土的抗剪强度指标的计算

合集下载

土的抗剪强度计算

土的抗剪强度计算
12、对某土样进行三轴剪切试验,测得在周 围压力分别为100kPa和200kPa的情况下, 土样剪切破坏时大主应力分别为300kPa和 500kPa。试计算该土样的抗剪强度指标c、 φ值。。
13、某无粘性土,已知其内聚力c=0,现对该土进行三 轴压缩试验,在围压σ3=150kPa下,施加竖向应力增 量Δσ1=250kPa时试样破坏,试求该土的内摩擦角。
σ1=σ3+Δσ1
σ1=σ3tan2(45o+φ/2)
14、一饱和试样在三轴试验仪中进行固结排水剪试验, 施加围压σ3=200kPa,破坏时主应力差
σ1-σ3=280kPa,破坏面与水平面夹角为57°,试求破 坏面上的剪应力、试样中的最大剪应力及土的内摩擦 角分别为多少?
固结不排水剪、固结排水剪;三种不同剪切试验适用 条件
3、十字板剪切试验适用条件 4、无侧限试验适用条件; 5、砂土的剪胀、剪缩、砂土的液化 6、孔隙水压力系数B定义:饱和土:B = 1 干
土:B = 0;非饱和土(一般土):0<B<1
A的定义
土的抗剪强度理论可归结为
土的强度破坏是由于土中:某点应力达到其抗剪强度所致;


2
)
σ1<σ1p 弹性平衡状态 σ1=σ1p 极限平衡状态 σ1>σ1p 破坏状态

3
p

1
tan 2 (45


2
)

2c
tan(45


2
)
σ3>σ3p σ3=σ3p σ3<σ3p
弹性平衡状态 极限平衡状态 破坏状态
sin
p

1

1 3 3 2c
cot

土的抗剪强度指标测定

土的抗剪强度指标测定

土的抗剪强度指标测定一、土的抗剪强度土的抗剪强度是指土体抵抗剪切破坏的极限强度。

工程中的地基承载力、挡土墙土压力、土坡稳定等问题都与土的抗剪强度直接相关,因此,研究土的强度特性,主要是研究土的抗剪性。

建筑物地基在外荷载作用下将产生剪应力和剪切变形,土具有抵抗这种剪应力的能力,并随剪应力的增加而增大,当这种剪阻力达到某一极限值时,土就要发生剪切破坏,这个极限值就是土的抗剪强度。

如果土体内某一部分的剪应力达到土的抗剪强度,在该部分就开始出现剪切破坏,随着荷载的增加,剪切破坏的范围逐渐扩大,最终在土体中形成连续的滑动面,地基发生整体剪切破坏而丧失稳定性。

二、库仑公式(一)土的抗剪强度1776年,法国科学家库仑通过一系列砂土剪切实验,将砂土的抗剪强度表达为滑动面上法向总应力的函数,即后来,经过进一步研究发现黏性土的抗剪强度黏性土的抗剪强度由两部分组成,一部分是摩擦力,另一部分是土粒之间的黏结力,它是由于黏性土颗粒之间的胶结作用和静电引力效应等因素引起的。

进一步提出黏性土抗剪强度公式:式中: ——土的抗剪强度(kPa);σ——剪切面上法向应力(kPa);φ——土的内摩擦角,即直线与横轴的夹角;c——土的黏聚力(kPa)。

由库仑提出的公式(1-46)和公式(1-47)是土体的强度规律的数学表达式,也称库仑定律,表明在一般的荷载范围内土的抗剪强度与法向应力之间呈线性关系,如图1-15所示,其中c,φ称为土的强度指标。

图1-15 土的抗剪强度与法向应力关系(二)土的抗剪强度指标抗剪强度指标c,φ反映土的抗剪强度变化的规律性,它们的大小反映了土的抗剪强度的高低。

土粒间的内摩擦力通常由两部分组成,一部分是由于剪切面上土颗粒与颗粒接触面所产生的摩擦力; 另一部分是由颗粒之间的相互嵌入和连锁作用产生的咬合力。

咬合力是指当土体相对滑动时,将嵌在其他颗粒之间的土粒拔出所需的力。

黏聚力c是由于黏土颗粒之间的胶结作用,结合水膜以及分子引力作用等引起的。

最新地基土抗剪强度指标Cφ值的确定

最新地基土抗剪强度指标Cφ值的确定

地基土抗剪强度指标Cφ值的确定地基土抗剪强度指标C、φ值的确定1. 抗剪强度的物理意义及基本理论土在外力作用下在剪切面单位面积上所能承受的最大剪应力称为土的抗剪强度。

