电磁感应(一) (2)

电磁感应(一) (2)
电磁感应(一) (2)

电磁感应(一)

12-1-1. 如图所示,一矩形金属线框,以速度v

从无场空间进入一均匀磁场中,然后又从磁场中出来,到无场空间中.不计线圈的自感,下面哪一条图线正确地表示了线圈中的感应电流对时间的函数关系?(从线圈刚进入磁场时刻开始计时,I 以顺时针方向为正)

[ ]

12-1-2. 一无限长直导体薄板宽为l ,板面与z 轴垂直,板的磁感强度为B

的均匀磁场

长度方向沿y 轴,板的两侧与一个伏特计相接,如图.整个系统放在

中,B 的方向沿z 轴正方向.如果伏特计与导体平板均以速度v 向y

轴正方向移动,则伏特计

指示的电压值为 (A) 0. (B)

2

1

v Bl . (C) v Bl . (D)

2v Bl . [ ]

12-1-3. 如图所示,矩形区域为均匀稳恒磁场,半圆形闭合导线回路在纸面内绕轴O 作逆时针方向匀角速转动,O 点是圆心且恰好落在磁场的边缘上,半圆形

闭合导线完全在磁场外时开始计时.图(A)—(D)的 --t 函数图象中哪一条属于半圆形导线回路中产生的感应电动势? [ ]

12-1-4. 两根无限长平行直导线载有大小相等方向相反的电流I ,并各以d I /d t 的变化率增长,一矩形线圈位于导线平面内(如图),则: (A) 线圈中无感应电流.

(B) 线圈中感应电流为顺时针方向.

(C) 线圈中感应电流为逆时针方向. (D) 线圈中感应电流方向不确定. [ ]

12-1-5. 一块铜板垂直于磁场方向放在磁感强度正在增大的磁场中时,铜板中出现的涡流(感应电流)将 (A) 加速铜板中磁场的增加. (B) 减缓铜板中磁场的增加.

(C) 对磁场不起作用. (D) 使铜板中磁场反向. [ ]

12-1-6. 一导体圆线圈在均匀磁场中运动,能使其中产生感应电流的一种情况是 (A) 线圈绕自身直径轴转动,轴与磁场方向平行. (B) 线圈绕自身直径轴转动,轴与磁场方向垂直. (C) 线圈平面垂直于磁场并沿垂直磁场方向平移. (D) 线圈平面平行于磁场并沿垂直磁场方向平移. [ ]

12-1-7. 半径为a 的圆线圈置于磁感强度为B

的均匀磁场中,线圈平面与磁场方向垂直,线圈电阻为R ;当把线圈转动使其法

向与B

的夹角α =60°时,线圈中通过的电荷与线圈面积及转动所用的时间的关系是

(A) 与线圈面积成正比,与时间无关. (B) 与线圈面积成正比,与时间成正比. (C) 与线圈面积成反比,与时间成正比.

(D) 与线圈面积成反比,与时间无关. [ ]

12-1-8. 将形状完全相同的铜环和木环静止放置,并使通过两环面的磁通量随时间的变化率相等,则不计自感时 (A) 铜环中有感应电动势,木环中无感应电动势. (B) 铜环中感应电动势大,木环中感应电动势小. (C) 铜环中感应电动势小,木环中感应电动势大.

(D) 两环中感应电动势相等. [ ]

B

I O (D)I O (C)

O (B)

? t O (A) ? t O (C) ? t O (B)

I

12-1-9. 在无限长的载流直导线附近放置一矩形闭合线圈,开始时线圈与导线在同一平面内,且线圈中两条边与导线平行,当线圈以相同的速率作如图所示的三种不同方向的平动时,线圈中的感应电流 (A) 以情况Ⅰ中为最大. (B) 以情况Ⅱ中为最大.

(C) 以情况Ⅲ中为最大.

(D) 在情况Ⅰ和Ⅱ中相同. [ ]

12-1-10. 在两个永久磁极中间放置一圆形线圈,线圈的

大小和磁极大小约相等,线圈平面和磁场方向垂直.今欲使线圈中产生逆时针方向(俯视)的瞬时感应电流i (如图),可选择

下列哪一个方法?

(A) 把线圈在自身平面内绕圆心旋转一个小角度. (B) 把线圈绕通过其直径的OO ′轴转一个小角度.

(C) 把线圈向上平移.

(D) 把线圈向右平移. [

B 中,另一半位于磁场之外, 12-1-11. 一个圆形线环,它的一半放在一分布在方形区域的匀强磁场

如图所示.磁场B 的方向垂直指向纸内.欲使圆线环中产生逆时针方向的感应电流,应使 (A) 线环向右平移. (B) 线环向上平移.

(C) 线环向左平移.

(D) 磁场强度减弱. [ ]

12-1-12. 如图所示,一载流螺线管的旁边有一圆形线圈,欲使线圈产生图示方向的感应电流i ,下列哪一种情况可以做到? (A) 载流螺线管向线圈靠近. (B) 载流螺线管离开线圈.

(C) 载流螺线管中电流增大.

(D) 载流螺线管中插入铁芯. [ ]

12-1-13. 如图所示,闭合电路由带铁芯的螺线管,电源,滑线变阻器组成.问在下列哪一种情况下可使线圈中产生的感应电动势与原电流I的方向相反.

(A) 滑线变阻器的触点A 向左滑动.

(B) 滑线变阻器的触点A 向右滑动.

(C) 螺线管上接点B 向左移动(忽略长螺线管的电阻).

(D) 把铁芯从螺线管中抽出. [ ] 12-1-14. 一矩形线框长为a 宽为b ,置于均匀磁场中,线框绕OO ′轴,以匀角速度ω 旋转(如图所示).设t =0时,线框平面处于纸面内,则任一时刻感应电动势的大小为 (A) 2abB | cos ω t |. (B) ω abB (C) t abB ωωcos 2

1. (D) ω abB | cos ω t |. (E) ω abB | sin ω t |. [ ]

12-1-15. 如图所示,一矩形线圈,放在一无限长载流直导线附近,开始时线圈与导线在同一平面内,矩形的长边与导线平行.若矩形线圈以图(1),(2),(3),(4)所示的四种方式运动,则在开始瞬间,以哪种方

式运动的矩形线圈中的感应电流最大? (A) 以图(1)所示方式运动. (B) 以图(2)所示方式运动. (C) 以图(3)所示方式运动.

(D) 以图(4)所示方式运动. [ ] 12-1-16. 一闭合正方形线圈放在均匀磁场中,绕通过其中心且与一边平行的转轴OO ′转动,转轴与

磁场方向垂直,转动角速度为ω,如图所示.用下述哪一种办法可以使线圈中感应电流的幅值增加到原来

的两倍(导线的电阻不能忽略)? (A) 把线圈的匝数增加到原来的两倍. (B) 把线圈的面积增加到原来的两倍,而形状不变. (C) 把线圈切割磁力线的两条边增长到原来的两倍. (D) 把线圈的角速度ω 增大到原来的两倍. [ ] a b c d a b c d b

v v

I

v

? (4)

12-1-17. 图示情况抽出时

(A) 螺线管线圈中感生电流方向如A 点处箭头所示. (B) 螺线管右端感应呈S 极.

(C) 线框EFGH 从图下方粗箭头方向看去将逆时针旋转. (D) 线框EFGH 从图下方粗箭头方向看去将顺

时转.

] 12-1-18. 有甲乙两个带铁芯的线圈如图所示.欲使乙线圈中产生图示方向的感

生电流i ,可以采用下列哪一种办法?

(A) 接通甲线圈电源. (B) 接通甲线圈电源后,减少变阻器的阻值. (C) 接通甲线圈电源后,甲乙相互靠近. (D) 接通甲线圈电源后,抽出甲中铁芯. [ ]

12-1-19. 在如图所示的装置中,当不太长的条形磁铁在闭合线圈内作振动时(忽略空气阻

力),

(A) 振幅会逐渐加大. (B) 振幅会逐渐减小. (C) 振幅不变. (D) 振幅先减小后增大.[ ]

12-1-20. 在一通有电流I 的无限长直导线所在平面内,有一半径为r 、电阻为R 的导线小环,环中心距直导线为a ,如图所示,且a >> r .当直导线的电流被切断后,沿着导线环流过的电荷约为

(A) )1

1

(220r

a a R Ir +-πμ. (B) a r a R Ir +ln 20πμ.

