅.△AF×DP=CE×DQ ,△四边形ABCD 是平行四边形,△AD△BC△△DAB=60°,△△CBN=△DAB=60°.△△BFN=△MCB=30°△AB :BC=3:2,△设AB=3a ,BC=2a△AE :EB=1:2,F 是BC 的中点,△BF=a ,BE=2a ,BN=12a ,BM=a由勾股定理得:,△AF CE ====,△DP DQ ⋅=⋅.△DP :B .【点睛】本题考查平行四边形中勾股定理的运用,关键是作出正确的辅助线,构造直角三角形,利用勾股定理计算出AF 、CE.23.(2019·山东省初三四模及以后)如图,在Rt①ABC 中,①ABC =90°,AB =BC ,点D 是线段AB 上的一点,连接CD ,过点B 作BG①CD ,分别交CD ,CA 于点E ,F ,与过点A 且垂直于AB 的直线相交于点G ,连接DF ,给出以下四个结论:①AG AF AB FC =①若点D 是AB 的中点,则AB ;①当B ,C ,F ,D 四点在同一个圆上时,DF =DB ;①若12DB AD =,则9ABC BDF S S =,其中正确的结论序号是( )A .①①B .①①C .①①①D .①①①①【答案】C【解析】 解:△△ABC =90°,△GAD =90°,△AG △BC ,△△AFG △△CFB ,△AG FG BC FB=.△BC =AB ,△AG FG AB FB =,△△正确.△△BCD +△EBC =△EBC +△ABG =90°,△△BCD =△ABG .△AB =BC ,△GAB =△DBC =90°,△△CBD △△BAG ,△AG =BD .△BD =12AB ,△12AG BC =,△12AF FC =,△13AF AC =.△AC AB ,△AF =3AB ,△△正确; △B ,C ,F ,D 四点共圆,△DBC =90°,△CD 为直径,△△CFD =90°.△BF △CD ,△BE =EF ,△BD =DE ,△△正确;△AG △BC ,△AG AF BC CF = .△BC =AB ,△AG AF AB CF =.△AG =BD ,12BD AD =,△13BD AB =,△AG AF AB CF ==13,△AF =14AC ,△S △ABF =14S △ABC ,△S △BDF =13S △ABF ,△S △BDF =112S △ABC ,即S △ABC =12S △BDF ,△△错误. 故答案为△△△.点睛:本题是相似三角形综合题,主要考查了相似三角形的性质和判定,比例的基本性质,同底的两三角形的面积比是高的比,解答本题的关键是用比例的基本性质推导线段的比,注意掌握数形结合思想与转化思想的应用.24.(2019·湖南省中考模拟)已知:如图,在等边①ABC 中取点P ,使得PA ,PB ,PC 的长分别为3,4,5,将线段AP 以点A 为旋转中心顺时针旋转60°得到线段AD ,连接BD ,下列结论:①①ABD 可以由①APC 绕点A 顺时针旋转60°得到;①点P 与点D 的距离为3;①①APB =150°;①S ①APC +S ①APB =6 )A .①①①B .①①①C .①①①D .①①①【答案】C【解析】解:连PD ,如图, △线段AP 以点A 为旋转中心顺时针旋转60°得到线段AD ,△AD =AP ,△DAP =60°,又△△ABC 为等边三角形,△△BAC =60°,AB =AC ,△△DAB +△BAP =△P AC +△BAP ,△△DAP =△P AC ,△△ABD 可以由△APC 绕点A 顺时针旋转60°得到,所以△正确; △DA =P A ,△DAP =60°,△△ADP 为等边三角形,△PD =P A =3,所以△正确;在△PBD 中,PB =4,PD =3,由△得到BD =PC =5, △32+42=52,即PD 2+PB 2=BD 2,△△PBD 为直角三角形,且△BPD =90°,由△得△APD =60°,△△APB =△APD +△BPD =60°+90°=150°,所以△正确; △△ADB △△APC ,△S △ADB =S △APC ,△S △APC +S △APB =S △ADB +S △APB =S △ADP +S △BPD 2133462+⨯⨯==所以△不正确. 故选:C .【点睛】本题考查了旋转的性质:旋转前后两图形全等,即对应角线段,对应线段线段;对应点的连线段所夹的角等于旋转角;对应点到旋转中心的距离相等.也考查了等边三角形的判定与性质、勾股定理的逆定理. 25.(2019·四川省中考模拟)如图,四边形ABCD 是矩形纸片,2?AB =.对折矩形纸片ABCD ,使AD 与BC 重合,折痕为EF ;展平后再过点B 折叠矩形纸片,使点A 落在EF 上的点N ,折痕BM 与EF 相交于点Q ;再次展平,连接BN ,MN ,延长MN 交BC 于点G .以下结论:①60ABN ∠=︒;①1AM =;①QN =;①①BMG 是等边三角形; ①P 为线段BM 上一动点,H 是BN 的中点,则PN PH +的最( ).A .①①①B .①①①C .①①①D .①①①①【答案】B 【解析】解:在Rt△BEN 中,△BN=AB=2BE , △△ENB=30°,△△ABN=60°,故△正确, △△ABM=△NBM=△NBG=30°,△AM=AB•tan30°=3,故△错误, △△AMB=△BMN=60°, △AD△BC ,△△GBM=△AMB=60°, △△MBG=△BMG=△BGM=60°, △△BMG 为等边三角形,故△正确.△EF△BC△AD ,AE=BE , △BQ=QM ,MN=NG , △QN 是△BMG 的中位线,△QN=12△不正确. 连接PE .△BH=BE=1,△MBH=△MBE , △E 、H 关于BM 对称, △PE=PH , △PH+PN=PE+PN ,△E 、P 、N 共线时,PH+PN 的值最小,最小值,故△正确, 故选B .【点睛】本题考查翻折变换、等边三角形的判定和性质、矩形的性质、三角形中位线定理、直角三角形的性质、轴对称最短问题等知识,熟练掌握翻折变换得性质是解题的关键.26.(2019·山东省中考模拟)如图,已知E 、F 分别为正方形ABCD 的边AB ,BC 的中点,AF 与DE 交于点M ,则下列结论:①①AME=90°;①①BAF=①EDB ;①MD=2AM=4EM ;①AM=23MF .