土的抗剪强度是由颗粒间的内摩察力以及由胶结物和水膜的分子引力所产生粘聚力共同组成。

在法向应力不大时,抗剪强度与法向应力的关系近似为一条直线,这就是抗剪强度的库仑定律。

S=c+σtanφ2. 抗剪强度的试验方法2.1室内剪切试验包括直接剪切试验和三轴剪切试验,主要适用于粘性土和粉土,砂土可按要求的密度制备土样。

2.2 除土工试验以外其他确定抗剪强度C、Φ值的方法2.2.1 根据原位测试数据确定抗剪强度C、Φ值的经验方法(1) 动力触探沈阳地区《建筑地基基础技术规范》(DB21-907-96)资料(深度范围不大于15m)砂土、碎石土内摩察角标准值Φk(2) 标准贯入试验国外砂土N与Φ的关系经验关系式主要有Dunhan、大崎、Peck、Meyerhof等研究的经验公式,见《工程地质手册》(第四版)P193。

经试算(详见国外砂土标贯击数N与内摩察角Φ的关系(按公式计算))采用Φ值进行承载力特征值f ak计算时,对于粉、细砂采用Φ=(12N)0.5+15,对于中、粗、砾砂采用Φ=0.3N+27计算出的数值实际能较为吻合(N为经杆长修正后的标贯击数)。

根据计算成果,N与Φ的对应关系见下表:N与内摩察角Φ(度)的经验关系表(3) 静力触探试验《工程地质手册》(第四版)P210,砂土的内摩察角可根据静力触探参照下表取值。

砂土的内摩察角Φ2.4.2 根据现场剪切试验确定抗剪强度C、Φ值该方法成本较高,一般很少采用,主要用于场地稳定性评价,见《工程地质手册》(第四版)P234。

粗粒混合土的抗剪强度C、Φ值通过现场剪切试验确定。

3. 岩土体抗剪强度指标的经验数据3.1 土的抗剪强度指标经验数据(1) 砂土的内摩察角与矿物成分和粒径的关系(2) 不同成因粘性土的力学性质指标3.2 岩石的抗剪强度指标经验数据3.3 岩石结构面的抗剪强度指标经验数据(1)岩体结构面的抗剪强度指标宜根据现场原位试验确定。

土的力学性质指标

土的力学性质指标

土的力学性质指标1.压缩系数土的压缩性通常用压缩系数(或压缩模量)来表示,其值由原状土的压缩试验确定。

压缩系数按下式计算:21211000p p e e a --⨯= (1-1) 式中 1000——单位换算系数;a ——土的压缩系数(MPa -1);p 1、p 2——固结压力(kPa ):e 1、e 2——相对应于p 1、p 2时的孔隙比。

评价地基压缩性时,按p 1为100kPa ,p 2为200kPa ,相应的压缩系数值以a 1-2划分为低、中、高压缩性,并应按以下规定进行评价:(1)当a 1-2<0.1MPa -1时,为低压缩性土;(2)当0.1≤a 1-2<0.5MPa -1时,为中压缩性土;(3)当a 1-2≥0.5MPa -1时,为高压缩性土。

2.压缩模量工程上也常用室内试验求压缩模量E s 作为土的压缩性指标。

压缩模量按下式计算:ae E s 01+= (1-2) 式中 Es ——土的压缩模量(MPa );e 0——土的天然(自重压力下)孔隙比;a ——从土的自重应力至土的自重加附加应力段的压缩系数(MPa -1)。

用压缩模量划分压缩性等级和评价土的压缩性可按表1-1规定。

地基土按E s 值划分压缩性等级的规定 表1-13.抗剪强度土在外力作用下抵抗剪切滑动的极限强度,一般用室内直剪、原位直剪、三轴剪切试验、十字板剪切试验、野外标准贯入、动力触探、静力触探等试验方法进行测定。

它是评价地基承载力、边坡稳定性、计算土压力的重要指标。

(1)抗剪强度计算土的抗剪强度一般按下式计算:τf=σ·tgφ+c(1-3)式中τf——土的抗剪强度(kPa );σ——作用于剪切面上的法向应力(kPa);φ——土的内摩擦角(°),剪切试验法向应力与剪应力曲线的切线倾斜角;c——土的粘聚力(kPa),剪切试验中土的法向应力为零时的抗剪强度,砂类土c=0。

(2)土的内摩擦角φ和粘聚力c的求法同一土样切取不少于4个环刀进行不同垂直压力作用下的剪力试验后,用相同的比例尺在坐标纸上绘制抗剪强度τ与法向应力σ的相关直线,直线交τ值的截距却为土的粘聚力c,砂土的c=0,直线的倾斜角即为土的内摩擦角切,见图6-1。

土的抗剪强度试验与指标

土的抗剪强度试验与指标

压力室
透水石 排水管
阀门
橡皮膜 压力水
试样应力特点与试验方法
特点:
试样是轴对称应力状态。垂直应力 z一般是大主应力;径向与切向应 力总是相等r=,亦即1=z; 2 = 3= r 方法:
1
3
3
首先试样施加静水压力—室压(围压) 3 1=2=3 ;
然后通过活塞杆施加的是应力差 Δ 1= 1- 3 。
二、野外 试验
十字板扭剪试验 旁压试验 原位试验 缺点:应力条件不易掌握 优点:原状土的原位强度
抗剪强度指标
强度指标: 粘聚力 c 内摩擦角
总应力强度指标 与 有效应力强度指标 直剪强度指标 与 三轴试验强度指标 峰值强度指标 与 残余强度指标
三种分 类方法
工程应用
目的
直剪试验
直接剪切仪分为应变控制式和应力控制式两种,前者 是等速推动试样产生位移.测定相应的剪应力,后者 则是对试件分级施加水平剪应力测定相应的位移,目 前我国普遍采用的是应变控制式直剪仪。