(C) aR Ir 220μ. (D) rR

Ia 22

0μ. [ ]

电磁感应(二)

12-2-1. 尺寸相同的铁环与铜环所包围的面积中,通以相同变化率的磁通量,当不计环的自感时,环中 (A) 感应电动势不同. (B) 感应电动势相同,感应电流相同. (C) 感应电动势不同,感应电流相同.

(D) 感应电动势相同,感应电流不同. [ ]

12-2-2. 如图所示,一矩形线圈,以匀速自无场区平移进入均匀磁场区,又平移穿出.在(A)、(B)、(C)、(D)各I --t 曲线中哪一种符合线圈中的电流随时间的变化关系(取逆时针指向为电流正方向,且不计线圈的自感)?

[ ]

12-2-3. 如图所示,导体棒AB 在均匀磁场B 中

C 点的垂直于棒长且沿磁

31

,则

场方向的轴OO ' 转动(角速度ω

与B 同方向),BC

(A) A 点比B 点电势高. (B) A 点与B 点电

势相等.

(B) A 点比B 点电势低. (D) 有稳恒电流从A

点流向B 点.

[ ]

12-2-4. 如图,长度为l 的直导线ab 在均匀磁场B 中以速度v

移动,直导线ab 中的电动势为

(A) Bl v . (B) Bl v sin α. (C) Bl v cos α. (D) 0. [ ]

B

v

12-2-5. 如图所示,M 、N 为水平面内两根平行金属导轨,ab 与cd 为垂直于导轨并可在其上自由滑动的两根直裸导线.外磁场垂直水平面向上.当外力使ab 向右平移时,cd

(A) 不动. (B) 转动. (C) 向左移动. (D) 向右移动.[ ]

12-2-6. 如图所示,直角三角形金属框架abc 放在均匀磁场中,磁场B

平行于ab 边,bc 的长度为l .当金属框架绕ab 边以匀角速度ω转动时,abc 回路中的感应电动势 和a 、c 两点间的电势差

U a – U c 为

(A) =0,U a – U c =

221

l B ω. (B) =0,U a – U c =2

21l B ω-.

(C) =2

l B ω,U a – U c =221l B ω.

(D) =2

l B ω,U a – U c =22

1l B ω-. [ ]

12-2-7. 两条金属轨道放在均匀磁场中.磁场方向垂直纸

面向里,如图所示.在

这两条轨道上垂直于轨道架设两条长而刚性的裸导线P 与Q .金属线P 中接入一个高阻伏特计.令导线Q 保持不动,而导线P 以恒定速度平行于导轨向左移动.(A)─(E)各图中哪一个正确表示伏特计电压V 与时间t 的关系?

[ ]

12-2-8. 两条金属轨道放在均匀磁场中.磁场方向垂直纸面向里,如图所示.在这两条轨道上垂直于轨道架设两条长而刚性的裸导线P 与Q .金属线P 中接入一个高阻伏特计.令导线Q 保持不动,而导线P 以恒定速度平行于导轨向左移动.(A)─(E)各图中哪一个正确表示伏特计电压V 与时间t 的关系?

[ ] 12-2-9. 一根长度为L 的铜棒,在均匀磁场 B

中以匀角速度ω绕通过其一端O 的定轴旋转着,B 的方向垂直铜棒转动的平面,如图

所示.设t =0时,

铜棒与Ob 成θ 角(b 为铜棒转动的平面上的一个固定点),

两端之间的感应

电动势是: (A) )cos(2

θωω+t B L . (B) t B L ωωcos 2

12 (C) )cos(22θωω+t B L . (D) B L 2

ω.

(E) B L 2

2

1ω. [ ]

12-2-10. 自感为 0.25 H 的线圈中,当电流在(1/16) s 内由2 A 均匀减小到零时,线圈中自感电动势的大小为:

(A) 7.8 ×10-3 V . (B) 3.1 ×10-2

V . (C) 8.0 V . (D) 12.0 V . [ ]

12-2-11. 两个相距不太远的平面圆线圈,怎样可使其互感系数近似为零?设其中一线圈的轴线恰通过另一线圈的圆心. (A) 两线圈的轴线互相平行放置. (B) 两线圈并联.

(C) 两线圈的轴线互相垂直放置. (D) 两线圈串联. [ ]

12-2-12. 两个通有电流的平面圆线圈相距不远,如果要使其互感系数近似为零,则应调整线圈的取向使 (A) 两线圈平面都平行于两圆心连线. (B) 两线圈平面都垂直于两圆心连线.

(C) 一个线圈平面平行于两圆心连线,另一个线圈平面垂直于两圆心连线. (D) 两线圈中电流方向相反. [ ]

12-2-13. 对于单匝线圈取自感系数的定义式为L =Φ /I .当线圈的几何形状、大小及周围磁介质分布不变,且无铁磁性物质时,若线圈中的电流强度变小,则线圈的自感系数L (A) 变大,与电流成反比关系. (B) 变小. (C) 不变.

(D) 变大,但与电流不成反比关系. [ ]

12-2-14. 已知一螺绕环的自感系数为L .若将该螺绕环锯成两个半环式的螺线管,则两个半环螺线管的自感系数

c a

b

d

N

M

B

B

a

b c

l

ω

B

(A) 都等于

L 21. (B) 有一个大于L 21,另一个小于L 21

. (C) 都大于L 21. (D) 都小于L 2

1

. [ ]

12-2-15. 有两个线圈,线圈1对线圈2的互感系数为M 21,而线圈2对线圈1的互感系数为M 12.若它们分别流过i 1和i 2的变化电流且

t

i

t i d d d d 21>,并设由i 2变化在线圈1中产生的互感电动势为 12,由i 1变化在线圈2中产生的互感电动势为 21,判断下述哪个论断正确.

(A) M 12 = M 21, 21 = 12. (B) M 12≠M 21, 21 ≠ 12. (C) M 12 = M 21, 21 > 12.

(D) M 12 = M 21, 21 < 12. [ ]

12-2-16. 在真空中一个通有电流的线圈a 所产生的磁场内有另一个线圈b ,a 和b 相对位置固定.若线圈b 中电流为零(断路),则线圈b 与a 间的互感系数:

(A) 一定为零. (B)一定不为零.

(C) 可为零也可不为零, 与线圈b 中电流无关. (D) 是不可能确定的.

[ ]

12-2-17. 在一自感线圈中通过的电流I 随时间t 的变化规律如图(a)所示,若以I 的正流向作为 的正方向,则代表线圈内自感电动势 随时

间t 变化规律的曲线应为图(b)中(A)、(B)、(C)、(D)中的哪一个?

[ ]

12-2-18. 如图,一导体棒ab 在均匀磁场中沿金属导轨向右作匀

速运动,磁场方向垂直导轨所在平面.若导轨电阻忽略不计,并设铁芯磁导率为常数,则达到稳定后在电容器的M 极板上

(A) 带有一定量的正电荷. (B) (C) 带有越来越多的正电荷. (D) 荷.[ ] 12-2-19. 如图所示,两个线圈P 和Q 并联地接到一电动势恒定的电源上.

线圈P 的自感和电阻分别是线圈Q 的两倍,线圈P 和Q 之间的互感可忽略不计.当达到稳定

状态后,线圈P 的磁场能量与Q 的磁场能量的比值是 (A) 4. (B) 2. (C)

1. (D)

2

1

. [ ]

12-2-20. 有两个长直密绕螺线管,长度及线圈匝数均相同,半径分别为r 1和r 2.管内充满均匀介质,其磁导率分别为μ1和μ2.设r 1∶r 2=1∶2,μ1∶μ2=2∶1,当将两只螺线管串联在电路中通电稳定后,其自感系数之比L 1∶L 2与磁能之比W m 1∶W m 2分别为: (A) L 1∶L 2=1∶1,W m 1∶W m 2 =1∶1. (B) L 1∶L 2=1∶2,W m 1∶W m 2 =1∶1. (C) L 1∶L 2=1∶2,W m 1∶W m 2 =1∶2.