其中正确结论的个数是( )A .4个B .3个C .2个D .1个【答案】B 【解析】解:在正方形ABCD 中,AB=BC=AD ,△ABC=△BAD=90°, △E 、F 分别为边AB ,BC 的中点,12AE BF BC ∴==在△ABF 和△DAE 中,AE BF ABC BAD AB AD =⎧⎪∠=∠⎨⎪=⎩△△ABF△△DAE (SAS ), △△BAF=△ADE ,△△BAF+△DAF=△BAD=90°, △△ADE+△DAF=△BAD=90°,△△AMD=180°-(△ADE+△DAF )=180°-90°=90°, △△AME=180°-△AMD=180°-90°=90°,故△正确; △DE 是△ABD 的中线, △△ADE≠△EDB ,△△BAF≠△EDB ,故△错误; △△BAD=90°,AM△DE , △△AED△△MAD△△MEA , △2AM MD ADEM AM AE=== △AM=2EM ,MD=2AM , △MD=2AM=4EM ,故△正确;设正方形ABCD 的边长为2a ,则BF=a , 在Rt△ABF 中,AF ===△△BAF=△MAE ,△ABC=△AME=90°, △△AME△△ABF ,AM AEAB AF∴= 即2AM a =MF AF AM ∴=-=-=23AM MF ∴=,故△正确 【点睛】本题考查了正方形的性质,全等三角形的判定与性质,相似三角形的判定与性质,勾股定理的应用,勾股定理逆定理的应用,综合性较强,难度较大,仔细分析图形并作出辅助线构造出直角三角形与相似三角形是解题的关键.27.(2019·广东省深圳实验学校初三开学考试)函数y =4x 和y =1x在第一象限内的图象如图,点P 是y =4x 的图象上一动点,PC ①x 轴于点C ,交y =1x的图象于点B .给出如下结论:①①ODB 与①OCA 的面积相等;①PA 与PB 始终相等;①四边形PAOB 的面积大小不会发生变化;①CA =13AP .其中所有正确结论的序号是( )A .①①①B .①①①C .①①①D .①①①【答案】C 【解析】解:△A 、B 是反比函数1y x =上的点,△S △OBD =S △OAC =12,故△正确; 当P 的横纵坐标相等时P A =PB ,故△错误; △P 是4y x =的图象上一动点,△S 矩形PDOC =4,△S 四边形P AOB =S 矩形PDOC ﹣S △ODB ﹣﹣S △OAC =4﹣12﹣12=3,故△正确;连接OP ,212POC OAC S PC S AC∆∆===4,△AC =14PC ,P A =34PC ,△PA AC =3,△AC =13AP ;故△正确; 综上所述,正确的结论有△△△.故选C .点睛:本题考查的是反比例函数综合题,熟知反比例函数中系数k 的几何意义是解答此题的关键.28.(2019·江苏省中考模拟)如图,一次函数y=2x 与反比例函数y=kx(k >0)的图象交于A ,B 两点,点P 在以C (﹣2,0)为圆心,1为半径的①C 上,Q 是AP 的中点,已知OQ 长的最大值为32,则k 的值为( )A .4932B .2518C .3225D .98【答案】C 【解析】 如图,连接BP , 由对称性得:OA=OB , △Q 是AP 的中点,△OQ=12 BP,△OQ长的最大值为32,△BP长的最大值为32×2=3,如图,当BP过圆心C时,BP最长,过B作BD△x轴于D,△CP=1,△BC=2,△B在直线y=2x上,设B(t,2t),则CD=t﹣(﹣2)=t+2,BD=﹣2t,在Rt△BCD中,由勾股定理得:BC2=CD2+BD2,△22=(t+2)2+(﹣2t)2,t=0(舍)或t=﹣45,△B(﹣45,﹣85),△点B在反比例函数y=kx(k>0)的图象上,△k=﹣45×(-85)=3225,故选C.【点睛】本题考查的是代数与几何综合题,涉及了反比例函数图象上点的坐标特征,中位线定理,圆的基本性质等,综合性较强,有一定的难度,正确添加辅助线,确定出BP 过点C 时OQ 有最大值是解题的关键.29.(2019·江苏省中考模拟)如图,矩形OABC 的顶点A 、C 都在坐标轴上,点B 在第二象限,矩形OABC 的面积为把矩形OABC 沿DE 翻折,使点B 与点O 重合.若反比例函数y =kx的图象恰好经过点E 和DE 的中点F .则OA 的长为( )A .2 BC .D【答案】D 【解析】连接BO 与ED 交于点Q ,过点Q 作QN △x 轴,垂足为N ,如图所示, △矩形OABC 沿DE 翻折,点B 与点O 重合, △BQ =OQ ,BE =EO . △四边形OABC 是矩形,△AB △CO ,△BCO =△OAB =90°. △△EBQ =△DOQ . 在△BEQ 和△ODQ 中,EBQ DOQ BQ OQBQE OQD ∠=∠⎧⎪=⎨⎪∠=∠⎩△△BEQ △△ODQ (ASA ). △EQ =DQ .△点Q 是ED 的中点. △△QNO =△BCO =90°, △QN △BC . △△ONQ △△OCB .△222ONQ OCBS OQ OQ SOB OQ ==()()=14△S △ONQ =14S △OCB .△S 矩形OABC =,△S △OCB =S △OAB =3.△S △ONQ △点F 是ED 的中点, △点F 与点Q 重合.△S △ONF △点E 、F 在反比例函数y =kx上, △S △OAE =S △ONF△S △OAB =, △AB =4AE .△BE =3AE .由轴对称的性质可得:OE =BE .△OE=3AE .OA =△S △OAE =12AO •AE =12AE ×AE△AE△OA =AE . 故选D .【点睛】此题主要考查反比例函数的性质和图像,相似三角形的判定与性质以及全等三角形的性质30.(2019·江苏省中考模拟)已知:如图,在平面直角坐标系中,有菱形OABC ,点A 的坐标为(10,0),对角线OB 、AC 相交于点D ,双曲线y =kx (x >0)经过点D ,交BC 的延长线于点E ,且OB ·AC =160,有下列四个结论:①双曲线的解析式为y =40x (x >0);①点E 的坐标是(4,8);①sin①COA =45;①AC +OB =12√5.其中正确的结论有( )。