野外试验: 十字板剪切试验(VST)

技术指标;
ቤተ መጻሕፍቲ ባይዱ
十字板形状常为矩形,板的 高径比为2,板厚2~3mm;

钻孔到指定的土层,插入十字 形的探头;板头插入钻孔的深 度不应小于钻孔或套管直径的 3~5倍,静置2~3min后在开始 试验; 扭转剪切速率采用1°/10s,并 在2min内达到峰值(破坏), 然后继续测记1min;



直接剪切仪
土样
试验原理与资料处理

P
f
σ = 300KPa σ = 200KPa
A
σ = 100KPa S
ε

土的抗剪强度试验与指标

土的抗剪强度试验与指标
粘性土的抗剪强度
固结排水
(1)试验条件
总应力指标与有效应力指标一致:
cd c 试 d 样

f= f
d=
1= 1 •施加围压 充分固结 cd = c’ = •施加(1 -)时,排水阀门 始终打开,速度慢足以使孔 压消散 •始终u=0,=-u=
应力路径的表示方法
σ-τ坐标法:当表示已定破坏面上法向应力与剪应力变 化的应力路径时,常用σ-τ坐标法。(a图) p-q坐标法:以应力圆顶点为特征点,表示大小主应力 差之半与大小主应力和之半的变化关系,常采用p-q坐 标。此种表达方法不必预知或假定破坏面方向,对于
不考虑中主应力σ 2影响的轴对称问题或平面应变问题 较为方便。 (b图)

破坏面位置:
45


2
固结不排水
(1)试验条件 • 施加围压充分固结 • 施加(1 -)时,阀门 关闭,可连接孔压传 感器,量测剪切过程 中产生的超静孔隙水 压力 u • u0,=-u
试 样
量测孔隙水压力
固结不排水
• • • • • • • • 剪切过程中的超静孔隙水压力u 正常固结粘土的应力应变关系曲线: 硬化 正常固结粘土的有效应力与总应力的强度包线: cu < 超固结粘土的应力应变关系曲线: 软化 超固结粘土的固结不排水强度指标: c ccu, cu 固结不排水三轴试验确定的强度指标: ccu, cu; c,
土的抗剪强度指标的取值
应力路径
应力路径的概念
应力路径系指土体受荷过程中,某一点在应力坐标图
中的轨迹。如土中一点的应力可用一系列应力圆来表 示。然而,这样会使圆面很不清晰,所以常在应力圆 上选择一个特征 应力点来代表整个 应力圆,按应力变 化过程把这些点连 起来,同时用箭头 指明应力状态的发 展方向,这个轨迹 即为应力路径。

土的抗剪强度

土的抗剪强度

f c' ' tg c'( u)tg '
式中 ' ——剪切破坏面上的有效法向应力(KPa ) u ——土中的超静孔隙水压力(KPa )
c'
——土的有效粘聚力(KPa )
) ' ——土的有效内摩擦角(º
c'
' 称为土的有效抗剪强度指标,同一种土,其值理论上
与试验方法无关,应接近于常数。 问题:总应力法与有效应力法的优缺点是什么?
由于在不排水条件下,试样在试验过程中含水量
不变,体积不变,改变周围压力增量只能引起孔隙
水压力的变化,并不会改变试样中的有效应力,各
试件在剪切前的有效应力相等,因此抗剪强度不变。
由于只能得到一个有效应力圆,所以不能得到有
效应力破坏包线,不固结不排水试验只用于测定饱
和土的不排水强度,所以可以用无侧限抗压强度试
由于试样是在轴向压缩的条件下破坏的,因此把
这种情况下土能承受的最大轴向压力称为无侧限 抗压强度,以qu表示
极限应力圆
应用: 代替三轴试验(当3 =0) 可用来求土的灵敏度
St qu qu '
缺点:
无粘性土以及太软土(流塑)不可 试验快 , 水来不及排除
十字板剪切试验
概 述
土的破坏主要是由于剪切 引起的,剪切破坏是土体破 坏的重要特点.
工程时间中与土的抗剪强 度有关的工程主要有以下3 类:
(1)土质土坝的稳定
(2)土压力
(3)地基的承载力问题
工程实例-土坡稳定
工程实例-土坡稳定
工程实例-土压力
工程实例-土压力
工程实例-地基承载力问题
工程实例-地基承载力问题