(D) L 1∶L 2=2∶1,W m 1∶W m 2 =2∶1. [ ]

12-2-21. 真空中一根无限长直细导线上通电流I ,则距导线垂直距离为a 的空间某点处的磁能密度为

(A)

200)2(21a I πμμ. (B) 200)2(21a I πμμ . (C) 20)2(21I a μπ. (D) 2

00)2(21a

I μμ. [ ]

t t t (b) (a) v

12-2-22. 两根很长的平行直导线,其间距离为a,与电源组成闭合回路,如图.已知导线上的电流为I,Array

在保持I不变的情况下,若将导线间的距离增大,则空间的

(A) 总磁能将增大.(B) 总磁能将减少.

(C) 总磁能将保持不变.(D) 总磁能的变化不能确定.

[]

完整版电磁感应图像问题练习

压U ab 、线框所受安培力 F 、穿过线圈的磁通量 ①随位移x 的变化图像正确的是 B . 电磁感应图像问题 1如图所示,由粗细均匀的电阻丝制成的边长为 I 的正方形线框abed ,其总电阻为 R 现 使线框以水平向右的速度 v 匀速穿过一宽度为 2I 、磁感应强度为 B 的匀强磁场区域,整个 过程中ab 、cd 两边始终保持与磁场边界平行。 令线框的ed 边刚好与磁场左边界重合时 t =o , 电流沿abeda 流动的方向为正,u o =Blv 。线框中a 、b 两点间电势差u ab 随线框cd 边的位移x X X X X X X ; X K X X X X ; X X X X X X ; x \ X X A I X X X X X X ; II ? 为坐标原点建立x 轴.一边长为L 的正方形金属线框 abed ,在外力作用下以速度 v 匀速穿过 匀强磁场.从线框cd 边刚进磁场开始计时,线框中产生的感应电流 i 、线框ab 边两端的电 2.如图所示,空间存在垂直纸面向里的有界匀强磁场,磁场区域宽度为 D 2L ,以磁场左边界 变化的图象正确的是( /减 X X j I £■74 t ) -坯的 K X X I

3.如图所示,两相邻的宽均为0.8m的匀强磁场区域,磁场方向分别垂直纸面向里和垂直纸 面向外。一边长为0.4m的正方形导线框位于纸面内,以垂直于磁场边界的恒定速度v=0.2m/s 通过磁场区域,在运动过程中,线框有一边始终与磁场区域的边界平行。取它刚进入磁场的时刻t=O,规定线框中感应电流逆时针方向为正方向。在下列图线中,正确反映感应电流强 度随时间变化规律的是() 4 .如图所示,为三个有界匀强磁场,磁感应强度大小均为B,方向分别垂直纸面向外、向 里和向外,磁场宽度均为L,在磁场区域的左侧边界处,有一边长为L的正方形导体线框, 总电阻为R,且线框平面与磁场方向垂直,现用外力F使线框以速度v匀速穿过磁场区域, 以初始位置为计时起点,规定电流沿逆时针方向时的电动势E为正,磁感线垂直纸面向里 时的磁通量①为正值,外力F向右为正。则以下反映线框中的磁通量①、感应电动势E、 外力F和电功率P随时间变化规律图象错误的是 * ? * 1 ??■V ? ?4 ■ ?■ ? ?■ ------ ?

电磁感应练习题

电磁感应练习题 一、单选择试题 1、如图1所示,一个矩形线圈与通有相同大小电流的两平行直导线位于同一平面内,而且矩形线圈处在两导线的中央,则( ) A .两电流同向时,穿过线圈的磁通量为零 B .两电流反向时,穿过线圈的磁通量为零 C .两电流同向或反向,穿过线圈的磁通量都相等 D .因两电流产生的磁场是不均匀的,因此不能判定穿过线圈的磁通量是否为零 2、如图2,粗糙水平桌面上有一质量为m 的铜质矩形线圈.当一竖直放置的条形磁铁从线圈中线AB 正上方等高快速经过时,若线圈始终不动,则关于线圈受到的支持力F N 及在水平方向运动趋势的正确判断是( ) A.F N 先小于mg 后大于mg,运动趋势向左 B.F N 先大于mg 后小于mg,运动趋势向左 C.F N 先大于mg 后大于mg,运动趋势向右 D.F N 先大于mg 后小于mg,运动趋势向右 3、如图3a 所示,平行导轨间有一矩形的匀强磁场区域,细金属棒PQ 沿导轨从MN 处匀速运动到M'N'的过程中,棒上感应电动势E 随时间t 变化的规律,在图3b 中,正确的是( ) 图1 N ` M ` M N v B Q P (a ) (b ) 图3 A B S N 图2

4、用均匀导线做成的单匝正方形线框,每边长为0.2米,正方形的一半放在垂直纸面向里的匀强磁场中,如图4所示,当磁场以每秒10T 的变化率增强时, 线框中点a 、b 两点电势差是( ) A.U ab =0.1V B.U ab =-0.1V C.U ab =0.2V D.U ab =-0.2V 5、穿过某线圈的磁通量随时间变化的关系如图5所示,在下列几段时间内,线圈中感应电动势最小的是( ) A.0~2s B.2~4s C.4~5s D.5~10s 二、双项选择试题 6、如图6所示的电路中,三个相同的灯泡a 、b 、c 和电感L 1、L 2与直流电源连接,电感的电阻忽略不计.电键K 从闭合状态突然断开时,下列判断正确的有( ) A.a 先变亮,然后逐渐变暗 B.b 先变亮,然后逐渐变暗 C.c 先变亮,然后逐渐变暗 D.b 、c 都逐渐变暗 7、两根足够长的光滑导轨竖直放置,间距为L ,底端接阻值为R 的电阻.将质量为m 的金属棒悬挂在一个固定的轻弹簧下端,金属棒和导轨接触良好,导轨所在平面与磁感应强度为B 的匀强磁场垂直,如图7所示.除电阻R 外其余电阻不计,现将金属棒从弹簧原长位置由静止释放.则 ( ) A .释放瞬间金属棒的加速度等于重力加速度g B .金属棒向下运动时,流过电阻R 的电流方向为a →b C .金属棒的速度为v 时.所受的安培力大小为 R v L B F 22 D .电阻R 上产生的总热量等于金属棒重力势能的减少 8、边长为L 的正方形金属框在水平恒力F 的作用下,穿过如图8所示的有界匀强磁场,磁场宽度为d (d >L ),已知ab 边进入磁场时,线框的加速度为零,线框进入磁场过程和从 b a 图4 F a L L d B 图5 R B a b F r 图7 图6

磁场、电磁感应要点

一、 选择题:(每小题3分,共6) 磁场 1 一个带电粒子以速度v 垂直进入匀强磁场B 中,其运动轨迹是一半径为R 的圆。要使半径变为 2R ,磁感应强度B 应变为:( ) (A) 2B (B) B/2 (C) 2 B (D) 2 B/2 2. 磁场的高斯定理说明了稳恒磁场的某些性质。下列说法正确的是 ( ) (A) 磁场力是保守力; (B) 磁场是无源场; (C) 磁场是非保守力场; (D) 磁感应线不相交。 3 如图所示,1/4圆弧导线 ab,半径为r,电流为I ,均匀磁场为B, 方向垂直ab 向上,求圆弧ab 受的安培力的大小和方向( ) (A 垂直纸面向外 (B 垂直纸面向里 (C )2BIr π 垂直纸面向外 (D )2BIr π 垂直纸面向里 4. 如图所示,圆型回路L 内有电流1I 、2I ,回路外有电流3I ,均在真空中,P 为L 上的点,则( )

(A )012()L d I I μ?=-+?B l (B )0123()L d I I I μ?=++?B l (C )0123()L d I I I μ?=+-?B l (D )012()L d I I μ?=+?B l 5 匀强磁场B 中有一半径为r ,高为L 的圆柱面,B 方向与柱轴平行,则穿过圆柱面的磁通量为:( ) (A) B R 2π (B) 0 (C) B R 22π (D) B R 221π 6 载有电流I 的导线如图放置,在圆心O 处的磁感应强度B 为:( ) (A)μ0I/4R+μ0I/4πR (B)μ0I/2πR+ 3μ0I/8R (C) μ0I/4πR -3μ0I/8R (D) μ0I/4R+ μ0I/2πR