2020年中考数学基础知识点与题型分类

2020年中考数学基础知识点与题型分类

课题:中考数学基础知识总结与题型1、 代数式amanamn a m n a mnab na nb n幂的运算公式:平方差公式a ba b a2b2完好平方公式:ab2a2b22aba b2a2b22ab练习: 1.以下运算正确的选项是()A . a a2a2B . (ab)3ab3C . (a 2)3a6D . a10a2a52. 若 x 2 +2mx +4是一个完好平方公式,则 m 的值为()A. 2 B. 2或-2 C . 4 D. 4或-43. 图①是一个边长为 (m n) 的正方形,小颖将图①中的n m暗影部分拼成图②的形状,由图①和图②能考证的式子mn是()A . (m n)2(m n) 2 4mn B . (m n)2 (m 2 n 2 ) 2mn ←m → ← →C . ( mn)22mn m 2 n 2 D . (m n)( m n) m 2 n 2n图①图②4.a 29 a 3 先化简,再求值: ( x212 ) 4x,此中 x43 .a 3 3 a ax 2x 22、方程:2x y 2 x 2y 3,1. 解方程组:2 y102. 解方程组8y 13;3x 3xx 24 14.解方程:x 3 3. 解方程:24 x 11x 2 xx 1 x 24.已知一元二次方程 x 2+ x ─,以下判断正确的选项是( ) 1 = 0A . 该方程有两个相等的实数根 B. 该方程有两个不C. 该方程无实数根 D. 该方程根的状况5. 方程 x 24x 0 的解是。