土的抗剪强度

土的抗剪强度

摩擦力,另一部分是土粒之间的粘结力,它是由 于粘性土颗粒之间的胶结作用和静电引力效应等 因素引起的。
长期的试验研究指出,土的抗剪强度不仅与 土的性质有关,还与试验时的排水条件、 剪切 速率、应力状态和应力历史等许多因素有关,其 中最重要的是试验时的排水条件,根据K.太沙 基(Terzaghi)的有效应力概念,土体内的剪应力 仅能由土的骨架承担,因此,土的抗剪强度应表 示为剪切破坏面上法向有效应力的函数,库伦公 式应修改为
2-12.2 库伦公式和莫尔—库伦强度理论 一、库伦公式 1773年C.A.库伦(Coulomb)根据砂土的试验,将 土的抗剪强度表达为滑动面上法向总应力的函数,即
f tan
以后又提出了适合 粘性土的更普遍的形式
f c tan
由库伦公式可以看出,无粘性土的抗剪强度与剪切面 上的法向应力成正比,其本质是由于颗粒之间的滑动摩擦 以及”凹凸面间的镶嵌作用所产生的摩阻力,其大小决定 于颗粒表面的粗糙度、密实度、土颗粒的大小以及颗粒级 配等因素。粘性土的抗剪强度由两部分组成:一部分是
慢剪试验——在试样施加垂直压力 后,允许试样充分排
水,待固结完成后,以缓慢的速率施加水 平剪应力使试样剪切破坏。
通过控制剪切速率来近似 模拟排水条件
(1) 固结慢剪 P
施加正应力-充分固结
慢慢施加剪应力-小于0.02mm/分,
A
以保证无超静孔压
(2) 固结快剪
S
施加正应力-充分固结
T
在3-3-5分钟内剪切破坏
P A

S T
O

n
K0n
zx z x xz
1
3
P
A
试样内的
P

抗剪强度计算

抗剪强度计算

1 3

2
1和3之间应满足的关系
c
sin
(1 3 ) 2
c ctg (1 3 ) 2

1 3
O
3
c ctg 1 3 2
1
1 3 2c ctg
3

1tg 2 (45

) 2

2c tg(45

尔应力圆描述
§5.2 土的抗剪强度理论 – 莫尔-库仑强度理论
极限平衡应力状态:当一面上的应力状态达到=f 土的强度包线:所有达到极限平衡状态的莫尔圆的公切
线

切点=破坏面
f c tg

极限平衡应力状态
§5.2 土的抗剪强度理论 – 莫尔-库仑强度理论
① 强度包线以下:任何一个面
对无粘性土通常认为,粘聚力C=0
土的抗剪强度指标
§5 土的抗剪强度 §5.1 土体破坏与强度理论
土的强度机理
2、摩擦强度 tan
(1)滑动摩擦
滑动摩擦角 u
N T
T= Ntanφu
粗粉
30
细砂 中砂 粗砂

滑动摩擦

20 0.02 0.06
0.2 0.6
2
颗粒直径 (mm)
由颗粒之间发生滑动时颗粒接触面粗糙 不平所引起,与颗粒大小、矿物组成等 因素有关
c: 粘聚强度-与所受压力无关
直剪试验的强度包线
§5.2 土的抗剪强度理论 – 直剪试验与库伦公式
土的强度机理
库仑公式: f c tg
c和是决定土的抗剪强度的两个指标,称
为抗剪强度指标
• 当采用总应力时,称为总应力抗剪强度指标 • 当采用有效应力时,称为有效应力抗剪强度指标