电磁感应习题

电磁感应练习 一 选择题 1. 在无限长载流导线附近有一个球形闭合曲面S ,当S 面垂直于导线电流方向向长直导线靠近时,穿过S 面的磁通量Φm 和面上各点的磁感应强度的大小将: (A )Φm 增大,B 也增大; (B )Φm 不变,B 也不变; (C )Φm 增大,B 不变; (D )Φm 不变,B 增大。 [ ] 2. 在无限长的载流直导线附近放置一矩形闭合线圈,开始时线圈与导线在同一平面内,且线圈中两条边与导线平行,当线圈以相同的速率作如图所示的三种不同方向的平动时,线圈中的感应电流 (A) 以情况Ⅰ中为最大. (B) 以情况Ⅱ中为最大. (C) 以情况Ⅲ中为最大. (D) 在情况Ⅰ和Ⅱ中相同. [ ] 题一(2)图 3. 铜圆盘水平放置在均匀磁场中,B 的方向垂直向上。当铜盘绕通过中心垂直于盘面的轴沿图示方向转动时, (A )铜盘上有感应电流产生,沿着铜盘转动的相反方向流动。 (B )铜盘上有感应电流产生,沿着铜盘转动的方向流动。 (C )铜盘上有感应电动势产生,铜盘边缘处电势高。 (D )铜盘上有感应电动势产生,铜盘中心处电势高。 [ ] B ω 题一(3)图 4.如图,导体棒AB=L 在均匀磁场B 中绕通过C 点的垂直于棒长且沿磁场方向的轴OO`转动(角速度ω与B 同方向),BC 的长度为棒长的1/3。则(1) (A )A 点比B 点电势高. (B )A 点与B 点电势相等. (C )A 点比B 点电势低. (D )无法判断. [ ] (2)求:U A U B B O A B C O` 题一(4)图 a b c d a b c d a b c d v v v ⅠⅢⅡ I

电磁感应基础练习题

电磁感应基础练习题: 1、面积是0.5m 2的导线环,放在某一匀强磁场中,环面与磁场垂直,穿过导线的磁通量是Wb 2100.1-?,则该磁场的磁感应强度是( ) A、T 2105.0-? B、T 2105.1-? C、T 2101-? D、T 2102-? 2、关于电磁感应现象,下列说法正确的是( ) A、只要磁通量穿过电路,电路中就有感应电流 B、只要穿过闭合导体回路的磁通量足够大,电路中就有感应电流 C、只要闭合导体回路在切割磁感线运动,电路中就有感应电流 D、只要穿过闭合导体回路的磁通量发生变化,电路中就有感应电流 3、如图所示,套在条形磁铁外的三个线圈,其面积321S S S =>,穿过各线圈的磁通量依次为1Φ、2Φ、3Φ,则它们的大小关系是( ) A 、32 1 Φ>Φ>Φ B 、321Φ=Φ>Φ C 、321Φ=Φ<Φ D 、321Φ<Φ<Φ 4、关于电磁感应,下列说法正确的是( ) A 、穿过线圈的磁通量越大,感应电动势就越大 B 、穿过线圈的磁通量为零,感应电动势一定为零 C 、穿过线圈的磁通量变化越快,感应电动势越大 D 、穿过线圈的磁通量变化越大,感应电动势越大 5、如图所示,在《探究产生感应电流的条件》的实验中,开关断开时,条形 磁铁插入或拔出线圈的过程中,电流表指针不动;开关闭合时,磁铁静止在 线圈中,电流表指针也不动;开关闭合时,将磁铁插入或拔出线圈的过程中, 电流表指针发生偏转.由此得出,产生感应电流的条件是:电路必须 , 穿过电路的磁通量发生 . 6、如图所示是探究感应电流与磁通量变化关系的实验.下列操作会产生感应 电流的有 . ①闭合开关的瞬间; ②断开开关的瞬间; ③闭合开关,条形磁铁穿过线圈; ④条形磁铁静止在线圈中 此实验表明:只要穿过闭合导体回路的磁通量发生 闭合导体回路中就有感应电流产生. 1、关于电磁感应,下列说法正确的是( ) A 、穿过线圈的磁通量越大,感应电动势越大 B 、穿过线圈的磁通量为零,感应电动势为零 C 、穿过线圈的磁通量变化越快,感应电动势越大 D 、穿过线圈的磁通量变化越大,感应电动势越大 2、关于感应电动势的大小,下列说法正确的是( ) A 、跟穿过闭合导体回路的磁通量有关 S

法拉第电磁感应定律教案

§ 4.3 法拉第电磁感应定律 编写 薛介忠 【教学目标】 知识与技能 ● 知道什么叫感应电动势 ● 知道磁通量的变化率是表示磁通量变化快慢的物理量,并能区别Φ、ΔΦ、t ??Φ ● 理解法拉第电磁感应定律内容、数学表达式 ● 知道E =BLv sin θ如何推得 ● 会用t n E ??Φ=和E =BLv sin θ解决问题 过程与方法 ● 通过推导到线切割磁感线时的感应电动势公式E =BLv ,掌握运用理论知识探究问题的方法 情感态度与价值观 ● 从不同物理现象中抽象出个性与共性问题,培养学生对不同事物进行分析,找出共性与个性的辩证唯物主义思想 ● 了解法拉第探索科学的方法,学习他的执著的科学探究精神 【重点难点】 重点:法拉第电磁感应定律 难点:平均电动势与瞬时电动势区别 【教学内容】 [导入新课] 在电磁感应现象中,产生感应电流的条件是什么? 在电磁感应现象中,磁通量发生变化的方式有哪些情况? 恒定电流中学过,电路中产生电流的条件是什么? 在电磁感应现象中,既然闭合电路中有感应电流,这个电路中就一定有电动势。在电磁感应现象中产生的电动势叫感应电动势。下面我们就来探讨感应电动势的大小决定因素。 [新课教学] 一.感应电动势 1.在图a 与图b 中,若电路是断开的,有无电流?有无电动势? 电路断开,肯定无电流,但有电动势。 2.电流大,电动势一定大吗? 电流的大小由电动势和电阻共同决定,电阻一定的情况下,电流越大,表明电动势越大。 3.图b 中,哪部分相当于a 中的电源?螺线管相当于电源。 4.图b 中,哪部分相当于a 中电源内阻?螺线管自身的电阻。 在电磁感应现象中,不论电路是否闭合,只要穿过电路的磁通量发生变化,电路中就有感应电动势。有感应电动势是电磁感应现象的本质。

物理选修3---2第四章电磁感应知识点汇总.docx

v1.0可编辑可修改物理选修 3--2 第四章电磁感应知识点汇总 (训练版) 知识点一、电磁感应现象 1、电磁感应现象与感应电流. (1)利用磁场产生电流的现象,叫做电磁感应现象。 ( 2)由电磁感应现象产生的电流,叫做感应电流。 物理模型 上下移动导线AB,不产生感应电流 左右移动导线AB,产生感应电流 原因 : 闭合回路磁感线通过面积发生变化

不管是 N 级还是 S 级向下插入,都会产生感应电流, 抽出也会产生,唯独磁铁停止在线圈力不会产生 原因闭合电路磁场B发生变化。 开关闭合、开关断 开、开关闭合,迅速滑动 变阻器,只要线圈 A 中电 流发生变化,线圈 B 就有 感应电流。

知识点二、产生感应电流的条件 1 、产生感应电流的条件:闭合电路中磁通量发生变化。 ........... 2 、产生感应电流的常见情况. (1)线圈在磁场中转动。(法拉第电动机) (2)闭合电路一部分导线运动 ( 切割磁感线 ) 。 (3)磁场强度B变化或有效面积S变化。 ( 比如有电流产生的磁场,电流大小变化或者开关断 开) 3、对“磁通量变化”需注意的两点. (1)磁通量有正负之分,求磁通量时要按代数和(标量计算法则)的方法求总的磁通量(穿过 平面的磁感线的净条数)。 (2)“运动不一定切割,切割不一定生电”。导体切割磁感线,不是在导体中产生感应电流的充 要条件,归根结底还要看穿过闭合电路的磁通量是否发生变化。 知识点三、感应电流的方向 1 、楞次定律. (1)内容:感应电流具有这样的方向,即感 应电流的磁场总是要阻碍引起感应电流的磁通量的变 化。 ( 2)“阻碍”的含义. 从阻碍磁通量的变化理解为: 当磁通量增大 时,会阻碍磁通量增大,当磁通量减小时,会阻碍磁 通量减小。 从阻碍相对运动理解为: 阻碍相对运动是“阻碍”的又一种体现,表现在“近斥远吸,来拒去留”。