6. 阅读资料:若一元二次方程 ax 2+bx+c=0(a ≠ 0)的两个实根为 x 1 、 x 2 ,则下关系: x 1+x 2= -b1 2ca ,xx = a依据上述资料填空:已知 x 1、2 是方程 2的两个实数根,则1x x +4x+2=0 x13、一次函数1.如右图所示,一次函数 ykx b ( k 为常数且 k0 )的图象,则使 y 0 建立的 x 的取值范围为.2.一次函数 y =- 3x - 2 的图象不经过( )A .第一象限B .第二象限C .第三象限D .第四3.直线 y = 2x +6 与两坐标轴围成的三角形面积是4、反比率函数反比率函数的图象上任取一点与,原点,坐标轴围成的矩形的面积是与坐标轴围成的直角三角形的面积是。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020中考数学经典题型汇总
1.中点
①中线:D为BC中点,AD为BC边上的中线
()
有全等
平行线中有中点,容易
是斜边的一半
直角三角形的斜边中线
,可得
使得

延长
.6
.5
BD
AD
2
c
b.4
CDE
ABD
DE
AD
E
AD
.3
S
S.2
CD
BD
.1
2
2
2
2
ACD
ABD
+
=
+



=
=
=


1.例.如图,在菱形ABCD中,tan∠ABC=,P为AB上一点,以PB
为边向外作菱形PMNB,连结DM,取DM中点E,连结AE,PE,则的值为()
A.B.C.D.
2.角平分线
②角平分线:AE平分∠BAC
有等腰三角形
平行线间有角平分线易
作全等三角形
有相同角有公共边极易
.5
.4
.3
.2
BAE
.1
CE
BE
AC
AB
DF
DE
CAE
=
=

=

3.高线
③垂线:AF ⊥BC
角形多个直角,易有相似三充分利用求高线可用等面积法即.4Rt .3.290AFC BC AF .1∆
︒=∠⊥
②直角三角形:AD 为中线AE 为垂线

︒︒︒•=•==+•=•==
==︒=∠+∠∆Rt AE BC AB AC S BC CD ABC ,构造充分利用特殊角;勾股定理:等面积法::
斜边中线为斜边的一半两角互余:,60,45305.BC CE AC BC BE AB BC AB AC .42
1
21.321
BD AD .290C B .122222
4.函数坐标公式
公式1:两点求斜率k
2
12
1x x y y k AB --=
1
13531203
3
30360145-=︒-=︒=
︒=︒=︒k x k x k x k x k x 时,轴正方向夹角为⑤与时,轴正方向夹角为④与时,轴正方向夹角为③与时,轴正方向夹角为②与时,轴正方向夹角为①与
公式2:两点之间距离
221221)()(AB y y x x -+-=
应用:弦长公式
公式3:中点公式
应用:求中点坐标
公式4:两直线平行与垂直
1//21212
121-=•⇔⊥=⇔k k l l k k l l ②①
应用:①平行与垂直②直角三角形
5.相似中的特殊角
β
αβ
αβαtan tan 1tan tan tan -+=
+)(
6.将军引马
7.旋转
8.对称
9.反比例函数
看坐标求面积
对称
反比例函数关于系
直线与反比例交点的关坐标点的表示
的关系
面积与.5x y .4.3.2k .1
10.二次函数
最值
二次函数中的三种线段
与铅垂高二次函数当中的水平长
二次函数的移动
不等式二次函数与二次方程或
关系
对称轴与顶点及
三大表达式及转化
.6
.5
.4
.3
c.b.a
.2
.1
11.圆
扇形的面积与弧长弧度,圆心角,圆周角
弦长,弦心距,弧长,园中的对称与翻折
内心
外心,内切圆外接圆与弧度
园中的圆周角,圆心角园中的内接四边形
园中的两个等腰三角形
园中的三个直角三角形
.8.7.6--.5.4.3.2.1
12.规律题

13.应用题。

相关文档
最新文档