土的抗剪强度试验 计算公式

土的抗剪强度试验 计算公式

土的抗剪强度试验计算公式一、引言土的抗剪强度是指土体抵抗剪切破坏的能力。

在土力学中,抗剪强度是土体强度的重要指标之一。

为了确定土体的抗剪强度,进行抗剪强度试验是必不可少的。

二、试验方法常用的土体抗剪强度试验方法包括直剪试验和剪切试验。

直剪试验是将土体样品切割成一个或多个直剪面,然后施加垂直于直剪面的剪切力,测量土体的抗剪强度。

剪切试验是将土体样品切割成一个或多个平面,然后施加平行于平面的剪切力,测量土体的抗剪强度。

三、抗剪强度计算公式土的抗剪强度可以通过以下公式计算:τ = c +σtanφ其中,τ为土的抗剪强度,c为土体的内聚力,σ为土体的正应力,φ为土体的内摩擦角。

四、实验结果分析根据抗剪强度试验的结果,可以得到不同应力下土的抗剪强度。

通过分析实验结果,可以了解土体的强度特性及其变化规律。

五、影响因素土的抗剪强度受到多种因素的影响,主要包括土体类型、孔隙水压力、土体含水量、固结应力等因素。

不同的因素对土的抗剪强度有不同的影响程度。

六、工程应用土的抗剪强度是土建工程中设计和施工的重要参数之一。

在土体的承载力计算、土体的稳定性分析等方面,抗剪强度的准确评估和合理应用对工程的安全性和可靠性具有重要意义。

七、结论通过土的抗剪强度试验可以得到土体的抗剪强度参数,进而评估土体的强度特性和工程性质。

抗剪强度计算公式可以帮助工程师准确计算土体的抗剪强度,为工程设计和施工提供依据。

八、展望随着科技的进步和土力学理论的发展,土的抗剪强度试验方法和计算公式将不断完善和改进。

未来的研究将更加关注土体的微观结构和宏观性质之间的关系,以提高土体抗剪强度的评估和应用效果。

土的抗剪强度试验是土力学领域的重要研究内容之一。

通过试验和分析,可以得到土体的抗剪强度参数,并应用于工程设计和施工中。

在未来的研究中,我们将继续深入探索土体抗剪强度的机理和影响因素,为工程实践提供更准确、可靠的参考依据。

土的抗剪强度

土的抗剪强度
2020年7月22日
强度问题示意图
滑坡
挡土墙土压力
土作为材料构成的土工构筑物的稳定性问题 土作为工程构筑物的环境的问题
地基强度不足
2020年7月22日
土作为建筑物地基的承载力问题
1.土坡稳定性问题
2.土压力问题
2020年7月22日
3.地基承载力问题
O
p(kPa)
a
基础 地面
p
p
b
S(mm)
2020年7月22日
这种方法为图解法,要
理解应力圆上每一点都
对应了一个平面。
2020年7月22日
土的极限平衡条件
为了建立土体中一点的极限平衡条件,可将抗剪强度 包线与摩尔应力圆画在同一张坐标图中,它们之间的关系 有下述三种情况: (1)整个摩尔应力圆位于抗剪强度包线的下方(圆Ⅰ), 说明通过该点的任意平 面上的剪应力都小于土 的抗剪强度f ,土体处 于弹性状态;
和剪应力τ。同样可以用材料力学上的公式推导出来:
1 3 1 3 cos2
2
2
1 3 sin 2
2
分析公式可以看出:任一平面上的正应
σ3
στ
作用面
α σ1
作用 方向
力与剪应力所遵循的是一个圆的轨迹。
将上两式变为:
2020年7月22日
1 2
( 1
3)
1 2
( 1
3 ) cos2
2020年7月22日
土的强度理论——极限平衡理论
莫尔~库仑破坏准则(标准):研究莫尔~库仑破坏理 论如何直接用主应力表示,这就是莫尔~库仑破坏准则 ,也称土的极限平衡条件。
2020年7月22日
土中一点的应力状态
数解法

土的抗剪强度理论

土的抗剪强度理论

莫尔应力圆
可以证明:D点对应的正应力和剪应力刚好等于面上等于 正应力和剪应力。
莫尔应力圆圆周上的任意点,都代表着单元土体中相应面上的应力状 态。
θ
3
1
土的极限平衡条件 根据这一准则,当土处于极限平衡状态即应理解为破坏状 态,此时的莫尔应力圆即称为极限应力圆或破坏应力圆, 相应的一对平面即称为剪切破坏面(简称剪破面)。
下面将根据莫尔-库仑破坏准则来研究某一土体单元处于 极限平衡状态时的应力条件及其大、小主应力之间关系, 该关系称为土的极限平衡条件。
根据莫尔-库仑破坏准则,当单元土体达到极限平衡状态 时,莫尔应力圆恰好与库仑抗剪强度线相切。
根据图中的几何关系并经过三角公式的变换,可得
1 3
s cot
2
上式即为土的极限平衡条件。当土的强度指标c,φ 为已知,若土中某点的大小 主应力σ1和σ3满足上列关系式时,则该土体正好处于极限平衡或破坏状态。 上式也可适用于有效应力,相应c,φ应该用c’,φ’。
上式也可适用于有效应力,相应c,φ应该用c’,φ’
3f
1f
tg
2
(45
2
)
2c

tg(45
2
)
1f
τ <τ f 稳定 τ =τ f 极限 τ >τ f 破坏
二、莫尔-库仑强度理论及土的极限平衡条件
τ=τf 时的极限平衡状态作为土的破坏准则:土体中 某点任意面上剪应力满足该式,该点破坏。
可以把莫尔应力圆与库仑抗剪强度定律互相结合起 来。通过两者之间的对照来对土所处的状态进行判 别。把莫尔应力圆与库仑抗剪强度线相切时的应力 状态,破坏状态—称为莫尔-库仑破坏准则,它是 目前判别土体(土体单元)所处状态的最常用或最基本 的准则。