电磁感应典型例题和练习

电磁感应 课标导航 课程容标准: 1.收集资料,了解电磁感应现象的发现过程,体会人类探索自然规律的科学态度和科学精神。 2.通过实验,理解感应电流的产生条件,举例说明电磁感应在生活和生产中的应用。 3.通过探究,理解楞次定律。理解法拉第电磁感应定律。 4.通过实验,了解自感现象和涡流现象。举例说明自感现象和涡流现象在生活和生产中的应用。 复习导航 本章容是两年来高考的重点和热点,所占分值比重较大,复习时注意把握: 1.磁通量、磁通量的变化量、磁通量的变化率的区别与联系。 2.楞次定律的应用和右手定则的应用,理解楞次定律中“阻碍”的具体含义。 3.感应电动势的定量计算,以及与电磁感应现象相联系的电路计算题(如电流、电压、功 率等问题)。 4.滑轨类问题是电磁感应的综合问题,涉及力与运动、静电场、电路结构、磁场及能量、 动量等知识、要花大力气重点复习。 5.电磁感应中图像分析、要理解E-t、I-t等图像的物理意义和应用。 第1课时电磁感应现象、楞次定律 1、高考解读 真题品析 知识:安培力的大小与方向 例1. (09年物理)13.如图,金属棒ab置于水平放置的U形光滑导轨上,在ef右侧存在有界匀强磁场B,磁场方向垂直导轨平面向下,在ef左侧的无磁场区域cdef有一半径很小的金属圆环L,圆环与导轨在同一平面当金属棒ab在水平恒力F作用下从磁场左边界ef处由静止开始向右运动后,圆环L有__________(填收缩、扩)趋势,圆环产生的感应电流_______________(填变大、变小、不变)。 解析:由于金属棒ab在恒力F的作用下向右运动,则abcd回路中产生逆时针方向的感应电

法拉第电磁感应定律总结

法拉第电磁感应定律总结 一·电磁感应是指利用磁场产生电流的现象。所产生的电动势叫做感应电动势。所产生的电流叫做感应电流 注意: 1) 产生感应电动势的那部分导体相当于电源。 2) 产生感应电动势与电路是否闭合无关, 而产生感应电流必须闭合电路。 3) 产生感应电流的两种叙述是等效的, 即闭合电路的一部分导体做切割磁感线 运动与穿过闭合电路中的磁通量发生变化等效。: 二·电磁感应规律 1感应电动势的大小: 由法拉第电磁感应定律确定。 当长L的导线,以速度v,在匀强磁场B中,垂直切割磁感线,其两端间感应电动势的大小为E=BLV(1)。 此公式使用条件是方向相互垂直,如不垂直,则向垂直方向作投影。,电路中感应电动势的大小跟穿过这个电路的磁通变化率成正比——法拉第电磁感应定律。 2在回路中面积变化,而回路跌磁通变化量,又知B S T。 如果回路是n匝串联,则 E=NBS/T(2)。 3公式一:要注意: 1)该式通常用于导体切割磁感线时, 且导线与磁感线互相垂直 (l^B )。2)为v与B的夹角。l为导体切割磁感线的有效长度(即l为导体实际长度在垂直 于B方向上的投影) 公式二: 。注意: 1)该式普遍适用于求平均感应电动势。2)只与穿过电路的磁通量的变化率有关, 而与磁通的产生、磁通的大小及变化方式、电路是否闭合、电路的结构与材料等因素无关 公式中涉及到磁通量的变化量的计算, 对的计算, 一般遇到有两种情况: 1)回路与 磁场垂直的面积S不变, 磁感应强度发生变化, 由, 此时,此式中的叫磁感应强度的变化率, 若是恒定的, 即磁场变化是均匀的, 那么产生的感应电动势是恒定电动势。2)磁感应强度B 不变, 回路与磁场垂直的面积发生变化, 则, 线圈绕垂直于匀强磁场的轴匀速转动产生交 变电动势就属这种情况。 4严格区别磁通量, 磁通量的变化量磁通量的变化率, 磁通量, 表示穿过研究平面的 磁感线的条数, 磁通量的变化量, 表示磁通量变化的多少, 磁通量的变化率表示磁通量变 化的快慢, , 大, 不一定大; 大, 也不一定大, 它们的区别类似于力学中的v, 的区别, 另外I、也有类似的区别。 5 当长为L的导线,以其一端为轴,在垂直匀强磁场B的平面内,以角速度匀速转动时,其两端感应电动势为E=1/2BL*LW。 6 三种切割情形的感应电动势

物理选修3-2知识点总结

第四章:电磁感应 【知识要点】 一.磁通量 穿过某一面积的磁感线条数; Φ=BS ·sin θ;单位Wb ,1Wb=1T ·m 2;标量,但有正负。 二.电磁感应现象 当穿过闭合电路中的磁通量发生变化,闭合电路中有感应电流的现象。如果电路不闭合只会产生感应电动势。(这种利用磁场产生电流的现象叫电磁感应现象,是1831年法拉第发现的)。 三.产生感应电流的条件 1、闭合电路的磁通量发生变化。 2、闭合电路中的一部分导体在磁场中作切割磁感线运动。(其本质也是闭合回路中磁通量发生变化)。 四.感应电动势 ] 1、概念:在电磁感应现象中产生的电动势; 2、产生条件:穿过回路的磁通量发生改变,与电路是否闭合无关。 3、方向判断:感应电动势的方向用楞次定律或右手定则判断。 五.法拉第电磁感应定律 1、内容:感应电动势的大小跟穿过这一电路的磁通量的变化率成正比。 2、公式:E =n ΔΦ Δt ,其中n 为线圈匝数。 3、公式t n E ??=φ 中涉及到磁通量的变化量?φ的计算, 对?φ的计算, 一般遇到有两种情况: (1).回路与磁场垂直的面积S 不变, 磁感应强度发生变化, 由??φ=BS , 此时S t B n E ??=, 此式中的??B t 叫磁感应强度的变化率, 若??B t 是恒定的, 即磁场变化是均匀的,产生的感应电动势是恒定电动势。 (2).磁感应强度B 不变, 回路与磁场垂直的面积发生变化, 则??φ=B S ·, 线圈绕垂直于匀强磁场的轴匀速转动产生交变电动势就属这种情况。 (3).磁通量、磁通量的变化量、磁通量的变化率的区别

注意:○1该式t n E ?=中普遍适用于求平均感应电动势。 ○ 2E 只与穿过电路的磁通量的变化率??φ/t 有关, 而与磁通的产生、磁通的大小及变化方式、电路是否闭合、电路的结构与材料等因素无关 六.导体切割磁感线时的感应电动势 1、导体垂直切割磁感线时,感应电动势可用E =Blv 求出,式中l 为导体切割磁感线的有效长度。 (1)有效性:公式中的l 为有效切割长度,即导体与v 垂直的方向上的投影长度。 < 甲图:l =cd sin β; 乙图:沿v 1方向运动时,l =MN ;沿v 2方向运动时,l =0。 丙图:沿v 1方向运动时,l =2R ;沿v 2方向运动时,l =0;沿v 3方向运动时,l =R (2)相对性:E =Blv 中的速度v 是相对于磁场的速度,若磁场也运动,应注意速度间的相对关系。 2、导体不垂直切割磁感线时,即v 与B 有一夹角θ,感应电动势可用E =Blv sin θ 求出。 3、公式Blv E =一般用于导体各部分切割磁感线的速度相同, 对有些导体各部分切割磁感线的速度不相同的情况, 如何求感应电动势 例:如图所示, 一长为l 的导体杆AC 绕A 点在纸面内以角速度ω匀速转动,转动的区域的有垂直纸面向里的匀强磁场, 磁感应强度为B , 求AC 产生的感应电动势, 解析: AC 各部分切割磁感线的速度不相等, v v l A C ==0,ω, 且AC 上各点的 —

(完整版)电磁感应综合练习题(基本题型,含答案)

电磁感应综合练习题(基本题型) 一、选择题: 1.下面说法正确的是 ( ) A .自感电动势总是阻碍电路中原来电流增加 B .自感电动势总是阻碍电路中原来电流变化 C .电路中的电流越大,自感电动势越大 D .电路中的电流变化量越大,自感电动势越大 【答案】B 2.如图9-1所示,M 1N 1与M 2N 2是位于同一水平面内的两条平行金属导轨,导轨间距为L 磁感应强度为B 的匀强磁场与导轨所 在平面垂直,ab 与ef 为两根金属杆,与导轨垂直且可在导轨上滑 动,金属杆ab 上有一伏特表,除伏特表外,其他部分电阻可以不计,则下列说法正确的是 ( ) A .若ab 固定ef 以速度v 滑动时,伏特表读数为BLv B .若ab 固定ef 以速度v 滑动时,ef 两点间电压为零 C .当两杆以相同的速度v 同向滑动时,伏特表读数为零 D .当两杆以相同的速度v 同向滑动时,伏特表读数为2BLv 【答案】AC 3.如图9-2所示,匀强磁场存在于虚线框内,矩形线圈竖直下落。 如果线圈中受到的磁场力总小于其重力,则它在1、2、3、4位置 时的加速度关系为 ( ) A .a 1>a 2>a 3>a 4 B .a 1 = a 2 = a 3 = a 4 C .a 1 = a 2>a 3>a 4 D .a 4 = a 2>a 3>a 1 【答案】C 4.如图9-3所示,通电螺线管两侧各悬挂一个小铜环,铜环平面与螺线管截面平行,当电键S 接通一瞬间,两铜环的运动情况是( ) A .同时向两侧推开 B .同时向螺线管靠拢 C .一个被推开,一个被吸引,但因电源正负极未知,无法具体判断 D .同时被推开或同时向螺线管靠拢,但因电源正负极未知,无法具体判断 【答案】 A 图9-2 图9-3 图9-4 图9-1

答案第11章电磁感应训练题

第11章 电磁感应训练题及其参考答案 选择题 1. 一无限长直导体薄板宽为 I ,板面与Z 轴垂直,板的长度方向沿 Y 轴,板的两侧与 个伏特计相接,如图所示。整个系统放在磁感应强度为 B 的均 匀磁场中,B 的方向沿Z 轴正方向,如果伏特计与导体平板均以速度 轴正方向移动,则伏特计指示的电压值为: 1 [C ] (A) 0 (B) vbl 2 (C) vbl (D) 2vbl (ab 、cd 导体切割磁力线产生的电动势完全相同,故伏特计示数为答案 C ) 2.在无限长的载流直导线附近放置一矩形闭合线圈,开始时 线圈与导 线在同一平面内,且线圈中两条边与导线平行。 当线 圈以相同的速度在如图所示位置朝三种不同方向平动时, 线圈 中的感应电流 [B ] (A)以情况I 中为最大 (B)以情况II 中为最大(C) 以情况III 中为最大 (D) (比较图示位置的瞬时电流,只要比较电动势即可: 0, vcb (― x x cd 0( v 〃B),故选 B 3. 一矩形线框长为 a 宽为b ,置于均匀磁场中,线框绕 00 轴 以匀角速度 旋转(如图所示)。设t 内,则任一时刻t 感应电动势的大小为: 0时,线框平面处于纸面 [D ] (A) 2abBcos t (B) (C) 1 abBcos t (D) abB abB cos t O 1 " | T tq i i i O 在情况I 和II 中相同

(E) abBsin t 1?将条形磁铁插入与冲击电流计串联的金属环中,有 q = x 10-5C 的电荷通过电流计, 若连接电流计的电路总电阻 R = 25 ,则穿过环的磁通的变化 ①二 _____ 。(答案: r 、电阻为R 的导线环,环 中心距直导线为 a ,如图所示,且a r 。当直导线的电流被切断后, 着导线环流过的电量约为 [C ] (A)- 0 ( ) (B) 0Ir , a r In 2 R a a r 2 R a (C)- Ir 2 0Ir (D) 0Ia 2 2aR 2rR 二、填空题 4.在一通有电流I 的无限长直导线所在平面内,有一半径为 沿

高考物理(知识点总结 例题精析)电磁感应专题2 电磁感应中的.

专题二:电磁感应中的力学问题 电磁感应中通过导体的感应电流,在磁场中将受到安培力的作用,从而影响其运动状态,故电磁感应问题往往跟力学问题联系在一起,这类问题需要综合运用电磁感应规律和力学的相关规律解决。 一、处理电磁感应中的力学问题的思路 ——先电后力。 1、先作“源”的分析 ——分离出电路中由电磁感应所产生的电源,求出电源参数E 和r ; 2、再进行“路”的分析 ——画出必要的电路图(等效电路图),分析电路结构,弄清串并联关系, 求出相关部分的电流大小,以便安培力的求解。 3、然后是“力”的分析 ——画出必要的受力分析图,分析力学所研究对象(常见的是金属杆、 导体线圈等)的受力情况,尤其注意其所受的安培力。 4、接着进行“运动”状态分析 ——根据力和运动的关系,判断出正确的运动模型。 5、最后运用物理规律列方程并求解 ——注意加速度a =0时,速度v 达到最大值的特点。导体受 力运动产生感应电动势→感应电流→通电导体受安培力→合外力变化→加速度变化→速度变化→周而复始地循环,循环结束时,加速度等于零,导体达到稳定运动状态,抓住a =0,速度v 达最大值这一特点。 二、分析和运算过程中常用的几个公式: 1、关键是明确两大类对象(电学对象,力学对象)及其互相制约的关系. 电学对象:内电路 (电源 E = n ΔΦΔt 或E = nB ΔS Δt ,E =S t B n ???) E = Bl υ 、 E = 12Bl 2 ω . 全电路 E =I (R +r ) 力学对象:受力分析:是否要考虑BIL F =安 . 运动分析:研究对象做什么运动 . 2、可推出电量计算式 R n t R E t I q ?Φ=?= ?= . 【例1】磁悬浮列车是利用超导体的抗磁化作用使列车车体向上浮起,同时通过周期性地变换磁极 方向而获得推进动力的新型交通工具。如图所示为磁悬浮列车的原理图,在水平面上,两根平行直导轨间有竖直方向且等距离的匀强磁场B 1和B 2 ,导轨上有一个与磁场间距等宽的金属框abcd 。当匀强磁场B 1和B 2同时以某一速度沿直轨道向右运动时,金属框也会沿直轨道运动。设直轨道间距为L ,匀强磁场的磁感应强度为B 1=B 2=B ,磁场运动的速度为v ,金属框的电阻为R 。运动中所受阻力恒为f ,则金属框的最大速度可表示为( ) A 、2222()m B L v f R v B L -?= B 、2222 (2) 2m B L v f R v B L -?= C 、2222(4)4m B L v f R v B L -?= D 、2222 (2) 2m B L v f R v B L +?= 【解析】:由于ad 和bc 两条边同时切割磁感线,故金属框中产生的电动势为E =2BLv ′ ,其中v ′是金属框相对于磁场的速度(注意不是金属框相对于地面的速度,此相对速度的方向向 左),由闭合电路欧姆定律可知流过金属框的电流为R E I = 。整个金属框受到的安培力为 v c a b d B 2 B 1