土的抗剪强度试验 计算公式

土的抗剪强度试验 计算公式

土的抗剪强度试验计算公式土的抗剪强度试验是用来测定土壤在受到剪切力作用时的抗剪能力的试验方法。

通过这个试验可以得到土壤的剪切强度参数,对于土壤工程设计和土木工程建设具有重要的指导作用。

土的抗剪强度试验计算公式如下:τ = C + σtan(φ)其中,τ为土壤的抗剪强度,C为土的内聚力,σ为正应力,φ为有效内摩擦角。

这个公式是基于摩擦力学原理推导得出的,可以用来计算土壤在受到剪切力作用时所能承受的最大剪切应力。

在进行土的抗剪强度试验时,首先需要制备土样。

通常使用直径为50mm的圆柱形土样。

然后将土样放置于试验设备中,施加垂直加载,同时施加水平剪切力。

通过改变加载的大小和方向,可以得到不同的正应力和剪切应力的组合。

在试验过程中,需要记录土样的变形和破坏情况,并测量土样的高度、直径等参数。

通过这些数据,可以计算出土壤的抗剪强度。

具体的计算过程如下:1. 计算正应力σ:正应力是垂直于剪切面的应力。

根据试验中施加的加载大小和土样的几何参数,可以计算出正应力的大小。

2. 计算剪切应力τ:剪切应力是平行于剪切面的应力。

根据试验中施加的水平剪切力和土样的几何参数,可以计算出剪切应力的大小。

3. 计算内聚力C:内聚力是土壤颗粒之间的吸附力。

通过试验中土样的破坏形态和加载情况,可以估算出内聚力的大小。

4. 计算有效内摩擦角φ:有效内摩擦角是土壤颗粒之间的摩擦角。

根据试验中土样的变形和破坏情况,可以计算出有效内摩擦角的大小。

5. 计算土的抗剪强度τ:根据上述计算结果,代入土的抗剪强度计算公式,可以得到土的抗剪强度的数值。

通过土的抗剪强度试验,可以评估土壤的稳定性和承载能力。

在土木工程建设中,需要根据土壤的抗剪强度参数来确定土体的稳定性和设计合理的土木结构。

土的抗剪强度试验是一项重要的土力学试验,可以用来测定土壤在受到剪切力作用时的抗剪能力。

通过计算公式可以得到土壤的抗剪强度参数,为土木工程设计和土壤工程建设提供科学依据。

《土力学与地基基础》学习指导书-第6章

《土力学与地基基础》学习指导书-第6章

第6章土的抗剪强度6.1 学习要求学习要点:掌握库伦定律及强度理论;掌握抗剪强度的测定方法。

了解饱和粘性土的抗剪强度及应力路径。

重点和难点:土的抗剪强度指标的测定,土的强度理论。

6.2 学习要点1. 土的抗剪强度理论★库伦公式土的抗剪强度表达式(库伦公式)为:无黏性土 ϕστtan f = (6-1) 黏性土 ϕστtan f +=c (6-2) 式中 f τ——土的抗剪强度(kPa) ;σ——剪切滑动面上的法向总应力(kPa);c ——土的黏聚力(kPa) ;ϕ——土的内摩擦角(°)。

c 、ϕ统称为土的抗剪强度指标(参数)。

在στ-f 坐标中(图6-1),库伦公式为一条直线,称为抗剪强度包线。

ϕ为直线与水平土力学与地基基础学习与考试指导·2· 轴的夹角,c 为直线在纵轴上的截距。

土的抗剪强度不仅与土的性质有关,还与试验时的排水条件、剪切速率、应力状态和应力历史等许多因素有关,其中最重要的是试验时的排水条件。

★抗剪强度的总应力法和有效应力法根据太沙基的有效应力概念,土体内的剪应力只能由土的骨架承担,因此,土的抗剪强度f τ应表示为剪切破坏面上的法向有效应力σ'的函数,即ϕσϕστ'-+'=''+'=tan )(tan f u c c(6-3) 式中 c '、ϕ'——分别为有效黏聚力和有效内摩擦角,统称为有效应力强度指标,对无性土,c '=0;σ'——剪切滑动面上的法向有效应力;u ——孔隙水压力。

因此,土的抗剪强度有两种表达方法,一种是以总应力σ表示剪切破坏面上的法向应力,其抗剪强度表达式为式(6-1)和式(6-2),称为抗剪强度总应力法,相应的c 、ϕ称为总应力强度指标(参数);另一种则以有效应力σ'表示剪切破坏面上的法向应力,其表达式为式(6-3),称为抗剪强度有效应力法, c '、ϕ'称为有效应第6章 土的抗剪强度 ·3·力强度指标(参数)。

土的抗剪强度

土的抗剪强度
f
莫尔包线
土中应力与土的平衡状态 随着土中应力状态的改变,应力圆与强度包线之间的位置关系 将发生三种变化情况,土中也将出现相应的三种平衡状态 。