电磁感应计算题专项训练及答案

电磁感应计算题专项训练 【注】该专项涉及规律:感应电动势、欧姆定律、牛顿定律、动能定理 1、( 2010重庆卷)法拉第曾提出一种利用河流发电的设想,并进行了实验研究。实验装置 的示意图如图所示,两块面积均为 S 的矩形金属板,平行、正对、竖直地全部浸在河水中, 间距为d 。水流速度处处相同,大小为 v ,方向水平。金属板与水流方向平行。地磁场磁感应强度的竖直分量为 B,水的电阻率为 p 键 K 连接到两金属板上。忽略边缘效应,求: (1) 该发电装置的电动势; (2) 通过电阻R 的电流强度; (3) 电阻R 消耗的电功率 水面上方有一阻值为 R 的电阻通过绝缘导线 和电 2、(2007天津)两根光滑的长直金属导轨 MN MN'平行置于同一水平面内,导轨间距为 I , 电阻不计。M M 处接有如图所示的电路,电路中各电阻的阻值均为 R,电容器的电容为 C 。 现有长度也为I ,电阻同为R 的金属棒ab 垂直于导轨放置,导轨处于磁感应强度为 B 方向 竖直向下的匀强磁场中。ab 在外力作用下向右匀速运动且与导轨保持良好接触,在 ab 在运 动距离为s 的过程中,整个回路中产生的焦耳热为 Q 求:⑴ab 运动速度v 的大小;⑵电容 3、( 2010江苏卷)如图所示,两足够长的光滑金属导轨竖直放置,相距为 L , 一理想电流表 与两导轨相连,匀强磁场与导轨平面垂直。一质量为 m 有效电阻为R 的导体棒在距磁场上 边界h 处由静止释放。导体棒进入磁场后,流经电流表的电流逐渐减小,最终稳定为 I 。整 个运动过程中,导体棒与导轨接触良好,且始终保持水平,不计导轨的电阻。求: ⑴磁感应强度的大小 B; ⑵ 电流稳定后,导体棒运动速度的大小 v ; ⑶ 流经电流表电流的最大值 I m 器所带的电荷量q 。

法拉第电磁感应定律教案

第四节法拉第电磁感应定律(教案) 教学目标: (一)知识与技能 1.让学生知道什么叫感应电动势,知道电路中哪部分相当于电源 2.让学生知道磁通量的变化率是表示磁通量变化快慢的物理量。 3.让学生理解法拉第电磁感应定律内容、数学表达式。 4.知道E=BLv sinθ如何推得。 (二)过程与方法 (1)通过实验,培养学生的动手能力和探究能力。 (2)通过推导导线切割磁感线时的感应电动势公式E=BLv,掌握运用理论知识探究问题的方法。 (三)情感、态度与价值观 了解法拉第探索科学的方法,学习他的执著的科学探究精神。 教学重点 1、让学生探究影响感应电动势的因素,并能定性地找出感应电动势与磁通量的变化率的关 系。 2、会推导导线切割磁感线时的感应电动势的表达式。 教学难点 如何设计探究实验定性研究感应电动势与磁通量的变化率之间的关系。 教学用具 多媒体电脑、PPT课件、8组探究实验器材(线圈、蹄形磁铁、导线、电流计等) 教学过程: 课堂前准备 将实验器材提前分组发给学生。以便分组实验。 引入新课 师:在物理学史上,有这样一位科学家,他是一个贫穷的铁匠的儿子,做过订书学徒,干过非常卑贱的工作,但却取得了非凡的成就。他用一个线圈和一个磁铁,改变了整个世界。

今天,从美国的阿拉斯加到中国的青藏高原,从北极附近的格陵兰岛,到南极考察站,都里不开他一百多年前的发现,这位科学家是谁?——英国科学家法拉第。 下面大家各小组在重新做一下这一有着划时代意义的实验:(学生做实验) 在学生组装实验器材做实验的同时,教师进行巡视,指导。学生可能出现的情况: 组装器材缓慢,接触不好,现象不明显等。教师应加以必要的指导。 师:同学们,我们用一个线圈和一个磁铁竟然使闭合电路中产生了电流,这是多么令人惊奇的发现!根据电路的知识,在这个实验电路中哪一部分相当于电源呢?(学生回答) 师:如果你是法拉第,当你发现了电磁感应现象以后,下一步你要进一步研究什么呢?(学生回答) 好,下面我们就来探究一下影响感应电动势的因素。现在大家猜想一下:感应电动势可能由什么因素决定?小组讨论一下。(学生讨论) (可让学生自由回答)情况预测:线圈的大小、匝数、磁通量的大小、磁通量变化的大小、时间、磁通量的变化率、磁感应强度等等…….. 师:大家猜想的都有可能。我们知道产生感应电流的条件是磁通量要变化,那么是不是就意味着感应电动势和磁通量的变化有关,与变化时间有关。下面我们就来探究一下感应电动势E 与磁通量的变化ΔΦ和变化时间Δt 有什么定性关系。 研究三个变量之间的关系,我们采用什么方法? (生答)待定系数法黑板上板书: ΔΦ一定,Δt 增大,则E Δt 一定,ΔΦ增大,则E 师:好,现在就请各组的同学按照学案上的提示,看能不能 设计试验来探究一下: 在这里教师要在巡回中加以指导,对对学生的设计方案进行 必要修改和纠正。可先让学生说一下实验方案。(注意图中 两个电表不应该是电流计) 学生试验完成后,让学生在黑板上填上结论。 精确的定量实验人们得出:电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比,这就是法拉第电磁感应定律。 表达式:E= t n E ??Φ= 实际上,上式只是单匝线圈所产生的感应电动势的表达式,如果是n 匝线圈,那么表达式应该是怎样的?为什么?可以从理论上得出吗?

物理选修3-2知识点总结

第四章:电磁感应 【知识要点】 一.磁通量 穿过某一面积的磁感线条数; Φ=BS ·sin θ;单位Wb ,1Wb=1T ·m 2;标量,但有正负。 二.电磁感应现象 当穿过闭合电路中的磁通量发生变化,闭合电路中有感应电流的现象。如果电路不闭合只会产生感应电动势。(这种利用磁场产生电流的现象叫电磁感应现象,是1831年法拉第发现的)。 三.产生感应电流的条件 1、闭合电路的磁通量发生变化。 2、闭合电路中的一部分导体在磁场中作切割磁感线运动。(其本质也是闭合回路中磁通量发生变化)。 四.感应电动势 1、概念:在电磁感应现象中产生的电动势; 2、产生条件:穿过回路的磁通量发生改变,与电路是否闭合无关。 3、方向判断:感应电动势的方向用楞次定律或右手定则判断。 五.法拉第电磁感应定律 1、内容:感应电动势的大小跟穿过这一电路的磁通量的变化率成正比。 2、公式:E =n ΔΦΔt ,其中n 为线圈匝数。 3、公式t n E ??=φ 中涉及到磁通量的变化量?φ的计算, 对?φ的计算, 一般遇到有两种情况: (1).回路与磁场垂直的面积S 不变, 磁感应强度发生变化, 由??φ=BS , 此时S t B n E ??=, 此式中的 ??B t 叫磁感应强度的变化率, 若??B t 是恒定的, 即磁场变化是均匀的,产生的感应电动势是恒定电动势。 (2).磁感应强度B 不变, 回路与磁场垂直的面积发生变化, 则??φ=B S ·, 线圈绕垂直于匀强磁场的 轴匀速转动产生交变电动势就属这种情况。 (3).磁通量、磁通量的变化量、磁通量的变化率的区别

注意:○1该式t n E ?=中普遍适用于求平均感应电动势。 ○ 2E 只与穿过电路的磁通量的变化率??φ/t 有关, 而与磁通的产生、磁通的大小及变化方式、电路是否闭合、电路的结构与材料等因素无关 六.导体切割磁感线时的感应电动势 1、导体垂直切割磁感线时,感应电动势可用E =Blv 求出,式中l 为导体切割磁感线的有效长度。 (1)有效性:公式中的l 为有效切割长度,即导体与v 垂直的方向上的投影长度。 甲图:l =cd sin β; 乙图:沿v 1方向运动时,l =MN ;沿v 2方向运动时,l =0。 丙图:沿v 1方向运动时,l =2R ;沿v 2方向运动时,l =0;沿v 3方向运动时,l =R (2)相对性:E =Blv 中的速度v 是相对于磁场的速度,若磁场也运动,应注意速度间的相对关系。 2、导体不垂直切割磁感线时,即v 与B 有一夹角θ,感应电动势可用E =Blv sin θ 求出。 3、公式Blv E =一般用于导体各部分切割磁感线的速度相同, 对有些导体各部分切割磁感线的速度不相同的情况, 如何求感应电动势? 例:如图所示, 一长为l 的导体杆AC 绕A 点在纸面内以角速度ω匀速转动,转动的区域的有垂直纸面向里的匀强磁场, 磁感应强度为B , 求AC 产生的感应电动势, 解析: AC 各部分切割磁感线的速度不相等, v v l A C ==0,ω, 且AC 上各点的