III II
f f f
稳定平衡状态
极限平衡状态 破坏状态
c
I

摩尔-库仑破坏准则:摩尔应力圆与库仑强度线相切的应力状态作为土的破坏准则
总应力强度参数与有效应力强度参数 正常固结试样分别在三种不同排水条件下进行试验,当以总 应力表示强度时,不同试验方法引起的强度差异是通过不同 的强度参数来反映的,亦即在总应力强度参数中包含了孔隙
水压力的影响;当以有效应力表示强度时,这种强度差异可
直接通过有效应力项来反映,而不同试验方法测得的有效强 度参数一般彼此接近,即若以有效应力表示,则不论采用那 种试验方法,都得到近乎同一条有效应力破坏包线,说明抗 剪强度与有效应力有唯一的对应关系。
qu f cu 2
十字板剪切试验
十字板剪切试验是一种土的抗剪强度的原位测试方法,它在反 映土体原始抗剪强度方面比室内试验有明显的优势,在实际工 程中得到了较广泛的应用。
qu f 2
适用范围:现场测定 饱和粘性土的不排水 强度,尤其适用于均 匀的饱和软粘土。
有效应力强度指标
用有效应力法及相应指标进行计算,概念明确。当土中的孔 隙水压力能通过实验、计算或其他方法加以确定时,宜采用 有效应力法。有效应力强度指标可用三轴排水剪或三轴固结 不排水剪(测孔隙水压力)测定。
3 1
粘性土的极限平衡条件为:
1 3 tan (45 ) 2c tan( 45 )
2 0 0


3 1 tan (45 ) 2c tan( 45 )

第5章 土的抗剪强度的相关计算问题集锦

第5章 土的抗剪强度的相关计算问题集锦

1.剪切破坏面位置的确定
按莫尔库仑破坏理论,破坏应力圆与破坏包线相切,可确定 破裂面与大主应力平面成
τ
φ
α = 45° +
ϕ
2
σ3 2α σ1f
推断: 土是一种具有内摩擦强度的材料, 内摩擦强度的材料 推断: 土是一种具有内摩擦强度的材料,破裂面不产生于最大剪应 力面, 力面,而与最大剪应力面成 ϕ/2 的夹角
Porous plates
方法: 方法: 施加每级法向压力后,逐级增加剪切面上的剪应力直到试 件破坏,绘制剪应力值—剪变形曲线
剪 应 力
峰值 终值
τ
峰值强度
残余强度
C
剪变形
σ
取值: 一般取剪应力—剪变形曲线峰值为抗剪强度 剪变形曲线峰值为抗剪强度, 取值: 一般取剪应力 剪变形曲线峰值为抗剪强度,必要时取 终值作为残余强度
τf =
应用:
qu = Cu 2
cu qu
1. 代替三轴试验(当 ϕu = 0 ) 2. 可用来求土的灵敏度
St = qu qu '
5.2.4 十字板剪切试验
一种方便的原位测试仪器,通常用以测定饱和粘性土的不排 水强度,特别适用于均匀饱和软粘土
设备装置: 板头、加力装置、量测装置。 板头:正交金属板,厚2mm, 刃口60o,常用尺寸 D × H = 50mm × 100mm
试验原理: 试验原理:
将钻孔钻进至要求测试深度以上75cm,将十字板头压入土中至 测试深度,旋转钻杆以扭转板头,这时十字板周围的土体内形成一 个圆柱形剪切面。剪切面上的剪应力随扭矩的增加而增加,直到最 大扭矩时,土体沿圆柱面破坏,剪应力达到土的抗剪强度
Mmax = M1 + M2

土的力学性质指标

土的力学性质指标

土的力学性质指标1.压缩系数土的压缩性通常用压缩系数(或压缩模量)来表示,其值由原状土的压缩试验确定。

压缩系数按下式计算:21211000p p e e a --⨯=(6-1)式中1000——单位换算系数;a ——土的压缩系数(MPa -1); p 1、p 2——固结压力(kPa ):e 1、e 2——相对应于p 1、p 2时的孔隙比。

评价地基压缩性时,按p 1为100kPa ,p 2为200kPa ,相应的压缩系数值以a 1-2划分为低、中、高压缩性,并应按以下规定进行评价:(1)当a 1-2<0.1MPa -1时,为低压缩性土; (2)当0.1≤a 1-2<0.5MPa -1时,为中压缩性土; (3)当a 1-2≥0.5MPa -1时,为高压缩性土。

2.压缩模量工程上也常用室内试验求压缩模量E s 作为土的压缩性指标。

压缩模量按下式计算:ae E s 01+=(6-2) 式中Es ——土的压缩模量(MPa );e 0——土的天然(自重压力下)孔隙比;a ——从土的自重应力至土的自重加附加应力段的压缩系数(MPa -1)。

用压缩模量划分压缩性等级和评价土的压缩性可按表6-4规定。

地基土按E s 值划分压缩性等级的规定表6-43.抗剪强度土在外力作用下抵抗剪切滑动的极限强度,一般用室内直剪、原位直剪、三轴剪切试验、十字板剪切试验、野外标准贯入、动力触探、静力触探等试验方法进行测定。

它是评价地基承载力、边坡稳定性、计算土压力的重要指标。

(1)抗剪强度计算土的抗剪强度一般按下式计算:τf=σ·tgφ+c(6-3)式中τf——土的抗剪强度(kPa);σ——作用于剪切面上的法向应力(kPa);φ——土的内摩擦角(°),剪切试验法向应力与剪应力曲线的切线倾斜角;c——土的粘聚力(kPa),剪切试验中土的法向应力为零时的抗剪强度,砂类土c=0。