电磁感应典型例题和练习进步

电磁感应 课标导航 课程内容标准: 1.收集资料,了解电磁感应现象的发现过程,体会人类探索自然规律的科学态度和科学精神。 2.通过实验,理解感应电流的产生条件,举例说明电磁感应在生活和生产中的应用。 3.通过探究,理解楞次定律。理解法拉第电磁感应定律。 4.通过实验,了解自感现象和涡流现象。举例说明自感现象和涡流现象在生活和生产中的应用。 复习导航 本章内容是两年来高考的重点和热点,所占分值比重较大,复习时注意把握: 1.磁通量、磁通量的变化量、磁通量的变化率的区别与联系。 2.楞次定律的应用和右手定则的应用,理解楞次定律中“阻碍”的具体含义。 3.感应电动势的定量计算,以及与电磁感应现象相联系的电路计算题(如电流、电压、功 率等问题)。 4.滑轨类问题是电磁感应的综合问题,涉及力与运动、静电场、电路结构、磁场及能量、 动量等知识、要花大力气重点复习。 5.电磁感应中图像分析、要理解E-t、I-t等图像的物理意义和应用。 第1课时电磁感应现象、楞次定律 1、高考解读 真题品析

知识:安培力的大小与方向 例1. (09年上海物理)13.如图,金属棒ab置于水平 放置的U形光滑导轨上,在ef右侧存在有界匀强磁场B, 磁场方向垂直导轨平面向下,在ef左侧的无磁场区域cdef 内有一半径很小的金属圆环L,圆环与导轨在同一平面内当金属棒ab在水平恒力F作用下从磁场左边界ef处由静止开始向右运动后,圆环L有__________(填收缩、扩张)趋势,圆环内产生的感应电流_______________(填变大、变小、不变)。 解析:由于金属棒ab在恒力F的作用下向右运动,则abcd回路中产生逆时针方向的感应电流,则在圆环处产生垂直于只面向外的磁场,随着金属棒向右加速运动,圆环的磁通量将增大,依据楞次定律可知,圆环将有收缩的趋势以阻碍圆环的磁通量将增大;又由于金属棒向右运动的加速度减小,单位时间内磁通量的变化率减小,所以在圆环中产生的感应电流不断减小。 答案:收缩,变小 点评:深刻领会楞次定律的内涵 热点关注 知识:电磁感应中的感应再感应问题 例8、如图所示水平放置的两条光滑轨道上有可自由移动的金属棒 PQ、MN,当PQ在外力作用下运动时,MN在磁场力作用下向右运动. 则PQ所做的运动可能是 A.向右匀速运动 B.向右加速运动 C.向左加速运动 D.向左减速运动

高中物理电磁感应专题训练

C .若是非匀强磁场,环在左侧滚上的高度等于 D .若是匀强磁场,环在左侧滚上的高度小于 专题:电磁感应 1.如图为理想变压器原线圈所接电源电压波形, 原副线圈匝数之比 n 1∶n 2 = 10∶ 1,串联在 原线圈电路中电流表的示数为 1A ,下则说法正确的是( A .变压器输出两端所接电压表的示数为 22 2 V B .变压器输出功率为 220W C .变压器输出的交流电的频率为 50HZ D .若 n 1 = 100 匝,则变压器输出端穿过每匝线圈的磁通量的变化率的最 大值为 2.2 2wb/s 2.如图所示,图甲中 A 、B 为两个相同的线圈,共轴并靠边放置, A 线圈中画有如图乙 所 示的交变电流 i ,则( ) A .在 t 1到 t 2的时间内, A 、B 两线圈相吸 B . 在 t 2到 t 3 的时间内, A 、B 两线圈相斥 C . t 1 时刻,两线圈的作用力为 零 D . t 2时刻,两线圈的引力最大 3.如图所示,光滑导轨倾斜放置,其下端连接一个灯泡,匀强磁场垂直于导线所在平面, 当 ab 棒下滑到稳定状态时,小灯泡获得的功率为 P 0 ,除灯泡外,其它电阻不计,要使灯 泡的功率变为 2P 0 ,下列措施正确的是( A .换一个电阻为原来 2 倍的灯泡 B .把磁感应强度 B 增为原来的 2 倍 C .换一根质量为原来 2 倍的金属棒 D .把导轨间的距离增大为原来的 2 4.如图所示,闭合小金属环从高 h 的光滑曲面上端无初速滚下,沿曲面的另一侧上升,曲 面在磁场中( A .是非匀强磁场,环在左侧滚上的高度小于 B .若是匀强磁场,环在左侧滚上的高度等于 ××× ×× × ×× × ××× 5.如图所示,一电子以初速 v 沿与金属板平行的方向飞入两板间,在下列哪种情况下, 电 子将向 M 板偏转?( ) A .开关 K 接通瞬间 B .断开开关 K 瞬间 C .接通 K 后,变阻器滑动触头向右迅速滑动 D .接通 K 后,变阻器滑动触头向左迅速滑动 6.如图甲, 在线圈 l 1 中通入电流 i 1后,在 l 2 上产生感应电流随时间变化规律如图乙所示, M N K

一电磁感应中的电路问题要点

电磁感应中的电路问题 ▲知识梳理 1.求解电磁感应中电路问题的关键是分析清楚内电路和外电路。 “切割”磁感线的导体和磁通量变化的线圈都相当于“电源”,该部分导体的电阻相当于内电阻,而其余部分的电路则是外电路。 2.几个概念 (1)电源电动势或。 (2)电源内电路电压降,r是发生电磁感应现象导体上的电阻。(r是内电路的电阻) (3)电源的路端电压U,(R是外电路的电阻)。 3.解决此类问题的基本步骤 (1)用法拉第电磁感应定律和楞次定律或右手定则确定感应电动势的大小和方向。(2)画等效电路:感应电流方向是电源内部电流的方向。 (3)运用闭合电路欧姆定律结合串、并联电路规律以及电功率计算公式等各关系式联立求解。 特别提醒:路端电压、电动势和某电阻两端的电压三者的区别: (1)某段导体作为外电路时,它两端的电压就是电流与其电阻的乘积。 (2)某段导体作为电源时,它两端的电压就是路端电压,等于电流与外电阻的乘积,或等于电动势减去内电压,当其内阻不计时路端电压等于电源电动势。 (3)某段导体作为电源时,电路断路时导体两端的电压等于电源电动势 1:图中EF、GH为平行的金属导轨,其电阻可不计,R为电阻器,C为电容器,AB为可在EF和GH上滑动的导体横杆。有均匀磁场垂直于导轨平面。若用和分别表示图中该处导线中的电流,则当横杆AB() A.匀速滑动时,=0,=0 B.匀速滑动时,≠0,≠0 C.加速滑动时,=0,=0 D.加速滑动时,≠0,≠0

2、两根光滑的长直金属导轨、平行置于同一水平面内,导轨间距为l,电阻不计,M、处接有如图所示的电路,电路中各电阻的阻值均为R,电容器的电容为C。 长度也为l、阻值同为R的金属棒ab垂直于导轨放置,导轨处于磁感应强度为B、方向竖直向下的匀强磁场中。ab在外力作用下向右匀速运动且与导轨保持良好接触,在ab运动距离为s的过程中,整个回路中产生的焦耳热为Q。求: (1)ab运动速度v的大小; (2)电容器所带的电荷量q。 3、如图所示,两条平行的光滑水平导轨上,用套环连着一质量为0.2kg、电阻为2Ω的导体杆ab,导轨间匀强磁场的方向垂直纸面向里。已知=3Ω,= 6Ω,电压表的量 程为0~10 V,电流表的量程为0~3 A(导轨的电阻不计)。求: (1)将R调到30Ω时,用垂直于杆ab的力F=40 N,使杆ab沿着导轨向右移动且达到最大速度时,两表中有一表的示数恰好满量程,另一表又能安全使用,则杆ab的速度多大?(2)将R调到3Ω时,欲使杆ab运动达到稳定状态时,两表中有一表的示数恰好满量程,另一表又能安全使用,则拉力应为多大? (3)在第(1)小题的条件下,当杆ab运动达到最大速度时突然撤去拉力,则电阻上还能产生多少热量?

相关文档
最新文档