(2)土的内摩擦角φ和粘聚力c的求法同一土样切取不少于4个环刀进行不同垂直压力作用下的剪力试验后,用相同的比例尺在坐标纸上绘制抗剪强度τ与法向应力σ的相关直线,直线交τ值的截距却为土的粘聚力c,砂土的c=0,直线的倾斜角即为土的内摩擦角切,见图6-1。

地基土抗剪强度指标Cφ值的确定

地基土抗剪强度指标Cφ值的确定

地基土抗剪强度指标C、φ值得确定1、抗剪强度得物理意义及基本理论土在外力作用下在剪切面单位面积上所能承受得最大剪应力称为土得抗剪强度。

土得抗剪强度就是由颗粒间得内摩察力以及由胶结物与水膜得分子引力所产生粘聚力共同组成。

在法向应力不大时,抗剪强度与法向应力得关系近似为一条直线,这就就是抗剪强度得库仑定律。

S=c+σtanφ2、抗剪强度得试验方法2、1室内剪切试验包括直接剪切试验与三轴剪切试验,主要适用于粘性土与粉土,砂土可按要求得密度制备土样。

2.2 除土工试验以外其她确定抗剪强度C、Φ值得方法2.2。

1根据原位测试数据确定抗剪强度C、Φ值得经验方法(1) 动力触探沈阳地区《建筑地基基础技术规范》(DB21—907—96)资料(深度范围不大于15m)砂土、碎石土内摩察角标准值Φk(2) 标准贯入试验国外砂土N 与Φ得关系经验关系式主要有Dunhan 、大崎、Peck 、Meyerhof 等研究得经验公式,见《工程地质手册》(第四版)P 193。

经试算(详见国外砂土标贯击数N 与内摩察角Φ得关系(按公式计算))采用Φ值进行承载力特征值f ak 计算时,对于粉、细砂采用Φ=(12N)0、5+15,对于中、粗、砾砂采用Φ=0、3N+27计算出得数值实际能较为吻合(N 为经杆长修正后得标贯击数)、根据计算成果,N与Φ得对应关系见下表:N 与内摩察角Φ(度)得经验关系表(3) 静力触探试验《工程地质手册》(第四版)P210,砂土得内摩察角可根据静力触探参照下表取值。

砂土得内摩察角Φ2.4.2 根据现场剪切试验确定抗剪强度C 、Φ值该方法成本较高,一般很少采用,主要用于场地稳定性评价,见《工程地质手册》(第四版)P234、粗粒混合土得抗剪强度C 、Φ值通过现场剪切试验确定。

3、 岩土体抗剪强度指标得经验数据3、1 土得抗剪强度指标经验数据(1) 砂土得内摩察角与矿物成分与粒径得关系(2) 不同成因粘性土得力学性质指标3.2 岩石得抗剪强度指标经验数据3。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

土的抗剪强度计算公式是什么?
土的抗剪强度计算公式是:
其中φ为内摩擦角,c为土的粘聚力。

在以土的抗剪强度为纵坐标、剪切破坏面上的法向应力为横坐标的坐标系中,土的抗剪强度包线对横坐标轴的倾角。

通常以φ表示,即内摩擦角,是土的抗剪强度参数之一,其值与土的初始孔隙比、土粒形状、土的颗粒级配和土粒表面的粗糙度等因素有关。

可由土的直接剪切试验或三轴压缩试验测定,根据不同的试验方法和分析方法可得出总应力内摩擦角和有效应力内摩擦角。

土的抗剪强度的影响因素主要有土的组成、土的密实度和含水量、以及所受的应力状态等。

扩展资料
一般认为,有效应力强度指标宜用于分析地基的长期稳定性,而对于饱和软粘土的短期稳定间题,则宜采用不固结不排水试验或快剪试验的强度指标。

一般工程问题多采用总应力分析法,其指标和测试方法的选择大致如下:若建筑物施工速度较快,而地基土的透水性和排水条件不良时,可采用不固结不排水试验或快剪试验的结果。

如果地基荷载增长速率较慢,地基土的透水性不太小(如低塑性的粘土)以及排水条件又较佳时(如粘土层中夹砂层),则可以采用固结排水试验和慢剪试验指标;如果介于以上两种情况之间,可用固结不排水或固结快剪试验结果。

由于实际加荷情况和土的性质是复杂的,而且在建筑物的施工和使用过程中都要经历不同的固结状态,因此,在确定强度指标时还应结合工程经验。

常规试验方法所得到的非饱和压实土抗剪强度指标是综合的指标,其中包含了试验时不饱和状态对抗剪强度指标的贡献。

含水状态变化对压实土抗剪强度指标具有显著的影响,设计时必须充分考虑压实土含水状态变化来选取合理的抗剪强度指标。

其机理可用非饱和土理论解释;基质吸力对吸附强度的影响是非线性的。

相关文档
最新文档